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Wavelet based long memory model for modelling wheat price in India
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ABSTRACT

Agricultural time-series data concerning production, prices, export and import of several agricultural commodities 
is published by Indian government along with other private agricultural sectors every year. The analysis of these 
factors is necessary to formulate and apply several policies regarding food acquisition and its distribution, quality 
and quantity of import and export products, pricing structure, MSP of agricultural commodities etc. Box – Jenkins’s 
Autoregressive integrated moving average (ARIMA) model is broadly utilized in the field of time-series. In the 
field of time-series analysis, it is assumed by most of the researchers that the data points of different time lags do 
not depend on each other, i.e. absence of long memory process. But in agriculture, market price data exhibits that 
the observation are dependent on distant past. This is the possible indication of long memory process or long range 
dependency in the mean model. Autoregressive fractionally integrated autoregressive moving average (ARFIMA) 
model is generally used to portray the characteristic features of the long memory time series models as well as for 
the forecasting purposes. In this study wavelet decomposition is used for increasing the forecasting accuracy of the 
ARFIMA model. Daily wholesale data of wheat of Rewari market of Haryana for the period of January, 2010 to 
November, 2017 is used for the demonstration of our approach.
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Over last several decades Box Jenkin’s Autoregressive 
integrated moving average (ARIMA) methodology (Box et 
al. 2007) is used for forecasting time series data. An ARIMA 
model can be specified with three parameters, viz. p, d, q 
and it only allows the value of d to be integer. There are 
certain circumstances where it is not possible to postulate 
the integer value of d, i.e the time series model possess long 
memory property. A time-series process is called as long 
memory or Fractional differenced (FD) (Beran 1995) process 
if the autocorrelation function decays very slowly towards 
zero unlike the exponential decay in usual ARIMA model. 
A time-series process exhibiting long memory structure can 
well be modelled with the help of autoregressive fractionally 
integrated autoregressive moving average (ARFIMA) model 
(Granger and Joyeux 1980, Hosking 1981). An ARFIMA 
(p, d, q) process {yt} may be defined as; 

j(L) (1 – L)dyt = q (L)et	 (1)

where, j(L) = 1 – j1L – ... – j1Lp, q(L) = 1 – q1L – .. – 
qqLq, are respectively the AR and MA operators, sharing 
no common roots, (1 – L)d is the fractional differencing 

operator and et are assumed to be independent and identically 
distributed (i.i.d) with zero mean and variance s2. Some of 
the applications of ARFIMA model can be found in Paul 
(2014, 2017), Paul et al. (2015), Paul and Mitra (2020).

Time series data consists of signal and noise part; it 
is very difficult to separate these two parts from the noisy 
series. Wavelet decomposition tires to extract the signal 
from the noisy data. A wavelet (Antoniadis 1997) is a 
mathematical function which can be used to transform a 
given function or time-series into different time dependent 
scales. Wavelet methods provide the dynamics of financial 
time series unlike usual time series analysis (Renaud et al. 
2003). Soltani et al. (2000) suggested that after wavelet 
decomposition of the long memory process only the signal 
part contains the long memory property. In this context an 
attempt has been made to improve the forecasting ability 
of ARFIMA model using wavelet decomposition.

MATERIALS AND METHODS
Long memory process: Most of financial time-series 

analysis assumes that the observations are free from long 
time span and also independent of each other or nearly 
so. But in practical situation it has been observed that 
observations of a financial time-series are dependent on 
distant past (Paul et al. 2014). The statistical dependency 
of a time-series can be estimated by plotting ACF of the 
data points. Let yt; (t = 0, 1, 2,...) be a stationary time-series 
process and the autocorrelation function of the time-series 
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with a time lag of k is given as;

rk = cov (yt, yt – k)/var (yt)	 (2)

The series yt; (t = 0, 1, 2,...) is said to have short 
memory if the autocorrelation coefficient at lag k approaches 
to zero as k tends to infinity, i.e. limk→∞  rk = 0. For a long 
memory process,

W h Xj t j ll

Lj
t l N. , mod≡

=

−
−∑ 0

1

For a stationary long memory process fractional 
differencing parameter d lies between o to ½. There 
are various approaches for estimating d, in the present 
investigation GPH (Geweke and Porter 1983) test and sperio 
test have been used.

Wavelet analysis: Wavelets are the mathematical 
functions, resembling to the sine and cosine function. 
A variety of wavelet and wavelet-based methodologies 
have been developed in the recent decades (Percival and 
Walden 2000) with potentials applications in various fields. 
The fluctuating property of wavelet makes the function 
a wave. There are two types of wavelet decomposition 
techniques which are widely used in statistical analysis, 
viz. Continuous wavelet transformation (CWT) and Discrete 
wavelet transformation (DWT) (Aminghafari and Poggi 
2007). CWT is utilized to manage time-series defined on 
real axis. The DWT handles the series characterized by 
integers, i.e. univariate time-series data. DWT of a time-
series observation is operated to capture the high and low 
frequency components. In DWT the number of observations 
must be in the form of 2N, where N is an integer. To overcome 
this situation maximal overlap discrete wavelet transform 
(MODWT) can be used (Paul et al. 2013).

