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A B S T R A C T   

Single-cell RNA sequencing (scRNA-seq) is a powerful technology that is capable of generating gene expression 
data at the resolution of individual cell. The scRNA-seq data is characterized by the presence of dropout events, 
which severely bias the results if they remain unaddressed. There are limited Differential Expression (DE) ap
proaches which consider the biological processes, which lead to dropout events, in the modeling process. So, we 
develop, SwarnSeq, an improved method for DE, and other downstream analysis that considers the molecular 
capture process in scRNA-seq data modeling. The performance of the proposed method is benchmarked with 11 
existing methods on 10 different real scRNA-seq datasets under three comparison settings. We demonstrate that 
SwarnSeq method has improved performance over the 11 existing methods. This improvement is consistently 
observed across several public scRNA-seq datasets generated using different scRNA-seq protocols. The external 
spike-ins data can be used in the SwarnSeq method to enhance its performance. 
Availability and implementation: The method is implemented as a publicly available R package available at 
https://github.com/sam-uofl/SwarnSeq.   

1. Background 

The advent of single-cell RNA sequencing (scRNA-seq) technology 
revolutionized transcriptomics through generating gene expression data 
at the single cell resolution level [1,2]. It has numerous advantages over 
bulk RNA-seq technology, which only characterize the global expression 
dynamics of genes in a tissue sample, while ignoring the inherent cell- 
cell heterogeneity [3,4]. Thus, it is pertinent to assess the variability 
that exists among the cells in a tissue sample as this is crucial to un
derstand the complexity and dynamics of biological processes such as 
embryogenesis [1,5], cancer [6], etc. Through scRNA-seq technology, 
expression is quantified by mapping reads to a reference genome fol
lowed by counting the number of reads mapped to each gene [1]. Here, 
individual transcript molecules are attached with a Unique Molecular 
Identifier (UMI) tag; subsequently, counting the UMIs usually yields the 
number of transcripts for each gene in a cell [7]. Further, huge amounts 

of UMI count data are generated for several thousand(s) of genes across 
thousand(s) of cells and subsequently deposited in public domain da
tabases by researchers across the globe. Hence, it is necessary to develop 
new, and innovative statistical approaches and tools for such data 
analysis to harness the potential of this new technology. 

Small amounts of the mRNA molecules and imperfect procedures for 
capturing them in individual cells lead to dropout events, i.e., genes 
show zero or very low expression, even though they are expressed in 
cells [8,9]. Further, it is well established that the capture rates vary 
between cells for a given scRNA-seq protocol, and this is a major source 
of unwanted technical variation that adds to the dropout events [10,11]. 
Addition of UMIs during the library preparation step reduces the 
amplification bias but has no effects on dropout events [12]. Further, the 
dropout events add more zeros to the output data, and can be catego
rized as either true/biological zeros (gene is not expressed in the cell), or 
false/technical zeros (gene is expressed but not detected) [13]. The 
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presence of higher proportions of zeros and technical noise in scRNA-seq 
data can severely affect the performance of downstream Differential 
Expression (DE) analysis. 

Bulk RNA-seq DE methods such as edgeR [14], and DESeq2 [15,16] 
have been used extensively for DE analysis of scRNA-seq data. These 
methods use the Negative Binomial (NB) model to capture the distri
butional nature of read counts under a Generalized Linear Model (GLM) 
framework. Further, Limma-Voom considers linear models for log- 
transformed counts data and observation-level weights to account for 
the dispersion of the transformed data [17,18], while DEGseq assumes 
the Poisson distribution of the read counts [19]. The use of such ap
proaches in scRNA-seq data analysis raises serious concerns about their 
validity due to high dropout events [13], transcriptional bursting [20], 
lower molecular capturing in cells [9,21], and higher dispersion, etc. 
Therefore, dedicated scRNA-seq DE methods have been developed 
which use different strategies to cope with the above concerns 
[8,9,13,21–24]. For instance, SCDE uses a mixture model (i.e., Poisson 
for dropout part and NB for amplification part) to capture the observed 
abundance of a given transcript in each cell [25]. SCDE assumes that the 
observed zero-count belongs to the dropout events with certainty. 
Further, MAST uses a hurdle model, i.e., logistic regression for the level 
of gene expression and a Gaussian linear model for rate of expression 
conditioned on expression levels [8]. However, SCDE and MAST do not 
differentiate between biological and technical zeros during the model 
building. The BPSC approach [26] was developed to perform the DE 
analysis of scRNA-seq data through integrating Beta-Poisson model in 
the GLM framework. It does not consider the count nature of UMI data, 
and is severely affected by the dropout events [27]. These methods 
specifically consider the bi-modal distributional nature of the scRNA-seq 
data. Hence, a class of methods including D3E [28] and scDD [29] was 
developed to address the multimodal distributions of transformed 
scRNA-seq data, but they failed to consider the UMI count nature of the 
data and excluded the dropout events. Further, methods such as 
Monocle [23], Monocle2 [30], and NBID [31] were designed to handle 
the unique features of UMI in scRNA-seq experiments. They fit NB 
models directly to the observed UMI count data without any explicit 
focus on dropout events. Next, another class of specialized methods, 
such as ZINB-WaVE [13,32], DEsingle [22], and DECENT [9], were 
developed to handle excess zero inflation in scRNA-seq data. These 
methods are based on fitting of Zero Inflated Negative Binomial (ZINB) 
models to the UMI counts data. To be more specific, ZINB-WaVE [13] 
estimates observational level weights through Expectation- 
Maximization (EM) algorithm for adjusting bulk DE methods, i.e., 
edgeR [14], DESeq2 [16]. The DEsingle [22] approach assumes ZINB 
models for observed UMI count data to estimate the parameters through 
Maximum Likelihood Estimation (MLE) method for two cellular pop
ulations separately. However, DECENT [9] assumes ZINB model for 
observed UMI count data and considers a Beta-Binomial model for the 
molecule capturing process. These methods ignore multimodal distri
butions of the observed expression data, estimate the DE parameters 
under parametric model assumptions, and are mostly focused on two- 
groups comparisons. Further, there is another class of DE methods 
which explicitly considers technical variation and molecular capturing 
processes, based on external spike-ins data. This class includes methods 
such as TASC [33], BASiCs [34], DECENT [9], and DESCEND [21]. 
Moreover, several comprehensive reviews and comparative analysis of 
DE methods covering all the above classes can be found in the literature 
[27,35–39]. 

It is evident that cells in scRNA-seq data behave variably and tend to 
be in different cell clusters [40], due to cell-cell heterogeneity. Biolog
ically, these cell clusters are often different cell-types (e.g., neurons and 
glia in brain sample) and correspond to different active states of cell 
types. Hence, descriptive data mining strategies (e.g., clustering) have 
been adapted for scRNA-seq data analytics. In this study, we argue that 
the underlying cell clusters may have a significant effect on the means of 
non-zero counts of genes, and subsequently may influence the power of 

detection of DE genes. Further, there are limited methods available to 
date which consider the molecular capturing process, cell cluster in
formation, and other cell-level auxiliary information for DE analysis. 
The incorporation of these data into the DE methods, may enhance their 
performance. This process requires building specific statistical models in 
order to perform statistical tests reliably. 

We, therefore, propose a novel statistical approach, i.e., SwarnSeq, 
for the DE analysis of scRNA-seq UMI count data. Here, we integrate the 
parametric ZINB model with a binomial molecular capture model in the 
presence of cell-level data. This allows us to detect DE genes and Dif
ferential Zero-Inflated (DZI) genes under a GLM framework. SwarnSeq 
can also classify the influential genes from scRNA-seq study into various 
groups. SwarnSeq can use external RNA spike-in data to adjust the dis
tribution of the observed UMI counts with capture rates; however, it also 
works without spike-ins. In this paper, we describe SwarnSeq approach 
and benchmark it against 11 other existing methods, i.e., DEGseq [19], 
edgeR [14], DEseq2 [15,16], LIMMA [18], Monocle2 [24], MAST [8], 
BPSC [26], SCDD [29], DEsingle [22], DECENT [9], and NODES [41] 
using 10 real scRNA-seq datasets. Our analytical results indicate that the 
SwarnSeq approach outperformed the competing existing methods on 
multiple real datasets, when assessed under 3 comparative settings. 

2. Material and methods 

2.1. Motivational data example 

In scRNA-seq DE analysis, the cells are clustered, and these cell 
clusters are further divided into two groups (for example: group 1 has 
cluster M and group 2 has remaining clusters), as shown Supplementary 
Fig. S2. In existing analyses, this cell cluster information is kept out of 
the model building, and this may have a significant influence on the 
mean of non-zero counts. To test this claim, we took a toy example 
scRNA-seq dataset having 200 genes and 150 cells (Group 1: 50 cells; 
Group 2: 100 cells), available in DEsingle R package [22,42]. Then, we 
modeled the mean of non-zero counts under a GLM framework by 
providing group and cell cluster information as auxiliaries. The details of 
data description and analysis can be found in Supplementary Document 
S6. The results are shown in Supplementary Table S4. Our preliminary 
analysis indicated that the cell clusters have significant effect on the 
mean counts of the gene (Table S4). Hence, this toy data example 
motivated us to develop an innovative and novel statistical approach for 
DE analysis of scRNA-seq data through incorporating the cell clusters, 
other cell-level auxiliaries, and cell capture rates into the model building 
process under a GLM framework. 

