


CONTENTS 

S. NO. TOPIC PAGE 

1 Descriptive Statistics 

- Seema Jaggi and Anindita Datta 

1 

2 Exploratory Data Analysis 

- Cini Varghese and Anindita Datta 

12 

3 Correlation and Regression 

- B.N. Mandal 

19 

4 Tests of Significance  

- Seema Jaggi 

44 

5 Diagnostics and Remedial Measures 

 - Rajender Parsad and Lalmohan Bhar 

62 

6 Planning of Experiments and Basic Experimental Designs 

- Seema Jaggi and Anindita Datta 

79 

7 Incomplete Block Designs 

- Cini Varghese 

98 

8 ANCOVA 

- Sukanta Dash 

107 

9 Analysis Of Groups Of Experiments  

- Susheel Sarkar 

112 

10 Experimental Data Analysis using R Software  

- B.N. Mandal 

113 

11 Factorial Experiments 

- Seema Jaggi 

123 

12 Split and Strip Plot Designs 

- Susheel Kumar Sarkar and Anindita Datta 

137 

13 Response Surface Designs 

- Eldho Varghese 

149 

14 Probit Analysis of Dose-Response Data 

 - Arpan Bhowmik and Lalmohan Bhar  

165 

15 Logistic Regression  

- Arpan Bhowmik 

180 

16 Principal Components Analysis  

- Rahul Banerjee 

185 

17 Factor Analysis  

- Rahul Banerjee  

197 

18 Cluster Analysis 

- Arpan Bhowmik 

208 

19 Stability Analysis: Part I 

- A.R. Rao 

222 

20 Stability Analysis: Part II Additive Main Effects and Multiplicative 

Interaction (AMMI) Model in Crop Improvement  

- A.R. Rao 

238 

21 Data Mining: An Overview 

- Shashi Dahiya  

248 

22 Knowledge Representation using Ontologies 

- Sudeep 

261 



23 Association Rules Mining using R 

- Anshu Bharadwaj 

281 

24 Text Mining and Natural Language Processing (NLP) 

- Sanchita Naha 

293 

25 Machine Learning Techniques – ANN and SVM 

 - Chandan Kumar Deb 

298 

26 Overview of Python 

- Ashraful Haque 

310 

27 Database Management System Using MS Access 

-Soumen Pal 

321 

28 SEQUENCE ALIGNMENT 

-SB Lal 

331 

29 Transcriptome Analysis 

- Md Sameer Farooqi 

349 

30 ASHOKA: The Supercomputing Hub 

-K.K. Chaturvedi 

356 

31 Genome Wide Association Study and Genomic Selection 

-Neeraj Budhlakoti, D C Mishra and Anil Rai 

363 

32 Computational Metagenomics 

-Anu Sharma 

380 

33 Introduction to Proteomics 

-Sudhir Srivastava, Dwijesh Chandra Mishra and K. K. Chaturvedi 

387 

34 Deep Learning: An Introduction 

-Kanchan Sinha 

393 

 



DESCRIPTIVE STATISTICS  
 

Seema Jaggi and Anindita Datta 

ICAR-IASRI, Library Avenue, New Delhi – 110 012 

seema.jaggi@icar.gov.in, anindita.datta@icar.gov.in 

 

 

1. Descriptive Statistics 
Descriptive statistics are used to describe the basic features of the data in a study. They 

provide simple summaries about the sample and the measures. Together with simple 

graphics analysis, they form the basis of virtually every quantitative analysis of data. 

Descriptive Statistics are used to present quantitative descriptions in a manageable form. 

In a research study, there may be lots of measures or we may measure a large number of 

people on any measure. Descriptive statistics help us to simplify large amounts of data in 

a sensible way. Each descriptive statistic reduces lots of data into a simpler summary. 

There are two basic methods: numerical and graphical. Using the numerical approach one 

might compute statistics such as the mean and standard deviation. These statistics convey 

information about the average degree of shyness and the degree to which people differ in 

shyness. Graphical methods are better suited than numerical methods for identifying 

patterns in the data. Numerical approaches are more precise and objective. Since the 

numerical and graphical approaches complement each other, it is wise to use both.  

 

The raw data consist of measurements of some attribute on a collection of individuals. The 

measurement would have been made in one of the following scales viz., nominal, ordinal, 

interval or ratio scale.  

 

2. Levels of Measurement 

 Nominal scale refers to measurement at its weakest level when number or other 

symbols are used simply to classify an object, person or characteristic, e.g., state of 

health (healthy, diseased).  

 Ordinal scale is one wherein given a group of equivalence classes, the relation greater 

than holds for all pairs of classes so that a complete rank ordering of classes is 

possible, e.g., socio-economic status.  

 When a scale has all the characteristics of an ordinal scale, and when in addition, the 

distances between any two numbers on the scale are of known size, interval scale is 

achieved, e.g., temperature scales like centigrade or Fahrenheit.  

 An interval scale with a true zero point as its origin forms a ratio scale. In a ratio 

scale, the ratio of any two scale points is independent of the unit of measurement, e.g., 

height of trees.  
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3. Types of Descriptive Statistics 

  Graphs and Frequency Distribution 

 These represent the data enabling the researcher to see what the distribution of scores 

look like. 

  Measures of Central Tendency 

These measures are the indices that enable to determine the average score of a group 

of scores. 

  Measures of Variability 

 These measures are indices that enable to indicate how spread out a group of scores 

are. 

 

4. Frequency Distribution 

The frequency distribution is a summary of the frequency of individual values or ranges of 

values for a variable. Preparation of frequency distribution is an often-used technique in 

statistical works when summarizing large masses of raw data, which leads to information 

on the pattern of occurrence of predefined classes of events.  

 

Ungrouped Data: The simplest distribution would list every value of a variable and the 

number of persons who had each value.  

 

Grouped Data: A way to summarize data is to distribute it into classes or categories and 

to determine the number of individuals belonging to each class, called the class 

frequency. It is easier to see patterns in the data, but there is loss of information about 

individual scores. 

 

A tabular arrangement of data by classes together with the corresponding class 

frequencies is called a frequency distribution or frequency table. Following is the raw 

data on some measurements and its frequency distribution: 

 

86 77 91 60 55 

76 92 47 88 67 

23 59 72 75 83 

77 68 82 97 89 

81 75 74 39 67 

79 83 70 78 91 

68 49 56 94 81 

 

 

 

Table 1: Grouped frequency distribution 
 

Class Interval Frequency Proportion Cumulative Frequency 

  20-under 30   1 0.028   1 

  30-under 40   1 0.028   2 

  40-under 50   2 0.057   4 

  50-under 60   3 0.086   7 

  60-under 70   5 0.143 12 

  70-under 80 10 0.287 22 

  80-under 90   8 0.228 30 
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90-under 100   5 0.143 35 

 

Following is a frequency distribution of Diameter at Breast Height (DBH) recorded to the 

nearest cm, of 80 teak trees in a sample plot.  

 

Table 2: Frequency distribution of DBH of teak trees in a plot 
 

DBH class 

(cm) 

Frequency 

(Number of trees) 

11 - 13 11 

14 - 16 20 

17 - 19 30 

20 - 22 15 

23 - 25   4 

Total 80 

 
 

5. Graphical Representation of Data 

Frequency distributions are often graphically represented by a histogram or frequency 

polygon. A histogram consists of a set of rectangles having bases on a horizontal axis (the 

x axis) with centres at the class marks and lengths equal to the class interval sizes and 

areas proportional to class frequencies. If the class intervals all have equal size, the 

heights of the rectangles are proportional to the class frequencies and it is then customary 

to take the heights numerically equal to the class frequencies. If class intervals do not have 

equal size, these heights must be adjusted. A frequency polygon is a line graph of class 

frequency plotted against class mark. It can be obtained by connecting midpoints of the 

tops of the rectangles in the histogram. 

 
 

 
Fig. 1: Histogram and frequency curce showing the frequency distribution of DBH 

 

 

The qualitative data is summarized in a frequency, relative frequency, or percent 

frequency distribution using bar chart. On the horizontal axis we specify the labels that 

are used for each of the classes. A frequency, relative frequency, or percent frequency 

scale is used for the vertical axis. Using a bar of fixed width drawn above each class label, 
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the height can be extended appropriately. The bars are separated to emphasize the fact that 

each class is a separate category. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 2: Bar chart of cropping pattern 

 

Pie chart is commonly used graphical device for presenting relative frequency 

distributions for qualitative data. Draw a circle; then use the relative frequencies to 

subdivide the circle into sectors that correspond to the relative frequency for each class. 

Since there are 360 degrees in a circle, a class with a relative frequency of .25 would 

consume .25(360) = 90 degrees of the circle. The above given cropping pattern is 

displayed in pie chart as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3: Pie chart of cropping pattern 
 

Having prepared a frequency distribution, a number of measures can be generated out of 

it, which leads to further condensation of the data. These are measures of location or 

central tendency, dispersion, skewness and kurtosis.  

 

Cropping Pattern in Tamil Nadu3940

1165

464
249

822

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Cereals Oilseeds Pulses Cotton Others

A
r
e
a

 (
in

 1
0

0
0

 h
e
c
ta

r
e
s)

Cereals

59%Oilseeds

18%

Pulses

7%

Cotton

4%

Others

12%



Descriptive Statistics 

 

 5 

6. Measures of Central Tendency 

The central tendency of a distribution is an estimate of the "center" of a distribution of 

values. There are three major types of estimates of central tendency: 

 Mean 

 Median 

 Mode 

 

The Mean or average is probably the most commonly used method of describing central 

tendency. To compute the mean add up all the values and divide by the number of values. 

The arithmetic mean )x( or the mean of a set of N numbers x1, x2, x3,…, xN is 
   

Mean =
N

x...xx N21 
 

 

If the numbers x1, x2,…, xk occur f1, f2,…,fk times respectively i.e., occur with frequencies 

f1, f2, …, fk, the arithmetic mean is  

Mean =
k21

kk2211

f...ff

xf...xfxf




 

Consider the data given in Table 2, 

DBH class 

(cm) 

Frequency (f) 

(Number of trees) 

x xf 

11 - 13 11 12 132 

14 - 16 20 15 300 

17 - 19 30 18 540 

20 - 22 15 21 315 

23 - 25   4 24   96 

Total 80 80     1383 

  Mean = cm29.17
80

1383
 . 

The Median is the score found at the exact middle of the set of values. One way to 

compute the median is to list all scores in numerical order, and then locate the score in the 

center of the sample. For example, let 8 scores be ordered as 15, 15, 15, 20, 20, 21, 25, 36. 

Score number 4 and 5 represent the halfway point. Since both of these scores are 20, the 

median is 20. If the two middle scores had different values, then average of two would 

determine the median. 

 

For grouped data, the median is obtained using following:  
 

 Median = c
f

)f(
2

N

L
m

1




















 , 
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where L is lower class limit of the median class (i.e., the class containing the median), 

 1)f( is sum of frequencies of all classes lower than the median class, fm is the frequency 

of median class and c is the class interval. 

Geometrically, the median is the value of x (abscissa) corresponding to that vertical line 

which divides a histogram into two parts having equal areas.  

 

For Table 2, 

 

DBH class 

(cm) 

x Frequency (f) 

(Number of trees) 

Cumulative 

Frequency 

11 - 13 12 11 11 

14 - 16 15 20 31 

17 - 19 18 30 61 

20 - 22 21 15 76 

23 - 25 24   4 80 

Total 80 80  

 

N / 2 = 40 which falls in the class 17-19 and is thus the median class. 

Median = 3
30

31
2

80

5.16




















  = 17.4 cm. 

The Mode is the most frequently occurring value in the set of scores. To determine the 

mode, order the scores and then count each one. The most frequently occurring value is 

the mode. In the example 15, 15, 15, 20, 20, 21, 25, 36, the value 15 occurs three times 

and is the mode. In some distributions there is more than one modal value. For instance, in 

a bimodal distribution there are two values that occur most frequently. The set 2, 3, 4, 4, 4, 

5, 5, 7, 7, 7, 9 has two modes 4 and 7 and is called bimodal. 

In case of grouped data, the mode will be the value (or values) of x corresponding to the 

maximum point (or points) on the curve. From a frequency distribution or histogram, the 

mode can be obtained from the formula, 

 Mode = c
ff

f
L

21

2











 , 

where L is the lower class limit of modal class (the class containing the mode), f1 is the  

frequency of the class previous to the modal class, f2 is frequency of the class just after the 

modal class and c is the size of modal class. 

From Table 2, the maximum frequency is 30 and hence the modal class is 17-19.  
 

Mode = 3
2015

15
5.16 










  = 17.79 cm. 
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Notice that for the same set of scores, we may get different values for the mean, median 

and mode. If the distribution is truly normal (i.e., bell-shaped), the mean, median and 

mode are all equal to each other. With three different measures of central tendency, how 

to know which one to use? The answer depends a lot on the data and what is to be 

communicated.  

 

While the mean is the most frequently used measure of central tendency, it does suffer 

from one major drawback. Unlike other measures of central tendency, the mean can be 

influenced profoundly by one extreme data point (referred to as an "outlier"). The median 

and mode clearly do not suffer from this problem. There are certainly occasions where the 

mode or median might be appropriate. For qualitative and categorical data, the mode 

makes sense, but the mean and median do not. For example, when we are interested in 

knowing the typical soil type in a locality or the typical cropping pattern in a region we 

can use mode. On the other hand, if the data is quantitative one, we can use any one of the 

averages. 

 

If the data is quantitative, then one has to consider the nature of the frequency distribution. 

When the frequency distribution is skewed (not symmetrical) the median or mode will be 

proper average. In case of raw data in which extreme values, either small or large, are 

present, the median or mode is the proper average. In case of a symmetrical distribution 

either mean or median or mode can be used. However, as seen already, the mean is 

preferred over the other two. The mean, median, and mode can be related (approximately) 

to the histogram: the mode is the highest bump, the median is where half the area is to the 

right and half is to the left, and the mean is where the histogram would balance. 

 

The Harmonic mean H of the positive real numbers x1, x2, ..., xn is defined to be 
 

n21 x

1
...

x

1

x

1

n
H



  

 

Equivalently, the harmonic mean is the reciprocal of the arithmetic mean of the 

reciprocals. If a set of weights w1,...,wn is associated to the dataset x1,...,xn, the weighted 

harmonic mean is defined by 








n

1i i

i

n

1i

i

x
w

w

H  

 

The geometric mean of a data set x1, ..., xn is given by 
 

n
1

n21 )x...xx(G  

 

When dealing with rates, speed and prices, harmonic mean may be used. If interested in 

relative change, as in the case of bacterial growth, cell division etc., geometric mean is the 

most appropriate average. 

 

7. Measures of Dispersion 
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Averages are representatives of a frequency distribution but they fail to give a complete 

picture of the distribution. They do not tell anything about the scatterness of observations 

within the distribution. 

 

Suppose that we have the distribution of the yields (kg per plot) of two paddy varieties 

from 5 plots each. The distribution may be as follows: 
 

Variety I 45 42 42 41 40 

Variety II 54 48 42 33 30 

 

It can be seen that the mean yield for both varieties is 42 kg. But we can not say that the 

performance of the two varieties are same. There is greater uniformity of yields in the first 

variety whereas there is more variability in the yields of the second variety. The first 

variety may be preferred since it is more consistent in yield performance. From the above 

example, it is obvious that a measure of central tendency alone is not sufficient to describe 

a frequency distribution. In addition to it, a measure of scatterness of observations should 

be there. The scatterness or variation of observations from their average is called the 

dispersion. There are different measures of dispersion like the range, the quartile 

deviation, the mean deviation and the standard deviation. 

 

The Range is simply the highest value minus the lowest value. The Standard Deviation 

(S.D) is a more accurate and detailed estimate of dispersion because an outlier can greatly 

exaggerate the range. The Standard Deviation shows the relation that set of scores has to 

the mean of the sample. The standard deviation is the square root of the sum of the 

squared deviations from the mean divided by the number of scores.  
 

Standard Deviation = 
N

)xx(
N

1i

2
i 

  

 

If x1, x2,…,xk occur with frequencies f1, f2,…,fk respectively, the standard deviation can be 

computed as  

 

Standard Deviation = 
N

)xx(f
k

1i

2
ii 

 ,  = 

2
k

1i
ii

k

1i

2
ii

N

xf

N

xf























 ,  N = 



k

1i
if  

 

Consider the data given in Table 2. 

 

DBH class 

(cm) 

Frequency (f) 

(Number of trees) 

x fx fx2 

11 - 13 11 12 132 1584 

14 - 16 20 15 300 4500 

17 - 19 30 18 540 9720 

20 - 22 15 21 315 6615 

23 - 25   4 24   96 2304 

Total 80 80     1383    24723 
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Standard Deviation = 

2

80

1383

80

24723








 = 3.19 cm. 

 

The variance of a set of data is defined as the square of the standard deviation. Mean 

deviation is the mean of the deviations of individual values from their average. The 

average may be either mean or median. For raw data the mean deviation from the median 

is the least. 

 

Measures of Relative Dispersion 
Suppose that the two distributions to be compared are expressed in the same units and 

their means are equal or nearly equal. Then their variability can be compared directly by 

using their standard deviations. However, if their means are widely different or if they are 

expressed in different units of measurement, we can not use the standard deviations as 

such for comparing their variability. We have to use the relative measures of dispersion in 

such situations. 

 

There are relative dispersions in relation to range, the quartile deviation, the mean 

deviation, and the standard deviation. Of these, the coefficient of variation which is 

related to the standard deviation is important. The ratio of standard deviation (S.D) to 

mean expressed in percentage is called coefficient of variation, 

 

C.V. = (S.D. / Mean) x 100 

 

The C.V. is a unit-free measure. It is always expressed as percentage. The C.V. will be 

small if the variation is small. Of the two groups, the one with less C.V. is said to be more 

consistent. 

 

The coefficient of variation is unreliable if the mean is near zero. Also it is unstable if the 

measurement scale used is not ratio scale. The C.V. is informative if it is given along with 

the mean and standard deviation. Otherwise, it may be misleading. 

Suppose that the variation in height of seedlings and that of older trees of a species are to 

be compared. Let the mean height of seedlings be 50 cm and standard deviation of height 

of seedlings be 10 cm. Further let the mean height of trees be 500 cm with standard 

deviation of height of seedlings as 100 cm. By the absolute value of the standard 

deviation, one may tend to judge that variation is more in the case of trees but the relative 

variation, as indicated by the coefficient of variation (20%), is the same in both the sets. 

Consider the measurements on yield and plant height of a paddy variety. The mean and 

standard deviation for yield are 50 kg and 10 kg respectively. The mean and standard 

deviation for plant height are 55 cm and 5 cm, respectively. 

 

Here the measurements for yield and plant height are in different units. Hence, the 

variability can be compared only by using coefficient of variation. For yield,  
 

C.V. = (10 / 50) x 100 = 20 % 
 
 

For plant height, 
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C.V. = (5 / 55) x 100 = 9.1 % 

 

The yield is subject to more variation than the plant height. 

 

8. Shape of the Distribution  

An important aspect of the "description" of a variable is the shape of its distribution, 

which tells the frequency of values from different ranges of the variable. A researcher is 

interested in how well the distribution can be approximated by the normal distribution 

Simple descriptive statistics can provide some information relevant to this issue. For 

example, if the skewness (which measures the deviation of the distribution from 

symmetry) is clearly different from 0, then that distribution is asymmetrical, while 

normal distributions are perfectly symmetrical. If the kurtosis (which measures 

"peakedness" of the distribution) is clearly different from 0, then the distribution is either 

flatter or more peaked than normal; the kurtosis of the normal distribution is 0.  

 

Skewness is the degree of asymmetry, or departure from symmetry, of a distribution. If 

the frequency curve (smoothed frequency polygon) of a distribution has a longer ‘tail’ to 

the right of the central maximum than to the left, the distribution is said to be skewed to 

the right or to have positive skewness. If the reverse is true, it is said to be skewed to the 

left or to have negative skewness. An important measure of skewness expressed in 

dimensionless form is given by  
 

Cefficient of skewness = 
3
2

2
3

1



 ,  

 

where 2 and 3 are the second and third central moments defined using the formula,  

 
N

)xx(
N

1i

r
i

r

 

  . 

 

For grouped data, the above moments are given by  
 

N

)xx(f
N

1i

r
ii

r

 

  . 

 

For a symmetrical distribution, 1= 0. Skewness is positive or negative depending upon 

whether 1 is positive or negative. 

 

Kurtosis is the degree of peakedness of a distribution, usually taken relative to a normal 

distribution. A distribution having a relatively high peak is called leptokurtic, while the 

curve which is flat-topped is called platykurtic. A bell shaped curve which is not very 

peaked or very flat-topped is called mesokurtic. The measure of kurtosis, expressed in 

dimensionless form, is given by  
 

Cefficient of kurtosis = 
2
2

4
2




 ,  

 

http://www.statsoft.com/textbook/gloss.html#Skewness
http://www.statsoft.com/textbook/glosa.html#Asymmetrical Distribution
http://www.statsoft.com/textbook/gloss.html#Symmetrical Distribution
http://www.statsoft.com/textbook/glosi.html#Kurtosis
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where 4 and 2 can be obtained from the formula as given above. The distribution is 

called normal if 2 = 3. When 2 is more than 3, the distribution is said to be leptokurtic. 

If 2 is less than 3, the distribution is said to be platykurtic.  
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Exploratory Data Analysis (EDA) is an attitude/philosophy about how a data analysis should be 

carried out. EDA heavily uses the collection of techniques that are usually called "statistical 

graphics", but it is not identical to statistical graphics. EDA is a philosophy as to how we dissect 

a data set; what we look for; how we look; and how we interpret. Simply put, in EDA we 
“visualize our data first”, then talk about models / inferences, etc. A surprisingly small 

percentage of data analysts use EDA. Of the ones who do are often surprised by how this 

seemingly “unnecessary step” may profoundly change the way the data is modeled. Thus, EDA 

is an approach for data analysis that employs a variety of techniques to  
 

• maximize insight into a data set, 

• uncover underlying structure,  

• extract important variables, 

• detect outliers, 

• test underlying assumptions,  

• develop parsimonious models and  

• determine optimal factor settings.  

 

For classical analysis, the sequence of procedures is  

Problem  Data  Model  Analysis  Conclusions  

 

For EDA, the sequence is  

Problem  Data  Analysis  Model  Conclusions  

 

Many EDA techniques make little or no assumptions. They present and show the data, all of the 

data as is, with fewer encumbering assumptions. The techniques of EDA consist of simple 

arithmetic and easy-to-draw pictures that can be used to summarize data quickly. One such 

technique is Box-Plot. 

 

Box Plot 

A box-plot is a graph of the five–number summary. Five-number system gives a good 

identification of center and spread of the data: 

• Maximum 

• Minimum 

• Median = 50th percentile 

• Lower quartile Q1 = 25th percentile 

• Upper quartile Q3 = 75th percentile 

 



Exploratory Data Analysis 

 

13 

 

In a box-plot, a central box spans the quartiles. A line in the box marks the median. Lines extend 

from the box out to the smallest and largest observations.  Box-plots can be drawn either 

horizontally or vertically. 

 
 

A box-plot may also indicate which observations, if any, might be considered outliers. Box- plots 

are an excellent tool f 

or conveying location and variation information in data sets, particularly for detecting and 

illustrating location and variation changes between different groups of data. 

 

 
 

The box plot can provide answers to the following questions:  

• Is a factor significant?  

• Does the location differ between groups?  

• Does the variation differ between groups?  

• Are there any outliers?  

 

Probability Plot 

The probability plot is a graphical technique for assessing whether or not a data set follows a 

given distribution such as the normal. The data are plotted against a theoretical distribution in 

such a way that the points should form approximately a straight line. Departures from this 

straight line indicate departures from the specified distribution. The correlation coefficient 

associated with the linear fit to the data in the probability plot is a measure of the goodness of the 

fit. Estimates of the location and scale parameters of the distribution are given by the intercept 

and slope. Probability plots can be generated for several competing distributions to see which 
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provides the best fit, and the probability plot generating the highest correlation coefficient is the 

best choice since it generates the straightest probability plot.  

 

Histogram 

The histogram can be used to answer the following questions:  

• What kind of population distribution do the data come from?  

• Where are the data located?  

• How spread out are the data?  

• Are the data symmetric or skewed?  

• Are there outliers in the data?  

Another method of displaying a set of data is with a stem-and-leaf plot.  A stem-and-leaf plot is a 

display that organizes data to show its shape and distribution. 

 

Stem-and-Leaf Display 

A stem-and-leaf plot does resemble a histogram turned sideways. The stem values could 

represent the intervals of a histogram, and the leaf values could represent the frequency for each 

interval. The first digits of each data item are arranged to the left of a vertical line. To the right of 

the vertical line we record the last digit for each item in rank order. Each line in the display is 

referred to as a stem. Each digit on a stem is a leaf. One advantage to the stem-and-leaf plot over 

the histogram is that the stem-and-leaf plot displays not only the frequency for each interval, but 

also displays all of the individual values within that interval. 

 

Example 1 

If we have the following data:  

8.6 11.7 9.4 9.1 10.2 11.0 8.8 

A stem-and-leaf display of these data will be 

          Stem Leaf 

  8     6  8 

  9      1  4 

      10    2 

          11      0  7 

Here, leaf unit = 0.1. Leaf units may be 100, 10, 1, 0.1, and so on. Where the leaf unit is not 

shown, it is assumed to be = 1. 

 

Example 2 

Data: 

44 46  47  49  63  64  66  68  68  72  72  75  76  81  84  88  106  

Stem-and-Leaf Display: 

  Stem  Leaf 

  4 | 4 6 7 9 

  5 |  

  6 | 3 4 6 8 8 

  7 | 2 2 5 6 

  8 | 1 4 8 
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  9 |  

  10 | 6 

Key: 6 | 3 = 63, Leaf unit: 1.0, Stem unit: 1.0 

Example 3 

Data: 1806 1717 1974 1791 1682 1910 1838 
 

Stem-and-Leaf Display: 
 

  Stem     Leaf 

    16      8 

    17      1  9 

    18      0  3 

    19      1  7 

Here, the leaf unit = 10. 

 

Example 4 

The manager of an Auto company would like to get a better picture of the distribution of costs 

for engine tune-up parts.  A sample of 50 customer invoices has been taken and the costs of 

parts, rounded to the nearest dollar, are listed below: 

91 78 93 57 75 52 99 80 97 62 

71 69 72 89 66 75 79 75 72 76 

104 74 62 68 97 105 77 65 80 109 

85 97 88 68 83 68 71 69 67 74 

62 82 98 101 79 105 79 69 62 73 

 

Stem-and-Leaf Display: 

           Stem     Leaf 

5     2  7 

  6     2  2  2  2  5  6  7  8  8  8  9  9  9 

  7      1  1  2  2  3  4  4  5  5  5  6  7  8  9  9  9 

  8     0  0  2  3  5  8  9 

  9     1  3  7  7  7  8  9 

            10    1  4  5  5  9 

 

Stretched Stem-and-Leaf Display 

If we believe the original stem-and-leaf display has condensed the data too much, we can stretch 

the display by using two more stems for each leading digit(s). Whenever a stem value is stated 

twice, the first value corresponds to leaf values of 0-4, and the second values correspond to 

values of 5-9. 

 

Example 5  

If we consider data of Example 4, stretched stem-and-leaf display can be presented: 
 

   Stem  Leaf 

         5      2   

          5      7 

          6      2  2  2  2   
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          6      5  6  7  8  8  8  9  9  9 

          7      1  1  2  2  3  4  4   

          7      5  5  5  6  7  8  9  9  9 

          8      0  0  2  3   

          8      5  8  9 

          9      1  3   

          9      7  7  7  8  9 

          10      1  4   

      10     5  5  9 
 

Crosstabulation and Scatter Diagram 

Often a manager is interested in tabular and graphical methods that will help understand the 

relationship between two variables. Crosstabulation and a scatter diagram are two methods for 

summarizing the data for two (or more) variables simultaneously. 
 

Crosstabulation 

Crosstabulation is a tabular method for summarizing the data for two variables simultaneously. 

Crosstabulation can be used when: 
 

• One variable is qualitative and the other is quantitative 

• Both variables are qualitative 

• Both variables are quantitative 
 

The left and top margin labels define the classes for the two variables. 

 

Example 6 

The number of houses sold for each style and price for two years is shown below: 

________________________________________________________ 

 Price Range                Home Style   

Colonial      Ranch     Split     A-Frame      Total  
   

  < $99,000           18             6          19          12         55 

  > $99,000           12             14     16          3         45 

       Total      30           20          35          15                100   

________________________________________________________ 

From the preceding crosstabulation, it can be concluded that the greatest number of houses in the 

sample (19) are a split-level style and priced at less than or equal to $99,000. Only three homes 

in the sample are an A-Frame style and priced at more than $99,000.  

 

Crosstabulation: Row or Column Percentages 

Converting the entries in the table into row percentages or column percentages can provide 

additional insight about the relationship between the two variables. 

 

Row Percentages 

______________________________________________ 

      Price         Home Style   

      Range      Colonial      Ranch     Split     A-Frame    Total  
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  < $99,000        32.73        10.91    34.55      21.82      100 

  > $99,000        26.67         31.11    35.56       6.67      100 

_________________________________________________ 

Note: row totals are actually 100.01 due to rounding. 

 

   Column Percentages 

_________________________________________________ 

      Price         Home Style   

      Range         Colonial      Ranch    Split     A-Frame 

  < $99,000        60.00         30.00    54.29      80.00  

  > $99,000        40.00         70.00    45.71      20.00  

        

        Total        100       100       100         100 

_________________________________________________ 

 

Scatter Plot 

It is a graphical presentation of the relationship between two quantitative variables. One variable 

is shown on the horizontal axis and the other variable is shown on the vertical axis. The general 

pattern of the plotted points suggests the overall relationship between the variables. 

 
 

This above scatter plot reveals a linear relationship between the two variables indicating that a 

linear regression model might be appropriate. Scatter plots can provide answers to the following 

questions:  

• Are variables X and Y related?  

• Are variables X and Y linearly related?  

• Are variables X and Y non-linearly related?  

• Does the variation in Y change depending on X?  

• Are there outliers?  

 

Example 7 

A football team is interested in investigating the relationship, if any, between interceptions made 

and points scored. 

    x = Number of     y = Number of 

      Interceptions     Points Scored 

      1      14 
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      3      24 

      2      18 

      1      17 

      3      27 

                                             
 

The preceding scatter diagram indicates a positive relationship between the number of 

interceptions and the number of points scored. Higher points scored are associated with a higher 

number of interceptions. The relationship is not perfect; all plotted points in the scatter diagram 

are not on a straight line. 
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1. Introduction 

In order to study the relationship between two or more variables through correlation and or 

regression, it is important to visualize the relation between them graphically. Scatter Plot is 

the simplest way of the diagrammatic representation of a bivariate data.  It gives the idea of 

the distribution of the data like well defined positive or negative linear relationships, non-

linear relationships or no apparent relationship.  

 
2. Scatter Plots 

It is the simplest way of the diagrammatic representation of a bivariate data.  It  gives the idea 

of the distribution of the data like well defined positive or negative linear relationships, non-

linear relationships or no apparent relationship. The chart can be created using the Graph 

menu. To Obtain Scatterplots:  from the menus, choose: Graphs Scatter.  SPSS 10.0 gives 

three types of scatter plots viz. simple, overlay,  matrix,  or 3-D. For getting the desired scatter 

plot click the icon and then Select Define  Select variables and options for the chart. 

 

To Obtain Simple Scatterplots: From the menus, choose: Graphs Legacy dialogs  

Scatter/dot  Select the icon for Simple  Select Define  select a variable for the Y-axis 

and a variable for the X-axis. (Caution: These variables must be numeric, but should not be in 

date format).  if desired, select a variable and move it into the Set Markers by box. Each 

value of this variable is marked by a different symbol on the scatterplot. This variable may be 

numeric or string.  If desied, one can select a numeric or a string variable and move it into 

the Label Cases by box. You can label points on the plot with this variable. 

 

 If selected, the value labels (or values if no labels are defined) of this variable are used as 

point labels. 

 If we do not select a variable to label Cases by, case numbers can be used to label outliers 

and extremes. 

 Select Options to specify the treatment of missing values in the data and control whether 

labels are to be displayed for points on the plot. 

 Select Titles to define lines of text to be placed at the top or bottom of the plot. 

 

To Obtain Overlay Scatterplots: This option is used to obtain plots for  two or more 

variable pairs.  

Select Graphs  Legacy dialogs   Scatter Select the icon for Overlay Select Define  

Select at least two pairs of variables, Select each variable separately. The first variable will 

appear in the Current Selections list box as Variable 1, and the second variable will appear as 

Variable 2. To deselect a variable, select it again in the source variable list. Once a pair of 

variables is selected, move the pair into the Y-X box (Caution: Variables should be numeric, 
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but should not be in date format.). As in case of simple scatter plots, select a numeric or a 

string variable and move it into the Label Cases by box. Points on the plot are labeled with the 

selected variable. 

  

To reverse the order of the Y and X variables within a selected pair, select Swap Pair. For the 

specification of the treatment of the missing values and case labels display and for titles, 

follow the steps as in simple scatter plot.  

 

To Obtain a Scatterplot Matrix: This option plots all possible combinations of two or more 

numeric variables against one another. For obtaining a Scatterplot matrix, select the icon for 

Matrix  Select Define  Select at least two Matrix numeric Variables.  Rest options are 

similar to the earlier ones. 

 

To Obtain 3-D Scatterplots: This option plots three numeric variables in three dimensions. 

Select the icon for 3-D Select Define  Select one variable for the Y-axis, one for the X-

axis and one for the Z-axis. These variables must be numeric, but should not be in date 

format. 

 

3. Bivariate and Partial Correlation 

A correlation coefficient measures the strength of a linear association between two 

quantitative variables. The most commonly used measure of linear correlation between two 

variables is called the Pearson-product- moment correlation coefficient or simply the sample 

correlation coefficient and is denoted by r. The values of the correlation coefficient is not 

expressed in units of the data, but range from –1 to +1. While scatterplot provide a picture of 

the relation, the value of the correlation is the same if you switch the Y (vertical) and X 

(horizontal) measures. The sample correlation coefficient r is estimated by the formula 

 
)()(

),(

YVarXVar

YXCov
r   

For a sample of size n, the above expression can be written as 
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where xs  and ys  are the sample standard deviations of the two variables. The formula can be 

simplified to 
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Test of significance of correlation coefficient 

Case I: Let the population correlation coefficient of X  and Y  is denoted by  , then it is often 

of interest to test whether   is zero or different from zero, on the basis of observed 

correlation coefficient, r . Thus, if r  is the sample correlation coefficient based on a sample 

of n  observations, then the appropriate test procedure for testing the null hypothesis 

0:0 H  against the alternative 0:1 H  is: 

1. Compute the quantity 
21

2

r

nr
t




 . 

2. Compare the computed value of t , with the table value of t-distribution with 

)2( n degrees of freedom, and at a given level of significance, say 5 % . 

3. If the computed value of t  exceeds the table value (as in (ii) above), then 0:0 H  is 

rejected against the alternative 0:1 H . 

 

Case II: One may be interested in testing 00 :  H  against the alternative 01 :  H . 

This sample correlation coefficient based on n pairs of observations is based on the following 

quantity 
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which is a value of a random variable that follows approximately the normal distribution with 

mean 
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e  and variance )3/(1 n . Thus the test procedure is to compute 
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and compare to the critical points of the standard normal distribution. For example, if the 

absolute value of Z , 96.1Z , then the null hypothesis 00 :  H  against the alternative 

01 :  H  is rejected at 5% level of significance. The alternative hypotheses 0   or 

0   can also be tested using one tailed critical points. 

 

Rank Correlation 

In some cases, it is not possible to measure the data and only ranking is done. In such 

situations, the rank correlation is worked out which is nothing but the Pearson’s Product 

moment correlation coefficient and is defined as the correlation between ranks of individuals 

with respect to two characters. This is also known as Spearman’s Rank correlation coefficient 
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and lies between –1 and +1. If id  denotes the difference between the ranks of  thi  individual 

and n denotes the number of individuals, then the Spearman’s Rank Correlation Coefficient is 

given by 

)1(
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If there is a tie in the ranks, then the ranks assigned is the average of the ranks assigned to 

these individuals had there been no tie. In case of ties, the rank correlation coefficient is given 

by 
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, where m is the number of individuals having the same 

rank.  
 

If in a group the data on more than two variables is collected and one is interested in obtaining 

the measure of linear association between all pairs of variables, then one can obtain the 

sample correlation coefficient for all possible pairs of variables. The probability of 

significance of each of these correlation coefficients can be obtained using any standard 

statistical software. However, if one scans the results for more than one pair of variables, the 

probabilities of significance are pseudo probabilities because they are designed to test one and 

only one correlation for significance and do not reflect the number of correlations tested.  As a 

result some of the correlations may appear significant when they are not. The Bonferroni 

method may be used to adjust the stated significance levels.  In this method, we divide the 

desired level of significance by m the number of correlation coefficients and if the probability 

is less than or equal to this ratio, then the correlation coefficient is significant at that level of 

significance. Alternatively, we multiply the probabilities of significance by m the number of 

correlation coefficients and if the probability is less than or equal to the desired level of 

significance, then the correlation coefficient is significant at that level of significance. 

 

In the situations, when the number of observations or each pair of variables is not constant, 

one has to be cautious in scanning these m values to get a sense of the size of one correlation 

relative to another. 

 

Partial Correlation 

Sometimes the correlation between two variables Y and 1X  may be partly due to the 

correlation of a third variable, 2X  with both Y and 1X . The true correlation between Y  and 

1X  can only be observed once the effect of 2X  has been eliminated.  We accomplish this by 

means of the sample partial correlation coefficient. Thus, partial correlation measures the 

linear association between two variables after the effects of one or more variables are 

removed. Partial correlation can reveal variables that enhance or suppress the relation between 

two particular variables. For example, if each Sunday for a year, one counts the number of 
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ants in the kitchen at a beach cabin and the number of cars passing the house in a five-minute 

interval, the correlation may be close to 1. Are the cars bringing the ants? Does this sound 

silly? A third variable, temperature is ignored. When the weather is hot, the ants flourish and 

lots of people flock to the beach; when it is cool, the numbers of both the cars and ants 

diminish. If the linear effect of temperature is controlled, the relationship between ants and 

cars disappears. 

 

The partial correlation of variables Y and 1X  after removing the effect of variable 2X  (or 

“controlling” for variable 2X ) is estimated as follows: 

 Regress variable Y on 2X . 

 Regress variable 1X  on 2X . 

 For each case, compute the residuals for each of the regression equations. 

 Compute the usual Pearson correlation between the two sets of residuals. 

 

The residuals represent variables Y and 1X  with the effect of variable 2X  removed. The 

partial correlation coefficient between Y and 1X  after eliminating the effect of variable 2X  is 

denoted by the symbol 2.1Yr .  If we write the ordinary correlation coefficients for Y  and 1X , 

Y  and 2X , and 1X  and 2X  as ,, 21 YY rr  and 12r , respectively, the sample partial correlation 

coefficient for Y  and 1X  with 2X , held fixed is given by the following definition. 

 

Partial Correlation Coefficient: The measure of linear relationship between the variable Y  

and 1X  after making allowance for their association with 2X , is estimated by the sample 

partial correlation coefficient ,2.1yr  where 
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A similar definition applies to 1.2Yr  which measures the correlation between Y  and 2X  after 

eliminating the linear effect of 1X .  

 

The partial correlation coefficients obtained after removing the effect of one variable as 

discussed above are called partial correlation coefficients of order one. In some situations, 

however, we may have to obtain the partial correlation coefficients after eliminating the 

effects of two or more variables. The number of variables that are used for eliminating the 

effects is known as the order of the sample partial correlation coefficient. 

 

Test of Significance of Partial Correlation Coefficient 

To test 0: ...12.0 ijH   against 0: ...12.1 ijH   compute 



Correlation and Regression 

 24 

 2

1 2
...12.

...12.




 n

r

r
t

ij

ij
 

where   is the order of the coefficient. This statistic follows t -distribution with 2n  

degrees of freedom. Reject 0H  if 2,2/   ntt . 

 

Steps to obtain bivariate correlations using SPSS 

From the menus choose: Analyze  Correlate  Bivariate  Select two or more 

numeric variables.  The following options are also available: 

 

Steps to obtain partial correlations using SPSS 

From the menus choose: Analyze  Correlate  Partial  Select two or more numeric 

variables for which partial correlation are to be computed  Select one or more numeric 

control variables.  

 

One can compute correlation coefficient by using Correl function in MS-EXCEL as: 

CORREL(array1,array2), where  Array1   is a cell range of values and Array2   is a second 

cell range of values. One can also obtain bivariate correlations by using Tools  Data 

Analysis Correlation and then choosing the input and output range. For testing of 

significance or working out the exact probability level of significance one may use the 

following: 

 

Probability level of significance can be obtained by TDIST(x,degrees_freedom,tails), x  is the 

numeric value at which to evaluate the distribution, Degrees_freedom   is an integer indicating 

the number of degrees of freedom and Tails   specifies the number of distribution tails to 

return. If tails = 1, TDIST returns the one-tailed distribution. If tails = 2, TDIST returns the 

two-tailed distribution. 

 

Alternatively, we can get the t-value of the Student's t-distribution as a function of the 

probability and the degrees of freedom by using TINV (probability, degrees_freedom). Here, 

probability is the probability associated with the two-tailed Student's t-distribution. 

 

3. Regression 

In many statistical studies, the goal is to establish a relationship, expressed via an equation, 

for predicting typical values of one variable given the value of another variable(s). In such 

situations, regression analysis can be of help to us. The term regression is derived from the 

original heredity studies made by Sir Francis Galton (1822-1911) in which he compared the 

heights of sons to the heights of fathers. Galton showed that the heights of the sons of tall 

fathers over successive generations regressed towards the mean height of the population. In 

other words, sons of usually tall fathers tend to be shorter than their fathers and sons of 

usually short fathers tend to be taller than their fathers. Now-a-days, the term regression is 

most of the prediction problems and does not necessarily imply a regression towards the 

population mean. In this section, we deal with the problem of estimating or predicting the 

value of a dependent variable given a set of independent variables. We begin with the case of 

single independent variable. 
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Simple Linear Regression 

Let the variation in response variable ( y ) is explained by independent variable ( x ) called 

regressor.  Simple regression of y  on x  or equation of a straight line as a statistical model, 

add a term for random error () because the points do not fall on the line: 

  xy 10  

 

The slope ( 1 ) is the ratio between the vertical change and the horizontal change along the 

line. A test 01   is same as that of a test that correlation coefficient (r) is zero as 

yx ssr /ˆ
1 . 

 

The intercept ( 0  or constant as it is often called) is where the line intercepts the vertical axis 

at x = 0. 

 

To represent the errors () in the model, draw a short vertical line from each point to the line. 

The lengths of these line segments between the line and the plot points are called residuals 

and are estimates for the true errors.  

 

In the above equation, y  is the dependent or outcome or predicted variable, the one you are 

trying to predict; x is the independent or predictor variable; and the intercept ( 0 ) and slope 

( 1 ) are coefficients. If the model is a good descriptor of the relation between the variables, 

one can use the estimates of the coefficients to predict the value of the dependent variable for 

new cases. 

 

Fitting of simple regression 

Suppose n observations are made on y  and x . Then, for each observation we have 

unobserved error term i .    We make the following assumptions regarding the si ' , which 

are random variables (i) errors are independent (ii) errors have zero mean and constant 

variance  2 .  These assumptions can also be written as  

    2,0   ii VarE   for all .,,2,1 ni   

  0, iiCov               for all nii ,,2,1   

 

Estimation of Parameters  

The method of least squares for estimating the parameters 0 , 1  as also 2 , requires the 

minimization of the error sum of squares, i.e., the sum of the squares of the vertical line 

segments, given by  
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Differentiating S w.r.t. 0  and  1 ,  and equating the derivatives to zero, we get a set of two 

equations as 
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These equations are called normal equations.  The solution of these equations gives us the  

least squares estimates of 0  and  1  as 0b  and 1b  

 SxxSxyb /1   

xbyb 10   
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. Further, let )1/(  nSs xyxy  and 

)1/(  nSs xxxx . 

 

It should be noted that these estimates do minimize the error sum of squares, S.  The fitted 

regression equation is thus 

 xbby 10ˆ   

or  )(ˆ 1 xxbyy   

 

The 'hat' over y  indicates that if were substitute for x  a value that is within the observed 

range of the predictor x , but has not necessarily been observed, then the regression equation 

gives us the predicated y  for that given value of x . Note that if we set xx   in the fitted 

regression equation, then yy  , meaning thereby that the point  yx,  lies on the regression 

line.  

 

Estimation of 
2  

In addition to estimating 0  and  1 , an estimate of 2  is required to test hypotheses and 

construct interval estimates pertinent to the regression model. Ideally, we would like this 

estimate not to depend on the adequacy of the fitted model.  This is only possible when there 

are several observations on y for at least one value of x , or when prior information 

concerning 2  is available. When this approach cannot be used, the estimate of 2  is 

obtained from the residual or error sum of squares. 
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A convenient computing formula for SSE  may be found by substituting 110ˆ xbby   and 

simplifying, yielding 

 xyyyxy
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The residual sum of square has  2n  degrees of freedom, two degrees are associated with 

the estimates 0b  and 1b , involved in obtaining iŷ .  Now the expected value of SSE  is 

    22  nSSEE  so an unbiased estimator of 2  is  

 

 MSE
n

SSE
s 




2
ˆ 22  

 

The quantity MSE  is called the error mean square or the residual mean square.  The square 

root of 2s  is sometimes called the standard error of regression, and it has the same units as the 

response variable y .  Because 2  depends on the residual sum of squares, any violation of 

the assumption on the model errors or any misspecification of the model form may seriously 

damage the usefulness of 2s  as an estimate of 2 . 

 

The above splitting of the total sum of squares due to sy'  into two components can be 

formally put in an Analysis of variance table, as below: 

 

Analysis of Variance: Simple Linear Regression 

Source of Variation  d.f. S.S. M.S. 

Regression 1 xySb1  MSR  

Deviation form Regression 

(Residual) 

2n  SSE    MSEnSSEs  2/2  

Total (corrected mean) 1n  yyS   

 

We have partitioned total variation in y  in two parts as variations due to regression and 

deviation from regression.  The test statistic is  

 
MSE

MSR
F 0  

0F  follows 21, nF  distribution of  0H : 01   if 2,1,0  nFF  . 
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We have seen above that xyyyxy

n

i
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. It can further be 

simplified to  

))(1( 1 xyyy sbsnSSE   

Now dividing both sides by yysn )1(  , we obtain  

  
yy

xy

yy
s

sb

sn

SSE 1
1

)1(



 

  
yysn

SSE
r

)1(
12


 . 

From the above, it can be concluded that 2r  measures the proportion of the total variation in 

the values of Y that can be accounted for or explained by the linear relationship with the 

values of X.  Thus a correlation of 6.0r  means that 0.36 or 36% of the total variation of the 

values of Y in our sample is accounted for by a linear relationship with the values of X.  
2r (Square of the correlation coefficient) is also known the coefficient of determination.  

 

Remark 1: On the similar lines as above, the square of the sample partial correlation 

coefficient is called as sample coefficient of partial determination, which represents the ratio 

of the unexplained variation to the previously unexplained variation. That is 2
2.1Y

r  gives us the 

proportion of the variation in the values of Y that was unexplained by a regression line 

involving only 2X  that can now be explained by including 1X  in the model along with 2X . 

 

Precision of estimates 

We derive the variances of 01,bb  and iŷ  for obtaining precision of estimates. 
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Test of Significance of s'  
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We are often interested in testing hypothesis about model parameters.  The tests are valid, if 

the assumption of normality of error terms is satisfied.  One may be interested in testing the 

hypotheses aH 00 :   against aH 01 :  . The appropriate test statistic for testing this is  
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Which follows, a t-distribution with  2n  d.f.   If 0H  is true.  Reject 0H  if 2,2/  ntt  .  

 

We may be further interested in knowing, whether x  is contributing significantly towards 

variability in y .  This can be known by testing 0: 10 H  against 0: 11 H .  We use the 

statistic 
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Which is distributed as t  with  2n  d.f.  If 0H  is true.  Reject 0H if 
2,2/ 

 ntt  . 

Alternatively, the analysis of variance can also be used for testing 0: 10 H  against 

0: 11 H . 

 

Variance of estimated mean and variance of prediction 

The variance of iŷ  will be derived for the two situations where iŷ  is used as an estimate of 

the mean and where it is used as a prediction.  Variance when iŷ  is used as the estimate of 

true mean of y  at the specific value of x .  
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The variance of the fitted value attains its minimum of n/2  when the regression equation is 

evaluated at xxi   and increases as the value of x moves away from x . 

 

When iŷ  is used as a predictor for some future observation, the variance for prediction must 

take into account the fact that the quantity being predicated is itself a random variable.  

Therefore, variance for prediction,   prediyVar  is the variance of the difference between iŷ  

and the future observation fy  

 

     fipredi yyVyVar  ˆ  
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Note that the variance for prediction is the variance for estimation plus the variance of the 

quantity being predicted.   

 

Example 3.1:  

     Data of illustration  

Observation 

No. 

y x 

1 78.5 7 

2 74.3 1 

3 104.3 11 

4 87.6 11 

5 95.9 7 

6 109.2 11 

7 102.7 3 

8 72.5 1 

9 93.1 2 

10 15.9 21 

11 83.8 1 

12 113.3 11 

13 119.4 10 

 

Model to be fitted is   xy 10  

Normal equations for estimation of parameters are 

 5.12509713 10  bb  

0.10132113997 10  bb  

 

These can also be written as  



























0.10132

5.1250

113997

9713

1

0

b

b
 

 

Parameter estimates are 

 ,792.810 b   ,930.10 b   01.1402 s  

         (5.437)                       (0.581) 

 

The figures in the parenthesis denote the SE of the estimated parameter. 

 

Fitted model is   501.0930.1792.81 2  rxy  

 

Test of significance of s'  
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(a) ,0: 00 H   ,0: 01 H  

  201.2043.15
437.5

792.81
11'05.  tt  

 

(b) ,0: 00 H   ,0: 01 H  

322.3
581.

93.1
t  

Estimated mean response at 4x  

512.89)4(930.1792.81ˆ0 y  

  829.14ˆˆ
0 yV    Table value of 201.211,2/ t  

 

95% confidence interval for mean response 0y  is 

829.14201.2512.89829.14201.2512.89 0  y  

 

988.95512.89 0  y  

 

If 0ŷ  is used for prediction of future observation, then  

  930.154829.14101.140ˆˆ
0 yV   

 

95% confidence interval of prediction 0ŷ  is  

930.154201.2512.89    i.e. 62.116 to 116.108. 

 

Test for Linearity of Regression 

For any given problem we assume the regression is linear and proceed with the estimation of 

parameters as discussed above. This assumption is made to avoid laborious calculations. A 

linear regression equation is always preferred over a nonlinear regression curve if the 

assumption of linearity can be justified. Therefore, the  linearity of regression must be tested 

using the following test. 
 

Let us select a random sample of n  observations using k  distinct values of x , says 

kxxx ,,2,1  , such that the sample contains 1n  observed values of the random variable 1y  

corresponding to 21, nx  observed values of 2y  corresponding to knx ,,2   observed value 

of ky corresponding to kx , .

1





n

i
inn   We define 

 ijy  = jth  value of the random variable iy ,  

 .iy  = sum of the  value of  iy  in our  sample. 

 

Hence, if 34 n  measurements of y  are made corresponding of 4xx  , we could indicate 

these observations by ,, 4241 yy  and 43y .  Then 434241.4 yyyy  .  Now the computed 

value 
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is a value of the random variable F ,  having an F distribution  with 2k  and kn  degree 

of freedom under the null hypothesis that the relationship is linear and therefore may be used 

to test the hypothesis 0H  for linearity of regression. 

 

When 0H  is true,  2/2
1 k  and  kn /2

2  are independent estimates of 2 .  However, if 

0H  is false,  2/2
1 k  overestimates 2 .  Hence, we reject the hypothesis of linearity of 

regression at the   level of significance when our f  value falls in a critical region of size   

located in the upper tail of the F  distribution. 
 

Multiple Regression 

For the situations with more than one independent variables, pXXX ,,, 21  , say that are the 

causes of variation in Y, we fit multiple regression of y  on sx'  to account for this variation.  

Multiple regression of y  on sx'  is denoted as 

  pp xxxy 22110  

 

where 0  denotes intercept and  pisi ,,2,1'   are called partial regression 

coefficients.    is random error. i  gives average change in y  per unit change in ix  keeping 

other sx'  constant. 

 

Fitting of multiple regression model 

Suppose n  observation are made on y  and sx' .  Then for each observation we have our 

unobserved error term i .  We make the following assumptions regarding the random 

variables si '  same as those in simple linear regression case. 

 

In order to estimate the unknown parameters 0 , 1 , p ,,2 , we use the method of least 

squares which requires minimization of the error sum of squares, given by  

  



n

i
pipiii

n

i
i xxxyeS

1

2
22110

1

2    
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Differentiating S w.r.t. 0 , 1 , p ,,2  and equating the derivatives to zero, we get a set of 

1p   equations in 1p    unknown as  
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These normal equations can be solved simultaneously to get 1p  unknowns.  However, it is 

better to solve these equations by inverting the matrix of coefficients of right hand side as this 

enables us to test significance of s'  in a straightforward manner.  The above equations can 

be written as 
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Let the inverse of the matrix be denoted by  
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Then ,   picbVar iii ,2,1,0,2    and   2, ijji cbbCov  . 

 

Estimation of 2  

In addition to estimating s'  an estimate of 2  is required to test hypotheses and construct 

interval estimates pertinent to the regression model.  Ideally, we would like this estimate not 

to depend on the adequacy of the fitted model.  This is only possible when there are several 

observations on y for at least one value of x , or when prior information concerning 2  is 

available. When this approach cannot be used, the estimate of 2  is obtained from the 

residual or error sum of squares. 

   



n

i
ii

n

i
i yySSE

1

2

1

2 ˆ̂  

 

The residual sum of square has  1 pn  degrees of freedom, because 1p  degrees are 

associated with the estimates s'   involved in obtaining iŷ .  Now the expected value of SSE  

is     21 pnSSEE  so an unbiased estimator of 2  is  

 MSE
pn

SSE
s 




1
ˆ 22 . 

 

The quantity MSE  is called the error mean square or the residual mean square.  The square 

root of 2s  is sometimes called the standard error of regression, and it has the same units as 

the response variable y . 

 

The above splitting of the total sum of squares due to  sy'  into two components can be 

formally put in an Analysis of variance table, as below: 

 

Analysis of Variance for Multiple Linear Regression 

Source of Variation  d.f. S.S. M.S. 

 

Regression 

 
 p   xiyiSb  

 

MSR  

Deviation form 

Regression (Residual) 

1 pn  SSE    MSEpnSSEs  1/2  
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Total (corrected mean) 1n  yyS   

 

Estimate of 2  is this case works out to be 

 
1

1
1

2










pn

ySxbS

s

n

i
iyy

 

 

Test of Significance of s'  

One may be interested in testing the hypotheses 0:0 iH   against 0:1 iH    for some i .  

The appropriate test statistic for testing this is  

  21 sc

b

bSE

b
t

ii

ii
  as   2scbVar iii   

 

Which follows, under the hypothesis a t-distribution with  1 pn  d.f, if 0H  is true.  Reject 

0H  if 1,2/  pntt  .  

 

Multiple correlation coefficient  R  

The correlation coefficient between the observed values iy  and predicted values iŷ  is termed 

as multiple correlation coefficient  R .  Note that 10  R . R is obtained as 

 

yofsquaresofsumcorrectedTotal

regressiontodueSquaresofSum
R 0/ 
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Test of Significance of R  

The test of the null hypothesis that multiple correlation coefficient in the population is zero is 

identical to the F -test of the null hypothesis that 021  p  . The relation is 
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2

2

1 R

R
F


  

p

pn 1
. This F  follows  F -distribution with p  and  1 pn  d.f.  Reject 

0H  if 1,,  pnpFF  . 

 

Coefficient of determination  2R  

The sample coefficient of multiple determination, denoted by ,2
12. pY

R   is given by  

  '2

2
12.

1
1

y

Y
sn

SSE
R


  

 

where ySxbySxbySxbSSSE ppyy  2211  

 

One can easily see that the coefficient of multiple determination is the square of multiple 

correlation coefficient and is denoted by  2R .  This concept is very important as 1002 R  

gives percentage of variation in y  explained by regressors. Obviously 2R  must lie between 0 

and 1.  Thus 2R  is an indicator of fitness of the fitted model.  However, a large value of 2R  

should not alone be taken as a measure of goodness of fitted regression model.  

 

4. Discussion  

In addition to predicting the outcome variable for a new sample of data, regression analysis 

serves other purposes: 

 To assess how well the dependent variable can be explained by knowing the value of the 

independent variable (or a set of independent variables). 

 To identify which subset from many measures is most effective for estimating the 

dependent variable. 

 

For this, one should first explore the variables graphically in scatterplots to ascertain if a 

linear model is appropriate for describing the relationship and to identify any possible rogue 

values (outliers) that might distort results. Ideally, in an observational study, the configuration 

of plot points should form the shape of an American football, for there are fewer points at the 

low and high ends of the independent variable than in the middle. In an experimental study, 

the values of x are fixed or set at specified levels, so the configuration may not exhibit such a 

clear pattern. 

 

In assessing the suitability of the data for a regression, it helps to think of the fixed x situation. 

Visually scan the distribution of y values for each x (or each small range of x’s) – that is, look 

at vertical strips or bands of points extending up from the x axis. Do the y values within each 

strip look like a sample from a normal distribution? Is the spread (variance) within each strip 

roughly the same across the strips? Or is it considerably greater at one side of the plot than at 

the other? If you guess an average value of y for each strip, do these averages fall along a 

straight line? 
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More formally, normality is not required for the estimates of the coefficients. To make tests 

and estimate confidence intervals, however, these assumptions are required: 

 The errors are normally distributed with mean 0. 

 The errors have constant variance. 

 The errors are independent of each other. 

 

These assumptions are checked by studying the residuals from the model. The Durbin-

Watson statistic can be used to test for the serial correlation of adjacent error terms. 

 

To identify problems, always look at plots of y versus x before the regression and plots of 

residuals and diagnostics after the analysis. Non-linearity, Outliers and the presence of sub-

populations can distort the results of regression analysis. Relationships among the dependent 

and independent variables may be masked or falsely enhanced if your sample contains 

subpopulations (that is, the sample is not homogeneous). 

 

In summary, to help identify problems, always look at plots of y versus x before the 

regression and plots of residuals and diagnostics after the analysis. 

 

For fitting a regression equation using MS-EXCEL: Prepare your data in a Worksheet. Now 

choose Tools  Data Analysis  Regression. Then give the range for dependent variable, 

independent variables and output range. If a regression equation without intercept is required 

then check on Intercept zero. 

 
5. Steps for Linear Regression using SPSS 

From the menus choose:   Analyze  Regression  Linear...   Click Reset to restore dialog box 

defaults, and then select: In the Linear Regression dialog box, select a numeric dependent variable  

Select one or more numeric independent variables. Optionally, one can: 

 Group independent variables into blocks and specify different entry methods for different subsets 

of variables. 

 Choose a selection variable to limit the analysis to a subset of cases having a particular value(s) 

for this variable. 

 Select a case identification variable for identifying points on plots.  

 Click WLS for a weighted least-squares analysis and move a numeric weighting variable into the 

WLS Weight box. 

 

Linear Regression Statistics: The following statistics are available 

 

Regression Coefficients. Estimates displays Regression coefficient B, standard error of B, 

standardized coefficient beta, t value for B, and two-tailed significance level of t. Confidence 

intervals displays 95% confidence intervals for each regression coefficient, or a covariance matrix. 

Covariance matrix displays a variance-covariance matrix of regression coefficients with covariances 

off the diagonal and variances on the diagonal. A correlation matrix is also displayed. 

 

Model fit. The variables entered and removed from the model are listed, and the following goodness-

of-fit statistics are displayed: multiple R, R2 and adjusted R2, standard error of the estimate, and an 

analysis-of-variance table. 

 

R-squared change. Displays changes in R2 change, F-change, and the significance of F change. 
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Descriptives. Provides the number of valid cases, the mean, and the standard deviation for each 

variable in the analysis. A correlation matrix with a one-tailed significance level and the number of 

cases for each correlation are also displayed. 

 

Part and partial correlations. Displays zero-order, part, and partial correlations. 

Collinearity diagnostics. Eigenvalues of the scaled and uncentered cross-products matrix, condition 

indices, and variance-decomposition proportions are displayed along with variance inflation factors 

(VIF) and tolerances for individual variables. 

 

Residuals. Displays the Durbin-Watson test for serial correlation of the residuals and casewise 

diagnostics for the cases meeting the selection criterion (outliers above n standard deviations). 

casewise diagnostics. 

 

Linear Regression Plots  

Plots can aid in the validation of the assumptions of normality, linearity, and equality of variances. 

Plots are also useful for detecting outliers, unusual observations, and influential cases. After saving 

them as new variables, predicted values, residuals, and other diagnostics are available in the Data 

Editor for constructing plots with the independent variables. The following plots are available: 

 

Scatterplots. One can plot any two of the following: the dependent variable, standardized predicted 

values, standardized residuals, deleted residuals, adjusted predicted values, Studentized residuals, or 

Studentized deleted residuals. Plot the standardized residuals against the standardized predicted values 

to check for linearity and equality of variances. 

 

Produce all partial plots. Displays scatterplots of residuals of each independent variable and the 

residuals of the dependent variable when both variables are regressed separately on the rest of the 

independent variables. At least two independent variables must be in the equation for a partial plot to 

be produced. 

 

Standardized Residual Plots. One can obtain histograms of standardized residuals and normal 

probability plots comparing the distribution of standardized residuals to a normal distribution.  

 

If any plots are requested, summary statistics are displayed for standardized predicted values and 

standardized residuals (*ZPRED and *ZRESID).  

 

To Obtain Plots With a Linear Regression 

In the Linear Regression dialog box, click Plots. 

- For scatterplots, select one variable for the vertical (y) axis and one variable for the 

horizontal (x) axis. To request additional scatterplots, click Next. 

 

Linear Regression Save 

One can save predicted values, residuals, and other statistics useful for diagnostics. Each selection 

adds one or more new variables to your active data file. 

 

Predicted Values. Values that the regression model predicts for each case.  

 

Distances. Measures to identify cases with unusual combinations of values for the independent 

variables and cases that may have a large impact on the regression model.  

 

Prediction Intervals. The upper and lower bounds for both mean and individual prediction intervals. 
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Residuals. The actual value of the dependent variable minus the value predicted by the regression 

equation.  

 

Influence Statistics. The change in the regression coefficients (DfBeta(s)) and predicted values 

(DfFit) that results from the exclusion of a particular case. Standardized DfBetas and DfFit values are 

also available along with the covariance ratio, which is the ratio of the determinant of the covariance 

matrix with a particular case excluded to the determinant of the covariance matrix with all cases 

included. 

 

Save to New File. Saves regression coefficients to a file that you specify. 

 

In the Linear Regression dialog box, click Save  Select the values or desired statistics. 

  

Linear Regression Options 

The following options are available: 

Stepping Method Criteria. These options apply when either the forward, backward, or stepwise 

variable selection method has been specified. Variables can be entered or removed from the model 

depending on either the significance (probability) of the F value or the F value itself.  

 

Include constant in equation. By default, the regression model includes a constant term. Deselecting 

this option forces regression through the origin, which is rarely done. Some results of regression 

through the origin are not comparable to results of regression that do include a constant. For example, 

R2 cannot be interpreted in the usual way. 

 

Missing Values. One can choose one of the following: 

Exclude cases listwise. Only cases with valid values for all variables are included in the analyses.  

Exclude cases pairwise. Cases with complete data for the pair of variables being correlated are used 

to compute the correlation coefficient on which the regression analysis is based. Degrees of freedom 

are based on the minimum pairwise N. 

Replace with mean. All cases are used for computations, with the mean of the variable substituted for 

missing observations. 

 

To Specify Options for a Linear Regression 

In the Linear Regression dialog box, click Options  Select the desired options. 

In General Steps for Linear Regression 

From the menus choose:   Analyze  Regression  Linear...   Click Reset to restore dialog box 

defaults, and then select: 

 Dependent:  

 Independent:  

 Case Labels: 

 

Statistics… 

 Descriptives 

 Residuals 

 Casewise diagonostics 

 Outliers outside 1.0 standard deviations 

Plots 

 Y: SDRESID 

 X: ZPRED 
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Click Next 

 Y: ZPRED 

 X: DEPENDENT 

 

Standardized Residual Plots 

Normal probability plot 

Save… 

 Predicted Values 

 Standardized 

 Distances 

 Cook's  Leverage values 

 Residuals 

 Studentized deleted 

 Influence Statistics 

 Standardized DfBeta(s)  DfFit 

 

On the Correlation table select and hide the Sig. (1-tailed) and N rows. 

Options… 

 Include constant in equation… 

 

To hide footnotes, select them and then choose Hide from the View menu. 

 

Note: A multiple linear regression equation can also be fitted using the following options: 

 

From the menu choose: Analyze General Linear Model  Univariate ….  Dependent 

Variable  Covariate(s)  Model… Custom  Model main effects (same as covariates) 

options…Display observed power, parameter estimates, and residual plot. 

 

6. Exercises 

Exercise 6.1: The following data are taken from Berenson and Levine (1992).  Fifteen similar 

homes built by one developer in various locations around the United States were evaluated in 

the study.  The builders recorded the amount of oil consumed in January, the average outside 

temperature (in degree Fahrenheit), and the number of inches of attic insulation in each home.  

 

Case Avg.Temp. Insulation(Inches) Oil Consumed in January 

1 40 3 275.3 

2 27 3 363.8 

3 40 10 164.3 

4 73 6   40.8 

5 64 6   94.3 

6 34 6 230.9 

7 9 6 366.7 

8 8 10 300.6 

9 23 10 237.8 

10 63 3 121.4 

11 65 10   31.4 

12 41 6 203.5 

13 21 3 441.1 
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14 38 3 323.0 

15 58 10   52.5 

 

1. Draw a scatter plot matrix using insulation, Oil consumed and temperature. 

2. Fit a multiple linear regression equation using oil consumed as dependent variable and 

insulation and average temperature as independent variable 

 
Exercise 6.2:  The follwing data was collected through a pilot sample survey on Hybrid 

Jowar crop on yield and biometrical characters. The biometrical characters were average Plant 

Population (PP), average Plant Height(PH), average Number of Green Leaves(NGL) and 

Yield (Kg./plot).  

 

1. Plot a  simple scatter  diagram between (i) yield and PP (ii) yield and PH  (iii) yield and 

NGL. 

2. Plot a scatter diagram using matrix option using the variables yield, PP, PH and NGL.  

3. Compute bivariate and partial correlations among yield, PP, PH and NGL. 

4. Fit a simple linear regression by taking yield as dependent variable and NGL as 

independent variable. 

5. Fit a multiple linear regression equation by taking yield as dependent variable and 

biometrical characters as explanatory variables. 

6. Compute various statistics viz. Estimates, Confidence intervals, Covariance matrix , 

Model fit, R-squared change, Descriptives, Part and partial correlations, Collinearity 

diagnostics and Residuals 

7. Check for multicollinearity between PP, PH and NGL.  

8. Identify the outliers in the data set.   

9. Fit the model without intercept.  

 

 No. PP PH NGL Yield 

1 142.00 0.5250 8.20 2.470 

2 143.00 0.6400 9.50 4.760 

3 107.00 0.6600 9.30 3.310 

4 78.00 0.6600 7.50 1.970 

5 100.00 0.4600 5.90 1.340 

6 86.50 0.3450 6.40 1.140 

7 103.50 0.8600 6.40 1.500 

8 155.99 0.3300 7.50 2.030 

9 80.88 0.2850 8.40 2.540 

10 109.77 0.5900 10.60 4.900 

11 61.77 0.2650 8.30 2.910 

12 79.11 0.6600 11.60 2.760 

13 155.99 0.4200 8.10 0.590 

14 61.81 0.3400 9.40 0.840 

15 74.50 0.6300 8.40 3.870 

16 97.00 0.7050 7.20 4.470 

17 93.14 0.6800 6.40 3.310 
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18 37.43 0.6650 8.40 1.570 

19 36.44 0.2750 7.40 0.530 

20 51.00 0.2800 7.40 1.150 

21 104.00 0.2800 9.80 1.080 

22 49.00 0.4900 4.80 1.830 

23 54.66 0.3850 5.50 0.760 

24 55.55 0.2650 5.00 0.430 

25 88.44 0.9800 5.00 4.080 

26 99.55 0.6450 9.60 2.830 

27 63.99 0.6350 5.60 2.570 

28 101.77 0.2900 8.20 7.420 

29 138.66 0.7200 9.90 2.620 

30 90.22 0.6300 8.40 2.000 

31 76.92 1.2500 7.30 1.990 

32 126.22 0.5800 6.90 1.360 

33 80.36 0.6050 6.80 0.680 

34 150.23 1.1900 8.80 5.360 

35 56.50 0.3550 9.70 2.120 

36 136.00 0.5900 10.20 4.160 

37 144.50 0.6100 9.80 3.120 

38 157.33 0.6050 8.80 2.070 

39 91.99 0.3800 7.70 1.170 

40 121.50 0.5500 7.70 3.620 

41 64.50 0.3200 5.70 0.670 

42 116.00 0.4550 6.80 3.050 

43 77.50 0.7200 11.80 1.700 

44 70.43 0.6250 10.00 1.550 

45 133.77 0.5350 9.30 3.280 

46 89.99 0.4900 9.80 2.690 

 
Exercise 6.3: The following data in on 6 variables. 

X Y1 Y2 Y3 Y4 X1 

4.00 4.26 3.10 5.39 6.58 8.00 

5.00 5.68 4.74 5.73 5.76 8.00 

6.00 7.24 6.13 6.08 7.71 8.00 

7.00 4.82 7.26 6.42 8.84 8.00 

8.00 6.95 8.14 6.77 8.47 8.00 

9.00 8.81 8.77 7.11 7.04 8.00 

10.00 8.04 9.14 7.46 5.25 8.00 

11.00 8.33 9.26 7.81 5.56 8.00 

12.00 10.84 9.13 8.15 7.91 8.00 

13.00 7.58 8.74 12.74 6.89 8.00 

14.00 9.96 8.10 8.84 12.50 19.00 

(a) Plot simple scatter plots between (i) y1 and x; (ii) y2 and x; (iii) y3 and x and (iv) y4 and x1. 

(b) Obtain bivariate correlation coefficients between (i) y1 and x; (ii) y2 and x; (iii) y3 and x and    

(iv) y4 and x1. 
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(c) Fir simple linear regression equations for each of the four pairs by taking y-variables as 

dependent and x-variables as independent. 
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1.    Introduction 

In applied investigations, one is often interested in comparing some characteristic (such as mean 

or variance) of a group with a specified value, or in comparing two or more groups with regard 

to the characteristic. For instance, one may want to know whether mean timber yield obtained 

from recently felled plantations of a particular age in a particular management unit is some 

specifid value, one may wish to know whether average yield of a crop in a certain district is 

equal to a specified value, one may wish to compare two species of trees with regard to mean 

height, to know if genetic fraction of total variation in a strain is more than a given value. In 

making such comparisons, one can not rely on mere numerical magnitudes of index of 

comparison such as mean and variance. This is because each group is represented only by a 

sample of observations and if another sample were drawn, the numerical value would change. 

This variation between samples from the same population can at best be reduced in a well-

designed controlled experiment but can never be eliminated. One is forced to draw inferences in 

presence of sampling fluctuations which affect observed differences between groups, clouding 

real differences. Statistical science provides an objective procedure for distinguishing whether 

observed difference connotes any real difference among groups. Such a procedure is called 

testing of hypothesis. Thus, in short, testing of hypothesis is a method of making due allowance 

for sampling fluctuation affecting results of experiments or observations. These tests have wide 

applications in agriculture, forestry, medicine, industry, social sciences, etc.  

 
1.1   Definitions 
 

Statistical Hypothesis: It is an assumption either about the form or about the parameters of a 

distribution. For example, average height of a particular species of tree is 50 feet, normal 

distribution has mean 20.  

 

If all the parameters are completely specified, hypothesis is called a simple hypothesis, 

otherwise it is a composite hypothesis. For example, average height of tree is 50 feet is a simple 

hypothesis and average height of tree is greater than 50 feet is a composite hypothesis. 

 

Null Hypothesis (H0): The hypothesis under test for a sample study is called Null hypothesis 

(H0). It represents a theory that has been put forward, either because it is believed to be true or 

because it is to be used as a basis for argument, but has not been proved. For example, in a 

clinical trial of a new drug, null hypothesis might be that the new drug is, on average, as 

effective as the current drug i.e. H0: Effect of the two drugs, on the average, is same.  

 

Alternative Hypothesis (H1): Any null hypothesis is tested against a rival, which is called 

Alternative hypothesis (H1). For example, mean height () of trees of a particular species in a 

region is some specified value 0, i.e.  

H0:   = 0. 

Alternative hypothesis could be any of the following: 
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 H1:    0       (Two-tailed) 

         < 0       (Left-tailed) 

         > 0       (Right-tailed) 

 

For framing a suitable H0 and H1, four possibilities in order of preference are the following: 

 

Possibilities H0 H1 

(i) Simple Simple 

(ii) Simple Composite 

(iii) Composite Simple 

(iv) Composite Composite 

 

The first one when both are simple is of little practical importance. As Possibility (ii) is preferred 

over Possibility (iii), therefore hypotheses should always be structured in such a way that H0 is 

simple and H1 is composite. 

 

Two Types of Errors 

 

True Situation  
  

Decision Made  
H0 is True H0 is False 

Reject H0 Type I error Correct decision 

Accept H0 Correct decision Type II error 

 

Probabilities of these types of error are respectively denoted by  and , i.e. 

Probability of Type I error =   

and  Probability of Type II error = . 

 

The ideal procedure of hypothesis testing is to minimize both  and . However, this is not 

possible in practice because a test which minimizes one type of error, maximizes the other type 

of error. As Type I error is considered to be more serious than Type II error, therefore probability 

of Type I error is fixed and probability of Type II error is minimized. Generally,  is taken to be 

5% or 1%. 

 

Level of Significance (): It is the size of Type I error. The higher the value of , less precise is 

the result. 

 

Confidence Interval: The confidence interval of a parameter with confidence coefficient 100(1-

)% is the interval (a, b) such that it is expected to lie in this interval in 100(1-)% cases. 

  

Test Statistic: A test statistic is a quantity calculated from data. Its value is used to decide 

whether or not the null hypothesis should be rejected. 

 

Critical Value(s): The critical value(s) is that value with which value of test statistic in a sample 

is compared to determine whether or not the null hypothesis is rejected. The critical value for any 
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hypothesis test depends on significance level  at which the test is carried out, and whether the 

test is one-sided or two-sided. 
 

   
        

 

 

 

Power of a Test: It is defined as the probability of rejecting H0 when it is false. Thus, 

Power = 1 -   

Among a given set of tests, best test is one having maximum power.  