Maximal overlap Discrete Wavelet Transform 
(MODWT): The MODWT is a linear filtering operation 
that decomposes a series into coefficients analogous to 
variations over a set of scales. It is similar to DWT, in 
that, both are linear filtering operations producing a set of 
time-dependent wavelet and scaling coefficients. MODWT 
is all around characterized for all example sizes N, while 
for a total decay of J levels. But DWT requires N in the 
form of 2J, where J is any positive integer (Ogden 1997). 
MODWT also differs from DWT in the sense that it is a 
highly redundant, non-orthogonal transform. MODWT 
coefficients are obtained by applying DWT pyramid 
algorithm once to X and another to the circularly shifted 
vector TX. Hence, the first application yields the usual 
DWT (W) of the time-series vector X computed as W=P 
(Daubechies 1992) and the second application consists of 
substituting TX for X obtained as,

W = PTX	 (3)

where, W and P can be written as W= [W1W2…WJVJ]́ 
P=[P1P2…PJQJ]. The Mallat algorithm (Mallat 1989) filters 
the original data series X = (X0, X1, . . . , XN−1) using a pair 
of high-pass and low-pass filters denoted, respectively, as 
h = (h0, h1, . . . , hL−1) and g = (g0, g1, . . . , gL−1), each of 
length L, L < N. The wavelet (Wj) and the scaling coefficients 

(Cj) corresponding to the jth level of decomposition, j = 1, 
2, . . . , J, J is an positive integer, are obtained by,
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where hj,1 is the jth level MODWT wavelet filter and gj,1 
is the jth level MODWT scaling filter. A time-series can be 
totally or partly decomposed (Aminghafari and Poggi 2007) 
into a number of levels Jo ≤ logN

2.
Wavelet-based prediction: First of all, time-series 

process is tested whether the long memory structure exists 
or not using any of the GPH, semi-parametric method, 
wavelet method, etc. Then the time-series is decomposed 
using wavelet transformation (Aminghafari and Poggi 2012) 
and obtained wavelets and scaling coefficients. Again long 
memory test is applied in each set of coefficients. It is found 
that only the scaling coefficient exhibits long memory 
structure and the wavelet series showed short memory 
structure. Then ARIMA and ARFIMA models are fitted 
accordingly to obtain the forecast values of the underlying 
time-series process.

In wavelet transformed long-memory time-series, only 
the scaling coefficient has the long memory property (Soltani 
et al. 2000). This smooth coefficient is the signal component 
of a time-series model. So after wavelet decomposition, 
long-memory test is performed in each decomposed series. 
Then ARIMA and ARFIMA model should be fitted according 
to the long-memory test. 

It has been often seen that the model which is best fitted 
within the sample data, may not be up to the mark for the 
out-of-sample forecasting. Hence it is recommended that 
to select a parsimonious model based on the 90% sample 
observations and remaining 10% data points should be 
kept for checking the model accuracy. In this study Mean 
absolute percentage error (MAPE) and Root mean square 
error (RMSE) have been used for comporting the accuracy 
of models. 

MAPE = 100 * 
1

1k
r
x
t

tt

k
| |

=∑ , where, rt = xt – ˆtx  and 
k is the number of observations.

RMSE = 1 2

1k
rtt

k

=∑ , where, rt and k are defined as 
above.

RESULTS AND DISCUSSIONS
Data description: For the present investigation, daily 

wheat price data is collected from AGMARKNET website 
for the period January, 2010 to November, 2017 considering 
Rewari market of Haryana, India. The data is composed of 
maximum, minimum and model prices of wheat with 1030 
data points. In this study, first 900 data points are used for 
model identification and parameter estimation purpose and 
rest of 130 data points are used for model validation purpose. 

Descriptive statistics and Test for stationarity: The 
average maximum price is higher than the minimum and 
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the modal prices of wheat (Table 1). Higher value of 
coefficient of variation in minimum price data indicates 
the higher variability as compared to other price series. 
All the series under consideration are positively skewed 
and platykurtic in nature.

PP (Phillips and Perron) test and ADF (Augmented 
Dickey Fuller) test are employed to see the presence of 
unit root in the data set. It is clear from the results (Table 
1) of both the tests that the null hypothesis of presence of 
unit root is rejected at 5% level of significance indicating 

Table 1  Descriptive statistics and testing stationarity of Wheat price data

Series Min Max Mean St. Dev. CV (%) Skewness Kurtosis
Minimum price (₹/q) 925 1950 1294 218.16 16.85 0.42 2.47
Maximum price (₹/q) 1000 2160 1319 216.007 16.37 0.43 2.47
Modal price (₹/q) 970 2040 1307 216.09 16.53 0.45 2.49
Testing stationarity
Series PP test ADF test

Test statistic p-value Test statistic p-value

Minimum -39.512* <0.01 -3.604* 0.032

Maximum -34.614* <0.01 -3.624* 0.033

Modal -30.831* <0.01 -3.602* 0.031

  *denotes the significance at 5% level

Fig 1	 ACF (A-C) and PACF (D-F) plots of Wheat price data.
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stationarity of the series. 
ACF and PACF plots: The Autocorrelation function 

(ACF) and partial autocorrelation function (PACF) of 
the original price series are studied to investigate the 
distributional pattern of the series. The ACF plots of the 
original series shows (Fig 1 (A-C)) that the autocorrelation 
functions are decaying very slowly towards zero. Fig 1 (D-
F) also portraits the PACF plots of different series under 
consideration. It is evident that PACF are significant up to 
100 lags. Hence various plots are indicating the possible 
presence of long memory.