2.2. Single cell RNA-seq datasets 

Our comprehensive analysis includes benchmarking of the proposed 
SwarnSeq method against 11 competitive existing methods on multiple 
real scRNA-seq datasets. This process starts with collection of publicly 
available scRNA-seq datasets from the GEO NCBI database (htt 
ps://www.ncbi.nlm.nih.gov/geo). In our comparative analysis, we 
included the 10 UMI count gene expression datasets derived from 8 
independent scRNA-seq studies. Further, the selected datasets include 
scRNA-seq data from lung cancer cells, pluripotent stem cells, liver cells, 
adipose stem/stromal cells, HEK cells from human, and embryonic stem 
cells, blood cells, and cells from mice. There are limited studies, where 
transcript concentration and external spike-in data are publicly avail
able. Hence, we used the molecular concentration and ERCC spike-in 
data from Tung et al.’s experiment [12], available in https://github. 
com/jdblischak/singleCellSeq, to estimate the cell capture rates, while 
for other data cases, cell capture rates are estimated from the data per se. 
We used the processed UMI count data for these considered scRNA-seq 
studies as these datasets have gone through careful quality control 
steps by the authors of the original publications. The brief and detailed 
descriptions of the selected datasets are given in Table 1 and 
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Supplementary Document S8, respectively. Further, we do not filter any 
cells in these datasets excluding the Tian et al. [6] and MacParland et al. 
[43] datasets, where we removed the low-quality cells with lower li
brary sizes (Supplementary Document S8, Table S6). Further, we also 
performed filtering of very low abundance genes, i.e., those that do not 
have at least five non-zero counts over the cells (Supplementary Docu
ment S8). 

2.3. Model formulations 

Notations: Let, Zijk: random variable (rv) representing the true 
(unknown) read (UMI) counts of kth (k = 1, 2, …, K) gene of jth (j = 1, 2, 
…, Mi) cell in ith (I = 1, 2, …, N) cell cluster; K: total number of genes; Mi: 

number of cells in ith cell cluster; M
(

=
∑N

i=1Mi

)

: total number of cells; 

N: number of cell clusters; μijk: mean of kth gene of jth cell in ith cell cluster 
for NB distribution; θijk: size (=1/dispersion) parameter of kth gene of jth 

cell in ith cell cluster for NB distribution; πijk: mixture probability (i.e., 
the probability for a count to be an excess zero in a cell) parameter for kth 

gene of jth cell in ith cell cluster. 
In bulk RNA-seq, the counts are usually modeled through a NB dis

tribution. The Probability Mass Function (PMF) of the NB distribution is 
expressed as: 

fNB(z) = P
[
Zijk = z

⃒
⃒μijk, θijk

]

=
G
(
z + θijk

)

G(z + 1)G
(
θijk
)

(
θijk

θijk + μijk

)θijk
( μijk

θijk + μijk

)z

∀z = 0, 1, 2,… (1)  

where, μijk ≥ 0; θijk > 0 are the parameters of NB distribution, G(.): 
Gamma function. The NB distribution becomes Poisson, when θijk → ∞. 

For any πijk ∈ [0,1], the true read counts in scRNA-seq study is 
assumed to follow a ZINB distribution [9,13,22]. The PMF of the ZINB 
distribution can be expressed as: 

fZINB(z) = P
[
Zijk = z

]
= πijkδ0(z) +

(
1 − πijk

)
fNB(z)∀z = 0, 1, 2,… (2)  

where, fNB(.): PMF of NB distribution; δ0(.): Dirac’s delta function. Here, 
δ0(.) is used to model the excess zeros in the scRNA-seq data, and its PMF 
is equal to zero for every non-zero counts except zero-counts and can be 
expressed as: 

δ0
(
Zijk = z

)
=

{
1; z = 0
0; z ∕= 0 (3) 

The PMF of the ZINB distribution, used to model the read counts 
from scRNA-seq data, can be given as: 

P
[
Zijk = z

⃒
⃒πijk, μijk, θijk

]

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

πijk +
(
1 − πijk

)
(

θijk

θijk + μijk

)θijk

when z = 0

(
1 − πijk

) G
(
z + θijk

)

G(z + 1)G
(
θijk
)

(
θijk

θijk + μijk

)θijk
( μijk

θijk + μijk

)z

; z > 0

(4) 

Now, Zijk~ZINB(πijk,μijk,θijk), then the expected value and variance of 
Zijk can be obtained as [Kindly see Supplementary Document S1 for 
proof]: 

E
(
Zijk
)
=
(
1 − πijk

)
μijk and V

(
Zijk
)
=
(
1 − πijk

)
μijk

(

1+ πijkμijk +
μijk

θijk

)

(5) 

If πijk = 0; ZINB(πijk,μijk,θijk) → NB(μijk,θijk) 
If θijk →  ∞ (No dispersion); ZINB(πijk,μijk,θijk) → ZIP(πijk,μijk) 

2.4. Proposed SwarnSeq method 

2.4.1. Model adjustment for cell capture rates 

Theorem. Let, Yijk be the rv for observed (known) read (UMI) counts of 
kth gene of jth cell in ith cell cluster and ρijk be the transcriptional capture 
rate rv for kth gene of jth cell in ith cell cluster. If Zijk follows a ZINB 
(πijk,μijk,θijk) distribution, and ρijk follows a binomial model with 
parameter pijk (0 ≤ pijk ≤ 1), then Yijk will also follow ZINB distribution 
with parameters (πijk,μijkpijk,θijk). 

Proof. Given that, Zijk~ZINB(πijk,μijk,θijk) and ρijk = (Yijk|Zijk = z)~B(z, 
pijk). 

Now, the PMF of Zijk is given in Eq. (4) and the PMF of ρijk can be 
expressed in Eq. (6). 

P
[
Yijk = y|Zijk = z

]
=

(
z
y

)

pijk
y( 1 − pijk

)z− y (6) 

The joint probability distribution of Yijk and Zijk can be written as: 

P
[
Yijk = y, Zijk = z|πijk, μijk, θijk, pijk

]
= P

[
Yijk = y

⃒
⃒Zijk = z, pijk

]
P
[

Zijk

= z|πijk, μijk, θijk
]

(7) 

Now, the marginal probability distribution of Yijk can be given as: 

P
[
Yijk = y|πijk, μijk, θijk, pijk

]
=
∑

z
P
[
Yijk = y

⃒
⃒Zijk = z, pijk

]

P
[

Zijk

= z|πijk, μijk, θijk
]

(8)  

Table 1 
scRNA-seq datasets used in this study.  

SN. Data Description Accession Protocol #Genes #Cells References 

01 Lung cancer 10× chromium sample from lung cells from three cell lines. GSE111108 NextSeq 
500 

33,456 4000 [6] 

02 Pluripotent stem cell Human induced Pluripotent stem cell lines. GSE77288 HiSeq 18,938 576 [12] 
03 Mouse blood cell Single cell profiling of mouse blood cells GSE109999 CEL-Seq 19,903 383 [6] 
04 Liver cell single cell RNA sequencing by 10× Genomics of human liver cell lines GSE115469 HiSeq 20,007 8444 [43] 
05 Mouse cell single-cell (ES and MEF) transcriptional landscape by highly multiplex 

RNA-Seq 
GSE29087 SmartSeq 22,928 92 [7] 

06 Adipose stem/stromal 
cells 

Differentiating adipose cells by scRNA-Sequencing (Day 1 vs Day 2) GSE53638 HiSeq 23,895 1835 [52] 

07 Adipose stem/stromal 
cells 

Differentiating adipose cells by scRNA-Sequencing (Day 1 vs Day 3) GSE53638 HiSeq 23,895 2268 [52] 

08 Adipose stem/stromal 
cells 

Differentiating adipose cells by scRNA-Sequencing (Day 2 vs Day 3) GSE53638 HiSeq 23,895 1613 [52] 

09 Mouse embryonic cells Mouse embryonic stem cells GSE65525 DropSeq 24,174 1481 [5] 
10 HEK cell Single-cell RNA sequencing experiments of HEK cells GSE92495 NextSeq 24,176 1453 [53] 

#genes: number of genes, #cells: number of cells. 
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Case-1. For zero count (Yijk = 0) 

P
[
Yijk = 0|πijk, μijk, θijk, pijk

]
= P

[
Yijk = 0

⃒
⃒Zijk = z, pijk

]
P
[

Zijk

= 0|πijk, μijk, θijk
]
+
∑∞

z=1
P
[
Yijk = 0

⃒
⃒Zijk = z, pijk

]
P
[

Zijk

= z|πijk, μijk, θijk
]
= πijk +

(
1 − πijk

)
(

θijk

θijk + μijkpijk

)θijk

= πijk +
(
1 − πijk

)
(

θijk

θijk + μ’
ijk

)θijk (
μijkpijk = μ’

ijk (say)
)

(9)  

Case-2. For non-zero counts, i.e., Yijk(>0) = t = 1, 2, 3, … 

P
[
Yijk = t|πijk,μijk,θijk,pijk

]
=
∑

z≥t
P
[
Yijk = t

⃒
⃒Zijk =z,pijk

]
P
[

Zijk =z|πijk,μijk,θijk
]

=
(
1

− πijk
)
(

θijk

θijk+μijk

)θijk∑

z≥t

(z
t

)
pijk

t( 1 − pijk
)z− t G

(
z+θijk

)

G(z+1)G
(
θijk
)

( μijk

θijk+μijk

)z

=
(
1 − πijk

) G
(
t+θijk

)

G(t+1)G
(
θijk
)

(
θijk

θijk+μijkpijk

)θijk
(

μijkpijk

θijk+μijkpijk

)t

=
(
1 − πijk

) G
(
t+θijk

)

G(t+1)G
(
θijk
)

(
θijk

θijk+μ’
ijk

)θijk
(

μ’
ijk

θijk +μ’
ijk

)t

(10) 

Now, Eqs. (9) and (10) are in the form of Eq. (4), which indicates the 
distribution of Yijk is also ZINB(πijk,μijk

′,θijk). Kindly see Supplementary 

Document S2 for proof of this theorem. When pijk = 1 (under full capture 
rates), then ZINB(πijk,μijk

′,θijk) → ZINB(πijk,μijk,θijk). 

2.4.2. Generalized Linear Model framework in presence of cell capture 
rates 

We estimated the parameters of the ZINB model, given in Eqs. (9) 
and (10), from the observed UMI count data under a GLM framework. 
We have shown that the observed UMI counts for kth gene, Yijk, as a ZINB 
rv with parameters μk

′ = (μ11k
′,…,μ1M1k

′,…μN1k
′,…,μNMNk

′); πk = (π11k, 
…,π1M1k,…,πN1k,…,μNMNk); θk = (θ11k,…,θ1M1k,…,θN1k,…,θNMNk) and 
further the following GLMs (Eqs. (11)–(13)) are considered to model 
these parameters. 