 

Steps in Hypothesis Testing 

 State statistical hypotheses 

 Check assumptions  

 Calculate test statistic 

 Set the test criteria  

 Interpret the results 

 

We now discuss some tests of hypothesis that are based on normal, t, F and chi-square 

distributions. 

 

2.    Test of Significance for Large Samples 

For large n (sample size), almost all the distributions can be approximated very closely by a 

normal probability curve, we therefore use the normal test of significance for large samples. If t 

is any statistic (function of sample values), then for large sample 
 

 (0.1) N     
V(t)

E(t) -t 
 Z  

 

Thus if the discrepancy between the observed and the expected (hypothetical) value of a statistic 

is greater than Z times the standard error (S.E), hypothesis is rejected at  level of significance.  

Similarly if 
 

 t – E(t)   Z  S.E(t), 
 

the deviation is not regarded significant at 5% level of significance. In other words the deviation 

t - E(t), could have arisen due to fluctuations of sampling and the data do not provide any 

evidence against the null hypothesis which may, therefore be accepted at  level of significance.   

If Z  1.96, then the hypothesis H0 is accepted at 5% level of significance. Thus the steps to 

be used in the normal test are as follows: 

i) Compute the test statistic Z under H0. 

Shaded Area =    

Critical Value (one-sided) 
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ii) If Z > 3, H0 is always rejected 

iii) If Z < 3, we test its significance at certain level of significance 

 

The table below gives some critical values of Z:  

 

Level of Significance Critical Value (Z) of Z 

 Two-tailed test Single tailed test 

10% 1.645 1.280 

 5% 1.960 1.645 

 1% 2.580 2.330 

 

2.1   Test for Single Mean 

A very important assumption underlying the tests of significance for variables is that the sample 

mean is asymptotically normally distributed even if the parent population from which the sample 

is drawn is not normal. 

 

If xi ( i =1,,n) is a random sample of size n from a normal population with mean   and 

variance 2, then the sample mean is distributed normally with mean  and variance 
n

2σ
. Based 

on this random sample, our aim is to test that mean of the population has a specified value 0, i.e.  
 

H0:   = 0  
 

The alternative hypothesis could be any of the following: 

H1:    0  (two tailed)      

              < 0  (left tailed)    

                  > 0  (right tailed)     

 

Test Statistic:  

n/

μx
Z 0




  

follows a standard normal distribution. 

 

Test Criteria: Depending on the alternative hypothesis selected, the test criteria are as follows: 
 

 

H1 Test 
Reject H0 at level of 

significance  if 

  0 Two-tailed  Z> Z/2 

 < 0 Left-tailed  Z < -Z 

 > 0 Right-tailed Z > Z 

 

Z is the table value of Z at level of significance . If 2 is unknown, then it is estimated by 

sample variance s2 (for large n), where 2
n

1i
i

2 )x(x
1n

1
s 
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Example 2.1: The mean timber yield obtained from 30 recently felled plantations at the age of 

50 years in a particular management unit is 93 m3/ha with a standard deviation of 10 m3/ha. Test 

whether the mean timber yield is 100 m3/ha based on past records. 

Solution: H0 :   = 100 m3/ha, H1:     100 m3/ha (two tailed test). 

Here, x 93 m3/ha., n = 30,  = 100 m3/ha and  = 10 m3/ha. 
 

Thus, 

 

 834.3

30
10

10093



Z  

 
 

Since Z > 1.96, we conclude that the data does not provide any evidence in favour of the null 

hypothesis H0 may therefore be rejected at 5% level of significance. Hence the decision would be 

to accept the alternative hypothesis that there has been significant decline in the productivity of 

the management unit with respect to the plantations of the species considered.  

 

Note: The value of sample mean is an acceptable value of population mean if the statistic Z lies 

between -Z/2 to Z/2, i.e. 

 -Z/2 
n/

μx




 Z/2. 

Thus, 100(1-)% confidence-interval for  is  

( )n/ Zx  ,n/ Zx 2/2/   . 

 

2.2 Test for Difference of Means 

Let )x( x 21 be the mean of a sample of size n1 (n2) from a population with mean 1 (2) and 

variance )(σ σ 2

2

2

1 .  Our aim is to test 

H0 :  1 = 2 

against H1 :  1  2   

          1 > 2   

          1 < 2   
 

Test Statistic:   
 

 (0,1) N ~  

 
n

σ

n

σ

)xx(
Z

2

2
2

1

2
1

2 1




  

 

follows a standard normal distribution  
 

Test Criteria: 

 
 

H1 Test Reject H0 at level of 
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significance  if 

1  2 Two-tailed Z> Z/2 

1 < 2 Left-tailed Z < -Z 

1> 2 Right-tailed Z > Z 
 

   

 
n

1
  

n

1
σ

)xx(
Z

21

2 1




 , If 22

1 σ  σσ  2

2  

If  is not known, then its estimate is used  

2n  n

1)s-(n  1)s-(n
 s 

21

2
22

2
112

^
2




  

 

2.3 Test for Single Proportion 

Suppose in a sample of size n (>30), x be the number of successes. Then observed proportion of 

successes = pn/x  . Let P be the population proportion. The hypothesis to be tested is that 

population proportion is some specified value P0, i.e. 
 

 H0: P = P0 

 H1: P  P0   

       P > P0   

       P < P0   

 

Test Statistic:   

 
)/nP-(1P

P - p
  Z

00

0  

 

follows approximately a standard normal distribution. 

 

Test Criteria: 
 

H1 Test 
Reject H0 at level of 

significance  if 

P  P0 Two-tailed Z> Z/2 

P < P0 Left-tailed Z < -Z 

P> P0 Right-tailed Z > Z 

 

Example 2.2: In a sample of 1000 people, 540 are rice eaters and the rest are wheat eaters. Can 

we assume that both rice and wheat are equally popular at 1% level of significance? 

Solution: It is given that n = 1000, x = Number of rice eaters = 540, p = sample proportion of 

rice eaters = 0.54  1000/540  . 

H0 : Both rice and wheat are equally popular, i.e. P = 0.5 

H1 : P  0.5 
 

2.532  
0.5/1000 x 0.5

0.5 - 0.54
   

)/nP-(1P

P - p
   Z

00

0   
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Tabulated value of Z at 1% level of significance is 2.575. Since Z < 2.575, therefore H0 is not 

rejected and we conclude that rice and wheat are equally popular. 

 

2.4 Test for Difference of Proportions 

Suppose we want to compare two populations with respect to the prevalence of a certain attribute 

A. Let x1 (x2) be the number of persons possessing the given attribute A in random sample of 

size n1 (n2) from 1st (2nd) population. Then sample proportions will be 
 

2

2
2

1

1
1

n

x
p  ,

n

x
p   

Let P1 and P2 be the population proportions. Our aim here is to test that there is no significant 

difference between population proportions, i.e. 
 

H0: P1 = P2  

 H1: P1  P2   

       P1 > P2   

       P1 < P2   

 

Test Statistic:   

 

Z = 

)
n

QP

n

QP
(

pp

2

22

1

11

21




   

 

follows approximately a standard normal distribution. In case P1 =P2 = P (say) and P is not 

known, it is estimated as follows: 
 

 
21

2211

nn

pnpn
P̂




  

 

Test Criteria: 
 
 

H1 Test 
Reject H0 at level of 

significance  if 

P1  P2   Two-tailed Z> Z/2 

P1 < P2   Left-tailed Z < -Z 

P1 > P2   Right-tailed Z > Z 

Consider an experiment on rooting of stem cuttings of Casuarina equisetifolia wherein the effect 

of dipping the cuttings in solutions of IBA at two different concentrations was observed. Two 

batches of 30 cuttings each, were subjected dipping treatment at concentrations of 50 and 100 

ppm of IBA solutions respectively. Based on the observations on number of cuttings rooted in 

each batch of 30 cuttings, the following proportions of rooted cuttings under each concentration 

were obtained. At 50 ppm, the proportion of rooted cuttings was 0.5 and at 100 ppm, the 

proportion was 0.37. Test whether the observed proportions are indicative of significant 

differences in the effect of IBA at the two concentrations.  
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Here, p1 = 0.5 and p2 = 0.37. Then q1 = 0.5, q2 = 0.63. The value of n1 = n2 = 30. Thus,  
 

024.1

30

3)(0.37)(0.6

30

(0.5)(0.5)

37.05.0
Z 




  

 

Since the calculated value of Z (1.024) is less than the table value (1.96) at 5% level of 

significance, we can conclude that there is no significant difference between proportion rooted 

cuttings under the two concentration levels. 

 

3.    Test of Significance for Small Samples 

In this section, the statistical tests based on t, 2 and F are given. 

 

3.1    Tests Based on t-Distribution 
 

3.1.1 Test for an Assumed Population Mean 

Suppose a random sample x1,..,xn of size n (n2) has been drawn from a normal population 

whose variance 2 is unknown. On the basis of this random sample the aim is to test 

H0 :   = 0 

H0 :    0   

   > 0   

   < 0   
 

Test statistic: 

 t = 1n
0 t~

ns/

μx



, 

where 



n

1i

ix
n

1
x  and 2

n

1i
i

2 )x(x
1n

1
s 


 



 

 

The table giving the value of t required for significance at various levels of probability and for 

different degrees of freedom are called the t – tables which are given in Statistical Tables by 

Fisher and Yates. The computed value is compared with the tabulated value at  percent level of 

significance and at (n-1) degrees of freedom and accordingly the null hypothesis is accepted or 

rejected. 

 

3.1.2 Test for the Difference of Two Population Means 

Let )x(x 21  be the sample mean of a sample of size n1 (n2) from a population with mean 1 (2) 

and variance of the two population be same 2, which is unknown. Our aim is to test 

H0 :   1 = 2 

H1 :   1  2  or  1 > 2  or 1 < 2   
 

Let 2
is , i =1, 2 be sample variances of the two samples. Then common unknown population 

variance 2 is estimated as 

 

2nn

 1)s(n  1)s(n
s

21

2
22

2
112
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Test Statistic:   

21

21

n

1

n

1
s

xx
t




  

which follows a t-distribution with n1 + n2 -2 d.f. 

 

 

Test Criteria: 

H1 Test 
Reject H0 at level of 

significance  if 

1  2 Two-tailed t> )2/(t 2nn 21
  

1 < 2 Left-tailed  t < - )(t 2nn 21
  

1> 2 Right-tailed  t > )(t 2nn 21
  

This test statistic is used under certain assumptions viz., (i) The variables involved are continuous 

(ii) The population from which the samples are drawn follow normal distribution (iii) The 

samples are drawn independently (iv) The variances of the two populations from which the 

samples are drawn are homogeneous (equal). The homogeneity of two variances can be tested by 

using F-test. 

Example 3.1: A group of 5 plots treated with nitrogen at 20 kg/ha. yielded 42, 39, 48, 60 and 41 

kg whereas second group of 7 plots treated with nitrogen at 40 kg/ha. yielded 38, 42, 56, 64, 68, 

69 and 62 kg. Can it be concluded that nitrogen at level 40 kg/ha. increases the yield 

significantly?  

Solution: H0: 1 = 2 , H1:  1 < 2  

Here,   

 

 

 

 

 

Since |t| < 1.81 (value of t at 5% and 10 d.f), the yield from two doses of nitrogen do not differ 

significantly. 

 

3.1.3     Paired t-test for Difference of Means 

When the two samples are not independent but the sample observations are paired together, then 

this test is applied. The paired observations are on the same unit or matching units. For example, 

to know the impact of a new teaching method on the performance of students, the observations, 

in terms of marks, are collected before and after the new teaching method is implemented. Let 

(xi, yi), i = 1,…,n be the pairs of observations and let di = xi - yi. Our aim is to test 
 

H0 :  1 = 2  

H1 :  1  2   

         1 > 2   

        1 < 2   

46,x1  ,57x 2  6.121s2 

10t~1.7- 

)
7

1

5

1
(6.121

5746
t 
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Test Statistic:  
 

  
n/s

d
t

d

  

follows t distribution with n-1 d.f., where 



n

1i
id  

n

1
  d and 







n

1i

2
i

2
d )d(d 

1n

1
s . 

 

Test Criteria: 
 

 

H1 Test 
Reject H0 at level of 

significance  if 

1  2 Two-tailed t> )2/(t 1n   

1 < 2 Left-tailed t < - )(t 1n   

1> 2 Right-tailed t > )(t 1n   

 

 

3.1.4 Test for Significance of Observed Correlation Coefficient 

Given a random sample (xi, yi) , i = 1,…, n from a bivariate normal  population. We want to test 

the null hypothesis that the population correlation coefficient is zero i.e. 

        H0 :  = 0 

        H1 :   0 

 

Test Statistic: 

2n
2

   t~  
r1

2nr
t 




 , 

where r is the sample correlation coefficient. H0 is rejected at level  if 

          t > tn-2 (/2) 

This test can also be used for testing the significance of rank correlation coefficient. 

 
 

3.2  Test of Significance Based on Chi-Square Distribution 

 

3.2.1 Test for the Variance of a Normal Population 

Let x1, x2,…,xn (n2) be a random sample from a normal population with mean  and variance 

2. On the basis of this sample our aim is to test 

H0 : 2
0

2 σσ   

against H1 : 
2
0

2 σσ   

         2
0

2 σσ   

        2
0

2 σσ   

 

Test Statistic:  
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σ

μx
2

0

i
n

1i

2










 
 



 

follows a chi-square distribution with n d.f. when  is known, and 

 
σ

xx
2

0

i
n

1i

2










 
 



 = 
2
0

2s)1n(




 

follows a chi-square distribution with n-1 d.f. when  is not known. 

 

Test Criteria: 
 

H1 Test 
Reject H0 at level of significance  if 

 is known  is not known 
2
0

2 σσ   Two-tailed 2 < )2/1(2
n  or 

2 > )2/(2
n   

2 < )2/1(2
1n   or 

2 > )2/(2
1n    

2
0

2 σσ   Left-tailed  2 < )1(2
n   2 < )1(2

1n    

2
0

2 σσ   Right-tailed 2 > )(2
n   2 > )(2

1n    

 

Tables are available for 2 at different levels of significance and with different degrees of 

freedom. 

 

3.2.2 Test for Goodness of Fit 

A test of wide applicability to numerous problems of significance in frequency data is the 2 test 

of goodness of fit. It is primarily used for testing the discrepancy between the expected and the 

observed frequency, For instance, one may be interested in testing whether a variable like the 

height of trees follows normal distribution. A tree breeder may be interested to know whether the 

observed segregation ratios for a character deviate significantly from the Mendelian ratios. In 

such situations, we want to test the agreement between the observed and theoretical frequencies. 

Such a test is called a test of goodness of fit.  

H0 : the fitted distribution is a good fit to the given data 

H1 : not a good fit. 

 

Test statistic: If Oi and Ei, i =1,…,n are respectively the observed and expected frequency of ith 

class, then the statistic 

  2
1-r-n

i

2
ii

n

1i

2   ~ 
E

 EO



 



 

where r is the number of parameters estimated from the sample, n is the number of classes after 

pooling. H0 is rejected at level  if calculated 2 > tabulated 
2

1-r-n  (). 

 

Example 3.2: In an F2 population of chillies, 831 plants with purple and 269 with non-purple 

chillies were observed.  Is this ratio consistent with a single factor ratio of 3:1?  

Solution: On the hypothesis of a ratio of 3:1, the frequencies expected in the purple and non-

purple classes are 825 and 275 respectively. 
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 Frequency 

 Observed (Oi) Expected (Ei) Oi - Ei 

Purpose 831 825 6 

Non-purple 269 275 -6 
 

0.17
E

)E(O2

1i i

2
ii2 


 



. 

Here 2 is based on one degree of freedom. It is seen from the table that the value of 0.17 for 2 

with 1 d.f corresponds to a level of probability which lies between 0.5 and 0.7. It is concluded 

that the result is non-significant. 

 

3.2.3 Test of Independence 

Another common use of the 2 test is in testing independence of classifications in what are 

known as contingency tables. When a group of individuals can be classified in two ways, the 

result of the classification in two ways the results of the classification can be set out as follows: 

Contingency table 

Class A1 A2 A3 

B1 n11 n21 n31 

B2 n12 n22 n32 

B3 n13 n23 n33 

 

Such a table giving the simultaneous classification of a body of data in two different ways is 

called contingency table. If there are r rows and c columns the table is said to be an r x c table. 

H0: the attributes are independent 

H1: they are not independent 

Test statistic: 

2
1)-(c 1)-(r

c

1j

r

1i ij

2
ijij2   ~    

E

)E - (O
     

 

 

H0  is rejected at level  if  
2

1)-(c 1)-(r
2       

 
 

3.3     Test of Significance Based on F-Distribution 
 

3.3.1   Test for the Comparison of Two Population Variances 

Let xi , i = 1,…,n1 and xj, j=1,…,n2 be the two random samples of sizes n1 and n2 drawn from 

two independent normal populations N )σ,μ( 2
11  and N )σ,μ( 2

21  respectively. 2
2

2
1 s and  s   are the 

sample variances of the two samples. 











21 n

1j

2
2j

2

2
2

n

1i

2
1i

1

2
1 )x(x

1n

1
s  and)x(x

1n

1
s  





21 n

1j
j

2

2

n

1i
i

1

1 x
n

1
x    ,x

n

1
x  

H0 : 
2
2

2
1σ   

 

Test statistic: Assuming 2
2

2
1 ss   
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F = 12n 1,1n2
2

2
1 F  ~  

s

s
    

Tables are available giving the values of F required for significance at different levels of 

probability and for different degrees of freedom. The computed value of F is compared with the 

tabulated value and the inference is drawn accordingly. 

 

3.3.2   Test for Homogeneity of Several Population Means  
The test of significance based on t-distribution is an adequate procedure only for testing the 

significance of the difference between two sample means. In a situation when we have three or 

more samples to consider at a time, an alternative procedure is needed for testing the hypothesis 

that all the samples are drawn from the same population i.e. they have the same mean. For 

Example, 5 fertilizers are applied to four plots each of wheat and yield of wheat on each of the 

plot is obtained. The interest is to find whether effects of these fertilizers on the yields is 

significantly different or in other words, whether the samples have come from the same normal 

population. This is done through F-test that uses the technique of Analysis of Variance 

(ANOVA).   

 

ANOVA is the technique of partitioning the total variability into different known components. It 

consist in the estimation of the amount of variation due to each of the independent factors 

(causes) separately and then comparing these estimates due to assignable factors with the 

estimate due to chance factor or experimental error. The F statistic used for testing the hypothesis 

H0:  1 = 2 =…=k (k>2) is 
 

 
samples within theVariation 

means sample  theamong Variation
F   

 
 

Practical on Testing of Hypothesis 
 

1.   Independent Samples t-Test 

An experiment was conducted to evaluate the effect of inoculation with mycorrhiza on the height 

growth of seedlings of Pinus kesiya. In the experiment, 10 seedlings (Group I) were inoculated 

with mycorrhiza while another 10 seedlings (Group II) were left without inoculation with the 

microorganism. Following table gives the height of seedlings obtained under the two groups of 

seedlings: 
 

Plot Group I Group II 

1 23.0   8.5 

2 17.4   9.6 

3 17.0   7.7 

4 20.5 10.1 

5 22.7   9.7 

6 24.0 13.2 

7 22.5 10.3 

8 22.7   9.1 

9 19.4 10.5 

10 18.8   7.4 
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Test whether inoculated and uninoculated seedlings are significantly different.  

Solution: H0: Mean of Group I (1) = Mean of Group II (2) and H1: 1  2 

From the given data 8.20x1  , 61.9x2  ,  

 36.6
9

24.57

110

10

)208(
)8.18(...)4.17()0.23(

s

2
222

2
1 





  

 

7.2
9

3.24

110

10

)1.96(
)4.7(...)6.9()5.8(

s

2
222

2
2 





  

 

537.4
18

43.2424.57

21010

)7.2)(110()36.6)(110(
s

2
2 







  

 

75.11

)
10

1

10

1
(737.4

61.98.20
t 




  

The computed value of t is compared with the tabular value of t (2.10) at n1 + n2 - 2 = 18 degrees 

of freedom. Since the computed value is greater than 2.10 and it is concluded that the 

populations of inoculated and uninoculated seedlings are significantly different with respect to 

their mean height. 

The procedure for independent samples t-test using SPSS software is given below: 
 

Data entry in SPSS 
 

 
 

Analyze  Compare Means  Independent Samples t-test 
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Selection of Variables  
 

 
 

Output 
 

 
 
 

2.   Paired t-Test 

The following data pertain to organic carbon content measured at two different layers of a 

number of soil pits. Test whether the mean carbon content from two layers of soil pit differ or 

not.  

 

Soil pit 

Organic Carbon (%) 

Layer 1 

(x) 

Layer 2 

(y) 

Difference 

(d) 

1 1.59 1.21   0.38 

2 1.39 0.92   0.47 

3 1.64 1.31   0.33 

4 1.17 1.52 -0.35 

5 1.27 1.62 -0.35 

6 1.58 0.91   0.67 
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7 1.64 1.23   0.41 

8 1.53 1.21   0.32 

9 1.21 1.58 -0.37 

10 1.48 1.18  0.30 

The observations are paired by soil pits. The paired t-test can be used in this case to compare the 

organic carbon status of soil at the two depth levels.  

Solution: Mean of Layer 1 (1) = Mean of Layer 2 (2) and H1: 1  2 
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Thus, 

 

 485.1

10

1486.0

181.0
t   

 

The value of t (1.485) is less than the tabular value, 2.262, for 9 degrees of freedom at the 5% 

level of significance. It may therefore be concluded that there is no significant difference 

between the mean organic carbon content of the two layers of soil. 

 

3.   Equality of Several Means (Analysis of Variance)  

Ten varieties of wheat are grown in 3 plots each and the following yields in kg per hectare are 

obtained: 

  

Variety  

Plots  
1 2 3 4 5 6 7 8 9 10 

1 7 7 14 11 9 6 9 8 12 9 

2 8 9 13 10 9 7 13 13 11 11 

3 7 6 16 11 12 5 11 11 11 11 
 

Test the significance between mean variety yields. 

 
SPSS Procedure 

Data Entry 
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Analyze  

 Compare Means 

  One-Way ANOVA…. 

 

 Select one or more dependent variables. 

 Select a single independent factor variable 

 

 
 

 

Output 
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The interpretation of data based on analysis of variance (ANOVA) is valid only when the 

following assumptions are satisfied: 

1. Additive Effects: Treatment effects and block (environmental) effects are additive. 

2. Independence of errors: Experimental errors are independent. 

3. Homogeneity of Variances: Errors have common variance. 

4. Normal Distribution: Errors follow a normal distribution. 
 

Also the statistical tests t, F, z, etc. are valid under the assumption of independence of errors 

and normality of errors. The departures from these assumptions make the interpretation based 

on these statistical techniques invalid. Therefore, it is necessary to detect the deviations and 

apply the appropriate remedial measures. 

 The assumption of independence of errors, i.e., error of an observation is not related to or 

depends upon that of another. This assumption is usually assured with the use of proper 

randomization procedure. However, if there is any systematic pattern in the arrangement 

of treatments from one replication to another, errors may be non-independent. This may 

be handled by using nearest neighbour methods in the analysis of experimental data. 

 The assumption of additive effects can be defined and detected in the following manner: 

 

Additive Effects 

The effects of two factors, say, treatment and replication, are said to be additive if the effect 

of one-factor remains constant over all the levels of other factors. A hypothetical set of data 

from a randomized complete block (RCB) design, with 2 treatments and 2 replications, with 

additive effects is given in Table 1. 

Table  1 

Treatment Replication Replication Effect 

I II I - II 

A 190 125 65 

B 170 105 65 

Treatment Effect (A-B) 20 20  

 

Here, the treatment effect is equal to 20 for both replications and replication effect is 65 for 

both treatments. 
 

When the effect of one factor is not constant at all the levels of other factor, the effects are 

said to be non-additive. A common departure from the assumption of additivity in biological 

experiments is one where the effects are multiplicative. Two factors are said to have 

multiplicative effects if their effects are additive only when expressed in terms of percentages. 

Table 2 illustrates a hypothetical set of data with multiplicative effects. 



Diagnostics and Remedial Measures 

 63 

 

Table  2 

Treatment Replication Replication Effect 

I II I - II 100(I - II)/II 

A 200 

(2.30103) 

125 

(2.09691) 

75 

(0.20412) 

60 

B 160 

(2.20412) 

100 

(2.0000) 

60 

(0.20412) 

60 

Treatment Effect (A-B) 40 

(0.09691) 

25 

(0.09691) 

  

100 (A - B)/B 25 25   
 

In this case, the treatment effect is not constant over replications and the replication effect is 

not constant over treatments. However, when both treatment effect and replication effect are 

expressed in terms of percentages, an entirely different pattern emerges. For such violations of 

assumptions, Logarithmic transformation is quite suitable. For illustration, the Logarithmic 

transformation of data in Table 2 is given in brackets. 
 

This is, however a crude method for testing the additivity. Tukey (1949) gave a statistical test 

for testing the additivity in a RCB design. This test is known as one degree of freedom test for 

non-additivity. In this test, one degree of freedom is isolated from error and this degree of 

freedom is called as the degree of freedom for non-additivity. In the sequel, we describe the 

procedure in brief. 
 

Suppose that an experiment has been conducted to compare v treatments using RCB design 

with r replications. Let ijy denote the observed value of the response variable for thi  

treatment in thj  replication; i = 1,2, …, v;  j = 1,2, …, r. Arrange the data in a v  r table as 

given below: 
Treatment 1 2  j  r Treatment 

Total 

Treatment 

Mean 

Deviations 

from Grand 

Mean  

Sum of 

Cross 

Product 

1 
11y  12y   

jy1   
ry1  .1T  .1y  .1d  1C  

2 
21y  22y   

jy2

 

 
ry2

 
.2T  .2y  .2d  2C  

                    

i 
1iy  2iy   

ijy   
iry  .iT  .iy  .id  iC  

                    

v 
1vy  2vy   

vjy   
vry  .vT  .vy  .vd  vC  

Replication 

Total 
1.R  2.R   

jR.   
rR.  G (Grand 

total) 

 

Replication 

Mean 
1.y  2.y   

jy.   
ry.   

GM = 
vr

G
 

Deviation 

from Grand 

Mean 

1.d  2.d   
jd.   

rd.  
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where 
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Sum of squares due to non-additivity (SSNA)= 
21

2

DD

L


 

 

The sum of squares due to treatments, replications and total sum of squares are given by 

 

Sum of squares due to treatments (SST) = 



v

i

i

vr

G

r

T

1

22
.  

 

Sum of squares due to replications (SSR) = 



r

j

j

vr

G

v

R

1

22
.

 

Total sum of squares (TSS) = 
vr

G
y

v

i

r

j

ij

2

1

2 


 

 

Sum of squares due to Error (SSE) = TSS – SST-SSR-SSNA 

 

Then the outline of ANOVA table is 

Source df SS MS 

Treatments v-1 SST MST 

Replications r-1 SSR MSR 

Non-additivity 1 SSNA MSNA 

Error (v-1)(r-1)-1 SSE MSE 

Total vr-1 TSS  

 

The mean squares (MS) are obtained by dividing sum of squares (SS) by corresponding 

degrees of freedom (df). The non-additivity is tested by F-statistic with 1 and (v-1)(r-1)-1 

degree of freedom calculated value of F =  
MSE

MSNA
. 

Normality of Errors 

The assumptions of homogeneity of variances and normality are generally violated together. 

To test the validity of normality of errors for the character under study, one can take help of 

Normal Probability Plot, Anderson-Darling Test, D'Augstino's Test, Shapiro - Wilk's Test, 

Ryan-Joiner test, Kolmogrov-Smirnov test, etc. In general moderate departures from 
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normality are of little concern in the fixed effects ANOVA as F - test is slightly affected but 

in case of random effects, it is more severely impacted by non-normality. The significant 

deviations of errors from normality, makes the inferences invalid. So before analyzing the 

data, it is necessary to convert the data to a scale that it follows a normal distribution. In the 

data from designed field experiments, we do not directly use the original data for testing of 

normality or homogeneity of observations because this is embedded with the treatment effects 

and some of other effects like block, row, column, etc. So there is need to eliminate these 

effects from the data before testing the assumptions of normality and homogeneity of 

variances. For eliminating the treatment effects and other effects we fit the model 

corresponding to the design adopted and estimate the residuals. These residuals are then used 

for testing the normality of the observations. In other words, we want to test the null 

hypothesis H0: errors are normally distributed against alternative hypothesis H1: errors are not 

normally distributed. For details on these tests one may refer to D’Agostino and Stephens 

(1986). Most of the standard statistical packages available in the market are capable of testing 

the normality of the data. In SAS and SPSS commonly used tests are Shapiro-Wilk test and 

Kolmogrov-Smirnov test. MINITAB uses three tests viz. Anderson-Darling, Ryan-Joiner, 

Kolmogrov-Smirnov for testing the normality of data. 

 

Homogeneity of Error Variances 

A crude method for detecting the heterogeneity of variances is based on scatter plots of means 

and variance or range of observations or errors, residual vs fitted values, etc. To be clearer, let 

ijY  be the observation pertaining to thi  treatment  vi )1(1  in the thj  replication 

 irj )1(1 . Compute the mean and variance for each treatment across the replications (the 

range can be used in place of variance) as 

 Mean = 



ir

j

ij
i

i Y
r

Y

1

.
1

;  Variance =  






ir

j
iij

i
i YY

r
S

1

2
.

2

1

1
 

Draw the scatter plot of mean vs variance (or range). If 2
.iS 's  vi )1(1  are equal (constant) 

or nearly equal, then the variances are homogeneous. Based on these scatter plots, the 

heterogeneity of variances can be classified into two types:  

1. Where the variance is functionally related to mean. 

2. Where there is no functional relationship between the variance and the mean. 

For illustration some scatter - diagrams of mean and variances (or range) are given as: 

          (a) Homogeneous variance                  (b) Heterogeneous variance where variance is  

    proportional to mean 

Mean

V
a

ri
a

n
c
e

Mean

V
a

ri
a

n
c
e
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   (c) Heterogeneous variance without any functional  

     relationship between variance and mean 

 

The first kind of variance heterogeneity (figure b) is usually associated with the data whose 

distribution is non-normal viz., negative binomial, Poisson, binomial, etc. The second kind of 

variance heterogeneity usually occurs in experiments, where, due to the nature of treatments 

tested, some treatments have errors that are substantially higher (lower) than others. For 

example, in varietal trials, where various types of breeding material are being compared, the 

size of variance between plots of a particular variety will depend on the degree of genetic 

homogeneity of material being tested. The variance of F2 generation, for example, can be 

expected to be higher than that of F1 generation because genetic variability in F2 is much 

higher than that in F1. The variances of varieties that are highly tolerant of or highly 

susceptible to, the stress being tested are expected to be smaller than those of having moderate 

degree of tolerance. Also in testing yield response to a chemical treatment, such as, fertilizer, 

insecticide or herbicide, the non-uniform application of chemical treatments may result in a 

higher variability in the treated plots than that in the untreated plots. 

 

The scatter-diagram of means and variances of observations for each treatment across the 

replications gives only a preliminary idea about homogeneity of error variances.  Statistically 

the homogeneity of error variances is tested using Bartlett's test for normally distributed errors 

and Levene test for non-normal errors. These tests are described in the sequel.   

 

Bartlett's Test for Homogeneity of Variances 

Let there are v- independent samples drawn from same population and ith sample is of size ir  

and   Nrrr v  ...21 . In the present case, the independent samples are the residuals of 

the observations pertaining to v treatments and ith sample size is the number of replications of 

the treatment i.  One wants to test the null hypothesis 
22

2
2
10 ...: vH    against the 

alternative hypothesis :1H at least two of the si '2 are not equal, where 2
i  is the error 

variance for treatment i. 

 

Let ije  denotes the residual pertaining to the observation of treatment i from replication j, 

then it can easily be shown that the sum of residuals pertaining to a given treatment is zero. In 

Mean
V

a
ri

a
n
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this test 
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1
 is taken as unbiased estimate of 2

i . The 

procedure involves computing a statistic whose sampling distribution is closely approximated 

by the 2  distribution with v - 1 degrees of freedom. The test statistic is 

 
c

q
3026.22

0
  

and null hypothesis is rejected when  2
1,

2
0 


v , where 2
1, v  is the upper   percentage 

point of 2  distribution with v - 1 degrees of freedom. 

To compute 2
0

 , follow the steps: 

Step 1: Compute mean and variance of all v-samples. 

Step 2: Obtain pooled variance 
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Step 3: Compute    
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Step 4: Compute 
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Step 5: Compute 2
0

 . 

 

Bartlett's 2  test for homogeneity of variances is a modification of the normal-theory 

likelihood ratio test. While Bartlett's test has accurate Type I error rates and optimal power 

when the underlying distribution of the data is normal, it can be very inaccurate if that 

distribution is even slightly non-normal (Box 1953). Therefore, Bartlett's test is not 

recommended for routine use.  

 

An approach that leads to tests that are much more robust to the underlying distribution is to 

transform the original values of the dependent variable to derive a dispersion variable and 

then to perform analysis of variance on this variable. The significance level for the test of 

homogeneity of variance is the p-value for the ANOVA F-test on the dispersion variable.  

Commonly used test for testing the homogeneity of variance using a dispersion variable is 

Levene Test given by Levene (1960). The procedure is described in the sequel. 

 

Levene Test for homogeneity of Variances  

The test is based on the variability of the residuals. The larger the error variance, the larger the 

variability of the residuals will tend to be. To conduct the Levene test, we divide the data into 

different groups based on the number of treatments if the error variance is either increasing or 
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decreasing with the treatments, the residuals in the one treatment will tend to be more variable 

than those in others treatments. The Levene test than consists simply F – statistic based on one 

way ANOVA used to determine whether the mean of absolute/ Square root deviation from 

mean are significantly different or not. The residuals are obtained from the usual analysis of 

variance. The test statistic is given as 
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..  and ije  is the jth residual for the ith plot, 

ie  is the mean of the residuals of the ith treatment. 

 

This test was modified by Brown and Forsythe (1974). In the modified test, the absolute 

deviation is taken from the median instead of mean in order to make the test more robust.  

 

In the present investigation, the Bartlett's 2 -test has been used for testing the homogeneity 

of error variances when the distribution of errors is normal and Levene test for non-normal 

errors.  

 

Remark 1: In a block design, it can easily be shown that the sum of residuals within a given 

block is zero. Therefore, the residuals in a block of size 2 will be same with their sign reverse 

in order. As a consequence, q in Bartlett’s test and numerator in Levene test statistic becomes 

zero for the data generated from experiments conducted to compare only two treatments in a 

RCB design. Hence, the tests for homogeneity of error variances cannot be used for the 

experiments conducted to compare only two treatments in a RCB design. Inferences from 

such experiments may be drawn using Fisher-Behren t-test. Further, Bartlett’s test cannot be 

used for the experimental situations where some of the treatments are singly replicated. 

 

Remark 2: In a RCB design, it can easily be shown that the sum of residuals from a particular 

treatment is zero. As a consequence, the denominator of Levene test statistic is zero for the 

data generated from RCB designs with two replications. Therefore, Levene test cannot be 

used for testing the homogeneity of error variances for the data generated from RCB designs 

with two replications.  

 

Remedial Measures 

In this section, we shall discuss the remedial measures for non-normal and/or heterogeneous 

data in greater details.  
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Data transformation is the most appropriate remedial measure, in the situation where the 

variances are heterogeneous and are some functions of means. With this technique, the 

original data are converted to a new scale resulting into a new data set that is expected to 

satisfy the homogeneity of variances. Because a common transformation scale is applied to all 

observations, the comparative values between treatments are not altered and comparison 

between them remains valid. 

 

Error partitioning is the remedial measure of heterogeneity that usually occurs in experiments, 

where, due to the nature of treatments tested some treatments have errors that are substantially 

higher (lower) than others. 

 

Here, we shall concentrate on those situations where character under study is non-normal and 

variances are heterogeneous. Depending upon the functional relationship between variances 

and means, suitable transformation is adopted. The transformed variate should satisfy the 

following: 

1. The variances of the transformed variate should be unaffected by changes in the means. 

This is also called the variance stabilizing transformation. 

2. It should be normally distributed. 

3. It should be one for which effects are linear and additive. 

4. The transformed scale should be such for which an arithmetic average from the sample is 

an efficient estimate of true mean. 

 

The following are the three transformations, which are being used most commonly, in 

biological research. 

a) Logarithmic Transformation 

b) Square root Transformation 

c) Arc Sine or Angular Transformation 

 

a) Logarithmic Transformation 

This transformation is suitable for the data where the variance is proportional to square of the 

mean or the coefficient of variation (S.D./mean) is constant or where effects are 

multiplicative. These conditions are generally found in the data that are whole numbers and 

cover a wide range of values. This is usually the case when analyzing growth measurements 

such as trunk girth, length of extension growth, weight of tree or number of insects per plot, 

number of eggmass per plant or per unit area etc. 

 

For such situations, it is appropriate to analyze log X instead of actual data, X. When data set 

involves small values or zeros, log (X+1), )1X2log(   or log 









8

3
X  should be used 

instead of log X. This transformation would make errors normal, when observations follow 

negative binomial distribution like in the case of insect counts. 

 

b)  Square-Root Transformation  

This transformation is appropriate for the data sets where the variance is proportional to the 

mean. Here, the data consists of small whole numbers, for example, data obtained in counting 

rare events, such as the number of infested plants in a plot, the number of insects caught in 
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traps, number of weeds per plot, parthenocarpy in some varieties of mango. This data set 

generally follows the Poisson distribution and square root transformation approximates 

Poisson to normal distribution. 

 

For these situations, it is better to analyze X  than that of X, the actual data. If X is 

confirmed to small whole numbers then, 
2

1
X   or 

8

3
X   should be used instead of X . 

 

This transformation is also appropriate for the percentage data, where, the range is between 0 

to 30% or between 70 and 100%. 

 

c) Arc Sine Transformation 

This transformation is appropriate for the data on proportions, i.e., data obtained from a count 

and the data expressed as decimal fractions and percentages. The distribution of percentages 

is binomial and this transformation makes the distribution normal. Since the role of this 

transformation is not properly understood, there is a tendency to transform any percentage 

using arc sine transformation. But only that percentage data that are derived from count data, 

such as % barren tillers (which is derived from the ratio of the number of non-bearing tillers 

to the total number of tillers) should be transformed and not the percentage data such as % 

protein or % carbohydrates, %nitrogen, etc. which are not derived from count data. For these 

situations, it is better to analyze )(sin 1 X than that of X, the actual data. If the value of X is 

0%, it should be substituted by 








n4

1
 and the value of 100% by 










n4

1
100 , where n is the 

number of units upon which the percentage data is based. 

 

It is interesting to note here that not all percentage data need to be transformed and even if 

they do, arc sine transformation is not the only transformation possible. The following rules 

may be useful in choosing the proper transformation scale for percentage data derived from 

count data. 

Rule 1: The percentage data lying within the range 30 to 70% is homogeneous and no 

transformation is needed. 
 

Rule 2: For percentage data lying within the range of either 0 to 30% or 70 to 100%, but not 

both, the square root transformation should be used. 
 

Rule 3: For percentage that do not follow the ranges specified in Rule 1 or Rule 2, the Arc 

Sine transformation should be used. 

The other transformations used are reciprocal square root [
X

1
, when variance is 

proportional to cube of mean], reciprocal [ 
X

1
, when variance is proportional to fourth power 

of mean] and tangent hyperbolic transformation.  

 

The transformation discussed above are a particular case of the general family of 

transformations known as Box-Cox transformation. 
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d) Box-Cox Transformation 

By now we know that if the relation between the variance of observations and the mean is 

known then this information can be utilized in selecting the form of the transformation. We 

now elaborate on this point and show how it is possible to estimate the form of the required 

transformation from the data. The transformation suggested by Box and Cox (1964) is a 

power transformation of the original data. Let yut be the observation pertaining to the uth plot; 

then the power transformation implies that we use yut’s as 

 

ut

*
ut yy 

.                                 

The transformation parameter  in 
utut yy *  may be estimated simultaneously with the other 

model parameters (overall mean and treatment effects) using the method of maximum 

likelihood. The procedure consists of performing, for the various values of , a standard 

analysis of variance on  
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uty  is the geometric mean of the observations. The maximum likelihood estimate of  is the 

value for which the error sum of squares, say SSE (), is minimum. Notice that we cannot 

select the value of  by directly comparing the error sum of squares from analysis of variance 

on y  because for each value of  the error sum of squares is measured on a different scale. 

Equation (A) rescales the responses so that the error sums of squares are directly comparable.  

This is a very general transformation and the commonly used transformations follow as 

particular cases.  The particular cases for different values of  are given below. 

 

 Transformation 

1 No Transformation 

½ Square Root 

0 Log 

-1/2 Reciprocal Square Root 

-1 Reciprocal 

 

Remark 3: If any one of the observations is zero then the geometric mean is undefined. In the 

expression (A), geometric mean is in denominator so it is not possible to compute that 

expression. For solving this problem, we add a small quantity to each of the observations. 
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Note: It should be emphasized that transformation, if needed, must take place right at the 

beginning of the analysis, all fitting of missing plot values, all adjustments by covariance etc. 

being done with the transformed variate and not with the original data. At the end, when the 

conclusions have been reached, it is permissible to 're-transform' the results so as to present 

them in the original units of measurement, but this is done only to render them more 

intelligible. 
 

As a result of this transformation followed by back transformation, the means will rather be 

different from those that would have been obtained from the original data. A simple example 

is that without transformation, the mean of the numbers 1, 4, 9, 16 and 25 is 11. Suppose a 

square root transformation is used to give 1, 2, 3, 4 and 5, the mean is now 3, which after 

back- transformation gives 9. Usually the difference will not be so great because data do not 

usually vary as much as those given, but logarithmic and square root transformation always 

lead to a reduction of the mean, just as angles of equal formation usually lead to its moving 

away from the central value of 50%. 
 

However, in practice, computing treatment means from original data is more frequently used 

because of its simplicity, but this may change the order of ranking of converted means for 

comparison. Although transformations make possible a valid analysis, they can be very 

awkward. For example, although a significant difference can be worked out in the usual way 

for means of the transformed data, none can be worked out for the treatment means after back 

transformation. 

 

Non-parametric tests in the Analysis of Experimental Data 

When the data remains non-normal and/or heterogeneous even after transformation, a 

recourse is made to non-parametric test procedures. A lot of attention is being paid to develop 

non-parametric tests for analysis of experimental data. Most of these non-parametric test 

procedures are based on rank statistic. The rank statistic has been used in development of 

these tests as the statistic based on ranks is 

1. distribution free 

2. easy to calculate and  

3. simple to explain and understand. 
 

Another reason for use of rank statistic is due to the well known result that the average rank 

approaches normality quickly as n (number of observations) increases, under the rather 

general conditions, while the same might not be true for the original data {see e.g. Conover 

and Iman (1976, 1981)}. The non-parametric test procedures available in literature cover 

completely randomized designs, randomized complete block designs, balanced incomplete 

block designs, design for bioassays, split plot designs, cross-over designs and so on. For an 

excellent and elaborate discussions on non-parametric tests in the analysis of experimental 

data, one may refer to Siegel and Castellan Jr. (1988), Deshpande, Gore and Shanubhogue 

(1995), Sen (1996), and Hollander and Wolfe (1999). 
 

Kruskal-Wallis Test can be used for the analysis of data from completely randomized designs. 

Skillings and Mack Test helps in analyzing the data from a general block design. Friedman 

Test and Durbin Test are particular cases of this test. Friedman Test is used for the analysis of 

data from randomized complete block designs and Durbin test for the analysis of data from 

balanced incomplete block designs. 
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Some examples of testing the assumptions of normality and homogeneity of errors and 

remedial measures are discussed in the Appendix.  
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Appendix  
 

Example 1: Suppose an entomologist is interested in determining whether four different 

kinds of traps caught equivalent insects when applied to same field. Each of the traps is used 

six times on the field and resulting data (number of insects per hour) are as shown below 

alongwith mean, variance and range. 

 

Treatment Replication Mean Variance Range 

 I II III IV V VI 
iY  2

iS   

A 3 1 12 7 17 2 7 40.4 16 

B 9 29 21 24 28 45 31 138.4 36 

C 63 84 97 61 98 71 79 270.8 37 

D 172 118 109 172 143 168 147 798.4 63 

  

A scatter plot of mean and variance and mean versus range are given as follows: 

Both plots indicate that variances are heterogeneous and variance is proportional to mean. 

 

Obtain the residuals for testing the normality and homogeneity of error terms. The 

residuals obtained are given below: 

 

Treatment Replication Mean Variance 

 I II III IV V VI  2
iS  

A -1.00 0.75 10.00 -1.25 3.25 -11.75 0 50.35 

B -14.00 9.75 0.00 -3.25 -4.75 12.25 0 94.85 

C -13.00 11.75 23.00 -19.25 12.25 -14.75 0 314.85 

D 28.00 -22.25 -33.00 23.75 -10.75 14.25 0 650.20 
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Normality of error terms in SPSS: Analyze  Descriptive Statistics Explore (Enter the 

variable whose normality is to be tested in Dependent List)  Click on the option Plots  

Check the option Normality Plots with tests 

Shapiro-Wilk Test Kolmogrov-Smirnov Test 

Statistic 

(SW) 

p-value Statistic 

(KS) 

p-value 

0.980 0.882 0.110 0.200 

 

The errors were found to be normally distributed. Therefore, homogeneity of error variances 

was tested using Bartlett's test. It is described in the sequel. 

 

Pooled Variance    
5625.277
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Since 81.72
3,05.0  , therefore, we reject the null hypothesis and conclude that the variances 

are unequal.  

 

 The 
.i

2
i

Y

S
 are 5.77, 5.32, 3.43 and 5.43, indicating that variance is proportional to mean. 

Therefore, square root transformation should be used. After application of square root 

transformation, the residuals are 

 

Treatment Replication Variance 

 I II III IV V VI 2
iS  

A -0.03614 -0.92542 1.05800 0.20614 0.98287 -1.28544 0.928 

B -1.34939 0.87854 -0.40473 -0.12183 -0.42993 1.42735 0.999 

C -0.28226 0.78841 0.99143 -1.08068 0.30794 -0.72483 0.694 

D 1.66779 -0.74153 -1.64469 0.99637 -0.86087 0.58293 1.622 

 

Normality of error terms on the transformed data: 

Shapiro-Wilk Test Kolmogrov-Smirnov Test 

Statistic 

(SW) 

p-value Statistic 

(KS) 

p-value 

0.956 0.414 0.127 0.200 
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The errors remain normally distributed after transformation. The results of homogeneity of 

error variances using Bartlett's test are 

 

Bartlett's Test (normal distribution): Test statistic = 0.89, p-value = 0.828 

Hence, we conclude that the errors are normally distributed and have a constant variance after 

transformation.  
 

The results of analysis of variance with original and transformed data are given in the sequel. 

ANOVA: Original Data 

Source DF Seq SS Adj. SS Mean Square F (F-calc) p(Pr>F) 

Replication 5 689.0 689.0 137.8 0.37 0.86 

Treatment 3 70828.5 70828.5 23609.5 63.80 0.00 

Error 15 5551.0 5551.0 370.1   

Total 23 77068.5     
 

R-Square  Root MSE 

92.80%  19.2371 
 

Tukey Simultaneous Tests for All Pairwise Treatment Comparisons 

 1 2 3 4 

1 .    

2 0.3525 .   

3 0.0001 0.0013 .  

4 0.0000 0.0000 0.0001 . 
 

 

ANOVA: Transformed Data 

Source DF Seq SS Adj. SS Mean Square F (F-calc) p(Pr>F) 

Replication 5 5.055 5.055 1.011 0.71 0.622 

Treatment 3 326.603 326.603 108.868 76.98 0.000 

Error 15 21.214 21.214 1.414   

Total 23 352.872     
 

R-Square Root MSE 

93.99% 1.18922 
 

 

Tukey Simultaneous Tests for All Pairwise Treatment Comparisons 

 1 2 3 4 

1 .    

2 0.0091    

3 0.0000 0.0003   

4 0.0000 0.0000 0.0015 . 
 

With transformed data treatments 1 and 2 are significantly different whereas with original 

data, they were not. 
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Example 2: A varietal trial on Rapeseed-Mustard was conducted at Faizabad with 11 

varieties using a randomized complete block design with 3 replications. The experimental 

data (Yield in kg/ha ) obtained from the above experiment is  

    

Treatments  

 

Replications 

R1 R2 R3 

MCN-157 952.380 1058.200 1079.364 

MCN-158 846.560 634.920 687.830 

MCN-159 529.100 687.830 687.830 

MCN-160 1058.200 1005.290 952.380 

MCN-161 1111.110 888.888 846.560 

MCN-162 899.470 634.920 1005.290 

MCN-163 1058.200 1164.020 952.380 

MCN-164 687.830 740.740 529.100 

MCN-165 952.380 952.380 867.724 

MCN-166 1058.200 1058.200 529.100 

MCN-167 1269.840 1164.020 1216.930 

 

The analysis of variance of the original data is given as 
  

ANOVA: Original Data 

Sources DF SS MS F Prob. >F 

Replication 2 52534.9880     26267.4940      1.46   0.2563 

Treatment 10 967055.0471     96705.5047      5.37   0.0007 

Error 20 360218.589 18010.929   

Total 32 1379808.624    

 

R-Square CV RMSE Yld Mean 

0.738936 14.878 134.2048 902.035 
 

Normality of error terms was tested, the results are given as 

Shapiro-Wilk Test Kolmogrov-Smirnov Test 

Statistic 

(SW) 

p-value Statistic 

(KS) 

p-value 

0.9679 0.4249 0.1018 >0.1500 

Since the data is normal, therefore, Bartlett’s test is used for testing the homogeneity of error 

variances. The results are given as  

Bartlett’s Test 

Test Statistic : 20.177 

P-Value        : 0.0276 

The errors were found to be heterogeneous. 
 

Therefore, we can conclude that the data is heterogeneous and normal.  
 

Therefore, Box-Cox transformation was used as a remedial measure. In the sequel we 

describe the results of the Box-Cox transformation. 
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For this we transform the data by varying  from -10 to +10 with an increment of 0.01.  The 

error sum of squares are computed for each value of . The value of  with minimum error 

sum of squares is used for transformation given in (A).  The minimum value SSE is obtained 

for  = 2.38. Therefore, reciprocal transformation was used.  
 

The assumptions of normality and homogeneity of errors are again tested using the 

transformed data.  
 

Normality of error terms was tested, the results are given as 

Shapiro-Wilk Test Kolmogrov-Smirnov Test 

Statistic 

(SW) 

p-value Statistic 

(KS) 

p-value 

0.984 0.8885 0.0867 >0.1500 

 

Since the data is normal, therefore, Bartlett’s Test is used for testing the homogeneity of error 

variances. The results are given as  
 

Bartlett's Test (normal distribution) 

   Test Statistic  : 15.725 

P-Value         :  0.107757 
 

The transformed observations were found to be normal and homogeneous Therefore, 

ANOVA was performed on the transformed data. The results obtained are: 

ANOVA: Transformed Data 
Sources DF SS MS F Prob. >F 

Replication 2 3.865471E13 1.93273335E13 1.62 0.2238 

Treatment 10 7.8841391E14 7.8841391E13 6.59 0.0002 

Error 20 2.3934391E14 1.1967195E13 

 

  

Total 32 1.0664125E15    
 

R-Square CV RMSE Transformed Yld Mean 

0.7756 29.563 3459363 11701777 
 

We can see that there is no change in the results of significance of treatment and replication 

effects. However, the transformed data satisfied the assumptions of ANOVA. 
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An experiment is usually associated with a scientific method for testing certain phenomena. An 

experiment facilitates the study of such phenomena under controlled conditions and thus creating 

controlled condition is an essential component. Scientists in the biological fields who are 

involved in research constantly face problems associated with planning, designing and 

conducting experiments. Basic familiarity and understanding of statistical methods that deal with 

issues of concern would be helpful in many ways. Researchers who collect data and then look for 

a statistical technique that would provide valid results will find that there may not be solutions to 

the problem and that the problem could have been avoided first by a properly designed 

experiment. Obviously it is important to keep in mind that we cannot draw valid conclusions 

from poorly planned experiments. Second, the time and cost involved in many experiments are 

enormous and a poorly designed experiment increases such costs in time and resources. For 

example, an agronomist who carries out fertilizer experiment knows the time limitation of the 

experiment. He knows that when seeds are to be planted and harvested. The experimenter plot 

must include all components of a complete design. Otherwise what is omitted from the 

experiment will have to be carried out in subsequent trials in the next cropping season or next 

year. The additional time and expenditure could be minimized by a properly planned experiment 

that will produce valid results as efficiently as possible. Good experimental designs are products 

of the technical knowledge of one's field, an understanding of statistical techniques and skill in 

designing experiments. 

 

Any research endeavor may entail the phases of Conception, Design, Data collection, Analysis 

and Dissemination. Statistical methodologies can be used to conduct better scientific experiments 

if they are incorporated into entire scientific process, i.e., From inception of the problem to 

experimental design, data analysis and interpretation. When planning experiments we must keep 

in mind that large uncontrolled variations are common occurrences. Experiments are generally 

undertaken by researchers to compare effects of several conditions on some phenomena or in 

discovering an unknown effect of particular process. An experiment facilitates the study of such 

phenomena under controlled conditions. Therefore the creation of controlled condition is the 

most essential characteristic of experimentation. How we formulate our questions and 

hypotheses are critical to the experimental procedure that will follow. For example, a crop 

scientist who plants the same variety of a crop in a field may find variations in yield that are due 

to periodic variations across a field or to some other factors that the experimenter has no control 

over. The methodologies used in designing experiments will separate with confidence and 

accuracy a varietal difference of crops from the uncontrolled variations. 

 

The different concepts in planning of experiment can be well explained through chapati tasting 
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experiment. 

  

Consider an experiment to detect the taste difference in chapati made of wheat flour of c306 and 

pv 18 varieties. The null hypothesis we can assume here is that there is no taste difference in 

chapatis made of c306 or pv18 wheat flours. After the null hypothesis is set, we have to fix the 

level of significance at which we can operate. The pv18 is a much higher yielding variety than 

c306. Hence a false rejection may not help the country to grow more pv18 and the wheat 

production may decrease while a false acceptance may give more production of pv18 wheat and 

the consumption may be less or practically nil. Thus the false acceptance or false rejection are 

of practically equal consequence and we agree to choose the level of significance at α = 0.05. 

Now to execute the experiment, a subject is to be found with extrasensory powers who can 

detect the taste differences. The colours of c306 and pv18 are different and anyone, even 

without tasting the chapatis, can distinguish the chapatis of either kind by a mere glance. Thus 

the taster of the chapatis has to be blindfolded before the chapatis are given for tasting. 

Afterwards, the method is to be decided in which the experiment will be conducted. The 

experiment can be conducted in many ways and of them three methods are discussed here: 

 Give the taster equal number of chapatis of either kind informing the taster about it. 

 Give the taster pairs of chapatis of each kind informing the taster about it. 

 Give the taster chapatis of either kind without providing him with any information. Let us 

use 6 chapatis in each of these methods. 

 

Under first method of experimentation, if the null hypothesis is true, then the experimenter 

cannot distinguish the two kinds of chapaties and he will randomly select 3 chapatiS out of 6 

chapaties given to him, as made of pvl8 wheat. In that case, all correct guesses are made if 

selection exactly coincides with the exactly used wheat variety and the probability for such an 

occurrence is: 

   

  05.0
20

11
6
3


 

 

Under second method,the pv18 wheat variety chapaties are selected from each pair given if the 

null hypothesis is true. Furthermore, independent choices are made of pv18 variety chapaties 

from each pair. Thus the probability of making all correct guesses is 

 

1/(2)3 = 1/8 = 0.125. 

 

In third method the experimenter has to make the choice for each chapati and the situation is 

analogous at calling heads or tails in a coin tossing experiment. The probability of making all 

correct guesses would then be: 

1/26 = 1/64 = .016. 

 

If the experimenter makes all correct guesses in third method as its probability is smaller than the 

selected  = 0.05, we can reject the null hypothesis and conclude that the two wheat varieties 

give different tastes at chapaties. In other methods the probability of making all correct guesses 
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does not exceed  = 0.05 and hence with either method, we cannot   reject    the   null    

hypothesis    even   if   all   correct    guesses     are        made. 

However, if 8 chapaties are used by first method and if the taster guesses all of them, we can 

reject the null hypothesis, at 0.05 level of significance, as the probability of making all correct 

guesses would then be 

  56
11

8
3


 which is smaller than 0.05. 8 chapaties will not enable 

us to reject the null hypothesis even if all correct guesses are made by second method as the 

probability of making all correct guesses is 06.0
16

1

4

1
4









 it is easy to see that if 10 chapaties 

are given by second method and if all correct guesses are made, then we can reject the null 

hypothesis at 0.05 level of significance. Not to unduly influence the taster in making guesses, we 

should also present the chapaties in a random order rather than systematically presenting them 

for tasting. 

 

The above discussed chapati tasting experiment brings home the following salient features of 

experimentation: 

 

 All the extraneous variations in the data should be eliminated or controlled excepting the 

variations due to the treatments under study. One should not artificially provide 

circumstances for one treatment to show better results than others. 

 Far a given size of the experiment, though the experiment can be done in many ways, even 

the best results may not turn out to be significant with some designs, while some other 

design can detect the treatment differences. Thus there is an imperative need the choose the 

right type of design, before the commencement of the experiment, lest the results may be 

useless. 

 If for some specific reasons related to the nature .of the experiment, a particular method has 

to be used in experimentation, then adequate number of replications of each treatment have 

to be provided in order to get valid inferences.  

 The treatments have to be randomly allocated to the experimental units. 

 

The terminologies often used in planning and designing of experiments are listed below. 

 

Treatment 

Treatment refers to controllable quantitative or qualitative factors imposed at a certain level by 

the experimenter. For an agronomist several fertilizer concentrations applied to a particular crop 

or a variety of crop is a treatment. Similarly, an animal scientist looks upon several 

concentrations of a drug given to animal species as a treatment. In agribusiness we may look 

upon impact of advertising strategy on sales a treatment. To an agricultural engineer, different 

levels of irrigation may constitute a treatment. 

 

Experimental Unit 

An experimental unit is an entity that receives a treatment e.g., for an agronomist or horticulturist 

it may be a plot of a land or batch of seed, for an animal scientist it may be a group of pigs or 
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sheep, for a scientist engaged in forestry research it may be different tree species occurring in an 

area, and for an agricultural engineer it may be manufactured item. Thus, an experimental unit 

maybe looked upon as a small subdivision of the experimental material, which receives the 

treatment. 

 

Experimental Error 

Differences in yields arising out of experimental units treated alike are called Experimental 

Error. 

 

Controllable conditions in an experiment or experimental variable are terms as a factor. For 

example, a fertilizer, a new feed ration, and a fungicide are all considered as factors. Factors may 

be qualitative or quantitative and may take a finite number of values or type. Quantitative factors 

are those described by numerical values on some scale. The rates of application of fertilizer, the 

quantity of seed sown are examples of quantitative factors. Qualitative factors are those factors 

that can be distinguished from each other, but not on numerical scale e.g., type of protein in a 

diet, sex of an animal, genetic make up of plant etc. While choosing factors for any experiment 

researcher should ask the following questions, like What treatments in the experiment should be 

related directly to the objectives of the study? Does the experimental technique adopted require 

the use of additional factors? Can the experimental unit be divided naturally into groups such 

that the main treatment effects are different for the different groups? What additional factors 

should one include in the experiment to interact with the main factors and shed light on the 

factors of direct interest? How desirable is it to deliberately choose experimental units of 

different types? 

 

Basic Principles of Design of Experiments 

Given a set of treatments which can provide information regarding the objective of an 

experiment, a design for the experiment, defines the size and number of experimental units, the 

manner in which the treatments are allotted to the units and also appropriate type and grouping of 

the experimental units. These requirements of a design ensure validity, interpretability and 

accuracy of the results obtainable from an analysis of the observations. 

 

These purposes are served by the principles of:  

 Randomization 

 Replication 

 Local (Error) control 

 
Randomization 

After the treatments and the experimental units are decided the treatments are allotted to the 

experimental units at random to avoid any type of personal or subjective bias, which may be 

conscious or unconscious. This ensures validity of the results. It helps to have an objective 

comparison among the treatments. It also ensures independence of the observations, which is 

necessary for drawing valid inference from the observations by applying appropriate statistical 

techniques. 

 

Depending on the nature of the experiment and the experimental units, there are various 
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experimental designs and each design has its own way of randomization. Various speakers while 

discussing specific designs in the lectures to follow shall discuss the procedure of random 

allocation separately. 

 

Replication 

If a treatment is allotted to r experimental units in an experiment, it is said to be replicated r 

times. If in a design each of the treatments is replicated r times, the design is said to have r 

replications. Replication is necessary to 

 Provide an estimate of the error variance which is a function of the differences among 

observations from experimental units under identical treatments. 

 Increase the accuracy of estimates of the treatment effects. 

 

Though, more the number of replications the better it is, so far as precision of estimates is 

concerned, it cannot be increased infinitely as it increases the cost of experimentation. Moreover, 

due to limited availability of experimental resources too many replications cannot be taken. 

 

The number of replications is, therefore, decided keeping in view the permissible expenditure 

and the required degree of precision. Sensitivity of statistical methods for drawing inference also 

depends on the number of replications. Sometimes this criterion is used to decide the number of 

replications in specific experiments. 

 

Error variance provides a measure of precision of an experiment, the less the error variance the 

more precision. Once a measure of error variance is available for a set of experimental units, the 

number of replications needed for a desired level of sensitivity can be obtained as below. 

 

Given a set of treatments an experimenter may not be interested to know if two treatment differ 

in their effects by less than a certain quantity, say, d. In other words, he wants an experiment that 

should be able to differentiate two treatments when they differ by d or more. 

 

The significance of the difference between two treatments is tested by t-test where      

,
r/s2

yy
t

2

ji 
  

  

Here, ,y i  and jy  are the arithmetic means of two treatment effects each based on r replications, 

s2 is measure of error variation. 

 

Given a difference d, between two treatment effects such that any difference greater than d 

should be brought out as significant by using a design with r replications, the following equation 

provides a solution of r. 

,
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d
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r                         …(1) 

 

where 0t is the critical value of the t-distribution at the desired level of significance, that is, the 

value of t at 5 or 1 per cent level of significance read from the t-table. If s2 is known or based on 

a very large number of observations, made available from some pilot pre-experiment 

investigation, then t is taken as the normal variate. If s2 is estimated with n degree of freedom 

(d.f.) then t0 corresponds to n d.f. 

 

When the number of replication is r or more as obtained above, then all differences greater than d 

are expected to be brought out as significant by an experiment when it is conducted on a set of 

experimental units which has variability of the order of s2. For example, in an experiment on 

wheat crop conducted in a seed farm in Bhopal, to study the effect of application of nitrogen and 

phosphorous on yield a randomized block design with three replications was adopted. There 

were 11 treatments two of which were (i) 60 Kg/ha of nitrogen (ii) 120 Kg/ha of nitrogen. The 

average yield figures for these two application of the fertilizer were 1438 and 1592 Kg/ha 

respectively and it is required that differences of the order of 150 Kg/ha should be brought out 

significant. The error mean square (s2) was 12134.88. Assuming that the experimental error will 

be of the same order in future experiments and t0 is of the order of 2.00, which is likely as the 

error d.f. is likely to be more than 30 as there are 11 treatments; Substituting in (1), we get: 
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Thus, an experiment with 4 replications is likely to bring out differences of the order of 150 

Kg/ha as significant. 

 

Another criterion for determining r is to take a number of replications which ensures at least 10 

d.f. for the estimate of error variance in the analysis of variance of the design concerned since the 

sensitivity of the experiment will be very much low as the F test (which is used to draw inference 

in such experiments) is very much unstable below 10 d.f. 

 
Local Control 

The consideration in regard to the choice of number of replications ensure reduction of standard 

error of the estimates of the treatment effect because the standard error of the estimate of a 

treatment effect is rs /2
, but it cannot reduce the error variance itself. It is, however, possible 

to devise methods for reducing the error variance. Such measures are called error control or 

local control. One such measure is to make the experimental units homogenous. Another method 

is to form the units into several homogenous groups, usually called blocks, allowing variation 

between the groups. 

 

A considerable amount of research work has been done to divide the treatments into suitable 

groups of experimental units so that the treatment effect can be estimated more precisely 

Extensive use of combinatorial mathematics has been made for formation of such group 
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treatments. This grouping of experiment units into different groups has led to the development of 

various designs useful to the experimenter. We now briefly describe the various term used in 

designing of an experiment 

 

Blocking 

It refers to methodologies that form the units into homogeneous or pre-experimental subject-

similarity groups. It is a method to reduce the effect of variation in the experimental material on 

the Error of Treatment of Comparisons. For example, animal scientist may decide to group 

animals on age, sex, breed or some other factors that he may believe has an influence on 

characteristic being measured. Effective blocking removes considerable measure of variation 

nom the experimental error. The selection of source of variability to be used as basis of blocking, 

block size, block shape and orientation are crucial for blocking. The blocking factor is introduced 

in the experiment to increase the power of design to detect treatment effects. 

 

The importance of good designing is inseparable from good research (results). The following 

examples point out the necessity for a good design that will yield good research. First, a nutrition 

specialist in developing country is interested in determining whether mother's milk is better than 

powdered milk for children under age one. The nutritionist has compared the growth of children 

in village A, who are all on mother's milk against the children in village B, who use powdered 

milk. Obviously, such a comparison ignores the health of the mothers, the sanitary-conditions of 

the villages, and other factors that may have contributed to the differences observed without any 

connection to the advantages of mother's milk or the powdered milk on the children. A proper 

design would require that both mother's milk and the powdered milk be alternatively used in both 

villages, or some other methodology to make certain that the differences observed are 

attributable to the type of milk consumed and not to some uncontrollable factor. Second, a crop 

scientist who is comparing 2 varieties of maize, for instance, would not assign one variety to a 

location where such factors as sun, shade, unidirectional fertility gradient, and uneven 

distribution of water would either favor or handicap it over the other. If such a design were to be 

adopted, the researcher would have difficulty in determining whether the apparent difference in 

yield was due to variety differences or resulted from such factors as sun, shade, soil fertility of 

the field, or the distribution of water. These two examples illustrate the type of poorly designed 

experiments that are to be avoided. 

 

Analysis of Variance 

Analysis of Variance (ANOVA) is a technique of partitioning the overall variation in the 

responses into different assignable sources of variation, some of which are specifiable and others 

unknown. Total variance in the sample data is partitioned and is expressed as the sum of its non-

negative components is a measure of the variation due to some specific independent source or 

factor or cause. ANOVA consists in estimation of the amount of variation due to each of the 

independent factors (causes) separately and then comparing these estimates due to ascribable 

factors (causes) with the estimate due to chance factor  the latter being known as experimental 

error or simply the error. 

 

Total variation present in a set of observable quantities may, under certain circumstances, be 

partitioned into a number of components associated with the nature of classification of the data. 
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The systematic procedure for achieving this is called Analysis of Variance. The initial techniques 

of the analysis of variance were developed by the statistician and geneticist R. A. Fisher in the 

1920s and 1930s, and is sometimes known as Fisher's analysis of variance, due to the use of 

Fisher's F-distribution as part of the test of statistical significance. 

 

Thus, ANOVA is a statistical technique that can be used to evaluate whether there are 

differences between the average value, or mean, across several population groups. With this 

model, the response variable is continuous in nature, whereas the predictor variables are 

categorical. For example, in a clinical trial of hypertensive patients, ANOVA methods could be 

used to compare the effectiveness of three different drugs in lowering blood pressure. 

Alternatively, ANOVA could be used to determine whether infant birth weight is significantly 

different among mothers who smoked during pregnancy relative to those who did not. In a 

particular case, where two population means are being compared, ANOVA is equivalent to the 

independent two-sample t-test. 

The fixed-effects model of ANOVA applies to situations in which the experimenter applies 

several treatments to the subjects of the experiment to see if the response variable values change. 

This allows the experimenter to estimate the ranges of response variable values that the treatment 

would generate in the population as a whole. In it factors are fixed and are attributable to a finite 

set of levels of factor eg. Sex, year, variety, fertilizer etc.  

Consider for example a clinical trial where three drugs are administered on a group of men and 

women some of whom are married and some are unmarried.  The three classifications of sex, 

drug and marital status that identify the source of each datum are known as factors.  The 

individual classification of each factor is known as levels of the factors.  Thus, in this example 

there are 3 levels of factor drug, 2 levels of factor sex and 2 levels of marital status. Here all the 

effects are fixed.  Random effects models are used when the treatments are not fixed. This occurs 

when the various treatments (also known as factor levels) are sampled from a larger population. 

When factors are random, these are generally attributable to infinite set of levels of a factor of 

which a random sample are deemed to occur   eg. research stations, clinics in Delhi, sire, etc. 

Suppose new inject-able insulin is to be tested using 15 different clinics of Delhi state. It is 

reasonable to assume that these clinics are random sample from a population of clinics from 

Delhi. It describe the situations where both fixed and random effects are present. 

 

In any ANOVA model, general mean is always taken as fixed effect and error is always taken as 

random effect. Thus class of model can be classified on the basis of factors, other than these two 

factors. ANOVA can be viewed as a generalization of t-tests: a comparison of differences of 

means across more than two groups.  

The ANOVA is valid under certain assumptions. These assumptions are: 

 Samples have been drawn from the populations that are normally distributed. 

 Observations are independent and are distributed normally with mean zero and variance σ2. 

 Effects are additive in nature. 

 

The ANOVA is performed as one-way, two-way, three-way, etc. ANOVA when the number of 

factors is one, two or three respectively. In general if the number of factors is more, it is termed 

as multi-way ANOVA.   

 

http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Geneticist
http://en.wikipedia.org/wiki/Ronald_Fisher
http://en.wikipedia.org/wiki/F-distribution
http://en.wikipedia.org/wiki/Statistical_significance
http://en.wikipedia.org/wiki/Response_variable


Planning and Designing of Agricultual Experiments 

87 

 

Completely Randomized Design 

Designs are usually characterized by the nature of grouping of experimental units and the 

procedure of random allocation of treatments to the experimental units.  In a completely 

randomized design the units are taken in a single group.  As far as possible the units forming the 

group are homogeneous.  This is a design in which only randomization and replication are used.  

There is no use of local control here.  

 

Let there be v treatments in an experiment and n homogeneous experimental units.  Let the ith  

treatment be replicated ir times (i = 1,2,…, v) such that nr
v

1i

i 


. The treatments are allotted at 

random to the units. 

 

Normally the number of replications for different treatments should be equal as it ensures equal 

precision of estimates of the treatment effects.  The actual number of replications is, however, 

determined by the availability of experimental resources and the requirement of precision and 

sensitivity of comparisons.  If the experimental material for some treatments is available in 

limited quantities, the numbers of their replication are reduced.  If the estimates of certain 

treatment effects are required with more precision, the numbers of their replication are increased.   

 

Randomization 

There are several methods of random allocation of treatments to the experimental units.  The v 

treatments are first numbered in any order from 1 to v.  The n experimental units are also 

numbered suitably.  One of the methods uses the random number tables.  Any page of a random 

number table is taken.  If v is a one-digit number, then the table is consulted digit by digit.  If v is 

a two-digit number, then two-digit random numbers are consulted.  All numbers greater than v 

including zero are ignored. 

 

Let the first number chosen be 1n ; then the treatment numbered 1n is allotted to the first unit.  If 

the second number is 2n  which may or may not be equal to n1 then the treatment numbered 2n  

is allotted to the second unit.  This procedure is continued.  When the ith treatment number has 

occurred ir  times,  vi ,...,2,1  this treatment is ignored subsequently.  This process terminates 

when all the units are exhausted. 

 

One drawback of the above procedure is that sometimes a very large number of random numbers 

may have to be ignored because they are greater than v.  It may even happen that the random 

number table is exhausted before the allocation is complete.  To avoid this difficulty the 

following procedure is adopted.  We have described the procedure by taking v to be a two-digit 

number. 

 

Let P be the highest two-digit number divisible by v. Then all numbers greater than P and zero 

are ignored.  If a selected random number is less than v, then it is used as such.  If it is greater 

than or equal to v, then it is divided by v and the remainder is taken to the random number.  

When a number is completely divisible by v, then the random number is v.  If v is an n-digit 

number, then P is taken to be the highest n-digit number divisible by v.  The rest of the procedure 

is the same as above. 
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Analysis   

This design provides a one-way classified data according to levels of a single factor.  For its 

analysis the following model is taken: 

                       ,iijiij r1,jv;,1,i           ,ety     

where ijy is the random variable corresponding to the observation ijy obtained from the jth 

replicate of the ith treatment,  is the general mean, it is the fixed effect of the ith treatment and 

ije  is the error component which is a random variable assumed to be normally and independently 

distributed with zero means and a constant variance  2.   

 

Let  vi    Ty i

j

ij ,...,2,1  be the total of observations from ith treatment.  Let further 

.GT

i

i   Correction factor (C.F.)   = G2/n.  

Sum of squares due to treatments .F.C
r

Tv

1i i

2
i 



  

Total sum of squares  =    .F.Cy
v

1i

r

1j

2
ij

i


 

 

ANALYSIS OF VARIANCE  

Sources of 

variation 

Degrees of 

freedom (D.F.) 

Sum of squares 

(S.S.) 

Mean squares 

(M.S.) 

F 

Treatments v – 1 SST

.F.C
r

Tv

1i i

2
i 



 

 

MST = SST / (v - 1) 

 

MST/MSE 

Error n – v SSE = by 

subtraction 

MSE = 

SSE / (n - v) 

 

Total n – 1 .F.Cy

ij

2
ij     

 

The hypothesis that the treatments have equal effects is tested by F-test where F is the ratio MST 

/ MSE with (v - 1) and (n - v) degrees of freedom.   

 

3. Randomized Complete Block Design 

It has been seen that when the experimental units are homogeneous then a CRD should be 

adopted.  In any experiment, however, besides treatments the experimental material is a major 

source of variability in the data.  When experiments require a large number of experimental 

units, the experimental units may not be homogeneous, and in such situations CRD can not be 

recommended.   When the experimental units are heterogeneous, a part of the variability can be 

accounted for by grouping the experimental units in such a way that experimental units within 

each group are as homogeneous as possible.  The treatments are then allotted randomly to the 

experimental units within each group (or blocks). The principle of first forming homogeneous 
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groups of the experimental units and then allotting at random each treatment once in each group 

is known as local control.  This results in an increase in precision of estimates of the treatment 

contrasts, due to the fact that error variance that is a function of comparisons within blocks, is 

smaller because of homogeneous blocks.  This type of allocation makes it possible to eliminate 

from error variance a portion of variation attributable to block differences.  If, however, variation 

between the blocks is not significantly large, this type of grouping of the units does not lead to 

any advantage; rather some degrees of freedom of the error variance is lost without any 

consequent decrease in the error variance.  In such situations it is not desirable to adopt 

randomized complete block designs in preference to completely randomized designs. 

 

If the number of experimental units within each group is same as the number of treatments and if 

every treatment appears precisely once in each group then such an arrangement is called a 

randomized complete block design. 