Test for long memory and Fitting of ARFIMA model: 
After investigating the ACF plot, the long memory test is 
conducted to the data set (Table 2). Since the calculated 
t-value is greater than 1.96 for all the series in case of 
Sperio and GPH test, the tests is found to be significant. 
It establishes the presence of long range dependency in 
price data set.

In this section, on the basis of log likelihood value and 
AIC value, best fitted ARFIMA model is selected for all 
series. For minimum series, best fitted model is ARFIMA 
(2, d, 0), accordingly, parameter estimates along with 
corresponding standard error and P-values are presented in 
the Table 2. Likewise for maximum series, ARFIMA (2, d, 0) 
and for modal series ARFIMA (1, d, 0) has been identified. 
After that, residuals of best fitted models are investigated. 
Residuals are found out to be white noise process.

Wavelet decomposition: MODWT is carried out on the 
basis of “Haar” wavelet filter at level 5 (Fig 2). Wavelet 
coefficients are plotted as line, up or down. The number 
of wavelet coefficients at the lowest resolution level (level 

Table 2	 Long memory parameter and ARFIMA parameter 
estimate of Wheat price data

Series Sperio test GPH
d S.E t d S.E Z

Minimum 0.38* 0.051 7.6 0.35* 0.131 2.69
Maximum 0.41* 0.049 8.39 0.43* 0.067 6.38
Modal 0.47* 0.045 10.39 0.44* 0.068 6.46
ARFIMA parameter estimates
Parameters Estimate St. Error p-Value
Minimum Series
d 0.381* 0.051 <0.01
ar1 0.611* 0.047 <0.01
ar2 0.372* 0.069 <0.01
Maximum Series
d 0.412* 0.048 <0.01
ar1 0.615* 0.052 <0.01
ar2 0.369* 0.061 <0.01
Modal Series
d 0.471* 0.045 <0.01
ar1 0.979* 0.078 <0.01

  * denotes the significance at 5% level Fig 2	 MODWT plots of Wheat price data.
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= 1) is exactly half the number of original data points 
and the number of coefficients decreases by half at each 
level. The coefficients W1, W2, W3, W4, W5 and V5 are 
calculated using “Haar” filter. The graph of W2 is much 
smoother than the W1. Similarly smoothness increases as 
we are going to top of the graphs with upper coefficients. 
In the graph V5 scaling coefficient shows the smooth plot. 
This smooth coefficient is the actual signal, hidden in the 
noisy time series data. 

Long memory test of Wavelet coefficients: For 
investigating the presence of long memory property, sperio 
test has been performed to all the coefficients of MODWT. 
The analysis reveals that only smooth coefficient namely V5 
has the significant long memory property at 5% level, while 
rest of the wavelet coefficients possess the short memory 
property. Keeping this result in view ARFIMA model has 
been fitted in the V5 series and ARIMA model in the rest 
of the decomposed series. 

Validation of the fitted model: Last 130 observations 
of the data set were kept for the validation of the models. 
After decomposing the series only scaling coefficients 
(V5) has the long memory property. So, ARFIMA model 
is fitted in V5 series and ARIMA model is fitted in the rest 
of the series. After computing the forecasted values of 
respective coefficients, i.e. W1, W2, W3, W4, W5 and V5, 
inverse wavelet transformation is applied to get the actual 
forecast values. 

A comparative performance of the results of wavelet 
approach along with ARFIMA model has been carried out 
in terms of MAPE and Root mean square error (RMSE). 
For wavelet method, the MAPE and RMSE values for 
maximum, minimum and modal price are found out to be 
(17.73, 103.89); (16.83, 264.14); (17.36, 268.83). Similarly, 
for ARFIMA model, the MAPE and RMSE values for 
maximum, minimum and modal price are found out to 
be (20.54, 118.19); (19.55, 299.47); (22.18, 330.49). It is 
evident from above figures that wavelet method performs 
better than the usual ARFIMA model.

The analysis reveals that in wavelet decomposition of 
the long memory series, only the smoothest part will contain 
the long memory property and the rest of the series will 
have short memory. It clearly indicates the outperformance 
of wavelet approach over usual ARFIMA model. For all 
the series, forecasting performance of wavelet approach is 
more efficient than the usual ARFIMA model in terms of 
lower MAPE and RMSE values.