αk = logμ’
k = Xγk + Rwk + Csk + Oμ (11)  

τk = logitπk = Xβk + Ruk + Cvk + Oπ (12)  

φk = logθk (13)  

where, logit(π) = log
(

π
1− π

)
; αk, τk and φk: M × 1 vector of parameters for 

kth gene; X: M × G design matrix providing group information (first 
column consists of 1’s to include intercept term); G: number of cellular 
groups (cell clusters are divided into G groups, if group is unknown); R: 
M × N design matrix providing cell cluster information; C: M × C design 
matrix providing cell level auxiliary information; γk and βk: G × 1 vec
tors of cellular groups effects for kth gene; wk and uk: N × 1 vectors of cell 
cluster effects for kth gene; sk and vk: C × 1 vectors of effects for cell level 
co-variates like cell cycle, cell phase, etc. for the kth gene; C: Levels of cell 
level auxiliaries. Oμ,Oπ: offsets for μk

′ and πkrespectively. 

2.4.3. Estimation of model parameters with EM algorithm 
The parameters in Eqs. (11)–(13) for kth gene, i.e., Ωk = {αk,τk,φk} 

can be estimated by using the MLE Method. However, no closed form 
solutions exist for the resulting log-likelihood equation in Eq. (14). 
Hence, we developed an EM algorithm to estimate the parameters for 
the given observed scRNA-seq count data, i.e., Yijk = yijk. Now, the 
incomplete data likelihood function for kth gene can be expressed as: 

L
(
Ωk;Yijk = yijk

)
=
∏N

i=1

∏Mi

j=1

{
πijkδ0

(
yijk
)
+
(
1 − πijk

)
fNB
(
yijk
) }

(14) 

Further, the EM algorithm recasts the ZINB model into a missing data 
problem by introducing a latent rv, Vijk. The Vijk can be defined as: 

Vijk =

{
1 if the observed count data comes from the zero componet

0 if the observed count data comes from the count component 

Now, the joint likelihood function for complete data, i.e., (Yijk,Vijk) 
can be expressed in Eq. (15), as:  

Then, the log-likelihood function in Eq. (15) becomes:  

where, l1(.): log-likelihood due to the zero-component of the model and 
l2(.): log-likelihood due to the count-component of the model. Hence, 
the expected value of the log-likelihood function in Eq. (16) can be 
expressed as: 

Q = E
[
l
(
Ωk; Yijk,Vijk

) ]

=
∑N

i=1

∑Mi

j=1
E

(

Vijk
⃒
⃒YijkΩk

)
log
{

πijk +
(
1 − πijk

)
(

θijk

θijk + μijk

)θijk
}

+
∑N

i=1

∑Mi

j=1

(
1 − E

(
Vijk
⃒
⃒YijkΩk

) )
log

{
(
1

− πijk
) G

(
z + θijk

)

G(z + 1)G
(
θijk
)

(
θijk

θijk + μijk

)θijk
( μijk

θijk + μijk

)yijk
}

(17) 

L
(
Ωk;Yijk,Vijk

)
=
∏N

i=1

∏Mi

j=1

[{

πijk +
(
1 − πijk

)
(

θijk

θijk + μijk

)θijk
}Vijk

{
(
1 − πijk

) G
(
z + θijk

)

G(z + 1)G
(
θijk
)

(
θijk

θijk + μijk

)θijk
( μijk

θijk + μijk

)yijk
}1− Vijk

]

(15)   

l
(
Ωk;Yijk,Vijk

)
=
∑N

i=1

∑Mi

j=1
Vijklog

{

πijk +
(
1 − πijk

)
(

θijk

θijk + μijk

)θijk
}

+
∑N

i=1

∑Mi

j=1

(
1 − Vijk

)
log

{
(
1 − πijk

) G
(
z + θijk

)

G(z + 1)G
(
θijk
)

(
θijk

θijk + μijk

)θijk
( μijk

θijk + μijk

)yijk
}

= l1
(
Ωk;Vijk

)
+ l2

(
Ωk; Yijk,Vijk

)

(16)   
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Further, the posterior probabilities in Eq. (17) for the observations 
originate from the count component of the model and can be given as: 

wijk = P
[
Vijk = 0|Yijk,Ωk

]
=

(
1 − πijk

)
fNB
(
yijk; μijk, θijk

)

πijkδ0
(
yijk
)
+
(
1 − πijk

)
fNB
(
yijk; μijk, θijk

) (18)  

where, fNB(.) is the PMF of NB distribution given in Eq. (1).  

A. E-step: The E-step in the EM algorithm involves in evaluating the 
expected value of the log-likelihood of the complete data (Eq. (17)), 
given the observed data with the current estimates of the parameters. 
In our proposed approach, for each gene, given the observed data 
and a current estimate of the ZINB parameters, the expected value of 

the log-likelihood is calculated. Let, Ω̂k
c
=

{

α̂k
c
, τ̂k

c
, φ̂k

c
}

be the 

given current estimate of the parameters, then the expected value of 
log likelihood in Eq. (17) at step (c + 1), i.e., Qc+1 is calculated. The 

conditional expectation, i.e., E(Vijk

⃒
⃒
⃒
⃒YijkΩ̂k

)

in Eq. (17) can be given 

as: 

E
(

Vijk
⃒
⃒Yijk, Ω̂k

)

=

π̂ ijk +

(

1 − π̂ ijk

)
⎛

⎝ θ̂ ijk

θ̂ ijk+μ̂ ijk

⎞

⎠

θ̂ ijk

π̂ ijkδ0
(
yijk
)
+

(

1 − π̂ ijk

)

fNB

(

yijk|μ̂ijk, θ̂ijk

) (19)    

B. M-step: Maximize Qc+1 to update the parameter estimates.  

i. The parameters from the count component of the model, 
{

μ̂
′

k, θ̂k

}

are updated within the GLM framework, and can be expressed as: 

logμ′

k = Xγk +Rwk +Csk +Oμ (20) 

The updated value of the estimates of parameters at step (c + 1) is 
obtained by providing the observation wise weights, ŵijk

(c)
ijk , given in Eq. 

(18) and parameters estimates at c-step. For this purpose, the glm.nb 
function in MASS R package was executed.  

ii. The zero-inflation probability, π̂ ijk, is updated with the logistic 
regression, can be expressed as: 

logit(πk) = Xβk +Ruk +Cvk +Oπ (21) 

The updated value of π̂ ijk at step (c + 1) is obtained by incorporating 
the observation level weights, ŵijk

(c)
ijk given in Eq. (18) and the parameters 

estimate at c-step. For this, glm(…, family = ‘binomial’) function in stat 
R package was executed.  

C. Starting values for EM algorithm 

The success of an iterative algorithm, e.g., EM, depends on the pro
vision of initial values for the parameters. In our SwarnSeq method, we 
provide the initial values for the estimators for each gene by estimating 
through Generalized Linear (GL) Poisson and GL Binomial models for 
non-zero and zero counts, respectively. For this purpose, the glm func
tion implemented in stats package was executed.  

D. Assessing convergence 

The EM algorithm iterates over an Expectation (E) step and Maxi
mization (M) step for each gene until convergence achieved [13,44,45]. 

Let, Ω̂k
c
=

{

α̂k
c
, τ̂k

c
, φ̂k

c
}

be the vector parameter estimates for kth 

gene. The criteria for convergence can be expressed as: 

⃒
⃒
⃒
⃒Q
(

Ω̂k
c+1

; Yijk,Vijk

)

− Q
(

Ω̂k
c
;Yijk,Vijk

) ⃒
⃒
⃒
⃒ < ϵ (22)  

where, ϵ is the threshold for convergence (e.g., in SwarnSeq R package, 
the default for ϵ = 10− 10 and maximum iteration is 103). It is important 
to note that for some genes, the EM algorithm may fail to converge or 
may be not successful; therefore, we used Nelder’s optimization algo
rithm [46] implemented in optim function of stats R package to estimate 
the MLE of parameters. 

2.4.4. Differential expression analysis 
The gene-wise mean parameter depends on the cellular groups 

through the model given in Eq. (11). Further, the factors such as cell 
clusters and cell co-variates are included in the model to remove the 
unwanted effects. For DE analysis, two group comparisons were made 
and the model in Eq. (11) can be expanded as: 

Log
(
μijk
)
= γ0k + γ1kxijk +w1kr1jk +…+wNkrNjk + s1kc1jk +…+ smkcmjk +Oμk

(23)  

where, xijk: binary indicator for cellular group membership, γ0k: (inter
cept term) logarithm of mean parameter for kth gene in the reference 
cellular group, γ1k: regression parameter for cellular group effect of kth 

gene, wik: regression co-efficient for ith cell cluster for kth gene, rijk: in
dicator variable for cell cluster membership of jth cell in ith cluster for kth 

gene, smk: regression co-efficient for mth cell co-variates of kth gene, cmjk: 
indicator variable for mth co-variates of jth cell for kth gene and Oμk: offset 
term. 

To decide whether, the kth gene is DE or not, the following hypoth
eses were tested. 

H0 : γ1k = 0 vs.H1 : γ1k ∕= 0 

The above test can be performed by using likelihood ratio test sta
tistic, and can be expressed as: 

DSk = − 2
{

l
(

Ωk = Ω̂k0

)

− l
(

Ωk = Ω̂k

)}

(24)  

where, Ω̂k0: MLE of Ωk for kth gene under the constraint of H0 and Ω̂k: 
unconstrained MLE of Ωk for kth gene. The test statistic, DSk, follows a 
Chi-square distribution with 1 degree of freedom (for 2 groups) under 
H0. Further, based on the distribution of DSk, the p-value, adjusted p- 
value and FDR for kth gene can be computed after adjustment for mul
tiple hypothesis testing. 