 

Suppose the experimenter wants to study v treatments.  Each of the treatments is replicated r 

times (the number of blocks) in the design.  The total number of experimental units is, therefore, 

vr.  These units are arranged into r groups of size v each.  The error control measure in this 

design consists of making the units in each of these groups homogeneous.  

 

The number of blocks in the design is the same as the number of replications.  The v treatments 

are allotted at random to the v plots in each block.  This type of homogeneous grouping of the 

experimental units and the random allocation of the treatments separately in each block are the 

two main characteristic features of randomized block designs.  The availability of resources and 

considerations of cost and precision determine actual number of replications in the design.  

 

Analysis 
The data collected from experiments with randomized block designs form a two-way 

classification, that is, classified according to the levels of two factors, viz., blocks and treatments.  

There are vr cells in the two-way table with one observation in each cell.  The data are 

orthogonal and therefore the design is called an orthogonal design. We take the following model:  

 ,
r,...,2,1j

;v,...,2,1i
            ,ebty ijjiij 












   

where ijy  denotes the observation from ith treatment in jth block.  The fixed effects ji b,t,  

denote respectively the general mean, effect of the ith treatment and effect of the jth block. The 

random variable ije  is the error component associated with ijy .  These are assumed to be 

normally and independently distributed with zero means and a constant variance  2.   

 

Following the method of analysis of variance for finding sums of squares due to blocks, 

treatments and error for the two-way classification, the different sums of squares are obtained as 

follows: Let  v,...,2,1i  Ty i

j

ij   = total of observations from ith treatment and 
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   By

j

jij   r,,1j   = total of observations from jth block.  These are the marginal totals of 

the two-way data table.  Let further, .GBT

j

j

i

i   

Correction factor (C.F.) = G2/rv, Sum of squares due to treatments .F.C
r

T

i

2
i  , 

Sum of squares due to blocks .F.C
v

B

j

2
j
 , Total sum of squares  = .F.Cy

ij

2
ij   

ANALYSIS OF VARIANCE  

Sources of 

variation 

Degrees of 

freedom (D.F.) 

Sum of squares 

(S.S.) 

Mean squares 

(M.S.) 

F 

Blocks r - 1 

SSB  .F.C
v

B

j

2
j
  

 

MSB = SSB / (r - 1) 

 

MSB/MSE 

Treatments v - 1 
SST .F.C

r

T

i

2
i   

 

MST = SST / (v - 1) 

 

MST/MSE 

Error (r - 1)(v - 1) SSE = by subtraction MSE = 

SSE / (v - 1)(r - 1) 

 

Total vr - 1 .F.Cy

ij

2
ij     

 

The hypothesis that the treatments have equal effects is tested by F-test, where F is the ratio MST 

/ MSE with (v - 1) and (v - 1)(r - 1) degrees of freedom.  We may then be interested to either 

compare the treatments in pairs or evaluate special contrasts depending upon the objectives of 

the experiment.  This is done as follows:   

 

The critical difference for testing the significance of the difference of two treatment effects, say 

ji tt   is r/MSE2t.D.C 2/),1r)(1v(  , where 2/),1r)(1v(t   is the value of Student's t at 

the level of significance  and degree of freedom (v - 1)(r - 1).  If the difference of any two-

treatment means is greater than the C.D. value, the corresponding treatment effects are 

significantly different.  
 

 

4. Latin Square Design 

Latin square designs are normally used in experiments where it is required to remove the 

heterogeneity of experimental material in two directions.  These designs require that the number 

of replications equal the number of treatments or varieties.   
 

Definition 1.  A Latin square arrangement is an arrangement of v symbols in v2
 cells arranged in 

v rows and v columns, such that every symbol occurs precisely once in each row and precisely 

once in each column.  The term v is known as the order of the Latin square. 
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If the symbols are taken as A, B, C, D, a Latin square arrangement of order 4 is as follows: 

    A B C D 

    B C D A 

    C D A B 

    D A B C 

 

A Latin square is said to be in the standard form if the symbols in the first row and first column 

are in natural order, and it is said to be in the semi-standard form if the symbols of the first row 

are in natural order.  Some authors denote both of these concepts by the term standard form.  

However, there is a need to distinguish between these two concepts.  The standard form is used 

for randomizing the Latin-square designs, and the semi-standard form is needed for studying the 

properties of the orthogonal Latin squares. 
 

Definition 2.  If in two Latin squares of the same order, when superimposed on one another, 

every ordered pair of symbols occurs exactly once, the two Latin squares are said to be 

orthogonal.  If the symbols of one Latin square are denoted by Latin letters and the symbols of 

the other are denoted by Greek letters, the pair of orthogonal Latin squares is also called a 

graeco-latin square. 
 

Definition 3.  If in a set of Latin squares every pair is orthogonal, the set is called a set of 

mutually orthogonal latin squares (MOLS).  It is also called a hypergraeco latin square. 
 

The following is an example of graeco latin square:  

 

         

ABCD

BADC

CDAB

DCBA

                       









                         









ABCD

BADC

CDAB

DCBA

 

                                                  

We can verify that in the above arrangement every pair of ordered Latin and Greek symbols 

occurs exactly once, and hence the two latin squares under consideration constitute a graecolatin 

square. 

 

It is well known that the maximum number of MOLS possible of order v is v - 1.  A set of v - 1 

MOLS is known as a complete set of MOLS.  Complete sets of MOLS of order v exist when v is 

a prime or prime power.  

 

Randomization 

According to the definition of a Latin square design, treatments can be allocated to the v2 

experimental units (may be animal or plots) in a number of ways.  There are, therefore, a number 

of Latin squares of a given order.  The purpose of randomization is to select one of these squares 

at random.  The following is one of the methods of random selection of Latin squares. 

Let a v  v Latin square arrangement be first written by denoting treatments by Latin letters A, B, 

C, etc. or by numbers 1, 2, 3, etc.  Such arrangements are readily available in the Tables for 

Statisticians and Biometricians  (Fisher and Yates, 1974).  One of these squares of any order 

can be written systematically as shown below for a 55 Latin square: 
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DCBAE

CBAED

BAEDC

AEDCB

EDCBA

 

 

For the purpose of randomization rows and columns of the Latin square are rearranged 

randomly.  There is no randomization possible within the rows and/or columns.  For example, 

the following is a row randomized square of the above 55 Latin square; 

                                          

BAEDC

CBAED

DCBAE

AEDCB

EDCBA

 

Next, the columns of the above row randomized square have been rearranged randomly to give 

the following random square: 

                                           

ACEDB

BDAEC

CEBAD

EBDCA

DACBE

 

As a result of row and column randomization, but not the randomization of the individual units, 

the whole arrangement remains a Latin square. 

Analysis of Latin Square Designs 

In Latin square designs there are three factors.  These are the factors P, Q, and treatments.  The 

data collected from this design are, therefore, analyzed as a three-way classified data.  Actually, 

there should have been 3v  observations as there are three factors each at v levels.  But because of 

the particular allocation of treatments to the cells, there is only one observation per cell instead 

of v in the usual three way classified orthogonal data.  As a result we can obtain only the sums of 

squares due to each of the three factors and error sum of squares.  None of the interaction sums 

of squares of the factors can be obtained.  Accordingly, we take the model 

 ijssjiijs etcrY     

 

where ijsy  denotes the observation in the ith row, jth column and under the sth treatment;  

 v,...,2,1s,j,it,c,r, sji   are fixed effects denoting in order the general mean, the row, the 

column and the treatment effects.  The ijse is the error component, assumed to be independently 

and normally distributed with zero mean and a constant variance, 2 . 
 

The analysis is conducted by following a similar procedure as described for the analysis of two-

way classified data.  The different sums of squares are obtained as below:  Let the data be 
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arranged first in a row  column table such that ijy denotes the observation of (i,  j)th cell of 

table. 
 

Let  ,v1,2,...,i total row iyR

j

th
iji   ,v1,2,...,j total column jyC th

i

ijj   sT  

sum of those observations which come from sth treatment (s= 1,2,…,v),        

.total grandRG

i

i   Correction factor, C.F.= .
v

G

2

2

 Treatment sum of squares = 

.F.C
v

T

s

2
s  , Row sum of squares = .F.C

v

R

i

2
i  ,   Column sum of squares = .F.C

v

C

j

2
j
  

 

Analysis of Variance of v  v Latin Square Design 

Sources of  Variation D.F. S.S. M.S. F 

Rows v -1 
.F.C

v

R

i

2
i   

  

Columns v - 1 

.F.C
v

C

j

2
j
  

  

Treatments v - 1 
.F.C

v

T

s

2
s   

2
ts  2

e
2
t s/s  

Error (v - 1)(v - 2) By subtraction 2
es   

Total v2-1 .F.Cy

ij

2
ij     

The hypothesis of equal treatment effects is tested by F-test, where F is the ratio of treatment 

mean squares to error mean squares.  If F is not significant, treatment effects do not differ 

significantly among themselves.  If F is significant, further studies to test the significance of any 

treatment contrast can be made in exactly the same way as discussed for randomized block 

designs. 

 

SAS Code 

Analysis of data obtained from experiment conducted under CRD setup 

 

data crd;  

input treatment yield;  

cards;  

1 850.5  

1 453.6  

1 878.85  

1 623.7  

1 510.3  
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1 765.45  

1 680.4  

1 595.35  

1 538.65  

1 850.5  

1 850.5  

1 793.8  

1 1020.6  

1 708.75  

1 652.05  

1 623.7  

1 396.9  

1 822.15  

1 680.4  

1 652.05  

1 538.65  

1 850.5  

1 680.4  

1 .  

1 .  

2 510.3  

2 963.9  

2 652.05  

2 1020.6  

2 878.85  

2 567  

2 680.4  

2 538.65  

2 567  

2 510.3  

2 425.25  

2 567  

2 623.7  

2 538.65  

2 737.1  

2 453.6  

2 481.95  

2 368.55  

2 567  

2 595.35  

2 567  

2 595.35  

2 .  

2 .  

2 .  

3 992.25  
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3 850.5  

3 1474.2  

3 510.3  

3 850.5  

3 793.8  

3 453.6  

3 935.55  

3 1190.7  

3 481.95  

3 623.7  

3 878.85  

3 1077.3  

3 850.5  

3 680.4  

3 737.1  

3 737.1  

3 708.75  

3 708.75  

3 652.05  

3 567  

3 453.6  

3 652.05  

3 567  

3 .  

;  

   

proc glm;  

class treatment;  

model yield = treatment;  

means  treatment;  

means treatment/lsd;   

run; 

 

Analysis of data obtained from experiment conducted under RBD setup 

 

data rbd;  

input block  treatment yield;  

cards;  

1 1 6.9 

1 2 6.48 

1 3 6.52 

1 4 6.9 

1 5 6 

1 6 7.9 

2 1 4.6 

2 2 5.57 
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2 3 7.6 

2 4 6.65 

2 5 6.18 

2 6 7.57 

3 1 4.4 

3 2 4.28 

3 3 5.3 

3 4 6.75 

3 5 5.5 

3 6 6.8 

4 1 4.81 

4 2 4.45 

4 3 5.3 

4 4 7.75 

4 5 5.5 

4 6 6.62 

;  

proc glm;  

class  block treatment;  

model yield = block treatment;  

means  treatment;  

means treatment/tukey;   

run; 

 

 

 

Analysis of data obtained from experiment conducted under LSD setup 

 

data lsd;  

input row column trt yld;  

cards;  

1 1 3 3.1 

1 2 6 5.95 

1 3 1 1.75 

1 4 5 6.4 

1 5 2 3.85 

1 6 4 5.3 

2 1 2 4.8 

2 2 1 2.7 

2 3 3 3.3 

2 4 6 5.95 

2 5 4 3.7 

2 6 5 5.4 

3 1 1 3 

3 2 2 2.95 

3 3 5 6.7 
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3 4 4 5.95 

3 5 6 7.75 

3 6 3 7.1 

4 1 5 6.4 

4 2 4 5.8 

4 3 2 3.8 

4 4 3 6.55 

4 5 1 4.8 

4 6 6 9.4 

5 1 6 5.2 

5 2 3 4.85 

5 3 4 6.6 

5 4 2 4.6 

5 5 5 7 

5 6 1 5 

6 1 4 4.25 

6 2 5 6.65 

6 3 6 9.3 

6 4 1 4.95 

6 5 3 9.3 

6 6 2 8.4 

;  

proc glm;  

class  blk trt;  

model yld = blk trt;  

means  trt;  

means trt/tukey;   

run; 
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1.   Introduction 

Incomplete block designs are desirable when number of treatments to be tested is large and / 

or complete blocks are unavailable or inappropriate. These designs were introduced by Yates 

in order to eliminate heterogeneity to a greater extent as compared to a complete block design, 

when the number of treatments is large. The precision of the estimate of a treatment effect 

depends on the number of replications of the treatment - the larger the number of replications, 

the more is the precision. Similar is the case for the precision of estimate of the difference 

between two treatment effects. If a pair of treatment occurs together more number of times in 

the design, the difference between these two treatment effects can be estimated with more 

precision. To ensure equal or nearly equal precision of comparisons of different pairs of 

treatment effects, the treatments are so allocated to the experimental units in different blocks 

of equal sizes such that each treatment occurs at most once in a block and it has an equal 

number of replications and each pair of treatments has the same or nearly the same number of 

replications.  When the number of replications of all pairs of treatments in a design is the 

same, then we have an important class of designs called Balanced Incomplete Block (BIB) 

designs and when there are unequal number of replications for different pairs of treatments, 

then the designs are called as Partially Balanced Incomplete Block (PBIB) designs. Another 

important class of incomplete block designs is lattice designs. Some of these are Balanced 

Incomplete Block (BIB) designs while others are Partially Balanced Incomplete Block (PBIB) 

designs. 

 

2.   Balanced Incomplete Block (BIB) Designs 

A BIB design is an arrangement of v treatments in b blocks each of size k (<v) such that   

(i) Each treatment occurs at most once in a block 

(ii) Each treatment occurs in exactly r blocks 

(iii) Each pair of treatments occurs together in exactly  blocks. 

 

Example 2.1:  A BIB design for v = b = 5, r = k = 4 and  = 3 in the following: 
 

Blocks 

1 (1,2,3,4) 

2 (1,2,3,5) 

3 (1,2,4,5) 

4 (1,3,4,5) 

5 (2,3,4,5) 

 

The symbols v, b, r, k,  are called the parameters of the design.  These parameters satisfy the 

relations 

vr = bk            …(2.1) 

and (v-1) = r(k-1)          …(2.2) 

A BIB design cannot exist unless (2.1) and (2.2) are satisfied. For instance, no design exists 

for v = b = 6 and r = k = 3 since, from (2.2) =6/5 is not an integer.  However, these 

http://www.iasri.res.in/Lattic_designs/bib.html
http://www.iasri.res.in/Lattic_designs/bib.html
http://www.iasri.res.in/Lattic_designs/pbib.html
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conditions are not sufficient for the existence of a BIB design. Even if both (2.1) and (2.2) are 

satisfied, it does not follow that such a design exists. For example, no BIB design exits for v = 

15, b = 21, r = 7, k = 5, and  = 2 even though both conditions are satisfied. In search of a 

criterion for the availability of a BIB design, Fisher proved that no design with b<v is 

possible. 

 

Construction of BIB Designs 

There is no single method of constructing all BIB designs. Solutions of many designs are still 

unknown.  We describe below a few well known series of BIB designs. 

 

2.1   Unreduced BIB Designs 

These designs are obtained by taking all combinations of the v treatments k at a time.  

Therefore, the parameters of all unreduced BIB designs are: 
 

v, k, b = 2-k
2-v

1-k
1-v

k
v C =  ,C =r  ,C        

 

The BIB design for v = 5 treatments given in the previous section is an example of an 

unreduced BIB design in blocks of size 4.  

 

Example 2.1: Let v = 5, k = 3, then b = 5C3 = 10, r = 4C2 = 6 and  = 3C1. The 10 blocks are: 

Blocks 

1 (1,2,3 )    

2 (1,2,4) 

3 (1,2,5) 

4 (1,3,4)     

5 (1,3,5) 

6 (1,4,5) 

7 (2,3,4) 

8 (2,3,5) 

9 (2,4,5) 

10 (3,4,5) 

 

These unreduced designs usually require a large number of blocks and replications so that the 

resulting designs will often be too large for practical purposes. 

 

2.2   BIB Designs using MOLS  

Before we describe the method, we explain the concept of mutually orthogonal Latin squares 

(MOLS) which will be used in the construction of BIB designs. 

A Latin square of order s is an arrangement of s symbols in an s  s array such that each 

symbol occurs once in each row and once in each column of the array. For example, the 

following are 4  4 Latin squares of order 4 in symbols A, B, C, and D: 
 

A  B  C  D       A  B  C  D      A  B  C  D 

B  A  D  C      C  D  A  B      D  C  B  A 

C  D  A  B      D  C  B  A      B  A  D  C 

D  C  B  A      B  A  D  C     C  D  A  B 

Two Latin squares are pairwise orthogonal if, when one square is superimposed on the other, 

each symbol of one Latin square occurs once with each symbol of the other square.  Three or 
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more squares are mutually orthogonal if they are pair-wise orthogonal. The three 4  4 Latin 

squares above are mutually orthogonal. 

 

A complete set of s-1 mutually orthogonal Latin squares is known to exist for any s = pn, 

where p is a prime number. Tables can be found in Fisher and Yates (1963). Now we describe 

the methods of constructing BIB designs using MOLS. 

 

Suppose v= s2 treatments are set out in an s  s array.  A group of s blocks each of size s is 

obtained by letting the rows of the array represent blocks. Another group of s blocks is given 

by taking the columns of the array as blocks. Now suppose one of the orthogonal Latin 

squares is superimposed on to the array of treatments. A further group of s blocks is obtained 

if all treatments common to a particular symbol in the square are placed in a block. Each of 

the s-1 orthogonal squares produces a set of s blocks in this manner. The resulting design is a 

BIB design with parameters v = s2, b = s2 + s, k = s, r = s + 1,  = 1. 

 

Example 2.2:  For v = 32 = 9 treatments a 3  3 array and a complete set of mutually 

orthogonal Latin squares of order 3  3 are : 
 

1  2  3      A  B  C      A  B  C 

4  5  6      C  A  B      B  C  A 

7  8  9      B  C  A      C  A  B 
 

Four groups of 3 blocks are obtained from the rows, columns and the symbols of the two 

squares, as follows: 
 

Blocks 

 (1, 2, 3)  (1, 5, 9) 

Rows (4, 5, 6) First square (2, 6, 7) 

 (7, 8, 9)  (3, 4, 8) 
    

 (1, 4, 7)  (1, 6, 8) 

Columns (2, 5, 8) Second square (2, 4, 9) 

 (3, 6, 9)  (3, 5, 7) 

 

It can be checked that this is a BIB design with parameters v = 9, b = 12, r = 4, k = 3, and  = 

1. 

 

2.3   Randomization Procedure 

(i)  Allot the treatment symbols (1,2,...,v) to the v treatments at random. 

(ii) Allot the groups of k treatments to the b blocks at random. 

(iii) Randomize the positions of the treatment numbers within each block. 

 

2.4   Statistical Analysis 

Consider the following model: 
 

Observation = General mean + treatment effect + block effect + random error. 
 

Random errors are assumed to be independently and identically distributed normally with 

mean zero and constant variance 2. On minimising the error sum of squares with respect to 
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the parameters, we get a set of normal equations which can be solved to get the estimates of 

different contrasts of various treatment and block effects. 

 

Now we compute  
 

  G = Grand total of observations  

 y = grand mean = G/n, where n= vr = bk = total number of observations 

 Ti = Sum of obervations for treatment i, (i=1,2,..., v) 

 Bj = Sum of observations in block j, (j=1,2,..., b) 

 CF= G2/ n, 

 Qi = adjusted ith treatment total 

      = Ti - (Sum of block totals in which treatment i occurs) / Block size (k) 

 

A solution for the ith treatment effect is, 
 

 ̂   = (k Qi)  / (   v)  (i = 1,2, ..., v) 
 

Adjusted treatment mean for treatment i= ith treatment effects ( iτ̂ ) + grand mean ( y ). 
 

Various sums of squares can be obtained as follows: 
 

(i) Total Sum of Squares (TSS) =  (observations)2 - CF 

(ii) Treatment  Sum of Squares unadjusted  (SSTu) = [ Ti
2 ] /r - CF 

(iii)  Block Sum of Squares unadjusted (SSBU) =  [ Bj
2 ]  / k - CF 

(iv)  Treatments Sum of Squares adjusted (SSTA) =  î  Qi 

(v) Error SS  (SSE)  = TSS  - SSBU  - SSTA 

(vi) Blocks sum of squares adjusted (SSBA) = SSTA + SSBU - SSTU 

 

The analysis of variance for a BIB design is given below: 

 

Table 2.1: ANOVA for a BIB (v, b, r, k, ) Design 
 

Source DF SS MS F 

Treatment (unadj.) v-1 SSTu   

Blocks (unadjusted) b-1 SSBu   

Treatments (adjusted) v-1 SSTA MST MST/MSE 

Blocks (adjusted) b-1 SSBA MSB MSB/MSE 

Error n-b-v+1 SSE MSE  

Total  n-1 TSS   

 

Note:  MST = SSTA / (v-1),  MSB = SSBA / (b-1) and MSE  = SSE  / (n -b- v + 1) 

Coefficient of Variation = ( MSE / y )  100 

 

Standard error of difference between two adjusted treatment means =   2/1
v)(MSE/ k 2  . 

 C.D.  =  t0.05    2/1
v)(MSE/ k 2   

 

3.   Partially Balanced Incomplete Block (PBIB) Designs 
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BIB designs may not fit well to many experimental situations as these designs may not be 

available for all numbers of treatments and block sizes or may require a large number of 

replications. To overcome these difficulties PBIB designs were introduced. In these designs 

the variance of every estimated elementary contrast among treatment effects is not the same. 

The definition of PBIB designs is based on the association scheme. 

 

Association Scheme   

Given v treatment symbols 1,2,..,v, a relation satisfying the following conditions is called an 

m-class association scheme (m 2): 

(i)  Any two symbols are either 1st, 2nd,..., or mth associates; the relation of association being 

symmetric, i.e., if the symbol  is the ith associate of , then  is the ith associate of . 

(ii)  Each symbol  has ni i
th associates, the number ni being independent of , 

(iii) If any two symbols  and  are ith associates, then the number of symbols that are jth 

associates of  and kth associate of  is pi
jk and is independent of the pair of ith associates  

 and . 
 

The numbers v, ni and pi
jk (i,j,k = 1,2,...,m) are called the parameters of the association 

scheme and satisfy the following relations: 

1vn
m

1i

i 


  

1np j

m

1k

i
jk 



,   if i = j                     

= nj ,    if  i j        
  

nip
i
jk  =  njp

j
ik          

 

Example 3.1: Consider v=12 treatments denoted by numbers 1 to 12.  Form 3 groups of 4 

symbols each as follows: (1,2,3,4), (5,6,7,8), (9,10,11,12). We now define any two treatments 

as first associates if they belong to the same group, and second associates if they belong to the 

different groups. Here, n1 = 3, n2 = 8. 

  

Definition: Given an association scheme with m classes (m 2) we have a PBIB design with 

m associate classes based on the association scheme, if the v treatment symbols can be 

arranged into b blocks, such that 

(i)   Every symbol occurs at most once in a block. 

(ii)  Every symbol occurs in exactly r blocks. 

(iii) If two symbols are ith associates, then they occur together in i blocks, the number i 

being independent of the particular pair of ith associates  and . 

 

The numbers v, b, r, k, i (i =1,2,...,m) are called the parameters of the design. It can be easily 

seen that 

 vr = bk  and )1k(rn i

m

1i

i 


.       

It may be mentioned that as in the case of BIB designs, the complementary design of a PBIB 

with parameters v,b,r,k,i is also a PBIB design having the same association scheme with the 

parameters v*=v, b*=b, r*=b-r, k*=v-k, i
*=b-2r+i. 
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PBIB designs can be broadly classified into (i) two-associate class PBIB designs (ii) three-

associate class PBIB designs and (iii) higher associate class PBIB designs. Two-class 

association schemes and the two-associate PBIB designs have been extensively studied in the 

literature and are simple to use. As an illustration, we describe Group Divisible (GD) 

association scheme and the designs based on it. 

 

3.1   GD Association Scheme  

Let v = mn symbols be arranged into m groups of n symbols each. A pair of symbols 

belonging to the same group is first associates [n1 = n-1] and a pair of symbols belonging to 

different groups is second associates [n2 = n(m-1)]. A PBIB (2) design based on a GD scheme 

is called a GD design.  

 

Method of Construction of Some GD Designs 

Let D be a BIB design with parameters v = m, b, r, k, . Obtain a design D* from D by 

replacing the ith treatment (i=1,2,...,v) in D by n new treatment symbols i1,i2,...,in.  D* is a 

group divisible design with the following parameters v*= mn, b*= b, r*= r, k*= nk, m, n, 1 =r , 

2=. 
 

Example 3.1: Consider the following BIB design with parameters (4, 4, 3, 3, 2): 
 

(1, 2, 3) 

(1, 2, 4) 

(1, 3, 4) 

(2, 3, 4) 
 

 

Replacing 1 by a, b; 2 by c, d; 3 by e, f and 4 by g, h, the following GD design with 

parameters v = 8, b = 4, r = 3, k = 6, 1 =3 , 2 = 2. is obtained: 
 

(a, b, c, d, e, f) 

(a, b, c, d, g, h) 

(a, b, e, f, g, h) 

(c, d, e, f, g, h) 

 

3.2 Triangular association scheme and Design 

3.2.1 Association scheme: Let there be n(n-1)/2 treatments  arranged in a square array of size 

n such that the positions of the principal diagonal of the array are left blank, the n(n-1)/2 

positions above the principal diagonal are filled up by the v treatment symbols and the 

positions below the principal diagonal are filled up by the v symbols in such a manner that the 

resultant arrangement is symmetrical  about the principal diagonal.  

Two treatments are first associates if they belong to same row or same column of the array 

and second associates, otherwise. 

Triangular scheme exists when n≥5. 

v=n(n-1)/2, n≥5, n1=2(n-2),  n2=(n-2)(n-3)/2 

 



Incomplete Block Designs 

 
104 

1

(n-2)     (n-3)
P   

(n-3)     [(n-3)(n-4)]/2

 
  

 
  2

4                  2(n-4)
P   

2(n-4)     [(n-4)(n-5)]/2

 
  

 
 

 

Example 3.2.1: For n=5 

 

 

 

 

 

 

 

 

Table 2.2 shows the various associates of all the treatments. 

Table 2.2 

Treatment 
1st Associates 2nd Associates 

1 2, 3,4,5, 6,7 8,9,10,  

2 1,3,4,5, 8, 9 6,7, 10  

3 1, 2,4, 6,8,10 5,7, 9 

4 1,2,3,7,9,10, 5,6,8 

5 1,2, 6,7, 8, 9 3,4,10 

6 1,3,5,7, 8,10 2,4,9 

7 1,4,5, 6, 9,10, 2,3,8 

8 2,3,5, 6, 9,10 1,4,7 

9 2,4,5,7, 8,10 1,3,6 

10 3,4,6,7,8,9 1,2,5 

 

3.2.2 Method of construction of Triangular designs: A two class association scheme is 

called triangular design if it is based on triangular association scheme. In a triangular 

association scheme, if we take each row as a block then the resultant design is triangular 

design with parameters v = n (n-1)/2, b=n, r=2, k=n-1, 1=1, 2= 0.  

Example 3.2.2: Suppose n=5, giving rise to v=10 treatments as follows: 

 

* 1 2 3 4 

1 * 5 6 7 

2 5 * 8 9 

3 6 8 * 10 

4 7 9 10 * 

 

Taking each row as block, the following triangular design is obtained:  

 

1 2 3 4 

1 5 6 7 

2 5 8 9 

3 6 8 10 

* 1 2 3 4 

1 * 5 6 7 

2 5 * 8 9 

3 6 8 * 10 

4 7 9 10 * 
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4 7 9 10 

 

Here, v = 10, b=5, r=2, k=4, 1=1, 2= 0.  

 

Analysis of data obtained from experiment conducted under BIBD setup 

 

data bibd;  

input blk trt yld;  

cards;  

1 1 77 

1 2 65 

1 3 75 

2 7 47 

2 9 61 

2 8 60 

3 6 54 

3 4 60 

3 5 65 

4 1 70 

4 7 62 

4 4 62 

5 8 72 

5 5 55 

5 2 55 

6 3 50 

6 6 40 

6 9 60 

7 1 63 

7 8 67 

7 6 54 

8 4 62 

8 2 53 

8 9 57 

9 3 68 

9 5 67 

9 7 66 

10 1 69 

10 9 62 

10 5 52 

11 2 61 

11 6 63 

11 7 79 

12 8 65 

12 3 65 

12 4 38 

;  

proc glm;  

class  blk trt;  
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model yld = blk trt/ss1; /*treatment effects adjusted for block effects*/ 

means  trt;  

lsmeans trt/tukey;   

run; 

 

proc glm;  

class  blk trt;  

model yld = trt blk /ss1; /* block effects adjusted for treatment effects*/ 

means  trt;  

lsmeans trt/tukey;   

run; 

 

Analysis of data obtained from experiment conducted under PBIBD setup 

 

Go to the website http://www.iasri.res.in/WebAnalysis 
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Introduction 

The meaning of ANVOVA is Analysis of Covariance. It is a general linear model with one 

continuous outcome variable (quantitative) and one or more factor variables (qualitative). 

ANCOVA is a merger of ANOVA and regression for continuous variables. ANCOVA tests 

whether certain factors have an effect on the outcome variable after removing the variance 

for which quantitative predictors (covariates) account. The inclusion of covariates can 

increase statistical power because it accounts for some of the variability. 

 

It is well known that in designed experiments the ability to detect existing differences 

among treatments increases as the size of the experimental error decreases, a good 

experiment attempts to incorporate all possible means of minimizing the experimental error. 

Besides proper experimentation, a proper data analysis also helps in controlling 

experimental error. In situations where blocking alone may not be able to achieve adequate 

control of experimental error, proper choice of data analysis may help a great deal. By 

measuring one or more covariates - the characters whose functional relationships to the 

character of primary interest are known - the Analysis of Covariance (ANCOVA) can 

reduce the variability among experimental units by adjusting their values to a common value 

of the covariates. For example, in an animal feeding trial, the initial body weight of the 

animals usually differs. Using this initial body weight as a covariate, the final weights 

recorded after the animals have been subjected to various physiological feeds (treatments) 

can be adjusted to the values that would have been obtained had there been no variation in 

the initial body weights of the animals at the start of the experiment. An another example, in 

a field experiment where rodents have (partially) damaged some of the plots, covariance 

analysis with rodent damage as a covariate could be useful in adjusting plot yields to the 

levels that they should have been had there been no rodent damage in any plot. 

 

 

ANCOVA requires measurement of the character of primary interest plus the measurement 

of one or more variables known as covariates. It also requires that the functional relationship 

of the covariates with the character of primary interest is known beforehand. Generally a 

linear relationship is assumed, though other type of relationships could also be assumed. 

 

Consider the case of a variety trial in which weed incidence is used as a covariate. With a 

known functional relationship between weed incidence and grain yield, the character of 

primary interest, the covariance analysis can adjust grain yield in each plot to a common 

level of weed incidence. With this adjustment, the variation in yield due to weed incidence is 

quantified and effectively separated from that due to varietal difference. 

 

ANCOVA can be applied to any number of covariates and to any type of functional 

relationship between variables viz. quadratic, inverse polynomial, etc. Here we illustrate the 

use of covariance analysis with the help of a single covariate that is linearly related with the 

character of primary interest. It is expected that this simplification shall not unduly reduce 

http://www.answers.com/topic/general-linear-model
http://www.answers.com/topic/analysis-of-variance
http://www.answers.com/topic/regression-analysis
http://www.answers.com/topic/covariate
http://www.answers.com/topic/statistical-power
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the applicability of the technique, as a single covariate that is linearly related with the 

primary variable is adequate for most of the experimental situations in agricultural research. 

 

Uses of Covariance Analysis in Agricultural Research 

There are several important uses of covariance analysis in agricultural research. Some of the 

most important ones are: 

1. To control experimental error and to adjust treatment means. 

2. To aid in the interpretation of experimental results. 

3. To estimate missing data. 

 

Error Control and Adjustment of Treatment Means 
It is now well realized that the size of experimental error is closely related to the variability 

between experimental units. It is also known that proper blocking can reduce experimental 

error by maximizing the differences between the blocks and thus minimizing differences 

within blocks. Blocking, however, can not cope with certain types of variability such as 

spotty soil heterogeneity and unpredictable insect incidence. In both instances, heterogeneity 

between experimental plots does not follow a definite pattern, which causes difficulty in 

getting maximum differences between blocks. Indeed, blocking is ineffective in the case of 

nonuniform insect incidences because blocking must be done before the incidence occurs. 

Furthermore, even though it is true that a researcher may have some information on the 

probable path or direction of insect movement, unless the direction of insect movement 

coincides with the soil fertility gradient, the choice of whether soil heterogeneity or insect 

incidence should be the criterion for blocking is difficult. The choice is especially difficult if 

both sources of variation have about the same importance. 

 

Use of covariance analysis should be considered in experiments in which blocking couldn't 

adequately reduce the experimental error. By measuring an additional variable (e.g., 

covariate X) that is known to be linearly related to the primary variable Y, the source of 

variation associated with the covariate can be deducted from experimental error.  This 

adjusts the primary variable Y linearly upward or downward, depending on the relative size 

of its respective covariate. The adjustment accomplishes two important improvements: 

 

1. The treatment mean is adjusted to a value that it would have had; had there been no 

differences in the values of the covariate. 

2. The experimental error is reduced and the precision for comparing treatment means is 

increased. 

 

Although blocking and covariance techniques are both used to reduce experimental error, 

the differences between the two techniques are such that they are usually not 

interchangeable. The ANCOVA can be used only when the covariate representing the 

heterogeneity among the experimental units can be measured quantitatively. However, that 

is not a necessary condition for blocking. In addition, because blocking is done before the 

start of the experiment, it can be used only to cope with sources of variation that are known 

or predictable. ANCOVA, on the other hand, can take care of unexpected sources of 

variation that occur during the experiment. Thus, ANCOVA is useful, as a supplementary 

procedure to take care of sources of variation that cannot be accounted for by blocking.   
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When covariance analysis is used for error control and adjustment of treatment means, the 

covariate must not be affected by the treatments being tested. Otherwise, the adjustment 

removes both the variation due to experimental error and that due to treatment effects. A 

good example of covariates that are free of treatment effects are those that are measured 

before the treatments are applied, such as soil analysis and residual effects of treatments 

applied in the past experiments. In other cases, care must be exercised to ensure that the 

covariates defined are not affected by the treatments being tested. This technique can be 

illustrated through the following example: 

 

Example 1: A trial was designed to evaluate 15 rice varieties grown in soil with a toxic 

level of iron. The experiment was in a RCB design with three replications. Guard rows of a 

susceptible check variety were planted on two sides of each experimental plot. Scores for 

tolerance for iron toxicity were collected from each experimental plot as well as from guard 

rows. For each experimental plot, the score of susceptible check (averaged over two guard 

rows) constitutes the value of the covariate for that plot. Data on the tolerance score of each 

variety (Y variable) and on the score of the corresponding susceptible check (X variable) are 

shown below: 

 

Scores of tolerance for iron toxicity (Y) of 15 rice varieties and those of the 

corresponding guard rows of a susceptible check variety (X) in a RCB trial 

 

Variety 

Number 

Replication-I Replication-II Replication-III 

X Y X Y X Y 

1. 15 22 16 13 16 14 

2. 16 14 15 23 15 23 

3. 15 24 15 24 15 23 

4. 16 13 15 23 15 23 

5. 17 17 17 16 16 16 

6. 16 14 15 23 15 23 

7. 16 13 15 23 16 13 

8. 16 16 17 17 16 16 

9. 17 14 15 23 15 24 

10. 17 17 17 17 15 26 

11. 16 15 15 24 15 25 

12. 16 15 15 23 15 23 

13. 15 24 15 24 16 15 

14. 15 25 15 24 15 23 

15. 15 24 15 25 16 16 

 

The usual analysis of variance without using the covariate (X variable) is as follows: 

 

Source                   DF                 SS          Mean Square    F Value      Pr > F 

Replication              2             104.0444        52.0222           2.85          0.0745 

Treatment              14             265.9111        18.9937           1.04          0.4448 

Error                      28             510.6222        18.2365 

Total                     44             880.5778 

 

R-Square                    C.V.                 Root MSE               Y - Mean 
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  0.4201                    21.5436                  4.2704                    19.82222 

 

Using the covariate, the analysis is the following: 

 

Source                 DF           S.S.               M.S.        F-Value    Pr > F 

Replication           2           22.4802          11.2402       2.71         0.0844 

Treatment           14         152.5606          10.8972       2.63         0.0151 

Covariate X          1         398.7516        398.7516     96.24         0.0001 

Error                   27         111.8707            4.1434 

 

R-Square                  C.V.                 Root MSE                    Y Mean 

  0.8730                  10.2689                   2.0355                       19.8222 

 

It is interesting to note that the use of a covariate has resulted into a considerable reduction 

in the error mean square and hence the CV has also reduced drastically. This has helped in 

catching the small differences among the treatment effects as significant. This was not 

possible when the covariate was not used. The covariance analysis will thus result into a 

more precise comparison of treatment effects. 

 

The probability of significance of pairwise comparisons among the least square estimates of 

the treatment effects are given below: 

  

Pr > |T| H0: LSMEAN(i)=LSMEAN(j) 

i/j        1           2           3           4           5           6          7           8            9        

1       .      0.3370  0.0666  0.4431  0.0019  0.3370  1.0000  0.0252  0.0232       

2     0.3370    .      0.3370  0.8425  0.0237  1.0000  0.3370  0.1834  0.1697       

3     0.0666  0.3370    .      0.2497  0.1620  0.3370  0.0666  0.6757  0.6751       

4     0.4431  0.8425  0.2497    .      0.0157  0.8425  0.4431  0.1320  0.1191       

5     0.0019  0.0237  0.1620  0.0157    .      0.0237  0.0019  0.2361  0.2493       

6     0.3370  1.0000  0.3370  0.8425  0.0237    .      0.3370  0.1834  0.1697       

7    1.0000  0.3370  0.0666  0.4431   0.0019  0.3370    .      0.0252  0.0232       

8     0.0252  0.1834  0.6757  0.1320  0.2361  0.1834  0.0252    .      0.9727       

9     0.0232  0.1697  0.6751  0.1191  0.2493  0.1697  0.0232  0.9727    .           

10   0.0001  0.0019  0.0237  0.0012  0.3370  0.0019  0.0001  0.0361  0.0385   

11   0.0874  0.4294  0.8575  0.3249  0.1046  0.4294  0.0874  0.5445  0.5439   

12   0.2497  0.8425  0.4431  0.6915  0.0351  0.8425  0.2497  0.2493  0.2361   

13   0.1270  0.5524  0.7066  0.4294  0.0739  0.5524  0.1270  0.4298  0.4229   

14   0.0446  0.2497  0.8425  0.1803  0.2158  0.2497  0.0446  0.8096  0.8204   

15   0.0589  0.3249  0.9860  0.2393  0.1452  0.3249  0.0589  0.6736  0.6809   

               

 Pr > |T| H0: LSMEAN(i)=LSMEAN(j) 

     i/j           10         11      12             13             14             15 

     1      0.0001  0.0874    0.2497      0.1270      0.0446      0.0589 

     2      0.0019  0.4294    0.8425      0.5524      0.2497      0.3249 

     3      0.0237  0.8575    0.4431      0.7066      0.8425      0.9860 

     4      0.0012  0.3249    0.6915      0.4294      0.1803      0.2393 

     5      0.3370  0.1046    0.0351      0.0739      0.2158      0.1452 

     6      0.0019  0.4294    0.8425      0.5524      0.2497      0.3249 
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     7      0.0001  0.0874    0.2497      0.1270      0.0446      0.0589 

     8      0.0361  0.5445    0.2493      0.4298      0.8096      0.6736 

     9      0.0385  0.5439   0.2361      0.4229      0.8204      0.6809 

    10       .          0.0124   0.0031      0.0079      0.0351      0.0191 

    11     0.0124      .         0.5524      0.8425      0.7066      0.8425 

    12     0.0031  0.5524      .              0.6915      0.3370      0.4294       

    13     0.0079  0.8425   0.6915         .              0.5671      0.6915       

    14     0.0351  0.7066   0.3370      0.5671         .              0.8575       

    15     0.0191  0.8425   0.4294      0.6915      0.8575        .   
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1. Introduction 

In large-scale experimental programmes it is necessary to repeat the trial of a set of treatments 

like varieties or manures at a number of places or in a number of seasons. The places where 

the trial is repeated are usually experimental stations located in the tract. The aim of repetition 

is to study the susceptibility of treatment effects to place variation. More generally, the aim of 

repetition is to find out treatments suitable for particular tracts in which case the trials are 

carried out simultaneous on a representative selection of sites.  

 

Further, the purpose of the research carried out at experimental stations is to formulate the 

recommendations for the practitioners which consist of a population quite extensive either in 

space or time or both. Therefore, it becomes necessary to ensure that the results obtained from 

researches are valid for at least several places in the future and over a reasonably 

heterogeneous space. 

 

A single experiment will precisely furnish information about only one place where the 

experiment is conducted and about the season in which the experiment is conducted. It has, 

thus, become a common practice to repeat an experiment at different places or over a number 

of occasions to obtain valid recommendations taking into account place to place variation or 

variation over time or both. In such cases of repeated experiments appropriate statistical 

procedures for a combined analysis of data would have to be followed by the analysis of 

individual experiments varying with their objectives. In combined analysis of data, the main 

points of interest would be  

i) to estimate the average response to given treatments and  

ii) to test consistency of the responses from place to place or occasion to occasion i. e. 

interaction of the treatment effects with places or years. 

 

The utility and the significance of the estimates of average response depend on whether the 

response is consistence from place to place or changes with it, in other words on the absence 

or the presence of interaction. 

 

The results of a set of trials may, therefore, be considered as belonging to one of the following 

four types: 

i) the experimental errors are homogeneous and the interaction is absent, 

ii) the experimental errors are homogeneous and the interaction is present, 

iii) the experimental errors are heterogeneous and the interaction is absent, and 

iv) the experimental errors are heterogeneous and the interaction is present. 

 

The meaningfulness of average estimates of treatment responses would therefore, depend 

largely upon the absence of presence of this interaction analysis. 
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2. Analysis Procedure 

For combined analysis or analysis for groups of Experiments following steps are to be 

followed  
 

Step I: Construct an out line of combined analysis of variance over years or for places or 

environment, based on the basic design used. For example, the data of grain yield for four 

places, four treatments each treatment replicated five times is given in Table-1.  
 

Step II: Perform usual Analysis of variance for the given data. Here the experiment 

conducted is in randomized complete block design. So perform analysis of four places 

separately for the four places. This may be done either in SAS, SPSS or EXCEL software. 
 

Step III:  We have p error mean squares that belongs to p RBD conducted and we have to test 

the homogeneity of variances. Now we have following two situations: 
 

Situation I:  When p = 2 

In this situation, we apply F-test for testing the homogeneity of variances. Here null and 

alternate hypothesis are H0: 
2
2

2
1   and H1: 

2
2

2
1  . Let 2

1Se  and 2
2Se  are the mean square 

errors (mse) for the two places. Then the value of F statistics will be 2
1Se / 2

2Se  and this value 

will be tested against the Table F value at n1and n2 degrees of freedom at 5 % level of 

significance, where n1and n2 are degrees of freedom (df) for error for the two places, 

respectively. If the calculated value of F is greater than tabulated F value then the null 

hypothesis of homogeneity of variance is rejected and the data is heterogeneous in different 

places, otherwise it is homogeneous. 
 

Situation II: When p > 2 

In this situation, we apply Bartlett's Chi-square test. Here null and alternate hypothesis are 

H0 : 
2
p

2
2

2
1    against the alternative hypothesis  

H1 : at least two of the s'2
i  are not equal, where 2

i   is  the error variance for i th place/ 

location. 

 

Let Se1
2, Se2

2, ..., Sep
2 are the mse of p locations respectively and n1, n2, …, np are the df for p 

locations. The test statistics  

where 
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1p follows       2 distribution with p - 1 degree of freedom. 

If the calculated value of       2
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1p value at p-1df then the null 

hypothesis of homogeneity of variance is rejected and the data is heterogeneous in different 

places, otherwise it is homogeneous. 
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Step IV:  If error variances are not homogeneous, then for performing the combined analysis 

of weighted least square is required, the weight being the reciprocals of the root mean square 

error. The weighted analysis is carried out by defining a new variable as newres = res/ root 

mean square. This transformation is similar to Aitken’s transformation. This new variable is 

thus homogeneous and thus combined analysis of variance can performed on this new 

variable. If error variance variances are homogeneous then there is no need to transform the 

data. 
 

Step V:   Now one can view the groups of experiments as a nested design with several factors 

nested within one another. The places/ locations are treated as big blocks, with the 

experiments nested within these. The combined analysis of data, therefore, can be done as that 

a nested design. For doing the analysis, the replication wise data of treatments at each place/ 

location provide useful information. An advantage of this analysis is that there is a further 

reduction in error sum of squares because one more source of variability is taken out from the 

experimental error thus reducing the experimental error. This may also lead to the reduction in 

the value of CV.  
 

Step VI:  Next step in the analysis is to test for the significance of place   treatment 

interaction. It can be seen that the question whether the interaction place   treatment is 

significant, that is whether the difference between treatments tend to vary from place to place 

can be settled by comparing the mean square for place   treatment with the estimate of error 

variance by the F-test. If the mean square is found to be non-significant it means interaction is 

absent. If this interaction is assumed to be non-existence, sum of squares for treatments   

places and the error sum of squares can be pooled and a more precise estimate of error can be 

obtained for testing the significance of treatment differences. If, however, interaction is 

significant   i. e. treatment effects are varying with places, then the appropriate mean square 

for testing the significance of treatments is the mean square due to place   treatment.    
 

3. Illustration 

Now we shall proceed for the combined analysis of a set of data. 

Table-1: Data for grain yield (kg/ plot) with four treatments in five replications    

Place  Replication   

Treatment I II III IV V 

1 1 33.6 33.7 30.9 33.3 15.0 

 2 34.0 27.2 46.2 36.7 11.6 

 3 30.5 33.2 15.1 33.3 29.7 

 4 30.8 14.4 14.2 9.5 12.0 

2 1 28.8 28.8 35.2 41.6 43.2 

 2 46.4 43.2 38.4 54.4 57.6 

 3 35.2 32.0 32.0 25.6 33.6 

 4 51.2 40.0 49.6 51.2 49.6 

3 1 30.1 38.1 21.4 17.6 14.3 

 2 36.1 18.3 38.0 31.0 26.6 

 3 27.2 40.7 15.5 18.1 12.3 

 4 37.8 54.5 13.2 18.1 7.3 

4 1 23.8 48.8 19.5 28.8 34.4 

 2 15.2 39.0 39.8 52.0 31.2 

 3 40.2 52.0 33.0 41.2 35.0 

 4 43.2 46.8 34.5 44.5 38.0 
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A) By using SPSS 

 First we analyze the data for each place separately by using SPSS. Make four files in 

SPSS Data Editor with some name say gpsexpt-1; the first column of which is replication, 

second column as treatment, third column as yield. Now the SPSS commands are 
 

Analyze   General Linear model   Univariate   yield   button [Put yield under 

Dependent variable]   rep   button [Put rep under Fixed Factor(s)]   treat   button 

[Put treat under Fixed Factor(s)]   Model   Custom   rep   Build term[s]   treat   

Build term[s]   Main effects   Continue   OK 
 

 We will get the output screen as 

 
Here error mean square is 92.352 with df 12. Similarly we analyze the data of three other 

places and get the error mean square. Now the error mean squares of four places along with 

degrees of freedom are 

place Degrees of freedom Error mean square 

1 12 78.234 

2 12 28.309 

3 12 108.466 

4 12 67.903 
 

Now we test the homogeneity of error variances using analyze Bartlett's Chi-square test as 

described in Step III. 
 

In our case value of       2 is non-significant. So we can perform the combined analysis. For 

combined analysis of data using SPSS we proceed as follows 

 Make a combined file in SPSS Data Editor with some name say gpsexpt-comb; the first 

column of which is place, second column as replication, third column as replication and 

fourth column as yield. The SPSS commands are 

       UNIANOVA 

           yield  BY place rep treat 

            /METHOD = SSTYPE(3) 

           /INTERCEPT = INCLUDE 

           /CRITERIA = ALPHA(.05) 

           /DESIGN = place rep(place) treat place*treat 

           /test treat vs place*treat. 
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 We will get the output screen as 

 
 

In the above analysis place   treatment interaction is significant. Therefore,  treatment is 

tested against the place   treatment interaction. 
 

B) By using SAS 

Now we give the steps used while analyzing the data using SAS software. 

First we analyze the data for four places separately using proc glm. 

data klkrbd1; 

input yr rep trt yld; 

cards; 

. . . . 

. . . . 

. . . . 

; 

proc glm; 

class  rep trt; 

model yld  =  rep trt/ss3; 

run; 
 

We test the homogeneity of error variances using analyze Bartlett's Chi-square test as 

described in Step III. Since value of       2 is non-significant. So we can perform the combined 

analysis.  For combined analysis of data using SAS we proceed as follows 

data klkgps1; 

input yr rep trt yld; 

cards; 

. . . . 

. . . . 

. . . . 

; 

proc glm; 

class  yr rep trt; 

model yld  =  yr rep(yr) trt yr*trt/ss3; 

test h=trt  e=trt*yr; 

run; 
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proc glm; 

class  yr rep trt; 

model yld  =  yr rep(yr) trt/ss3; 

run; 
  

The different sites or places are natural environments. The natural environments are generally 

considered as random. All other effects in the model involve the environment either as nested 

or as crossed classification are considered as random. The assumption of these random effects 

helps in identifying the proper error terms for testing the significance of various effects. The 

combined analysis of data can easily be carried out using PROC GLM of SAS with Random 

statement with TEST option. The RANDOM statement produces a table of expected mean 

squares which can be used to determine appropriate denominators of F-statistics for all terms 

in the MODEL statement. These tests are produced by the TEST option at the end of the 

RANDOM statement. The steps to be followed are given below: 

data klkgps1; 

input yr rep trt yld; 

cards; 

. . . . 

. . . . 

. . . . 

; 

proc glm; 

class  yr rep trt; 

model yld  =  yr rep(yr) trt yr*trt/ss3; 

random yr yr*trt rep(yr) /test; 

run; 

proc glm; 

class  yr rep trt; 

model yld  =  yr rep(yr) trt/ss3; 

random yr rep(yr) /test; 

run; 

 

A complete procedure of groups of experiments analysis using SAS is described in Parsad et 

al. (2004) and also complete steps are given on the link “Analysis of Data” in Design 

Resources Server (www.iasri.res.in/design). 
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Introduction 
R is open source software for statistical analysis and graphical display. It has several in-

built facilities namely 

i) an data handling and storage facility,  

ii) a collection of operators for calculations on arrays and matrices,  

iii) a large, integrated collection of intermediate tools for data analysis,  

iv) graphical facilities for data analysis and display  

v) a well developed, simple and effective programming language (called  ‘R’ or ‘S’) 

which includes conditionals, loops, user defined recursive functions and input and output 

facilities.  

 

R is very much a vehicle for newly developing methods of interactive data analysis. It has 

developed rapidly, and has been extended by a large collection of packages.  

 

Origin 

R can be regarded as an implementation of the S language which was developed at Bell 

Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis 

of the S-Plus systems. Robert Gentleman and Ross Ihaka of the Statistics Department of 

the University of Auckland started the project on R in 1995 and hence the name software 

has been named as ‘R’. 

 

R was introduced as an environment within which many classical and modern statistical 

techniques can be implemented. A few of these are built into the base R environment, but 

many are supplied as packages. There are about 25 packages supplied with R (called 

“standard” and “recommended” packages) and many more are available through the 

CRAN family of Internet sites (via http://CRAN.R-project.org) and elsewhere. 

 

Availability 

Since R is an open source project, it can be obtained freely from the website www.r-

project.org. One can download R from any CRAN mirror out of several CRAN 

(Comprehensive R Archive Network) mirrors. Latest available version of R is R version 

3.2.3 and it has been released on 12-10-2015.  

 

Installation 

To install R in windows operating system, simply double click on the setup file. It will 

automatically install the software in the system. 

 

Usage 
R can work under Windows, UNIX and Mac OS. In this note, we consider usage of R in 

Windows set up only.  

 

http://www.r-project.org/
http://www.r-project.org/
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Difference with other packages 

There is an important difference between R and the other statistical packages. In R, a 

statistical analysis is normally done as a series of steps, with intermediate results being 

stored in objects. Thus whereas SAS and SPSS will give large amount of output from a 

given analysis, R will give minimal output and store the results in an object for 

subsequent interrogation by further R functions. 

 

Windows of R 

R has only one window and when R is started it looks like  

 
 

R commands 

i. R commands are case sensitive, so X and x are different symbols and would refer 

to different objects.  

ii. Elementary commands consist of either expressions or assignments.  

iii. If an expression is given as a command, it is evaluated and printed at the console. 

iv. An assignment also evaluates an expression and passes the value to a variable but 

the result is not automatically printed. 

v. Commands are separated either by a semi-colon (‘;’), or by a newline.  

vi. Elementary commands can be grouped together into one compound expression by 

braces ‘{‘ and ‘}’. 

vii. Comments can be put almost anywhere, starting with a hashmark (‘#’). Anything 

written after # marks to the end of the line is considered as a comment. 

viii. Window can be cleared of lines by pressing Ctrl + L keys. 
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Executing commands from or diverting output to a file 

If commands are stored in an external file, say “d:/commands.txt” they may be executed 

at any time in an R session with the command 

 

> source("d:/commands.txt") 

 

For Windows Source is also available on the File menu.  

 

The function sink(),  

 

> sink("d:/record.txt") 

 

will divert all subsequent output from the console to an external file, ‘record.txt’ in D 

drive. The command 

 

> sink() 

 

restores it to the console once again. 

 

Analysis of Experimental Data using R 

 

1. Analysis of Data from Completely Randomized Design 

Example: A feeding trial with 3 feeds namely (i) Feed without supplement, (ii) Feed with 

5% supplement and (iii) Feed with 10% supplement was conducted to study their effect 

on weight gain of Tilapia. For this purpose twenty-five fishes were allotted at random to 

each of the three treatments and the three treatments and the weight gain (gms) records of 

the were obtained. The details of the experiment are given below: 

 

trt 

Weight 

gain trt 

Weight 

gain trt 

Weight 

gain 

1 850.5 2 510.3 3 850.5 

1 453.6 2 963.9 3 1474.2 

1 878.85 2 652.05 3 510.3 

1 623.7 2 1020.6 3 850.5 

1 510.3 2 878.85 3 793.8 

1 765.45 2 567 3 453.6 

1 680.4 2 680.4 3 935.55 

1 595.35 2 538.65 3 1190.7 

1 538.65 2 567 3 481.95 

1 850.5 2 510.3 3 623.7 

1 850.5 2 425.25 3 878.85 

1 793.8 2 567 3 1077.3 

1 1020.6 2 623.7 3 850.5 

1 708.75 2 538.65 3 680.4 

1 652.05 2 737.1 3 737.1 
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1 623.7 2 453.6 3 737.1 

1 396.9 2 481.95 3 708.75 

1 822.15 2 368.55 3 708.75 

1 680.4 2 567 3 652.05 

1 652.05 2 595.35 3 567 

1 538.65 2 567 3 453.6 

1 850.5 2 595.35 3 652.05 

1 680.4 3 992.25 3 567 

 

where  Feed 1- Feed without supplement,  

Feed 2- Feed with 5% supplement 

Feed 3- Feed with 10% supplement 

   

1. Perform the analysis of variance of the data to test whether there is any difference 

between treatment effects.  

2. Perform all possible pair wise treatment comparisons and identify the best 

treatment i.e. the treatment giving highest weight gain.  

 

The steps of performing the above analysis using R are given below. 

 

i) Create the data file. 

The first line of the file should have a name for each variable. Each additional line of the 

file has as its first item a row label and the values for each variable.  

 

Trt weightgain 

1 850.5 

1 453.6 

1 878.85 

. . 

. . 

. . 

3 453.6 

3 652.05 

3 567 

 

 

ii) Read the data file in R 

The function read.table() can then be used to read the data frame directly 

 

> data1 <- read.table("d:/crd.txt", header = TRUE) 

 

By default numeric items (except row labels) are read as numeric variables and non-

numeric variables as factors. This can be changed if necessary. 

 

If data file is created in comma separated format, one can use read.csv() function. 
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iii) Store variable names in R 

Through read.csv() or read.table() functions, data along with variable labels is read into 

R memory. However, to read the variables’ names directly into R, one should use 

attach(dataset) function. For example,  

 

>attach (data1)  

 

causes R to directly read all the variables names eg. trt and yld  . it is a good practice to 

use the attach(datafile) function immediately after reading the datafile into R. 

 

iv) Identify the factors/treatments. 

In this case ‘trt’ is factor affecting yields. To check whether the ‘trt’ variable is numeric 

or factor, use the following command. 

> is.factor(trt) 

[1] FALSE 

> is.numeric(trt) 

[1] TRUE 

 

This shows that ‘trt’ is a numeric variable and hence we need to convert this to a factor 

variable. Otherwise, analysis will be wrong. To convert the variable ‘trt’ from numeric to 

a factor variable, use as.factor() function. 

> trt=as.factor(trt) 

> trt 

 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 

[61] 3 3 3 3 3 3 3 3 3 

Levels: 1 2 3 

> is.factor(trt) 

[1] TRUE 

 

v) Perform analysis of variance  

Now, use aov() function with model specification y~Group and store the results in 

anova_output. 

> anova_output=aov(weightgain~trt) 
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> anova_output 

Call: 

   aov(formula = weightgain ~ trt) 

 

Terms: 

                      trt Residuals 

Sum of Squares   287872.4 2460182.9 

Deg. of Freedom         2        66 

 

Residual standard error: 193.0686  

Estimated effects may be unbalanced 

 

To get more information on the analysis done, use summary() function. 

 

> summary(anova_output) 

 

            Df  Sum Sq Mean Sq F value  Pr(>F)   

trt          2  287872  143936  3.8614 0.02595 * 

Residuals   66 2460183   37275                   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

This shows that treatment effects are significant at 5% level. 

 

vi) Perform post hoc tests 

To conduct post-hoc tests, R provides a simple function to carry out the Tukey HSD test. 

 

> TukeyHSD(anova_output) 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = weightgain ~ trt) 

 

$trt 

         diff        lwr       upr     p adj 

2-1 -86.89891 -224.94944  51.15161 0.2931780 

3-1  71.38859  -63.68998 206.46716 0.4186377 

3-2 158.28750   21.65028 294.92472 0.0192552 

 

From above we can see that feed3 is significantly better than feed2. 

 

To get all the entries stored in ‘parameters’ data frame, use names() function. 

 

> names(anova_output) 

[1] "coefficients"  "residuals"     "effects"       "rank"        "fitted.values" "assign"       "qr" 

[8] "df.residual"   "contrasts"     "xlevels"       "call"          "terms"         "model" 
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2. Analysis of data from Randomized Complete Block Designs 

Example: An experiment was conducted to see the effects of different fertilization 

regime on growth of silver carp. The fertilization regimes are (A) PROSHIKA 

fertilization regime: weekly application of 1,250 kg cow manure, 15 kg urea and 22.5 kg 

TSP per hectare (B) BRAC fertilization regime: weekly application of 156 kg cow 

manure, 27.5 kg urea and 13.1 kg TSP per hectare (personal communication). (C) 

CARITAS fertilization regimes: fortnight application of 1,500 kg cow manure per 

hectare. (D) BAU fertilization regime: fortnight application of 5,000 kg cow manure, 50 

kg urea and 50 kg TSP per hectare. (E) CRSP organic fertilization regime developed 

from Nile tilapia ponds: 250 kg cow dung (DM) ha-1 wk-1 supplemented with urea and 

TSP to give 28 kg N and 7 kg P ha-1 wk-1. The experiment was conducted using a 

Randomized complete Block Design (RCB) design with 3 replications. The yield from 

each pond was recorded. The details of the experiment are given below: 

 

trt trtn rep yield 

PROSHIKA 1 1 1539.69 

BRAC 2 1 1261.85 

CARITAS 3 1 1389.19 

BAU 4 1 1192.39 

CRSP 5 1 1250.27 

PROSHIKA 1 2 1296.58 

BRAC 2 2 1227.12 

CARITAS 3 2 1273.43 

BAU 4 2 1180.82 

CRSP 5 2 1296.58 

PROSHIKA 1 3 1122.93 

BRAC 2 3 1250.27 

CARITAS 3 3 1180.82 

BAU 4 3 1146.09 

CRSP 5 3 1574.42 

 

Note: Strains of mustard  in bold are the four checks. 

i) Perform the analysis of variance of the data to test whether there is any difference 

between treatment effects. 

ii) Perform all possible pair wise treatment comparisons and identify the best 

treatment i.e. the treatment giving highest yield. Also identify the other treatments 

which are non-significantly different from this treatment.   

 

The steps of analysis are 

i) Create the data file. 

 

ii) Read and attach the data file in R. 

>data2=read.table(“d:/data2.txt”,header=TRUE) 

>attach(data2) 
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Make sure ‘trtn’ and ‘rep’ is factor variable using trtn=as.factor(trtn) and 

rep=as.factor(rep). 

 

iv) Obtain treatment wise mean yield 

To obtain mean yield under first treatment, use following command 

 

>mean(yield[data2$trtn==1]). 

 

Similarly for other treatments, mean can be obtained. 

 

v) Perform analysis of variance 

>out2=aov(yield~trtn+rep) 

> summary(out2) 

 

This gives following output 

 

            Df Sum Sq Mean Sq F value Pr(>F) 

trtn         4  68758 17189.4  0.8841 0.5148 

rep          2  17171  8585.4  0.4416 0.6578 

Residuals    8 155534 19441.7                

 

This shows that the treatment effects are not significantly different. 

 

To carry out two-way and other complex analysis of variance, the model may be 

modified as per situations. 

 

Model   Interpreation 

y~x1*x2  y is explained by two factors x1 and x2 as well as their interactions 

   (suitable for analysis of data from factorial experiments) 

y~ x1 + x2 + x1:x2 -Do- 
 

Packages 

All R functions and datasets are stored in packages. The contents of a package are 

available only when the package is loaded. This is done to run the codes efficiently 

without much memory usage. To see which packages are installed at your machine, use 

the command 

 

> library() 
 

Before using any package in R, it has to be downloaded from R website. The install that 

package from packages drop down menu in R. Then to load the package in a session, use 

a command like 

 

> library(fishmethods) 
 

Users connected to the Internet can use the install.packages() and update.packages() 

functions to install and update packages. Use search() to display the list of packages that 

are loaded.  
 

Standard packages 
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The standard (or base) packages are considered part of the R source code. They contain 

the basic functions that allow R to work and the datasets and standard statistical and 

graphical functions that are described in this manual. They should be automatically 

available in any R installation.  
 

Contributed packages and CRAN 

There are a number of contributed packages for R, written by many authors. Various 

packages deal with various analyses. Most of the packages are available for download 

from CRAN (http://CRAN.R-project.org/ and its mirrors), and other repositories such as 

Bioconductor (http://www.bioconductor.org/). The R FAQ contains a list that was current 

at the time of release, but the collection of available packages changes frequently. As on 

March 08, 2010, the CRAN package repository contains 2239 available packages.  
 

Getting Help 
Complete help files in HTML and PDF forms are available in R. To get help on a 

particular command/function etc., type help (command name). For example, to get help 

on function ‘mean, type help(mean) as shown below 
 

> help (mean) 
 

This will open the help file with the page containing the description of the function mean.  

Another way to get help is to use “?” followed by function name. For example, 
 

>?mean 
 

will open the same window again. 

 

In this lecture note, all R commands and corresponding outputs are given as shaded text 

to differentiate the normal texts. Since R is case-sensitive, i.e. typing Help(mean), would 

generate an error message,  

 

> Help (mean) 

Error: could not find function “Help” 

 

Further Readings 

Various documents are available in www.r-project.org from beginners’ level to most 

advanced level. Also, along with R, the following manuals are available in pdf form: 

1. An Introduction to R 

2. R Reference Manual 

3. R Import/Export 

4. R Language Definition 

5. Writing R Extensions 

6. R internals 

7. R installations and Administration 
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1.   Introduction 

Factorial Experiments are experiments that investigate the effects of two or more factors 

or input parameters on the output response of a process.  Factorial experiment design, or 

simply factorial design, is a systematic method for formulating the steps needed to 

successfully implement a factorial experiment. Estimating the effects of various factors on 

the output of a process with a minimal number of observations is crucial to being able to 

optimize the output of the process. 

      

In a factorial experiment, the effects of varying the levels of the various factors affecting 

the process output are investigated. Each complete trial or replication of the experiment 

takes into account all the possible combinations of the varying levels of these factors.  

Effective factorial design ensures that the least number of experiment runs are conducted 

to generate the maximum amount of information about how input variables affect the 

output of a process. 

 

For example, an experiment on rooting of cuttings involving two factors, each at two 

levels, such as two hormones at two doses, is referred to as a 2 x 2 or a 22 factorial 

experiment. Its treatments consist of the following four possible combinations of the two 

levels in each of the two factors. 

 

Treatment number 
Treatment Combination 

Hormone Dose (ppm) 

1 NAA 10 

2 NAA 20 

3 IBA 10 

4 IBA 20 

 

The total number of treatments in a factorial experiment is the product of the number of 

levels of each factor; in the 22 factorial example, the number of treatments is 2 x 2 = 4, in 

the 23 factorial, the number of treatments is 2 x 2 x 2 = 8. The number of treatments 

increases rapidly with an increase in the number of factors or an increase in the levels in 

each factor. For a factorial experiment involving 5 clones, 4 espacements, and 3 weed-

control methods, the total number of treatments would be 5 x 4 x 3 = 60. Thus, 

indiscriminate use of factorial experiments has to be avoided because of their large size, 

complexity, and cost. Furthermore, it is not wise to commit oneself to a large experiment 

at the beginning of the investigation when several small preliminary experiments may 

offer promising results. For example, a tree breeder has collected 30 new clones from a 
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neighbouring country and wants to assess their reaction to the local environment. Because 

the environment is expected to vary in terms of soil fertility, moisture levels, and so on, 

the ideal experiment would be one that tests the 30 clones in a factorial experiment 

involving such other variable factors as fertilizer, moisture level, and population density. 

Such an experiment, however, becomes extremely large as factors other than clones are 

added. Even if only one factor, say nitrogen or fertilizer with three levels were included, 

the number of treatments would increase from 30 to 90. Such a large experiment would 

mean difficulties in financing, in obtaining an adequate experimental area, in controlling 

soil heterogeneity, and so on. Thus, the more practical approach would be to test the 30 

clones first in a single-factor experiment, and then use the results to select a few clones for 

further studies in more detail. For example, the initial single-factor experiment may show 

that only five clones are outstanding enough to warrant further testing. These five clones 

could then be put into a factorial experiment with three levels of nitrogen, resulting in an 

experiment with 15 treatments rather than the 90 treatments needed with a factorial 

experiment with 30 clones.  

      

The amount of change produced in the process output for a change in the 'level' of a given 

factor is referred to as the 'main effect' of that factor. Table 1 shows an example of a 

simple factorial experiment involving two factors with two levels each. The two levels of 

each factor may be denoted as 'low' and 'high', which are usually symbolized by '-' and '+' 

in factorial designs, respectively.  

     

Table 1. A Simple 2-Factorial Experiment 
 

 A (-) A (+) 

B (-) 20 40 

B (+) 30 52 

 

The main effect of a factor is basically the 'average' change in the output response as that 

factor goes from '-' to '+'.  Mathematically, this is the average of two numbers: 1) the 

change in output when the factor goes from low to high level as the other factor stays low, 

and 2) the change in output when the factor goes from low to high level as the other factor 

stays high. 

     

In the example in Table 1, the output of the process is just 20 (lowest output) when both A 

and B are at their '-' level, while the output is maximum at 52 when both A and B are at 

their '+' level. The main effect of A is the average of the change in output response when B 

stays '-' as A goes from '-' to '+', or (40-20) = 20, and the change in output response when B 

stays '+' as A goes from '-' to '+', or (52-30) = 22.  The main effect of A, therefore, is equal 

to 21. 

     

Similarly, the main effect of B is the average change in output as it goes from '-' to '+' , i.e., 

the average of 10 and 12, or 11. Thus, the main effect of B in this process is 11. Here, one 

can see that the factor A exerts a greater influence on the output of process, having a main 

effect of 21 versus factor B's main effect of only 11. It must be noted that aside from 'main 

effects', factors can likewise result in 'interaction effects.'  Interaction effects are changes 

in the process output caused by two or more factors that are interacting with each 
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other. Large interactive effects can make the main effects insignificant, such that it 

becomes more important to pay attention to the interaction of the involved factors than to 

investigate them individually. In Table 1, as effects of A (B) is not same at all the levels of 

B (A) hence, A and B are interacting.  

 

Thus, interaction is the failure of the differences in response to changes in levels of one 

factor, to retain the same order and magnitude of performance through out all the levels of 

other factors OR the factors are said to interact if the effect of one factor changes as the 

levels of other factor(s) changes. 

 

Graphical representation of lack of interaction between factors and interaction between 

factors are shown below. In case of two parallel lines, the factors are non-interacting. 

 

     
 

If interactions exist which is fairly common, we should plan our experiments in such a 

way that they can be estimated and tested.  It is clear that we cannot do this if we vary only 

one factor at a time.  For this purpose, we must use multilevel, multifactor experiments.  

 

The running of factorial combinations and the mathematical interpretation of the output 

responses of the process to such combinations is the essence of factorial experiments.  It 

allows to understand which factors affect the process most so that improvements (or 

corrective actions) may be geared towards these. 

  

We may define factorial experiments as experiments in which the effects (main effects and 

interactions) of more then one factor are studied together. In general if there are ‘n’ 

factors, say, F1, F2,..., Fn and ith factor has si levels, i=1,...,n, then total number of treatment 

combinations is si

n

i


1

. Factorial experiments are of two types. 

 

Experiments in which the number of levels of all the factors are same i.e all si’s are equal 

are called symmetrical factorial experiments and the experiments in at least two of the 

si‘s are different are called as asymmetrical factorial experiments. Factorial experiments 

provide an opportunity to study not only the individual effects of each factor but also there 

interactions. They have the further advantage of economising on experimental resources.  

When the experiments are conducted factor by factor much more resources are required 

for the same precision than when they are tried in factorial experiments.   
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2.   Experiments with Factors Each at Two Levels 

The simplest of the symmetrical factorial experiments are the experiments with each of the 

factors at 2 levels.  If there are ‘n’ factors each at 2 levels, it is called as a 2n factorial 

where the power stands for the number of factors and the base the level of each factor. 

Simplest of the symmetrical factorial experiments is the 22 factorial experiment i.e. 2 

factors say A and B each at two levels say 0 (low) and 1 (high). There will be 4 treatment 

combinations which can be written as 
 

 00   = a0 b0   =   1; A and B both at first (low) levels 

 10   = a1 b0   =   a ; A at second (high) level and B at first (low) level 

 01   = a0 b1   =   b ; A at first level (low) and B at second (high) level 

 11   = a1 b1   =  ab; A and B both at second (high) level. 
 

In a 22 factorial experiment wherein r replicates were run for each combination treatment, 

the main and interactive effects of A and B on the output may be mathematically 

expressed as follows: 

A = [ab + a - b - (1)] / 2r;     (main effect of factor A) 

B = [ab + b - a - (1)] / 2r;     (main effect of factor B) 

AB = [ab + (1) - a - b] / 2r;   (interactive effect of factors A and B) 
 

where r is the number of replicates per treatment combination; a is the total of the outputs 

of each of the r replicates of the treatment combination a (A is 'high and B is 'low); b is the 

total output for the n replicates of the treatment combination b (B is 'high' and A is 'low); 

ab is the total output for the r replicates of the treatment combination ab (both A and B are 

'high'); and (1) is the total output for the r replicates of the treatment combination (1) (both 

A and B are 'low’). 
 

Had the two factors been independent, then [ab + (1) - a - b] / 2n will be of the order of 

zero. If not then this will give an estimate of interdependence of the two factors and it is 

called the interaction between A and B.  It is easy to verify that the interaction of the factor 

B with factor A is BA which will be same as the interaction AB and hence the interaction 

does not depend on the order of the factors. It is also easy to verify that the main effect of 

factor B, a contrast of the treatment totals is orthogonal to each of A and AB. 
 

Table 2. Two-level 2-Factor Full-Factorial  

RUN Comb. M A B AB 

1 (1) + - - + 

2 a + + - - 

3 b + - + - 

4 = 22 ab + + + + 
 

Consider the case of 3 factors A, B, C each at two levels (0 and 1) i.e. 23 factorial 

experiment. There will be 8 treatment combinations which are written as 

000  = a0 b0 c0   = (1);  A, B and C all three at first level 

100  = a1 b0 c0   =  a ;  A at second level and B and C at first level 

010  = a0 b1 c0  =  b ;  A and C both at first level and B at second level 

110  = a1 b1 c0   = ab;  A and B both at second level and C is at first level. 

001  = a0 b0 c1  =  c  ;  A and B both at first level and C at second level. 

101  = a1 b0 c1  =  ac;  A and C at second level, B at first level  

011  = a0 b1 c1 =  bc;  A is at first level and B and C both at second level 

111  = a1 b1 c1  = abc;  A, B and C all the three at second level 
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In a three factor experiment there are three main effects A, B, C;  3 first order or two 

factor interactions AB, AC, BC; and one second order or three factor interaction ABC.   
 

Table 3. Two-level 3-Factor Full-Factorial Experiment Pattern 
 

RUN Comb. M A B AB C AC BC ABC 

1 (1) + - - + - + + - 

2 a + + - - - - + + 

3 b + - + - - + - + 

4 ab + + + + - - - - 

5 c + - - + + - - + 

6 ac + + - - + + - - 

7 bc + - + - + - + - 

8 = 23 abc + + + + + + + + 

   

Main effect A = 
1

4
{[abc] -[bc] +[ac] -[c] + [ab] -[b] + [a] -[1]} 

            = 
1

4
(a-1) (b+1) (c+1)        

AB  = 
1

4
  [(abc)-(bc) -(ac) +c) - (ab) - (b) - (a)+ (1) ] 

ABC = 
1

4
 [ (abc) - (bc) - (ac) + (c) - (ab) + (b) + (a) - (1) ] 

 

or equivalently,  

 AB    =  
1

4
  (a-1) (b-1) (c+1)                 

 ABC = 
1

4
 (a-1) (b-1) (c-1)           

 

The method of representing the main effect or interaction as above is due to Yates and is 

very useful and quite straightforward.  For example, if the design is 24 then 

 

 A   = (1/23)  [ (a-1) (b+1) (c+1) (d+1) ] 

ABC  =  (1/23)  [ (a-1) (b-1) (c-1) (d+1)] 

 

In case of a 2n factorial experiment, there will be 2n (=v) treatment combinations with ‘n’ 

main effects, 
n

2








  first order or two factor interactions, 

n

3








  second order or three factor 

interactions, 
n

4








  third order or four factor interactions and so on , 

n

r








 , (r-1)th order or r 

factor interactions and 
n

n








  (n-1)th order or n factor interaction. Using these v treatment 
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combinations, the experiment may be laid out using any of the suitable experimental 

designs viz. completely randomised design or block designs or row-column designs, etc. 