2.4.5. Testing for differential zero inflation 
Through generalized likelihood ratio statistical test, we have shown 

that genes in scRNA-seq data are highly zero inflated, described in 
Supplementary Document S3. Therefore, to facilitate DZI analysis in the 
SwarnSeq method, the gene-wise zero inflation parameter depends on 
the cellular groups through the model given in Eq. (12). Further, factors 
such as cell clusters and other cell-level auxiliaries are included in the 
model to remove the unwanted effects. For DZI analysis, two group 
comparisons were made and the model in Eq. (12) can be written as: 

Table 2 
Classification of influential genes using SwarnSeq method.   

Differentially expressed 

Differentially Zero Inflated  Yes No 
Yes DEZI DZI 
No DE None 

DEZI: Differentially Expressed as well as Differentially Zero Inflated; 
DZI: Differentially Zero Inflated; DE: Differentially Expressed. 
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logit
(
πijk
)
= β0k + β1kxijk + u1kr1jk +…+ uNkrNjk + v1kc1jk +…+ vmkcmjk +Oπk

(25)  

where, xijk: binary indicator for cellular group membership, β0k: inter
cept term, β1k:regression co-efficient of cellular group effect for kth gene, 
uik: regression co-efficient for ith cell cluster for kth gene, rijk: indicator 
variable for cell cluster membership of jth cell in ith cluster for kth gene, 
vmk: regression co-efficient for mth cell co-variates of kth gene, cmjk: in
dicator variable for mth co-variates of jth cell and Oπk: offset term. 

To decide whether the kth gene is DZI or not, the following hypoth
eses were tested. 

H10 : β1k = 0 vs.H1 : β1k ∕= 0 

A similar test statistic to that given in Eq. (28) can also be developed 
for testing of DZI of genes. 

2.4.6. Classification of influential genes 
The SwarnSeq method can divide the detected influential genes into 

different classes, as shown in Table 2. For instance, the H0: γ1k = 0 de
tects all the genes that are DE across two cellular groups, while H10 : β1k 
= 0 detects the DZI genes. Further, the SwarnSeq detects a class of 
influential genes with both H0 and H10 rejected, which indicates there is 
a significant difference in the number of cells with zero values for genes 
across the cellular groups, but the (non-zero counts) expressions in the 
remaining cells also show significant differences. We call such a group of 
influential genes as ‘DEZI’ genes. The second type of genes are those for 
which H0 is rejected, but H10 is not. This means that there is no signif
icant difference in the number of cells whose expressions are zeros 
across cellular conditions for genes, but they are expressed differen
tially. We call this group of genes as ‘DE’. Further, the third type (i.e., 
DZI) of genes is that for which H10 is rejected, but H0 is not. It includes 
the genes for which, there is a significant difference in the number of 
cells with real zero values across the two cellular conditions, but the 
expression in the remaining cells shows no significant difference. 

2.5. Estimation of capture rates parameter 

The distribution of the observed scRNA-seq UMI counts depends on 
the cell specific transcriptional efficiency parameter, pijk. For computa
tional simplicity, we assume pij1 = pij2 = … = pijK = pij, i.e., the cell 
specific efficiency parameters remain same across all the genes. The 
proposed procedure for estimation of cell capture rate parameters is 
described as follows. 

Case 1. When RNA spike-ins are available 

Suppose n RNA spike-ins are added to each cell’s lysate and spike-in 
transcripts are processed in parallel. This will result a set of UMI counts 
for spike-in transcripts. Let, C1, C2, …, Cn be the respective mRNA 
concentrations of n spike-in transcripts added to jth (j = 1, 2, …, Mi) cell 
of ith (i = 1, 2, …, N) cell cluster and let Rij1, Rij2, …, Rijn be the observed 
UMI counts of the n spike-in transcripts for jth cell. Now, the transcrip
tional capture rate for jth cell in ith cell cluster can be estimated through a 
linear regression equation, given in Eq. (26). 

Rijk = pij0 + pij1Ck + ϵk (26) 

Here, p̂ij1, regression co-efficient, is the estimate of the capture rate 
for jth cell in ith cell cluster. 

Case 2. When RNA spike-ins are not available 

Transcriptional capture efficiency parameters of cells are the key 
factors for variation in the observed cell specific library sizes [47]. 
Hence, the observed cell library sizes can be used to empirically compute 
the cell specific capture rates, which is given as: 

Let, (ρ1,ρ2) be the range of capture rates and Sij be the library size of 
jth cell in ith cell cluster and, Lij = log10(Sij) ∀ i, j 

Now, Lmin = min
j

Lij and ​ Lmax = max
j

Lij

p̂ij = ρ1 + (ρ2 − ρ1)
Lij − Lmin

Lmax − Lmin

(27)  

2.6. Performance evaluation metrics 

The performance of SwarnSeq method for identifying genuine DE 
genes was evaluated with respect to 11 existing competitive methods 
(Table S7) using the Area Under Receiver Operating Characteristic 
(AUROC) curve (i.e., true positive rate (TPR) vs. false positive rate 
(FPR)), and other performance metrics on 10 real scRNA-seq datasets 
(Table 1). The layout of this comparative study is shown in Supple
mentary Fig. S7. Further, the performance metrics (Eqs. (28)–(34)) were 
computed by comparing the DE genes obtained through each method 
with the reference genes (i.e., true DE genes) for each dataset. For 
instance, we defined True Positive (TP) in Eq. (28) as the significant 
genes those were found to be true DE genes and False Positive (FP) in Eq. 
(29) as the genes that were found significant but were not true DE genes. 
Similarly, True Negative (TN) in Eq. (29) were defined as genes that 
were not true DE and were not found significant, and False Negative 
(FN) in Eq. (28) were defined as genes that were true DE but were not 
found significant. The evaluation metrics are defined in Eqs. (28)–(34), 
as: 

TPR( or Sensitivity) =
TP

TP + FN
(28)  

FPR( or 1 − Specificity) =
FP

FP + TN
(29)  

PPR =
TP

TP + FP
(30)  

FDR =
FP

FP + TP
(31)  

NPV =
TN

TN + FN
(32)  

ACC =
TP + TN

TP + TN + FP + FN
(33)  

F1 =
2TP

2TP + FP + FN
(34)  

where, TPR: True Positive Rate; FPR: False Positive Rate; PPR: Positive 
Prediction Rate; FDR: False Discovery Rate; NPV: Negative Prediction 
Value; ACC: Accuracy; F1: F-score 

3. Results 

3.1. Preliminary analytical results 

We considered two publicly available zero inflated and over
dispersed datasets to show the suitability and goodness of fit of different 
count data models, viz. NB, ZINB, Poisson Distribution (PD), Hermite 
Distribution (HD) and Zero Inflated Poisson Distribution (ZIPD) [48,49]. 
The descriptions of these models, datasets, and the results from fitting 
the above count models are given in Supplementary Documents S1, S4. 
Our preliminary analytical results indicated that the expected fre
quencies computed from the ZINB model are much closer to their 
observed counter parts as compared to other models (Supplementary 
Tables S1, S2). Further, the ZINB provides the best fit to the given 
datasets as compared to NB, PD, ZIPD, and HD when assessed through 
different model fitting criteria (Supplementary Tables S1, S2). At this 
preliminary stage, we inferred that the ZINB model best suits to the zero 
inflated and overdispersed data (e.g., scRNA-seq data) as compared to 

S. Das and S.N. Rai                                                                                                                                                                                                                            



Genomics 113 (2021) 1308–1324

1314

the NB model extensively used in RNA-seq data analysis. 
We also tested the ability of NB and ZINB models to estimate the 

mean and dispersion parameters for scRNA-seq count data through 
simulation (Supplementary Document S5). For this purpose, parameter 
estimates for the BTG4 gene from human preimplantation of embryonic 
scRNA-seq data, available in DEsingle R package [22,42] was used to 
simulate count expression data through ZINB model and the results are 
shown in Supplementary Table S3. Our preliminary analysis indicates 
that the NB model underestimates the mean and overestimates the 
dispersion for scRNA-seq data. Further, the ZINB model provides better 
estimates of mean and dispersion with lower bias as compared to NB. 
This indicates better suitability of the ZINB model for modeling the zero 
inflated and overdispersed UMI counts data (Tables S1-S3). This is due 
to the fact that the NB model accommodated excess zeros in scRNA-seq 
data by underestimating the mean and overestimating the dispersion, 
which further jeopardizes the statistical power to detect DE genes. The 
detailed analysis and results are given in Supplementary Documents S4, 
S5. 

3.2. Proposed model overview 

Fig. 1 and Supplementary Fig. S6 give an overview of the computa
tional framework and major analytical steps of the proposed SwarnSeq 
method. The observed UMI counts are the noisy reflection of the true 
expression of genes due to low transcriptional capturing. We modeled 
the observed UMI counts, Yijk of kth gene in jth cell in ith cluster, as the 
joint distribution of kth gene’s true expression Zijk and transcriptional 
capture rate (pijk) of jth cell in ith cell cluster. In other words, after 
incorporating the transcriptional capturing procedure in the modeling 
process, the mean of non-zero counts in the ZINB model depends on cell 
capturing rate parameter. The relation between the capture efficiency 

with the distribution of the observed read counts is shown in Fig. 2. The 
relation among the means of count part in the ZINB model before and 
after incorporation of the capturing procedure is found to be μijk > μijk

′. 
In other words, the distribution of observed scRNA-seq read counts shift 
more towards zeros after incorporation of the transcriptional capturing 
process (Fig. 2). This means that more zeros are found in observed data 
and will be from the count part of the model. Further, the expected value 
and variance of the observed UMI counts of genes depends (i.e., directly 
proportional) on the cell capture rates (See Supplementary Document S2 
for proof) and is expressed in Eqs. (35) and (36). Thus, when pijk becomes 
smaller both mean and variance of Yijk also becomes smaller. 

E
(
Yijk
)
=
(
1 − πijk

)
μijkpijk (35)  

V
(
Yijk
)
=
(
1 − πijk

)
μijkpijk

(

1+ πijkμijkpijk +
μijkpijk

θijk

)

(36) 

The mixture probability and dispersion parameters for the observed 
UMI counts remain unchanged after the incorporation of the molecular 
capture procedure in the modeling process (Fig. 2, Document S2). For 
instance, when pijk = 1 (100% capture), the genes in a cell will have zero 
counts which are not truly expressed (i.e., biological zeros); this is ex
pected under a perfect deep sequencing scenario. In other words, 
observed UMI counts are the true expected counts of genes in a cell 
under a perfect deep sequencing. When pijk < 1 (real case), the zeros in 
the observed UMI counts are the mixture of dropouts and true zeros. It 
may be noted that πijk remains unaffected by the capture rate parameter, 
hence, the π̂ ijk from observed data can be used to measure the pro
portions of true zeros of genes in the data (Fig. 2, Document S2). The 
relation among the various parameters estimated through the SwarnSeq 
method is given in Supplementary Document S13. 

SwarnSeq allows the modeling of the effects of cellular groups, cell 

Fig. 1. Illustration of the operational framework of the SwarnSeq method. (A) cross-cell distribution of observed scRNA-seq counts; (B) cross-cell distribution of true/ 
adjusted scRNA-seq counts with capture efficiency with respect to spike-ins information; (C) Auxiliary information such as cell cluster and cell level co-variates as 
inputs to the SwarnSeq; (D) Details of SwarnSeq method fitted for each gene; (E) For each gene, the output of SwarnSeq includes the distribution characterization (i.e. 
mean, dispersion and zero inflation) over cell populations, differential expression testing between two cell populations, differential zero inflation testing between two 
cell populations, effects of cell clusters on zero-inflation parameter and mean of non-zero counts, effects of cell level auxiliary information on zero-inflation parameter 
and mean of non-zero counts. 
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clusters and other cell-level covariates on both the zero-inflation and 
mean parameters. So, for fitting the SwarnSeq model, we performed 
cluster analysis on all the 10 datasets and determined the optimum 
number of cell clusters through the proposed method described in 
Supplementary Document S9. The results are shown in Supplementary 
Fig. S3. When the cell level auxiliary information is specified, the 
SwarnSeq uses a log-linear model for the covariate effect on mean and a 
logit model for the covariate effect on zero-inflation in a GLM 

framework. Further, SwarnSeq performs DE analysis of genes for a given 
two groups situation and can be generalized to multiple groups com
parison. Moreover, DZI analysis of genes of scRNA-seq data is allowed in 
the SwarnSeq method, which leads to the identification of severely zero- 
inflated genes over the cellular populations. Additionally, the genes in 
scRNA-seq data are classified into different gene types based on DE and 
DZI analysis (Table 2). 

Fig. 2. Data structures, Models, and Distributions used in the SwarnSeq method. (A) Structure of the observed scRNA-seq data; (B) Input structure of the true scRNA- 
seq data adjusted with capture efficiency; (C) Input structure of the normalized true scRNA-seq data; (D) ZINB and transcriptional capture models used in SwarnSeq 
approach; (E) Histogram of zero percentages of all expressed genes in a real scRNA-seq dataset; (F) An example of ZINB model fitting for scRNA-seq data. The fitting 
of observed and theoretical ZINB models are shown for real scRNA-seq data for a gene; (G) Cumulative distribution function fitting for observed and theoretical ZINB 
models; (H) Theoretical ZINB distribution of observed scRNA-seq counts of a gene with different random capture efficiency. The distributions are shown for capture 
efficiencies 100%, 70%, 50%, 30%, 20% and 10%. Here, the 100% capture efficiency represents the distribution of true scRNA-seq counts; (I) The histograms of zero 
probabilities for different capture efficiencies are shown. The red colour bars represent the probability density of real true zero expressions. The blue bars represent 
the probability density of the NB part of the ZINB model. (J) The plot shows the relation between the probability of drop-out events and capture efficiencies of cells. 
(K) The relation between the library sizes and the capture efficiencies of the cells is shown. (L) Deciding the number of optimum cell clusters for a real scRNA-seq 
data. CE: Capture Efficiency; Clust.: Cell Cluster. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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3.3. SwarnSeq as differential expression tool 

We benchmarked the proposed SwarnSeq approach for DE analysis 
on 10 different real scRNA-seq datasets (Table 1). The problem in 
benchmarking of scRNA-seq DE methods on real scRNA-seq datasets is 
the unavailability of reference genes. Hence, to obtain the list of refer
ence genes, we used the corresponding Microarrays, bulk RNA-seq and 
scRNA-seq datasets for each of the 10 considered datasets. For instance, 
GSE29087 data consists of 22,928 genes over 92 cells (48: mouse em
bryonic stem cells; 44 mouse embryonic fibroblasts cells), and then we 
filtered out the low expressed genes, i.e., genes which do not have non- 
zero expressions in at least 5 cells. Further, the reference genes for the 
same cell lines were collected from the Microarray study available at htt 
p://carlosibanezlab.se//Data/Moliner_CELfiles.zip [50]. The selection 
of reference gene lists is described in detailed for each of the datasets in 
Supplementary Document S10. The 12 tested DE methods, including 
proposed SwarnSeq (Supplementary Tables S7, S8), were benchmarked 
using all the 10 datasets (Table 1, Supplementary Document S8), and the 
SwarnSeq method was also applied to GSE77288 data from Tung et al. 
[12], where spike-ins are available. The layout of this comparative study 
is briefly described in Supplementary Fig. S7. 

3.3.1. Benchmarking based on receiver operating characteristic 
This comparison setting used the experimental designs and the 10 

count datasets from 8 independent scRNA-seq studies (Table 1) for 
performance analysis of scRNA-seq DE methods (Tables S7, S8). For 
instance, mouse cell data (GSE29087) [7] were used to detect DE genes 
between 48 mouse embryonic stem cells and 44 mouse embryonic 
fibroblast cells (Table 1). Then, the 12 competitive methods, including 
SwarnSeq, were compared in terms of their AUROC using the identified 
reference gene lists for each of 10 datasets. Basically, through each of the 
methods, DE gene sets of size 3000 were selected for each of the datasets. 
Then, the AUROC values were computed by executing proc function 
implemented in pROC R package [51] using the output (i.e., p-values or 
adjusted p-values) of each method as predictor, and a binary vector, 
which indicates whether a gene belongs to the reference gene list, as the 
response. 

The ROC curves of different methods are shown in Figs. 3, and S12 
along with the AUROC values. In this comparison setting for GSE53638 
(data 1), the SwarnSeq (0.76) produced the highest AUROC values fol
lowed by DECENT (0.66), MAST (0.61), DEsingle (0.61), Monocle 
(0.54), and BPSC (0.52) among single cell specific tools (Fig. 3A). The 
scDD performed the worst among the scRNA-seq DE tools for this 
dataset. Further, edgeR (0.54) had a higher AUROC values followed by 
Limma (0.52), DEGseq (0.51) and DESeq2 (0.48) in the bulk RNA-seq 
tool category (Fig. 3A). It was found that the SwarnSeq performed bet
ter than other methods of both bulk and scRNA-seq DE tools. For 
GSE53638 (data 3), the SwarnSeq (0.73) had the highest AUROC value 
followed by DECENT (0.70) and performed best among bulk and single- 
cell tools (Fig. 3C). Moreover, among the bulk RNA-seq DE tools, edgeR 
(0.54) had higher AUROC followed by Limma (0.52), DEGseq (0.51) for 
the GSE53638 (3) data (Fig. 3C). Similarly, for data from Tung et al. 
(GSE77288), the AUROC for SwarnSeq method was highest (0.83) 
among other competitive bulk and single cell DE tools (Fig. 3B). Among 
the bulk RNA-seq DE tools, Limma had higher AUROC (0.62), when 
applied to Tung et al. scRNA-seq data. Similar interpretations can be 
made for other datasets, as shown in Figs. 3 and S12. Our analysis 
indicated that under AUROC settings, our SwarnSeq method performed 
better in 8 datasets (with rank 1) and competitive with other methods in 
remaining 2 datasets (rank 2 and 3) (Figs. 3, S12). In other words, the 
performance of SwarnSeq method is consistently better than other 
competitive methods on real scRNA-seq datasets. 

3.3.2. Benchmarking based on FDR 
The second comparison setting included assessment of the 12 tested 

methods (Table S7) through computation of FDRs for different DE gene 

sets on the 10 different real scRNA-seq datasets (Table 1). For this 
purpose, different DE gene sets of sizes 100, 200, 300, …, 3000 were 
selected based on the p-values/adjusted p-values computed through 
each of the 12 methods including SwarnSeq. Then, the selected DE gene 
sets were compared with respect to the reference gene list to compute 
FDRs for each of the 10 datasets. The results are shown in Figs. 4 and 
S13. In this comparison setting, it was found that the FDR computed for 
the SwarnSeq method was found to be lower as compared to other 
competitive methods for GSE53638 (data 1) (Fig. 4A). Similar findings 
were observed across all the selected DE gene sets for the same data 
(Fig. 4). This indicates that the proposed SwarnSeq performed better to 
detect DE genes as compared to other competitive methods. Similar 
interpretations can be made for other remaining datasets (Figs. 4, S13). 
Under this FDR based comparison setting on multiple real scRNA-seq 
datasets, we demonstrated our SwarnSeq method was consistently bet
ter and more robust to detect the DE genes of various sizes with respect 
to bulk and scRNA-seq DE tools. 

3.3.3. Benchmarking based on other performance metrics 
This comparison setting included the performance evaluation of the 

12 scRNA-seq DE tools (Table S7) based on performance metrics, viz. TP, 
TN, FN, FP, FPR, NPV, F1, and ACC on the 10 scRNA-seq datasets 
(Table 1). For this purpose, the DE methods were applied to each dataset 
following the instructions and recommendations of their respective 
software packages. Genes were declared as DE based on their computed 
p-values/adjusted p-values and subsequently DE gene sets of sizes 500, 
1000, 1500, …, 3000 were selected for each of the datasets. Then, the 
performance metrics were computed for the DE gene sets from different 
datasets and the results are given in Tables 3, S10-S18. 