 

Steps for Analysis 

1. The Sum of Squares (S.S.) due to treatments, replications [in case randomised block 

design is used], due to rows and columns (in case a row-column design has been used), 

total S.S. and error S.S. is obtained as per established procedures. No replication S.S. 

is required in case of a completely randomised design. 

2. The treatment sum of squares is divided into different components viz. main effects 

and interactions each with single d.f. The S.S. due to these factorial effects is obtained 

by dividing the squares of the factorial effect total by r.2n.  For obtaining 2n-1 factorial 

effects in a 2n factorial experiment, the ‘n’ main effects is obtained by giving the 

positive signs to those treatment totals where the particular factor is at second level 

and minus to others and dividing the value so obtained by r.2n-1, where r is the number 

of replications of the treatment combinations. All interactions can be obtained by 

multiplying the corresponding coefficients of main effects.  

 

For a 22 factorial experiment, the S.S. due to a main effect or the interaction effect is 

obtained by dividing the square of the effect total by 4r. Thus, 
 

 S.S. due to main effect of A   = [A]2/ 4r, with 1 d.f. 
 

 S.S. due to main effect of B   = [B]2/ 4r, with 1 d.f 
 

 S.S. due to interaction AB     = [AB]2/ 4r, with 1 d.f. 

 

3. Mean squares (M.S) is obtained by dividing each S.S. by corresponding degrees of 

freedom. 

4. After obtaining the different S.S.’s, the usual Analysis of variance (ANOVA) table is 

prepared and the different effects are tested against error mean square and conclusions 

drawn. 

5. Standard errors (S.E.’s) for main effects and two factor interactions: 
 

S.E of difference between main effect means =
2MSE

r.2n 1
 

 

S.E of difference between A means at same level of B=S.E of difference between 

B means at same level of A= 
2MSE

r.2n 2
  

 

In general,  

      S.E. for difference between means in case of a r-factor interaction = 
2MSE

r.2nr
 

 

The critical differences are obtained by multiplying the S.E. by the student’s t value at 

% level of significance at error degrees of freedom. 

The ANOVA for a 22 factorial experiment with r replications conducted using a RCBD is 

as follows: 

ANOVA 
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Sources of 

Variation 

DF S.S. M.S. F 

Between 

Replications 

r-1 SSR MSR=SSR/(r-1) MSR/MSE 

Between treatments 22-1=3 SST MST=SST/3 MST/MSE 

A 1 SSA=[A]2/4r MSA=SSA MSA/MSE 

  B 1 SSB=[B]2/4r MSB=SSB MSB/MSE 

AB 1 SSAB=[AB]2/4r MSAB=SSAB MSAB/MSE 

Error  (r-1)(22-1) 

=3(r-1) 

SSE MSE=SSE/3(r-1)  

Total r.22-1=4r-1 TSS   

 

ANOVA for a 23-factorial experiment conducted in RCBD with r replications is given by 

 

ANOVA 
 

Sources of 

Variation 

DF SS MS F 

Between 

Replications 

r-1 SSR MSR=SSR/(r-1) MSR/MSE 

Between treatments 23 -1=7 SST MST=SST/7 MST/MSE 

A 1 SSA MSA=SSA MSA/MSE 

B 1 SSB MSB=SSB MSB/MSE 

C 1 SSC MSC=SSC MSC/MSE 

AB 1 SSAB MSAB=SSAB MSAB/MSE 

AC 1 SSAC MSAC=SSAC MSAC/MSE 

BC 1 SSBC MSBC=SSBC MSBC/MSE 

ABC 1 SSABC MSABC=SSABC MSABC/MSE 

Error  (r-1)(23-1) 

=7(r-1) 

SSE MSE=SSE/7(r-1)  

Total r.23-1=8r-1 TSS   

 

Similarly ANOVA table for a 2n factorial experiment can be made. 

 

3.   Experiments with Factors Each at Three Levels  

When factors are taken at three levels instead of two, the scope of an experiment 

increases. It becomes more informative. A study to investigate if the change is linear or 

quadratic is possible when the factors are at three levels. The more the number of levels, 

the better, yet the number of the levels of the factors cannot be increased too much as the 

size of the experiment increases too rapidly with them. Consider two factors A and B, 
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each at three levels say 0, 1 and 2 (32-factorial experiment). The treatment combinations 

are 
 

 00 = a0b0   = 1  ; A and B both at first levels 

 10  = a1b0  = a  ; A is at second level and B is at first level 

 20  = a2b0   = a2 ; A is at third level and b is at first level 

 01  = a0b1  = b ; A is at first level and B is at second level 

 11  = a1b1  = ab ; A and B both at second level 

 21  = a2b1  = a2b ; A is at third level and B is at second level 

 02 = a0b2  = b2 ; A is at first level and B is at third level 

 12  = a1b2  = ab2 ; A is at second level and B is at third level 

 22  = a2b2  = a2b2 ; A and B both at third level 
 

Any standard design can be adopted for the experiment.   
 

The main effects A, B can respectively be divided into linear and quadratic components 

each with 1 d.f. as AL, AQ, BL and BQ. Accordingly AB can be partitioned into four 

components as AL BL , AL BQ,  AQ BL, AQ BQ. 
 

The coefficients of the treatment combinations to obtain the above effects are given as 
 

Treatment 

Totals 

Factorial 

Effects  

 

[1] 

 

[a] 

 

[a2] 

 

[b] 

 

[ab] 

 

[a2b] 

 

[b2] 

 

[ab2] 

 

[a2b2] 

 

Divisor 

M +1 +1 +1 +1 +1 +1 +1 +1 +1 9r=r32 

AL -1 0 +1 -1 0 +1 -1 0 +1 6r=r2 3 

AQ +1 -2 +1 +1 -2 +1 +1 -2 +1 18r=63 

BL -1 -1 -1 0 0 0 +1 +1 +1 6r=r23 

AL BL +1 0 -1 0 0 0 -1 0 +1 4r=r22 

AQ BL -1 +2 -1 0 0 0 +1 -2 +1 12r=r62 

BQ +1 +1 +1 -2 -2 -2 +1 +1 +1 18r=r36 

AL BQ -1 0 +1 +2 0 -2 -1 0 +1 12r=r26 

AQ BQ +1 -2 +1 -2 +4 -2 +1 -2 +1 36r=r66 

 

The rule to write down the coefficients of the linear (quadratic) main effects is to give a 

coefficient as +1 (+1) to those treatment combinations containing the third level of the 

corresponding factor, coefficient as 0(-2) to the treatment combinations containing the 

second level of the corresponding factor and coefficient as -1(+1) to those treatment 

combinations containing the first level of the corresponding factor. The coefficients of the 

treatment combinations for two factor interactions are obtained by multiplying the 

corresponding coefficients of two main effects. The various factorial effect totals are given 

as 
 

[AL]  = +1[a2b2]+0[ab2] -1[b2]+1[a2b]+0[ab] -1[b]+1[a2]+0[a] -1[1] 

[AQ] = +1[a2b2] -2[ab2]+1[b2]+1[a2b] -2[ab]+1[b]+1[a2] -2[a]+1[1] 

[BL]  = +1[a2b2]+1[ab2]+1[b2]+0[a2b]+0[ab]+0[b] -1[a2] -1[a] -1[1] 

[ALBL] = +1[a2b2]+0[ab2] -1[b2]+0[a2b]+0[ab]+0[b] -1[a2]+0[a] -1[1] 
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[AQBL] = +1[a2b2] -2[ab2]+1[b2]+0[a2b]+0[ab]+0[b] -1[a2]+2[a] -1[1] 

[BQ] = +1[a2b2]+1[ab2]+1[b2] -2[a2b] -2[ab] -2[b] -1[a2] -1[a] -1[1] 

[ALBQ] = +1[a2b2]+0[ab2] -1[b2] -2[a2b]+0[ab]+2[b]+1[a2]+0[a] -1[1] 

[AQBQ]  = +1[a2b2] -2[ab2]+1[b2] -2[a2b]+4[ab] -2[b]+1[a2] -2[a]+1[1] 

 

Factorial effects are given by 

AL = [AL]/r.3 AQ= [AQ]/r.3 BL = [BL]/r.3 ALBL = [ALBL]/r.3 

AQBL = [AQBL]/r.3 BQ = [BQ]/r.3 ALBQ = [ALBQ]/r.3 AQBQ = [AQBQ]/r.3 

 

The sum of squares due to various factorial effects is given by 

SSAL = 
 A

r.2.3

L

2

; SSAq = 
 A

r.6.3

Q

2

; SSBL = 
 B

r.3.2

L

2

; SSALBL = 
 A B

r.2.2

L L

2

; 

SSAQBL = 
 A B

r.6.2

Q L

2

; SSBQ= 
 B

r.3.6

Q

2

; SSALBQ = 
 A B

r..2.6

L Q

2

; SSAQBQ = 
 A B

r.6.6

Q Q

2

; 

 

If a RBD is used with r-replications then the outline of analysis of variance is  

 

ANOVA 
 

Sources of Variation D.f SS MS 

Between Replications r-1 SSR MSR=SSR/(r-1) 

Between treatments 32-1=8 SST MST=SST/8 

A 2 SSA MSA=SSA/2 

AL 1 SSAL MSAL= SSAL 

AQ 1 SSAQ          MSAQ=SSAQ 

B 2 SSB MSB=SSB/2 

BL 1 SSBL MSBL= SSBL 

BQ 1 SSBQ MSBQ=SSBQ 

AB 4 SSAB MSAB=SSAB/2 

ALBL 1 SSALBL MSALBL=SSALBL 

AQBL 1 SSAQBL MSAQBL=SSAQBL 

ALBQ 1 SSALBQ MSALBQ=SSALBQ 

AQBQ 1 SSAQBQ MSAQBQ=SSAQBQ 

Error  (r-1)(32-`1) 

=8(r-1) 

SSE MSE=SSE/8(r-1) 

Total r.32-1=9r-1 TSS  

 

In general, for n factors each at 3 levels, the sum of squares due to any linear (quadratic) 

main effect is obtained by dividing the square of the linear (quadratic) main effect total by 

r.2.3n-1(r.6.3n-1). Sum of squares due to a ‘p’ factor interaction is given by taking the 

square of the total of the particular interaction component divided by r.(a1 a2 ...ap). 3
n-p, 

where a1, a2,...,ap are taken as 2 or 6 depending upon the linear or quadratic effect of 

particular factor.  
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4.   Confounding in Factorial Experiments 

When the number of factors and/or levels of the factors increase, the number of treatment 

combinations increase very rapidly and it is not possible to accommodate all these 

treatment combinations in a single homogeneous block. For example, a 25 factorial would 

have 32 treatment combinations and blocks of 32 plots are quite big to ensure 

homogeneity within them. A new technique is therefore necessary for designing 

experiments with a large number of treatments. One such device is to take blocks of size 

less than the number of treatments and have more than one block per replication. The 

treatment combinations are then divided into as many groups as the number of blocks per 

replication. The different groups of treatments are allocated to the blocks. 

 

There are many ways of grouping the treatments into as many groups as the number of 

blocks per replication. It is known that for obtaining the interaction contrast in a factorial 

experiment where each factor is at two levels, the treatment combinations are divided into 

two groups.  Such two groups representing a suitable interaction can be taken to form the 

contrasts of two blocks each containing half the total number of treatments. In such case 

the contrast of the interaction and the contrast between the two block totals are given by 

the same function. They are, therefore, mixed up and can not be separated.  In other words, 

the interaction has been confounded with the blocks. Evidently the interaction confounded 

has been lost but the other interactions and main effects can now be estimated with better 

precision because of reduced block size. This device of reducing the block size by taking 

one or more interaction contrasts identical with block contrasts is known as confounding. 

Preferably only higher order interactions, that is, interactions with three or more factors 

are confounded, because their loss is immaterial. As an experimenter is generally 

interested in main effects and two factor interactions, these should not be confounded as 

far as possible. 

 

When there are two or more replications, if the same set of interactions are confounded in 

all the replications, confounding is called complete and if different sets of interaction are 

confounded in different replications, confounding is called partial. In complete 

confounding all the information on confounded interactions are lost. But in partial 

confounding, the confounded interactions can be recovered from those replications in 

which they are not confounded.   
 

Advantages of Confounding 

It reduces the experimental error considerably by stratifying the experimental material into 

homogeneous subsets or subgroups. The removal of the variation among incomplete 

blocks (freed from treatments) within replicates results in smaller error mean square as 

compared with a RBD, thus making the comparisons among some treatment effects more 

precise. 
 

Disadvantages of Confounding 

 In the confounding scheme, the increased precision is obtained at the cost of sacrifice 

of information (partial or complete) on certain relatively unimportant interactions. 

 The confounded contrasts are replicated fewer times than are the other contrasts and as 

such there is loss of information on them and they can be estimated with a lower 

degree of precision as the number of replications for them is reduced. 
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 An indiscriminate use of confounding may result is complete or partial loss of 

information on the contrasts or comparisons of greatest importance. As such the 

experimenter should confound only those treatment combinations or contrasts which 

are of relatively less or of importance at all. 

 The algebraic calculations are usually more difficult and the statistical analysis is 

complex, especially when some of the units (observations) are missing. 

 

Confounding in 23 Experiment 

Although 23 is a factorial with small number of treatment combinations but for illustration 

purpose, this example has been considered. Let the three factors be A, B, C each at two 

levels. 
  

    Factorial Effects  

Treat. Combinations  

A B C AB AC BC ABC 

(1) - - - + + + - 

(a) + - - - - + + 

(b) - + - - + - - 

(ab) + + - + - - - 

(c) - - + + - - + 

(ac) + - + - + - - 

(bc) - + + - - + - 

(abc) + + + + + + + 

 

The various factorial effects are as follows: 

A   = (abc) + (ac) + (ab) + (a) - (bc) - (c) -  (b) - (1) 

B     = (abc) + (bc) + (ab) + (b) - (ac) - (c) -  (a) - (1) 

C     = (abc) + (bc) + (ac) + (c) - (ab) - (b) -  (a) - (1) 

AB   = (abc) +  (c)  + (ab) + (1) - (bc) - (ac) - (b) - (a) 

AC   = (abc) + (ac) + (b)   + (1) - (bc) - (c) -  (ab) - (a) 

BC   = (abc) + (bc) + (a)   + (1) - (ac) - (c) -  (ab) - (b) 

ABC = (abc) +  (c)  + (b)   + (a) - (bc) - (ac) - (ab) - (1) 

 

Let the highest order interaction ABC be confounded and we decide to use two blocks of 4 

units (plots) each per replicate. 
 

Thus in order to confound the interaction ABC with blocks all the treatment combinations 

with positive sign are allocated at random in one block and those with negative signs in 

the other block.  Thus the following arrangement gives ABC confounded with blocks and 

hence we loose information on ABC. 
 

   Replication I  

 Block 1: (1) (ab) (ac) (bc) 

 Block 2 : (a) (b) (c) (abc) 
 

It can be observed that the contrast estimating ABC is identical to the contrast estimating 

block effects.  

 

The other six factorial effects viz. A, B, C, AB, AC, BC each contain two treatments in 

block 1 (or 2) with the  positive signs and two with negative sign so that they are 

orthogonal with block totals and hence these differences are not influenced among blocks 
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and can thus be estimated and tested as usual without any difficulty. Whereas for 

confounded interaction, all the treatments in one group are with positive sign and in the 

other with negative signs. 
 

Similarly if AB is to be confounded, then the two blocks will consists of  
 

Block 1  (abc) (c) (ab) (1) 

Block 2 (bc) (ac) (b) (a) 
 

Here AB is confounded with block effects and cannot be estimated independently whereas 

all other effects A, B, C, AC, Bc and ABC can be estimated independently. 
 

When an interaction is confounded in one replicate and not in another, the experiment is 

said to be partially confounded.  Consider again 23 experiment with each replicate divided 

into two blocks of 4 units each. It is not necessary to confound the same interaction in all 

the replicates and several factorial effects may be confounded in one single experiment. 

For example, the following plan confounds the interaction ABC, AB, BC and AC in 

replications I, II, III and IV respectively. 
 

Rep. I 

Block 1      Block 2 

Rep. II 

Block 3       Block 4 

Rep. III 

Block 5       Block 6 

Rep. IV 

Block 7       Block 8 

(abc) (ab) (abc) (ac) (abc) (ab) (abc) (ab) 

(a) (ac) (c) (bc) (bc) (ac) (ac) (bc) 

(b) (bc) (ab) (a) (a) (b) (b) (a) 

(c) (1) (1) (b) (1) (c) (1) (c) 
 

In the above arrangement, the main effects A, B and C are orthogonal with block totals 

and are entirely free from block effects. The interaction ABC is completely confounded 

with blocks in replicate 1, but in the other three replications the ABC is orthogonal with 

blocks and consequently an estimate of ABC may be obtained from replicates II, III and 

IV.  Similarly it is possible to recover information on the other confounded interactions 

AB (from I, III, IV), BC (from I, II, IV) and AC (from I, II, III). Since the partially 

confounded interactions are estimated from only a portion of the observations, they are 

determined with a lower degree of precision than the other effects. 
 

For carrying out the statistical analysis, the various factorial effects and their S.S. are 

estimated in the usual manner with the modification that for completely confounded 

interactions neither the S.S due to confounded interaction is computed nor it is included in 

the ANOVA table. The confounded component is contained in the (2p-1) degrees of 

freedom (D.f.) (in case of p replicates) due to blocks. The partitioning of the d.f for a 23 

completely confounded factorial is as follows. 
 

Source of Variation D.f  

Blocks 2p-1 

A 1 

B 1 

C 1 

AB 1 

AC 1 

BC 1 

Error 6(p-1) 

Total 8p-1 
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In general for a 2n completely confounded factorial in p replications, the different d.f’s are 

given as follows 
 

Source of Variation D.f  

Replication p-1 

Blocks within replication p(2n-r-1) 

Treatments 2n-1-(2n-r-1) 

Error By subtraction 

Total p2n-1 
 

The treatment d.f has been reduced by 2n-r-1 as this is the total d.f confounded per block. 

   

In case of partial confounding, we can estimate the effects confounded in one replication 

from the other replication in which it is not confounded. In (2n, 2r) factorial experiment 

with p replications, following is the splitting of d.f’s. 
 

Source of Variation D.f  

Replication p-1 

Blocks within 

replication 

p(2n-r-1) 

Treatments 2n-1 

Error By subtraction 

Total p2n-1 

 

The S.S. for confounded effects are to be obtained from those replications only in which 

the given effect is not confounded.  

 

5.   Fractional Factorial 

In a factorial experiment, as the number of factors to be tested increases, the complete set 

of factorial treatments may become too large to be tested simultaneously in a single 

experiment. A logical alternative is an experimental design that allows testing of only a 

fraction of the total number of treatments. A design uniquely suited for experiments 

involving large number of factors is the fractional factorial. It provides a systematic way of 

selecting and testing only a fraction of the complete set of factorial treatment 

combinations. In exchange, however, there is loss of information on some pre-selected 

effects. Although this information loss may be serious in experiments with one or two 

factors, such a loss becomes more tolerable with large number of factors. The number of 

interaction effects increases rapidly with the number of factors involved, which allows 

flexibility in the choice of the particular effects to be sacrificed. In fact, in cases where 

some specific effects are known beforehand to be small or unimportant, use of the 

fractional factorial results in minimal loss of information.  

 

In practice, the effects that are most commonly sacrificed by use of the fractional factorial 

are high order interactions - the four-factor or five-factor interactions and at times, even 

the three-factor interaction. In almost all cases, unless the researcher has prior information 

to indicate otherwise one should select a set of treatments to be tested so that all main 

effects and two-factor interactions can be estimated. 
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In forestry research, the fractional factorial is to be used in exploratory trials where the 

main objective is to examine the interactions between factors. For such trials, the most 

appropriate fractional factorials are those that sacrifice only those interactions that involve 

more than two factors. 

 

With the fractional factorial, the number of effects that can be measured decreases rapidly 

with the reduction in the number of treatments to be tested. Thus, when the number of 

effects to be measured is large, the number of treatments to be tested, even with the use of 

fractional factorial, may still be too large. In such cases, further reduction in the size of the 

experiment can be achieved by reducing the number of replications. Although the use of 

fractional factorial without replication is uncommon in forestry experiments, when 

fractional factorial is applied to exploratory trials, the number of replications required can 

be reduced to the minimum.  

 

Another desirable feature of fractional factorial is that it allows reduced block size by not 

requiring a block to contain all treatments to be tested. In this way, the homogeneity of 

experimental units within the same block can be improved. A reduction in block size is, 

however, accompanied by loss of information in addition to that already lost through the 

reduction in number of treatments.  
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1.  Split Plot Design 

1.1  Introduction 

In conducting experiments, sometimes some factors have to be applied in larger experimental 

units while some other factors can be applied in comparatively smaller experimental units. 

Further some experimental materials may be rare while the other experimental materials may 

be available in large quantity or when the levels of one (or more) treatment factors are easy to 

change, while the alteration of levels of other treatment factors are costly, or time-consuming. 

One more point may be that although two or more different factors are to be tested in the 

experiment, one factor may require to be tested with higher precision than the others. In all 

such situations, a design called the split plot design is adopted. 

 

A split plot design is a design with at least one blocking factor where the experimental units 

within each block are assigned to the treatment factor levels as usual, and in addition, the 

blocks are assigned at random to the levels of a further treatment factor. The designs have a 

nested blocking structure. In a block design, the experimental units are nested within the 

blocks, and a separate random assignment of units to treatments is made within each block. In 

a split plot design, the experimental units are called split-plots (or sub-plots), and are nested 

within whole plots (or main plots). 

     

In split plot design, plot size and precision of measurement of effects are not the same for both 

factors, the assignment of a particular factor to either the main plot or the sub-plot is 

extremely important. To make such a choice, the following guidelines are suggested: 

 

Degree of Precision- For a greater degree of precision for factor B than for factor A, assign 

factor B to the sub-plot and factor A to the main plot e.g. a plant breeder who plans to 

evaluate ten promising rice varieties with  three levels of fertilization, would probably wish to 

have greater precision for varietal comparison than for fertilizer response. Thus, he would 

designate variety as the sub-plot factor and fertilizer as the main plot factor. Or, an agronomist 

would assign variety to main plot and fertilizer to sub-plot if he wants greater precision for 

fertilizer response than variety effect. 

 

Relative Size of the Main effects- If the main effect of one factor (A) is expected to be much 

larger and easier to detect than that of the other factor (B), factor A can be assigned to the 

main plot and factor B to the sub-plot. This increases the chance of detecting the difference 

among levels of factor B which has a smaller effect. 

 

Management Practices- The common type of situation when the split plot design is 

automatically suggestive is the difficulties in the execution of other designs, i.e. practical 

execution of plans. The cultural practices required by a factor may dictate the use of large 
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plots. For practical expediency, such a factor may be assigned to the main plot e.g. in an 

experiment to evaluate water management and variety, it may be desirable to assign water 

mangement to the main plot to minimize water movement between adjacent plots, facilitate 

the simulation of the water level required, and reduce border effects. Or, if ploughing is one of 

the factors of interest, then one cannot have different depths of ploughing in different plots 

scattered randomly apart. 

       

1.2  Randomization and Layout 

There are two separate randomization processes in a split plot design – one for the main plot 

and another for the sub-plot. In each replication, main plot treatments are first randomly 

assigned to the main plots followed by a random assignment of the sub-plot treatments within 

each main plot. This procedure is followed for all replications. A possible layout of a split plot 

experiment with four main plot treatments (a=4), three sub-plot treatments(b=3), and four 

replications(r=4) is given below: 

 

           Rep. I                             Rep. II                          Rep. III                          Rep. IV  

 

b1 

 

b3 

 

b2 

 

b2 

  

b3 

 

b1 

 

b2 

 

b1 

  

b3 

 

b1 

 

b2 

 

b3 

  

b2 

 

b3 

 

b3 

 

b1 

 

b3 

 

b2 

 

b1  

 

b3 

  

b1 

 

b2 

 

b1 

 

b3 

  

b2 

 

b3 

 

b3 

 

b2 

  

b1 

 

b2 

 

b1 

 

b2 

 

b2 

 

b1  

 

b3 

 

b1 

  

b2 

 

b3 

 

b3 

 

b2 

  

b1 

 

b2 

 

b1 

 

b1 

  

b3 

 

b1 

 

b2 

 

b3 

  a4      a2      a 1       a3            a1     a4     a2    a3              a3     a2     a4     a1             a1    a4     a3    a2       

 

The above layout has the following important features –   The size of the main plot is b times 

the size of the sub-plot,    Each main plot treatment is tested r times whereas each sub-plot 

treatment is tested ar times, thus the number of times a sub-plot treatment is tested will always 

be larger than that for the main plot and is the primary reason for more precision for the sub-

plot treatments relative to the main plot treatments. 

  

This concept of splitting each plot may be extended further to accommodate the application of 

additional factors. An extension of this design is called the split-split plot design where the 

sub-plot is further divided to include a third factor in the experiment. The design allows for 3 

different levels of precision associated with the 3 factors. That is, the degree of precision 

associated with the main factor is lowest, while the degree of precision associated with the 

sub-sub plot is the highest.               

 

1.3  Model 

The model for simple split plot design is 

        Yijk =   i  j  ij  k  ()jk   ijk 

for i = 1,2, …,r, j = 1,2, …,a, k = 1,2, …b,  

where, 

Yijk        : observation corresponding to kth level of sub-plot factor(B), jth level of main plot   

               factor(A) and the ith replication. 
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           : general mean 

  i        : i
th block effect 

 j         : j
th main plot treatment effect 

 k        : k
th sub-plot treatment effect 

()jk     : interaction between jth level of main-plot treatment and the kth level of sub-  

              plot treatment  

The error components ij and ijk are independently and normally distributed with means zero 

and respective variances 2
 and 2

.    

 

1.4  Analysis 

Whole-Plot analysis: 

This part of the analysis is based on comparisons of whole-plot totals: 

 The levels of A are assigned to the whole plots within blocks according to a randomized 

complete block design, and so the sum of squares for A needs no block adjustment.  

There are a –1 degrees of freedom for A, so the sum of squares is given by  

      rab/yrb/yssA 2

j

2
   j .. .. .            

      [ The “dot” notation means “add over all values of the subscript replaced with a dot” ]    

                                                                                                       

 There are r –1 degrees of freedom for blocks, giving a block sum of squares of 

        rab/yab/yssR 2

i

2
i .... .   

 There are a whole plots nested within each of the r blocks, so there are, in total, r(a -1)  

whole-plot degrees of freedom. Of these, a –1 are used to measure the effects of A 

leaving (r –1)(a –1) degrees of freedom for whole-plot error. Equivalently, this can be 

obtained by the subtraction of the block and A degrees of freedom from the whole-plot 

total degrees of freedom  i.e.  (ra –1) –(r –1) –(a –1) = (r –1)(a –1). 

        So, the whole plot error sum of squares, is obtained as 

        ssA  - ssR - rab/yb/yssE 2

j

2
ji

i

 1 ....        

 The whole plot error mean square msE1 = ssE1 / (r –1)(a –1), is used as the error estimate 

to test the significance of whole plot factor(A). 

 

Sub-plot analysis: 

This part of the analysis is based on the observations arising from the split-plots within 

whole plots: 

 There are rab –1 total degrees of freedom, and the total sum of squares is 

         rab/yysstot 2

i j k

2
k j i ...     

 Due to the fact that all levels of B are observed in every whole plot as in a randomized 

complete block design, the sum of squares for B needs no adjustment for whole plots, 

and is given by - 

        rab/yra/ yssB 2

k

2
k .. .. .  , corresponding to b –1 degrees of freedom. 
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 The interaction between the factors A and B is also calculated as part of the split-plot 

analysis. Again, due to the complete block structure of both the whole-plot design and 

the split-plot design, the interaction sum of squares needs no adjustment for blocks. The 

number of interaction degrees of freedom is (a –1)(b –1), and the sum of squares is 

         ssB -ssA  - rab/yr/yss(AB) 2

k

2
k j

j

.. . .      

 Since there are b split plots nested within the ra whole plots, there are, in total, ra(b –1) 

split-plot degrees of freedom. Of these, b –1 are used to measure the main effect of B, 

and (a –1)(b –1) are used to measure the AB interaction, leaving ra(b–1) – (b–1) – (a–

1)(b–1) = a(r–1)(b–1) degrees of freedom for error. Equivalently, this can be obtained by 

subtraction of the whole plot, B, and AB degrees of freedom from the total i.e. (rab –1) – 

(ra – 1) – (b – 1) – (a –1)(b –1) = a(r –1)(b –1). 

        The split-plot error sum of squares can be calculated by subtraction: 

        ssE2 = sstot – ssR – ssA – ssE1 – ssB – ss(AB). 

 

 The split-plot error mean square msE2 = ssE2  a(r –1)(b –1) is used as the error estimate 

in testing the significance of split-plot factor(B) and interaction(AB). 

 

 The analysis of variance table is outlined as follows: 

 

                                                      ANOVA 

Source of Variation Degrees of 

Freedom 

Sum of 

Squares 

Mean Square F 

Whole plot analysis    

Replication  r-1 ssR - - 

Main plot treatment(A)  a-1 ssA msA  msA/msE1 

Main plot error(E1) (r-1)(a-1) ssE1 msE1 =Ea  

Sub-plot analysis     

Sub-plot treatment(B) b-1 ssB msB  msB/msE2 

Interaction 

 (AxB) 

(a-1)(b-1)      ss(AB)         ms(AB)                 ms(AB)/msE2             

Sub-plot error(E2) a(r-1)(b-1) ssE2 msE2 =Eb  

Total rab-1 sstot   

  

 1.5  Standard Errors and Critical Differences:                                                                   

  Estimate of S.E. of difference between two main plot treatment means = 
rb

E2 a  

  Estimate of S.E. of difference between two sub-plot treatment means   = 
ra

E2 b  

 

  Estimate of S.E. of difference between two sub-plot treatment means 

  at the same level of main plot treatment  =   
r

E2 b                                                             
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  Estimate of S.E. of difference between two main plot treatment  

  means at the same or different levels of sub-plot treatment  =     
 

rb

E1)E-(b2 ab                                                              

Critical difference is obtained by multiplying the S.Ed by t5% table value for respective error 

d.f. for (i), (ii) & (iii).  For (iv), as the standard error of mean difference involves two error 

terms, we use the following equation to compute the weighted t values: 

                                           t = 
ab

aabb

E1)E-b(

tEt1)E-(b




   

where ta and tb are t-values at error d.f. (Ea) and error d.f.(Eb) respectively. 
 

Example 1: 
 

In a study carried by agronomists to determine if major differences in yield response to N 

fertilization exist among different varieties of jowar, the main plot treatments were three 

varieties of jowar (V1: CO-18, V2: CO-19 and V3: C0-22), and the sub-plot treatments were N 

rates of 0, 30, and 60 Kg/ha. The study was replicated four times, and the data gathered for the 

experiment are shown in Table 1. 
 

             Table 1:  Replication-wise yield data. 

  N rate, Kg/ha 

Replication Variety 0 30 60 

  Yield, kg per plot 

I V1 15.5 17.5 20.8 

 V2 20.5 24.5 30.2 

 V3 15.6 18.2 18.5 

II V1 18.9 20.2 24.5 

 V2 15.0 20.5 18.9 

 V3 16.0 15.8 18.3 

III V1 12.9 14.5 13.5 

 V2 20.2 18.5 25.4 

 V3 15.9 20.5 22.5 

IV V1 12.9 13.5 18.5 

 V2 13.5 17.5 14.9 

 V3 12.5 11.9 10.5 

               

    Analyze the data and draw conclusions. 

 

Steps of analysis: 

 

 Calculate the replication totals(R), and the grand total(G) by first constructing a 

table for the replication  variety totals shown in Table 1.1, and then a second table 

for the variety  nitrogen totals as shown in Table 1.2. 

 

     Table 1.1  Replication  variety (RA) - table of yield totals.                    
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 Variety  

Replication   V1   V2   V3 Rep.Total(R) 

I  53.8  75.2  52.3 181.3 

II  63.6  54.4  50.1 168.1 

III  40.9  64.1  58.9 163.9 

IV  44.9  45.9  34.9 125.7 

Variety Total(A) 203.2 239.6 196.2  

Grand Total(G)    639.0 

 

    Table 1.2  Variety   Nitrogen (AB) - table of yield totals. 

                  Variety  

Nitrogen  V1   V2   V3 Nitrogen 

Total(B) 

N0  60.2  69.2  60.0 189.4 

N1  65.7  81.0  66.4 213.1 

N2  77.3  89.4  69.8 236.5 

        

 Compute the various sums of squares for the main plot analysis by first computing 

the correction factor: 

C.F. = 
334

(639)
 

rab

G 22


  = 11342.25 

 

Total S.S. (sstot) =  [ (15.5)2 + (20.5)2 +  …  + (10.5)2 ]  -  C.F. 

                      =  637.97 

Replication S.S. (ssR) = C.F.
ab

R 2




 

                                   = 11342.25
33

(125.7)(163.9)(168.1)(181.3) 2222





   

                                   = 190.08 

S.S. due to Variety (ssA) =  C.F.
rb

A2




   

 

                                        =  11342.25
34

(196.2)(239.6)(203.2) 222





 

                                        =  90.487     

     

Main plot error S.S. (ssE1) = ssA ssR C.F.
b

(RA)2




  

=  90.487  190.08  11342.25
3

(34.9)  ... (63.6)(53.8) 222




  

                                       = 174.103 

 Compute the various sums of squares for sub-plot analysis 
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 S.S. due to Nitrogen (ssB) =  C.F.
ra

B2




   

                                           =  11342.25
34

(236.5)(213.1)(189.4) 222





  

                                           =  92.435 

 

S.S. due to Interaction (A  B) = ssB ssA C.F.
r

(AB)2




  

                                  

 92.435  90.487  11342.25
4

(69.8)  ... (65.7)(60.2) 222




   

                                         = 9.533 

 

Sub-plot error S.S. (ssE2) = Total S.S.  All other sum of squares 

                                =  637.97  ( 190.08 + 90.487 + 174.103 + 92.435 +9.533) 

                                =  81.332 

 

 Calculate the mean square for each source of variation by dividing the S.S. by its 

corresponding degrees of freedom and compute the F value for each effect that 

needs to be tested, by dividing each mean square by the corresponding error mean 

square, as shown in Table 1.3. 

 

Table 1.3   ANOVA results. 

Source of 

variation 

Degrees of 

freedom 

Sum of Squares Mean 

Square 

F 

Replication 3 190.08 63.360  

Variety(A) 2 90.487 45.243 1.56ns 

Error(a) 6 174.103 29.017(Ea)  

Nitrogen(B) 2 92.435 46.218 10.23** 

VarietyNitrogen 

    (AB) 

4 9.533 2.383 <1 

Error(b) 18 81.332 4.518 (Eb)  

Total 35 637.97   

                   ns – not significant,   ** - significant at 1% level. 

 

 Compute the coefficient of variation for the main plot and sub-plot as: 

cv(a)  100
G.M.

E a
 , and    cv(b)  100

G.M.

E b
   respectively.  

 

 Compute standard errors and to make specific comparisons among treatment 

means compute respective critical differences only when F-tests show significance 

differences and interpret. 
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 Conclusion: There was no significant difference among variety means. Yield was 

significantly affected by nitrogen. However, the interaction between N rate and 

variety was not significant. All the varieties gave significant response to 30 kg 

N/ha as well as to 60 kg N/ha. 

 

2.  Strip Plot Design 

2.1  Introduction 

Sometimes situation arises when two factors each requiring larger experimental units are to be 

tested in the same experiment, e.g., suppose four levels of spacing and three levels of methods 

of ploughing are to be tested in the same experiment. Here both the factors require large 

experimental units. If the combinations of the two factors at all possible levels are allotted in a 

R.B.D. in the normal way, the experimental plots shall have to be very large thereby bringing 

heterogeneity. So, it will not be appropriate. On the other hand if one factor (spacing) is taken 

in main plots and other factor (methods of ploughing) is taken in sub-plots within main plots, 

the sub-plots shall have to be large enough. Hence split plot design also will not be 

appropriate. In such situations a design called Strip plot design is adopted. 

The strip plot is a 2-factor design that allows for greater precision in the measurement of the 

interaction effect while sacrificing the degree of precision on the main effects. The 

experimental area is divided into three plots, namely the vertical-strip plot, the horizontal-strip 

plot, and the intersection plot. We allocate factors A and B, respectively, to the vertical and 

horizontal-strip plots, and allow the intersection plot to accommodate the interaction between 

these two factors. As in the split plot design, the vertical and the horizontal plots are 

perpendicular to each other. However, in the strip plot design the relationship between the 

vertical and horizontal plot sizes is not as distinct as the main and sub-plots were in the split 

plot design. The sub-plot treatments instead of being randomized independently within each 

main plot as in the case of split plot design are arranged in strips across each replication.  The 

intersection plot, which is one of the characteristics of the design, is the smallest in size. 

2.2  Randomization and Layout: 

In this design each block is divided into number of vertical and horizontal strips depending on 

the levels of the respective factors. Let A represent the vertical factor with a levels, B 

represent the horizontal factor with b levels and r represent the number of replications. To 

layout the experiment, the experimental area is divided into r blocks. Each block is divided 

into b horizontal strips and b treatments are randomly assigned to these strips in each of the r 

blocks separately and independently. Then each block is divided into a vertical strips and a 

treatments are randomly assigned to these strips in each of the r blocks separately and 

independently. A possible layout of a strip plot experiment with a 5 (a1, a2, a3, a4, and a5), b 

3 (b1, b2, and b3) and four replications is given below:     

             Rep. I                           Rep. II                           Rep. III                          Rep. IV     

b2        b1         b3        b2       

b1        b3         b1        b3       

b3        b2         b2        b1       

       a4   a1  a2  a5  a3               a2  a4   a3   a1  a5               a5  a4  a1  a3  a2               a3   a1   a4  a5  a2        



Split and Strip Plot Designs 

 145 

        

The strip plot design sacrifices precision on the main effects of both the factors in order to 

provide higher precision on the interaction which will generally be more accurately 

determined than in either randomised blocks or simple split plot design. Consequently this 

design is not recommended unless practical considerations necessitate its use or unless the 

interaction is the principle object of study. 

 

2.3  Model  

The model for strip plot design is 

        Yijk =   i  j  ()ij  k  ()ik  ()jk   ijk 

for i = 1,2, …,r, j = 1,2, …,a, k = 1,2, …b,  

 

where, 

Yijk  : observation corresponding to jth level of factor A, kth level of factor B and ith  replication 
           : general mean 

  i        : i
th block effect 

 j            : effect of jth level of factor A 

 k        : effect of kth level of factor B 

()jk     : interaction between jth level of factor A and the kth level of factor B  

The error components ()ij, ()ik  and ijk are independently and normally distributed with 

means zero and respective variances 2
a,  

2
b,  and 2

.  

 

2.4  Analysis 

In statistical analysis separate estimates of error are obtained for main effects of the factor, A 

and B and for their interaction AB. Thus there will be three error mean squares applicable for 

testing the significance of main effects of the factors and their interaction separately. 

Suppose 4 levels of spacings(A) and 3 levels of methods(B) of ploughing are to be tested in 

the same experiment. Each replication is divided into 4 strips vertically and into 3 strips 

horizontally. In the vertical strips the four different levels of spacings are allotted randomly 

and in the horizontal strips three methods of ploughing are allotted randomly. Let there be 4 

replications(R). The analysis of variance is carried out in three parts viz. vertical strip analysis, 

horizontal strip analysis and interaction analysis as follows: 

 

 Form spacing  replication (A  R) table of yield totals and from this table compute the 

S.S. due to replication, S.S. due to spacings and S.S. due to interaction - Replication  

Spacing i.e. error(a). 
 

 Form method  replication (B  R) table of yield totals and from this table compute the 

S.S. due to methods and S.S. due to interaction - Replication  Method i.e. error(b). 
 

 Form spacing  method (A  B) table of yield totals and from this table compute the S.S. 

due to interaction - Spacing  Method. 
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 Total S.S. will be obtained as usual by considering all the observations of the experiment 

and the error S.S. i.e. error(c) will be obtained by subtracting from total S.S. all the S.S. 

for various sources. 

 

 Now, calculate the mean square for each source of variation by dividing each sum of 

squares by its respective degrees of freedom. 
 

 Compute the F-value for each source of variation by dividing each mean square by the 

corresponding error term. 

 

 The analysis of variance table is outlined as follows: 

                                                                 ANOVA 

Source of Variation Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F 

Replication(R)  (r-1)= 3 ssR - - 

Spacing(A)  (a-1)= 3 ssA msA  msA/msE1 

Error(a) (r-1)(a-1)= 9 ssE1 msE1 =Ea  

Method(B) (b-1)= 2 ssB msB  msB/msE2 

Error(b)                          (r-1)(b-1)= 6 ssE2 msE2 =Eb  

SpacingMethod 

     (AB) 

(a-1)(b-1)= 6 ss(AB) ms(AB) ms(AB)/msE3 

 Error(c) (r-1)(a-1)(b-1)=18  ssE3 msE3 =Ec  

Total (rab-1)= 47 sstot   

 

2.5  Standard Errors and Critical Differences:                                                                   

                

  Estimate of S.E. of difference between two A level means = 
rb

E2 a  

  Estimate of S.E. of difference between two B level means = 
ra

E2 b  

 

  Estimate of S.E. of difference between two A level means 

  at the same level of B means     = 
 

rb

E1)E-(b2 ac   

 

  Estimate of S.E. of difference between two B level means 

  at the same level of A means    = 
 

ra

E1)E-(a2 bc   

 

Critical difference is obtained by multiplying the S.Ed by t5% table value for respective error 

d.f. for (i) & (ii).  For (iii) & (iv), as the standard error of mean difference involves two error 

terms, we use the following equation to compute the weighted t values: 



Split and Strip Plot Designs 

 147 

                         t = 
ac

aacc

E1)E-b(

tEt1)E-(b




 ,  and   t = 

bc

bbcc

E1)E-a(

tEt1)E-(a




  respectively, 

where ta, tb, and tc are t-values at error d.f. (Ea), error d.f.(Eb) and error d.f.(Ec) respectively. 

 

SAS input statements for the split plot experiment 

data split plot; 

input rep var nit yield; 

cards; 
1 1 0 15.5 

1 1 1 17.5 

1 1 2 20.8 

1 2 0 20.5 

1 2 1 24.5 

1 2 2 30.2 

1 3 0 15.6 

1 3 1 18.2 

1 3 2 18.5 

2 1 0 18.9 

2 1 1 20.2 

2 1 2 24.5 

2 2 0 15.0 

2 2 1 20.5 

2 2 2 18.9 

2 3 0 16.0 

2 3 1 15.8 

2 3 2 18.3 

3 1 0 12.9 

3 1 1 14.5 

3 1 2 13.5 

3 2 0 20.2 

3 2 1 18.5 

3 2 2 25.4 

3 3 0 15.9 

3 3 1 20.5 

3 3 2 22.5 

4 1 0 12.9 

4 1 1 13.5 

4 1 2 18.5 

4 2 0 13.5 

4 2 1 17.5 

4 2 2 14.9 

4 3 0 12.5 

4 3 1 11.9 

4 3 2 10.5 

; 

proc print; 

proc glm; 

class rep var nit; 
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model yield = rep var rep* var nit var*nit; 

test h = var e = rep*var; 

mean var nit var*nit; 

run; 
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1.    Introduction 

The subject of Design of Experiments deals with the statistical methodology needed for 

making inferences about the treatment effects on the basis of responses (univariate or 

multivariate) collected through the planned experiments.  To deal with the evolution and 

analysis of methods for probing into mechanism of a system of variables, the experiments 

involving several factors simultaneously are being conducted in agricultural, horticultural and 

allied sciences.  Data from experiments with levels or level combinations of one or more 

factors as treatments are normally investigated to compare level effects of the factors and also 

their interactions.  Though such investigations are useful to have objective assessment of the 

effects of levels actually tried in the experiment, this seems to have inadequate, especially 

when the factors are quantitative in nature.  The above analysis cannot give any information 

regarding the possible effects of the intervening levels of the factors or their combinations, 

i.e., one is not able to interpolate the responses at the treatment combinations not tried in the 

experiment. In such cases, it is more realistic and informative to carry out investigations with 

the twin purposes: 

a) To determine and to quantify the relationship between the response and the settings of a 

group of experimental factors. 

b) To find the settings of the experimental factors that produces the best value or the best set 

of values of the response(s). 

If all the factors are quantitative in nature, it is natural to think the response as a function of 

the factor levels and data from quantitative factorial experiments can be used to fit the 

response surfaces over the region of interest.  Response surfaces besides inferring about the 

twin purposes can provide information about the rate of change of a response variable.  They 

can also indicate the interactions between the quantitative treatment factors.  The special class 

of designed experiments for fitting response surfaces is called response surface designs.  A 

good response surface design should possess the properties viz., detectability of lack of fit, the 

ability to sequentially build up designs of increasing order and the use of a relatively modest, 

if not minimum, number of design points. Before formulating the problem mathematically, we 

shall give examples of some experimental situations, where response surface methodology 

can be usefully employed. 

 

Example 1: The over-use of nitrogen (N) relative to Phosphorus (P) and Potassium (K) 

concerns both the agronomic and environmental perspective.  Phosphatic and Potassic 

fertilizers have been in short supply and farmers have been more steadily adopting the use of 

nitrogenous fertilizers because of the impressive virtual response. There is evidence that soil P 

and K levels are declining. The technique of obtaining individual optimum doses for the N, P 

and K through separate response curves may also be responsible for unbalanced fertilizer use. 

Hence, determining the optimum and balanced dose of N, P and K for different crops has 



Response Surface Designs 

 136 

been an important issue. This optimum and balanced dose should be recommended to farmers 

in terms of doses from the different sources and not in terms of the values of N, P and K 

alone, as the optimum combination may vary from source to source.  However, in actual 

practice the values of N, P and K are given in terms of kg/ha rather than the combined doses 

alongwith the source of the fertilizers. 

 

Example 2: For value addition to the agriculture produce, food-processing experiments are 

being conducted.  In these experiments, the major objective of the experimenter is to obtain 

the optimum combination of levels of several factors that are required for the product.  To be 

specific, suppose that an experiment related to osmotic dehydration of the banana slices is to 

be conducted to obtain the optimum combination of levels of concentration of sugar solution, 

solution to sample ratio and temperature of osmosis.  The levels of the various factors are the 

following 

 Factors Levels 

1. Concentration of sugar solution 40%, 50%, 60%, 70% and 80% 

2. Solution to sample ratio 1:1, 3:1, 5:1, 7:1and 9:1 

3. Temperature of osmosis 250C, 350C, 450C, 550C and 650C  

In this situation, response surface designs for 3 factors each at five equispaced levels can be 

used. 
 

Example 3: Yardsticks (a measure of the average increase in production per unit input of a 

given improvement measure) of many fertilizers, manures, irrigation, pesticides for various 

crops are being obtained and used by planners and administrators in the formulation of 

policies relating to manufacture/import/subsidy of fertilizers, pesticides, development of 

irrigation projects etc. 
 

The yardsticks have been obtained from the various factorial experiments.  However, these 

will be more reliable and satisfy more statistical properties, if response surface designs for 

slope estimation are used. 
 

In general response surface methodology is useful for all the factorial experiments in 

agricultural experimental programme that are under taken so as to determine the level at 

which each of these factors must be set in order to optimize the response in some sense and 

factors are quantitative in nature.  To achieve this we postulate that the response is a function 

of input variables, i.e. 

  uvuuuu exxxy  ,...,, 21                      (1.1) 

where Nu ,...,2,1 represents the N observations and iux  is the level of the thi  factor in the 

thu  observation. The function   describes the form in which the response and the input 

variables are related and ue  is the experimental error associated with the thu observation such 

that E (eu) = 0 and Var(eu) = 2.   Knowledge of function  gives a complete summary of the 

results of the experiment and also enables us to predict the response for values of the iux  that 

are not included in the experiment. If the function  is known then using methods of calculus, 

one may obtain the values of vxxx ,...,, 21  which give the optimum (say, maximum) response. 
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In practice the mathematical form of  is not known; we, therefore, often approximate it, 

within the experimental region, by a polynomial of suitable degree in variables iux . The 

adequacy of the fitted polynomial is tested through the usual analysis of variance. 

Polynomials which adequately represent the true dose-response relationship are called 

Response Surfaces and the designs that allow the fitting of response surfaces and provide a 

measure for testing their adequacy are called response surface designs. If the function  in 

(1.1) is of degree one in sxiu '  i.e. 

uvuvuuu exxxy   ...22110                           (1.2) 
 

we call it a first-order response surface in vxxx ,...,, 21 . If (1.1) takes the form 

uui
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iuii
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iuiu exxxxy  



 





 
1

1 11

2

1

0              (1.3) 

We call it a second-order (quadratic) response surface. Henceforth, we shall concentrate on 

the second order response surface which is more useful in agricultural experiments. 

 

2. The Quadratic Response Surface 
The general form of a second-degree (quadratic) surface is 

         exxxxxx

xxxxxxy

uvuuvvvuuuu

vuvvuuvuvuuu
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Let us assume that sxiu '  satisfy the following conditions: 
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1

2 constant (for all i ) 2N  (say) 

(C)   


N

u

iux

1

4  constant (for all i ) = 4CN  (say)        (2.1) 

(D) 


 2

1

2
ui

N

u

iuxx constant 4N  (say), for all ii   

We shall estimate the parameters si '  through the method of least squares. Let 

sbsbsbb iiiii ',',',0   denote the best linear unbiased estimate of sss iiiii ',',',0   

respectively. Under the above restrictions on sxiu ' , the normal equations are found to be: 
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Solving the above normal equations, we obtain the estimates bi‘s as 
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where   2
241  vvC  . 

The variances of and covariances between the estimated parameters are as follows: 

 

   

 

 

       

 

      











4
2

4
2
2

2
20

44
2
2

2

4
2

2
2

2
40

1(,

,

11

1

NCbbCov

NbbCov

NCbV

NbV

NbV

NvCbV

iiii

ii

ii

ii

i
















                               (2.4) 

 

Other covariances are zero. From the above expressions it is clear that a necessary condition 

for the design to exist is that 0 . Thus, a necessary condition for a Second Order Design to 

exist is that 

(E)  12
24  vCv                          (2.5) 
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If ŷ  is the estimated response at any given experimental point  02010 ,...,, vxxx , then the 

variance of ŷ is given by 
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, where d  is the distance of the point  02010 ,...,, vxxx  from the origin, then we 

may write  
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From the above expression, it is clear that if the coefficient of  
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zero, the variance of the estimated response at  02010 ,...,, vxxx  will be a function of d , the 

distance of the point  02010 ,...,, vxxx  from the origin. Now, the coefficient of  
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                               (2.8) 

 

Obviously, this is zero, if and only if 3C  . Thus, when 3C  , the variance of the estimated 

response at a given point, the response being estimated through a design satisfying (A), (B), 

(C), (D), (E) becomes a function of the distance of that point from the origin. Such designs are 

called as Second Order Rotatable Designs (SORD). We may now formally define a SORD: 

 

Let us consider N  treatment combinations (points)   Nuvixiu ,...,2,1,,...,2,1,   to form a 

design in v  factors, through which a Second-degree surface can be fitted. This design is said 

to be a SORD if the variance of the estimated response at any given point is a function of the 

distance of that point from the origin. The necessary and sufficient conditions for a set of 

points   Nuvixiu ,...,2,1,,...,2,1,   to form a SORD are 
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(E’)  22
24  vv                    (2.9) 

 

The conditions (A’), (B’) and (D’) are same as conditions (A), (B) and (D) in (2.1). 

 

We now prove the following. 

 

Lemma: If a set of points  ,,...,2,1,,...,2,1, Nuvixiu   satisfying (A’), (B’), (C’) and (D’) 

are such that every point is equidistant from the origin, then 

 22
24  vv                             (2.10) 

 

Proof: Let d  be the distance of any point from the origin. Then, since all the points are 

equidistant from the origin, we have 
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2 13   vvvv  

or,   02 2
24   vv  

 

An arrangement of points satisfying (A’), (B’), (C’) and (D’) but not (E’) is called a Second 

Order Rotatable Arrangement (SORA). A SORA can always be converted to an SORD by 

adding at least one central point. 

 

A near stationary region is defined as a region where the surface slopes along the v  variable 

axes are small compared to the estimate of experimental error. The stationary point of a near 
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stationary region is the point at which the slope of the response surface is zero when taken in 

all the directions. The coordinates of the stationary point   02010 ,...,, vxxx0x  are obtained 

by differentiating the following estimated response equation with respect to each ix  and 

equating the derivatives to zero and solving the resulting equations 
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In matrix notation (2.11) can be written as 

  Bxxbx  0
ˆ bxY                             (2.12) 

where     vv bbbxxx ,...,,,,...,, 2121 bx  

and 

 





















vvvv

v

v

bbb

bbb

bbb









2/2/

2/2/

2/2/

21

22212

11211

B . 

 

From equation (2.12) 

 
Bxb 2

ˆ






x

xY
              (2.13) 

 

The stationary point 0x  is obtained by equating (2.13) to zero and solving for x , i.e. 

bBx0
1

2

1
              (2.14) 

 

To find the nature of the surface at the stationary point we examine the second derivative of 

 xŶ . From (2.13) 

 
 

B2
ˆ

2

2






x

xY
  (since B is symmetric). 

The stationary point is a maximum, minimum or a saddle point according as B is negative 

definite, positive definite or indefinite matrix. If v ,...,, 21  represent the v eigenvalues of B. 

Then it is easy to see that if v ,...,, 21  are 

(i)   All negative, then at 0x  the surface is a maximum 

(ii)   All positive, then at 0x  the surface is a minimum 

(iii) of mixed signs, i.e. some are positive and others are negative, then 0x  is a saddle point 

of the fitted surface. 

 

Furthermore, if  i  is zero (or very close to zero), then the response does not change in value 

in the direction of the axis associated with ix  variable. The magnitude of i  indicates how 

quickly the response changes in the direction of axis associated with ix  variable. 
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The conditions in (2.1) and (2.9) help in fitting of the response surfaces and define some 

statistical properties of the design like rotatability.  However, these conditions need not 

necessary be satisfied before fitting a response surface. This can be achieved by using the 

software packages like the Statistical Analysis System (SAS).  PROC RSREG fits a second 

order response surface design and locates the coordinates of the stationary point, predict the 

response at the stationary point and give the eigenvalues v ,...,, 21  and the corresponding 

eigen vectors. It also helps in determining whether the stationery point is a point of maxima, 

minima or is a saddle point.  The lack of fit of a second order response surface can also be 

tested using LACKFIT option under model statement in PROC RSREG.  The lack of fit is 

tested using the statistic 

F =
)N'/(NSS

(N'-p) /SS

PE

LOF


                 (2.15)

  

where N is the total number of observations, N’ is the number of distinct treatments and p is 

the number of terms included in the model.  SSPE (sum of squares due to pure error) has been 

calculated in the following manner: denote the lth observation at the uth design point by ylu, 

where l =1,…, ru (  1), u=1,…, N   . Define uy  to be average of ru observations at the uth 

design point. Then, the sum of squares for pure error is  

                  SSPE = 2
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)ulu
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             (2.16) 

Then sum of squares due to lack of fit (SSLOF) = sum of squares due to error - SSPE 

The analysis of variance table for a second order response surface design is given below. 

 

Table 1.  Analysis of variance for second order response surface 

Source      d.f.                    S.S. 

Due to regression 

coefficients 
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By subtraction = SSE 

Total 1N  
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In the above table CF = correction factor = 
 

N

Total Grand
2

.  For testing the lack of fit the 

sum of squares is obtained using (2.16) and then sum of squares is obtained by subtracting the 

sum of squares due to pure error from sum of squares due to error.  The sum of squares due to 
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lack of fit and sum of squares due to pure error are based on 1
2

2' 









v
vN and 

NN  degrees of freedom respectively.   

 

It is suggested that in the experiments conducted to find a optimum combination of levels of 

several quantitative input factors, at least one level of each of the factors should be higher 

than the expected optimum.  It is also suggested that the optimum combination should be 

determined from response surface fitting rather than response curve fitting, if the experiment 

involves two or more than two factors. 

 

3. Construction of Second Order Rotatable designs 

A second order response surface design is at least resolution V fractional factorial design. 

Here  

 

3.1 Central Composite Rotatable Designs 

Let there be v factors in the design.  A class of SORD for v factors can be constructed in the 

following manner.  Construct a factorial v-factors with levels   containing p2  

combinations, where p2  is the smallest fraction of v2  without confounding any interaction of 

third order or less.  Next, another v2  points of the following type are considered: 

        00,000,000 . These  vN p 22   points, give rise to a 

SORD in v factors with levels 0,,   . We have for this design, 
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On applying the condition of rotatability, we have 
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This equation gives a relationship between   and  . For determining   and   uniquely, we 

either fix  1  or .12   For .2,1 2/p2      
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Example. Let 4v . Then the points of the SORD are 

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

  0 0 0 

  0 0 0 

0   0 0 

0   0 0 

0 0   0 

0 0   0 

0 0 0   

0 0 0   

0 0 0 0 

 

There are 25 points – a central point has been added because, all the non-central points are 

equidistant from the origin, as  2 , here. 

 

3.2  Construction of SORD using BIB Designs 

If there exists a BIB design D with parameters **,*,*,*, krbv  such that  *3* r , then a 

SORD with each factor at 3 levels can be constructed.  
 

Let *N be the ** bv   incidence matrix of D. Then *N  is a matrix of order ** vb  , every 

row of which contains exactly *k  unities and every column contains exactly *r unities, rest 

positions being filled up by zeros. In *N , replace the unity by  . Then, we get 

*b combinations involving   and zero.  Next, each of these combinations are ‘multiplied’ 

with those of a *2k factorial with levels 1  where, the term ‘multiplication’ means the 

multiplication of the corresponding entries in the two combinations, zero entries remaining 

unaltered.  Thus, if  0  is multiplied by  11   we get  0  . The procedure 

of multiplication gives rise to *b *2k  points each of *v -dimension.  These points evidently 

satisfy all the conditions (A’), (B’), (C’) and (D’); however, since each point in the 
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arrangement is at the same distance from the origin, we have to take at least one central point 

to get a SORD in *vv  factors.  The levels of the factors are 0, . The value of   can be 

determined by fixing 12  . 

 

SORD’s can be constructed using BIB designs, even when *3*r  . In the case, where 

*3* r  the set of *b *k2 points obtained using *N  is to be augmented with further 

*v2 points of the type  

        00,000,000  

For the N points (N = *b *k2 + *v2 ), we have  
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When *3* r , the points augmented are of type    ......  and p2  in number, 

where p2  is the smallest fraction of *2v  factorial with levels  , such that no interaction of 

order three or less is confounded.  In this case,  
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Thus, 44*44* 22*2.32*3  pkpk r   

     or,   4*41 2*3*2  kp r  , 

which gives     21*2122 2.*3*  pkr  . 
 

In both the cases, we get *v -factor SORD with each factor at five levels 
 

4.    Practical Exercise 

Exercise 1: Consider an experiment that was conducted to investigate the effects of three 

fertilizer ingredients on the yield of a crop under fields conditions using a second order 

rotatable design. The fertilizer ingredients and actual amount applied were nitrogen (N), from 

0.89 to 2.83 kg/plot; phosphoric acid (P2O5) from 0.265 to 1.336 kg/plot; and potash (K2O), 

from 0.27 to 1.89 kg/plot. The response of interest is the average yield in kg per plot. The 

levels of nitrogen, phosphoric acid and potash are coded, and the coded variables are defined 

as 

X1=(N-1.629)/0.716, X2=(P2O5-0.796)/0.311, X3=(K2O -1.089)/0.482 
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The values 1.629, 0.796 and 1.089 kg/plot represent the centres of the values for nitrogen, 

phosphoric acid and potash, respectively. Five levels of each variable are used in the 

experimental design. The coded and measured levels for the variables are listed as 

 Levels of xI 

 -1.682 -1.000 0.000 +1.000 +1.682 

N 0.425 0.913 1.629 2.345 2.833 

P2O5 0.266 0.481 0.796 1.111 1.326 

K2O 0.278 0.607 1.089 1.571 1.899 

Six center point replications were run in order to obtain an estimate of the experimental error 

variance. The complete second order model to be fitted to yield values is 
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The following table list the design settings of 1x , 2x  and 3x  and the observed values at 15 

design points N, P2O5, K2O and yield are in kg. 

 

Table 2: Central Composite Rotatable Design Settings in the Coded Variables 1x , 2x  

and 3x , the original variables N, P2O5, K2O and the Average Yield of a Crop at Each 

Setting 

1x  2x  3x  N P2O5 K2O Yield 

-1 -1 -1 0.913 0.481 0.607 5.076 

1 -1 -1 2.345 0.481 0.607 3.798 

-1 1 -1 0.913 1.111 0.607 3.798 

1 1 -1 2.345 1.111 0.607 3.469 

-1 -1 1 0.913 0.481 1.571 4.023 

1 -1 1 2.345 0.481 1.571 4.905 

-1 1 1 0.913 1.111 1.571 5.287 

1 1 1 2.345 1.111 1.571 4.963 

-1.682 0 0 0.425 0.796 1.089 3.541 

1.682 0 0 2.833 0.796 1.089 3.541 

0 -1.682 0 1.629 0.266 1.089 5.436 

0 1.682 0 1.629 1.326 1.089 4.977 

0 0 -1.682 1.629 0.796 0.278 3.591 

0 0 1.682 1.629 0.796 1.899 4.693 

0 0 0 1.629 0.796 1.089 4.563 

0 0 0 1.629 0.796 1.089 4.599 

0 0 0 1.629 0.796 1.089 4.599 

0 0 0 1.629 0.796 1.089 4.275 

0 0 0 1.629 0.796 1.089 5.188 

0 0 0 1.629 0.796 1.089 4.959 
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OPTIONS LINESIZE = 72; 

DATA RP; 

INPUT N P K YIELD; 

CARDS; 

…. 

…. 

…. 

; 
 

PROC RSREG; 

MODEL YIELD = N P K /LACKFIT NOCODE; 

RUN; 

                      Response Surface for Variable YIELD 

                   Response Mean             4.464050 

                   Root MSE                  0.356424 

                   R-Square                    0.8440 

                   Coef. of Variation          7.9843 

  

Regression     d.f.   Sum of Squares   R-Square     F-Ratio     Prob > F 

 Linear                3        1.914067       0.2350      5.022     0.0223 

 Quadratic              3        3.293541       0.4044      8.642     0.0040 

 Crossproduct           3        1.666539       0.2046      4.373     0.0327 

 Total Regression        9        6.874147       0.8440      6.012     0.0049 

 

Regression     d.f.    Sum of Squares   R-Square     F-Ratio     Prob > F 

Lack of Fit             5       0.745407        0.149081     1.420    0.3549 

Pure Error             5       0.524973        0.104995 

Total Error          10       1.270380        0.127038 

 

Parameter           d.f     Estimate        Std Error         T-ratio Prob > |T| 

INTERCEPT               1          6.084180        1.543975        3.941  0.0028 

N                       1          1.558870        0.854546         1.824  0.0981 

P                       1         -6.009301        2.001253      -3.003  0.0133 

K                       1         -0.897830        1.266909       -0.709  0.4947 

N*N                     1         -0.738716        0.183184       -4.033  0.0024 

P*N                     1         -0.142436        0.558725       -0.255  0.8039 

P*P                     1           2.116594        0.945550       2.238  0.0491 

K*N                     1           0.784166        0.365142       2.148  0.0573 

K*P                     1           2.411414        0.829973       2.905  0.0157 

K*K                    1         -0.714584        0.404233      -1.768  0.1075 

 

Factor           d.f.        Sum of Squares       Mean Squares    F-Ratio    Prob > F 

 N                4          2.740664         0.685166       5.393     0.0141 

 P                4          1.799019         0.449755       3.540    0.0477 

 K                4          3.807069         0.951767       7.492     0.0047 
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 Canonical Analysis of Response Surface      

       Factor            Critical Value 

                       N                 1.758160 

                       P                 0.656278 

                       K                 1.443790 

           Predicted value at stationary point       4.834526 kg 
                                     

 Eigenvectors 

       Eigenvalues           N           P                K 

          2.561918         0.021051         0.937448         0.347487 

         -0.504592         0.857206       -0.195800          0.476298 

         -1.394032        -0.514543      -0.287842          0.807708 

                  Stationary point is a saddle point. 

 

The eigenvalues obtained are 321 and,   as 2.561918, -0.504592, -1.394032. As 

32 and    are negative, therefore, take 032 WW . Let  

M = {0.021051     0.857206     -0.514543, 

          0.937448   -0.195800     -0.287842, 

          0.34787       0.476298      0.807708}; 

denotes the matrix of eigenvectors. The estimated response at the stationary points be 

4.834526 kg/plot. Let the desired response be desY =5.0 kg/plot. Therefore, let 1W , obtained 

from the equation is sqrt (difference/2.561918)=AX1, say. To obtain various different sets of 

many values of 1W , generate a random variable, u , which follows uniform distribution and 

multiply this value with 1u2   such that 1W  lies within the interval, (-AX1, AX1). Now to 

get a combination of s'xi  that produces the desired response obtain 0xW*Mx  . 
 

PROC IML; 

W=J(3,1,0); 

Ydes=5.0; 

W2=0; 

W3=0; 

Dif=Ydes - 4.834526; 

Ax1=Sqrt(dif/2.561918); 

u= uniform(0); 

W1= ax1*(2*u-1); print w1; 

w[1,] = w1; 

w[2,] = 0; 

w[3,] = 0; 

m = {0.021051  0.857206     -0.514543, 

        0.937448   -0.195800    -0.287842, 

        0.34787       0.476298    0.807708}; 

xest = {1.758160, 0.656278, 1.443790}; 

x = m*W+xest; 

print x; 

run; 
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Combinations of N, P, K estimated to produce 5.0 kg/plot of Beans. 

Y N P K 

5.0 1.760 0.730 1.471 

 1.762 0.815 1.503 

 1.754 0.460 1.371 

One can select a practically feasible combination of N, P and K. 

 

5. Response Surface Designs for Slope Estimation 

The above discussion relates to the response surface designs for response optimization. In 

many practical situations, however, the experimenter is interested in estimation of the rate of 

change of response for given value of independent variable(s) rather than optimization of 

response. This problem is frequently encountered e.g., in estimating rates of reaction in 

chemical experiments; rates of growth of biological populations; rates of changes in response 

of a human being or an animal to a drug dosage, rate of change of yield per unit of fertilizer 

dose.  Efforts have been made in the literature for obtaining efficient designs for the 

estimation of differences in responses i.e., for estimating the slope of a response surface. 

 

Many researchers with different approaches have taken up the problem of designs for 

estimating the slope of a response surface. We confine ourselves to two main approaches, 

namely 

 Slope Rotatability 

 Minimax Designs 
 

The designs possessing the property that the estimate of derivative is equal for all points 

equidistant from the origin are known as slope rotatable designs.  For a second order 

response surface, the rate of change of response due to thi  independent variable is given by  
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Thus in order to obtain slope rotatable design, the design must satisfy  

 Conditions of symmetry (2.1) 

  1
2
2

4  vcv



 

    iiii bVarbVar 4 . 

It is important to note here that no rotatable design can be slope rotatable. 

 

A minimax design is one that minimizes the variance of the estimated slope maximized over 

all points in the design. 
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6. Web Resources on Response Surface designs 

Response surface fitting can also be done using SAS and SPSS steps given on the link 

Response Surface Designs at Design Resources Server using the link 

http://www.iasri.res.in/design/Analysis%20of%20data/response_surface.html. Response 

surface fitting can also be performed from IP Authenticated Indian NARS Statistical 

Computing Portal (http://stat.iasri.res.in/sscnarsportal) using the link response surface 

designs.  
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1. Introduction 

Probit analysis is widely used in various fields where the response variable is qualitative. The 

main application of probit analysis is observed in the field of toxicological studies, where it 

transforms the sigmoid dose-response curve to a straight line that can then be easily analyzed by 

regression either through least squares or maximum likelihood. In other words, probit analysis is 

a methodology which transforms the complex percentage affected vs. dose response into a linear 

relation of probit vs. dose response. The probit can then be translated into percentages. The 

method is appropriate because of the typical shape found in the dose response curve. The method 

is approximate but allows quantification of consequence due to exposure.  

 

“Probit” is an abbreviation of the term “probability unit” (the term is attributed to Bliss) and was 

the first such model developed and studied to treat data such as the percentage of pest killed by a 

pesticide. Bliss(1934) proposed transforming the percentage killed into “probit” (he defined it 

arbitrarily as equal to 0 for 0.0001 and 10 for 0.9999) and included a table to aid other 

researchers to convert kill-percentage to probit, which then could be plotted against the logarithm 

of the dose i.e. dosage. The table introduced by Bliss was carried forward in an important text on 

toxicological application by Finney (1952). Values tabulated by Bliss can be derived from probit 

as defined here by adding a value of 5. Using Bliss’s idea, Leslie et al. (1945) were able to 

discuss the distribution of body–weight at which female rats in the wild reach maturity through 

probit analysis.  

 

Mainly Probit analysis is used to analyze data from bioassays [most commonly refers to 

assessment of vitamins, hormones, toxicants and drugs of all kinds by means of response 

produced when doses are given to experimental animals (Finney 1952)] experiments, such as 

proportion of insect killed by several concentrations of an insecticide or at several time intervals 

at one or more concentration of an insecticide (Throne et al., 1995). One type of assay which has 

been found valuable in many different fields, but especially in toxicological studies, is that 

dependent upon quantal or all-or-nothing response. Though quantitative measurement of a 

response is almost always to be preferred when practicable, there are certain responses which 

permit no graduation and which can only be expressed as ‘occurring’ or ‘not-occurring’. The 

most common example is mortality such as in many insecticidal studies the interest lies in 

whether or not a test insect is dead, or whether the insect has reached a certain degree of 

inactivation. In fungicidal investigations, failure of a spore to germinate is a quantal response of 

similar importance. 

 

2. Probit Model                              

In probability theory and statistics, the probit function is the inverse cumulative distribution 

function (CDF), associated with the standard normal distribution.  An alternative distribution 

could be the logistic distribution, which leads to the logit or logistic model. Both logistic and 

probit curves are so similar that they yield almost identical results. In practice they give 
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estimated probabilities that differs very little (Aldrich and Nelson, 1984). The choice between 

logistic and probit is a matter of practical preference and experience. 

 

For the standard normal distribution N (0, 1), the CDF is commonly denoted by Φ (z) 

(continuous, monotone increasing sigmoid function) given by, 
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                                                          … (2.1) 

 

As an example, considering the familiar fact that the N (0, 1) distribution places 95% of 

probability between -1.96 and 1.96, and is symmetric about zero, it follows that 

 

                ( 1.96) 0.025 1 (1.96)                                                                                  … (2.2) 

 

The probit function gives the 'inverse' computation, generating a value of an N (0, 1) random 

variable, associated with specified cumulative probability. Formally, the probit function is the 

inverse of Φ (z), denoted by Φ − 1(p). Continuing the example, 

 

              1 1(0.025) 1.96 (0.975)                                                                           … (2.3) 

 

In general, 

 

               (probit(p))=p  and probit (Φ(z))=z                                                                   … (2.4) 

 

In statistics, a probit model is a popular specification of a generalized linear model. If Y be a 

binary response variable, and let X be the single predictor variable, then the probit model 

assumes that, 
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                                                                     … (2.5) 

 

where Φ is the CDF of the standard normal distribution. The parameters β are estimated by 

maximum likelihood. 

 

3. Quantal Response 

3.1 Frequency Distribution ofTolerance                       

Two major components in any dose-response situation are the stimulus (e.g. a vitamin, a drug, a 

mental test or a physical force) and the subject (e.g. an animal, a plant, a human volunteer etc.). 

A stimulus is applied to the subject at a specified dose, intensity specified in units of 

concentration, weight, time or other appropriate measure, under controlled environmental 

condition. As a result subject manifests a response. 



 

 167 

  

The response is quantal, occurrence or non-occurrence will depend upon the intensity of the 

stimulus. For any subject under controlled conditions, response occurs above a certain level of 

intensity, such a value is generally known as threshold or limen, but tolerance is now widely 

accepted. The tolerance value will vary from one subject to another in the population used. For 

quantal response data it is therefore necessary to consider distribution of tolerance over the 

population studied. If the dose or intensity of stimulus is measured by z, the distribution of 

tolerance may be expressed by: 

 

              dP=f(z)dz                                                                                                             … (3.1) 

 

This equation states the proportion, dP , of the whole population of subject whose tolerance  lie  

between z and z+dz  at  the time of testing, where dz  represents a small interval on dose scale; 

the factor relating  dP  to the length of this interval is the frequency function, f(z) , uniquely 

determined for each possible value of z. 

 

If a dose 0z  were given to the whole population, every individual whose tolerance was less than 

0z  would respond. The proportion of these is P ,  

where 

 

                 
0z

0

P= f(z)dz                                                                                                             ... (3.2) 

 

The measure of dose is here assumed to be a quantity that can conceivably range from zero 

to , response being certain for very high doses so that 

 

                 

0

f(z)dz 1



                                                                                                            … (3.3) 

 

3.2 The Dose Metameter                          

The frequency distribution of tolerances, as measured on the natural scale, is usually markedly 

skewed, but often a simple transformation of the scale of measurement will convert it to a 

distribution approximately of normal form. The transformed scale of dose on which tolerances 

are normally distributed is known as metametric scale, and the measure of dose is the dose 

metameter. 
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The transformation 

 

                10x =log z                                                                                                               … (3.4) 

generally brings normality in the response variable, however for some fungicide a better 

transformation may be  

                ix = z , where usually i 1 . 

 

3.3 The Median Effective Dose                         

The effectiveness of a stimulus in relation to a quantal response is referred to as the minimal 

effective dose, or, for a more restricted class of stimuli as the minimal lethal dose. However it 

does not take into account the variation in tolerance within a population. The logical weakness of 

such concepts is the assumption that there is a dose for any given chemical, which is only just 

sufficient to kill all or most of the animals of a given species, and that doses a bit lesser would 

not kill any animal of that species. However, in toxicological studies such assumptions do not 

always hold good. 

  

It might be thought that the minimal lethal dose of a poison could instead be defined as the dose 

just sufficient to kill a member of the species with the least possible tolerance, and also a 

maximal non-lethal dose as the dose, which will just fail to kill the most resistant member.  Some 

doses will be so low that no test subject will succumb to them and others so high as to prove fatal 

at all and difficulties arise in determination of the end-points of these ranges. The problem is that 

of determining the dose at which the dose response curve for the whole population needs the 0% 

or 100% levels of kill and even a very large experiment could scarcely estimate these points with 

any accuracy. 