In this comparison setting, for a DE gene set of size 500, the 
SwarnSeq method identified more TP genes, followed by DECENT as 
compared to other competitive methods in GSE29087 data (Table 3). 
Further, the value of FP, FN, and FPR for the SwarnSeq was observed to 
be lower than other competitive methods. Moreover, the values of TPR, 
NPV, ACC, and F1 for SwarnSeq method were found to be higher than 
from other methods (Table 3). This finding indicated the better perfor
mance of our proposed method in terms of various computed perfor
mance metrics for the GSE29087 dataset. We demonstrated the 
consistently similar findings for our method over other DE gene sets of 
sizes 1000, 1500, 2000, 2500, and 3000 (Table 3). Similar in
terpretations can be made for other datasets, as shown in Supplementary 
Tables S10-S18. The comparative analysis under this setting gave us 
confidence that our SwarnSeq method can detect the genes, which are 
truly DE in wide range of real datasets. Furthermore, its performance 
was consistently better over the considered competitive scRNA-seq DE 
methods, when assessed through various performance metrics. 

3.3.4. Benchmarking based on runtime metric 
The computational speed for processing the large-scale counts data is 

an important factor in single-cell data analytics. Therefore, we evaluated 
the proposed SwarnSeq method with respect to the existing techniques 
(Tables S7, S8) based on runtime metric, where the runtime refers to the 
computational time required to analyze the data. Through this, the 
method which requires less runtime was considered better and vice- 
versa. To measure this, we ran the code written in R (v 4.0.2) for each 
tested method by following the instructions and recommendations of 
their respective R software packages. The required average CPU time 
(over 10 runs for each program) was observed for each of the methods 
for analyzing a large experimental single-cell dataset, i.e., GSE115469 
data with 5466 cells and 17,316 genes. All these analyses were per
formed on a 10-core 32 GB DELL PC with Windows 10 OS and Intel(R) 
Core (TM) i3-6100U CPU clock rate as 2.93 GHz. The detailed runtime- 
based performance analysis of the methods including the proposed 
SwarnSeq method is shown in Supplementary Document S12. This 
performance analysis indicated that the DECENT was the slowest and 
more computationally intensive method followed by DEsingle 
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Fig. 3. Differential expression analysis of real scRNA-seq data. Receiver Operating Characteristic curves for differential expression methods on different real scRNA- 
seq data. Evaluation of the performance of different methods based on Area Under Receiver Operating Characteristic Curves (AUROC) is shown for (A) GSE53638 
(Data 1); (B) GSE77728; (C) GSE53638 (Data 3); (D) GSE53638 (Data 2); (E) GSE29087; (F) GSE65525. Different reference gene lists, prepared based on the 
procedure given in Supplementary Document S10, used for benchmarking various differential expression analysis methods on different real scRNA-seq datasets. 
SwarnSeq achieves competitive and better accuarcy for identifying genuine differential gene lists in all six different real datasets. DE methods are denoted by 
different colors. 

S. Das and S.N. Rai                                                                                                                                                                                                                            



Genomics 113 (2021) 1308–1324

1318

(Table S9) for a large single-cell dataset such as GSE115469 data. 
Further, it was found that the proposed SwarnSeq method required 
relatively lesser computational processing time compared to other zero 
inflated model-based methods, such as DECENT and DEsingle 
(Table S9). 

3.3.5. Effect of spike-in on performance 
We evaluated the performance of the SwarnSeq method on 

(GSE77288) data from Tung et al., for which spike-in and molecular 
concentration data is publicly available. For this purpose, we considered 
the following comparison settings: (a) spike-in data available; (b) spike- 
in not available (capture rates estimated from the data); (c) data unad
justed with cell capture rates. In other words, this comparison setting 
allowed us to examine the impact of external spike-ins and further 
capture rates on the performance of SwarnSeq method. The results are 
shown in Fig. 5 and Table 4. It was observed that the SwarnSeq 

performed better when capture rates were estimated from external 
spike-ins as assessed in terms of AUROC (Fig. 5). However, there was a 
decrease in AUROC value when the capture rates of cells were estimated 
from the count data (Fig. 5). Further, the SwarnSeq had the least AUROC 
when the observed counts were not adjusted with cell capture rates. 

Under the FDR based comparison setting, the SwarnSeq had the 
smallest FDR values, when the capture rates of cells were estimated from 
the spike-in data (Fig. 5). Further, SwarnSeq performed poorly when the 
observed counts were not adjusted with capture rates of the cells, as 
compared to the adjusted scRNA-seq counts. The results from the third 
comparison setting, i.e., comparative analysis based on performance 
metrics, are shown in Table 4. It was found that when the capture rates 
were estimated from the spike-ins and incorporated in SwarnSeq, its 
performance was better as compared to other two situations (Fig. 5, 
Table 4). Thus, we have convincingly demonstrated the viability of using 
the external spike-in capture rates for endogenous RNA in SwarnSeq 

Fig. 4. FDR based Performance analysis of DE methods on real scRNA-seq data. FDR curves for differential expression methods on different real scRNA-seq data are 
shown. Evaluation of the performance of different methods based on false discovery rate is shown for (A) GSE53638 (Data 1); (B) GSE77728; (C) GSE53638 (Data 3); 
(D) GSE53638 (Data 2); (E) GSE29087; (F) GSE65525. Different reference gene lists, prepared based on the procedure given in Supplementary Document S10, used 
for benchmarking various differential expression analysis methods on different real scRNA-seq datasets. SwarnSeq achieves robust performance for identifying 
genuine differential gene lists in all four different real datasets. DE methods are denoted by different colors. 
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Table 3 
Performance evaluation metrics for GSE 29087 scRNA-seq data.  

Methods TP FP TN FN TPR FPR PPR NPV ACC F1 

NDEG = 500 
SwarnSeq 500 0 8436 2500 0.167 0.000 1.000 0.771 0.781 0.286 
DEGSeq 181 319 8140 2819 0.060 0.038 0.362 0.743 0.726 0.103 
DESeq2 346 154 8282 2654 0.115 0.018 0.692 0.757 0.754 0.198 
DEsingle 344 156 8280 2656 0.115 0.018 0.688 0.757 0.754 0.197 
EdgeR 364 136 8302 2636 0.121 0.016 0.728 0.759 0.758 0.208 
Limma 182 318 8188 2818 0.061 0.037 0.364 0.744 0.727 0.104 
DECENT 355 145 8291 2645 0.118 0.017 0.710 0.758 0.756 0.203 
MAST 258 242 8195 2742 0.086 0.029 0.516 0.749 0.739 0.147 
Monocle 275 225 8212 2725 0.092 0.027 0.550 0.751 0.742 0.157 
NODES 174 326 8110 2826 0.058 0.039 0.348 0.742 0.724 0.099 
scDD 202 298 8138 2798 0.067 0.035 0.404 0.744 0.729 0.115 
BPSC 308 192 8244 2692 0.103 0.023 0.616 0.754 0.748 0.176  

NDEG = 1000 
SwarnSeq 1000 0 8436 2000 0.333 0.000 1.000 0.808 0.825 0.500 
DEGSeq 357 643 7846 2643 0.119 0.076 0.357 0.748 0.714 0.179 
DESeq2 641 359 8077 2359 0.214 0.043 0.641 0.774 0.762 0.321 
DEsingle 585 415 8021 2415 0.195 0.049 0.585 0.769 0.753 0.293 
EdgeR 718 282 8164 2282 0.239 0.033 0.718 0.782 0.776 0.359 
Limma 198 802 8126 2802 0.066 0.090 0.198 0.744 0.698 0.099 
DECENT 706 294 8142 2294 0.235 0.035 0.706 0.780 0.774 0.353 
MAST 449 551 7894 2551 0.150 0.065 0.449 0.756 0.729 0.225 
Monocle 495 505 7934 2505 0.165 0.060 0.495 0.760 0.737 0.248 
NODES 301 699 7737 2699 0.100 0.083 0.301 0.741 0.703 0.151 
scDD 362 638 7798 2638 0.121 0.076 0.362 0.747 0.714 0.181 
BPSC 481 519 7917 2519 0.160 0.062 0.481 0.759 0.734 0.241  

NDEG = 1500 
SwarnSeq 1242 258 8178 1758 0.414 0.031 0.828 0.823 0.824 0.552 
DEGSeq 510 990 7539 2490 0.170 0.116 0.340 0.752 0.698 0.227 
DESeq2 886 614 7822 2114 0.295 0.073 0.591 0.787 0.761 0.394 
DEsingle 782 718 7718 2218 0.261 0.085 0.521 0.777 0.743 0.348 
EdgeR 1037 463 7997 1963 0.346 0.055 0.691 0.803 0.788 0.461 
Limma 212 1288 8052 2788 0.071 0.138 0.141 0.743 0.670 0.094 
DECENT 1025 475 7961 1975 0.342 0.056 0.683 0.801 0.786 0.456 
MAST 630 870 7589 2370 0.210 0.103 0.420 0.762 0.717 0.280 
Monocle 720 780 7663 2280 0.240 0.092 0.480 0.771 0.733 0.320 
NODES 403 1097 7339 2597 0.134 0.130 0.269 0.739 0.677 0.179 
scDD 513 987 7449 2487 0.171 0.117 0.342 0.750 0.696 0.228 
BPSC 671 829 7607 2329 0.224 0.098 0.447 0.766 0.724 0.298  