 

Alternatively, a median lethal dose, or, as a more general term to include response other than 

mortality, a median effective dose is preferred. This is the dose that will produce a response in 

half the population. The median effective dose is commonly referred to as the ED50, the more 

restricted concept of median lethal dose as the LD50. With a fixed total number of subjects, 

effective doses in the neighborhood of ED50 can usually be estimated more precisely than those 

for more extreme percentage levels and this is, therefore, particularly favoured in expressing the 

effectiveness of the stimulus. The ED50 can be regarded as the median of the tolerance 

distribution and thus it is the level of tolerance such that exactly half the subject lies on either 

side of it.  

 

For any distribution of tolerance, the ED50 is the value of 0z , such that  

 

                
0z

0

f(z)dz 0.5                                                                                                         … (3.5) 
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When a simple normalizing transformation for the doses is available, so that x, the normalizing 

measure of dose (commonly known as dosage), has a normally distributed tolerance, equation 

(3.1) is transformable to 

                

2

2

1
(x-μ)

2σ1
dP = e dx

σ 2Π



.                                                                                  … (3.6) 

where  is the center of the distribution and 2 , its variance. The  is the population value of the 

mean dosage tolerance, or median effective dosage, and efforts must be directed at estimating it 

from the observational data. The log10ED50 is the value of 0x  for which   
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                                                                               … (3.7) 

 

The solution of equation (3.7) is , so that the ED50 is
μ10 . 

Any two insecticides may require the same rate of application in order to be effective to half the 

population, but, if the distribution of tolerances has a lesser 'spread' for one than for the other, 

any increase or decrease from this rate will produce a greater change in mortality for the first 

than for the second. This spread is measured by the variance 2 . This measure along with the 

ED50 fully describes the effectiveness of the stimulus. The smaller the value of 2 , the greater is 

the effect on mortality of any change in dose. 

 

4. Estimation of the Median Effective Dose 

4.1 The N.E.D. and Probit Transformation                                   

Initially the measure of the probability of response was proposed on a transformed scale i.e. the 

normal equivalent deviate (or N.E.D.). This response metameter is Y, defined by: 
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                                                                                            ... (4.1) 

Thus the N.E.D. of any value of Р between 0 and 1 is defined as the abscissa corresponding to a 

probability Р in a normal distribution with mean 0 and variance 1. 

 

Equation (4.1) determines either of Р and Y uniquely from the other. From integration of 

equation (3.6), if Р is the probability of response at a dosage whose metameter is a particular 

value X, then  
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which by writing x = μ+σu  

 

becomes   

2

(X-μ)
1σ u
2

1
P e du

2π





                                                                                          … (4.3) 

                 

Comparison of equation (4.3) with equation (4.1) shows that 

 

                
(X - μ)

Y=
σ

                                                                                                            … (4.4) 

Thus, the relation between the dose metameter (x) and the N.E.D. of the probability of response 

at that dosage is a straight line. 

 

Bliss (1934) suggested a slightly different response metameter. Bliss defined the probit of the 

proportion Р as Y, where 
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                                                                                           … (4.5) 

 

For any Р, the probit is simply the N.E.D. increased by 5. All subsequent theory is essentially 

same for the two metameters. The N.E.D, however, is negative if Р is less than 50%, whereas the 

probit is generally positive unless Р is exceedingly small. 

 

Comparison with equation (4.1) shows that the probit of the expected proportion responded is 

related by the linear equation  

 

                
1

Y=5+ (x-μ)
σ

                                                                                                        … (4.6) 

 

In particular, the median effective dosage is estimated as that value of x which gives Y = 5.       

                                          

4.2 The Probit Regression Line                                 

When experimental data on the relationship between dosage and response have been obtained, 

either a graphical or an arithmetical approach can be used to estimate the parameters. Both 

approaches depend on the probit transformation. The graphical approach is much more rapid and 

is sufficiently good for many purposes, but for some, more complex problems, or when an 

accurate assessment of the precision of estimates is wanted, the more detailed arithmetical 

analysis is necessary. Here graphical approach is discussed. 

 

To start with, the percentage response observed for each dose are calculated and converted to 

probits by means of the following table (Finney, 1971): 
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Table 4.1: Transformation of percentages to probits 

 

 
The probits are then plotted against the dose metameter i.e. the logarithm (base 10) of the dose. 

Very extreme probits, say outside the range 2.5-7.5, carry little weight and should be 

disregarded. A straight line is drawn to fit the points as satisfactorily as possible.  The line is 

nothing but the weighted regression line of the mortality probit on x. By visual inspection, the 

log10ED50 is estimated from the line as m, the dosage at which Y = 5. This can be taken as 

estimate of .The estimated slope of the line (b) is an estimate of 1/σ, can be obtained as the 

increase in Y for a unit increase in x. These two estimates are then substituted for the parameters 

in equation (4.6) to give the estimated relation between dosage and response. To test the 

hypothesis that the line is an adequate representation of the data, a 2χ test of the form        

                                                                                                                                                                                                                                                       

                
2

2 2
k-2

(r -np)
χ = ~ χ

np(1-p)
                                                                                         … (4.7)      

 

may be used. Here n is the number of subjects exposed to a specific concentration, r is the 

observed number of units respond out of n number of unit, 
r

p =
n

 is the estimated proportion of 

response for that particular concentration. Here k level of concentration is applied over the test 

subject and summation is taken over all the level of concentration tested. A value of 2χ  within 

the limits of random variation indicates satisfactory agreement theory (the line) and observation 

(the data). 

 

Example 4.1: Table 4.2 contains the data on effect of a series of concentrations of the pesticide 

Rotenone when spraying on Macrosiphoniella sanborni, the chrysanthemum aphis, in batches of 

about fifty (Finney, 1971). 
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Table 4.2: Toxicity of Rotenone to Macrosiphoniella sanborni 
  

Concentration 

(mg. /1.) 

No. of 

insects 

(n) 

No. of 

affected  

(r) 

% kill 

(p) 

Log 

concentration  

(x) 

Empirical 

probit 

10.2 50 44 88 1.01 6.18 

  7.7 49 42 86 0.89 6.08 

  5.1 46 24 52 0.71 5.05 

  3.8 48 16 33 0.58 4.56 

  2.6 50 6 12 0.41 3.82 

0 49 0 0 - - 

 

Table 4.2 summarizes the dose metameter, percentage kill, and empirical probit values for the 

experiment. Over the range of concentrations tested, the relation between percentage kills and 

log concentration is apparently sigmoid. The percentages are plotted against the logarithm of 

doses and fitted with the normal sigmoid curve in Fig. 4.1. 

 

 
 

Fig.4.1: Relation between percentage kill of Macrosiphoniella sanborni and logarithm of dose 

of Rotenone. 

 

In order to fit a straight line, percentages of kill have been converted into probits using Table 4.1 

and are given in the last column of Table 4.3. When probits are plotted against dosages 

(logarithm to the base 10 of doses); they lie nearly on a straight line. Fig 4.2 gives the plot of 

probits vs. dosages. From this line, probits corresponding to many different values of x can be 

found out and converted back to percentages by using Table 4.1 inversely. 
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Fig. 4.2: Relation between probit of kill of Macrosiphoniella sanborni and logarithm of dose of 

Rotenone. 

 

In Fig. 4.2 of the present example, a probit value of 5 is given by a dosage of m = 0.687; this 

therefore is the estimate of log10ED50, and the ED50 is estimated as a concentration of 4.86mg/l. 

Similarly the log10ED90 corresponds to a probit of 6.28 and is therefore 1.006; the ED90 is thus 

estimated as 10.14 mg/l.     

Thus Fig. 5.2 can also be used to give the slope of the line: an increase of 0.319 in x corresponds 

with an increase of 1.28 in probit. Hence the estimated regression coefficient of probit on dosage, 

or the rate of increase of probit value per unit increase in x, is 

                           

                  b = 4.01                                                                                                                … (4.8) 

 Thus equation (4.6) becomes  
 

                  Y = 5 + 4.01 (x – 0.687), or Y = 2.25 + 4.01x                                                    … (4.9)  

 

Equation (4.9) may be used to calculate expected numbers of insects killed at each concentration. 

By substitution of the values of x used in the experiment, the equation gives the values of Y 

which are given in column 2 of Table 4.3 as expected probits. Thus a probit of 6.30 corresponds 

to a percentage of between 90 and 91, or, more accurately, 90 + 2/6%. If the expected proportion 

for any concentration is multiplied by n, the number of insects tested at that concentration, the 

result is the expected number of responded insects, or the average number which would be 

affected in a batch of size n if equation (4.9) represents the true relationship between dosage and 

response. These numbers, np, may then be compared with the actual numbers affected, r, in order 

to judge the adequacy of the equation.        
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Table 4.3: Comparison of Observed and Expected Mortality. 

Log 

concentrat

ion 

 

 

(x) 

Expect

ed 

probit 

 

 

(Y) 

% 

kill 

 

 

 

(p) 

 

No. 

of 

insect

s 

 

(n) 

No. affected Discrepancy 

 

 

 

(r-np) 

2(r-np)

np(1-p)

 

Observed 
 
 

 

(r) 

Expected 

 

 
(np) 

1.01 6.30 90.3 50 44 45.2 -1.2 0.33 

0.89 5.83 79.7 40 42 39.1 2.9 1.06 

0.71 5.10 54.0 46 24 24.8 -0.8 0.06 

0.58 4.58 33.7 48 16 16.2 -0.2 0.00 

0.41 3.90 13.6 50 6 6.8 -0.8 0.11 

                                                                                                                            2

[3]χ =1.56  

 

Since proportion of response has been estimated from the data, the degree of freedom of 2χ (=3) 

is two less than the number of concentrations tested. From Fisher and Yates Table (1964, Table 

IV), the tabulated value of 2
[3]χ  at 5% level of significance is 7.815. Thus the calculated value of 

2
[3]  (1.56) is much smaller than the tabulated value of 2

[3]χ  at 5% level of significance. Hence, 

the probit regression line is very satisfactory representation of the results of the experiment. 

 

4.4. Probit Analysis Using Statistical Software 

Various statistical packages can be used for probit analysis. The easiest by far is to use a 

statistical package such as SPSS or SAS. Considering example (4.1), how SPSS and SAS can be 

used in probit analysis is described below. 

 

4.1 Probit Analysis through SPSS  

In order to perform a probit analysis through SPSS the following steps are necessary:         

 

Step-I: Enter data. Here con is the concentration, n is the total number of insects exposed and r is 

the total number of insects affected. 

Step-II: Go to Analyze Regression  Probit… 

Step-III: Put the variables in their respective boxes as indicated below  Select log base 10 in 

transform box  Choose Probit Click OK. 
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Step-IV: See the out put and interpret the result. 

 

4.2 Probit Analysis through SAS 

Alternatively, we can perform the same probit analysis using SAS by writing the following 

syntax in programme editor of SAS (Since there is very little difference in the output of SPSS 

and SAS, only SAS output is presented here). 
 

  

data arpan; 

input con n r; 

datalines; 

10.2 50 44 

7.7 49    42 

5.1 46 24 

3.8   48 16 

2.6 50 6 

0 49 0 

 

; 

ods html; 

Proc Probit log10 ; 

Model r/n=con/lackfit inversecl; 

title ('output of probit analysis'); 

run; 

ods html close; 

 

The output can be viewed as: 

(output of probit analysis) 

 
Probit Procedure 

Model Information 

Data Set WORK.ARPAN 
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Model Information 

Events Variable r 

Trials Variable n 

Number of Observations 5 

Number of Events 132 

Number of Trials 243 

Name of Distribution Normal 

Log Likelihood -120.0516414 

 

Number of Observations Read 6 

Number of Observations Used 5 

Number of Events 132 

Number of Trials 243 

 
 
 
 

Goodness-of-Fit Tests 

Statistic Value DF Pr > Chi Sq 

Pearson Chi-Square 1.7289 3 0.6305 

 

Probit Model in Terms of 
Tolerance Distribution 

MU SIGMA 

0.68533786 0.23734947 

 

Estimated Covariance Matrix for Tolerance 
Parameters 

  MU SIGMA 

MU 0.000488 -0.000063 

SIGMA -0.000063 0.000726 

 
 

(output of probit analysis) 

 
Probit Procedure 
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Probit Analysis on Log10(con) 

Probability Log10(con) 95% Fiducial 
Limits 

0.01 0.13318 -0.03783 0.24452 

0.02 0.19788 0.04453 0.29830 

0.03 0.23893 0.09668 0.33253 

0.04 0.26981 0.13584 0.35834 

0.05 0.29493 0.16764 0.37940 

0.06 0.31631 0.19466 0.39737 

0.07 0.33506 0.21832 0.41316 

0.08 0.35184 0.23946 0.42733 

0.09 0.36711 0.25866 0.44026 

0.10 0.38116 0.27631 0.45218 

0.15 0.43934 0.34898 0.50192 

0.20 0.48558 0.40618 0.54202 

0.25 0.52525 0.45467 0.57700 

0.30 0.56087 0.49759 0.60904 

0.35 0.59388 0.53666 0.63942 

0.40 0.62521 0.57295 0.66905 

0.45 0.65551 0.60716 0.69861 
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Probit Analysis on Log10(con) 

Probability Log10(con) 95% Fiducial 
Limits 

0.50 0.68534 0.63983 0.72870 

0.55 0.71516 0.67142 0.75986 

0.60 0.74547 0.70240 0.79265 

0.65 0.77679 0.73330 0.82766 

0.70 0.80980 0.76480 0.86563 

0.75 0.84543 0.79777 0.90761 

0.80 0.88510 0.83352 0.95533 

0.85 0.93133 0.87427 1.01188 

0.90 0.98951 0.92456 1.08401 

0.91 1.00357 0.93658 1.10155 

0.92 1.01883 0.94960 1.12065 

0.93 1.03562 0.96387 1.14170 

0.94 1.05436 0.97976 1.16526 

0.95 1.07574 0.99783 1.19218 

0.96 1.10086 1.01898 1.22388 

0.97 1.13174 1.04490 1.26294 
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Probit Analysis on Log10(con) 

Probability Log10(con) 95% Fiducial 
Limits 

0.98 1.17279 1.07924 1.31498 

0.99 1.23750 1.13315 1.39721 

 

Here we only consider the metametric scale. From the output obtained through SAS, we can 

estimate log10ED50 as 0.68534 mg. /l. with its 95% fiducial limits are 0.72870 and 0.63983 mg. 

/l. respectively. 

 

6. Conclusions 

Probit analysis has been widely used in diverse fields wherein the response variable is 

qualitative. Probit analysis for dose-response studies under regression framework is commonly 

done.  In such studies, the estimation of the median effective dose (ED50) i.e. the dose that will 

produce a response in half the population along with its variance can be chiefly done. This can be 

easily be achieved by using any standard statistical software.   
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1. Introduction 
 

Regression analysis is a widely used method for obtaining a functional relationship between the 

response or dependent variable and one or more explanatory or predictor variables. In all the 

regression models, we implicitly assumed that the response variable is quantitative in nature 

whereas the explanatory variables are either quantitative, qualitative or a mixture thereof. In case 

of qualitative or non-metric response variable usual assumptions of regression models are 

violated, hence, it is better to look for alternative models. In practice, situations involving 

categorical outcomes are quite common. Suppose we want to study the labour force participation 

(LFP) decision of adult males. Since an adult is either in the labour force or not, LFP is a yes or 

no decision. Similarly, in the setting of evaluating an extension program, for example, 

predictions may be made for the dichotomous outcome of success/failure or improved/not-

improved. An economist may be interested in determining the probability that an agro-based 

industry will fail given a number of financial ratios and the size of the firm (i.e. large or small) 

etc. 
 

Usually discriminant analysis could be used for addressing each of the above problems. 

However, because the independent variables are mixture of categorical and continuous variables, 

the multivariate normality assumption may not hold. In these cases the most preferable technique 

is the logistic regression analysis as it does not make any assumptions about the distribution of 

the independent variables.  

 

2. Violation of Assumptions of Linear Regression Model when Response is Qualitative                                                                                                                               

 

Linear regression is considered in order to explain the constraints in using such model when the 

response variable is qualitative. Consider the following simple linear regression model with 

single predictor variable and a binary response variable: 

 

             i 0 1 i iY =β +β X +ε  , i = 1, 2, …, n     

where the outcome Yi is binary (taking values 0,1), 2
i εε ~ N(0,σ )  ,   and   are independent and n 

is the number of observations.  

Let  iπ  denote the probability that Yi =1 when Xi = x, i.e. 

                      i i i iπ =P(Y =1|X = x) =P(Y =1)                                                            

thus                  i iP(Y =0)=1-π       .                           

Under the assumption iE(ε ) 0 , the expected value of the response variable is  
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i i i iE(Y )=1.(π )+0.(1-π )= π  

If the response is binary, then the error terms can take on two values, namely, 

                      i iε 1 π        when Yi =1 

                       i iε π       when Yi =0 

 Because the error is dichotomous (discrete), so normality assumption is violated. Moreover, the 

error variance is given by: 

                                  
2 2

i i i i i

i i

V(ε ) π (1-π ) (1-π )(-π )

π (1-π )

 


 

It can be seen that variance is a function of  iπ 's  and it is not constant. Therefore the assumption 

of homoscadasticity (equal variance) does not hold. 

 

3. Logistic regression 
 

Logistic regression is normally recommended when the independent variables do not satisfy the 

multivariate normality assumption and at the same time the response variable is qualitative.  

Situations where the response variable is qualitative and independent variables are mixture of 

categorical and continuous variables, are quite common and occur extensively in statistical 

applications in agriculture, medical science etc. The statistical model preferred for the analysis of 

such binary (dichotomous) responses is the binary logistic regression model, developed primarily 

by a researcher named Cox during the late 1950s.   Processes producing sigmoidal or elongated 

S-shaped curves are quite common in agricultural data. Logistic regression models are more 

appropriate when response variable is qualitative and a non-linear relationship can be established 

between the response variable and the qualitative and quantitative factors affecting it.  It 

addresses the same questions that discriminant function analysis and multiple regression do but 

with no distributional assumptions on the predictors. In logistic regression model, the predictors 

need not have to be normally distributed, the relationship between response and predictors need 

not be linear or the observations need not have equal variance in each group etc.  A good account 

on logistic regression can be found in Fox (1984) and Kleinbaum (1994). 

 

The problem of non-normality and heteroscadasticity leads to the non applicability of least 

square estimation for the linear probability model. Weighted least square estimation, when used 

as an alternative, can cause the fitted values not constrained to the interval (0, 1) and therefore 

cannot be interpreted as probabilities. Moreover, some of the error variance may come out to be 

negative. One solution to this problem is simply to constrain the probability of outcome to the 

unit interval while retaining the linear relation between probability of outcome and regressor 

within the interval. However, this constrained linear probability model has certain unattractive 

features such as abrupt changes in slope at the extremes 0 and 1 making it hard for fitting the 

same on data. A smoother relation between the probability of outcome and regressor is generally 

more sensible. To correct this problem, a positive monotone (i.e. non-decreasing) function is 

required to transform linear combination of regressor to unit interval. Any cumulative probability 
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distribution function (CDF) meets this requirement. That is, re-specify the model as  πi = P (β0 + 

β1xi). where, πi is the probability of outcome and P is the cumulative distribution function. 

Moreover, it is advantageous if P is strictly increasing, for then, the transformation is one-to-one, 

so that model can be rewritten as P-1(πi) = (β0 + β1xi), where  P-1 is the inverse of the CDF P. 

Thus the non-linear model for itself will become both smooth and symmetric, approaching π = 0 

and   π = 1 as asymptotes. Thereafter maximum likelihood method of estimation can be 

employed for model fitting. 

 

3.1 Properties of Logistic Regression Model 

 

The Logistic response function resembles an S-shape curve, a sketch of which is given in the 

following figure. Here the probability π initially increases slowly with increase in X, and then the 

increase accelerates, finally stabilizes, but does not increase beyond 1.      
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The shape of the S-curve can be reproduced if the probabilities can be modeled  with only one 

predictor variable as follows: 

-zπ= P(Y=1|X= x)= 1/(1+e )     

where z = β0 + β1x, and e is the base of the natural logarithm. Thus for more than one (say r) 

explanatory variables, the probability π is modeled as  

1 1 r r

-z

π = P(Y=1|X = x ...X = x )

=1/(1+e )
 

where     0 1 1 r rz= β +β x +...+β x . 

This equation is called the logistic regression equation. It is nonlinear in the parameters β0, β1… 

βr.  Modeling the response probabilities by the logistic distribution and estimating the parameters 

of the model constitutes fitting a logistic regression. The method of estimation generally used is 

the maximum likelihood estimation method.  
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To explain the popularity of logistic regression, let us consider the mathematical form on which 

the logistic model is based. This function, called f (z), is given by   

                 f (z) = 1/ (1+e-z) , -∞ < z < ∞                                                                   

Now when z = -∞, f (z) =0 and when z = ∞, f (z) =1. Thus the range of f (z) is 0 to1. So the 

logistic model is popular because the logistic function, on which the model is based, provides  

• Estimates that lie in the range between zero and one.  

• An appealing S-shaped description of the combined effect of several explanatory 

variables on the probability of an event. 

 

3.2. Maximum Likelihood Method of Estimation of Logistic Regression 

 

Generally, the maximum likelihood method is used for estimating the parameters of the logistic 

regression model. The maximum likelihood estimates β0 and β1 in the simple logistic regression 

model are those values of β0 and β1 that maximize the log-likelihood function. No closed-form 

solution exists for the values of β0 and β1 that maximize the log-likelihood function. Computer 

intensive numerical search procedures are therefore required to find the maximum likelihood 

estimates 0β̂
and 1β̂

. Standard statistical software such as SPSS (Analyze- Regression-Binary 

Logistic) provide maximum likelihood estimates for logistic regression. Once these estimates 

0β̂
and 1β̂

 are found, by substituting these values into the response function the fitted response 

function, say, iπ̂
, can be obtained. The fitted response function is as follows:  

              
 0 1 i

i ˆ ˆ- β +β X

1
π̂ =

1+e

 
 
 
 
                                                                                

 

When log of the odds of occurrence of any event is considered using a logistic regression model, it 

becomes a case of logit analysis.  Thus formed logit model will have its right hand side as a linear 

regression equation. 

 

4. Practical Exercise using SPSS 

Sometimes quantitative information on adoption of a technology is not available but is available 

in qualitative form such as adopted / non-adopted, low / high adoption etc. The statistical model 

preferred for the analysis of such binary (dichotomous) responses is the binary logistic regression 

model. It can be used to describe the relationship of several independent variables to the binary 

(say, named 0 & 1) dependent variable. The logistic regression is used for obtaining probabilities 

of occurrence, say E, of the different categories when the model is of the form: P(E =1)  = 

)exp(1

1

z
 where z is a function of associated variables, if  P(E =1)  0.5  then there is more 

chance of occurrence of an event and if  P(E =1) < 0.5  then probability of occurrence of the 
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event is minimum.  If the experimenter wants to be more stringent, then the cutoff value of 0.5 

could be increased to, say, 0.7.  

 

For performing a Logistic Regression Analysis using SPSS 

From the menus choose: 

 Analyze 

   Regression 

    Binary Logistic... 

Select one dichotomous dependent variable. This variable may be numeric or string. 

Select one or more covariates.  

To include interaction terms, select all of the variables involved in the interaction and then select 

a*b. 

A detailed practical exercise with the real data involving both linear probability model and 

logistic regression model will be carried out using SPSS in the class. 
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Introduction 
Principal component analysis (PCA) is one among techniques for taking high dimensional data, 

and using the dependencies between the variables to represent it in a more tractable, lower-

dimensional form, without losing too much information. It was invented by Pearson (1901) and 

Hotelling (1933) and first applied in ecology by Goodall (1954) under the name “Factor 

Analysis”. During 1970 PCA was considered as the ordination method of choice for community 

data. Further, simulation studies made by Swan (1970), Austin and Noy-Meir (1971) 

demonstrated the horseshoe effect and showed that the linear assumption of PCA was not 

compatible with the non-linear structure of community data. Recently, it has stimulated the 

search for more appropriate ordination method and is most widely used as well as well-known 

of the “standard” multivariate methods. The purpose of principal component analysis is to 

derive a small number of linear combinations (principal components) of a set of variables that 

retain as much information in the original variables as possible. Often a small number of 

principal components can be used in place of the original variables for plotting, regression, 

clustering and so on. Principal component analysis can also be viewed as a technique to remove 

multicollinearity in the data. PCA is a way of identifying patterns in the data; data is expressed 

in such a way that the similarities and differences are highlighted. Once the patterns are found 

in the data, it can be compressed (reduce the number of dimensions) without losing much 

information. 

PCA is one of the simplest and most robust ways of dimensionality reduction. It is also one of 

the oldest methods, and has been rediscovered many times in many fields, so it is also known as 

the Karhunen-Loève transformation, the Hotelling transformation, the method of empirical 

orthogonal functions, and singular value decomposition. PCA is concerned with explaining the 

variance covariance structure of a set of variables through a few linear combinations of these 

variables. Mathematically it is orthogonal linear transformation of data to a new coordinate 

system such that the greatest variance by some projection of the data comes to lie on the first 

coordinate (called the first principal component (PC)), the second greatest variance on the 

second coordinate, and so on. PCA is an intermediate step for further treatment of data that 

includes regression analysis, indexing, assigning weights, etc. 

In this technique, we transform the original set of variables to a new set of uncorrelated random 

variables. These new variables are linear combinations of the originals variables and are derived 

in decreasing order of importance so that the first principal component accounts for as much as 

possible of the variation in the original data.  

PCA basically tries to explain the total data variability with the help of a fewer number of linear 

combinations of the original data called the Principal Components. The broad objective of PCA 

is the reduction in the data dimensions. 

“The information content of the new variables is as much as the information content of the 

original variables.” 
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Mathematically: 

Let be a px1 random vector with the dispersion matrix as 

 ;  is assumed to be a positive definite matrix 

The total variability in x is given by the trace ( ). 

PCA aims to replace x with some ; where yi’s are the linear combinations of 

xi such that. 

1. yi’s are uncorrelated i.e. Cov(yi,yj)=0  

2. The total variation in x = The total variation in y 

3. Total variation of  Total variation of ; where k<<p 

Definition: The Principal Components (PCAs) are the uncorrelated linear combinations 

 whose variance are in the decreasing order i.e. y1 explaining the maximum 

variability followed by y2 and so on.  

The first principal component may be defined as the linear combination: 

 i.e.  

 that maximizes Var( ) subject to ; i.e.  

This constraint is introduced because if this is not done Var(y1) can be increased simply by 

multiplying any a s a1j’s by a constant factor. 

The second principal component may be defined as the linear combination: 

  ; i.e.  

that maximizes Var( ) subject to  

Similarly, 

The ith principal component may be defined as the linear combination: 

  that maximizes Var( ) subject to  

It is quite likely that first few principal components account for most of the variability in the 

original data. If so, these few principal components can then replace the initial p variables in 

subsequent analysis, thus reducing the effective dimensionality of the problem. An analysis of 

principal components often reveals relationships that were not previously suspected and thereby 

allows interpretation that would not ordinarily result. However, Principal Components Analysis 

is more of a mean to an end rather than end in itself because this frequently serves as 

intermediate steps in much larger investigations by reducing the dimensionality of the problem 

and providing easier interpretation. It is a mathematical technique, which does not require user 

to specify the statistical model or assumption about distribution of original variates. It may also 

be mentioned that principal components are artificial variables and often it is not possible to 

assign physical meaning to them. Further, since Principal Components Analysis transforms 
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original set of variables to new set of uncorrelated variables. It is worth stressing that if the 

original variables are uncorrelated, then there is no point in carrying out the Principal 

Components Analysis. It is important to note here that the principal components depend on the 

scale of measurement. Conventional way of getting rid of this problem is to use the 

standardized variables with unit variances. 

 

Major Uses of PCA: 

 Data Dimension Reduction. 

 Data Projection & Visualization. 

 Idea about Data Clusters. 

 Multidimensional Outlier detection. 

 Ranking of multidimensional data. 

 Checking for multidimensional normality. 

Assumptions & Limitations: 

Sample size: Correlation coefficients tend to be reliable when estimated from large samples. 

With increase in sample sizes the sampling distribution become narrower implying that in 

normal run we get more precise estimates. Therefore, it is important that sample size is large so 

enough that correlations area could be reliably estimated. Though there is no scientific answer 

to exact sample size for running of PCA, some arbitrary rules of thumbs say that there should 

be at least 10 observations for each variable. Hutcheson and Sofroniou (1999) recommend that 

the minimum sample size should be at least 150- 300. For a few highly correlated variables 

sample size closer to 150 is sufficient. Some suggest that number of variable determines the 

size of sample. Bryant and Yarnold (1995), Nunnaly (1978) and Gorsuch (1983) recommend 

that the ideal sample to variable ratio should be at least five. The rule of significance states that 

there should be 51 extra observations than the number of variables, to support chisquare testing 

(Lawley and Maxwell, 1971). These rules are not mutually exclusive.  

Normality: PCA is a generally a non-parametric analysis. If variables are normally distributed, 

the solution is enhanced. To the extent normality fails, the solution is degraded by may still be 

worthwhile.  

Linearity: The analysis is degraded when linearity fails, because correlation measures linear 

relationship and does not reflect non-linear relationship  

Orthogonality: Principal components (PCs) are orthogonal. That means the second PC will be 

perpendicular to first PC and subsequently the third PC will be perpendicular to second PC. 
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Steps in Principal Component Analysis: 

There are five major steps in doing PCA analysis as listed below.  

Step 1: Preparation of data: The first and foremost step is preparation of data set. The 

preparation of data includes finding correlation and, centring and normalizing data. It is worth 

mentioning that PCA cannot always reduce a large number of original variables to a small 

number of transformed variables. If the original variables are uncorrelated, the PCA is of no 

use. Contrary to this, a significant reduction is possible if the original variables are highly 

correlated. If the variables are significantly correlated, we go for further analysis, i.e. centering 

and scaling the data. The centring of data produces a data set whose mean is zero. The centered 

data matrix also called as ‘X’ data matrix is done by subtracting the mean from each variable. If 

the variances of the variables in the data are significantly different, it is better to scale the data 

to unit variance. This is achieved by dividing each variable by its standard deviation. 

Step 2: Computation of sample variance/covariance matrix C: The formula for calculation 

of covariance is as follows.  

 

Where, C is covariance matrix, N is sample size, X’ is transpose of centred data matric X. Since 

we have centred the dataset to zero mean, the mean vector  will be zero. Therefore, 

covariance formula will be as follow.  

 

In order to prevent undue influence of any variables of different scale or unit on the PCs, it is 

common to standardise these so as to have zero means and unit variances. The co-variance 

matrix C then takes the form of the correlation matrix. 

Step 3: Finding eigenvalues and eigenvectors: The third step in PCA is computation of 

eigenvalues (λi) or latent root/unit or normalised eigenvectors (ei) of A. Here A denotes 

covariance matrix. An eigenvalue of a matrix A is a scalar (λ) if there is a non-zero vector x 

satisfies that Ax = λx. The eigenvalues of matrix A can be found by solving the characteristics 

equation, det (A − λI) = 0, where, det is determinant and I is an identity matrix.  
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However, this is possible only if the number of variables is small. If there are too many 

variables, solving for λ is non-trivial and we use other methods (Gentle et al., 2004; Golub and 

van der Vorst, 2000). An important property of the eigenvalues is that they add up to the sum of 

the diagonal elements of A, i.e., sum of variances of PCs is equal to sum of variances of 

original variables. Once the eigenvalues of a matrix (A) have been found, we can find the 

eigenvectors by Gaussian Elimination. 

After computing eigenvalues, arrange the variable in descending order based on per cent 

variation explained by them. Eigenvalues determine the radius of “ellipse”. By this process, we 

will be able to extract lines that characterise the data. The first eigenvector will go through the 

middle of the data point, as if it is the line of best fit. The second eigenvector will give us the 

other, less important, pattern of the data and so on. The number of chosen eigenvectors will be 

the number of dimensions of the new data set. The components of lesser significance can be 

ignored, so as to reduce the dimensions of the data set. 

 

 

Step 4: Selecting PCs: There are different methodologies for choosing the number of PCs; 

including both heuristic and statistical. The common methodologies used for selecting PCAs 

are explained below.  

 Selection based on proportion of variance that components explain: The cumulative 

proportion can be used to determine the amount of variance that PCs explain. The PCs 

are retained that explain an acceptable level of variance. As mentioned above the 

acceptable level depends on the application. For example, in evocative purposes, you 

may only need 80% of the variance explained while in other analysis one may want to 

have at least 90% of the variance explained by PCs.  

 Selection based on eigenvalues: Size of the eigenvalue can also be used to determine the 

number of PCs. Generally, the PCs with eigenvalue greater than one are retained for 

further analysis.  

 Scree plot method of PC selection: The scree plot orders the eigenvalues from largest to 

smallest. The ideal pattern is a steep curve, followed by a bend, and then a straight line. 

The “elbow” location (PC 4 in Figure 2) in a scree plot might indicate a good number of 

PCs to retain. A more precise method to “detect the elbow” is to start at the right-hand 

side of the scree plot and look at the points that roughly lie on a straight line. The 

leftmost point along this line indicates the number of components to be retained. For 

example, in Figure 2, components 4–7 are almost forming trend line, therefore 

components 1–4 would sufficiently explain the total variance. This method was 

proposed by Cattell (1966) and later revised by Cattell and Jaspers (1967). 
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Step 5: Deriving new dataset: After computation of matrix of eigenvectors and deciding 

PCs, the final step in PCA is deriving new dataset. The new dataset is derived by taking Y = 

XV, where Y, matrix of transformed data also called as matrix of PC scores. X is original 

dataset; and V, transformation matrix (eigenvector matrix). Basically we have transformed 

our dataset so that it is expressed in terms of pattern between them, where the pattern is the 

lines that most closely describe the relationship between the data.  

Rotation of principal components: 

The interpretation of the components (which is governed by the loadings–the correlations of 

the original variables with the newly created components) can be enhanced by “rotation” 

which could be thought of a set of coordinated adjustments of the vectors on a bi-plot. 

There is no single optimal way of doing rotations, but probably the most common approach 

is “varimax” rotation in which the components are adjusted in a way that makes the 

loadings either high positive (or negative) or zero, while keeping the components 

uncorrelated or orthogonal. Varimax rotation assumes that there is no intercorrelations 

between components. Varimax rotation (also called Kaiser-Varimax rotation) maximizes 

the sum of the variance of the squared loadings, where ‘loadings’ means correlations 

between variables and factors. This usually results in high factor loadings for a smaller 

number of variables and low factor loadings for the rest. Remaining components all have 

eigenvalues of more than one. In simple terms, the result is a small number of important 

variables are highlighted, which makes it easier to interpret your results. One side-product 

of rotation is that the first, or principal components is no longer optimal or the most 

efficient single-variable summary of the data set, but losing that property is often worth the 

increase in interpretability. 

Example 4: Let us consider the following data on average minimum temperature x1, average 

relative humidity at 8 hrs. x2, average relative humidity at 14 hrs. x3  and total rainfall in cm. 

x4  pertaining to Raipur district from 1970 to 1986 for kharif season from 21st May to 7th Oct. 

 x1 x2 x3 x4 
 25.0 86 66 186.49 

 24.9 84 66 124.34 

 25.4 77 55 98.79 

 24.4 82 62 118.88 
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 22.9 79 53 71.88 

 7.7 86 60 111.96 

 25.1 82 58 99.74 
 24.9 83 63 115.20 

 24.9 82 63 100.16 

 24.9 78 56 62.38 

 24.3 85 67 154.40 

 24.6 79 61 112.71 

 24.3 81 58 79.63 

 24.6 81 61 125.59 

 24.1 85 64 99.87 

 24.5 84 63 143.56 

 24.0 81 61 114.97 

Mean 23.56 82.06 61.00 112.97 

S.D. 4.13 2.75 3.97 30.06 

 

with the variance co-variance matrix: 

 

 

 
 

 

 

 

 

 

Find the eigenvalues and eigenvectors of the above matrix. Arrange the eigenvalues in 

decreasing order. Let, the eigenvalues in decreasing order and corresponding eigenvectors are: 

 

Eigen Values Eigen vector 

λ1=916.902 a1= 0.006, 0.061, 0.103, 0.993) 

λ2=18.375 a2  0.955, -0.296, 0.011, 0.012)  

λ 3=7.87 a3=(0.141, 0.485, 0.855, -0.119) 

λ 4=1.056 a4=(0.260,0.820, -0.509,0.001) 

 

The principal components for this data will be 

y1  0.006x1  0.061x2  0.103x3  0.993x4   

y2  0.955x1  0.296x2  0.011x3  0.012x4  
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y3  0.141x1  0.485x2  0.855x3  0.119x4  

y4  0.26x1  0.82x2  0.509x3  0.001x4 

 

The variance of principal components will be eigenvalues i.e. 

Vary1  916.902, Vary2   18.375, Vary3   7.87, Vary4   1.056 

The total variation explained by principal components is 

1  2  3  4  916.902  18.375  7.87  1.056  944.20 

 

As such, it can be seen that the total variation explained by principal components is same as 

that explained by original variables. It could also be proved mathematically as well as 

empirically that the principal components are uncorrelated. 

The proportion of total variation accounted for by the principal components is
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The proportion of total variation accounted for by the principal components is:

 

 

Continuing, the first two components account for a proportion 

 

of the total variance.  

Hence, in further analysis, the first or first two principal components y1 and y2 could replace 

four variables by sacrificing negligible information about the total variation in the system. 

The scores of principal components can be obtained by substituting the values of xi's in the 

equations of yi's. For above data, the first two principal components for first observation i.e. 

for year 1970 can be worked out as 

y1=0.006x25.0+0.061x86+0.103x66+0.993x186.49=197.380 

y2=0.955x25.0-0.296x86+0.011x66+0.012x186.49=1.383 

Similarly, for the year 1971 

y1=0.006x24.9+0.061x84+0.103x66+0.993x124.34=135.54 

y2=0.955x24.9-0.296x84+0.011x66+0.012x124.34=1.134 

Thus, the whole data with four variables can be converted to a new data set with two 

principal components. 

 

Following steps of SAS may be used for performing the principal component analysis.  

The PROC PRINCOMP can be used for performing principal component analysis. Raw data, 

a correlation matrix, a covariance matrix or a sum of squares and cross products (SSCP) 

matrix can be used as input data. The data sets containing eigenvalues, eigenvectors, and 

standardized or unstandardized principal component scores can be created as output. The 

basic syntax of PROC PRINCOMP is as follows:  

PROC PRINCOMP Cov ;  

BY variables; FREQ Variable;  

PARTIAL Variables; VAR Variables;  

WEIGHT Variable;  

RUN;  

The PROC PRINCOMP and RUN are must. However, the VAR statement listing the numeric 

variables to be analysed is usually used alongwith PROC PRINCOMP statement. If the 

DATA= data set is TYPE=SSCP, the default set of variables does not include intercept. 



172 

 

Therefore, INTERCEPT may also be included in the VAR statement. The following options 

are available in PROC PRINCOMP. 

A. DATA SETS SPECIFICATION 

 1. DATA= SAS-data-set: names the SAS data set to be analysed. This data set can be 

ordinary data set or a TYPE = CORR, COV, FACTOR, UCORR or UCOV data set.  

2. OUT = SAS-data-set: creates an output data set containing original data alongwith 

principal component scores.  

3. OUTSTAT-SAS-data-set: creates an output data set containing means, standard deviations, 

number of observations, correlations or covariances, eigenvalues and eigenvectors.  

B. ANALYTICAL DETAILS SPECIFICATION  

1. COV: computes the principal components from the covariance matrix. The default option 

is computation of principal components using a correlation matrix.  

2. N=: the non-negative integer equal to the number of principal components to be computed.  

3. NOINT : omits the intercept from the model  

4. PREFIX= name: specifies a prefix for naming the principal components. The default 

option is PRIN1, PRIN2, ... .  

5. STANDARD (STD): standardizes the principal component scores to unit variance from the 

variance equal to corresponding eigenvalue.  

6. VARDEF=DFNWDFWEIGHT: specifies the divisor (error degree of 

freedomnumber of observationssun of weightssum of weights-1) in calculating variances 

and standard deviations. The default option is DF.  

Besides these options NOPRINT option suppresses the output.  

The other statements in PROC PRINCOMP are:  

By variables: obtains the separate analysis on observations in groups defined by variables.  

FREQ statement: It names a variable that provides frequencies of each observation in the data 

set. Specifically, if n is the value of the FREQ variable for a given observation, then that 

observation is used ‘n’ times.  

PARTIAL Statement: used to analyze for a partial correlation or covariance matrix. VAR 

statement: Lists the numeric variables to be analysed.  

WEIGHT Statement: If we want to use relative weights for each observation in the input data 

set, place the weights in a variable in the data set and specify the name in a weight statement. 

This is often done when the variance associated with each observation is different and the 

values of the weight variable are proportional to reciprocals of the variances.  

The observation is used in the analysis only if the value of the WEIGHT statement variable is 

non-missing and greater than zero.  
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The other closely related procedures with PROC PRINCOMP are PROC PRINQUAL: It 

performs a principal component analysis of a qualitative data. PROC CORRESP: performs 

correspondence analysis, which is a weighted principal component analysis of contingency 

tables.  

For detailed steps for performing principal component analysis using SAS, a reference may 

be made to link “Analysis of Data” at Design Resources Server. SAS codes can be obtained 

from https://drs.icar.gov.in/Analysis of data/principal_component.html 
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Introduction 

Factor analysis is a statistical method used to describe variability among observed, 

correlated variables in terms of a potentially lower number of unobserved variables 

called factors.  

For example, it is possible that variations in six observed variables mainly reflect the 

variations in two unobserved (underlying) variables. Factor analysis searches for such 

joint variations in response to unobserved latent variables. The observed variables are 

modelled as linear combinations of the potential factors, plus "error" terms. The 

factors typically are viewed as broad concepts or ideas that may describe an observed 

phenomenon. For example, a basic desire of obtaining a certain social level might 

explain most consumption behaviour. These unobserved factors are more interesting to 

the social scientist than the observed quantitative measurements. 

Factor analysis is generally an exploratory/descriptive method that requires many 

subjective judgments. It is a widely used tool and often controversial because the 

models, methods, and subjectivity are so flexible that debates about interpretations can 

occur. The method is similar to principal components although, as the textbook points 

out, factor analysis is more elaborate. In one sense, factor analysis is an inversion of 

principal components. In factor analysis we model the observed variables as linear 

functions of the “factors.” In principal components, we create new variables that are 

linear combinations of the observed variables.  In both PCA and FA, the dimension of 

the data is reduced. Examples of fields where factor analysis is involved include 

physiology, health, intelligence, sociology, and sometimes ecology among others. 

A common rationale behind factor analytic methods is that the information gained 

about the interdependencies between observed variables can be used later to reduce the 

set of variables in a dataset.  It may help to deal with data sets where there are large 

numbers of observed variables that are thought to reflect a smaller number of 

underlying/latent variables. It is one of the most commonly used inter-dependency 

techniques and is used when the relevant set of variables shows a systematic inter-

dependence and the objective is to find out the latent factors that create a 

commonality. 

Notations and Terminology: 

Collect all of the variables X 's into a vector X for each individual subject. 

Let Xi denote observable trait i. These are the data from each subject, and are collected 

into a vector of traits. 

= vector of traits 

This is a random vector, with a population mean. Assume that vector of traits X is 

sampled from a population with population mean vector: 
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= population mean vector 

Here, E(Xi)=μi denotes the population mean of variable i. 

Consider m unobservable common factors f1, f2,…,fm. The ith common factor is fi.  

Generally, m is going to be substantially less than p. 

The common factors are also collected into a vector, 

= vector of common factors 

Model: 

Our factor model can be thought of as a series of multiple regressions, predicting each 

of the observable variables Xi from the values of the unobservable common factors fi: 

 

 

… 

 

Here, the variable means μ1 through μp can be regarded as the intercept terms for the 

multiple regression models. 

The regression coefficients lij (the partial slopes) for all of these multiple regressions 

are called factor loadings. Here, lij = loading of the ith variable on the jth factor. These 

are collected into a matrix as shown here: 

= Matrix of factor loadings 

And finally, the errors εi are called the specific factors. Here, εi = specific factor for 

variable i. The specific factors are also collected into a vector: 

= vector of specific factors 

In summary, the basic model is like a regression model. Each of our response 

variables X is predicted as a linear function of the unobserved common 

factors f1, f2 through fm. Thus, our explanatory variables are f1, f2 through fm. We 

have m unobserved factors that control the variation among our data. 
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We will generally reduce this into matrix notation as shown in this form here: 

 (Note! In general, we want m << p.) 

Model Assumptions: 

Mean: 

1. The specific factors or random errors all have mean zero: E(ϵi)=0 ; i = 1, 2, ... 

, p 

2. The common factors, the f's, also have mean zero: E(fi)=0; i = 1, 2, ... , m 

A consequence of these assumptions is that the mean response of the ith trait 

is μi. i.e. E(Xi)=μi 

Variance: 

1. The common factors have variance one: var(fi)=1; i = 1, 2, ... , m  

2. i is ψi: var(ϵi)=ψi ; i = 1, 2, ... , p Here, ψi is called the specific variance 

 

Correlations: 

1. The common factors are uncorrelated with one another: cov(fi,fj)=0  for i ≠ j 

2. The specific factors are uncorrelated with one another: cov(ϵi,ϵj)=0  for i ≠ j  

3. The specific factors are uncorrelated with the common factors: cov(ϵi,fj)=0;  i = 

1, 2, ... , p; j = 1, 2, ... , m  

These assumptions are necessary to uniquely estimate the parameters. An infinite 

number of equally well-fitting models with different values for the parameters may be 

obtained unless these assumptions are made. 

Under this model the variance for the ith observed variable is equal to the sum of the 

squared loadings for that variable and specific variance: 

The variance of trait i is:  

This derivation is based on the previous assumptions.  is called 

the Communality for variable i.  Later on, we will see how this is a measure for how 

well the model performs for that particular variable. The larger the communality, the 

better the model performance for the ith variable. 

The covariance between pairs of traits i and j is:  

The covariance between trait i and factor j is: cov(Xi,fj)=lij 

In matrix notation, our model for the variance-covariance matrix is expressed as 

shown below: 
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This is the matrix of factor loadings times its transpose, plus a diagonal matrix 

containing the specific variances. 

Here Ψ equals: 

 

A parsimonious (simplified) model for the variance-covariance matrix is obtained and 

used for estimation. 

Note: 

1. The model assumes that the data is a linear function of the common factors. 

However, because the common factors are not observable, we cannot check for 

linearity. 

2. The variance-covariance matrix is a symmetric matrix, that is the variance 

between variables i and j is the same as the variance between j and i.  For this 

model: 

Σ=LL′+Ψ 

The variance-covariance matrix is going to have p(p +1)/2 unique elements 

of Σ approximated by: 

o mp factor loadings in the matrix L, and 

o p specific variances 

This means that there are mp plus p parameters in the variance-covariance 

matrix. Ideally, mp + p is substantially smaller than p(p +1)/2. However, 

if mp is too small, the mp + p parameters may not be adequate to describe Σ. 

There may always be the case that this is not the right model and you cannot 

reduce the data to a linear combination of factors. 

3. If we have more than one variable in our analysis, that is if p > 1, the model is 

inherently ambiguous. To explain that, let T be any m x m orthogonal 

matrix. A matrix is orthogonal if its inverse is equal to the transpose of the 

original matrix. 

T′T=TT′=I 

We can write our factor model in matrix notation: 

X=μ+Lf+ϵ=μ+LTT′f+ϵ=μ+L∗f∗+ϵ 

Note that This does not change the calculation because the identity matrix 

times any matrix is the original matrix. This results in an alternative factor 
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model, where the relationship between the new factor loadings and the original 

factor loadings is: 

L∗=LT 

and the relationship between the new common factors and the original common 

factors is: 

f∗=T'f 

This gives a model that fits equally well. Moreover, because there is an infinite 

number of orthogonal matrices, then there is an infinite number of alternative 

models. This model, as it turns out, satisfies all of the assumptions discussed 

earlier. 

Note... 

E(f∗)=E(T'f)=T'E(f)=T′0=0, 

var(f∗)=var(T′f)=T′var(f)T=T′IT=T′T=I 

and 

cov(f∗,ϵ)=cov(T′f,ϵ)=T′cov(f,ϵ)=T′0=0 

So f* satisfies all of the assumptions, and hence f* is an equally valid 

collection of common factors.  There is a certain apparent ambiguity to these 

models. This ambiguity is later used to justify a factor rotation to obtain a more 

parsimonious description of the data. 

Methods to estimate the parameters of a factor model: 

 Principal Component Model. 

 Maximum Likelihood Method. 

 Principal Factor Method. 

 To understand the role of Factor Analysis, consider the following examples 

 

Example 7: What underlying attitudes lead people to respond to the questions on a 

political survey as they do? Examining the correlations among the survey items reveals 

that there is significant overlap among various subgroups of items--questions about 

taxes tend to correlate with each other, questions about military issues correlate with 

each other, and so on. With factor analysis, you can investigate the number of 

underlying factors and, in many cases, you can identify what the factors represent 

conceptually. Additionally, you can compute factor scores for each respondent, which 

can then be used in subsequent analyses. For example, you might build a logistic 

regression model to predict voting behavior based on factor scores. 

Example 8: A manufacturer of fabricating parts is interested in identifying the 

determinants   of a successful salesperson. The manufacturer has on file the information 

shown in the following table. He is wondering whether he could reduce these seven 

variables to two or   three factors, for a meaningful appreciation of the problem. 
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Data Matrix for Factor Analysis of seven variables (14 

sales people) 

Sales 

Person 

Height 

x1 
Weight 

x2 
Education 

x3 
Age 

x4 
No. of 

Children 

x5 

Size of 

Household 

x6 

IQ 

x7 

1 67 155 12 27 0 2 102 

2 69 175 11 35 3 6 92 

3 71 170 14 32 1 3 111 

4 70 160 16 25 0 1 115 

5 72 180 12 30 2 4 108 

6 69 170 11 41 3 5 90 

7 74 195 13 36 1 2 114 

8 68 160 16 32 1 3 118 

9 70 175 12 45 4 6 121 

10 71 180 13 24 0 2 92 

11 66 145 10 39 2 4 100 

12 75 210 16 26 0 1 109 

13 70 160 12 31 0 3 102 

14 71 175 13 43 3 5 112 

 

Can we now collapse the seven variables into three factors? Intuition might suggest 

the presence of three primary factors: maturity revealed in age/children/size of 

household, physical size as shown by height and weight, and intelligence or training 

as revealed by education and IQ. 

 

The sales people data have been analyzed by the SAS program. This program accepts 

data in the original units, automatically transforming them into standard scores. The 

three factors derived from the sales people data by principal component analysis (SAS 

program) are presented below: 

Three-factor results with seven variables sales people characteristics 

 
Variable Factor I Factor II Factor III Communality 

Height 0.59038 0.72170 -0.30331 0.96140 (sumsq I,II 

 
Weight 

 
0.45256 

 
0.75932 

 
-0.44273 

and III) 

0.97738 

Education 0.80252 0.18513 0.42631 0.86006 

Age -0.86689 0.41116 0.18733 0.95564 

No. of -0.84930 0.49247 0.05883 0.96730 

Children 
Size of 

 
-0.92582 

 
0.30007 

 
-0.01953 

 
0.94756 

Household 
IQ 

 
0.28761 

 
0.46696 

 
0.80524 

 
0.94918 

Sum of 

squares 

Variance 

3.61007 

 
0.51572 

1.85136 

 
0.26448 

1.15709 

 
0.16530 

 
 

Average=0.94550 

summarized     

Factor Loadings     
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The coefficients in the factor equations are  called "factor loadings". They appear 

above in  each factor column, corresponding to each variable. The equations are: 

F1  0.59038 x1  0.45256 x2  0.80252 x3  0.86689 x4  0.84930 x5  0.92582 x6  

0.28761x7 

F2 = 0.72170 x1  0.75932 x2  0.18513 x3  0.41116 x4  0.49247 x5  0.30007 x6 

F3 = 0.30331x1  0.44273 x2  0.80252 x3  0.18733 x4  0.58830 x5  0.01953 x6 

 0.46696 x7 

 0.80524 x7 
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The factor loadings depict the relative importance of each variable with respect to a 
particular factor. In all the three equations, education x3  and IQ x7  have got positive 
loading factor indicating that they are variables of importance in determining the success of 
sales person. 

Variance summarized 

Factor analysis employs the criterion of maximum reduction of variance - variance found 

in the initial set of variables. Each factor contributes to reduction. In our example Factor 

I accounts for 51.6% of the total variance. Factor II for 26.4% and Factor III for 16.5%. 

Together the three factors "explain" almost 95% of the variance. 

Communality 

In the ideal solution the factors derived will explain 100% of the variance in each of the 

original variables, "Communality" measures the percentage of the variance in the original 

variables that is captured by the combinations of factors in the solution. Thus 

communality is computed for each of the original variables. Each variables communality 

might be thought of  as showing the extent to which it is revealed by the system of 

factors. In our example the communality is over 85% for every variable. Thus the three 

factors seem to capture the underlying dimensions involved in these variables. 

 

There is yet another analysis called varimax rotation, after we get the initial results. This    

could be employed if needed by the analyst. We do not intend to dwell on this and those 

who want to go into this aspect can use SAS program for varimax rotation. 

 

Factor Analysis in SAS 
The model for common factor analysis posits one unique factor for each observed variable. The 

PROC FACTOR can be used for several types of common factor and component analysis. Both 

orthogonal and oblique rotations are available. We can compute scoring coefficients by the 

regression method.  All major statistics computed by PROC FACTOR can also be saved in an 

output DATA SET. The PROC FACTOR can be invoked by the following statements: 

PROC FACTOR <options>; 

VAR variables; 

PRIORS 

Communalities; 

PARTIAL Variables; 

FREQ Variable; 

WEIGHT Variable; 

BY 

variables; 

RUN; 

Usually only the VAR statement is needed in addition to the PROC FACTOR statement. The 

some of the important options available with PROC FACTOR are: 

 

METHOD=NAME : specifies the method of extracting factors. The default option is 

METHOD = PRINCIPAL, which yields principal component analysis if no PRIORS is used 

or if PRIORS = ONE is specified; if a PRIORS = value other than one is specified, a 

principal factor anlaysis is performed. 
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METHOD= PRINT : yields iterated principal factor analysis. 

METHOD=ML : performs maximum- likelihood factor analysis. 

METHOD = ALPHA : produced alpha factor analysis. 

METHOD =ULS: produced unweighted least squares factor analysis. 

NFACTORS=nNFACT=nN=n specifies the maximum number of factors to be extracted. 

PRIORS =name: (ASMCINPUTMAXONERANDOMSMC): specifies a method for 

computing prior communality estimates 

 

ROTATE=name: gives the rotation method. The default is ROTATE=NONE. FACTOR 

performs the following orthogonal rotation methods: 

 EQUAMAX 

 ORTHOMAX 

 QUARTIMAX 

 PARSIMAX 

 VARIMAX 

 
After the initial factor extraction, the common factors are uncorrelated with each other. If the 

factors are rotated by an orthogonal transformation, the rotated factors are uncorrelated. If the 

factors are rotated by an oblique transformation, the rotated factors become correlated.  

Oblique rotations often produce more useful patterns than do orthogonal rotations. However, 

a consequence of correlated factors is that there is no single unambiguous measure of the 

importance of a factor in explaining a variable. Thus, for oblique rotations, the pattern matrix 

doesn’t provide all the necessary information for interpreting the factors. 
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1. Introduction 

 

Cluster analysis is usually done in an attempt to combine cases into groups when the 

group membership is not known prior to the analysis. Cluster analysis is a technique for 

grouping individual or objects into unknown groups. It differs from other methods of 

classification such as Discriminant analysis, in that in cluster analysis the number and 

characteristics of the groups are to be derived from the data and are not usually known 

prior to the analysis. 

 

In biology, cluster analysis has been used for   decades in the area of taxonomy, where 

living things are classified into arbitrary groups on the basis of their characteristics group. 

The classification proceeds from the most general to the most specific in steps. The most 

general classification is kingdom followed by phylum, subphylum, and class etc. Cluster 

analysis has been used in medicine to assign patient to specific diagnostic categories on 

the basis of their presenting symptoms and signs. Cluster analysis is also an important 

tool for investigation in data mining. For example consumers can be clustered on the 

basis of their purchases in marketing research. Here the emphasis may be on the methods 

that can be used for large data sets. In short it is possible to find application of cluster 

analysis in virtually any field of research. It is also possible to cluster the variables rather 

than the cases. Clustering of variables is sometimes used in analyzing the items in a scale 

to determine which items tends to be close together in terms of individual response to 

them.  

 

There are 4 basic steps to conduct cluster analysis for any experiments. Those are given 

below: 

1. Select a distance measure. 

2. Select a clustering algorithm. 

3. Determine the number of clusters. 

4. Validate the analysis. 

 

2. Clustering Methods (Johnson and Wichern, 2006) 
 

The commonly used methods of clustering fall into two general categories.   

(i) Hierarchical and  

(ii) Non hierarchical.                                               

       

2.1 Hierarchical cluster Analysis:  

Hierarchical clustering techniques proceed by either a series of mergers or a series of 

successive divisions. Agglomerative hierarchical method starts with the individual 

objects, thus there are as many clusters as objects. The most similar objects are first 
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grouped and these initial groups are merged according to their similarities. Eventually, as 

the similarity decreases, all subgroups are fused into a single cluster. 

 

Divisive hierarchical methods work in the opposite direction. An initial single group of 

objects is divided into two sub groups such that the objects in one sub group are far from 

the objects in the others. These subgroups are then further divided into dissimilar 

subgroups. The process continues until there are as many subgroups as objects i.e., until 

each object form a group.   The results of both agglomerative and divisive method may 

be displayed in the form of a two dimensional diagram known as Dendrogram. It can be 

seen that the Dendrogram illustrate the mergers or divisions that have been made at 

successive levels.  

 

Linkage methods are suitable for clustering items, as well as variables. This is not true for 

all hierarchical agglomerative procedure. The following types of linkage are now 

discussed:  

(i) Single linkage (minimum distance or nearest neighbour),  

(ii) Complete linkage (maximum distance or farthest neighbour) and 

(iii) Average linkage (average distances).  

 Also other methods of hierarchical clustering techniques like Ward’s method and 

Centroid method are available in the literature.  

 

2.1.1 Steps of Agglomeration in Hierarchical Cluster analysis: 

The following are the steps in the agglomerative hierarchical clustering algorithm for 

groups of N objects (items or variables). 

i. Start with N clusters, each containing a single entity and an N×N symmetric matrix of 

distance (or similarities) D = {dik }.  

ii. Search the distance matrix for the nearest (most similar) pair of clusters. Let the 

distance between most similar clusters U and V be  duv. 

iii. Merge clusters U and V. Label the newly formed cluster (UV). Update the entries in 

the distance matrix by (a) deleting the rows and columns corresponding to clusters U 

and V and (b) adding a row and column giving the distances between cluster (UV) 

and the remaining clusters. 

iv. Repeat steps (ii) and (iii) a total of N-1 times (All objects will be in a single cluster 

after the algorithm terminates). Record the identity of clusters that are merged and the 

levels (distances or similarities) at which the mergers take place. 

 

The basic ideas behind the cluster analysis are now shown by presenting the algorithm 

components of linkage methods. 

 

2.2 Non Hierarchical Clustering Method 
Non-hierarchical clustering techniques are designed to group items, rather than variables, 

into a collection of K clusters. The number of clusters, K, may either be specified in 

advance or determined as part of the clustering procedure. Because a matrix of distance 

does not have to be determined and the basic data do not have to be stored during the 

computer run. Non hierarchical methods can be applied to much larger data sets than can 

hierarchical techniques. Non hierarchical methods start from either (1) an initial partition 
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of items into groups or (2) an initial set of seed points which will form nuclei of the 

cluster. 

 

2.2.1 K means Clustering ( Afifi, Clark and Marg, 2004) 

The K means clustering is a popular non hierarchical clustering technique. For a specified 

number of clusters K the basic algorithm proceeds in the following steps.  

 

i. Divide the data into K initial cluster. The number of these clusters may be specified 

by the user or may be selected by the program according to an arbitrary procedure. 

 

ii. Calculate the means or centroid of the K clusters.  

 

iii. For a given case, calculate its distance to each centroid. If the case is closest to the 

centroid of its own cluster, leave it in that cluster; otherwise, reassign it to the cluster 

whose centroid is closest to it. 

 

iv. Repeat step (iii) for each case. 

 

v. Repeat steps (ii), (iii), and (iv) until no cases are reassigned. 

 

3. Dendrogram 

Dendrogram is also called hierarchical tree diagram or plot, and shows the relative size of 

the proximity coefficients at which cases are combined. The bigger the distance 

coefficient or the smaller the similarity coefficient, the more clustering involved 

combining unlike entities, which may be undesirable. Trees are usually depicted 

horizontally, not vertically, with each row representing a case on the Y axis, while the X 

axis is a rescaled version of the proximity coefficients. Cases with low distance/high 

similarity are close together. Cases showing low distance are close, with a line linking 

them a short distance from the left of the Dendrogram, indicating that they are 

agglomerated into a cluster at a low distance coefficient, indicating alikeness. When, on 

the other hand, the linking line is to the right of the Dendrogram the linkage occurs at a 

high distance coefficient, indicating the cases/clusters were agglomerated even though 

much less alike. If a similarity measure is used rather than a distance measure, the 

rescaling of the X axis still produces a diagram with linkages involving high alikeness to 

the left and low alikeness to the right.  

 

4. Distance Measures   

Given two objects X and Y in a ‘p’ dimensional space, a dissimilarity measure satisfies 

the following conditions: 

 

1. d (X,Y) ≥ 0 for all objects X and Y. 

2. d (X,Y) = 0 iff X = Y. 

3. d (X,Y) = d (Y,X). 

 

Condition (3) implies that the measure is symmetric so that the dissimilarity measure that 

compares X and Y is same as the comparison for object Y verses X. Condition (2) 
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requires the measures to be zero, when ever object X equals to object Y. The objects are 

identical if d(X, Y) = 0. Finally, Condition (1) implies that the measure is never negative. 

Some dissimilarity measures are as follows. 

 

4.1 Euclidian Distance  
This is probably the most commonly chosen type of distance. It simply is the geometric 

distance in the multidimensional space. It is computed as, 

 

d(X,Y)= 
1

2 2

1

{ ( ) }
p

i i

i

X Y


   or 

 in matrix form 

      

d (X,Y)= ( ) '( )X Y X Y   

where        X' = (X1,X2, … , Xp ) 

                  Y' = (Y1, Y2, … , Yp)  

 

The statistical distance between the same two observations is of the form 

 

d (X,Y) = ( ) ' ( )X Y A X Y  , 

where A = S-1 and S contains the sample variances and covariances. 

 

Euclidian and square Euclidian distances are usually computed from raw data and not 

from standardized data. 

  
4.2 Square Euclidean Distance  
Square the standard Euclidean distance in order to place progressively greater weight on 

objects that are further apart. This distance is computed as:  

            

d²(X,Y) =  2

1

( )
p

i i

i

X Y


  

or in matrix form                 

 

d²(X,Y) = (X - Y)´ (X - Y) 

 

4.3 Minkowski Metric 
When there is no idea about prior knowledge of the distance group then one goes for 

minkowski metric. This can be computed as given below: 

 

d(X,Y) =  
1

1

{ }
p

m
m

i i

i

X Y


  

 

For m = 1, d(X,Y) measures the city block distance between two points in p dimensions. 

For m = 2, d(X,Y) becomes the Euclidean distance. In general, varying m changes the 

weight given to larger and smaller differences. 
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4.4 City-Block (Manhattan) Distance 

This distance is simply the average difference across dimensions. In most cases, this 

distance measure yields result similar to the simple Euclidean distance. This can be 

computed as : 

 

d(X,Y) = 
1

p

i i

i

X Y


  

 

4.5 Chebychev Distance 
This distance measure may be appropriate in case when we want to define the objects as 

different if they are different on any one of the dimensions. The chebychev distance is 

computed as: 

d(X,Y)  = maximum i iX Y  

Two additional popular measures of distance or dissimilarity are given by the Canberra 

metric and the Czekanowski coefficient. Both of these measures are defined for non 

negative variables only. We have  

 

Canberra Metric:    d(X, Y) =
1 ( )

p
i i

i i i

X Y

X Y




  

 

 

Czekanowski Coefficient = 1- 1

1

2 min( , )

( )

p

i i

i

p

i i

i

X Y

X Y











 

 

 

5. Illustration (Chatfield and Collins, 1990) 

Given below is food nutrient data on calories, protein, fat, calcium and iron. The 

objective of the study is to identify suitable clusters of food nutrient data based on the 

five variables.   

 
Food Items Calories Protein Fat Calcium Iron 

1 340 20 28 9 2.6 

2 245 21 17 9 2.7 

3 420 15 39 7 2 

4 375 19 32 9 2.6 

5 180 22 10 17 3.7 

6 115 20 3 8 1.4 

7 170 25 7 12 1.5 

8 160 26 5 14 5.9 

9 265 20 20 9 2.6 

10 300 18 25 9 2.3 

11 340 20 28 9 2.5 

12 340 19 29 9 2.5 
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13 355 19 30 9 2.4 

14 205 18 14 7 2.5 

15 185 23 9 9 2.7 

16 135 22 4 25 0.6 

17 70 11 1 82 6 

18 45 7 1 74 5.4 

19 90 14 2 38 0.8 

20 135 16 5 15 0.5 

21 200 19 13 5 1 

22 155 16 9 157 1.8 

23 195 16 11 14 1.3 

24 120 17 5 159 0.7 

25 180 22 9 367 2.5 

26 170 25 7 7 1.2 

27 170 23 1 98 2.6 

 

4.1 Analysis using SPSS: 

Start by entering the datasheet into SPSS using the steps below. 

Step: Go to file→ open→ browse the datasheet→ click open or 

 

Enter all the data in the data editor as shown in Figure1. 

 

 
Fig.1: Screen shot after entering the data in data editor 

 

 

 

Now click Analyze→ Classify→ Hierarchical Cluster as shown in Figure2.   
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Fig.2: Screen shot of selecting the analysis procedure 

 

Then Identify Name as the variable by which to label cases and Calories, Protein, Fat, 

Calcium, and Iron as the variables.  Indicate that you want to cluster cases rather than 

variables and want to display both statistics and plots as shown in Figure3. 

 

Fig.3: Cluster cases rather than variables and want to display both statistics and 

plots. 

 

 

Click Statistics and indicate that you want to see an Agglomeration schedule with 2, 

3, 4, and 5 cluster solutions.  Click Continue as shown in Figure4 
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Fig.4: Hierarchical cluster analysis statistics 

Click plots and indicate that you want a Dendogram and a verticle Icicle plot with 2, 

3, and 4 cluster solutions.  Click Continue as shown in Figure5 

 

Fig.5: Hierarchical cluster analysis plot 

Click Method and indicate that you want to use the Between-groups linkage method 

of clustering, squared Euclidian distances, and variables standardized to z scores (so 

each variable contributes equally).  Click Continue as shown in Figure6. 

 

Fig.6: Hierarchical cluster analysis method 

Click Save and indicate that you want to save, for each case, the cluster to which the 

case is assigned for 2, 3, 4, 5 and 6 cluster solutions.  Click Continue, OK as shown in 

figure7 
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SPSS starts by standardizing all of the variables to mean 0, variance 1.  This results in 

all the variables being on the same scale and being equally weighted. 

Dendrogram: 

 

 

4.2   Interpretation 



217 

 

The main objective of our analysis is to grouping the food items on the basis of their 

nutrient content based on the five variables such that food items with in the groups are 

homogeneous and between the groups are heterogeneous. 

 

Number of groups Food items 

Two groups Group-1 (1,11,12,…,18) 

Group-2 (25) 

Three groups Group-1 (1,11,…,8) 

Group-2 (17,18) 

Group-3 (25) 

Four groups Group-1 (1,11,…,20) 

Group-2 (8) 

Group-3 (17,18) 

Group-4 (25) 

Five groups 

 

 

 

Group-1 (1,11,…,3) 

Group-2 (5,15,…,20) 

Group-3 (8) 

Group-4 (17,18) 

Group-5 (25) 

Six groups Group-1 (1,11,…,3) 

Group-2 (5,15,…,27) 

Group-3 (22,24,…20) 

Group-4 (8) 

Group-5 (17,18) 

Group-6 (25) 

 

4.3 Analysis using SAS 

SAS codes used for performing the cluster analysis using unweighted pair-group method 

using arithmetic averages (UPGMA) method are as follows: 

 
/* The following statement prepare data file for data entry.*/ 

 

DATA cluster; 

input items $ Calories Protein Fat Calcium Iron; 

cards;  

 

/* This statement uses the DISTANCE procedure to obtain a distance 

matrix that will be used as input to a subsequent clustering 

procedure.An output SAS data set called Distmat that contains the 

distance  matrix is created through the OUT= option.METHOD= Euclid 

requests that Euclidean (which also is the default) distances should be 

computed. */ 

     

PROC distance data=cluster method=EUCLID  out=distmat; 

      var interval(Calories Protein Fat Calcium Iron);  

      id items;run;  

  

  /*The ID statement specifies that the variable Strain should be 

copied to the OUT= data set and used to  generate names for the 

distance variables. The distance variables in the output data set are 
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named by the values in the ID variable. This statement prints the 

Euclidean distances between pairs of treatments*/ 

  

   PROC print data=distmat; 

      id items;run; 

  

 /*The PROC CLUSTER statement starts the CLUSTER procedure, identifies 

a clustering method. The METHOD= specification determines the 

clustering method used by the procedure.Here we have used method = 

AVERAGE (unweighted pair-group method using arithmetic averages, 

UPGMA). The output data set Tree is created (through outtree= Tree)  

and used as input to the TREE procedure that produces the dendrogram 

.*/ 

  

   PROC cluster data=distmat method=average outtree=tree; 

     id items; 

   run; 

  

 /* The following statements use the TREE procedure to produce a 

dendrogram of the clusters.The preceding statements use the SAS data 

set Tree as input. The OUT= option creates an output  SAS data set 

named out to contain information on cluster membership. The NCLUSTERS= 

option specifies the number of clusters desired in the data set 

out(here we have taken 3 clusters).*/ 

  

goptions   htext=2pct ; 

PROC tree data=Tree nclusters=6 horizontal hordisplay=left 

lines=(color=blue) out=out; 

id items; 

run; 

  

/* The following statement use the SORT procedure to sort the data set 

out*/ 

   PROC sort data=out; 

      by items; run; 

  

 /* The following statement use the SORT procedure to sort the data set 

cluster*/ 

  

   PROC sort data = cluster; 

   by items; run; 

  

    /* The following statement merges the two data sets cluster and 

out*/ 

  

   DATA clus; 

      merge cluster out; 

      by items;run; 

  

    /* The following statement use the SORT procedure to sort the data 

set clus*/ 

  

   PROC sort data=clus; 

      by cluster;run; 

  

    /* The following statement use the PRINT procedure to print the 

clusters*/ 
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   PROC print; 

      id items; 

      by cluster; run; 

 

Output

 
 

The TREE Procedure 
Average Linkage Cluster Analysis 
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The SAS System 

 
CLUSTER=1 

items Calories Protein Fat Calcium Iron CLUSNAME 

A 340 20 28 9 2.6 CL6 

C 420 15 39 7 2.0 CL6 

D 375 19 32 9 2.6 CL6 

K 340 20 28 9 2.5 CL6 

L 340 19 29 9 2.5 CL6 

M 355 19 30 9 2.4 CL6 

 
CLUSTER=2 

items Calories Protein Fat Calcium Iron CLUSNAME 

E 180 22 10 17 3.7 CL7 

F 115 20 3 8 1.4 CL7 

G 170 25 7 12 1.5 CL7 

H 160 26 5 14 5.9 CL7 

N 205 18 14 7 2.5 CL7 

O 185 23 9 9 2.7 CL7 

P 135 22 4 25 0.6 CL7 

S 90 14 2 38 0.8 CL7 

T 135 16 5 15 0.5 CL7 

U 200 19 13 5 1.0 CL7 

W 195 16 11 14 1.3 CL7 

Z 170 25 7 7 1.2 CL7 

 
CLUSTER=3 

items Calories Protein Fat Calcium Iron CLUSNAME 

B 245 21 17 9 2.7 CL9 

I 265 20 20 9 2.6 CL9 

J 300 18 25 9 2.3 CL9 

 
CLUSTER=4 
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items Calories Protein Fat Calcium Iron CLUSNAME 

Q 70 11 1 82 6.0 CL14 

R 45 7 1 74 5.4 CL14 

 
CLUSTER=5 

items Calories Protein Fat Calcium Iron CLUSNAME 

AA 170 23 1 98 2.6 CL8 

V 155 16 9 157 1.8 CL8 

X 120 17 5 159 0.7 CL8 

 
CLUSTER=6 

items Calories Protein Fat Calcium Iron CLUSNAME 

Y 180 22 9 367 2.5 Y 
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1. Introduction 

In various research programmes it is quite common to carry out the same experiment at a 

number of different places, on a number of seasons or years.  Some times the purpose of the 

research is to produce recommendations which are to apply to a population that is extensive 

either in space or time or both. In agricultural and animal field experimentation, many projects 

are undertaken in the hope that their results can be applied in practical farming.  It has been 

found that the effectiveness of different varieties of a crop usually varies from location to 

location and, even more markedly, from season to season.  A single experiment will precisely 

furnish information about only one place or one season in which the experiment is conducted.  

It has, thus, become a common practice to repeat an experiment at different places or over a 

number of years to obtain valid recommendations taking into account place to place variation 

or variation over time or both.  In such cases of repeated experiments appropriate statistical 

procedures for a combined analysis of the data would have to be followed.   

 

In a pooled analysis, the main points of interest would be (i) to estimate the average response 

of varieties and (ii) to test the consistency of the responses from place to place or occasion to 

occasion i.e. the interaction of the varietal effects with the places or years.  The average 

response of varieties, thus, depend largely upon the absence or presence of Variety  Place or 

Genotype  Environment (GE) interaction (interplay of genetic and non-genetic effects on the 

phenotypic expression), coupled with high yield indicate that the genotypes are suitable for 

general adaptation in the range of environments considered.  But this ideal situation is rarely 

found because the phenotypic stability of a genotype is inversely proportional to the mean 

yield.  The varieties with high stability are generally low yielders and vice versa.  A balance 

between these extremes, is therefore, set as goal of any breeding programmes for crop or 

animal improvement.  GE interaction causes difficulty in demonstrating the significant 

superiority of any variety / breed when varieties / breeds are compared over a series of 

environments.  Hence, methods are in need to be investigated for reducing GE interaction.  

One such method would be to select stable genotypes that interact less with the environment 

in which they are grown.  Then our preliminary evaluation is to identify the stable genotypes.  

However, selection for stability is not possible until a biometrical model with suitable 

parameters is available to provide criteria necessary to rank varieties / breeds for stability.                               