NDEG = 2000 
SwarnSeq 1320 680 7803 1680 0.440 0.080 0.660 0.823 0.794 0.528 
DEGSeq 682 1318 7238 2318 0.227 0.154 0.341 0.757 0.685 0.273 
DESeq2 1117 883 7553 1883 0.372 0.105 0.559 0.800 0.758 0.447 
DEsingle 946 1054 7382 2054 0.315 0.125 0.473 0.782 0.728 0.378 
EdgeR 1242 758 7678 1758 0.414 0.090 0.621 0.814 0.780 0.497 
Limma 228 1772 7978 2772 0.076 0.182 0.114 0.742 0.644 0.091 
DECENT 1314 686 7757 1686 0.438 0.081 0.657 0.821 0.793 0.526 
MAST 795 1205 7289 2205 0.265 0.142 0.398 0.768 0.703 0.318 
Monocle 925 1075 7376 2075 0.308 0.127 0.463 0.780 0.725 0.370 
NODES 485 1515 6925 2515 0.162 0.180 0.243 0.734 0.648 0.194 
scDD 633 1367 7069 2367 0.211 0.162 0.317 0.749 0.673 0.253 
BPSC 832 1168 7268 2168 0.277 0.138 0.416 0.770 0.708 0.333  

NDEG = 2500 
SwarnSeq 1601 899 7612 1399 0.534 0.106 0.640 0.845 0.800 0.582 
DEGSeq 874 1626 6966 2126 0.291 0.189 0.350 0.766 0.676 0.318 
DESeq2 1327 1173 7263 1673 0.442 0.139 0.531 0.813 0.751 0.483 
DEsingle 1103 1397 7039 1897 0.368 0.166 0.441 0.788 0.712 0.401 
EdgeR 1242 1258 7178 1758 0.414 0.149 0.497 0.803 0.736 0.452 
Limma 255 2245 7915 2745 0.085 0.221 0.102 0.742 0.621 0.093 
DECENT 1548 952 7499 1452 0.516 0.113 0.619 0.838 0.790 0.563 
MAST 945 1555 6973 2055 0.315 0.182 0.378 0.772 0.687 0.344 
Monocle 1114 1386 7071 1886 0.371 0.164 0.446 0.789 0.714 0.405 
NODES 556 1944 6517 2444 0.185 0.230 0.222 0.727 0.617 0.202 
scDD 744 1756 6680 2256 0.248 0.208 0.298 0.748 0.649 0.271 
BPSC 999 1501 6935 2001 0.333 0.178 0.400 0.776 0.694 0.363  

NDEG = 3000 
SwarnSeq 1837 1163 7386 1163 0.612 0.136 0.612 0.864 0.799 0.612 
DEGSeq 1055 1945 6681 1945 0.352 0.225 0.352 0.775 0.665 0.352 
DESeq2 1502 1498 6938 1498 0.501 0.178 0.501 0.822 0.738 0.501 
DEsingle 1249 1751 6685 1751 0.416 0.208 0.416 0.792 0.694 0.416 
EdgeR 1450 1550 6886 1550 0.483 0.184 0.483 0.816 0.729 0.483 
Limma 279 2721 7813 2721 0.093 0.258 0.093 0.742 0.598 0.093 

(continued on next page) 
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modeling, and subsequently found its performance is both robust and 
better. The relation among the gene and cell parameters estimated 
through the SwarnSeq method for GSE77288 data, when external spike- 
ins data are available, is also shown in Fig. 5. 

3.4. SwarnSeq as differential zero inflation tool 

The SwarnSeq method provides an excellent platform for performing 
DZI analysis of genes. DZI genes are detected using the ZINB model 
under the GLM framework. For identification of DZI genes on real 
dataset, we set 1E-10 as threshold for adjusted p-values computed 
through the SwarnSeq. The results are shown in Supplementary 
Table S19. For instance, at this threshold value we identified 2936 genes 
as DZI for GSE29087 data (Table S19). This means, 2936 genes have a 
significant difference in the number of cells whose expressions are zeros 
across two cellular groups. Similar interpretations can be made for other 
datasets (Table S19). 

Our SwarnSeq model provides an opportunity to classify the influ
ential genes into gene types with respect to their differential zero 
inflation and expression. Through this, the identified genes can be 
grouped into various gene types, and the results are shown in Table 5. 
For instance, the GSE29087 data, the SwarnSeq identified 4930 genes as 
DE, 2789 genes as DEZI, and 149 as only DZI (Table 5). This means that 
out of 15,234 genes, the mean expression of non-zero counts of 4930 
genes are expressed differentially across the two cellular groups. While, 
for 2789 genes, there is a significant proportion of cells whose expres
sions are zero across two cellular populations (however the mean of non- 
zeros counts of these genes in the remaining cells are significantly 
different) and only 149 genes had a significant number of cells as zero 
expressions across the cellular populations (Table 5). Similar type of 
interpretations can be made for other datasets, as shown in Table 5. 

4. Discussion 

We presented the SwarnSeq, an improved statistical method, for 
performing analysis on UMI counts data obtained from scRNA-seq study. 
Our method is capable of performing reliable statistical tests on gene 
mean abundance, zero inflation, and classification of influential genes in 
scRNA-seq expression data. It uses the ZINB model to model the 
observed UMI counts. Further, the UMI provides an excellent opportu
nity to model the transcriptional capturing process through the Swarn
Seq. In other words, the observed counts data are adjusted with cell 
capture rates through a binomial model in the proposed approach. 
Moreover, RNA spike-ins data including the ERCC spike-ins [33], can 
give valuable insights into the technical variation in scRNA-seq study. 
This raises a key question of whether and how to use spike-ins in data 
analyses. For instance, when they are available, they can be used to 
estimate the capture rates for cells. This property is well integrated in 
our SwarnSeq approach. Thus, the SwarnSeq is capable of modeling 
capture rates using spike-ins data, if they are available and can estimate 
the capture rates from the observed data, if spike-ins are not available. 
We established a statistical theory for adjusting the UMI counts data 
with the molecular capturing process derived from real scRNA-seq ex
periments. Moreover, the SwarnSeq operates through various analytical 

steps including, pre-processing, normalization, estimation of gene pa
rameters, detection of DE genes, and DZI genes, selection of top genes, 
and classification of genes into sub-types. The SwarnSeq method em
ploys different normalization methods such as modified median 
normalization [16] and trimmed mean of M values [14] to remove the 
amplification bias from the scRNA-seq count data. Thus, SwarnSeq is 
compatible with different normalization strategies. 

Here, we established the statistical basis for the distributional nature 
of the observed scRNA-seq count in presence of cell capture rates. 
Further, we empirically showed the suitability of the ZINB model for 
fitting zero inflated, and overdispersed count data over other models, 
such as NB, PD, HD, and ZIPD. Moreover, the study of ZINB vs. NB model 
for estimation of parameters indicated that the latter overestimated the 
dispersion to accommodate excess overdispersion and underestimated 
the mean to accommodate the zero inflation present in scRNA-seq data. 
In scRNA-seq data, factors such as technical noise, dropout events, and 
low molecular capturing have substantial overdispersion and zero- 
inflation, and a NB model is not appropriate. Hence, we implemented 
the ZINB model in our SwarnSeq method to fit the observed scRNA-seq 
count data and to obtain better estimates of the gene-wise parameters. 

The SwarnSeq method models the unwanted variation in mean 
transcript abundance of genes attributed to different sources, such as 
cellular groups, cell clusters, and other cell co-variates. This means, that 
provides reliable MLEs of the effects of the cellular groups, cell clusters, 
and cell co-variates using the EM algorithm. Further, it detects the 
influential genes which are DE under a GLM framework. Here, these 
genes were identified based on the statistical significance values 
adjusted over multiple hypothesis testing. This provides statistically 
meaningful and biologically interpretable values in [0,1] for genes in 
scRNA-seq data. The benchmarking of methods indicated the better 
performance of our SwarnSeq method over other existing competitive 
methods. This comparative analysis was carried out on three different 
comparison settings, i.e., AUROC, FDR, and other performance metrics 
on multiple real scRNA-seq datasets. 

The SwarnSeq method can also be extended to carry out other types 
of tests, including the differential testing of zero proportions of genes 
across the cell populations. Here, we considered the zero-inflation 
parameter of genes as a function of the effects of cellular populations, 
cell clusters, and other cell co-variates. Then, a linear logit model was 
used to test for biological differences in zero inflation. To statistically 
measure this, a statistical significance value adjusted over multiple hy
pothesis testing, was assigned to each gene. This measure provided 
biologically interpretable values to genes and showed there were sig
nificant differences in the proportion of zeros across the cellular pop
ulations. The available scRNA-seq tools are mostly focused on 
performing the DE analysis of genes and ignores the zero-inflation 
analysis which is an integral part of the scRNA-seq experiments. Our 
SwarnSeq method can perform DZI analysis including DE analysis of 
genes using the observed UMI counts data adjusted over molecular 
capturing process. Additionally, it provides options for classifying the 
detected influential genes into various gene types according to their 
differential expression and zero inflation. 

Multilevel statistical models fitted with an EM algorithm are 
computationally intensive and time consuming. Further, the ZINB 

Table 3 (continued ) 

Methods TP FP TN FN TPR FPR PPR NPV ACC F1 

DECENT 1754 1246 7217 1246 0.585 0.147 0.585 0.853 0.783 0.585 
MAST 1074 1926 6651 1926 0.358 0.225 0.358 0.775 0.667 0.358 
Monocle 1303 1697 6769 1697 0.434 0.200 0.434 0.800 0.704 0.434 
NODES 633 2367 6106 2367 0.211 0.279 0.211 0.721 0.587 0.211 
scDD 845 2155 6281 2155 0.282 0.255 0.282 0.745 0.623 0.282 
BPSC 1181 1819 6617 1819 0.394 0.216 0.394 0.784 0.682 0.394 

TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative; TPR: True Positive Rate; 
FPR: False Positive Rate; PPR: Positive Prediction Rate; NPV: Negative Prediction Value; 
ACC: Accuracy; F1: F-score. 