 

The exact nature of stability in terms of parameters should immediately follow the 

confirmatory analysis of GE interaction.  It has been observed that an approximately linear 

relationship exists between phenotype and environment when the latter is measured by its 

effect on the character under study.  This regression relationship provides two measures of 

stability viz. the regression coefficient known as linear sensitivity and the deviation from mean 

squares due to linear regression known as non-linear sensitivity, which serve as the basis for 

studying the nature of adaptation of genotypes under investigation. 
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2.  Linear Regression Model for the Analysis of GE Interaction 

Let the average phenotypic value ijY , of i th genotype ( ti ,...,2,1 ) at the j th environment 

( j s 1 2, ,..., ) be  

 ijijjiiij edY   )1(       (2.1) 

where    is the general mean, id  is the effect of i th genotype, e
j
is the effect of j th 

environment, ( i1 ) is the regression of Y
ij
on e

j
, ij is the deviation from regression for the 

i th genotype in the j th environment and ij is the random error. For the genotype-

environment interaction effect g
ij

the following relationship, holds: 

 ijiij jeg    

In model (2.1), the effects d
i
, e

j
, ij are such that  

 0

,

  
ji
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i j

ijij

j

j
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i ed   

Further, the least square estimates of  , ,d ei j i and are: 
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The deviation mean squares for the i th genotype ( 2

id
s ) can be defined as,                    

 2

id
s = )2/(ˆ2  s

j

ij , where   

j

jii
i ji

ijij ebYsY 222
.

,

2̂  

 

The form of analysis based on the model (2.1) is as presented in Table 1. It is possible to 

determine whether GE interaction is significant when compared to 2
eS  and also testing 

whether the GE interaction is a linear function of the additive environmental   component.  

For this purpose  the  GE  interaction with (s-1)(t-1) 
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Table 1. Analysis of Variance for GxE interaction 

Source d.f. S.S M.S 

Genotypes(G) (t-1) 
i

igs 2  MS1 

Environments(E) (s-1) 
j

jet 2   

GE interaction (t-1)(s-1)   

Heterogeneity between regression (t-1) )( 22 
j

j

i

i e  MS2 

Residual (t-1)(s-2) 
ji

ij

,

2  MS3 

Average error s(t-1)(r-1)  Se

2  

  

Degrees of freedom is partitioned into two components: 

(i) heterogeneity between regression sum of squares with (t-1) degrees of freedom and 

(ii) the remainder sum of squares with (t-1)(s-2) degrees of freedom. 

 

For testing the significance of regression for individual lines the following analysis can be 

undertaken. 

Source d.f. MS 

Regression 1 ))(1( 22 

j

ji e  

Residual (s-2) )2/(2  s

j

ij  

Total (s-1)  

j

iij ssyy )1/()/( 2
.  

 

Here we are testing the hypothesis that (1+ i ) has non-zero expectation.  The component 


j

ji e22 for each genotype can also be extracted and compared with the same residual.  

 

3. Biological and Agronomic Concepts of Stability 

Depending upon the final goal of the breeder and the character under consideration two 

concepts of stability can be introduced the biological and agronomic concepts (Becker, 1981).  

These are also known as static and dynamic concepts respectively (Leon, 1985).  Under the 

biological concept a stable genotype is one whose phenotype Y
ij
 shows little deviation from 

the expected character level Y
i .
 when the genotype is performance-tested over a number of 

environments.  This type of yield stability is analogous to the concept of genetic homeostasis, 

first introduced by Lerner (1954).  In view of the restriction regarding constant performance 

level at the different environments considered, this concept is also termed the static concept of 

stability. 



 225 

 

The biological concept as applied to a character like grain yield would mean a stable genotype 

performs well under adverse environments but not so well under favourable environments.  

But with increased inputs, improved technology, etc. the breeder would prefer a genotype 

whose performance in a particular environment is at a level expected depending on the level 

of productivity of the location as measured by the average productivity of all the genotypes 

grown in that environment.  In other words he is interested in a variety which does not show 

any genotype-environment interaction. i.e. 0)( ....  YYYY jiij , for all i.  This concept 

which permits a predictable response in each environment and no deviation from the amount 

predicted is known as the agronomic or dynamic concept of stability. 

 

An overview of the widely used parametric stability measures and their underlying stability 

concept is provided in Table 2.  

 

Table2: Common stability measures and their underlying stability concepts 

Stability measures   Symbol Stability concept involved 

Environmental variance  S
Yi

2
  biological 

Ecovalence    W
i
  agronomic 

Stability variance    
i

2
  agronomic 

Regression coefficient   b
i
  biological/agronomic 

Deviation mean square  s
di

2
  agronomic 

Coefficient of     r
i

2
  agronomic 

determination 

Hanson’s stability    
( .)D i

2   agronomic 

measure 

 

For a better appreciation of the idea conveyed through this table, we now turn to a formal 

definition of these measures. 

 

Most of the yield stability statistics in vogue are measures according to the agronomic 

concept.  For the biological concept only two measures are available and they are the 

environmental variance 2

iY
S  and the environmental coefficient of variation (CVi) 

 2

iY
S = )1/()( 2

.  sYY i

j

ij        (3.1) 

 CVi=( ./ iY YS
i

) x 100        (3.2) 

lesser values of which are always sought after for higher stability.  Although the measures are 

quite sound theoretically, they are not of much practical utility in the assessment of stability 

owing to the fact that (i) stability under biological concept is usually associated with relatively 

poor yield and (ii) high level of performance over a wide range of environments is difficult to 

materialize.  Accordingly, these measures are rarely useful to the breeder who is always 
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looking for high yield stability.  They are however useful in disease and quality traits, the 

levels of which are to be maintained at all costs.  We now turn to stability measures under 

agronomic concept. 

 

Wricke’s ecovalence measure 

The contribution of a genotype to the interaction sum of squares provides a simple and easy to 

compute measure known as ecovalence measure ( iW ): 

 iW  =  

j

ijjiij

j

gYYYY 22
.... ˆ)(      (3.3) 

The lower the value of iW  the smaller will be the fluctuations from the predictable response in 

different environments so much so that the genotype with the least ecovalence is considered to 

be the ideal from the point of view of yield stability. 

 

Shukla’s stability variance measure 

An estimate of the variance 2ˆ i  of ijijg   in terms of the residuals in a two-way 

classification is a useful indicator of stability of the i th genotype.  This statistic 2ˆ i , termed 

stability variance is defined as follows: 

 
)2(

)(

)2)(1(
ˆ 2







t

GEMS
W

ts

t
ii      (3.4) 

 

where iW is as defined in (3.3) and MS(GE) is the GE interaction mean square [MS(GE) = 

 

ji

ij tsg

,

2 )1)(1/(ˆ ].  The statistic being  a linear combination of iW , both iW  and  2ˆ i  are 

equivalent for the purpose of ranking the genotypes. 

 

Hanson’s stability measure 

Hanson’s genotypic stability measure 2
.)(

ˆ
iD  is defined as  

   2
...min.

2
.)(

)]([ˆ YYbYYD jiiji
 

            2
min. ][ jiij ebYY=            (3.5) 

where minb  is the minimum of ib  ( ti ,...,2,1 ) values in Eberhart and Russell sense.  This 

shows that the stable genotype is one which does not deviate from the straight line 

 )( ...min. YYbYY jiij   

 

Coefficient of determination measure 

This measure of stability proposed by Pinthus (1973) and symbolized as r
i

2
 is defined as 

follows: 
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where   2
.....

2 )(ˆ YYe j

j

j and 
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jijiij

jj

ij YYbYYYY 2
...

22
....

2 )()1()(̂  

       

j

jii ebW 22 ˆ)1(  

the latter representing the sum of squared deviations from regression which is also symbolized 

as 2)1(
id

ss  . Unlike ,ib  2
ir  is independent of the scale of measurement.  For ranking of 

genotypes high values of  2
ir are regarded as being desired. 

Eberhart and Russell’s two-parameter measure 

Eberhart and Russell (1966) considered the regression coefficient, b
i
as his first measure of 

stability: 
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  (3.7) 

As a second measure, he considered  

  

j

eijd
Sss

i

222 )]2/(ˆ[        (3.8) 

where 
j

ij
2̂  is as defined earlier and 2

eS , the average error is 

j

jje s srsS 222 ),/( ’s being 

the error mean squares for different experiments, each conducted with the same number of 

replications r . 

 

Perkins and Jinks two-parameter measure 

By a slight modification of the regression technique based on Eberhart and Russell model 

Perkins and Jinks (1968) obtained the following measures: 

   

j j

jjjiiji YYYYYYY(Y 2
.......... )(/))(̂      (3.9) 

  

j

ijd
ss

i
)2/(ˆ22                      (3.10) 

where i  is related to ib  such that 1 ii b  holds. 
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EXAMPLE 1: 
LOCATION 1: 

                   R1  R2 R3       R4 

V1  1250 1150   1175    1000 

V2    1350    1450    1150    1050 

V3     1250      750      925     1100 

V4     1300    1500    1425    1575 

V5    1550    1375    1475    1300 

V6    1300    1325    1525    1675 

V7     1350      900    1475    1675 

V8     1175    1500    1250    1225 

V9     1150    1225    1525    1275 

V10   1200    1250      900    1000 

V11   1725    1725    2100    1650 

V12   1500    1450    1125    1625 

V13   1300    1000    1250      950 

V14     1175    1200    1275    1400 

 

LOCATION 2: 

 R1     R2         R3      R4 

V1    1850    1650    1700    1150 

V2    1800    1600    1800    1200 

V3    2000    1950    1900    1700 

V4    2200    2000    1800    2100 

V5    1350    1650    1300    1250 

V6    1900    1900    1550    1700 

V7    1500    1500    1800    1400 

V8    1000    1200    1750    1150 

V9    1600    1900    1600    1700 

V10  2100    1550    1650    2100 

V11  1550    1400    1350    1550 

V12  1500    1800    2050    2150 

V13    900    1150    1050      900 

V14  1900    1900    1700    1800 

 

LOCATION 3: 

            R1        R2       R3        R4  

V1    1150    1210    1170    1200 

V2      910    1200    1130    1100 

V3    1030    1200    1100     850 

V4      750      900      770      660 

V5      690      620      800      675 

V6      540      860      630      550 

V7    1050    1070    1000   1260 

V8      560      650      470      640 

V9      830    1160    1170   1100 

V10  1270     900       900     830 

V11    400      950      780   1010 

V12  1130    1450    1150   1250 

V13  1450    1500    1200   1350 

V14    600      850       660    760 
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LOCATION 4: 

 R1    R2       R3      R4 

V1      880     860     895     910 

V2      870     880     785     870 

V3      755     750     795     760 

V4      770     810     810     935 

V5      890     945     900     915 

V6      800     800     710     870 

V7    1095     995   1050   1045 

V8    1000     980     890     980 

V9      920     895     955     990 

V10    885     930     805     855 

V11  1045     900   1045   1065 

V12    860     805     890     955 

V13    860     975     940     970 

V14    980     890     805     865 

 

Ranking of genotypes/varieties based on stability measures (for EXAMPLE 1) 

Varieties Mean bi
  ij

j

2
 

CVI ECOVALENCE ri

2   i

2  

V1 6 3 8 3 5 10 5 

V2 7 5 4 4 2 6 2 

V3 10 11 13 12 11 9 11 

V4 2 14 3 14 12 2 12 

V5 13 6 10 7 7 11 7 

V6 11 13 6 13 9 4 9 

V7 4 2 1 2 3 1 3 

V8 14 4 12 8 10 12 10 

V9 5 7 2 5 1 3 1 

V10 8 4 9 10 8 8 8 

V11 3 10 14 9 13 13 13 

V12 1 9 7 6 4 7 4 

V13 12 1 11 1 14 14 14 

V14 9 12 5 11 6 5 6 

 

4. Non-linear GE Interaction Model 

Most of the regression techniques currently employed in the analysis of GE interaction can 

adequately describe the behaviour of genotypes over different environments only when the 

genotypic response is fairly linear, a situation characterized by the overwhelming contribution 

of linear regression component to the total GE interaction variation.  In the event of the 

remainder mean squares (non-linear component), relative to heterogeneity of regression mean 

square, accounting for a large part of the interaction variation, a characterization of the 

genotypes based on the linear regression coefficient will be largely misleading.  Presence of 

significant non-linear interaction have been reported in different crops such as Carrots and 

Nicotiana rustica. The non-linearity can largely be attributed to the presence of yield 

thresholds, after attaining which some of the genotypes cease to respond to further 

environmental changes, environmental specificity in gene expression in crop plants, etc.  A 

different approach is altogether is needed to deal with such non-linear GE interactions. 
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EXAMPLE 2: Given below is the data of RBD experiments conducted over 6 locations for 8 

varieties ( No. of  replications=4 ). 

 L1        L2        L3        L4        L5        L6 

V1      360.5   362.77  363.12      172       305     660.3 

V2      325     463.4    457.75   193.75      294       611 

V3      314     300.9    457.18   175.09    315.7    492 

V4      432    365.66    430.5    217.75    377.9    488.8 

V5      421     463.6      460    314.41    336.2    625.9 

V6      334      303    439.68    277.3    408.4    758 

V7      470    270.33   433.43      241     488.7    536.6 

V8      383    168.83    382.1    254.86    327.3    424.1 

S.E. 50.73  46.22  68.82  40.81  51.04  73.42 

 

ANOVA TABLE FOR STABILITY 

------------------------------------------------------------------------------------------------ 

SOURCE           D.F.    SS.        MSS.            F-VALUE 

------------------------------------------------------------------------------------------------ 

LINES(GENOTYPES)        7   0.61404076E+05   0.87720109E+04 

ENVIRONMENT  5   0.51743219E+06   0.10348644E+06 

LINEXENVIRONMENT 35   0.17016124E+06   0.48617496E+04  6.106** 

HETERO BET REG  7   0.38791072E+05   0.55415817E+04  1.181NS 

REMAINDER                28   0.13137014E+06   0.46917907E+04  5.893** 

AVERAGE ERROR  126 0.10031200E+06 0.79612700E+03 

------------------------------------------------------------------------------------------------ 

 

By making interaction analysis of yield for individual varieties in six environments, it can be 

observed that large amount of non-linear interaction is due to v7 & v8. 

 

4.1 Regression Models for Analysis of Non-linear GE Interactions 

A common approach in non-linear situations is to reduce the complex interaction responses to 

a series of orderly linear responses. Assuming that the threshold limits differ among genotypes 

and are subjected to genotypic control the response of each genotype can be represented by a 

pair of intersecting straight lines; from the poorest environment to the environment in which 

further response ceases the straight line will have a positive slope and then it will have a zero 

slope. 

 

Two-phase regression technique 

Verma et al. (1978) proposed this technique which is consistent with the assumption that 

distinct sets of genes control linear sensitivity in contrasting environments.  In the proposed 

analysis, the environments are first truncated at zero environmental index providing two 

subsets of environments, first comprising all the negative environmental indices (below 

average environment) and the second with all positive environmental indices (above average 

environment) as well as the negative index with the smallest absolute value.  Two response 

curves for the trial genotypes are fitted separately for the two sets of graded environments.  
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The linear regression coefficients for the two sub sets of environments can be classified into 

nine categories as indicated in Table 3. 

 

Table 3. Classification of genotypes on the basis of regression coefficients in the 

 two sets  of environments 

 Regression coefficient 

Category Below-average environments Above -average environments 

1. <1.0 <1.0 

2. <1.0 =1.0 

3. <1.0 >1.0 

4. =1.0 <1.0 

5. =1.0 =1.0 

6. =1.0 >1.0 

7. >1.0 <1.0 

8. >1.0 =1.0 

9. >1.0 >1.0 

 

The categories (2) and (3) approach the ideal genotype depending on their mean performance.  

The categories (1) and (7) are suited to adverse environmental conditions while (9) to 

favourable conditions.  

 

The environmental indices in example 2 are calculated as 

e j   -2.515 -57.649     45.516 -151.683 -25.803 192.134 

By applying the two-phase regression technique to v7 & v8, we can get results as  

________________________________________________________________ 

Variety     Sensitivity in  

   poor environment  favourable environment 

_______________________________________________________________ 

V7         1.660.76    0.430.27 

V8         0.740.85    0.230.06 

________________________________________________________________ 

 

The variety V7 shows unit sensitivities in poor as well as favourable environments, while V8  

shows unit sensitivity under poor conditions and <1 in favourable conditions.  Hence both 

varieties are not dependable from the point of general or specific adaptation. 

 

Refined two-phase regression model 

Pooni and Jinks (1980) proposed the procedure which is more general in the sense that a pair 

of regression lines are fitted without the tacit assumption that the switch over between 

regressions takes place around the same environmental value.  This is achieved by refining the 

two-phase regression technique on the principle that significant part of the non-linearity 

results from thresholds in response of genotypes to changes in environmental conditions.  

Here the environmental value at which a particular genotype changes its slope is determined 

as the point of intersection of a pair of best fitting straight lines, which allow for a 
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considerable reduction in the residual mean square. The model for fitting a pair of intersecting 

straight lines in a matrix form as  

 

)()](21[)(21 i2ii1iiiiiii D1UDUXD1DD1DY  bbaa   (4.1) 

 

where 22 ,1,, b and b a a1 are regression parameters; ii XY  and  the dependent and independent 

variable vectors; 2i1i UU  and  are the remainder vectors for the two regressions and iD  a 

discrete vector of coefficients with values of 0 and 1 respectively below and above the 

change-over point between the two sets of environments. Model (4.1) can be expressed in an 

alternative form, by considering the expectation of Y  as  

  XY   

  
parameters regression of vector the ,baba

variables dependent of vector the 

),,,(

),,...,(
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nj2j1j YYYY
 

   null are  and   whichin of matrix dpartitione a CB
DC
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matrices of order k x 2 and (s-k) x 2 respectively (3  k  s-3).  The first column of DA  and  

are vectors with k, (s-k) unit elements respectively.  The second column of A contains the first 

k environmental values and that of D  the remaining (s-k) environmental values.  It is easy to 

see that )( XX  reduces to  

 









N0

0M
XX )(  

where  are  and NM non-zero 2 x 2 matrices and 0  is the null matrix of the same order 

clearly, 
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and the least squares solution of Eq. ( ) is  

  YXXX
1  )(̂  

with the corresponding sum of squares due to regression as  

 YXXXXYYX
1  )(̂  

The variance of   can be obtained as  

 12
XXV

 )(ˆ)ˆ(   

where 

 

4)-s
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s
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In the case of EXAMPLE 2 we have 





































134.192100

516.45100

515.2100

00803.251

00649.571

00683.1511

X  

 

By applying two-phase regression technique, we can observe  

 

for V7:          b1=1.590.98 and b2=0.420.63 with R2=0.77 

and for V8:   b1=0.230.84 and b2=0.230.54 with R2=0.73  

 

4.2  Principle Component Approach (PCA) 

William (1952) considered an equivalent model to the linear regression approach which was 

regarded as first principle component technique of GE interaction.  He showed that the least 

square estimation of the regression coefficient was equivalent to extracting the first principle 

component of the genotypic performance.  William’s method was rediscovered  by Gallob 

(1968) and Mendel (1969). The PCA model is 

 ijjn

N

n

innijY   
1

      (4.2) 

where, 

  Yij,  and ij are same as defined earlier. 

 

  n is the eigen value of the principle component analysis (PCA) axes, n. 

   in is the ith genotype PCA score for n the PCA axis, 

   jn is the jth environment PCA score for nth PCA axes, 

  N is the number of PCA axes retained on the model. 

 

This approach of studying GE interaction is based on the multiplicative model, which 

describes the interaction variation efficiently but not the main effect, unlike the variance 

component approach. 

 

The regression approach and PCA explained for studying GE interaction requires the data of 

the estimates of yield or performance of genotypes in particular environments for analysis.  In 

India multilocation yield trials of genotypes are conducted by the All India Crop Improvement 

projects of different crops, and till date the estimate of performance of the genotypes in an 

environment is taken as cell means (averaged over replications).  Averaging over few 

replications may not be good enough to get an accurate estimate of performance, hence, 

computer intensive statistical method like Additive main effects and Multiplicative Interaction 

(AMMI) analysis and Best Linear Unbiased Prediction (BLUP) can provide better estimates 

than the traditional one with same number of replications and the cost incurred. 
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APPENDIX 

 

INTERACTION ANALYSIS OF V8 & V7 

data cas10; 

input y1 y2 x; 

cards; 

254.86  241      -151.683 

168.83  270.33   -57.649 

327.3    488.7   -25.803 

383       470      -2.515 ; 

382.1   433.43   45.516 

424.1   536.6    192.134 ; 

proc reg; 

model y1 y2=x; 

run; 

 

V8 & V7 (for finding values of regression coefficients in poor and favourable environments-

Two phase regression technique) 

data cas1; 

input y1 y2 x; 

cards; 

254.86  241      -151.683 

168.83  270.33   -57.649 

327.3    488.7   -25.803 

383       470      -2.515 ; 

 

proc reg; 

model y1 y2=x; 

run; 

 

data cas2; 

inputs y1 y2 x; 

cards; 

383      470      -2.515 

382.1   433.43   45.516 

424.1   536.6    192.134 ; 

proc reg; 

model y1 y2=x; 

run; 
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Two - intersecting lines model 

proc iml; 

x={1 -151.683 0 0,1 -57.649 0 0,1 -25.803 0 0,0 0 1 -2.515 ,0 0 1 45.516,0 0 1 192.134}; 

a=x`*x;b=inv(a); 

y={254.86, 168.83, 327.30, 383 ,382.10, 424.1}; 

c1=x`*y; 

c=b*c1; 

d=(y`*y-c`*c1)/2; 

e1=d*b; 

print x; print y; 

print c; print d; 

print e1; 

run; 

proc iml; 

x={1 -151.683 0 0,1 -57.649 0 0,1 -25.803 0 0,0 0 1 -2.515 ,0 0 1 45.516,0 0 1 192.134}; 

a=x`*x;b=inv(a); 

y={241, 270.33, 488.7, 470, 433.43, 536.6}; 

c1=x`*y; 

c=b*c1; 

d=(y`*y-c`*c1)/2; 

e1=d*b; 

print x; print y; 

print c; print d; 

print e1; 

run; 

 

EXERCISE 1: Given below the data obtained from RBD experiments conducted at ten 

locations for eighteen varieties over three replications.  The standard errors for all the 

environments are also given.  Analyze the data for stability and rank the varieties over all the 

locations. 

 
 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

V1 1261 1082 1880 844 570 150 1019 400 322 567 

V2 1228 1028 1370 602 627 133 833 461 478 808 

V3 1267 861 1681 412 497 122 833 583 456 358 

V4 1572 1028 1269 538 640 78 945 256 439 508 

V5 1072 722 1024 551 430 72 796 1039 617 325 

V6 1194 1194 1708 900 618 217 778 411 600 933 

V7 817 750 1431 800 530 128 963 436 494 900 

V8 917 1306 1153 742 655 177  759 689 567 492 

V9 1061 861 736 533 277 144 806 483 589 450 

V10 561 611 972 471 350 222 741 544 389 375 

V11 533 1250 981 676 458 89 787 350 483 433 

V12 794 1028 1292 884 253 72 880 344 517 317 

V13 700 806 1421 884 610 78 741 339 422 600 

V14 1094 1333 1333 751 728 89 602 406 300 675 

V15 1167 583 1745 827 550 156 1083 556 528 375 
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V16 1328 694 1389 827 707 94 676 389 633 375 

V17 1272 750 1565 751 597 100 1028 472 661 600 

V18 1317 861 1755 876 477 72 741 550 594 433 

S.E. 67.9 38.4 100.8 72.9 23.4 11.8 100 44.9 36.8 15.6 

 

EXERCISE 2: Given below the data obtained from RBD experiments conducted at ten 

locations for eighteen varieties over three replications.  The standard error for all the 

environments are also given. Analysis the data for stability and identify whether non-linear 

interactions are present or not?  If so, how will you deal with the situation.   
 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

V1 1657 1150 1275 1891 1000 805 1200 2229 1356 1472 

V2 1454 994 1250 1300 661 819 1289 1700 1211 1472 

V3 1287 928 570 2783 1331 541 1178 1937 1117 1528 

V4 1278 1183 811 1466 872 577 970 2104 1294 1528 

V5 1435 1544 694 1678 1389 667 1019 1654 950 1972 

V6 1481 1272 1369 1608 872 534 1044 1875 1222 1639 

V7 1231 1289 1067 1835 950 626 778 1812 1289 1286 

V8 1769 1467 867 2057 789 671 1007 1817 1172 1083 

V9 1667 1528 475 1986 917 643 496 1417 672 1417 

V10 1287 1389 439 1915 1244 691 889 1654 256 2194 

V11 1102 1456 461 1830 950 585 519 1610 300 1111 

V12 1472 1667 614 1641 1278 655 519 1733 667 1222 

V13 1657 1211 847 1371 806 464 881 1667 1017 1333 

V14 1472 1333 864 1229 1289 529 822 1700 1317 1639 

V15 1769 1594 1094 1820 1489 370 1030 1450 1256 1139 

V16 1796 1806 647 1584 1511 435 1215 1844 1056 1139 

V17 1854 1417 967 1546 1053 742 1230 1696 1600 1528 

V18 1454 1644 792 1560 556 886 830 1946 878 1222 

S.E. 73.8 89.4 24.4 86.7 34.3 32.5 51.3 134.1 53.4 87.6 
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1. Introduction  

United Nations projections estimate that the world population will continue to grow from the 

current 6 billion to about 10 billion by 2050 [FAO, 1996]. The increase in population and the 

subsequent rise in the demand for agricultural produce are expected to be greater in regions 

where production is already insufficient, in particular in Sub-Saharan Africa and South Asia. 

The necessary increase in agricultural production represents a huge challenge to local 

farming systems and must come mainly from increased yield per unit area, given the limited 

scope for extension of cultivated land worldwide. To meet this requirement various crop 

improvement programmes all over the world have been initiated.  

Under any crop improvement programme a sample of promising genotypes are performance 

tested each year at a number of sites, representing the major growing area of the crop with a 

view to identify genotypes which possess the dual qualities of high-yield sustainability and 

low sensitivity to adverse changes in environmental condition. One of the important steps 

here is to assess the performance of improved genotypes in multi-environment (multi-

location, multi-year or both) trials. Quite often it is observed that varieties perform 

differently in different environments. A specified difference in environment may produce 

differential (different) effect on genotype. This interplay of genetic and non-genetic effects 

causing differential relative performances of genotypes in different environments is called 

Genotype x Environment Interaction (GEI). Presence of GEI causes difficulty in identifying 

superior genotypes. Not withstanding its importance GEI is often a distraction in genetical 

analysis for which effort is usually made to overcome such interactions.  One way of 

reducing GEI is through resistant breeding, usually adopted by plant breeders. Since only a 

minor part of the GEI can be attributed to controllable environmental determinants, much 

reduction in interaction can not be achieved. The most practical alternative is to produce 

progressively better adapted populations to the existing environments.  

 

A detailed description and discussion of various aspects of GE interaction analysis is 

available in numerous review articles (Freeman, 1973; Hill, 1975; Denis and Vincourt, 1982; 

Westcott, 1986; Lin et al., 1986; Becker and Léon, 1988; Crossa, 1990; Romagosa and Fox, 

1993; Cooper and DeLacy, 1994; van Eeuwijk, 1995; Brancourt-Hulmel et al., 1997; Kang, 

1998), in papers included in the books edited by Williams (1976), Kang (1990), Kang and 

Gauch (1996), Cooper and Hammer (1996) and Kang (2002), and in the monographs by 

Gauch (1992), Prabhakaran and Jain (1994) and Basford and Tukey (2000). In this lecture, 

analysis of GE data through AMMI approach will be mainly discussed along with the 

examples. 
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2. AMMI Model 

Gauch (1988, 1992) has advocated the use of AMMI analysis for yield trials.  Gauch and 

Zobel (1988) compared the performance of AMMI analysis with the ANOVA approach and 

regression approach and found that ANOVA fails to detect a significant interaction 

component and the regression approach accounts only a small portion of the interaction sum 

of squares only when the pattern fits a specific regression model. The AMMI model for T 

genotypes and S environments is given as 

 ijjnin

n

n
njiij eg Y 



1

       (1) 

 ),0(~ 2 Nij ;  i = 1,2,..., T; j = 1,2,..., S. 

where, ijY  is the mean yield of ith genotype in the jth environment;  is the general mean; ig  

is the ith genotypic effect; je  is the jth location effect; n  is the eigen value of the PCA axis 

n; in  and jn are the ith genotype jth environment PCA scores for the PCA axis n; ij  is 

the residual; n  is the number of PCA axes retained in the model. Ordinarily the number n  is 

judged on the basis of empirical consideration of F-test of significance [Gauch (1988, 

1992)]).  The residual combines the PCA scores from the N - n’ discarded axes, where N = 

min (t-1, s-1). The other constraints in the model (1) are 122  
i j

jnin   n; 

  

j

jnjn

i

inin 0 , nn*; and 1 > 2 >  > n > 0.  The model in (1) can be 

reparameterized as  

 ijjiij ZegY            (2) 

where ijZ = ijjnin

n

n

n  


1

. 

Let the estimate of interaction in the (i, j) th cell ijZ  be ijẐ  = jiij egY ˆˆˆ   . Using matrix 

notation,  denote Z = ( ijẐ ) a matrix of order T x S. Now, the estimates of the parameters of 

the model are: 

n̂ = the non-zero eigen values of ZZ (in descending order), and  

in̂  = the principal components of the row sum of squares and cross product matrix ZZ 

jn̂  = the principal components of the column sum of squares and cross product matrix ZZ 

 

Using these we can write  

  


N

n
jninnij ˆˆˆẑ

1

         (3) 

 It follows that, in
*  = in

c
n̂  is the ith genotype PCA score for the nth axis, and jn

*  = 

jn
c

n ̂ 1  is the nth PCA score of the jth environment; where c is a scaling constant varying 

between 0 to 1.  Also, Using factor analytic decomposition, Z may be written as  
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              ADB'Z           (4) 

where A is TN orthonormal matrix, D is NxN diagonal matrix with elements 

Nn ......  21 , B is NxS orthonormal matrix, N is the rank of Z.  The matrices 

A, D and B of equation (4) can be obtained from the eigen vectors and eigen values of ZZ' of 

the order TxT.  The matrix A consists of the eigen vectors (principal components in ) of 

ZZ' and the diagonal matrix D with square root of eigen values as diagonal elements of ZZ'.  

The matrix B consists of the eigen vectors (principal components jn ) can be obtained by 

solving 1
ADZ'B

 . For many practical situations, the number of PCA axes to be retained is 

determined by testing the mean square of each axis with the estimate of residual through F-

statistic [Gollob (1968), Gauch (1988)]. The mean sum of squares of each PCA axis is equal 

to the ratio of square of the corresponding eigen value and the degree of freedom of each axis 

obtained as T + S  –1 –2n.  

 

Biplots 

The model formulation for AMMI shows its interaction part consists of summed orthogonal 

products.  Because of this form the interaction lends itself to graphical display in the form of 

so-called biplots (Gabriel, 1971).  Let us start with AMMI and assume that either two terms 

suffice for an adequate description of the interaction.  For AMMI the interaction consists 

then of the sum of two products: 1i
* 1j

*  + 2i
* 2j

* .  The choice of the scaling constant c 

depends on the purposes of the analysis.  Usually one is more interested in the genotypes and 

c is chosen equal to one (Kempton [12]). The features of the biplots, however, are not too 

critically dependent on c, and c = 0.5 may suit well for most problems. The genotypic scores, 

1i
*  and 2i

* , are now interpreted as coordinates for a planar depiction of the genotypes, 

and the environmental scores, 1j
*  and 2j

* , for a similar depiction of the environments.  

The scores determine the end points of genotypic and environmental vectors, which depart 

from the origin.  Simple geometry reveals that the interaction between a genotype i and an 

environment j can be obtained from a projection of either vector onto the other.  The reason 

is that the interaction according to an AMMI model with two product terms of interaction, 

1i
* 1j

*  + 2i
* 2j

* , is equal to the inner product between vectors ( 1i
* , 2i

* ) and 

( 1j
* , 2j

* ), or the projection of either vector onto the other, times the length of the vector 

on which projection takes place. It is easy to read from a biplot the relative interactions that 

genotypes exhibit in a particular environment. 

 

Example: Shown below is the pod yield of 15 varieties of ground nut crop raised at 20 

locations. The experimental design used is RCBD at each location with 3 replications. 



 

 

 

 241 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the SAS programme, SISGYS2 (Rao et al., 2004), the ANOVA for the ground nut 

data is obtained and presented in Table 1. It is evident from Table 1 that the use of biplots to 

explain efficiently the interaction is very much limited, since the first two PCA axes explain 

only 55% of the total interaction variation.  Hence at least six axes must be retained to 

explain GEI.  All other calculations can be seen from the out put. 

 

 

 

 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

G1 1773 880 2841 2020 856 1382 1458 282 1190 1001 

G2 1715 861 2497 2020 505 1104 1153 275 1394 882 

G3 1241 424 3266 1717 1148 1225 1130 113 701 705 

G4 1472 917 3172 2222 1505 1475 1222 632 1308 334 

G5 1208 1435 3625 1919 903 1432 921 862 1081 539 

G6 1893 1310 2716 2374 1320 1476 1482 680 1468 591 

G7 1852 1169 2527 2222 903 1220 1407 455 1637 521 

G8 1266 993 2245 1869 292 972 1171 275 1419 767 

G9 1736 792 2376 2172 981 1113 1051 364 1579 364 

G10 1442 695 2800 2071 1051 1890 1051 605 1684 67 

G11 1530 1055 2643 2172 1412 1049 1051 567 1211 174 

G12 1697 1222 2770 2273 1759 1343 1153 572 1169 353 

G13 1637 1097 2715 2071 1806 1158 1199 636 1269 437 

G14 1641 1403 2712 2071 792 1037 1199 757 1296 643 

G15 1727 1139 2452 2071 481 883 1519 299 1330 366 

 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 

G1 2708 1832 1188 2252 1583 2014 2199 810 1033 992 

G2 1956 1907 729 1658 1285 1986 2014 865 600 842 

G3 1688 1568 1153 2073 1303 2361 2893 1028 1000 997 

G4 2833 1157 792 956 1374 2570 611 486 333 1049 

G5 2303 1778 577 1132 1368 2691 495 639 300 877 

G6 2877 2333 1005 2636 1438 2812 1968 963 1100 1413 

G7 2042 1732 1285 2046 1333 2500 2060 949 633 877 

G8 2184 2037 799 1749 1368 2083 1537 732 667 965 

G9 2940 1500 819 1668 1041 1944 2431 1000 633 967 

G10 2083 1419 1146 1295 1750 2726 1713 50 600 1166 

G11 1977 1963 1083 2063 1319 1789 1435 944 633 1309 

G12 2014 2222 792 1634 1319 2271 2014 1176 1200 1026 

G13 1574 1843 958 1719 1299 2014 2431 1014 1033 1379 

G14 2347 1889 1035 1551 1375 1993 2222 875 933 1092 

G15 1535 1574 1070 1940 1146 1514 2208 745 567 904 
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Table 1:  AMMI analysis of variance for groundnut data 

Source Df Sum of squares Mean square Variance ratio 

Genotypes 14 3565604.00 254686.00 12.63** 

Environments 19 107622796.00 5664357.70 280.86** 

G  E interaction 266 25408293.00 95519.90 4.74** 

PCA1 32 10240492.00 320015.38 12.05** 

PCA2 30 3899700.40 129990.01 4.90** 

PCA3 28 2795398.80 99835.67 3.76** 

PCA4 26 2377000.80 91423.11 3.44** 

PCA5 24 1961588.90 81732.87 3.08** 

PCA6 22 1372729.60 62396.80 2.35** 

Remainder 104 2761382.50 26551.75  

Average error 560 11294080.00 20168.00  
 

3. Simultaneous selection of varieties for yield and stability 

Genotype x environment interaction continues to be a challenging issue among plant 

breeders, geneticists, and production agronomists who conduct crop performance trials across 

diverse environments.  GEI can reduce progress from selection.  The methods of partitioning 

GEI into components attributable to each genotype measure the contribution of each 

genotype to GEI.  A universally acceptable selection criterion that takes GEI into 

consideration does not exist.  Whenever an interaction is significant, the use of main effects, 

e.g. overall genotypes means across environments, is questionable.  Stability of performance 

should be considered an important aspect of yield trials.  Researchers need a statistic that 

provides a reliable measure of stability or consistency of performance across a range of 

environments, particularly one that reflects the contribution of each genotype to the total 

GEI.  However, the stability measure alone is of limited use.  To be of practical utility in a 

breeding or cultivar testing programme, both stability and yield (or any other trait) must be 

considered simultaneously so as to make selection of genotypes more precise and reliable.  

Also integration of stability of performance with yield through suitable measures will reduce 

the effect of GEI and will help in selecting cultivars in a more refined manner.   
 

Several methods of simultaneous selection for yield and stability and relationships among 

them were discussed by Kang and Pham (1991). Kang (1993) discussed the reasons for 

emphasizing stability in the selection process. The development and use of Yield-Stability 

statistic (YSi) has enabled incorporation of stability in the selection process (Kang, 1993). A 

computer program (STABLE) for calculating this statistic is available free of charge (Kang 

and Magari, 1995). Kang’s Yield-Stability statistic (Kang, 1993) has been evaluated and 

found to be useful for recommending varieties (Pazdernik et al., 1997; Hussein et al., 2000). 

However, Bajpai and Prabhakaran (2000) observed that Kang’s rank-sum method has an 

inherent weakness that it is weighing heavily towards yield performance, apart from the 

arbitrariness in the scoring procedure. Accordingly they proposed three new indices (I1, I2, 

I3), which were found to be superior to Kang (1993) indices.  
 

AMMI based Selection indices for cultivar  environment data 

Rao et al. (2004) proposed a new stability measure and incorporating it as a stability 

component, a new family of selection indices is constructed. As evident from literature on 
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AMMI the scope of biplots is very much limited. The inferences drawn from biplots will be 

valid only when the first principal component axis (PCA) or the first two PCAs explain 

maximum interaction variation. Whenever more than two axes are retained in the AMMI 

model, the biplot formulation of interaction will fail. Consequently the conclusions drawn on 

stability of varieties will be imprecise. However, the plant breeders would like to identify 

varieties which are stable and high yielding when the PCA axes retained in the AMMI model 

will be more than two, if the axes together accumulate considerable portion of interaction 

variation. Suppose that n' of the N axes are retained in the AMMI model to explain GEI, then 

the stability measure of i-th variety can now be determined as the end point of its vector *1i, 

*2i, . . . , *n'i from the origin 0'n'x1. This can also be taken as the squared Euclidean distance 

between the vector  = (*1i, *2i, . . ., *n'i)' from the origin, in the n'- dimensional 

Euclidean space.  

ASTABi = di(, 0) = 



'n

1n

2
nin

'n

1n

*2
ni

*2
i'n

*2
i2

*2
i1 ...      (5) 

The algebraic expression of the above said stability measure can also be derived from the 

spectral decomposition of the ZZ' matrix. As we know that 

ZZ'= 1 11 +2 22  +  + n nn +  + N NN , 

the ith diagonal element of ZZ', i.e., 


s

j

ijZ
1

2 , is nothing but the interaction effects of i-th 

genotype over s environments. Therefore 
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The proposed stability measure of the i-th genotype in (5), mentioned earlier as a squared 

Euclidean distance, will be equal to the expression given in (6) when N = n', n' being the 

number of PCA axes retained in the AMMI model to explain the larger part of the GEI 

variation.  A variety is considered as highly stable when the value of ASTABi is small or 

closer to zero. The stability measure given in (5) will now be used as a stability component in 

the simultaneous selection index. A new family of simultaneous selection indices can thus be 

evolved, which consists of a yield component, measured as the ratio of the average 

performance of the ith genotype to the overall mean performance of the genotypes under test 

and a stability component, measured as the ratio of stability information (1/ASTABi) of the i 

th genotype to the mean stability information of the genotypes under test. The expression of 

the index is given as  
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ii

ASTABt
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(

)/1(

..

.
2         (7) 

where  is the ratio of the weights given to the stability component (w2) and yield component 

(w1) with a restriction that w1+ w2 = 1. The family of indices will consists of four indices I21, 

I22, I23 and I24 by considering the value of  as 1.0, 0.66, 0.43 and 0.25 respectively. The 

performance of the new family  is  assessed  by  standard  techniques  like,  the  percentage  

of  high  yielders   and  highly  stable  varieties  present  in  the  top  50%  of the varieties 

selected based on the indices. The rank correlations are worked out between yield based 
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ranks and index based ranks, stability based ranks and index based ranks. It is evident from 

Table 1that at least six axes must be retained for using the proposed simultaneous selection 

indices. The rank orders based on yield, stability (ASTABi), proposed index and Bajpai index 

for each genotype and for different  values are presented in Table 2. Table 3 shows the rank 

correlations between yield, stability with the proposed indices and Bajpai indices.  

Significant correlations of order 0.59, 0.61, 0.64 and 0.78 are observed between yield and 

proposed index when value of  is taken as 1.0, 0.67, 0.43 and 0.25 respectively, whereas 

with the Bajpai’s index the correlations are to the extent 0.49, 0.51, 0.55 and 0.64. Further, 

the correlations indicate superiority of the proposed index over the Bajpai’s index. Also 

Table 3 indicates the extent of high linear relationship between the rank orders of proposed 

index with the stability.  Besides, these  correlations  are  at  par  with the correlations 

observed between stability and Bajpai’s index.  The proportion of high yielders and stable 

performers present in the 50% top selected genotypes based on simultaneous selection index 

values are presented in Table 4.  From this table, it is evident  that among   the   top   50%   

varieties  selected  based on the proposed  indices, around 70% are the high yielders and 85% 

are high stable performers. Since the proposed indices show significant correlations with 

both high yield and stability as well as selects large proportion of high yielders and stable 

performers, they can be safely recommended to the breeders and production agronomists.    
 

A computer programme 

A SAS programme named SISGYS2 is developed for selecting genotypes simultaneously for 

yield and stability.  This programme requires genotype means over replications from 

individual locations.  The input file should be in Excel and should contain a single field with 

yld as first row and the subsequent rows should be the mean yield over replications for each 

genotype nested within locations.  The input file should be named 'data.xls'.  The number of 

genotypes and the number of locations should be provided inside the programme codes.  The 

programme calculates the following steps: (i) genotype's mean performance (ii) genotype's 

stability measure (ASTABi) or di (iii) genotype's index value I.  Based on the index values 

genotypes are ranked. The genotype with highest index value will be ranked 1. The SAS 

code developed for the purpose is given in ANNEXURE-I.  To demonstrate the programme, 

the groundnut yields of 15 varieties in 20 locations, under cultivar X location set up, are 

taken. The input data is arranged in a nested fashion as genotypes within locations and output 

(result) is as below: 
 INDEX    RANK  YIELD  RANK1  STABILITY RANK2 

 VALUE    (t/ha)    (x 106) 

  1.33  5  1.51  2  1.98  8 

 1.22  8  1.31  12  1.76  6 

 1.11  12  1.39  7  4.04  13 

 1.03  14  1.32  11  5.95  14 

 1.01  15  1.30  13  6.03  15 

 1.59  1  1.69  1  1.31  3 

 1.46  3  1.47  4  1.23  2 

 1.19  10  1.27  15  1.79  7 

 1.21  9  1.37  8  2.18  9 

 1.13  11  1.37  10  3.24  12 

 1.33  6  1.37  9  1.41  4 

 1.36  4  1.50  3  1.71  5 

 1.23  7  1.46  5  2.67  10 

 1.47  2  1.44  6  1.15  1 

 1.07  13  1.27  14  3.16  11 
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Table 2: Effect of variation of weights on the rank orders of groundnut varieties in the 

simultaneous selection indices 

 

Varie

ty 

Yield 

(t/ha) 

 

Yield 

based 

Rank 

Stability 

based 

Rank 

 = 1.0  = 0.67  = 0.43  = 0.25 

a  b a  b a  b a  b 

G1 1.51 2 8 6 5 6 5 6 5 5 4 

G2 1.34 12 6 7 3 7 3 7 4 8 5 

G3 1.38 7 13 13 13 13 13 12 13 12 13 

G4 1.32 11 14 14 14 14 14 14 14 14 14 

G5 1.30 13 15 15 15 15 15 15 15 15 15 

G6 1.69 1 3 2 4 1 4 1 3 1 3 

G7 1.46 4 2 3 2 3 2 3 2 3 2 

G8 1.27 15 7 8 8 8 8 8 8 10 9 

G9 1.37 8 9 9 10 9 10 9 10 9 10 

G10 1.36 10 12 11 12 11 12 11 12 11 11 

G11 1.37 9 4 4 6 4 7 4 7 6 7 

G12 1.50 3 5 5 7 5 6 5 6 4 6 

G13 1.46 5 10 10 9 10 9 10 9 7 8 

G14 1.44 6 1 1 1 2 1 2 1 2 1 

G15 1.27 14 11 12 11 12 11 13 11 13 12 

a: Proposed index based rank; b: Bajpai’s index based rank 

Table 3:  Rank correlations between simultaneous selection indices and yield, stability 

for groundnut data 

 

Index  

Type 

Weightage on components of index 

 = 1.00  = 0.67  = 0.43  = 0.25 

Yield Stability Yield Stability Yield Stability Yield Stability 

Proposed 

index 
0.596* 0.982** 0.614** 0.975** 0.639** 0.968** 0.782** 0.914** 

Bajpai’s 

index 
0.493NS 0.946** 0.514* 0.943** 0.553* 0.953** 0.639** 0.932** 
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Table 4: Proportion of high yielders (HY) and highly stable performers (HSP) present 

out of top 50% genotypes selected on the basis of simultaneous selection indices  

 

Index  

Type 

Weightage () 

 = 1.00  = 0.67  = 0.43  = 0.25 

 

HY 

 

HSP 

 

HY 

 

HSP 

 

HY 

 

HSP 

 

HY 

 

HSP 

Proposed 

index 

0.71 
(6,14,7,12,1) 

0.86 
(6,14,7,11,12,2) 

0.71 
(6,14,7,12,1) 

0.86 
(6,14,7,11,12,2) 

0.71 
(6,14,7,12,1) 

0.86 
(6,14,7,11,12,2) 

0.86 
(6,14,7,12,1,13) 

0.86 
(6,14,7,11,12,2) 

Bajpai’s 

index 

0.71 
(14,7,6,1,12) 

0.86 
(14,7,6,2,12,11) 

0.71 
(14,7,6,1,12) 

0.86 
(14,7,6,2,12,11) 

0.71 
(14,7,6,1,12) 

0.86 
(14,7,6,2,12,11) 

0.71 
(14,7,6,1,12) 

0.86 
(14,7,6,2,12,11) 

 

References 
Bajpai, P.K. and Prabhakaran, V.T. 2000.  A new procedure of simultaneous selection for high 

yielding and stable crop genotypes. Ind. J. Genet.,  60(2), 141-146. 

Basford, K.E. and Tukey, J.W. 2000. Graphical analysis of multiresponse data: illustrated with a 

plant breeding trial. Boca Raton, FL, Chapman & Hall/CRC Press. 

Becker, H.C. and Léon, J. 1988. Stability analysis in plant breeding. Plant Breed., 101: 1-23. 

Brancourt-Hulmel, M., Biarnès-Dumoulin, V. and Denis, J.B. 1997. Points de repère dans 

l'analyse de la stabilité et de l'interaction génotype-milieu en amélioration des plants. 

Agronomie, 17: 219-246. 

Cooper, M. & DeLacy, I.H. 1994. Relationships among analytical methods used to study 

genotypic variation and genotype-by-environment interaction in plant breeding multi-

environment experiments. Theor. Appl. Genet., 88: 561-572. 

Cooper, M. and Hammer, G.L. (eds). 1996. Plant adaptation and crop improvement. 

Wallingford, UK, CABI. 

Crossa, J., Gauch, H.G. and Zobel, R.W. 1990. Additive main effects and multiplicative 

interaction analysis of two international maize cultivar trials. Crop Sci., 30: 493-500. 

Denis, J.B. and Vincourt, P. 1982. Panorama des méthodes statistiques d'analyse des interactions 

génotype x milieu. Agronomie, 2: 219-230. 

FAO. 1996. Food requirements and population growth. Technical Background Document 

No. 4. Rome. 
Freeman, G.H. 1973. Statistical methods for the analysis of genotype-environment interaction. 

Heredity, 31: 339-354.  

Gabriel, K.R. 1971.  The biplot-graphical display of matrices with applications to principal 

component analysis.  Biometrika, 58, 453-467. 

Gauch, H.G. 1988. Model selection and validation for yield trials with interaction. Biometrics, 

44: 705-715. 

Gauch, H.G. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial 

designs. Amsterdam, Elsevier. 

Gauch, H.G.and Zobel, R.W. 1988. Predictive and postdictive success of statistical analysis of 

yield trial. Theor. Appl. Genet. , 76, 1-10. 

Gollob, H.F. (1968).  A statistical model which combines features of factor analytic and 

analysis of variance techniques.  Psychometrika, 33, 73-115. 

Hill, J. 1975. Genotype-environment interactions - A challenge for plant breeding. J. Agric. Sci., 

Camb., 85: 477-493. 



 

 

 

 247 

Hussein, M.A., A. Bjornstad, and A.H. Aastveit. 2000. SASG x ESTAB: A SAS program for 

computing genotype x environment stability statistics. Agron. J. 92:454-459. 

Kang, M. S. 1993. Simultaneous selection for yield and stability in crop performance trials: 

Consequences for growers.  Agron. J., 85, 754-757. 

Kang, M.S. and Gauch, H.G. (eds). 1996. Genotype-by-environment interaction. Boca Raton, FL, 

CRC Press. 

Kang, M.S. (ed.) 1990. Genotype-by-environment interaction and plant breeding. Baton Rouge, 

LA, Louisiana State Univ. 

Kang, M.S. (ed.) 2002. Quantitative genetics, genomics, and plant breeding. Wallingford, UK, 

CABI. 

Kang, M.S. 1998. Using genotype-by-environment interaction for crop cultivar development. 

Adv. Agron., 62: 199-252. 

Kang, M.S., and Magari, R. 1995. STABLE: Basic program for calculating yield-stability 

statistic. Agron. J., 87, 276-277. 

Kang, M.S., and Pham, H.N. 1991. Simultaneous selection for high yielding and stable crop 

genotypes. Agron. J., 83,161-165. 

Pazdernik, D.L., Hardman, L.L. and Orf, J.H. 1997. Agronomic performance of soybean varieties 

grown in three maturity zones of Minnesota. J. Prod. Agric., 10, 425-430. 

Prabhakaran, V.T. and Jain, J.P. 1994. Statistical techniques for studying genotype-environment 

interactions. New Delhi, South Asian Publ. 

Rao, A.R., Prabhkaran, V.T. and Singh, A.K. 2004. Development of statistical procedures for 

selecting genotypes simultaneously for yield and stability. IASRI Publication. 

Romagosa, I., Fox, P.N., Garcìa del Moral, L.F., Ramos, J.M., Garcìa del Moral, B., Roca de 

Togores, F. & Molina-Cano, J.L. 1993. Integration of statistical and physiological analyses 

of adaptation of near-isogenic barley lines. Theor. Appl. Genet., 86: 822-826. 

van Eeuwijk, F.A. 1995. Linear and bilinear models for the analysis of multi-environment trials. 

I. An inventory of models. Euphytica, 84: 1-7. 

Westcott, B. 1986. Some methods of analysing genotype-environment interaction. Heredity, 56: 

243-253. 

Williams, W.T. (ed.) 1976. Pattern analysis in agricultural science. Amsterdam, Elsevier. 



 

 

Data Mining: An Overview 

 
Shashi Dahiya 

ICAR-IASRI, Library Avenue, New Delhi – 110 012 

shashi.dahiya@icar.gov.in 

 
 

 

Introduction 
 

Rapid advances in data collection and storage technology have enables organizations to 

accumulate vast amounts of data. However, extracting useful information has proven 

extremely challenging. Often, traditional data analysis tools and techniques cannot be used 

because of the massive size of a data set. Sometimes, the non-traditional nature of the data 

means that traditional approaches cannot be applied even if the data set is relatively small. 

In other situations, the questions that need to be answered cannot be addressed using 

existing data analysis techniques, and thus, new methods need to be developed. 
 

Data mining is a technology that blends traditional data analysis methods with 

sophisticated algorithms for processing large volumes of data. It has also opened up 

exiting opportunities for exploring and analyzing new types of data and for analyzing old 

types of data in new ways. Data Mining is the process of automatically discovering useful 

information in large data repositories. Data mining techniques are deployed to scour large 

databases in order to find novel and useful patterns that might otherwise remain unknown. 

They also provide capabilities to predict the outcome of a future observation, such as 

predicting whether a newly arrived customer will spend more than Rs.1000 at a 

department store. 
 

Data mining, or knowledge discovery, has become an indispensable technology for 

businesses and researchers in many fields. Drawing on work in such areas as statistics, 

machine learning, pattern recognition, databases, and high performance computing, data 

mining extracts useful information from the large data sets now available to industry and 

science. 

Knowledge Discovery in Database 

The transformation of data into knowledge has been using mostly manual methods for data 

analysis and interpretation, which makes the process of pattern extraction of databases too 

expensive, slow and highly subjective, as well as unthinkable if the volume of data is huge. 

The interest in automating the analysis process of great volumes of data has been 

fomenting several research projects in an emergent field called Knowledge Discovery in 

Databases (KDD).  KDD is the process of knowledge extraction from great masses of data 

with the goal of obtaining meaning and consequently understanding of the data, as well as 

to acquire new knowledge. This process is very complex because it consists of a 

technology composed of a group of mathematical and technical models of software that 

are used to find patterns and regularities in the data.  

Knowledge discovery in databases (KDD) has been defined as the process of discovering 

valid, novel, and potentially useful patterns from data. Let us examine these terms in more 

details:  



Data Mining: An Overview                                                                                                                                    
 

 

249 

 Data is a set of facts F (e.g. cases in databases). 

 Pattern is an expression E in a language L describing facts in a subset FE of F. E is 

called a pattern if it simpler than the enumeration of all facts in FE. 

 Process: Usually in KDD is a multi step process, which involves data preparation, 

search for patterns, knowledge evaluation, and refinement involving iteration after 

modification. The process is assumed to be non-trivial-that is, to have some degree 

of search autonomy. 

 Validity: The discovered patterns should be valid on new data with some degree of 

certainty.  

 Novel: The patterns are novel (at least to the system). Novelty can be measured 

with respect to changes in data (by comparing current values to previous or 

expected values) or knowledge (how a new finding is related to old ones). In 

general, it can be measured by a function N (E, F), which can be a Boolean 

function or a measure of degree of novelty or unexpectedness.  

 Potentially useful: The patterns should potentially lead to some useful actions, as 

measured by some utility function. Such a function U maps expressions in L to a 

partially or totally ordered measure space MU: hence u=U (E,F). 

 Ultimately Understandable: A goal of KDD is to make patterns understandable to 

humans in order to facilitate a better understanding of the underlying data. While 

this is difficult to measure precisely, one frequent substitute is the simplicity 

measure. Several measure of simplicity exist, and they range form the purely 

syntactic to the semantic. It is assumed that this is measured, if possible, by a 

function S mapping expressions E in L to a partially or totally ordered space MS: 

hence, s= S (E, F).  
 

An important notion, called interestingness, is usually taken as an overall measure of 

pattern value, combining validity, novelty, usefulness, and simplicity. Some KDD systems 

have an explicit interestingness function i = I (E, F, C, N, U, S) which maps expressions in 

L to a measure space MI. Other systems define interestingness indirectly via an ordering of 

the discovered patterns.  
 

Based on the notions given above, we can now make an attempt to define knowledge. 
 

Knowledge: A pattern E is called knowledge if for some user-specified threshold i  MI, 

I (E, F, C, N, U, S) > i.  

 

This definition of knowledge is purely user-oriented and determined by whatever 

functions and thresholds the user chooses.  

To extract knowledge from databases, it is essential that the Expert follows some steps or 

basic stages in order to find a path from the raw data to the desired knowledge. The KDD 

process organizes these stages in a sequential and iterative form. In this way, it would be 

interesting if the obtained results of these steps were analyzed in a more interactive and 

friendly way, seeking a better evaluation of these results. The process of knowledge 

extraction from databases combines methods and statistical tools, machine learning and 

databases to find a mathematical and/or logical description, which can be eventually 

complex, of patterns and regularities in data. The knowledge extraction from a large 

amount of data should be seen as an interactive and iterative process, and not as a system 

of automatic analysis.  
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The interactivity of the KDD process refers to the greater understanding, on the part of the 

users of the process, of the application domain. This understanding involves the selection 

of a representative data subset, appropriate pattern classes and good approaches to 

evaluating the knowledge. For a better understanding the functions of the users that use the 

KDD process can be divided in three classes:  

(a) Domain Expert, who should possess a large understanding of the application 

domain;  

(b) Analyst, who executes the KDD process and, therefore, he should have a lot of 

knowledge of the stages that compose this process and  

(c) Final User, who does not need to have much knowledge of the domain, the Final 

User uses knowledge extracted from the KDD process to aid him in a decision-

making process. 

KDD Process: Knowledge discovery from data can be understood as a process that 

contains, at least, the steps of application domain understanding, selection and 

preprocessing of data, Data Mining, knowledge evaluation and consolidation and use of 

the knowledge. The KDD process is interactive and iterative, involving numerous steps 

with many decisions being made by the user. Practical view of the KDD process 

emphasizing the interactive nature of the process outlines the following basic steps:  

 Data Selection: Where data relevant to the analysis task are retrieved from the 

database. 

 Data Preprocessing: To remove noise and inconsistent data which is called 

cleaning and integration of data that is combining multiple data sources. 

 Data Transformation: Where data are transformed or consolidated into forms 

appropriate for mining by performing summary or aggregation operations. 

 Data Mining: An essential process where intelligent methods are applied in order 

to extract data patterns. 

 Pattern Evaluation: To identify the truly interesting patterns representing 

knowledge based on some interestingness measures. 

 Knowledge Presentation: Where visualization and knowledge representation 

techniques are used to present the mined knowledge to the user. 

The several steps of KDD have been shown in the following figure. 

 

Figure: Various Steps of KDD process 

The KDD process begins with the understanding of the application domain, considering 

aspects such as the objectives of the application and the data sources. Next, a 

representative sample (e.g. using statistical techniques) is removed from database, 

preprocessed and submitted to the methods and tools of the Data Mining stage with the 

objective of finding patterns/models (knowledge) in the data. This knowledge is then 



Data Mining: An Overview                                                                                                                                    
 

 

251 

evaluated as to its quality and/or usefulness, so that it can be used to support a decision-

making process. 

 

The data mining component of the KDD process is mainly concerned with means by 

which patterns are extracted and enumerated from the data. Knowledge discovery involves 

the evaluation and possibly interpretation of the patterns to make the decision of  what 

constitutes knowledge and what does not. It also includes of encoding schemes, 

preprocessing, sampling and projections of the data prior to the data mining step. 

Data Mining 

Generally, Data Mining is the process of analyzing data from different perspectives and 

summarizing it into useful information. Data Mining can be defined as "the nontrivial 

extraction of implicit, previously unknown, and potentially useful information from data"  

and "the science of extracting useful information from large data sets or databases". 

Although it is usually used in relation to analysis of data, data mining, like artificial 

intelligence, is an umbrella term and is used with varied meaning in a range of wide 

contexts. It is usually associated with a business or other organization's need to identify 

trends. 

Data Mining involves the process of analyzing data to show patterns or relationships; 

sorting through large amounts of data; and picking out pieces of relative information or 

patterns that occur e.g., picking out statistical information from some data. 
 

The Data-Mining Communities: As data-mining has become recognized as a powerful 

tool, several different communities have laid claim to the subject: 
 

1. Statistics. 

2. AI, where it is called \machine learning." 

3. Researchers in clustering algorithms. 

4. Visualization researchers. 

5. Databases.  
 

In a sense, data mining can be thought of as algorithms for executing very complex 

queries on non-main-memory data. 
 

Motivating Challenges 
 

Traditional data analysis techniques have often encountered practical difficulties in 

meeting the challenges posed by new data sets. The following are some of the specific 

challenges that motivated the development of data mining: 
 

 Scalability: Because of advances in data generation and collection datasets with 

sizes of gigabytes, terabytes, or even petabytes are becoming common. If data 

mining algorithms are to handle these massive datasets, then they must be scalable. 

Many data mining algorithms employ special search strategies to handle 

exponential search problems. Scalability may also require the implementation of 

novel data structures to access individual records in an efficient manner. For 

instance, out-of-core algorithms may be necessary when processing data sets that 

cannot fit into main memory. Scalability can also be improved by using sampling 

or developing parallel and distributed algorithms. 
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 High Dimensionality: It is now common to encounter data sets with hundreds or 

thousands of attributes instead of the handful common a few decades ago. In 

bioinformatics, progress in microarray technology has produced gene expression 

data involving thousands of features. Data sets with temporal or spatial 

components also tend to have high dimensionality. For example, consider a data 

set that contains measurements of temperature at various locations. It the 

temperature measurements are taken repeatedly for an extended period, the number 

of dimensions (features) increases in proportion to the number of measurements 

taken. Traditional data analysis techniques that were developed for low-

dimensional data often do not work well for such high-dimensional data. Also, for 

some data analysis algorithms, the computational complexity increase rapidly as 

the dimensionality (the number of features) increases. 

 Heterogeneous and Complex Data: Traditional data analysis methods often deal 

with data sets containing attributes of the same type, either continuous or 

categorical. As the role of data mining in business, science, medicine, and other 

fields has grown, so has the need for techniques that can handle heterogeneous 

attributes. Recent years have also seen the emergence of more complex data 

objects. Examples of such non-traditional types of data include collections of Web 

pages containing semi-structured text and hyper lines; DNA data with sequential 

and three-dimensional structure; and climate data that consists of time series 

measurements (temperature, pressure, etc.) at various locations on the Earth’s 

surface. Techniques developed for mining such complex objects should take into 

consideration relationships in the data, such as temporal and spatial autocorrelation, 

graph connectivity, and parent-child relationships between the elements in semi-

structures text and XML documents. 

 Data Ownership and Distribution: Sometimes, the data needed for an analysis is 

not stored in one location or owned by one organization. Instead, the data is 

geographically distributed among resources belonging to multiple entities. This 

requires the development of distributed data mining techniques. Among the key 

challenges faced distributed data mining algorithms include (1) how to reduce the 

amount of communication needed to perform the distributed computation, (2) how 

to effectively consolidate the data mining results obtained from multiple sources, 

and (3) how to address data security issues. 

 Non-Traditional Analysis: The traditional statistical approach is based on a 

hypothesize-the test paradigm. In other words, a hypothesis is proposed, an 

experiment is designed to gather the data, and then the data is analysed with 

respect to the hypothesis. Unfortunately, this process is extremely labor-intensive. 

Current data analysis tasks often require the generation and evaluated of thousands 

of hypotheses, and consequently, the development of some data mining techniques 

has been motivated by the desire to automate the process of hypothesis generation 

and evaluation. Furthermore, the data sets analyzed in data mining are typically nor 

the result of a carefully designed experiments and often represent opportunistic 

samples of the data, rather than random samples. Also, the data sets frequently 

involve non-traditional types of data and data distributions.  

 

Data Preprocessing 

 

Data preprocessing is a broad area and consists of a number of different strategies and 

techniques that are interrelated in complex ways. We will present some of the most 
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important ideas and approaches, and try to point the interrelationships among them. The 

preprocessing techniques fall into two categories: selecting data objects and attributes for 

the analysis or creating/ changing the attributes. In both cases the goal is to improve the 

data mining analysis with respect to time, cost, and quality. Specifically, following are the 

important preprocessing techniques: 
 

 Aggregation: Sometimes “less is more” and this is the case with aggregation, the 

combining of two or more objects into a single object.. Consider a dataset 

consisting of transactions (data objects) recording the daily sales of products in 

various store locations for different days over the course of a year. One way of 

aggregate the transactions of this data set is to replace all the transactions of a 

single store with a single storewide transaction. This reduces the hundreds or 

thousands of transactions that occur daily at a specific store to a single daily 

transaction, and the number of data objects is reduced to the number of stores.  

  An obvious issue is how an aggregate transaction is created; i.e. how the values 

 of each attribute are combined across all the records corresponding to a particular 

 location to create the aggregate transaction that represents the sales of a single 

 store or date. Quantitative attributes, such as price, are typically aggregated by 

 taking a sum or an average. A qualitative attribute, such as item, can either be 

 omitted or summarized as the set of all the items that were sold at that location. 

 Sampling:  Sampling is a commonly used approach for selecting a subset of the 

data objects to be analyzed. In statistics, it has long been used for both the 

preliminary investigation of the data and the final data analysis. Sampling can also 

be very useful in data mining. However, the motivations for sampling in statistics 

and data mining are often different. Statisticians use sampling because obtaining 

the entire set of data of interest is too expensive or time consuming to process all 

the data. In some cases, using a sampling algorithm can reduce the data size to the 

point where a better, but more expensive algorithm can be used. 

 Dimensionality reduction: Datasets can have a large number of feature. Consider 

set documents, where each documents is represented by a vector whose 

components are the frequencies with which each word occurs in the document. In 

such cases, there are typically thousands or tens of thousands of attributes 

(components), one for each word in the vocabulary. As another example, consider 

a set of time series consisting of the daily closing price of various stocks over a 

period of 30 days. In this case, the attributes, which are the prices on specific days 

again number in the thousands. 

 There is variety of benefits to dimensionality reduction. A key benefit is that 

 many data mining algorithms work better if the dimensionality—the number of 

 attributes in the data—is lower. This is partly because the dimensionality 

 reduction can eliminate irrelevant features and reduce noise and partly because of 

 the curse of dimensionality. Another benefit of dimensionality reduction is that a 

 reduction of dimensionality can lead to a more understandable model because the 

 model may involve fewer attributes. Also, dimensionality reduction may allow the 

 data to be more easily visualized. Even if dimensionality reduction doesn’t reduce 

 the data to two or three dimensions, data is often visualized by looking at pairs or 

 triplets of attributes, and the number of such combinations is greatly reduced. 

 Finally, the amount of time and memory required by the data mining algorithms is 

 reduced with a reduction in dimensionality. 
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 Feature subset selection:   The term dimensionality reduction is often those 

techniques that reduce the dimensionality of data set by creating new attributes that 

are a combination of the old attributes. The reduction of dimensionality by 

selecting new attributes that are a subset of the old is known as feature subset 

selection or feature selection. While it might seem that such as approach would 

lose information, this is not the case if redundant and irrelevant features are present. 

Redundant features duplicate much or all the information contained in one or more 

other attributes. For example, the purchase price of a product and ge amount of 

sales tax paid contain much of the same information. Irrelevant features contain 

almost no useful information for the data mining task at hand. For instance, 

student’s ID numbers are irrelevant to the task of predicting student’s grade point 

averages. Redundant and irrelevant features can reduce classification accuracy and 

the quality of the clusters that are found. 

 Feature creation: It is frequently possible to create, from the original attributes, a 

new set of attributes that captures the important information in a data set much 

more effectively. Furthermore, the number of new attributes can be smaller than 

the number of original attributes, allowing us to reap all the benefits of 

dimensionality reduction. Three related methodologies for creating new attributes 

are: feature extraction, mapping the data to a new space, and feature construction. 

 Discretization and Binarization: Some data mining algorithms, especially certain 

classification algorithms, require that the data be in the form of categorical 

attributes. Algorithms that fine association patterns require that the data be in the 

form of binary attributes. Thus, it is often necessary to transform a continuous 

attribute into a categorical attribute (discretization), and both continuous and 

discrete attributes may need to be transformed into one or more binary attributes 

(binarization). Additionally, if a categorical attribute has a large number of values 

(categories), or some values occur infrequently, then it may be beneficial for 

certain data mining tasks to reduce the number of categories by combining some of 

the values. 

 Variable transformation: A variable transformation refers to a transformation 

that is applied to all the values of a variable. In other words, for each subject, the 

transformation is applied to the value of the variable for that object. For example, 

if only the magnitude of a variable is important, then the values of the variable can 

be transformed by taking the absolute value.  
 

Tasks in Classical Data Mining 
 

The two “high-level” primary goals of data mining in practice tend to be prediction and 

description. Data Mining tasks are generally divided into two major categories: 
 

Predictive Tasks: the objective of these tasks is to predict the value of a particular 

attribute based on the values of other attributes. The attribute to be predicted is commonly 

known as the target or dependent variable, while the attributes used for making the 

prediction are known as the explanatory or independent variables. 
 

Descriptive Tasks: Here, the objective is to derive patterns (correlations, trends, clusters, 

trajectories and anomalies) that summarize the underlying relationships in data. 

Descriptive data mining tasks are often explanatory in nature and frequently require post 

processing techniques to validate and explain and results. 
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The relative importance of prediction and description for particular data mining 

applications can vary considerably. However, in context of KDD, description tends to be 

more important than prediction. 

 

Discovering patterns and rules: Other data mining applications are concerned with 

pattern detection. One example is spotting fraudulent behavior by detecting regions of the 

space defining the different types of transactions where the data points significantly 

different from the rest. Another use is in astronomy, where detection of unusual stars or 

galaxies may lead to the discovery of previously unknown phenomenon. Yet another is the 

task of finding combinations of items that occur frequently in transaction databases (e.g., 

grocery products that are often purchased together). This problem has been the focus of 

much attention in data mining and has been addressed using algorithmic techniques based 

on association rules. 
 

A significant challenge here, one that statisticians have traditionally dealt with in the 

context of outlier detection, is deciding what constitutes truly unusual behavior in the 

context of normal variability. In high dimensions, this can be particularly difficult. 

Background knowledge and human interpretation can be invaluable.  
 

To achieve the goals of prediction and description, following data mining tasks are carried 

out. 

 Classification 

 Association Rule Mining 

 Clustering 

 Evolution Analysis 

 Outlier Detection 

 Dependency Modeling 

 Change and Deviation Detection 
 

1. Classification: Classification, which is the task of assigning objects to one of several 

predefined categories, is a pervasive problem that encompasses many diverse applications. 

Examples include, detecting spam email messages based upon the message header and 

content, categorizing cells as malignant or benign based upon the results of MRI scans, 

and classifying galaxies based upon their shapes. 
 

The input data for a classification task is a collection of records. Each record,  also known 

as an instance or example, is categorized by a tuple (x, y), where x is the attribute set and y 

is a special attribute, designated as the class label (also known as category or the target 

attribute). The attributes set in a dataset for classification can be either discrete or 

continuous but the class label must be a discrete attribute. This is the key characteristic 

that distinguishes classification from regression, a predictive modeling task in which y is a 

continuous attribute. 
 

Definition (classification): Classification is the task of learning a target function f that 

maps each attribute set x to one of the predefined class labels y. 
 

The target function is also known informally as a classification model. A classification 

model is useful for the following purposes. 
 

Descriptive Modeling:  A classification model can serve as an explanatory tool to 

distinguish between objects of different classes. For example, it would be useful-for both 
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biologists and others-to have a descriptive model that summarizes that data shown… and 

explains what features define a vertebrate as a mammal, reptile, bird, fish, and amphibian. 

 

Predictive Modeling: A classification model can also be used to predict the class label of 

unknown records. A classification model can be treated as a black box that automatically 

assigns a class label when presented with the attribute set of an unknown record.  
 

Classification techniques are most suited for predicting or describing data sets with binary 

or nominal categories. They are less effective for ordinal categories (e.g., to classify a 

person as a member of high, medium or low income group) because they do not consider 

the implicit order among the categories. Other forms of relationships, such as subclass-

superclass relationships among categories (e.g., humans and apes are primates, which in 

turn is a subclass of mammals) are also ignored.  
 

2. Association Rule Mining: Association rule mining, one of the most important and well 

researched techniques of data mining, was first introduced in 1993.It aims to extract 

interesting correlations, frequent patterns, associations or casual structures among sets of 

items in the transaction databases or other data repositories. Association rules are widely 

used in various areas such as telecommunication networks, market and risk management, 

inventory control etc. Various association mining techniques and algorithms will be 

briefly introduced and compared later. Association rule mining is to find out association 

rules that satisfy the predefined minimum support and confidence from a given database. 

The problem is usually decomposed into two sub-problems. One is to find those itemsets 

whose occurrences exceed a predefined threshold in the database; those itemsets are called 

frequent or large itemsets. The second problem is to generate association rules from those 

large itemsets with the constraints of minimal confidence. Suppose one of the large 

itemsets is Lk, Lk = {I1, I2, … , Ik}, association rules with this itemsets are generated in the 

following way: the first rule is {I1, I2, … , Ik-1}⇒ {Ik}, by checking the confidence this 

rule can be determined as interesting or not. Then other rule are generated by deleting the 

last items in the antecedent and inserting it to the consequent, further the confidences of 

the new rules are checked to determine the interestingness of them. Those processes 

iterated until the antecedent becomes empty. Since the second sub problem is quite 

straight forward, most of the researches focus on the first sub problem. The first sub-

problem can be further divided into two sub-problems: candidate large itemsets generation 

process and frequent itemsets generation process. We call those itemsets whose support 

exceed the support threshold as large or frequent item- sets, those itemsets that are 

expected or have the hope to be large or frequent are called candidate itemsets. In many 

cases, the algorithms generate an extremely large number of association rules, often in 

thousands or even millions. Further, the association rules are sometimes very large. It is 

nearly impossible for the end users to comprehend or validate such large number of 

complex association rules, thereby limiting the usefulness of the data mining results. 

Several strategies have been proposed to reduce the number of association rules, such as 

generating only “interesting” rules, generating only “nonredundant” rules, or generating 

only those rules satisfying certain other criteria such as coverage, leverage, lift or strength.  
 

3. Clustering: Clustering or cluster analysis divides the data into groups (clusters) that are 

meaningful, useful or both. If meaningful groups are the goal, then the clusters should 

capture the natural structure of the data. In some cases, however, cluster analysis is only a 

useful starting point for other purposes, such as data summarization. Cluster analysis 

groups data objects based only on information found in the data that describes the objects 

and their relationships. The goal is that the objects within a group be similar (or related) to 
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one another and different from (or unrelated to) the objects in other groups. The greater 

the similarity (or homogeneity) within a group and the greater the difference between 

groups, the better or more distinct the clustering. There are various types of clustering:  
 

- Hierarchical versus Partitional 

- Exclusive versus Overlapping versus Fuzzy 

- Complete versus Partial 
 

4. Evolution Analysis: Data evolution analysis describes and models regularities or trends 

for objects whose behaviors changes over time. Although this may include 

characterization, discrimination, association, classification, or clustering of time-related 

data, distinct feature of such an analysis include time-series data analysis, sequence or 

periodicity pattern matching, and similarity-based data analysis. 
 

5. Outlier Detection: A database may contain data objects that do not comply with the 

general behaviour or model of the data. Theses data objects are outliers. Most data mining 

methods discard outliers as noise as exceptions. However, in some applications such as 

fraud detection, the rare events can be more interesting than the more regularly occurring 

ones. The analysis of outlier data is referred to as outlier mining. 
 

6. Dependency modeling: Dependency modeling consists of finding a model that 

describes significant  dependencies between variables. Dependency models exist at two 

levels: (1) the structural level of the model specifies (often in graphic form) which 

variables are locally dependent on each other and (2) the quantitative level of the model 

specifies the strengths of the dependencies using some numeric scale. For example, 

probabilistic dependency networks use conditional independence to specify the structural 

aspect of the model and probabilities or correlations to specify the strengths of the 

dependencies. Probabilistic dependency networks are increasingly finding applications in 

areas as diverse as the development of probabilistic medical expert systems from 

databases, information retrieval, and modeling of the human genome. 
 

7. Change and deviation detection: Change and deviation detection focuses on 

discovering the most significant changes in the data from previously measured or 

normative values. 
 

Components of Data Mining Algorithms 
 

The data mining algorithms that address various data mining tasks have four basic 

components: 
 

1. Model or Pattern Structure: Determining the underlying structure of functional 

forms that we seek from the data. 

2. Score Function: Score functions are for judging the quality of a fitted model. 

Score Functions quantify how well a model or parameter structure fits a given data 

set. In an ideal world the choice of score function would precisely reflect the utility 

(i.e., the true expected benefit) of a particular predictive model. In practice, 

however, it is often difficult to specify precisely the true utility of a model’s 

predictions. Hence, simple, “generic” score functions, such as least squares and 

classification accuracy are commonly used. 

3. Optimization and Search Method: Optimizing the score function and searching 

over different model and pattern structures. The score function is a measure of how 

ell aspects of the data match proposed models or patterns. Usually, these models or 
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patters are described in terms of a structure, sometimes with unknown parameter 

values. The goal of optimization and search is to determine the structure and the 

parameter values that achieve a minimum (or maximum, depending on the context) 

value of the score function. The task of finding the “ best” values of parameters in 

models  is typically cast as an optimization (for estimation) problem. The task of 

finding interesting patterns (such as rules) from a large family of potential patterns 

is typically cast as a combinatorial search problem, and is, often accomplished 

using heuristic search techniques. In linear regression, a prediction rule is usually 

found by minimizing a least squares score function (the sum of squared errors 

between the prediction from a model and the observed values of the predicted 

variable). Such a score function is amenable to mathematical manipulation, and the 

model that minimizes it can be found algebraically. In contrast, a score function 

such as misclassification rate in supervised classification is difficult to minimize 

analytically. 

4. Data Management Strategy: Handling the data access efficiently during the 

search/optimization. The final component in any data mining algorithm is the data 

management strategy: the ways in which the data stored, indexed, and accessed. 

Most well-known data analysis algorithms in statistics and machine learning have 

been developed under the assumption that all individual data points can be 

accessed quickly and efficiently in random-access memory(RAM), while main 

memory technology has improved rapidly, there have been equally rapid 

improvements in secondary (disk) and tertiary tape) storage technologies, to the 

extent that many massive data sets still reside largely on disk or tape and will not 

fit in available RAM. Thus, there will probably be a price to pay for accessing 

massive data sets, since not all data points can be simultaneously close to the main 

processor.  
 

Problems in Data Mining 
 

Data mining systems face a lot of problems and pitfalls. A system which is quick and 

correct on some small training sets, could behave completely different when applied to a 

larger database. A data mining system may work perfect for consistent data and perform 

significant worse when a little noise is added to the training set. In this section we take a 

look at what we mean are the most prominent problems and challenges of data mining 

systems today.  

 Noisy Data  

 Difficult Training Set  

 Databases are Dynamic  

 Databases may be Huge  

Noisy Data:In a large database, many of the attribute values will be inexact or incorrect. 

This may be due to erroneous instruments measuring some property, or human error when 

registering it. We will distinguish between two forms of noise in the data, both described 

below: 
 

Corrupted Values: Sometimes some of the values in the training set are altered from what 

they should have been. This may result in one or more tuples in the database conflict with 

the rules already established. The system may then regard these extreme values as noise, 

and ignore them. Alternatively, one may take the values into account possibly changing 

correct patterns recognized. The problem is that one never knows if the extreme values are 

correct or not, and the challenge is how to handle ``weird'' values in the best manner. 

http://www.pvv.ntnu.no/~hgs/project/report/node23.html#SECTION00561000000000000000
http://www.pvv.ntnu.no/~hgs/project/report/node24.html#SECTION00562000000000000000
http://www.pvv.ntnu.no/~hgs/project/report/node25.html#SECTION00563000000000000000
http://www.pvv.ntnu.no/~hgs/project/report/node26.html#SECTION00564000000000000000
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Missing Attribute Values: One or more of the attribute values may be missing both for 

examples in the training set and for object which are to be classified. If attributes are 

missing in the training set, the system may either ignore this object totally, try to take it 

into account by for instance finding what is the missing attribute's most probable value, or 

use the value ``unknown'' as a separate value for the attribute. When an attribute value is 

missing for an object during classification, the system may check all matching rules and 

calculate the most probable classification.  
 

Difficult Training Set: Sometimes the training set is not the ultimate training set due to 

several reasons. These are the following: 
 

Not Representative Data: If the data in the training set is not representative for the objects 

in the domain, we have a problem. If rules for diagnosing patients are being created and 

only elderly people are registered in the training set, the result for diagnosing a kid based 

on these data probably will not be good. Even though this may have serious consequences, 

we would say that not representative data is mainly a problem of machine learning when 

the learning is based on few examples. When using large data sets, the rules created 

probably are representative, as long as the data being classified belongs to the same 

domain as those in the training set. 
 

No Boundary Cases: To find the real differences between two classes, some boundary 

cases should be present. If a data mining system for instance is to classify animals, the 

property counting for a bird might be that it has wings and not that it can fly. This kind of 

detailed distinction will only be possible if e.g. penguins are registered. 

Limited Information: In order to classify an object to a specific class, some condition 

attributes are investigated. Sometimes, two objects with the same values for condition 

attributes have a different classification. Then, the objects have some properties which are 

not among the attributes in the training set, but still make a difference. This is a problem 

for the system, which does not have any way of distinguish these two types of objects.  

Databases are Dynamic:Databases usually change continually. We would like rules 

which reflect the content of the database at all times, in order to make the best possible 

classification. Many existing data mining systems require that all the training examples are 

given at once. If something is changed at a later time, the whole learning process may 

have to be conducted again. An important challenge for data mining systems is to avoid 

this, and instead change its current rules according to updates performed.  

Databases may be Huge:The size of databases seem to be ever increasing. Most machine 

learning algorithms have been created for handling only a small training set, for instance a 

few hundred examples. In order to use similar techniques in databases thousands of times 

bigger, much care must be taken. Having very much data is advantageous since they 

probably will show relations really existing, but the number of possible descriptions of 

such a dataset is enormous. Some possible ways of coping with this problem, are to design 

algorithms with lower complexity and to use heuristics to find the best classification rules. 

Simply using a faster computer is seldom a good solution.  

Conclusion 

The subject of data mining, while relatively young. This overview introduces the major 

definitions, issues and tasks used in data mining.  

The state of the art in automated methods in data mining is still in a fairly early stage of 

development. There are no established criteria for deciding which methods to use in which 

circumstances, and many of the approaches are based on crude heuristic approximations to 
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avoid the expensive search required to find optimal, or even good, solutions. Hence, one 

should be careful when confronted with overstated claims about the great ability of a 

system to mine useful information from large (or even small) databases. 
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Introduction 

 

Traditional knowledge representation includes a broad range of techniques from term lists 

to taxonomies to complex thesauri in a print or database format, first order logics to 

frames. These systems are intended to use by human for different purposes like searching 

for the documents on keywords, searching for the books and journals in library, checking 

grammatical and spelling errors in documents, building expert systems and decision 

support systems etc. These knowledge representation techniques are not designed to take 

into account their use for agents and Semantic Web. For making real life Semantic Web 

applications in different knowledge domains, there is a need to convert these existing 

knowledge resources to new systems best suited for Semantic Web and agents. Ontologies 

are the new form of knowledge representation that acts in synergy with agents and 

Semantic Web architecture. The Semantic Web architecture has different layers of 

technologies piled over one another to form a single stack of technologies. Resource 

Description Framework (RDF), a layer in the architecture, is the Web metadata language 

to describe information about Web resources. The Web Ontology Language (OWL)  is 

widely accepted as a standard language for sharing Semantic Web contents, resides over 

RDF. OWL facilitates greater machine interpretability of Web content than supported by 

XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a 

formal semantics. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL 

DL  and OWL Full designed to use by specific communities of developers and users. Over 

the years, lots of advancement have taken place in all the layers of Semantic Web 

architecture, and demerits of existing architecture are pointed out. Multi Stack 

Architecture was released to overcome the demerits of earlier Single Stack Architecture. 

 

Ontologies are extendible and highly reusable and deliver the user better access to his 

relevant content but are difficult to build from scratch. Ontologies provide formal models 

of domain knowledge that can be exploited by intelligent agents. Taxonomies describe real 

world concepts in well-defined hierarchy and exist in standardized form for numerous 

domains of knowledge. The work presented in the thesis starts with devising an approach 

to build ontologies from taxonomies, in easy and quick manner. The approach helps the 

knowledge engineer to build ontologies in a given domain without going into deep 

understanding of concepts prevalent in the domain. On the other hand, the approach act as 

a ready reference for the domain experts and helps them to transform the domain concepts 

into ontology resources by using ontology editor. The presented approach saves lot of time 

and gives a kick-start to the ontology development. Protégé with its OWL plug-in, a 

widely used tool for creation and maintenance of OWL ontologies is used for developing 

Soil Ontology from Soil Taxonomy to validate the approach. 

 

Semantic Web 

 

The W3C Consortium's broadly stated mission is to use the Web to its "full potential". 

According to W3C “The Web can be viewed as a universe of network-accessible 
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information, acting as a means of human-to-human communication, and as a space in 

which software agents can become tools to work with us having access to a vast amount of 

everything which is society, science and its problems”. 

 

 

Web as a universe of network-accessible information means that the principles of 

universality of access irrespective of hardware or software platform, network 

infrastructure, language, culture, geographical location, or physical or mental impairment 

holds. The Web in its current state is an incredible success with millions of users and 

information sources. Accessing, extracting, interpreting, and maintaining available 

information is a huge and complex task left to the human user. Tim Berners-Lee, the 

inventor of the WWW, coined the vision of a Semantic Web in which knowledge about 

Web resources is represented as conceptual and machine processable metadata. There are 

many applications based on software agents that may exploit and benefit from a 

semantics-driven approach, e.g., document and content management, information 

integration, or knowledge management, to name just a few. The aim of Semantic Web is 

to enrich the existing Web with a layer of machine-interpretable metadata so that a 

computer program can draw conclusions predictably. Drawing conclusions predictably 

means all programs that receive this information draw the same new information from it. 

In a Semantic Web environment, independent systems can exchange knowledge and 

action specifications, resulting in the execution of an activity acceptable to all systems 

involved. 
 

Semantic Web Architecture 
 

The Semantic Web architecture as shown in the Figure 2.1, forms single-stack architecture 

(SSA) and every new development in that area should build on top of the previous layers. 

The older layers at the lower part of the stack are supposed to be upward compatible with 

the new developments, and in this way any investment made in the old technology is 

preserved as the Semantic Web technology matures and expands.  

 

Figure 1. Single Stack Architecture of Semantic Web 
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The Semantic Web architecture is based on the most fundamental specification of Web 

architecture, the Universal Resource Identifier (URI) . The principle that anything, 

absolutely anything, "on the Web" should be identified distinctly by a string of characters 

is core to the universality. Great multiplicative power of reuse is derived from the fact that 

all languages use URIs as identifiers. This allows concepts written in one language to refer 

to concepts defined in another language. The use of URIs allows a language to leverage 

many forms of persistence, identity and various forms of equivalence. There are many 

design decisions about the properties of URIs which are fundamental in that they 

determine the properties of the Web. These include the rules for the parsing and use of 

relative URI syntax, the relationship of fragment ids to URIs. The HTTP URI space is 

most well-known and is characterized by a flexible notion of identity and a richness of 

information about and relating resources, and a dereferencing algorithm which is defined 

for reference by the HTTP 1.1 wire protocol. The HTTP space consists of two parts, one 

hierarchically delegated, for which the Domain Name System (DNS) is used, and the 

second an opaque string whose significance is locally defined by the authority owning the 

domain name.  

 

The second part of the base layer in the Semantic Web Architecture is Unicode. Unicode 

provides a unique number for every character, independent of platform, programs and 

languages. The Unicode Standard has already become an industry standard and is used by 

other modern standards such as XML, Java, JavaScript, LDAP, CORBA 3.0, WML. It is 

supported in major operating systems, all modern browsers, and many other products. The 

emergence of the Unicode Standard, and the availability of tools supporting it, is among 

the most significant recent global software technology trends. Incorporating Unicode into 

client-server or multi-tiered applications and websites offers significant cost savings over 

the use of legacy character sets. Unicode enables a single software product or a single 

website to be targeted across multiple platforms, languages and countries without re-

engineering. It allows data to be transported through many different systems without being 

corrupted. Semantic Web architecture takes all these advantages of Unicode for its easy 

adoption across the globe. 

 

XML  together with namespace and XML Schema form the second layer. The Extensible 

Markup Language (XML) is a general-purpose markup language. It is classified as an 

extensible language because it allows its users to define their own tags. The primary 

purpose of XML is to facilitate the sharing of structured data across different applications. 

It is used to encode documents and serialize data as well. XML provides a basic format for 

structured documents, with no particular semantics. As XML is already a W3C standard 

for sharing data, its inclusion in the Semantic Web architecture ensures smooth transition 

between the current Web and Semantic Web. All the technologies present in higher layers 

of the Semantic Web architecture use XML syntax, and takes leverage from namespaces 

and XML Schema. An XML namespace is also a W3C recommendation for providing 

uniquely named elements and attributes in an XML instance. An XML instance may 

contain element or attribute names from more than one XML vocabulary. If each 

vocabulary is given a namespace then an ambiguity between identically named elements 

or attributes can be resolved. All element names within a namespace must be unique. An 

XML namespace does not require its vocabulary to be defined, though it is fairly common 

practice to place either a Document Type Definition (DTD) or an XML Schema defining 

the precise data structure at the location of the namespace's URI. XML Schema can be 

used to express a set of rules to which an XML document must conform in order to be 

considered “valid” according to that schema. XML Schema validates XML documents 

http://en.wikipedia.org/wiki/W3C
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Namespace_%28computer_science%29
http://en.wikipedia.org/wiki/Document_Type_Definition
http://en.wikipedia.org/wiki/XML_Schema
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resulting in a collection of information adhering to specific datatypes, which can be useful 

in the development of XML document processing software. 

 

The third layer of Semantic Web architecture consists of Resource Description Framework 

(RDF)  and RDF Schema. RDF is a foundation for processing metadata and provides 

interoperability between applications by exchanging machine-understandable information 

on the Web. RDF emphasizes facilities to enable automated processing of Web resources. 

The RDF provides the concepts of assertion (property). This allows an entity-relationship-

like model to be made for the data, giving it the semantics of assertions propositional 

logic.  

 

The Ontology layer provides more powerful schema concepts, such as functional, inverse, 

and transitivity. Known uniqueness and/or unambiguousness of properties, allow a system 

to spot different identifiers which in fact are talking about the same thing. The Web 

Ontology Language (OWL) is the W3C recommendation for describing an Ontology.  

 

The logical layer turns a limited declarative language into a Turing-complete logical 

language, with inference and functions. This is powerful enough to be able to define all the 

rest, and allows any two RDF applications to be connected together. One can see this 

language as being a universal language to unify all data systems just as HTML was a 

language to unify all human documentation systems. There is no W3C recommendation 

for this layer and it is a current research area to work. 

 

A conversion language allows the expression of inference rules allowing information in 

one schema to be inferred from a document in another. This is part of Rules Layer. An 

evolution rules language allows inference rules to be given which allow a machine with a 

certain algorithm to do convert documents from one RDF schema into another. This is a 

fundamental key to evolution of the technology. There may be more than one rule 

standard, as different classes of rule-based system have different capabilities. Rule 

Interchange Format (RIF) Working Group of W3C has released the core design of Rule 

Interchange Format (RIF). Query languages assume different forms of query engine, but 

they work in basically the same problem space as rule systems. One can imagine 

standardizing both certain query engines and a language for defining query engines. 

 

In order for agents or Semantic Web services to explain their results, they need to be able 

to generate justifications of their results in an exchangeable, combinable format. A 

sequential trace of information manipulations used to generate an answer can be referred 

as a proof of the answer. A proof language is a form of RDF or OWL that allows them to 

send to another an assertion, together with the inference path to that assertion from 

assumptions acceptable to the receiver. Proof Markup Language (PML)  provides an 

interlingua for capturing the information agent's need to understand results and to justify 

why they should believe in the results. Proof Markup Language can be used to represent 

proof traces produced by highly optimized theorem prover, proofs such as formal natural 

deduction derivations, proofs resulting from services aimed at information retrieval or 

entity extraction, proofs representing different kinds of explanations varying from 

summaries of assertions or knowledge sources, and for supporting the exchange of proof 

information among automated reasoners in hybrid reasoning systems. 

http://www.w3.org/DesignIssues/Semantic.html#Logical
http://www.w3.org/DesignIssues/Semantic.html#Conversion
http://www.w3.org/DesignIssues/Evolution.html
http://www.w3.org/DesignIssues/Semantic.html#Query
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Figure 2 Multi Stack Architecture of Semantic Web 

 

 

The introduction of digital signature turns a Web of reason into a Web of trust. A single 

digital signature format for XML documents is important. The power of the RDF logical 

layers will allow existing certificate schemes to be converted into RDF, and a trust path to 

be verified by a generic RDF engine. 

 

An alternative architecture as shown in Figure 2 for the Semantic Web was proposed. 

While single-stack architecture would hold aesthetic appeal and simplify interoperability, 

many workers in the field believe that such architecture is unrealistic and unsustainable. 

The Semantic Web within a short history has encountered lot of technological difficulties. 

RDF(S), the first layer in the Web architecture that was dubbed “semantic" was proposed 

and standardized without a semantics. The difficulties that this created for OWL the 

subsequent and more expressive layer of the Semantic Web are well-documented in gave a 

formal semantics of RDF(S). It is well-known, but rarely mentioned, that OWL-DL is not 

properly layered on top of RDF(S), and that the single-stack architecture for the budding 

Semantic Web technology already has a small crack. The alternative architecture also 

called as multi stack architecture (MSA) proposed at the workshop recognizes the 

difficulties both at the philosophical level as well as implementation level with the SSA. 

The MSA allows multiple technological stacks to exist side-by-side, making them 

interoperable to a high degree, but when this is not possible, a loosely coupled integration 

will be acceptable in practice. 

 

The differences between SSA and MSA are evident as some new layers are introduced and 

some are split. The RDF and RDF(S) layer is broken into two layers viz. RDF Core and 

RDF Schema. This gives more emphasis to RDF Core on which whole of the semantics 

are placed. Treating RDF Schema as a different layer allows research avenues in this as 

researchers are making new schemas for meeting their custom requirements. Also, the 

SSA was not having any query language to access RDF(S) or OWL and with the release of 

W3C recommendations on  SPARQL, it has to find its place in the architecture. The MSA 

has a Description Logic Program (DLP) layer sandwiched between RDF Schema and 

OWL/Rule Layer. The details of Description Logic are presented in chapter 4. This layer 

http://www.w3.org/DesignIssues/Semantic.html#Signature
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strengthen the semantic bond between the RDF(S) and OWL/Rule layer. Also, the 

relationship between the logical framework, rules and proof are modified to make them 

more realistic from implementation point of view. The security is always a concern for 

today’s Web applications and so it will remain an issue for the future Semantic Web. The 

digital signatures bar in the SSA is strengthened with the encryption bar in MSA to make 

the Semantic Web a “Web of Trust”.  
 

Knowledge Representation using Ontologies 
 

Traditionally knowledge is stored as unstructured text compiled into books. With the 

outburst of knowledge it becomes necessary to convert this unstructured knowledge into 

structured one. People compiled the unstructured text with different knowledge 

representation techniques, each one specific for a particular use like dictionaries to act as a 

handy tool for learning and retrieving generic or domain specific words and terms, 

thesauri for brief definition, synonyms, antonyms and concepts, general idea underlying 

the terms, and taxonomies for representing concepts or objects in the hierarchical tree 

structure. All these knowledge representation techniques have many limitations like lack 

of conceptual abstraction, limited semantic coverage, lack of consistency and limited 

automated processing. To overcome these limitations traditional knowledge representation 

techniques must be reengineered into ones that contain domain concepts linked through a 

rich network of well-defined relationships and a rich set of terms identifying these 

concepts. Knowledge representations techniques such as rule-base, semantic networks and 

frames provide these features.  
 

In a rule-base system, facts consisting of widely shared domain knowledge that is accepted 

by the professional and other accepted sources of data form the working memory. The 

second type of knowledge stored in the rule-base system is called heuristic, which is the 

knowledge of good judgment and common good practice or “rule of thumb’ in a field. The 

heuristic knowledge is encoded into If-Then rules. The system examines all the rule 

conditions (IF) and determines a subset, the conflict set, of the rules whose conditions are 

satisfied based on the working memory. Based on a conflict resolution strategy, one of the 

rules from the conflict set is triggered and any actions specified in its THEN clause are 

carried out. These actions can modify the working memory, the rule-base itself, or take an 

appropriate action as per the system logic. This loop of firing rules and performing actions 

continues until there are no more rules whose conditions are satisfied or a rule is fired 

whose action specifies the program should terminate.  
 

A semantic network is a graphic notation for representing knowledge in patterns of 

interconnected nodes and arcs. Semantic networks are extensively used in machine 

translation, and find its application in philosophy, psychology, and linguistics. A frame is 

basically a structure for holding various types of knowledge. Frames are given names, 

with the presumption that the knowledge contained within a particular frame is in some 

way interrelated. Many authors and speakers may refer to frame-like structures as units, 

objects, concepts, schemas or entities. Frames are structured ways of representing 

descriptive information & they provide a natural mapping for the kind of knowledge that 

is centred around one concept or object. The organization allows efficient searching 

because there is immediate access to relevant information. Frame structure provides a 

natural method for representing hierarchies of information, thus allowing the inheritance 

of values.  Although frames were conceived independently of the object-oriented 

paradigm they are in fact consistent with it, and provide an excellent demonstration of 

their power. Indeed frames are capable of representing both specific and general 
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knowledge, and are capable of accommodating both descriptive and prescriptive 

computations.  
 

Frame Based Systems have many advantages including immediate access to relevant 

information, easy to include default information and detect missing values etc. Frames can 

easily be used in conjunction with Production rules, thereby facilitating partitioning, 

indexing and organizing production rules of a system. The implicit hierarchy available in 

frame taxonomies also permits hierarchical segmentation of rules. All these merits of the 

frame allow it to be the basis for knowledge representation technique called Ontology for 

the Web to facilitate more powerful searching and intelligent information processing. 
 

Ontologies define domain concepts and the relationships between them, and thus provide a 

domain language that is meaningful to both human and machines. Ontology is a term 

borrowed from philosophy that refers to the science of describing the kinds of entities in 

the world and how they are related. In contrast to traditional knowledge representation 

techniques, ontologies provide conceptual abstraction and differentiated relationships. In 

ontologies, semantics are developed through ensuring that each concept within the domain 

is uniquely and precisely defined and by specifying elaborated relationships among the 

concepts. The relationships in ontology are explicitly named and developed with 

specification of rules and constraints so that they reflect the context of the domain for 

which the knowledge is modeled. 
 

Given their more precise and unambiguous semantics, ontologies allow further knowledge 

to be inferred from the explicitly represented knowledge by applying generalization or 

transitivity rules, the level of applicability of which is limited in a traditional knowledge 

representation techniques. This added knowledge in the ontology makes it powerful when 

employed for intelligent information processing. Ontology is a critical component of the 

Semantic Web. Ontology is a controlled and common vocabulary to support the sharing 

and reuse of knowledge. It describes objects and the relations between them in a formal 

way, and has a grammar for using the vocabulary terms to express something meaningful 

within a specified domain of interest. The vocabulary is used to make queries and 

assertions. When two parties agree to use the same ontology, they agree to the meanings 

for all terms from that ontology and their information can be combined easily. There are 

many definitions of ontology given by researchers. The most agreed upon general 

definition of Ontology is 
 

“Ontology is an explicit specification of a shared conceptualization”. He also laid out 

following design criteria: 
 

Clarity: An ontology should effectively communicate the intended meaning of 

defined terms and should be documented with natural language. Definitions should 

be objective and stated formally so that they are independent of social or 

computational context. Where possible, a complete definition (a predicate defined by 

necessary and sufficient conditions) is preferred over a partial definition (defined by 

only necessary or sufficient conditions).  

Coherence: An ontology should be coherent: that is, it should sanction inferences 

that are consistent with the terms defined formally or informally, such as those 

described in natural language documentation and examples. If a sentence that can be 

inferred from the axioms contradicts a definition or example given informally, then 

the ontology is incoherent. 
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Extendibility: An ontology should be designed to anticipate the uses of the shared 

vocabulary. It should be able to define new terms for special uses based on the 

existing vocabulary, in a way that does not require the revision of the existing 

definitions. 
 

Minimal encoding bias: An encoding bias results when representation choices are 

made purely for the convenience of notation or implementation and should be 

minimized. The conceptualization should be specified at the knowledge level without 

depending on a particular symbol-level encoding.  
 

Minimal ontological commitment: An ontology should require the minimal 

ontological commitment sufficient to support the intended knowledge sharing 

activities. An ontology should make as few claims as possible about the world being 

modeled, allowing the parties committed to the ontology freedom to specialize and 

instantiate the ontology as needed.  
 

An ontology defines the terms used to describe and represent an area of knowledge. 

Ontologies are used by people, databases, and applications that need to share domain 

information (a domain is just a specific subject area or area of knowledge, like medicine, 

tool manufacturing, real estate, automobile repair, financial management, etc.). Ontologies 

include computer-usable definitions of basic concepts in the domain and the relationships 

among them. They encoded knowledge in a domain and also knowledge that spans 

domains. In this way, they made that knowledge reusable. 
 

Resource Description Framework (Schema)  
 

Resource Description Framework (RDF) was originally created in 1999 as a standard on 

top of XML for encoding metadata information. The RDF is used for encoding 

information about Web resources as well as information about and relations between 

things in the real world: people, places, concepts, etc. The semantics associated with this 

information enables Web applications interoperability. An RDF model that describes some 

Web resources is also called an RDF instance. An RDF Schema can be used to define 

application specific vocabularies. This schema can be associated with an RDF instance in 

order to validate the instance. Both RDF instance and RDF Schema are RDF models. RDF 

is designed to represent information in a minimally constraining, flexible way. It can be 

used in isolated applications, where individually designed formats might be more direct 

and easily understood, but RDF's generality offers greater value from sharing. The value 

of information thus increases as it becomes accessible to more applications across the 

entire Internet. The design of RDF is intended to meet the following goals: 

 having a simple data model  

 having formal semantics and provable inference  

 using an extensible URI-based vocabulary  

 using an XML-based syntax  

 supporting use of XML schema datatypes  

 allowing anyone to make statements about any resource  
 

RDF uses the following key concepts: 

 Graph data model  

 URI-based vocabulary  
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 Datatypes  

 Literals  

 XML serialization syntax  

 Expression of simple facts  

 Entailment 
 

RDF provides a general, flexible method to decompose any knowledge into small pieces, 

called triples, with some rules about the semantics (meaning) of those pieces. RDF builds 

on existing XML and URI (Uniform Resource Identifier) technologies, using a URI to 

identify every resource, and using URIs to make statements about resources. RDF 

statements describe a resource (identified by a URI), the resource’s properties, and the 

values of those properties. 
 

The foundation is breaking knowledge down into a labeled, directed graph. Each edge in 

the graph represents a fact, or a relation between two things. The edge in the example from 

the node “Apple” labeled “hasColor” to the node “Red” represents the fact that Apple has 

red color. A fact represented this way has three parts: a subject, a predicate (i.e., verb), and 

an object. The subject is what's at the start of the edge, the predicate is the type of edge (its 

label), and the object is what's at the end of the edge (Figure 3).  
 

The abstract model of RDF comes down to four simple rules: 
 

 A fact is expressed as a Subject-Predicate-Object triple, also known as a statement.  

 Subjects, predicates and objects are given as names for entities, also called 

resources or nodes (from graph terminology). Entities represent something, a 

person, website, or something more abstract like states and relations.  

 Names are URIs, which are global in scope, always referring to the same entity in 

any RDF document in which they appear.  

 Objects can also be given as text values, called literal values, which may or may 

not be typed using XML Schema datatypes.  

 

Entities are named by Uniform Resource Identifiers (URIs), and this provides the globally 

unique, distributed naming system. Since, URIs can be quite long, in RDF notations they 

are usually abbreviated using the concept of namespaces from XML. 

 

Resource 

(Subject) e.g. Apple 

e.g.  

Property Value (object) 

e.g. Red 

Property (Predicate) e.g. hasColor 

 

Figure 3 RDF Triple 
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Literal values, like "computer science," allow text to be included in RDF. This is used 

heavily when RDF is used for metadata--its original purpose. In fact, literal values are 

primarily what tie RDF to the real world, since URIs are just arbitrary strings. 

 

Once triples are defined graphically, they can be coded in either RDF/XML to be accessed 

programmatically. 

 

RDF/XML syntax to represent RDF graphs is as follows: 

 

 rdf:Description - used to define a Triple, multiple triples having same subject can 

be defined under one rdf:Description. 

 rdf:about - The subject of triple is defined by this attribute. 

 Properties are defined by their URI as tag using xml namespace. 

 Value of property tag can be plain literal or a resource. 

 If the value of a property is a resource it is denoted by rdf:resource attribute. 

 Data type of literals can be assigned by using rdf:datatype attribute. 

 rdf:ID – can be used in place of rdf:about attribute if the resource URI is assigned 

in terms of RDF document’s base URI.  

 

By creating triples with subjects, predicates, and objects, RDF allows machines to make 

logical assertions based on the associations between subjects and objects. And since RDF 

uses URIs to identify resources, each resource is tied to a unique definition available on 

the Web. However, while RDF provides a model and syntax (the rules that specify the 

elements of a sentence) for describing resources, it does not specify the semantics (the 

meaning) of the resources. To truly define semantics, RDFS and OWL are needed.  

 

RDFS  is used to create vocabularies that describe groups of related RDF resources and 

the relationships between those resources. An RDFS vocabulary defines the allowable 

properties that can be assigned to RDF resources within a given domain. RDFS also 

allows creating classes of resources that share common properties.  

 

Using the same triples paradigm defined by RDF, RDFS triples consist of classes, class 

properties, and values that define the classes and relationships between the resources 

within a particular domain. 

 

In an RDFS vocabulary, resources are defined as instances of classes. A class is a resource 

too, and any class can be a subclass of another. This hierarchical semantic information is 

what allows machines to determine the meanings of resources based on their properties 

and classes. RDFS tags are: 

 

 rdfs:Class : used to define a class in RDFS. 

 rdfs:subClassOf : used to assign a class its parent class. 

 rdf:Property :used to define a property . 

 rdfs:subPropertyOf : used to assign a property its parent property. 

 rdfs:domain  and rdfs:rannge : schema properties to describe application specific 

properties. 
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 rdfs:Resource : RDF Schema defines all the classes as subclass of this class. 

 

Figure 2.4 shows a sample vehicle schema in RDFS: 

 

 

Figure 4 RDFS for vehicle schema 

 

<?xml version="1.0"?> 

<!DOCTYPE rdf:RDF [<!ENTITY xsd 

"http://www.w3.org/2001/XMLSchema#">]> 

<rdf:RDF    

  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"   

  xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

  xml:base="http://example.org/schemas/vehicles"> 

 

<rdfs:Class rdf:ID="MotorVehicle"/> 

 

<rdfs:Class rdf:ID="PassengerVehicle"> 

  <rdfs:subClassOf rdf:resource="#MotorVehicle"/> 

</rdfs:Class> 

 

<rdfs:Class rdf:ID="Van"> 

  <rdfs:subClassOf rdf:resource="#MotorVehicle"/> 

</rdfs:Class> 

 

<rdfs:Class rdf:ID="MiniVan"> 

  <rdfs:subClassOf rdf:resource="#Van"/> 

  <rdfs:subClassOf rdf:resource="#PassengerVehicle"/> 

</rdfs:Class> 

 

<rdfs:Class rdf:ID="Person"/> 

 

<rdfs:Datatype rdf:about="&xsd;integer"/> 

 

<rdf:Property rdf:ID="registeredTo"> 

  <rdfs:domain rdf:resource="#MotorVehicle"/> 

  <rdfs:range rdf:resource="#Person"/> 

</rdf:Property> 

 

 

<rdf:Property rdf:ID="rearSeatLegRoom"> 

  <rdfs:domain rdf:resource="#PassengerVehicle"/>  

  <rdfs:range rdf:resource="&xsd;integer"/> 

</rdf:Property> 

 

<rdf:Property rdf:ID="driver"> 

  <rdfs:domain rdf:resource="#MotorVehicle"/> 

</rdf:Property> 

 

<rdf:Property rdf:ID="primaryDriver"> 

  <rdfs:subPropertyOf rdf:resource="#driver"/> 

</rdf:Property> 

 

</rdf:RDF> 
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Web Ontology Language (OWL) 

 

The OWL Web Ontology Language  is designed to use by applications that need to 

process the content of information instead of just presenting information to humans. OWL 

facilitates greater machine interpretability of Web content than supported by XML, RDF, 

and RDF Schema (RDF-S) by providing additional vocabulary along with a formal 

semantics. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL DL, 

and OWL Full designed to use by specific communities of implementers and users. 

 

OWL Lite supports those users, who primarily need a classification hierarchy and simple 

constraints. For example, while it supports cardinality constraints, it only permits 

cardinality values of 0 or 1. It should be simpler to provide tool support for OWL Lite than 

its more expressive relatives. OWL Lite provides a quick migration path for thesauri and 

other taxonomies. It also has a lower formal complexity than OWL DL.  

 

OWL DL supports those users who want the maximum expressiveness while retaining 

computational completeness (all conclusions are guaranteed to be computable) and 

decidability (all computations will finish in finite time). OWL DL includes all OWL 

language constructs, but they can be used only under certain restrictions (for example, 

while a class may be a subclass of many classes, a class cannot be an instance of another 

class). OWL DL is so named due to its correspondence with Description Logics  a field of 

research that has studied the logics that form the formal foundation of OWL. 

 

OWL Full permits maximum expressiveness and syntactic freedom of RDF with no 

computational guarantees. For example, in OWL Full a class can be treated 

simultaneously as a collection of individuals and as an individual in its own right. OWL 

Full allows an ontology to augment the meaning of the pre-defined (RDF or OWL) 

vocabulary. It is unlikely that any reasoning software will be able to support complete 

reasoning for every feature of OWL. 

 

Building upon RDF and RDFS, OWL defines the types of relationships that can be 

expressed in RDF using an XML vocabulary to indicate the hierarchies and relationships 

between different resources. In fact, this is the very definition of “ontology” in the context 

of the Semantic Web: a schema that formally defines the hierarchies and relationships 

between different resources. Semantic Web ontologies consist of taxonomy and a set of 

inference rules from which machines can make logical conclusions. Taxonomy in this 

context is a system of classification for classifying resources into classes and sub-classes 

based on their relationships and shared properties. Since taxonomies (systems of 

classification) express the hierarchical relationships that exist between resources, OWL 

can be used to assign properties to classes of resources and allow their subclasses to inherit 

the same properties. OWL adds several features which enhances semantic expressibility of 

RDFS. List of additional features that can be defined in OWL: 

 

 Classes can be defined as Boolean combinations of other classes using the set 

operators union, intersection, and complement. 

OWL Set Operators are intersectionOf, unionOf, complementOf. Classes 

constructed using the set operations are more like definitions than anything else. 

The members of the class are completely specified by the set operation. For 

example: making class Z as union of class X and class Y defines class Z as union 

of all the instances of class X and class Y. 
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 Classes can be stated as disjoint. 

The disjointness of a set of classes can be expressed using the owl:disjointWith 

constructor. It guarantees that an individual that is a member of one class cannot 

simultaneously be an instance of a specified other class. For example: class A1, a 

subclass of A is disjoint with other subclasses of A i.e. A2, A3 and A4. 

 It can be stated that the two classes (with different URI) are same, and that two 

different instances actually represent the same individual. 

OWL constructs equivalentClass, equivalentProperty are used to tie together a set 

of component ontologies as part of a third. It is frequently useful to be able to 

indicate that a particular class or property in one ontology is equivalent to a class 

or property in a second ontology. 

 Individuals can be declared sameAs, differentFrom, AllDifferent 

sameAs: This mechanism is similar to that for classes, but declares two individuals 

to be identical.  

differentFrom: This mechanism provides the opposite effect from sameAs. This is 

one way to assert that the stated individuals are mutually distinct.  

AllDifferent: This is a convenient mechanism to define a set of mutually distinct 

individuals. The following asserts that Red, White, and Rose are pairwise distinct. 

 Cardinality restrictions can be specified for properties. 

OWL  provides three cardinality constructs : 

owl:cardinality, which permits the specification of exactly the number of elements 

in a relation. 

owl:mincardinality, which permits the specification of the minimum number of  

elements in a relation. 

owl:maxcardinality, which permits the specification of the maximum number of 

elements in a relation. 

 It can be specified that a property is transitive, symmetric, Functional, inverseOf, 

Inverse Functional Property. 

 

Transitive property: If a property P, is specified as transitive then for any x, y, 

and z: 

P(x,y) and P(y,z) implies P(x,z) 

Symmetric property: If a property P, is tagged as symmetric then for any x and y: 

P(x,y) iff P(y,x) 

Functional property: If a property P, is tagged as functional then for all x, y, and 

z: 

P(x,y) and P(x,z) implies y = z 

inverseOf : If a property P1, is tagged as the owl:inverseOf P2, then for all x and y: 

P1(x,y) iff P2(y,x) 

InverseFunctionalProperty: If a property P, is tagged as InverseFunctional then for 

all x, y and z: 
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P(y,x) and P(z,x) implies y = z 

Tools for Building Ontologies 

 

Ontology editors are applications designed to assist in the creation or manipulation of 

ontologies. They often express ontologies in one of many ontology languages. Among the 

most relevant criteria for choosing ontology editor are the degree to which the editor 

abstracts from the actual ontology representation language used for persistence and the 

visual navigation possibilities within the knowledge model. Denny,  presents a detailed 

survey of over 50 popular software tools that have ontology editing capabilities and are in 

use today. The tools are useful for building ontology schemas (terminological component) 

alone or together with instance data. These tools are compared on number of parameters 

like ontology language support, Web support, graph view, multi-user support, modeling 

features and limitations, consistency checks, import/export formats, information 

extraction, merging of different ontologies.  

 

OntoEdit,  is a sophisticated ontology editor that supports methodology-based ontology 

construction and that takes comprehensive advantage of its inference capabilities. 

OntoEdit also has features such as an extremely capable plug-in structure, a lexicon 

component and support for collaborative engineering of ontologies. OntoEdit is based on 

F-logic  and its core functionalities are extended by two plug-ins, viz., OntoKick and 

Mind2Onto to support first stages of the ontology development. OntoKick targets at 

creation of the requirement specification document and extraction of relevant structures 

for the building of the semi-formal ontology description. Mind2Onto targets at integration 

of brainstorming processes to build relevant structures of the semi-formal ontology 

description. 

 

Protégé is an integrated software tool used by system developers and domain experts to 

develop knowledge-based systems. Applications developed with Protégé-2000 are used in 

problem-solving and decision-making in a particular domain. The Protégé-2000 GUI 

(graphical user interface) top-level consists of overlapping tabs for compact presentation 

of the parts and for convenient co-editing between them. Protégé with OWL plugin unlike 

all the above tools is based on W3C OWL, it is a product of KSL, Stanford University, a 

well known center of excellence in knowledge engineering, it is a open source, and is 

supported by huge research community. In the presented work, Protégé is used to develop 

ontologies and is discussed in brief in next section. 

 

OBO-Edit previously known as DAG-Edit is an ontology editor developed by the Gene 

Ontology consortium for developing Gene Ontology. OBO-Edit is an open source, 

platform-independent application for viewing and editing any OBO format ontologies. 

OBO-Edit is a graph-based tool and provides a friendly interface for biologists for the 

rapid generation of large ontologies focusing on relationships between relatively simple 

classes. 

 

The Integrated Ontology Development Environment (IODE)  is an integrated tool set for 

creating and managing ontology models of an application domain. This is the 

commercially available tool designed to facilitate the production of ontologies specifically 

for managing large data volumes. The IODE has an inbuilt upper level ontology 

containing various models that provides both ontological structure and data integrity 

constraints, enabling the user to quickly and efficiently produce rigorous and robust 

ontologies. It is based on the OWL, based on KIF and is different from the W3C OWL. 
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Protégé  

 

Protégé can be characterized as an ontology development environment. It provides 

functionality for editing classes, slots (properties), and instances. One of its strengths is 

that it can automatically generate a user interface from class definitions, and thus can 

support rapid knowledge acquisition. The current version of Protégé 3.1 is highly 

extensible and customizable. At its core is a frame-based knowledge model  with support 

for metaclasses. These metaclasses can be extended to define other languages on top of the 

core frame model. Protégé can be extended with backends for alternative file formats. 

Currently, back-ends for Clips, UML, XML, RDF, DAML+OIL, and OWL are available. 

Protégé not only allows developers to extend the internal model representation, but also to 

customize the user interface freely. Protégé’s user interface consists of several screens, 

called tabs, which display different aspects of the ontology in different views. Each of the 

tabs can be filled with arbitrary components. Most of the existing tabs provide a tree-

browser view of the model, with a tree on the left and details of the selected node on the 

right hand side. The details of the selected object are typically displayed by means of 

forms. The forms consist of configurable components, called widgets. Typically, each 

widget displays one property of the selected object. There are standard widgets for the 

most common property types, but ontology developers are free to replace the default 

widgets with specialized components. Widgets, tabs, and back-ends are called plug-ins. 

Protégé’s architecture allows developers to add and activate plug-ins arbitrarily, so that the 

default system’s appearance and behavior can be completely adapted to a project’s needs. 

 

 
 

Figure 5 Protégé  with OWL Plugin 
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Figure 6 Sample OWL code of University Ontology 

<?xml version="1.0"?> 

<rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

    xmlns:owl="http://www.w3.org/2002/07/owl#" 

    xmlns="http://www.owl-ontologies.com/unnamed.owl#" 

  xml:base="http://www.owl-ontologies.com/unnamed.owl"> 

  <owl:Ontology rdf:about=""/> 

  <owl:Class rdf:ID="Departments"> 

    <rdfs:subClassOf> 

      <owl:Class rdf:ID="University"/> 

    </rdfs:subClassOf> 

  </owl:Class> 

  <owl:Class rdf:ID="Graduate_Courses"> 

    <owl:disjointWith> 

      <owl:Class rdf:ID="Under_Graduate_Courses"/> 

    </owl:disjointWith> 

    <rdfs:subClassOf> 

      <owl:Class rdf:ID="Courses"/> 

    </rdfs:subClassOf> 

  </owl:Class> 

  <owl:Class rdf:about="#Under_Graduate_Courses"> 

    <rdfs:subClassOf> 

  <owl:Class rdf:about="#Courses"/> 

    </rdfs:subClassOf> 

    <owl:disjointWith rdf:resource="#Graduate_Courses"/> 

    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

    >Represents Courses at Under graduate level. Usually run by different colleges 

of the university and managed by the respective departments at 

university.</rdfs:comment> 

    <rdfs:subClassOf> 

      <owl:Class rdf:ID="College_Departments"/> 

    </rdfs:subClassOf> 

  </owl:Class> 

  <owl:Class rdf:about="#Courses"> 

    <rdfs:subClassOf rdf:resource="#Departments"/> 

  </owl:Class> 

  <owl:Class rdf:ID="Students"> 

    <rdfs:subClassOf> 

      <owl:Class rdf:about="#College_Departments"/> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf rdf:resource="#Departments"/> 

  </owl:Class> 
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The OWL Plug-in is an extension of Protégé. The OWL Plug-in as shown in Figure 2.5 

can be used to edit OWL ontologies, to access description logic (DL) reasoners, and to 

acquire instances for semantic markup. As an extension of Protégé, the OWL Plug-in 

profits from the benefits of a large user community, a library of reusable components, and 

a flexible architecture. The OWL Plug-in therefore has the potential to become a standard 

infrastructure for building ontology-based Semantic Web applications. The OWL Plug-in 

is a complex Protégé extension which can be used to edit OWL files and databases. The 

OWL Plug-in includes a collection of custom-tailored tabs and widgets for OWL, and 

provides access to OWL-related services such as classification, consistency checking, and 

ontology testing. Figure 2.6 shows the sample code of a University Ontology. 

 

Designing Ontology from Taxonomy 

 

Ontology creation from the scratch is a complex process and is expensive, as many 

iterations are required to relate each and every concept with one another. Migration from 

taxonomy is relatively much easier and cost efficient proposition as taxonomies are 

already standardized. Ontology engineering requires in depth knowledge of the domain as 

well as expertise in building knowledge representation and organization techniques, a rare 

combination that can be found for any domain. However, due to the standardization of 

Ontology Web Language and tools such as Protégé 2.1, building ontologies have become 

significantly easier. But for domain experts, especially in the fields that are not much 

concerned with the computers and information technology, it is still harder to use these 

tools and standards. On the other hand, for the knowledge engineers, the problem of 

getting knowledge from the domain expert remains unsolved.  In this section, efforts for 

devising an approach to create ontology from taxonomy for any knowledge domain are 

presented. This requires some knowledge source in the requisite domain and the existing 

standardized taxonomies are the right choice. Taxonomies are not just built by a single 

expert but are the result of sharing knowledge in the domain by many experts after 

investigating the field for years.  Also, they provide hierarchical view of concepts of the 

domain that is required to build ontology. Protégé OWL Plug-in tool is used to 

demonstrate the implementation of generating Soil Ontology from Soil Taxonomy. Soil 

ontology in OWL, can be easily ported to any system or to any other ontology editor 

having OWL support. This makes it easy to integrate with other ontologies or agent based 

systems that make Semantic Web a realization. List of steps for designing the ontology 

from domain taxonomy are as follows: 

 

1. Study the taxonomy and list the major entities in which the concepts are classified. 

Put them in the hierarchical format. 

2. These entities will be the classes in the ontology in such a fashion that the first 

classification term will be the top class under owl:thing and the second term will 

be its first sub class and next heading will be the next sub class of the first sub 

class and so on. 

3. Create top level classes of the concepts that appear under the top level 

classification term as a separate hierarchy under owl:thing class. Similarly, create 

other classes in a hierarchy corresponding to the concepts as they appear in the 

taxonomy hierarchy.  

4. List different properties that are applicable to the instances or individuals of the 

classes defined in step 2. These properties are assigned appropriate values at the 
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time of creation of individuals. By default, these properties are inherited to the 

individuals of the classes that are derived from them. 

5. Decide the range and data type of values for each property of the class. In OWL, 

one can have two types of properties Data type Property and Object property. The 

Data type property can have data types defined by XML Schema such as Boolean, 

Float, Integer, String, and Symbol values while Object property can point to other 

class or individual of the class.  

6. Also, establish the rdfs:subClaassOf relationship as a necessary condition between 

the concept classes defined in step 3 and corresponding classification term classes 

defined in step 2. 

7. Repeat Step 4 and Step 5 for all the concept classes.  

8. Create individuals for all the sub classes of the ontology and assign values to the 

different properties for the individuals of different classes of the ontology. 

9. Refine and enhance the ontology by adding appropriate restrictions and other 

annotation properties that are out of the scope of taxonomy. 

 

Validation of Approach - Soil Ontology 

 

By using the above approach, the Soil Ontology in Protégé with OWL plug-in is 

implemented. However, the approach is generic and can be implemented with any tool that 

provides support to implement ontology in OWL. 

 

1) First step is to identify the hierarchy in which the soil taxonomy is classified. In Soil 

Ontology following is the hierarchy 

 Order  Sub order  Great group  Sub group. 

Table 1 Table shows few rows of Soil Taxonomy 

Order Sub 

order 

Great group Sub group 

Alfisols Aqualfs Linthaqualfs Typic Plinthaqualfs 

  Natraqualfs Vertic Natraqualfs 

   AlbGlossicNatraqualfs 

   Glossic Natraqualfs 

   Mollic Natraqualfs 

   Typic Natraqualfs 

  Duraqualfs Typic Duraqualfs 

  Fragiaqualfs Aeric Fragiaqualfs 

   Plinthic Fragiaqualfs 

   Umbric Fragiaqualfs 

   Typic Fragiaqualfs 

  Kandiaqualfs Arenic Kandiaqualfs 

   Grossarenic 

Kandiaqualfs 

   Plinthic Kandiaqualfs 

   Aeric Umbric 

Kandiaqualfs 
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2) Being Order is at the top of the hierarchy, the Order class is created as the base 

class from which other classes are derived. Sub order class is the first sub class, 

Great group class is the next sub class and finally sub group is last class of the 

hierarchy. As shown in Asserted Hierarchy Box of Figure 2.7. 

3) Class Alfisols is created as a top level class under owl:thing class as it is one of the 

concepts that appear under the top level heading Order. Similarly, other classes are 

created in a hierarchy corresponding to the concepts as they appear in the 

taxonomy hierarchy.  

4) Also, the rdfs:subClassOf relationship is established as a necessary condition 

between the concept classes defined in step 3 and corresponding classification term 

classes defined in step 2. For example : class Alfisols is a subclass of Order and 

class Aqualfs is a subclass of both Suborder class and Alfisols. 

5) Then the different properties that are applicable for all the individuals/instances of 

the taxonomy are identified. Soil color, soil texture, soil surface form are such few 

properties that are applicable for all the individuals of the soil taxonomy. 

6) The identified properties of the Order class are assigned proper data types as 

shown in Properties at Class box in Figure 2.7. In OWL there are two types of 

properties Data type Property and Object property. The Data type property can 

have all the values specified by datatypes in XML Schema like Boolean, Float, 

Integer, String, and Symbol values while Object property can point to class and 

instance or individual of the classes. These properties are created for each class 

through Properties tab of protégé as shown in Figure 2.7 on the right hand side 

section of the screen. 

 

 
 

Figure 7 Class hierarchy of soil ontology in Protégé  
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7) Similarly, the relationship between all other classes corresponding to concepts and 

hierarchy classes are established.  

8) After creating all the classes in the ontology, the individuals of the concept classes 

can be created. Also, the restrictions are put on the hierarchy classes so that there 

individuals can not be created. In the case of Soil Ontology, no individuals are 

created for the concept classes but one can create individuals of a class that is 

derived from some other domain classes and a concept class of Soil Ontology like 

a location class, which is derived from Area class and Alfisols Class. The 

individual in this case shows that a particular area has an Alfisols type of soils. 

9) Protégé OWL plug-in stores the ontology in the OWL and code can be seen by 

clicking on the show OWL/RDF source code button on the main tool bar. The code 

can be edited manually to incorporate finer details if required. 
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1. Introduction 

Mining association rules is one of the most useful data mining applications. Association 

rules, were first introduced in 1993 [Agrawal1993], and are used to identify relationships 

among a set of items in a database.  These relationships are not based on inherent 

properties of the data themselves (as in the case of functional dependencies), but are rather 

based on co-occurrence of the data items. Association rules are mainly used to analyze 

transactional data.  The association rules are useful in management, to increase the 

effectiveness and/or reduce the cost associated with advertising, marketing, inventory, 

stock location on the floor etc.  Association rules also provide assistance in other 

applications such as prediction by identifying what events occur before a set of particular 

events. An association rule may be one of the following types: Boolean, Spatial, 

Temporal, Generalized, Quantitative, Interval, and Multiple Min-Support Association etc 

or a mix of them.  

Formally the association rule as stated in [Agrawal1993] and [Cheung1996] is,  

Let D be a transaction database and I = {I1, I2, …, Im} be a set of m distinct items 

(attributes) of D, where each transaction (record) T is a set of items such that TI and has 

unique identifier. A transaction T is said to contain a set of item A if and only if AT.  An 

association rule is of the form of an implication expression AB, where A, BI, are sets 

of items called itemsets, and A B=. The rule AB holds in the transaction data D with 

support (s) where s is the ratio (in percent) of the records that contain A B (i.e. both A 

and B) to the total number of records in the database, i.e. the probability P(A B). The rule 

AB has confidence (c) in the D, the ratio (in percent) of the number of records that 

contain A B to the number of records that contain A. This is taken to be the conditional 

probability P(B | A). Mining of association rules from a database consists of finding all 

rules that meet the user-specified thresholds of support and confidence termed as 

minimum support and minimum confidence.  The problem of mining association rules has 

been decomposed into the following two subproblems [Agrawal1994]: 

1) To find all sets of items which occur with a frequency that is greater than or equal to 

the user-specified threshold support, say s.  

2) To generate the rules using the frequent itemsets, which have confidence greater 

than or equal to the user-specified threshold confidence, say c. 

The Association relationships are not based on inherent properties of the data themselves 

but rather based on co-occurrence of the data items. Application of association rules spans 

across a wide range of domains such as, business, finance, health, geographical 

information system, weather forecast and many such areas of real life application. The 

association rules in management may be handy to increase the effectiveness and/or reduce 

the cost associated with advertising, marketing, inventory, stock location on the floor etc.  
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Association rules could assist in prediction of an event co-occurrence of a set of events. 

Association rules are generally categorized in following types: Boolean, Spatial, 

Temporal, Generalized, Quantitative, and Interval or may be mixed of them. The above 

definition of association rule is also known as Boolean Association Rule.  

 

Association rule mining is: 

 Unsupervised learning 

 Used for pattern discovery 

 Each rule has form: A -> B, or Left -> Right 

For example: “70% of customers who purchase 2% milk will also purchase whole wheat 

bread.” 

Data mining using association rules is the process of looking for strong rules: 

1. Find the large itemsets (i.e. most frequent combinations of items) 

2. Generate association rules for the above itemsets. 

 

2. Performance Evaluation Measure of Association Rules 

How to measure the strength of an association rule?  Using support/confidence 

Support: Support shows the frequency of the patterns in the rule; it is the percentage of 

transactions that contain both A and B, i.e.  

Support = Probability(A and B) 

Support = (# of transactions involving A and B) / (total number of transactions). 

Confidence: Confidence is the strength of implication of a rule; it is the percentage of 

transactions that contain B if they contain A, ie. 

Confidence = Probability (B if A) = P(B/A) 

Confidence =  

(# of transactions involving A and B) / (total number of transactions that have A). 

 

3. The Apriori Algorithm 

 

The Apriori Algorithm is an influential algorithm for miningfrequent itemsets for boolean 

association rules. Some keyconcepts for Apriori algorithm are: 

 

 Frequent Itemsets: The sets of item which hasminimum support (denoted by Li for 

ith-Itemset). 

 Apriori Property: Any subset of frequent itemset mustbe frequent. 

 Join Operation: To find Lk , a set of candidate kitemsets is generated by joining 

Lk-1 with itself. 
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Very first algorithm proposed for association rules miningwas the Apriori for frequent 

itemset mining. The mostpopular algorithm for pattern mining is without a doubt 

Apriori.It is designed to be applied on a transaction database todiscover patterns in 

transactions made by customers in stores.But it can also be applied in several other 

applications. Atransaction is defined a set of distinct items (symbols).  

Aprioritakes as input  

 

 

(1)  a minsup threshold set by the user and  

(2)  atransaction database containing a set of transactions.  

 

Apriorioutputs all frequent itemsets, i.e. groups of items shared by noless than minsup 

transactions in the input database. Forexample, consider the following transaction 

databasecontaining four transactions. Given a minsup of twotransactions, frequent itemsets 

are“bread, butter”, “breadmilk”, “bread”, “milk” and “butter”. 

 

T1: bread, butter, spinach 

T2: butter, salmon 

T3: bread, milk, butter 

T4: cereal, bread, milk 

 

The Apriori algorithm employs the downward closureproperty if an item set is not 

frequent, any superset of it cannotbe frequent either. The Apriori algorithm performs a 

breadthfirstsearch in the search space by generating candidate k+1-itemsets from frequent 

k itemsets. 

 

The frequency of an item set is computed by counting itsoccurrence in each transaction. 

Apriori is an significantalgorithm for mining frequent itemsets for Boolean 

associationrules. Since the Algorithm uses prior knowledge of frequentitem set it has been 

given the name Apriori. Apriori is aniterative level wise search Algorithm, where k- 

itemsets areused to explore (k+1)-itemsets. First, the set of frequents 1- itemsets is found. 

 

This set is denoted by L1. L1 is used to find L2, the set offrequent 2-itemsets , which is 

used to find L3 and so on , untilno more frequent k-itemsets can be found. The finding of 

eachLk requires one full scan of database. 

 

There are twosteps for understanding that how Lk-1 is usedto find Lk:- 

1) The join step: To find Lk , a set of candidate k-itemsets isgenerated by joining Lk-1 

with itself. This set ofcandidates is denoted Ck. 

2) The prune step: Ck is a superset of Lk , that is , itsmembers may or may not be frequent 

, but all of thefrequent k-itemsets are included in Ck . 

 

A scan of the database to determine the count of eachcandidate in Ck would result in the 

determination of Lk. Ck,however, can be huge, and so this could involve 

heavycomputation. 

 

To reduce the size of Ck , the Apriori property is used as follows: 

 

i. Any (k-1)-item set that is not frequent cannot be asubset of frequent k-item set. 



Association Rules Mining using R 

 

284 

 

ii. Hence, if (k-1) subset of a candidate k item set is notin Lk-1 then the candidate 

cannot be frequent eitherand so can be removed from C. 

 

Based on the Apriori property that all subsets of a frequentitemset must also be frequent, 

we can determine that four lattercandidates cannot possibly be frequent. How? 

 

For example, let’s take {I1, I2, I3}. The 2-item subsets of itare {I1, I2}, {I1, I3} & {I2, 

I3}. Since all 2-item subsets of {I1,I2, I3} are members of L2, We will keep {I1, I2, I3} in 

C3. 

 

Let’s take another example of {I2, I3, I5} which shows howthe pruning is performed. The 

2-item subsets are {I2, I3}, {I2,I5} & {I3,I5}. 

 

BUT, {I3, I5} is not a member of L2 and hence it is notfrequent violating Apriori 

Property. Thus, we will have toremove {I2, I3, I5} from C3. 

 

Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after checking forall members of result of Join 

operation for Pruning. 

 

Example : The Titanic Dataset 

The Titanic dataset in the datasets package is a 4-dimensional table with summarized 

information on the fate of passengers on the Titanic according to social class, sex, age and 

survival. I To make it suitable for association rule mining, we reconstruct the raw data as 

titanic.raw, where each row represents a person. The reconstructed raw data can also be 

downloaded at http://www.rdatamining.com/data/titanic.raw.rdata. 

> str(titanic.raw) 

'data.frame': 2201 obs. of 4 variables: 

$ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 3 3 3 3 3 3 3 3 3 3 ... 

$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ... 

$ Age : Factor w/ 2 levels "Adult","Child": 2 2 2 2 2 2 2 2 2 2 ... 

$ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ... 

 

 

Association Rule Mining 

> library(arules) 

> # find association rules with default settings 

> rules <- apriori(titanic.raw) 

> inspect(rules) 

  lhs               rhs         support   confidence lift 

1 {}             => {Age=Adult} 0.9504771 0.9504771  1.0000000 

2 {Class=2nd}    => {Age=Adult} 0.1185825 0.9157895  0.9635051 

3 {Class=1st}    => {Age=Adult} 0.1449341 0.9815385  1.0326798 

4 {Sex=Female}   => {Age=Adult} 0.1930940 0.9042553  0.9513700 

5 {Class=3rd}    => {Age=Adult} 0.2848705 0.8881020  0.9343750 

6 {Survived=Yes} => {Age=Adult} 0.2971377 0.9198312  0.9677574 

7 {Class=Crew}   => {Sex=Male}  0.3916402 0.9740113  1.2384742 

http://www.rdatamining.com/data/titanic.raw.rdata
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... 

 

We then set rhs=c("Survived=No", "Survived=Yes") in appearance to make sure that only "Survived=No" 

and "Survived=Yes" will appear in the rhs of rules. 

 
> # rules with rhs containing "Survived" only 

> rules <- apriori(titanic.raw, 

  + parameter = list(minlen=2, supp=0.005, conf=0.8), 

  + appearance = list(rhs=c("Survived=No", "Survived=Yes"), 

  + default="lhs"), 

  + control = list(verbose=F)) 

> rules.sorted <- sort(rules, by="lift") 

> inspect(rules.sorted) 

 

  

 

Pruning Redundant Rules 

In the above result, rule 2 provides no extra knowledge in addition to rule 1, since rules 1 tells us that all 

2nd-class children survived. Generally speaking, when a rule (such as rule 2) is a super rule of another rule 

http://www.rdatamining.com/examples/association-rules/association-rules.jpg?attredirects=0
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(such as rule 1) and the former has the same or a lower lift, the former rule (rule 2) is considered to be 

redundant. Below we prune redundant rules. 

 
> # find redundant rules 

> subset.matrix <- is.subset(rules.sorted, rules.sorted) 

> subset.matrix[lower.tri(subset.matrix, diag=T)] <- NA 

> redundant <- colSums(subset.matrix, na.rm=T) >= 1 

> which(redundant) 

[1] 2 4 7 8 

> # remove redundant rules 

> rules.pruned <- rules.sorted[!redundant] 

> inspect(rules.pruned) 

 

 

Visualizing Association Rules 

Package arules Viz supports visualization of association rules with scatter plot, balloon 

plot, graph, parallel coordinates plot, etc. 

> library(arulesViz) 

> plot(rules) 

http://www.rdatamining.com/examples/association-rules/association-rules-pruned.jpg?attredirects=0
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> plot(rules, method="graph", control=list(type="items")) 

 

 
> plot(rules, method="paracoord", control=list(reorder=TRUE)) 

 

http://www.rdatamining.com/examples/association-rules/scatter-plot.jpg?attredirects=0
http://www.rdatamining.com/examples/association-rules/graph.jpg?attredirects=0
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4. Frequent Pattern (FP) Growth Method 

The FP-Growth Algorithm is an alternative way to find frequent itemsets without using 

candidate generations, thus improving performance. For so much it uses a divide-and-

conquer strategy. The core of this method is the usage of a special data structure named 

frequent-pattern tree (FP-tree), which retains the itemset association information. 

In simple words, this algorithm works as follows: first it compresses the input database 

creating an FP-tree instance to represent frequent items. After this first step it divides the 

compressed database into a set of conditional databases, each one associated with one 

frequent pattern. Finally, each such database is mined separately. Using this strategy, the 

FP-Growth reduces the search costs looking for short patterns recursively and then 

concatenating them in the long frequent patterns, offering good selectivity. 

In large databases, it’s not possible to hold the FP-tree in the main memory. A strategy to 

cope with this problem is to firstly partition the database into a set of smaller databases 

(called projected databases), and then construct an FP-tree from each of these smaller 

databases. 

4.1 FP-Tree structure 

The frequent-pattern tree (FP-tree) is a compact structure that stores quantitative 

information about frequent patterns in a database [4]. 

Han defines the FP-tree as the tree structure io below [1]: 

1. One root labeled as “null” with a set of item-prefix subtrees as children, and a 

frequent-item-header table (presented in the left side of Figure 1); 

2. Each node in the item-prefix subtree consists of three fields: 

1. Item-name: registers which item is represented by the node; 

https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Kumar2010-4
https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-HanPei2000-1
http://www.rdatamining.com/examples/association-rules/parallel-coordinates.jpg?attredirects=0
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2. Count: the number of transactions represented by the portion of the path 

reaching the node; 

3. Node-link: links to the next node in the FP-tree carrying the same item-

name, or null if there is none. 

1. Each entry in the frequent-item-header table consists of two fields: 

1. Item-name: as the same to the node; 

2. Head of node-link: a pointer to the first node in the FP-tree carrying the 

item-name. 

Additionally the frequent-item-header table can have the count support for an 

item. The Figure below show an example of a FP-tree. 

 

Figure 1: An FP-tree registers compressed, frequent pattern information 

Table 1: Transactional data for an AllElectronics branch. 

 

The first scan of the database is the same as Apriori, which derives the set of frequent 

items (1-itemsets) and their support counts (frequencies). Let the minimum support count 

be 2. The set of frequent items is sorted in the order of descending support count. This 

resulting set or list is denoted by L. Thus, we have L ={{I2: 7}, {I1: 6}, {I3: 6}, {I4: 2}, 

{I5: 2}}. An FP-tree is then constructed as follows. First, create the root of the tree, 

labeled with “null.” Scan database D a second time. The items in each transaction are 

processed inL order (i.e., sorted according to descending support count), and a branchis 
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created for each transaction. For example, the scan of thefirst transaction, “T100: I1, I2, 

I5,” which contains three items (I2, I1, I5 in L order), leads to the construction of the first 

branch of the tree with three nodes,hI2: 1i,hI1:1i, and hI5: 1i, where I2islinked as a child 

to the root, I1islinked to I2, and I5islinked to I1. The second transaction, T200, contains 

theitems I2 and I4inLorder, whichwould result in a branch where I2 is linked to the root 

and I4 is linked to I2. However, this branch would share a common prefix, I2, with the 

existing path for T100. Therefore, we insteadincrement the count of the I2 node by 1, and 

create a new node,hI4: 1i, which is linked as a child to hI2: 2i. In general, when 

considering the branch to be addedfor a transaction, the count of each node along a 

common prefix is incremented by 1, and nodes for the items following the prefix are 

created and linked accordingly. To facilitate tree traversal, an item header table is built so 

that each item points to its occurrences in the tree via a chain of node-links. The tree 

obtained after scanning all of the transactions is shown in Figure 6.7 with the associated 

node-links. In this way, the problem of mining frequent patterns in databases is 

transformed to that of mining the FP-tree. The FP-tree is mined as follows. Start from each 

frequent length-1 pattern (as an initial suffix pattern), construct its conditional pattern base 

(a “sub-database,” which consists of the set of prefix paths in the FP-tree co-occurring 

with the suffix pattern), then construct its (conditional) FP-tree, and perform mining 

recursively on such a tree. The pattern growth is achieved by the concatenation of the 

suffix pattern with the frequent patterns generated from a conditional FP-tree. 

Mining of the FP-tree is summarized in Table 2 and detailed as follows. We first consider 

I5, which is the last item in L, rather than the first. The reason for starting at the end of the 

list will become apparent as we explain the FP-tree mining process. I5 occurs in two 

branches of the FP-tree of Figure 2. (The occurrences of I5 can easily be found by 

following its chain of node-links.) The paths formed by these branches are hI2, I1, I5: 1i 

and hI2, I1, I3, I5: 1i. Therefore, considering I5 as a suffix, its corresponding two prefix 

paths are hI2, I1: 1i and hI2, I1, I3: 1i, which form its conditional pattern base. Using this 

conditional pattern base as a transaction database, we build an I5-conditional FP-tree, 

which contains only a single path, hI2: 2, I1: 2i; I3 is not included because its support 

count of 1 is less than the minimum support count. The single path generates all the 

combinations of frequent patterns: {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}. For I4, its two 

prefix paths form the conditional pattern base, {{I2 I1: 1}, {I2: 1}}, which generates a 

single-node conditional FP-tree, hI2: 2i, and derives one frequent pattern, {I2, I4: 2}. 

Table 2: Mining the FP-tree by creating conditional (sub-)pattern bases 
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Figure 2: The conditional FP-tree associated with the conditional node I3 

Similar to the above analysis, I3’s conditional pattern base is {{I2, I1: 2}, {I2: 2}, {I1: 

2}}. Its conditional FP-tree has two branches, hI2: 4, I1: 2i and hI1: 2i, as shown in Figure 

6.8, which generates the set of patterns {{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}}. Finally, 

I1’s conditional pattern base is {{I2: 4}}, whose FP-tree contains only one node, hI2: 4i, 

which generates one frequent pattern, {I2, I1: 4}. This mining process is summarized in 

Figure 6.9. The FP-growth method transforms the problem of finding long frequent 

patterns to searching for shorter ones in much smaller conditional databases recursively 

and then concatenating the suffix. It uses the least frequent items as a suffix, offering good 

selectivity. The method substantially reduces the search costs. 

5. Basic Association Rules: Problems, Solutions and New Applications 

Most of the research efforts in the scope of association rules have been oriented to 

simplify the rule set and to improve performance of algorithm. But these are not the only 

problems that can be found and when rules are generated and applied in different domains. 

Troubleshooting for them should also take into consideration the purpose of association 

model and data they come from. Some of the major drawbacks of association rule 

algorithms are as follows: 

 Obtaining huge number of rules 

 Obtaining non interesting rules 

 Low algorithm performance  

 Cannot incorporate domain/ user defined knowledge 

 Not suitable for supervised learning 

Some of the recent studies have focused on overcoming these limitations. Many 

algorithms for obtaining a reduced number of rules with high support and confidence 

have been produced. However these measures are insufficient to determine if discovered 

associations are really useful.  An important property of discovered association rules is 

that they should be interesting and useful.  Though interestingness of rule is a subjective 

aspect, many researchers have tried to come up with some ways of measuring of interest.  

It has been suggested that the rules are interesting if they are unexpected (unknown to 

user) and actionable (users can do something with them to their advantage). Further some 

other measures namely: any-confidence, all confidence and bond has been suggested as 

alternative measures of interestingness. Some authors have considered alternative 

measures of interest as : gini index, entropy gain or chisquared for database or a 

measure of implication called conviction. Most of the approaches for finding interesting 

rules require user participation to articulate his knowledge or to express what rules are 

interesting for him. Systems have been developed to analyze the discovered rules against 
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user’s knowledge. Discovered rules can be pruned to remove redundant and insignificant 

rules and further user’s evaluation can be used to rank the rules. Unexpected patterns 

discovered may represent “holes” in domain knowledge which needs to be resolved. These 

patterns can thus be used to refine already existing beliefs.  

Traditionally, association analysis has been considered as an unsupervised technique, so it 

has been applied for knowledge discovery tasks. Recent studies have shown that 

knowledge discovery algorithms such as association rule mining can be successfully 

applied for prediction in classification problems. In such cases the algorithms used for 

generating association rules must be tailored to peculiarities of predictions in order to 

build effective classifiers. Some work has been done, where association mining algorithms 

have been extended so that they can be used for classification/ prediction. A proposal of 

this category is Classification Based on Association (CBA) algorithm. The algorithm 

consists of two parts, a rule generator for finding association rules and a classifier builder 

based on these rules. Main contribution of this algorithm is possibility of making 

prediction on any attribute in database. Moreover, new incomplete observations can be 

classified.  

In conclusion we can say that association rule mining is an important area of data mining 

research and a comparatively a younger member of data mining community. In addition to 

finding co-occurrence relation between items, which is basic objective, the algorithm has 

been applied for diverse applications. Many extensions of standard methods have been 

proposed. A major research area on association rules is interestingness of discovered rules. 

In fact its potential has still to be tapped, so that it can be tailored to solve different types 

of data mining problems.  
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1. Text Mining 

Mining refers to extraction of meaningful information, discovery of hidden patterns from data. 

When this technique is used to extract hidden patterns in natural language text data, it is called 

Text mining [Hearst, 2003]. Primary goal of text mining is to discover interesting patterns from 

unstructured text data in a dynamic and scalable way. It is a process of transforming 

unstructured data in a structured format to be analysed in traditional ways. Increasing amounts 

of text data generating from different applications such as emails, WhatsApp chats, social 

media applications, search engine queries etc. has created the need for analysing these data.  

2. Text Mining Process: 

 Data Acquisition: Text data collection is the process of gathering textual data from a 

variety of sources. In order to build intelligent applications capable of understanding 

human language, machine learning models need to train with large amounts of structured 

text data. Gathering sufficient text data is the first step in solving any language-based 

machine learning problem.  

 Pre-processing: Data pre-processing is a most important task in Text mining. With 

irrelevant and redundant information or noise present in the data, knowledge discovery 

during the training phase will be more difficult. Data pre-processing specific to text 

mining includes lower casing, removal of HTML tags, emoticons, stop words, 

punctuations, lemmatization, tokenization, normalization etc.   

 Text Transformation: Algorithmic techniques cannot be directly applied to text data 

that’s why this needs to be represented in a structured format such as numeric vectors 

with frequency of words or other patterns of their occurrence in a document. These kind 

of transformations are also called text vectorizations e.g. Bag of Words, TF IDF, 

word2vec etc.  

 Feature Selection: Feature selection is used to characterize each given document 

according to the task at hand. It is done by selecting the sub set of relevant variables to 

be used in the creation of the model.  
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 Pattern Mining: Pattern mining techniques are used to find patterns in the text data, such 

as frequent item sets, closed frequent item sets, co-occurring terms. In case of document 

classification tasks, it finds out the similar pattern in all the example data values coming 

under one class label. 

 Evaluate: After pattern discovery, the learned models are evaluated with unknown 

example data which were not present at the time of model development.  

3. Practice Areas of Text Mining:  

Different text mining areas are in different maturity stages [Miner et al., 2012]. While some 

areas are emerging some of them are easily accessible by practitioners via commercial 

softwares. The following seven practicing areas of text mining are most easily relatable to 

available technologies.    

 

Figure 1: Venn diagram depicting seven major practicing areas of Text Mining and their intersection 

with other related fields such as AI, computational linguistics, statistics, machine learning and data 

mining. 

3.1. Search and Information Retrieval (IR): It is regarded as the process of obtaining 

relevant information resources such as documents or web pages from a collection of similar 

resources which are against a search query posed by a user e.g. web search engines. 

3.2. Document Clustering: Grouping and categorizing terms, paragraphs or documents using 

data mining clustering methods. Clustering algorithms in computational text analysis groups 

documents into grouping a set of text, called subsets or clusters where the algorithm's goal is 

to create internally coherent clusters that are distinct from one another [Carpineto et al., 2009] 

e.g. Topic extraction. 

3.3. Document Classification: Document classification is the task of assigning a document 

one or more classes or categories, based on models trained on labelled examples e.g. Language 

Detection, Sentiment Analysis. 
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3.4. Web Mining: Data and text mining on the Internet, with a specific focus on the scale and 

interconnectedness of the web. The main purpose of web mining is discovering useful 

information from the World-Wide Web and its usage patterns. 

3.5. Information Extraction: Identification and extraction of relevant facts and relationships 

from unstructured text; the process of making structured data from unstructured and semi 

structured text e.g. keyword extraction, Named entity recognition etc. 

3.6. Natural Language Processing (NLP): It is a branch of AI that deals with the interaction 

between computers and humans using the natural language. The ultimate objective of NLP is 

to read, decipher, understand, and make sense of the human languages in a manner that is 

valuable. Broadly NLP is divided into Natural Language Understanding (NLU) and Natural 

Language Generation (NLG).  

3.7. Concept Extraction: Grouping of words and phrases into semantically similar groups. 

4. Natural Language Processing (NLP): NLP is a branch of Artificial Intelligence that deals 

with the interaction between computers and humans using the natural language [Garbade, 

2018]. The ultimate objective of NLP is to read, decipher, understand, and make sense of the 

human languages in a manner that is valuable.   