S. Das and S.N. Rai                                                                                                                                                                                                                            



Genomics 113 (2021) 1308–1324

1321

Fig. 5. Performance analysis of SwarnSeq method on real scRNA-seq data in presence of spike-ins. (A) Scatter plot showing the relationship of mean and dispersion 
parameters of the genes. (B) Scatter plot comparing the observed value of zero proportions and estimated zero inflation parameters of genes (C) The ROC curves are 
shown for SwarnSeq method (i) when spike-in information is considered (red); (ii) when spike-in data are not considered and capture efficiencies are estimated from 
the data (green); and (iii) Unadjusted for capture efficiency. (D) The false discovery rate curves of SwarnSeq method on real scRNA-seq data under different con
ditions: (i) when spike-in information is considered (red); (ii) when spike-in data are not considered and capture efficiencies are estimated from the data (green); (iii) 
Unadjusted for capture efficiency. (E) Various performance measures are listed for SwarnSeq method under different conditions of (i), (ii) and (iii). Here, real data 
from GSE77288 are considered, as ERCC spike-in data is available for this experiment. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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models are implemented in several tools like DEsingle [22], DECENT 
[9], which are time consuming for a PC. However, the SwarnSeq method 
required less computational time than DECENT and DEsingle with better 
performance in terms of detecting DE genes along with additional fea
tures. Moreover, it can even be used on a PC or workstation computer for 
analyzing large scRNA-seq datasets with better and robust performance. 

5. Software implementation 

Our novel SwarnSeq approach is implemented in an R software 
package, which is available at https://github.com/sam-uofl/SwarnSeq. 
This R package provides optimcluster function for getting the optimum 
number of cell clusters from scRNA-seq count data. Additionally, it also 
provides option for estimation of capture rates of cells using different 
methods, e.g., MLE, regression, etc., whether RNA spike-in data is 
available or not. The function SwarnSeq implemented in SwarnSeq R 
package can be executed for estimating the parameters for each gene, i. 
e., mean, dispersion, zero inflation, effects of groups, cell clusters and 

cell level auxiliary information on zero-inflation as well as means of non- 
zero counts. SwarnSeqLRT function provides option for results from DE 
analysis and DZI analysis, when the observed UMI counts are adjusted 
for molecular capture rates. Moreover, functions like SwarnUnadjSeq 
and SwarnUnadjLRT are implemented for parameter estimation and DE, 
and DZI analyses respectively, when the users do not need to adjust the 
count data for capture efficiency. The top influential genes detected 
through SwarnSeq approach can be selected and classified through the 
implemented SwarnClass and SwarnTopTags functions, respectively. 
Different options are provided in the SwarnSeq R package for adjusting 
the capturing process and correcting amplification bias through 
different normalization methods. The detail manual for the usage of the 
SwarnSeq tool with suitable examples is given in Supplementary 
Document S14. 

6. Conclusion 

In this study, we proposed an improved and novel statistical 
approach for analysis of scRNA-seq data. This approach can perform 
analysis including DE, DZI, classification of genes, estimation of cell 
capture rate, and determination of optimum number of cell clusters with 
strong statistical basis. Here, we provided all the background statistical 
theory, data example, preliminary data and real experimental data 
analysis results for our SwarnSeq approach. The benchmarking of the 
SwarnSeq method on multiple real datasets over a wide range of sta
tistical criteria indicated its better performance over the existing 
methods. Further, the SwarnSeq method will surely help the experi
mental biologist and genome researchers to identify true DE genes for 
their experiments. Our comparison framework may be adopted for 
further comparative study of scRNA-seq DE tools. In future, parameter 
estimation procedure, like Empirical Bayes shrinkage method can be 
implemented in the SwarnSeq tool to estimate the gene specific 
dispersion, and that will enhance its performance. The SwarnSeq as
sumes the factors, such as cellular groups, cell clusters and other co- 
variates, have fixed effects on means and zero inflations. This 

Table 4 
Effects of external RNA spike-ins data on performance of the SwarnSeq method.   

TP FP TN FN TPR FPR PPR NPV ACC F1 

NDEG = 500 
With Spike 482 18 12,937 2518 0.161 0.001 0.964 0.837 0.841 0.275 
Unadjusted 457 43 12,912 2543 0.152 0.003 0.914 0.835 0.838 0.261 
Without spike 468 27 12,928 2532 0.156 0.002 0.945 0.836 0.840 0.268  

NDEG = 1000 
With Spike 946 54 12,901 2054 0.315 0.004 0.946 0.863 0.868 0.473 
Unadjusted 809 191 12,764 2191 0.270 0.015 0.809 0.853 0.851 0.405 
Without spike 795 187 12,768 2205 0.265 0.014 0.810 0.853 0.850 0.399  

NDEG = 1500 
With Spike 1311 189 12,766 1689 0.437 0.015 0.874 0.883 0.882 0.583 
Unadjusted 1008 492 12,463 1992 0.336 0.038 0.672 0.862 0.844 0.448 
Without spike 1059 416 12,539 1941 0.353 0.032 0.718 0.866 0.852 0.473  

NDEG = 2000 
With Spike 1532 468 12,487 1468 0.511 0.036 0.234 0.766 0.895 0.879 
Unadjusted 1175 825 12,130 1825 0.392 0.064 0.413 0.588 0.869 0.834 
Without spike 1257 713 12,242 1743 0.419 0.055 0.362 0.638 0.875 0.846  

NDEG = 2500 
With Spike 1713 787 12,168 1287 0.571 0.061 0.685 0.904 0.870 0.623 
Unadjusted 1342 1158 11,797 1658 0.447 0.089 0.537 0.877 0.824 0.488 
Without spike 1414 1053 11,902 1586 0.471 0.081 0.573 0.882 0.835 0.517  

NDEG = 3000 
With Spike 1846 1154 11,801 1154 0.615 0.089 0.615 0.911 0.855 0.615 
Unadjusted 1466 1534 11,421 1534 0.489 0.118 0.489 0.882 0.808 0.489 
Without spike 1542 1424 11,531 1458 0.514 0.110 0.520 0.888 0.819 0.517 

With Spike: Observed read counts are adjusted with capture efficiency when spike-in data is available; Without spike: Observed read counts are adjusted with capture 
efficiency estimated from the data itself; Unadjusted: Observed read counts are not adjusted with capture efficiency; TP: True Positive; FP: False Positive; TN: True 
Negative; FN: False Negative; TPR: True Positive Rate; FPR: False Positive Rate; PPR: Positive Prediction Rate; NPV: Negative Prediction Value; ACC: Accuracy; F1: F- 
score. 

Table 5 
Classification of DE and DZI genes.  

Datasets DE DEZI DZI Non-DE 

GSE29087 4930 2789 149 3567 
GSE53638dt1 2406 278 408 11,771 
GSE53638dt2 1831 2789 5013 6004 
GSE53638dt3 1733 3101 4673 5507 
GSE65525 2033 15,194 5799 929 
GSE75790 3993 9874 2865 3852 
GSE92495 757 324 5 14,438 
GSE109999 5694 6386 71 903 
GSE111108 27 7187 87 10,021 
GSE115469 24 7745 6296 3231 
GSE77288 1426 119 619 13,791 

DE: Differentially Expressed; DZI: Differentially Zero Inflated; 
DEZI: Both DE and DZI. 
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assumption may be unrealistic from a biological standpoint (some may 
have random effects). Therefore, researchers may think of random or 
mixed effect models in SwarnSeq in the future to improve its 
performance. 

Funding 

Samarendra Das: Indian Council of Agricultural Research (ICAR), 
New Delhi, India (Netaji Subhas-ICAR International Fellowship, OM No. 
18(02)/2016-EQR/Edn) Shesh N. Rai: Clinical Trial Research Fund 
(Wendell Cherry Chair), JG Brown Cancer Center, USA; multiple Na
tional Institutes of Health (NIH), USA grants (5P20GM113226, PI: 
McClain; 1P42ES023716, PI: Srivastava; 5P30GM127607-02, PI: Jones; 
1P20GM125504-01, PI: Lamont; 2U54HL120163, PI: Bhatnagar/Rob
ertson; 1P20GM135004, PI: Yan; 1R35ES0238373-01, PI: Cave; 
1R01ES029846, PI: Bhatnagar; 1P30ES030283, PI: States); Kentucky 
Council on Postsecondary Education grant, USA (PON2 415 
1900002934, PI: Chesney) 

Availability of data and materials 

All the datasets used in this study are publicly available in NCBI GEO 
database. For Tung et al. dataset, the UMI count, ERCC spike-ins and 
molecular concentration datasets were taken from the GitHub repository 
(https://github.com/jdblischak/singleCellSeq). An R software package 
for our novel SwarnSeq method is available at https://github.com/ 
sam-uofl/SwarnSeq for this manuscript. 

CRediT authorship contribution statement 

Samarendra Das: Conceptualization, Investigation, Data curation, 
Formal analysis, Methodology, Software, Validation, Visualization, 
Writing - original draft, writing-review & editing. Shesh N. Rai: Project 
administration, Supervision, Funding acquisition, Writing - review & 
editing. 

Declaration of Competing Interest 

Authors declare that they have no competing interests. 

Acknowledgement 

Authors duly acknowledge the help and support obtained from Ed
ucation Division, ICAR, New Delhi, India and ICAR-Indian Agricultural 
Statistics Research Institute, New Delhi, India. Also, the authors 
acknowledge Mrs. Marion McClain for the language checking and edit
ing related helps. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ygeno.2021.02.014. 

References 

[1] C. Trapnell, Defining cell types and states with single-cell genomics, Genome Res. 
(2015), https://doi.org/10.1101/gr.190595.115. 

[2] B. Tasic, V. Menon, T.N. Nguyen, T.K. Kim, T. Jarsky, Z. Yao, et al., Adult mouse 
cortical cell taxonomy revealed by single cell transcriptomics, Nat. Neurosci. 19 
(2016) 335–346, https://doi.org/10.1038/nn.4216. 

[3] G. Chen, B. Ning, T. Shi, Single-cell RNA-seq technologies and related 
computational data analysis, Front. Genet. 10 (2019), https://doi.org/10.3389/ 
fgene.2019.00317. 
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