4.1. Everyday use of NLP:  

 Faster typing with auto complete and predictive typing. Auto complete helps you to 

complete the rest of the word while predictive typing suggest the next word in the 

sentence. 

 While composing an email or editing any word document, spell checkers and grammar 

checkers ensure that we use punctuations correctly or gives alert if any wrong words are 

used. 

 Using NLP, features like auto correct finds the right search keyword if any word is 

misspelled or any word is used mistakenly for making search queries. This eventually 

provides better search results.   

 Emails those pass through traditional spam filter, NLP differentiates between different 

types of email spams. 

5. Text Mining vs. NLP: Text mining is a process where to attain certain specific goals, 

sometimes NLP is used, although NLP has the ability to achieve more. So first of all text mining 

and NLP has different goals. At the same time, there is indeed some overlaps between the two 
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techniques. Text mining does not consider the structure and context of the data while NLP does 

so, additionally NLP considers the latent metadata.  

Text mining answers questions like frequency count of words, length of the sentence, and 

presence/absence of certain words while NLP is more concerned with the grammatical part of 

speeches and the lexical relations among them.  

6. Text Mining Applications:  

 

 Customer service: Customer surveys, online reviews, and social media profiles 

combined with text analytics tools enable companies to improve customer experience 

with speed. Text mining and sentiment analysis can provide a mechanism for companies 

to prioritize key points for their customers, allowing businesses to respond to urgent 

issues in real-time and increase customer satisfaction.  

 Risk management: Text mining has applications in risk management, where it can 

provide insights around industry trends and financial markets by monitoring shifts in 

sentiment and by extracting information from analyst reports. This is particularly 

valuable to banking institutions as this data provides more confidence when considering 

business investments across various sectors.  

 Healthcare: Text mining techniques have been increasingly valuable to researchers in 

the biomedical field, particularly for clustering information. Manual investigation of 

medical research can be costly and time-consuming; text mining provides an automation 

method for extracting valuable information from medical literature. 

 Spam filtering: Spam frequently serves as an entry point for hackers to infect computer 

systems with malware. Text mining can provide a method to filter and exclude these e-

mails from inboxes, improving the overall user experience and minimizing the risk of 

cyber-attacks to end users. 
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1 Introduction 

Artificial Intelligence (AI) have touched almost every aspect of today’s lives. Scientific 

community is majorly shifting towards the use of AI in respective fields. A deep insight of data 

is the key tool of AI in terms of imposition of AI techniques in a particular field. The field of 

insight extraction from data called “data mining”. The term “machine leaning” broadly comes 

under data mining where machines learn from data. Now learning process is not confined only 

to intelligent living organism.  

 Solving computational problem with analytical speed was always easier for machine as 

compared to humans, but computer was pretty much incompetent to day- to -day job. A child 

can take only fraction of seconds to identify his mother. An apple can be identified by a human 

in any form i.e. red colour, green colour,  or in fruit salad. A human child takes only few years 

to completely learn a language.  By the conventional computing i.e. hard computing, it is not 

possible to capture all the situation only by using if and else condition. Algorithms tells 

machine how to learn.  Machine learns by its own, that leads us to avoid explicit or hard 

computing. So we have started  usage of soft computing i.e. no need to hard code all the 

situations (which  is practically impossible). This learning process of machine is referred to as   

“machine learning”. 

Machine Learning is the science (and art) of programming computers so it can learn from data. 

Here is a slightly more general definition: “It is a  field of study that gives computers the ability 

to learn without being explicitly programmed”.—Arthur Samuel, 1959 

Engineering definitions 

“A computer program is said to learn from experience E with respect to some task T and some 

performance measure P, if its performance on T, as measured by P, improves with experience 

E.”—Tom Mitchell, 1997 

Machine can also improve the performance when it will encounter new data. 
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2 Diurnal activities influenced by machine learning 

Machine learning is no more a futuristic science fiction, it is already in our daily life and 

influence many aspects of our life. If one uploads a photo in Facebook, it can identify us and 

our friends on the basis of previous data and suggests us to tag them. Some of the friend of 

friends is also being suggested by Facebook on the basis of our account category and 

behavioural patterns of our account. Pinterest, Snapchat, Twitter, Instagram has the capability 

to segregate the image as well as the emotions by machine learning techniques. Spam filter, 

Email classification, Smart replies to the mail has become automated due to machine learning. 

The money is also safe due to fraud detection and prevention, credit decisions and medical 

diagnosis. The core of machine learning is the “data”. From the data the machine attempts to 

identify the pattern. Data is the key point that make it possible get the learning process feasible. 

3 Types of learning 

Machine learning techniques includes a vast range of algorithms that broadly solve four 

categories of problem i.e. supervised, semi-supervised, unsupervised and reinforcement 

learning. 

 Supervised learning: The supervised learning is a learning process where every 

learning steps done through a supervision. The  process  of classification comes under 

this category. Some of the machine learning algorithms that follows the supervised  

learning principal are k-nearest neighbors (KNN), linear regression, logistic regression, 

support vector machines (SVMs), decision trees and random forests. 
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Figure 1: Example of supervised learning process where the spam and non-spam mail tagged 

with label of spam or non-spam, assists machine to learn from the supervised data and to 

classify a new mail. 

Analogy:  It can be explained by the following example. Suppose a teacher is taking practical 

class of forest tree identification by taking all the student in the field and showing a particular 

tree with its name. Then he asks the students to identify a tree and then he evaluates individual 

students.  

Examples: Facebook can automatically find the person in the photo uploaded and suggests to 

tag them. 

 Semi-supervised learning: These types of algorithms can deal with unlabelled data, 

partially labelled training data, and a little bit of labelled data. Most of the semi 

supervised learning is a combination of supervised and unsupervised learning.  

 

Figure 2:  Picture depicting semi supervised learning. 

Examples: Google photos asks only a few person to identify by user in a family and remaining 

photos can automatically be analysed and the person be identified in a particular account. 

 Unsupervised learning:  In unsupervised learning process no supervision is done to 

make the learner or machine to learn. Unsupervised learning does not require any 

supervision. Training data is also unlabelled. 
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Figure 3:  Picture depicting training data with unlabelled data points 

 

Figure 4: Picture depicting cluster on the basis of features available for training data 

Clustering (k-Means, Hierarchical Cluster Analysis (HCA), Expectation Maximization), 

Visualization and dimensionality reduction (Principal Component Analysis (PCA), Kernel 

PCA, Locally-Linear Embedding (LLE), t-distributed Stochastic Neighbor Embedding (t-

SNE)), Association rule learning (Apriori, Eclat). 

Reinforcement learning: The reinforcement learning process depends on the rewards 

(Positive/Negative) to the learner. In this learning process, the machine learn the things over 

the period of time by reviewing its own action. 
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Figure 5:  Picture depicting agent based reinforcement learning process 

Examples: Computer games have the capacity to learn things from opponent actions as well 

from own action. 

4 Artificial Neural Network 

Efficient machine learning technique involves  solving of mainly supervised classification 

problem and also capable of semi supervised, unsupervised and reinforcement machine leaning 

problem. Artificial neural networks (ANNs) provides a general and practical method for 

learning real-valued, discrete-valued, and vector-valued functions from examples suitable for 

predicting the model input-output pairs. ANN learning is robust in detecting errors in the 

training data and has been successfully applied to problems such as interpreting visual scenes, 

speech recognition, and learning robot control strategies.  

4.1 Biological motivation of Neural Network 

One type of ANN is inspired by the human nervous system that mimic basic computational 

unit of the brain, a neuron. Approximately 86 billion neurons can be found in the human 

nervous system and they are connected with approximately 10¹⁴  — 10¹⁵  synapses. Neuron 

activity is typically excited or inhibited through connections to other neurons each connected, 

on average, to 104 others neurons. The fastest neuron switching times are known to be on the 

order of 103 seconds--quite slow compared to computer switching speeds of 10-10 seconds. Yet 
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humans are able to make surprisingly complex decisions. The diagram below shows a cartoon 

drawing of a biological neuron (Figure 6) and a common mathematical model (Figure 7) of 

ANN. 

 

Figure 6: Schematic diagram of single neuron cell in human nervous system. 

 

Figure 7:  Picture depicting the basic unit of ANN inspired from the human nervous system. 
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4.2 Perceptron 

 One type of ANN system is based on a unit called perceptron, takes real valued inputs and 

calculate the linear combination of the inputs. A perceptron takes a vector of real-valued inputs, 

calculates a linear combination of these inputs, then outputs a 1 if the result is greater than 

some threshold and -1 otherwise. 

 

Figure 8: Picture depicting a simplified architecture of perceptron 

 
Figure 9:  Picture depicting a basic structure of neural network 

 

Input layer: No computation is done here within this layer, they just pass the information to the 

next layer. A block of nodes is also called layer which take the features.  
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Hidden layer: In Hidden layers is where intermediate processing or computation is done.  It 

perform computations and then transfer the weights from the input layer to the following layer. 

It is possible to have a neural network without a hidden layer. 

Output Nodes (output layer): Here we finally use an activation function that maps to the desired 

output format (e.g. softmax for classification). 

Connections and weights: The network consists of connections. 

Activation function: The activation function of a node defines the output of that node given an 

input or set of inputs. However, it is the nonlinear activation function that allows such networks 

to compute nontrivial problems using only a small number of nodes. In artificial neural 

networks, this function is also called the transfer function. 

Learning rule: The learning rule is a rule or an algorithm which modifies the parameters of the 

neural network, in order for a given input to the network to produce a favoured output. This 

learning process typically amounts to modifying the weights and thresholds. 

4.3 Types of Neural Networks 

The neural networks have several architecture with different capabilities. Some of the types of 

the architecture are described in the following sections. 

4.3.1 Feedforward Neural Network 

A feedforward neural network  is one of the basic ANN architecture where connections 

between the units do not form a cycle. The information flow happens in only one direction, 

forward, from the input nodes through the hidden nodes (if any) and  finally to the output nodes.  

4.3.1.1 Single-layer Perceptron 

This is the simplest feedforward neural network and does not contain any hidden layer, which 

means it only consists of a single layer of output nodes. This is said to be single because when 

we count the layers we do not include the input layer, the reason for that is because at the input 

layer no computations is done and the inputs are fed directly to the outputs via a series of 

weights. 
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4.3.1.2 Multi-layer perceptron (MLP) 

These class of networks consist of multiple layers of computational units, usually 

interconnected in a feed-forward way. Each neuron in one layer has directed connections to the 

neurons of the subsequent layer. In many applications, the units of these networks apply a 

sigmoid function as an activation function.  

4.3.2 Convolutional Neural Network (CNN) 

Convolutional Neural Networks are very similar to ordinary Neural Networks.  They are made 

up of neurons that have learnable weights and biases. In CNN, the unit connectivity pattern is 

inspired by the organization of the visual cortex.  Units respond to stimuli in a restricted region 

of space known as the receptive field. Receptive fields partially overlap, over-covering the 

entire visual field. Unit response can be approximated mathematically by a convolution 

operation. There are variations of multilayer perceptrons that use minimal preprocessing. Their 

wide applications is in image and video recognition, recommender systems and natural 

language processing.  

Recurrent neural networks 

In recurrent neural network (RNN), connections between units form a directed cycle (they 

propagate data forward, but also backwards, from later processing stages to earlier stages). This 

allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs 

can use their internal memory to process arbitrary sequences of inputs. This makes them 

applicable to tasks such as unsegmented, connected handwriting recognition, speech 

recognition and other general sequence processors. 

5 Support Vector Machine 

Support Vector Machine (SVM) is a very powerful machine learning tool. The publication of 

the first papers of SVM by Vapnik, Chervonenkis and co-workers in 1964/65 went largely 

unnoticed till 1992. They were taken seriously only when excellent results on practical learning 

benchmarks were achieved in digit recognition, computer vision and text categorization. 

Support vector machine is a discriminant classifier through an optimal hyper plane that can 

categorizes the new examples. SVM is a two class classifier. It is well suited for classification 

of complex data of small and medium size. 
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Figure 10:  Picture depicting large margin classification 

The Figure 10 shows some of the examples of the classifier that segregate the Versicolor and 

Setosa. The left side of the figure shows some separator line with  a very poor decision 

boundary that has the capability to  hardly separate the new instances. On the other hand, the 

right side separator decision boundary is good enough to separate the new data. 

5.1 Linear SVM Classification  

If the purpose is to separate the two classes with a straight line, one can use the linear SVM 

classification. The SVM separator uses the soft margin classification concept when  the data is 

not easily linearly separable.  

 

5.1.1 Soft Margin Classification 

It is a more flexible model that can find a good balance between keeping the street as large as 

possible and limiting the margin violations. 

 

Figure 11: Conceptual view of SVM classifier with decision hyperplane and decision boundary 

and support vector. 
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5.2 Nonlinear SVM Classification 

Although linear SVM classifiers are efficient and work surprisingly well in many cases, many 

datasets are not even close to being linearly separable. One approach to handling nonlinear 

datasets is to add more features, such as polynomial features. This dataset is not linearly 

separable, as you can see. But if you add a second feature x2 = (x1)2, the resulting 2D dataset 

is perfectly linearly separable. 

 

Figure 12:  Picture depicting use of polynomial transformation to make the dataset linearly 

separable 

The above solution is not suitable for highly complex data, because it make the computation 

very expensive. The solution is the kernel trick. The kernel trick is a very important concept in 

SVM classifier. When data is not linearly separable we try to map it in the higher dimension 

that automatically make some hyper plane which can easily segregate the data.  

 

Figure 13:  Picture depicting kernel trick to classify the data linearly non-separable data 



309 

 

References 

Aurélien, G. (2017). Hands-on machine learning with scikit-learn & tensorflow. Geron 

Aurelien. 

Coolen, A. C. (1998). A beginner’s guide to the mathematics of neural networks. In Concepts 

for Neural Networks (pp. 13-70). Springer, London. 

https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d 

https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-

2b90b87795bc 

Mitchell, T. M. (1997). Machine Learning, McGraw-Hill Higher Education. New York. 

https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d
https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc
https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc


 

310 

 

Overview of Python 

Ashraful Haque 

ICAR-IASRI, Library Avenue, New Delhi – 110 012 

ashraful.haque@icar.gov.in 

 

Python is the one of the most popular programming languages now-a-days. It is a high-level, 

interpreted, interactive, object-oriented programming language. Python language was created 

by Guido van Rossum in 1991 at the National Research Institute for Mathematics and 

Computer Science in the Netherlands. Python programming language is mainly used for- 

 Data handling and visualization 

 Analysis of variety of data such as numerical, textual, image, videos, audio etc.  

 Performing complex mathematical computations 

 Server-side scripting for developing web applications 

 Standalone software development etc.  

 

Why Python? 

Python is very easy learn language. It can work in any system irrespective of the operating 

system. Syntax of python language is very simple and allows programmers to write programs 

in very few lines. Python runs on an interpreter system, which means that the code is being 

executed as soon as it is written. And last but not the least that python has a very large and 

mature community for the developers. There are lots of blogs, tutorials, documents, guide 

videos available online for the python developers. 

 

Python Installation: 

Most of the latest computer systems have python already installed. To check if you have python 

installed on a Windows PC, search in the start bar for Python or run the following on the 

Command Line (cmd.exe): 

 

C:\your\python\installation\folder>python --version 

 

If not, then one can download the latest version of python (latest version is 3.9.2) from 

https://www.python.org/downloads/ for the particular operating system and follow the 

guidelines while installation.  

 

Getting Started with Python: 

Any python script or file is saved with .py file extension. Let’s us write the first python program 

that prints ‘Hello, Everyone!!!’. So, first open a text editor and write the following code in it:  

e.g. 

print("Hello, Everyone!!!") 

 

Now save it as ‘first.py’. Now open command prompt, go to the python installation folder and 

type the following command: 

https://www.python.org/downloads/
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C:\your\python\installation\path>python /your/program/path/first.py 

 

The output should read: 

Hello, Everyone!!! 

 

Python from Command Line: 

In case of python it is possible to run the code as a command line itself using the command 

prompt. 

Type the following on the Windows, Mac or Linux command line: 

C:\your\python\installation\path>python 

From there one can write any python code, including our first example from earlier in the : 

C:\your\python\installation\path>python 

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit 
(Intel)] on win32 
Type "help", "copyright", "credits" or "license" for more information. 
>>>  

Which will write "Hello, Everyone!!!" in the command line: 

C:\your\python\installation\path>python  

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit 
(Intel)] on win32 
Type "help", "copyright", "credits" or "license" for more information. 
>>> print("Hello, Everyone!!!") 

Hello, Everyone!!! 

Whenever you are done in the python command line, you can simply type the following to 

quit the python command line interface: 

exit() 

 

Python Syntax: 

The major syntactical rules of python programs has been provided below- 

Execution of code 

a. python can be executed directly from command line. 

 

>>> print("Hello, Everyone!!!") 

Hello, Everyone!!! 

 

b. Python can also be executed using a file with ‘.py’ extension 

C:\your\python\installation\path>python /your/program/path/first.py 
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Indentation 

The indentation refers to the spaces at the beginning of a program line. Indentation is very 

important and stricter in python. Python uses indentation as a block of code. 

e.g. 

if 5 > 2: 
  print("Five is greater than two!") 

Comments 

In python, comments can be included in the code by using ‘#’ symbol. Comments can be 

used in the beginning, middle, or in the end pf the code. Comments can be multiline. For 

multiline comments one can use triple quotes ("""). 

 

Variables in Python:  

In python, the variables are simple storage structures for storing data values. There is no 

requirement of type declaration for the variables in python. The type of any variable can be 

acquired by type() function. 

e.g. 

x = 5 
y = "python" 
print(type(x)) 
print(type(y)) 

 

In python variables names - 

 are case sensitive 

 Must starts with a letter or underscore 

 Can be alphanumeric  

Python variables can store different types of data.  

 

Text Type: str 

Numeric Types: int, float, complex 

Sequence Types: list, tuple, range 

Mapping Type: dict 

Set Types: set, frozenset 

Boolean Type: bool 

Binary Types: bytes, bytearray, memoryview 

 



 

313 

 

Operators in Python: 

Python divides the operators in the following groups: 

 

Arithmetic operators 

 

+, -, /, *, %, **, // 

Assignment operators =, +=, -=, *=, /= 

 

Comparison operators 

 

==, !=, >, <, >=, <= 

Logical operators And, or, not 

Identity operators is, is not, 

Membership operators in, in not 

Bitwise operators &, |, ^, ~, >>, << 

 

 

Data structures in python: 

There are mainly four types of built-in data structures in python which are used for storing 

collection of data. These data structures are List, Tuple, Set and Dictionary. 

a. Lists- List are used to store more than one data in single variable. Items in the list are indexed 

(starting from 0), ordered and changeable. Lists allow duplicate values. Lists are created by 

using the square brackets and items can be access by mentioning the index number inside the 

square brackets. 

e.g. 

list1 = ["apple", "banana", "cherry"] 
list2 = [1, 5, 7, 9, 3] 
list3 = [True, False, False] 

 

N.B. Python does not have built-in support of Arrays, so Lists can be used as Arrays in python.  

 

b. Tuple- Tuples are used to store more than one data in single variable. Items in the tuples are 

indexed (starting from 0), ordered and non-changeable. Tuples allow duplicate values. Tuples 

are created by using the round brackets and items can be access by mentioning the index 

number inside the square brackets. 

e.g. 

tuple1 = ("apple", "banana", "cherry") 
tuple2 = (1, 5, 7, 9, 3) 
tuple3 = (True, False, False) 
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c. Set- Sets are used to store more than one data in single variable. Items in the sets are 

unindexed, unordered and non-changeable. Sets doesn’t allow duplicate values. Sets are 

created by using curly brackets. Items can’t be access by mentioning the index number inside 

the square brackets. For accessing the items in the Sets one can use any loop structure. 

e.g.  

set1 = {"apple", "banana", "cherry"} 
set2 = {1, 5, 7, 9, 3} 
set3 = {True, False, False} 

d. Dictionary- Dictionaries are used to store data in key:value pair. Items in the sets are ordered 

and changeable. But dictionary doesn’t allow duplicate values. Dictionaries are created by 

using curly brackets having key:value pair. Items ca be access by mentioning the key name 

inside the square bracket. 

e.g.  

dictionary1 = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 
x = dictionary1 ["model"] 

 

Control and Loops Structures in Python: 

There is mainly one control structure that is‘if…else’ and two loop structure such as ‘while’ 

and ‘for’ loop. 

a. ‘if.. else’ structure- ‘if…else’ structures are used to implement the logical conditions of the 

program. Syntax of ‘if…else’ structure is given below- 

e.g. 

a = 33 
b = 200 
if b > a: 
  print("b is greater than a") 

else: 

  print("error") 

 

N.B. Indentation in the control and loop structures are very crucial in case of python 

programming language. 

 

b. ‘while’ loop- With the ‘while’ loop, one can execute a set of statements as long as a condition 

is true. 

e.g.  

i = 1 
while i < 6: 
  print(i) 
  i += 1 
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c. ‘for’ loop-  A ‘for’ loop is used for iterating over a sequence (that is either a list, a tuple, a 

dictionary, a set, or a string). 

e.g. 1- 

fruits = ["apple", "banana", "cherry"] 
for x in fruits: 
  print(x) 

e.g:2- Looping through the letters of a strings 

for x in "banana": 
  print(x) 

 

Python Functions: 

A function is a block of code that contains a set of statements and runs only when it is called 

explicitly. One can pass data, known as parameters, into a function. A function can return data 

as a result. 

e.g. 

def my_function(str): 
  print(str + "! Welcome to the class.") 
my_function("Bob") 

 

Packages and PIP: 

Package or module is a python object with arbitrarily named attributes that one can bind and 

reference. Packages allows us to logically locate the python code. Simply a package or module 

is file containing a set of python codes. Packages are also referred as library 

Packages or modules or libraries can be imported by using the ‘import’ keyword. 

e.g. 

import os 

import sys 

PIP is a package manager available in python. PIP is used to install, upgrade, or uninstall a 

packages in python environment. 

C:\your\python\installation\path>pip install numpy 

 

Some important packages or modules in Python: 

NumPy: 

NumPy is python library or packages used for working with arrays. NumPy was created by 

Travis Oliphant in 2005 and it is open source.  

In python, the concepts of arrays is served by the List data structure but it is too slow in 

processing. NumPy provides a 50x faster access speed for the array objects in python than the 

List. NumPy has a lots of applications in the domain of - 

 Arrays  

 Matrices 

 Linear Algebra 
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 Fourier Transformation 

Creating Arrays 

The object of NumPy that deals with the arrays is known as ‘ndarray’. One can create a 

‘ndarray’ object by using array() function. One can pass any type of array-like object in the 

array() function. 

e.g. 

import numpy as np 
array_var = np.array([1, 2, 3, 4, 5]) 

 

Array can be of 0, 1, 2 or 3 dimensions.  

e.g. 

import numpy as np 
array0 = np.array(42) #0 dimension 

array1 = np.array([1, 2, 3, 4, 5, 6, 7, 8]) # 1 dimension 

array2 = np.array([[1, 2, 3], [4, 5, 6]]) # 2 dimension 

array3 = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) #3 
dimension 

 

Accessing Array elements 

Array elements can be accessed by its index number 

print(array1 [2]) #accessing the 3rd item from the array ‘array1’ 

 

Slicing an Array 

Slicing in python means taking elements from one given index to another given index. 

print(array1 [1:3]) #slicing from 2nd item to the 4th element 

print(array1 [2:]) #slicing from 3rd item to the last element 

print(array1 [:6]) #slicing from beginning to the 5th element 

 

Properties and functions: 

dtype- returns the type of values stored in the array object 

shape- gives the number of elements in each dimension of the array object 

reshape– allows to change the shape of the array either by adding adding/removing  

          dimensions or changing the number of elements in each dimension 

concatenate()- joins two or more arrays axis wise. 

array_split()– splitting an array into two or more parts 

 

Matplotlib: 

Matplotlib is a low level graph plotting library in python that serves as a visualization utility. 

Matplotlib was created by John D. Hunter. Matplotlib is open source and we can use it freely. 
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Most of the Matplotlib utilities lies under the pyplot submodule, and are usually imported under 

the plt alias. 

e.g. Draw a line in a diagram from position (0,0) 

to position (10, 200): 

import matplotlib.pyplot as plt 
import numpy as np 
xpoints = np.array([0, 10]) 
ypoints = np.array([0, 200]) 
plt.plot(xpoints, ypoints) 
plt.show() 

 

Properties and functions: 

marker- keyword argument to emphasize each point in the plot 

linestyle/ls- keyword argument to change the style of the plotted line 

xlabel()- functions for setting a label for x-axis 

ylabel()- function for setting a label for y-axis 

title() - function for giving the title for the plot 

grid() -function to add grid lines to the plot 

scatter()-function to draw a scatter plot 

bar()- function to draw bar graphs 

hist()- function to create histograms 

 

e.g. 

import matplotlib.pyplot as plt 
import numpy as np 
x = np.random.normal(150, 20 , 250) 
plt.hist(x) 

plt.show()  

 

Pandas: 

Pandas is a one of the most popular python package providing high-performance data 

manipulation and analysis tool using its powerful data structures. The name Pandas is derived 

from the word ‘Panel Data’ – an Econometrics from Multidimensional data. Pandas is well 

suited for many different kinds of data: 

 Fast and efficient DataFrame object with default and customized indexing. 

 Tools for loading data into in-memory data objects from different file formats. 

 Data alignment and integrated handling of missing data. 

 Reshaping and pivoting of date sets. 

 Label-based slicing, indexing and subsetting of large data sets. 

 Columns from a data structure can be deleted or inserted. 

 Group by data for aggregation and transformations 
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There are mainly two data structures of pandas which handle the majority of typical use cases 

in finance, statistics, social science and Engineering are Series (1-dimensional) and DataFrame 

(2-dimensional). 

DataFrame 

A Data frame is a two-dimensional data structure, i.e., data is aligned in a tabular fashion in 

rows and columns.  

Features of DataFrame: 

 Potentially columns are of different types 

 Size – Mutable 

 Labelled axes (rows and columns) 

 Can Perform Arithmetic operations on rows and columns 

e.g.1 

import pandas as pd 

data = [1,2,3,4,5] 

df = pd.DataFrame(data) 

print df 

     0 

0    1 

1    2 

2    3 

3    4 

4    5 

 

e.g. 2 

import pandas as pd 

data = [['Alex',10],['Bob',12],['Clarke',13]] 

df = pd.DataFrame(data,columns=['Name','Age'],dtype=float) 

print df 

   Name     Age 

0     Alex     10.0 

1     Bob      12.0 

2     Clarke   13.0 

 

Jupyter Notebook 

The Jupyter Notebook is an open-source web application that allows you to create and share 

documents that contain live code, equations, visualizations and narrative text. Uses include: 

data cleaning and transformation, numerical simulation, statistical modeling, data 

visualization, machine learning, and much more. 
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Google Colab: 

Colab is a Python development environment that runs in the browser. This facility is provided 

by the google in free of cost. Jupyter notebook is used for the programming purpose in colab. 

It allows the user to install any python library at any time. It also provide high computing 

programming environment that is Graphics Processing Unit (GPU) on free of cost to the users. 

One can upload his/her data to the google drive and analyse the data using the colab 

environment. 
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A database is an organized collection of interrelated data. A database management 

system (DBMS) is computer software that facilitates the process of defining, constructing and 

manipulating databases for various applications. Examples of Information Systems include Bank, 

Library and Railway Reservation which use DBMS. MS Access is the database software in the 

Microsoft Office suite that allows to order, manage, search, and report large amounts of 

information.  

Create Access Database 

The first step in creating an Access database is to create a blank database file. This is 

done from the Getting Started Screen when Access is launched. The file is saved into one of the 

specified folders in computer. The procedure for doing this is outlined below. 

1. Launch Access 

To begin, launch Access by clicking on the desktop icon, or choose Access from the start menu. 

This brings up the Getting Started with Microsoft Office Access screen. 
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2. Select Blank Database Template 

 

Towards the top left of the screen, there is a "Blank Database" icon. Click this icon to bring up 

the Blank Database side bar on the right hand side of the screen. This is where one has to enter 

details about the database file to be created. 

3. Enter filename for Access database. 

 

Type TrainingDb in the File Name textbox. 

4. Browse and select folder 

Next click the folder icon adjacent to File Name textbox and browse for a folder to put the 

database. Click the OK button once the file path has been selected. 
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5. Click Create 

Now the selected file path can be seen below the File Name textbox. Once the Create button is 

clicked, the database file is saved to the specified location and opened to work on. 

 

6. The window for the TrainingDb database will open. 

 

The newly created database file is ready to be worked upon. 

Create Access Table 

Tables are the foundation of an Access database. Access stores data in tables. They look 

like the cells of a spreadsheet with columns and rows. Each horizontal column represents a table 

record, and each vertical column represents a table field. 

1. Click the Datasheet tab. In the Ribbon, click View. 
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2. When the menu appears, click Design View. 

 

3. A Save As window will appear, type Trainee in the Table Name box. This is the first 

database table to be created. 

 

Then click on the OK button. 

Create fields in Design View 

This brings up the Table Design Grid where each field name and its data type can be 

entered. The first field created is the Tr_ID field which is going to contain a unique reference 

number for each trainee record. This column is by default the primary key field. A primary key is 

a field or combination of fields that uniquely identify each record in a table. Enter the name 

"Tr_ID" into the first column of the first row in the grid. To automatically generate a unique 

reference number, AutoNumber is to be selected from the drop down list in the data type 

column. One can also enter a description for each field, but this is not essential. 

On the next row the field is going to be called Tr_Firstname and the data type is going to 

be Text. On the third row the field name is Tr_LastName with the data type again being Text. 

Likewise, one can add as many fields as required. And finally, the last field name is 

Tr_ContactNo and the data type here is going to be Number. 

Now the table can be saved by clicking the save icon on the top left of the screen above 

the Access Ribbon. To view the table, select Datasheet View from the Views group. This brings 

up the datasheet view of the table that is just created. One can see the field headings running 

across the top of the table. 
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The following tables have been created: Trainee, Training_Prog, Trainee_Training, 

Training_Organizer. 

 

The Trainee Table contains all the details of the trainees attending different training programmes. 

This table has the following fields: 
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The properties of the data types can be viewed and modified in the General Tab under Field 

Properties. 

 

Training_Prog Table contains the details of training programmes and it has the following fields: 

Training_ID (AutoNumber), Training_Title (Text), Training_Start_Date (Date/Time), 

Training_End_Date (Date/Time), Training_Host_Institute (Text), Course_Coordinator 

(Number). 

Training_Organizer Table contains the details of the training programme organizers and it has 

the following fields: Organizer_ID (AutoNumber), Organizer_FirstName (Text), 

Organizer_MiddleName (Text), Organizer_LastName (Text), Organizer_Address (Text), 

Organizer_EmailId (Text). 

Trainee_Training Table contains the information of the trainees participating in the training 

programmes and it has the following fields: TraineeTraining_ID (AutoNumber), Trainee_ID 

(Number), Training_ID (Number). 

Building table relationships 

In Access, data are stored in multiple tables. Relationships are used to join the tables. 

After creating relationships, data can be used from all of the related tables in a query, form, or 

report. 

Along with primary key, the foreign key concept is required in building table 

relationship. A foreign key is a value in one table that must match the primary key in another 

table. Primary keys and foreign keys are used to join tables together. In other words, primary 

keys and foreign keys are used to create relationships. 
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There are three types of relationships: one-to-one, one-to-many (or many-to-one) and 

many-to-many. In a one-to-one relationship, for every occurrence of a value in table A, there can 

only be one matching occurrence of that value in table B, and for every occurrence of a value in 

table B, there can only be one matching occurrence of that value in table A. One-to-one 

relationships are rare because if there is a one-to-one relationship, the data is usually stored in a 

single table. However, a one-to-one relationship can occur when one wants to store the 

information in a separate table for security reasons, when tables have a large number of fields, or 

for other reasons. In a one-to-many relationship, for every occurrence of a value in table A, there 

can be zero or more matching occurrences in table B, and for every one occurrence in table B, 

there can only be one matching occurrence in table A. In a many-to-many relationship, for every 

occurrence of a value in table A, there can be zero or more matching occurrences in table B, and 

for every one occurrence in table B, there can be zero or more matching occurrences in table A. 

In the present scenario, one Training Organizer can be Course_Coordinator in one or 

more training programmes, however, one particular training programme can only have one 

Course_Coordinator. This is a one-to-many relationship. Now, one trainee can participate in one 

or more training programmes and one training programme has more than one participants. So, 

this is an example of many-to-many relationship. In such scenario, another Table viz. 

Trainee_Training is introduced to break the many-to-many relationship into two one-to-many 

relationships. 

To establish a relationship between tables: 

1. Click the Relationships button in the Show/Hide group on the Database Tools tab. It is 

important that tables must be closed in order to establish relationships. 
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2. Click the Show Table button in the Relationships group. The Show Table dialog box appears.  

3. Activate the Tables tab if the relationships will be based on tables, activate the Queries tab if 

the relationships will be based on queries, or activate the Both tab if the relationships will be 

based on both. 

4. Select each table name and then click Add for the tables to be related. One can also select 

multiple tables at a time by pressing the Ctrl Key and then click Add. 

5. Click the Close button to close the Show Table dialog box. 

 

Now, one can see a relationship map that contains all of the tables those were selected. 

 

To move a table that appears in the relationship map: 

 Place the mouse over the table to be moved. 

 Hold down the left mouse button, then drag the table to a new location. 

 Release the mouse button to drop the table in its new place. 
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6. Drag the Primary table’s primary key over the related table’s foreign key. After dragging the 

primary key to the related table’s box, the cursor changes to an arrow. Make sure that the arrow 

points to the foreign key. The Edit Relationships Dialog box will appear. 

 

7. Click the Enforce Referential Integrity checkbox. 

8. Click Create. Access creates a one-to-many relationship between the tables. 

 

Note: After a relationship has been created between two tables, one must delete the relationship 

before making modifications to the fields on which the relationship is based. To delete a 

relationship: 

1. Click the line that connects the tables. 

2. Press the Delete key. 

The other facilities available in Access include Queries, Forms and Reports. Query is 

used to view a subset of the data or to answer questions about the data. Access Forms are used to 

enter, edit or display data and they are based on tables. Reports organize and summarize data for 
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viewing online or for printing. A detail report displays all of the selected records. One can 

include summary data such as totals, counts, and percentages in a detail report. 
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1. Introduction 

Since the development of high-throughput methods for production of gene and protein 

sequences during 90s, the rate of addition of new sequences to the databases increases 

very rapidly. However, comparing sequences with known functions with these new 

sequences is one way of understanding the biology of that organism from which the 

new sequence comes. Thus, sequence analysis can be used to study of the similarities 

between the compared sequences. Now a days, there are many tools and techniques 

that provide the sequence comparisons (sequence alignment) and analyze the 

alignment to understand the biology. 

Sequence analysis in molecular biology and bioinformatics is an automated, 

computer-based examination of characteristic fragments, e.g. of a DNA strand. It 

basically includes relevant topics: 

1. The comparison of sequences in order to find similarity and dissimilarity in 

compared sequences (sequence alignment)  

2. Identification of gene-structures, reading frames, distributions of introns, 

exons and regulatory elements  

3. Finding and comparing point mutations or the single nucleotide polymorphism 

(SNP) in organism in order to get the genetic marker.  

4. Revealing the evolution and genetic diversity of organisms.  

5. Functional annotation of genes.  

Sequence alignment is a way to identify regions of similarity in DNA, RNA, or 

protein sequences that may be a consequence of functional, structural, or evolutionary 

relationships between the sequences. Aligned sequences of nucleotide or amino acid 

residues are typically represented as rows within a matrix. If two sequences share a 

common ancestor for the alignment, mismatches can be interpreted as point mutations 

and gaps as indels (that is, insertion or deletion mutations). Thus, a letter or a stretch 

of letters may be paired up with dashes in the other sequence to signify such an 

insertion or deletion. Homologous sequences may have different length, which is 

generally explained through insertions or deletions in sequences. Since an insertion in 

one sequence can always be seen as a deletion in the other one frequently uses the 

term "indel". In sequence alignments of proteins, the degree of similarity between 

amino acids sequence can be interpreted as a rough measure of how conserved a 

particular region or sequence motif is among lineages. The absence of substitutions, or 

the presence of only very conservative substitutions (that is, the substitution of amino 

acids whose side chains have similar biochemical properties) in a particular region of 

the sequence, suggest that this region has structural or functional importance. 

Although DNA and RNA nucleotide bases are more similar to each other than are 

amino acids, the conservation of base pairs can indicate a similar functional or 

structural role. 
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Very short or very similar sequences can be aligned by hand. However, most 

interesting problems require the alignment of lengthy, highly variable or extremely 

numerous sequences that cannot be aligned solely by human effort. Computational 

methods need to be developed for the alignment of a large pair of sequences. 

Computational approaches are of two categories: global alignments and local 

alignments. Global alignment is a form of global optimization that "forces" the 

alignment to span the entire length of all query sequences.  Global alignment will be 

applied when the sequences are of similar lengths. Local alignments identify regions 

of similarity within long sequences. Local alignments are often preferable, but it 

consumes more time to calculate because of the additional challenge of identifying the 

regions of similarity in the local regions. Number of algorithms is being applied for 

the sequence alignment, including optimizing methods like dynamic programming, 

and heuristic algorithms or probabilistic methods designed for large-scale database 

search. 

 

Fig. 1 Sample of sequence Alignment text based representations 

In sequence alignment of graphical representations, sequences are written in rows so 

that aligned residues appear in successive columns. While in text formats, aligned 

columns containing identical or similar characters are indicated with a system of 

conservation symbols. An asterisk or pipe symbol is used to represent the similarity of 

these two columns, a colon for conservative substitutions and a period for semi-

conservative substitutions.  

Many sequence visualization techniques use a color coding scheme to display 

information about the properties of the individual sequence elements. In DNA and 

RNA sequences, each nucleotide is represented by a specific color. In protein 

alignments, color is used to indicate amino acid properties in determining the 

conservation of a given amino acid substitution.  

2. Pair-wise Alignment 

Pair-wise sequence alignment methods are used to find the best-matching pairs of two 

sequences. The three primary methods of pair-wise alignments are dot-matrix, 

dynamic programming and word methods. One way of quantifying the utility of a 

pair-wise alignment is the 'maximum unique match', or the longest subsequence that 

occurs in both query sequence. 

a) Dot-Matrix Method: The two sequences are written along the top row and leftmost 

column of a two-dimensional matrix and a dot is placed at any point where the 

characters in the appropriate columns match. We try to draw lines diagonally. The dot 

plots of very closely related sequences will appear as a single line along the matrix's 

main diagonal (Fig. 2). The dot-matrix approach produces a simple way of alignments 

for small sequences with the similar regions but time-consuming to analyze large 

sequences.  
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Fig. 2: The dot matrix technique for sequence alignment 

There are many problems with dot plots such as noise, lack of clarity, difficulty 

extracting match summary statistics. Dot-plots are limited to two sequences only. 

b) Dynamic Programming: Dynamic programming can be applied to produce global 

and local alignments. This can be done by applying Needleman-Wunsch algorithm for 

global alignment and Smith-Waterman algorithm for the local alignments. In general, 

alignments use a substitution matrix to assign scores for matches or mismatches, and a 

gap penalty for matching an in one sequence with a gap in the other.  

DNA and RNA alignments may use a different scoring matrix, but in practice often 

simply assign a positive match score, a negative mismatch score, and a negative gap 

penalty. Dynamic programming can be useful in aligning nucleotide to protein 

sequences. The framesearch method produces a series of global or local pair-wise 

alignments between a query nucleotide sequence and a search set of protein 

sequences, or vice versa. The BLAST and EMBOSS provide basic tools for creating 

alignments of the sequences. 

c) Word Method: Word or k-tuple methods are heuristic methods but are not 

guaranteed to find an optimal alignment solution. These methods are especially useful 

in large-scale database searches Word methods are best known for their 

implementation in the database search tools FASTA and BLAST family. Word 

methods identify a series of short, non-overlapping subsequences ("words") that are 

matched to candidate database sequences. The relative positions of the word in the 

two sequences being compared are subtracted to obtain an offset; this will indicate a 

region of alignment if multiple distinct words produce the same offset.  

In the FASTA method, the user defines a value k to use as the word length with which 

to search the database. The method is slower but more sensitive for lower values of k, 

which are preferred for searching a very short query sequence. The BLAST family of 

search methods provides a number of algorithms optimized for particular types of 

queries. BLAST was developed to provide a faster alternative to FASTA without 

sacrificing accuracy. BLAST uses a word search of length k, but evaluates only the 

most significant word matches. Most BLAST implementations use a fixed default 

word length that is optimized for the query and database. Web based implementations 

are available such as EMBL FASTA and NCBI BLAST. 
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3. Global and Local Alignment 

Global Alignment 

Global alignments, which attempt to align every residue of each sequence, when the 

size of the sequences are similar or of equal size. A general global alignment 

technique is based on dynamic programming i.e., Needleman-Wunsch algorithm. This 

can be easily understood with the following two sequences aligned globally as follows 

G A A T T C A G T T A  (sequence #1)  

G G A T C G A   (sequence #2)  

In simple dynamic programming principle, we construct a matrix. The matrix will be 

filled by inserting 0 or 1 where ever there is a mismatch or match. We also penalize 

the gaps with 0 as a simple case. Following steps are needed for construction of the 

matrix 

i. Initialization  

ii. Matrix fill (scoring)  

iii. Traceback (alignment)  

i. Initialization  

The first step is to create a matrix with M + 1 columns and N + 1 rows where M and 

N are the sizes of the sequences to be aligned.  

With the given sequences, length of sequence #1 = 11 and length of sequence #2 is 7. 

The size of the matrix will be 12*8 (11+1 * 7+1). The first row and first column of the 

matrix can be initially filled with 0 because we assume assumes there is no gap 

opening or gap extension penalty as shown in fig. 3.  

 

Fig. 3. Initial matrix with two sequences 

ii. Matrix Fill  

One possible way of filling the matrix is to find the maximum global alignment score 

by starting from the upper left hand corner of the matrix and find the maximal score 

Mi,j for each position in the matrix.  

For each position, Mi,j is defined to be the maximum score at position i,j  i.e.,  

Mi,j = MAXIMUM[ 

     Mi-1, j-1 + Si,j (match/mismatch in the diagonal), 

     Mi,j-1 + w (gap in sequence #1), 

     Mi-1,j + w (gap in sequence #2)] 
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In fig. 4, Mi-1,j-1 will be red, Mi,j-1 will be blue and Mi-1,j will be green. The score at 

position 1,1 in the matrix can be calculated. Since the first residue in both sequences 

is a G i.e., a match, so score S1,1 = 1. We assumed the gap penalty as 0. 

Thus, M1,1 = MAX[M0,0 + 1, M1, 0 + 0, M0,1 + 0] = MAX [1, 0, 0] = 1.  

A value of 1 is then placed in position 1,1 of the scoring matrix.  

 

Fig. 4. Sample fill of the entry M1,1 

Now the element M1,2, the value is the max of 0 (for a mismatch), 0 (for a vertical 

gap) or 1 (horizontal gap). The rest of element of first row can be filled up similarly. 

At this point, there is a G in both sequences (light blue). Thus, the value for the cell at 

row 1 column 8 is the maximum of 1 (for a match), 0 (for a vertical gap) or 1 

(horizontal gap). The value will again be 1 as in fig. 5 

 

Fig. 5. Sample fill of the entry whene there is a collosion of two cells for M1,8 

Now similarly at column 2. The location at row 2 will be assigned the value of the 

maximum of 1(mismatch), 1(horizontal gap) or 1 (vertical gap). So its value is 1.  

After filling in all of the values the score matrix is shown in fig. 6:  

 

Fig. 6. Final filled matrix 



Sequence Alignment 

336 

 

iii. Traceback Step 

After the matrix fill step, find the the maximum alignment score for the two test 

sequences. The traceback step determines the actual alignment(s) that result in the 

maximum score. Note that with a simple scoring algorithm such as one that is used 

here, there are likely to be multiple maximal alignments.  

The traceback step begins in the matrix that leads to the maximal score. In this case, 

there is a 6 in that location. Traceback takes the current cell and looks to the neighbor 

cells that could be direct predecessors. This means that it looks to the neighbor to the 

left (gap in sequence #2), the diagonal neighbor (match/mismatch), and the neighbor 

above it (gap in sequence #1). The algorithm for traceback chooses as the next cell in 

the sequence one of the possible predacessors. In this case, the neighbors are marked 

in red. They are all also equal to 5 as in fig 7.  

 

Fig. 7. Traceback process start where the score is maximum 

 

Since the current cell has a value of 6 and the scores are 1 for a match and 0 for 

anything else, the only possible predecessor is the diagonal match/mismatch neighbor. 

If more than one possible predecessor exists, any can be chosen. The corresponding 

row and column can be crossed out as in fig. 8. This gives us a current alignment of  

    (Seq #1)      A  

                         | 

    (Seq #2)      A 

 

Fig. 8. Traceback steps and crossing of the row and column 

Now, look at the current cell and determine which cell is its direct predecessor. In this 

case, it is the cell with the red 5 as in fig. 9. The alignment as described in the above 

step adds a gap to sequence #2 , so the current alignment is 
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    (Seq #1)     T A 

                           | 

    (Seq #2)     _ A 

Once again, the direct predecessor produces a gap in sequence #2.  

 

Fig. 9. Traceback steps and crossing of the row and column 

 

After this step, the current alignment is 

      (Seq #1)     T T A 

                                 | 

                          _ _ A 

Continuing on with the traceback step, we eventually get to a position in row 0 and 

column 0, which tells us that traceback is completed as in fig. 10.  

 

Fig. 10. Final matrix with the traceback steps  

 

One possible maximum alignment is   

          G A A T T C A G T T A 

           |       |      |   |      |         |  

          G G A _ T C _ G _ _  A 
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Local Alignment 

Local alignments are more useful for dissimilar sequences that may contains regions 

of similarity or similar sequence motifs within their larger sequence context. The 

Smith-Waterman algorithm is a general local alignment method based on dynamic 

programming. A local alignment searches for regions of local similarity between two 

sequences and need not include the entire length of the sequences. This can be done 

by reading a scoring matrix that contains values for every possible residue or 

nucleotide match or mismatch. The Smith-Waterman algorithm is a member of the 

class of algorithms that can calculate the best score and local alignment in the order of 

m*n steps, where 'm' and 'n' are the lengths of the two sequences. Local alignment 

methods only report the best matching areas between two sequences while there may 

be a large number of alternative local alignments which do not score as highly as the 

best alignment done by this algorithm. 

Consider the two DNA sequences to be globally aligned are: 

 ACACACT (x=7, length of sequence 1) 

 AGCACAC (y=7, length of sequence 2) 

It also follows three steps 

i. Initialization  

ii. Matrix fill (scoring)  

iii. Traceback (alignment)  

 Let us assume the simple scoring scheme as 

 Si,j = 2  if there is a match  

 Si,j = -1 if there is a mismatch  

 w = -1 as gap penalty 

i. Initialization 

The first step in the global alignment dynamic programming approach is to create a 

matrix with M + 1 columns and N + 1 rows where M and N correspond to the size of 

the sequences to be aligned. In this example, we assume that there is no gap opening 

or gap extension penalty. The first row and first column of the matrix can be initially 

filled with 0 as in fig. 11.  

 

Fig. 11. Initial matrix with first row and first column element as 0 
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ii. Matrix Fill  

One way to fill the matrix is to find the maximum global alignment score by starting 

from the upper left hand corner in the matrix and get the maximal score Mi,j for each 

position in the matrix. In order to find Mi,j for any i,j it is minimal to know the score 

for the matrix positions to the left, above and diagonal to i, j. In terms of matrix 

positions, it is necessary to know Mi-1,j, Mi,j-1 and Mi-1, j-1.  

For each position, Mi,j is defined to be the maximum score at position i,j; i.e.  

Mi,j = MAXIMUM[ 

     Mi-1, j-1 + Si,j (match/mismatch in the diagonal), 

     Mi,j-1 + w (gap in sequence #1), 

     Mi-1,j + w (gap in sequence #2)] 

Using this information, the score at position 1,1 in the matrix can be calculated. Since 

the first residue in both sequences is A, S1,1 = 2, and by the assumptions stated at the 

beginning, w = 0. Thus, M1,1 = MAX[M0,0 + 2, M1, 0 -1, M0,1 -1] = MAX [2, -1, -1] = 2.  

A value of 2 is then placed in position 1,1 of the scoring matrix as in fig. 12. And 

subsequently the whole matrix is filled in the same way. 

 

Fig. 12. Final filled matrix 

iii. Traceback 

After the matrix fill step, the maximum alignment score for these two test sequences 

is 11. The traceback step determines the actual alignment(s) for the maximum score. It 

is not mandatory that the last cell  has the maximum alignment score. 

The traceback step begins with the position that leads to the maximal score. In this 

case, there is 11 in that location.  

Trace back takes the current cell and looks to the neighbor cells that could be direct 

predecessors. This means it looks to the neighbor to the left (gap in sequence #2), the 

diagonal neighbor (match/mismatch), and the neighbor above it (gap in sequence #1) 

as in fig. 13. The algorithm for trace back chooses as the next cell in the sequence one 

of the possible predecessors. This continues till cell with value 0 is reached. 
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Fig. 13. Traceback Step 

The only possible predecessor is the diagonal match/mismatch neighbor. If more than 

one possible predecessor exists, any can be chosen. This gives us a current alignment 

of  

    (Seq #1)       C 

                          | 

    (Seq #2)       C 

So now we look at the current cell and determine which cell is its direct predecessor. 

In this case, it is the cell with the red 9 as in fig. 14.  

     

    (Seq #1)       C A 

                          |   | 

    (Seq #2)       C A 

 

 

Fig. 14. Traceback step with the correct arrows 

Continuing with the traceback step, we eventually get a position in column 0 or row 0 

which tells us that traceback is completed as in fig. 15.  
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Fig. 15. Final Traceback Matrix 

The possible maximum alignment is: 

          AG C A C A C 

           |      |   |   |   |   |  

          A _ C A C A C  

There is a combination of these two methods which is called hybrid methods, also 

known as semiglobal or "glocal" methods. This method attempts to find the best 

possible alignment that includes the start and end of one or the other sequence. This 

can be especially useful when the downstream part of one sequence overlaps with the 

upstream part of the other sequence. In this case, neither global nor local alignment is 

entirely appropriate. 

4. Significance of Sequence Alignment 

Sequence alignments are useful in bioinformatics for identifying sequence similarity, 

producing phylogenetic trees, and developing homology models of protein structures. 

However, the biological relevance of sequence alignments is not always clear. 

Alignments are often assumed to reflect a degree of evolutionary change between 

sequences descended from a common ancestor; however, it is formally possible that 

convergent evolution can occur to produce apparent similarity between proteins that 

are evolutionarily unrelated but perform similar functions and have similar structures. 

In database searches such as BLAST, statistical methods can determine the likelihood 

of a particular alignment between sequences or sequence regions arising by chance 

with the given the size and composition of the database being searched. These values 

can vary significantly depending on the search space. In particular, the likelihood of 

finding a given alignment by chance increases, if the database consists only of 

sequences from the same organism as the query sequence. Repetitive sequences in the 

database or query can also distort both the search results and the assessment of 

statistical significance. BLAST automatically filters such repetitive sequences in the 

query to avoid apparent hits that are statistical artifacts. 

The choice of a scoring function that reflects biological or statistical observations 

about known sequences is important to producing good alignments. Protein sequences 

are frequently aligned using substitution matrices that reflect the probabilities of given 

character-to-character substitutions. A series of matrices called PAM matrices (Point 
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Accepted Mutation matrices, originally defined by Margaret Dayhoff and sometimes 

referred to as "Dayhoff matrices") explicitly encode evolutionary approximations 

regarding the rates and probabilities of particular amino acid mutations. Another 

common series of scoring matrices, known as BLOSUM (Blocks Substitution 

Matrix), encodes empirically derived substitution probabilities. Variants of both types 

of matrices are used to detect sequences with differing levels of divergence, thus 

allowing users of BLAST or FASTA to restrict searches to more closely related 

matches or expand to detect more divergent sequences. Gap penalties account for the 

introduction of a gap - on the evolutionary model, an insertion or deletion mutation - 

in both nucleotide and protein sequences, and therefore the penalty values should be 

proportional to the expected rate of such mutations. The quality of the alignments 

produced therefore depends on the quality of the scoring function. 

5. Sequence Databases 

The repositories for the genomic sequences are  

National Center for Biotechnology Information (NCBI) is part of the United States 

National Library of Medicine (NLM), a branch of the National Institutes of Health. 

The NCBI is located in Bethesda, Maryland and was founded in 1988 through 

legislation sponsored by Senator Claude Pepper. The NCBI houses genome 

sequencing data in GenBank and an index of biomedical research articles in PubMed 

Central and PubMed, as well as other information relevant to biotechnology. All these 

databases are available online through the Entrez search engine. The NCBI is directed 

by David Lipman, one of the original authors of the BLAST sequence alignment 

program and a widely respected figure in Bioinformatics. The NCBI has had 

responsibility for making available the GenBank DNA sequence database since 1992 

as shown in fig. 16. GenBank coordinates with individual laboratories and other 

sequence databases such as those of the European Molecular Biology Laboratory 

(EMBL) and the DNA Data Bank of Japan (DDBJ). Since 1992, NCBI has grown to 

provide other databases in addition to GenBank. NCBI provides Online Mendelian 

Inheritance in Man, the Molecular Modeling Database (3D protein structures), dbSNP 

a database of single-nucleotide polymorphisms, the Unique Human Gene Sequence 

Collection, a Gene Map of the human genome, a Taxonomy Browser, and coordinates 

with the National Cancer Institute to provide the Cancer Genome Anatomy Project.  



Sequence Alignment 

343 

 

 

Fig. 16. NCBI portal 

The NCBI assigns a unique identifier (Taxonomy ID number) to each species of 

organism. The NCBI has software tools that are available by WWW browsing or by 

FTP. For example, BLAST is a sequence similarity searching program. BLAST can 

do sequence comparisons against the GenBank DNA database in less than 15 seconds. 

The NCBI Bookshelf is a collection of freely available, downloadable, on-line 

versions of selected biomedical books. The Bookshelf has various titles covering 

aspects of molecular biology, biochemistry, cell biology, genetics, microbiology, a 

couple of disease states from a molecular and cellular point of view, research 

methods, and virology. Some of the books are online versions of previously published 

books, while others, such as Coffee Break (book), are written and edited by NCBI 

staff. The Bookshelf is a complement to the Entrez PubMed repository of peer-

reviewed publication abstracts in that Bookshelf contents provide established 

perspectives on evolving areas of study and a context in which many disparate 

individual pieces of reported research can be organized. 

European Molecular Biology Laboratory (EMBL) is a molecular biology research 

institution supported by 20 European countries and Australia as associate member 

state. The EMBL was created in 1974 and is a non-profit organisation funded by 

public research money from its member states. Research at EMBL is conducted by 

approximately 85 independent groups covering the spectrum of molecular biology. 

The Laboratory operates from five sites: the main Laboratory in Heidelberg, and 

Outstations in Hinxton (the European Bioinformatics Institute (EBI)), Grenoble, 

Hamburg, and Monterotondo near Rome as in fig. 17. Each of the sites has a research 

specific field. At EBI, the research is oriented towards computational biology and 

bioinformatics. At Grenoble and Hamburg the research is in the field of structural 

biology. At Monterotondo the research is focused mainly on mouse models for 

clinical research. At the headquarters in Heidelberg, there are big departments in Cell 

Biology and Gene Expression as well as smaller complementing the aforementioned 

research fields.  
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Fig. 17. EMBL portal 

The cornerstones of EMBL's mission are: to perform basic research in molecular 

biology and molecular medicine, to train scientists, students and visitors at all levels, 

to offer vital services to scientists in the member states, to develop new instruments 

and methods in the life sciences, and to actively engage in technology transfer. 

EMBL's international PhD Programme has a student body of about 170. The 

Laboratory also sponsors an active Science and Society programme. Many scientific 

breakthroughs have been made at EMBL, most notably the first systematic genetic 

analysis of embryonic development in the fruit fly by Christiane Nüsslein-Volhard 

and Eric Wieschaus, for which they were awarded the Nobel Prize for Medicine in 

1995. 

DNA Data Bank of Japan (DDBJ) is a DNA data bank. It is located at the National 

Institute of Genetics (NIG) in the Shizuoka prefecture of Japan. It is also a member of 

the International Nucleotide Sequence Database Collaboration or INSDC. It 

exchanges its data with European Molecular Biology Laboratory at the European 

Bioinformatics Institute and with GenBank at the National Center for Biotechnology 

Information on a daily basis. Thus these three databanks contents the same data at any 

given time. DDBJ began data bank activities since 1986 at NIG and it boasts to be the 

only nucleotide sequence data bank in Asia. Although DDBJ mainly receives its data 

from Japanese researchers, however it can accept data from a contributor belonging to 

any other country as in fig. 18.  
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Fig. 18. DDBJ Portal 

DDBJ is primarily funded by the Japanese Ministry of Education, Culture, Sports, 

Science and Technology (MEXT). DDBJ has an international advisory committee 

which consists of nine members, 3 members each from Europe, US, and Japan. This 

committee advice DDBJ about its maintenance, management and future plans once a 

year. Apart from this DDBJ also has an international collaborative committee which 

advises on various technical issues related to international collaboration and consists 

of working-level participants. 

6. Softwares Used in Sequence Alignment 

 S. 

No. 
Name Function Website Link 

1 ALIGN  Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/align  

2 CENSOR Sequence Analysis http://www.ebi.ac.uk/Tools/censor/  

3 CLUSTALW2 Sequence Analysis http://www.ebi.ac.uk/Tools/clustalw2/  

4 CpG Plot/ 

CpGreport 

Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/ 

cpgplot/  

5 Genewise Sequence Analysis http://www.ebi.ac.uk/Tools/Wise2/ 

6 Kalign Sequence Analysis http://www.ebi.ac.uk/Tools/kalign  

 

http://www.ebi.ac.uk/Tools/emboss/align
http://www.ebi.ac.uk/Tools/censor/
http://www.ebi.ac.uk/Tools/clustalw2/
http://www.ebi.ac.uk/Tools/emboss/%20cpgplot/
http://www.ebi.ac.uk/Tools/emboss/%20cpgplot/
http://www.ebi.ac.uk/Tools/Wise2/
http://www.ebi.ac.uk/Tools/kalign
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7 MAFFT Sequence Analysis http://www.ebi.ac.uk/Tools/mafft/ 

8 MUSCLE Sequence Analysis http://www.ebi.ac.uk/Tools/muscle/  

9 Pepstats/ 

Pepwindow/Pepinfo 

Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/ 

pepinfo/ 

10 PromoterWise Sequence Analysis http://www.ebi.ac.uk/Tools/Wise2/ 

promoterwise.html  

11 SAPS Sequence Analysis http://www.ebi.ac.uk/Tools/saps/  

12 T-coffee Sequence Analysis http://www.ebi.ac.uk/Tools/t-coffee/  

13 Transeq Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/ 

transeq/  

14 COBALT Sequence Analysis http://www.ncbi.nlm.nih.gov/tools/ 

cobalt/ 

15 Genome 

Workbench 

Sequence Analysis http://www.ncbi.nlm.nih.gov/projects/ 

gbench/  

16 ORF Finder Sequence Analysis http://www.ncbi.nlm.nih.gov/gorf/gorf/ 

html 

17 Primer - BLAST Sequence Analysis http://www.ncbi.nlm.nih.gov/tools/ 

primer-blast  

18 ProSplign Sequence Analysis http://www.ncbi.nlm.nih.gov/sutils/static/

prosplin/prosplign.html 

19 Splign Sequence Analysis http://www.ncbi.nlm.nih.gov/sutils/ 

splign/ 

20 VecScreen Sequence Analysis http://www.ncbi.nlm.nih.gov/VecScreen/

VecScreen.html  

21 Sequence Analysis Sequence analysis http://www.informagen.com/SA/ 

22 SeWeR Sequence analysis http://www.bioinformatics.org/sewer/ 

23 Motif Search Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/ 

motifsearch2/ index.pl  

 

 

http://www.ebi.ac.uk/Tools/mafft/
http://www.ebi.ac.uk/Tools/muscle/
http://www.ebi.ac.uk/Tools/emboss/%20pepinfo/
http://www.ebi.ac.uk/Tools/emboss/%20pepinfo/
http://www.ebi.ac.uk/Tools/Wise2/%20promoterwise.html
http://www.ebi.ac.uk/Tools/Wise2/%20promoterwise.html
http://www.ebi.ac.uk/Tools/saps/
http://www.ebi.ac.uk/Tools/t-coffee/
http://www.ebi.ac.uk/Tools/emboss/%20transeq/
http://www.ebi.ac.uk/Tools/emboss/%20transeq/
http://www.ncbi.nlm.nih.gov/tools/%20cobalt/
http://www.ncbi.nlm.nih.gov/tools/%20cobalt/
http://www.ncbi.nlm.nih.gov/projects/%20gbench/
http://www.ncbi.nlm.nih.gov/projects/%20gbench/
http://www.ncbi.nlm.nih.gov/gorf/gorf/%20html
http://www.ncbi.nlm.nih.gov/gorf/gorf/%20html
http://www.ncbi.nlm.nih.gov/tools/%20primer-blast
http://www.ncbi.nlm.nih.gov/tools/%20primer-blast
http://www.ncbi.nlm.nih.gov/sutils/static/prosplin/prosplign.html
http://www.ncbi.nlm.nih.gov/sutils/static/prosplin/prosplign.html
http://www.ncbi.nlm.nih.gov/sutils/%20splign/
http://www.ncbi.nlm.nih.gov/sutils/%20splign/
http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html
http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html
http://www.informagen.com/SA/
http://www.bioinformatics.org/sewer/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20motifsearch2/%20index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20motifsearch2/%20index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20motifsearch2/%20index.pl
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24 DNA Translator Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/JDT/ 

25 Non coding RNA 

Gene Finder 

Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/ 

ncRnaGeneFinder/index.pl  

26 TransTerm Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/ 

transterm/  

27 QRNA Sequence analysis http://nbc11.biologie.unikl.de/framed/ 

left/menu/auto/right/qrna/  

28 Clustalformatter 5 Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/ 

ClustalFormatter/  

29 BioEdit Sequence Alignment 

Editor 

http://www.mbio.ncsu.edu/BioEdit/ 

bioedit.html 

30 FASTA Sequence Similarity 

Search 

http://www.ebi.ac.uk/Tools/fasta/  

31 HMMER Homology of protein http://hmmer.janelia.org/  

32 JAligner Pairwise seq. 

alignment 

http://jaligner.sourceforge.net/  

33 JSTRING Java Search for 

Tandem Repeats IN 

Genomes 

http://bioinf.dms.med.uniroma1.it/ 

JSTRING/  

34 NCBI BLAST Aligning Sequences http://blast.ncbi.nlm.nih.gov/Blast.cgi  

35 Gene Runner/ Motif 

Runner 

Motif based 

sequence analysis 

http://www.generunner.net/  

36 GoCore Protein Seq. 

Alignment & 

Analysis 

http://www.helsinki.fi/project/ritvos/ 

GoCore/  

37 MAFFT Multiple alignment http://mafft.cbrc.jp/alignment/server/ 

index.html 

38 MAUVE Multiple alignment http://gel.ahabs.wisc.edu/mauve/  

39 MEME Suite Motif based 

sequence analysis 

http://meme.nbcr.net/    

http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/JDT/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/JDT/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20ncRnaGeneFinder/index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20ncRnaGeneFinder/index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20ncRnaGeneFinder/index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20transterm/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20transterm/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20transterm/
http://nbc11.biologie.unikl.de/framed/%20left/menu/auto/right/qrna/
http://nbc11.biologie.unikl.de/framed/%20left/menu/auto/right/qrna/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/ClustalFormatter/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/ClustalFormatter/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/ClustalFormatter/
http://www.mbio.ncsu.edu/BioEdit/%20bioedit.html
http://www.mbio.ncsu.edu/BioEdit/%20bioedit.html
http://www.ebi.ac.uk/Tools/fasta/
http://hmmer.janelia.org/
http://jaligner.sourceforge.net/
http://bioinf.dms.med.uniroma1.it/%20JSTRING/
http://bioinf.dms.med.uniroma1.it/%20JSTRING/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.generunner.net/
http://www.helsinki.fi/project/ritvos/%20GoCore/
http://www.helsinki.fi/project/ritvos/%20GoCore/
http://mafft.cbrc.jp/alignment/server/%20index.html
http://mafft.cbrc.jp/alignment/server/%20index.html
http://gel.ahabs.wisc.edu/mauve/
http://meme.nbcr.net/
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40 CORAL (CDTree) Aligning Core 

Conserved Regions 

http://www.ncbi.nlm.nih.gov/Structure/ 

cdtree/cdtree.shtml  

41 BlastAlign Align N Seq. with 

large INDELs 

http://www.bioafrica.net/blast/BlastAlign

.html 

42 ARB software Sequence DB 

Handling and Data 

Analysis 

http://www.arb-home.de/  

43 Automated Codon 

Usage Analysis 

Software - ACUA 

Nucleotide Analysis http://www.bioinsilico.com/acua  

44 AnnHyb Nucleotide Analysis http://www.bioinformatics.org/annhyb/  

45 SOAP2 Short read 

Alignment 

http://soap.genomics.org.cn/  

46 ACT (Artemis 

Comparison Tool) 

DNA Sequence 

Comparison 

http://www.sanger.ac.uk/resources/ 

software/act/  

47 WU-BLAST Multiple Sequence 

Alignment 

www.ebi.ac.uk/Tools/blast2/  

48 CLUSTALW2 multiple sequence 

alignment 

http://www.ebi.ac.uk/Tools/clustalw2/  
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Introduction 

 

The advent of Next-Generation Sequencing (NGS) technology has transformed genomic 

studies. One important application of NGS technology is the study of the transcriptome, 

which is defined as the complete collection of all the RNA molecules in a cell. Various types 

of RNA that have been classified so far are shown in Fig. 1. All of these molecules are called 

transcripts since they are produced 

by process of transcription.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Different types of RNA 

(Image source: http://scienceblogs.com/digitalbio/2011/01/08/next-gene-sequencing) 

 

 

Understanding the transcriptome is essential for interpreting the functional elements of the 

genome and revealing the molecular constituents of cells and tissues, and also for 

understanding development and disease [1]. The main purpose of transcriptomics are: to 

catalogue all species of transcript, including mRNAs, non-coding RNAs and small RNAs; to 

determine the transcriptional structure of genes, in terms of their start sites, 5′ and 3′ ends, 

splicing patterns and other post-transcriptional modifications; and to quantify the changing 

expression levels of each transcript during development and under different conditions. 

 

The study of transcriptome is carried out through sequencing of RNAs. RNA sequencing 

(RNA-Seq) is a powerful method for discovering, profiling, and quantifying RNA transcripts 

[2]. RNA-Seq uses NGS datasets to obtain sequence reads from millions of individual RNAs. 

The RNA-Seq analysis is performed in several steps: First, all genes are extracted from the 

reference genome (using annotations of type gene). Other annotations on the gene sequences 

are preserved (e.g. CDS information about coding sequences etc). Next, all annotated 
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transcripts (using annotations of type mRNA) are extracted [3]. If there are several annotated 

splice variants, they are all extracted. An example is shown in below Fig. 2(a). 

 

 

Fig. 2(a): A simple gene with three exons and two splice variants. 

The given example is a simple gene with three exons and two splice variants. The transcripts 

are extracted as shown in Fig. 2(b). 

 

Fig. 2(b): All the exon-exon junctions are joined in the extracted transcript. 

Next, the reads are mapped against all the transcripts plus the entire gene [see Fig. 2(c)]. 

 

Fig. 2(c): The reference for mapping: all the exon-exon junctions and the gene. 

(Image source: CLC Genomic workbench tutorials) 

From this mapping, the reads are categorized and assigned to the genes and expression values 

for each gene and each transcript are calculated and putative exons are then identified.  

 

RNA Sequencing Experiment 

In a standard RNA-seq experiment, a sample of RNA is converted to a library of 

complementary DNA fragments and then sequenced on a high-throughput sequencing 

platform, such as Illumina's Genome Analyzer, SOLiD or Roche 454 [4]. Millions of short 

sequences, or reads, are obtained from this sequencing and then mapped to a reference 

genome (Fig. 3). The count of reads mapped to a given gene measures the expression level of 

this gene. The unmapped reads are usually discarded and mapped reads for each sample are 

assembled into gene-level, exon-level or transcript-level expression summaries, depending on 

the objectives of the experiment. The count of reads mapped to a given gene/exon/transcript 

measures the expression level for this region of the genome or transcriptome.  

One of the primary goals for most RNA-seq experiments is to compare the gene expression 

levels across various treatments. A simple and common RNA-seq study involves two 
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treatments in a randomized complete design, for example, treated versus untreated cells, two 

different tissues from an organism, plants, etc. In most of the studies, researchers are 

particularly interested in detecting gene with differential expressions (DE). A gene is 

declared differentially expressed if an observed difference or change in read counts between 

two experimental conditions is statistically significant, i.e. if the difference is greater than 

what would be expected just due to random variation [5]. Detecting DE genes can also be an 

important pre-step for subsequent studies, such as clustering gene expression profiles or 

testing gene set enrichments. 

 

Fig. 3: General RNA-seq experiment.  mRNA is converted to cDNA, and fragments from that library are 

used to generate short sequence reads. Those reads are assembled into contigs which may be mapped to 

reference sequences (Wang et al., 2009). 

 

Analysing RNA-Seq data 

 

RNA-seq experiments must be analyzed with robust, efficient and statistically correct 

algorithms. Fortunately, the bioinformatics community has been striving hard at work for 

incorporating mathematics, statistics and computer science for RNA-seq and building these 

ideas into software tools. RNA-seq analysis tools generally fall into three categories: (i) those 

for read alignment; (ii) those for transcript assembly or genome annotation; and (iii) those for 

transcript and gene quantification. Some of the open source softwares available for RNA-seq 

analysis are as follows:   

 

• Data preprocessing 
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• Fastx toolkit 

• Samtools 

• Short reads aligners 

• Bowtie, TOPHAT, Stampy, BWA, Novoalign, etc  

• Expression studies 

• Cufflinks package 

• R packages (DESeq, edgeR, more…) 

• Visualisation 

• CummeRbund, IGV, Bedtools, UCSC Genome Browser, etc. 

 

Besides there are commercially data analysis pipelines like GenomeQuest, CLCBio etc 

available for researchers to use. The most commonly used pipeline is to identify protein 

coding genes by aligning RNA-Seq data to annotate data from sources like RefSeq.  After 

generating the alignments, the number of aligning sequences is counted for each 

position.  Since each alignment represents a transcript, the alignments allow to count the 

number of RNA molecules produced from every gene. 

 

Using NGS technology, RNA-Seq enables to count the number of reads that align to one of 

thousands of different cDNAs, producing results similar to those of gene expression 

microarrays [6]. Sequences generated from an RNA-Seq experiment are usually mapped to 

libraries of known exons in known transcripts. RNA-Seq can be used for discovery 

applications such as identifying alternative splicing events, allele-specific expression, and 

rare and novel transcripts [7]. The sequencing output files (compressed FASTQ files) are the 

input for secondary analysis. Reads are aligned to an annotated reference genome, and those 

aligning to exons, genes and splice junctions are counted. The final steps are data 

visualisation 

and 

interpretation, consisting of calculating gene- and transcript-expression and reporting 

differential expression. A general Bioinformatics workflow to map transcripts from RNA-seq 

data is shown in Fig. 4.  
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Fig. 4: RNA-seq workflow (Adapted from Advancing RNA-Seq analysis Brian J. Haas and Michael C. 

Zody Nature Biotechnology 28, 421-423 (2010) 

 

 

RPKM (Reads per KB per million reads) 

RNA-Seq provides quantitative approximations of the abundance of target transcripts in the 

form of counts. However, these counts must be normalized to remove technical biases 

inherent in the preparation steps for RNA-Seq, in particular the length of the RNA species 

and the sequencing depth of a sample. The most commonly used is RPKM (Reads Per 

Kilobase of exon model per Million mapped reads). The RPKM measure of read density 

reflects the molar concentration of a transcript in the starting sample by normalizing for RNA 

length and for the total read number in the measurement [8]. RPKM is mathematically 

represented as: 

RPKM = 
𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑜𝑛 𝑟𝑒𝑎𝑑𝑠

𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠) X 𝑒𝑥𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ (𝐾𝐵)
 

Total exon reads 

This is the number of reads that have been mapped to a region in which an exon is annotated 

for the gene or across the boundaries of two exons or an intron and an exon for an annotated 

transcript of the gene. For eukaryotes, exons and their internal relationships are defined by 

annotations of type mRNA. 

Exon length 

This is calculated as the sum of the lengths of all exons annotated for the gene. Each exon is 

included only once in this sum, even if it is present in more annotated transcripts for the gene. 

Partly overlapping exons will count with their full length, even though they share the same 

region. 

Mapped reads 
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The total gene reads for a gene is the total number of reads that after mapping have been 

mapped to the region of the gene. A gene's region is that comprised of the flanking regions, 

the exons, the introns and across exon-exon boundaries of all transcripts annotated for the 

gene. Thus, the sum of the total gene reads numbers is the number of mapped reads for the 

sample.  

Applications of RNA-seq 

This technique can be used to: 

 Measure gene expression 

 Transcriptome assembly, gene discovery and annotation 

 Detect differential transcript abundances between tissues, developmental stages, 

genetic backgrounds, and environmental conditions 

 Characterize alternative splicing, alternative polyadenylation, and alternative 

transcription. 

 

Future Directions 

Although RNA-Seq is still in the infancy stages of use, it has clear advantages over 

previously developed transcriptomic methods. Compared with microarray, which has been 

the dominant approach of studying gene expression in the last two decades, RNA-seq 

technology has a wider measurable range of expression levels, less noise, higher throughput, 

and more information to detect allele-specific expression, novel promoters, and isoforms [9]. 

For these reasons, RNA-seq is gradually replacing the array-based approach as the major 

platform in gene expression studies. The next big challenge for RNA-Seq is to target more 

complex transcriptomes to identify and track the expression changes of rare RNA isoforms 

from all genes. Technologies that will advance achievement of this goal are pair-end 

sequencing, strand-specific sequencing and the use of longer reads to increase coverage and 

depth. As the cost of sequencing continues to fall, RNA-Seq is expected to replace 

microarrays for many applications that involve determining the structure and dynamics of the 

transcriptome. 
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ASHOKA: The Supercomputing Hub 
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Introduction 

First HPC systems were vector-based systems (e.g. Cray)named ‘supercomputers’ because 

they were an order of magnitude more powerful than commercial systems. The 

‘supercomputer’, a large systems are just scaled up versions of smaller systems. High 

performance computingcan mean high flop countper processor and totalled over many 

processors working on the same or related problems. This can have faster turnaround time, 

more powerful system, scheduled to first available system(s) and using multiple systems 

simultaneously. The HPC is any computational technique that solves a large problem faster 

than possible using single, commodity systems, Custom-designed, high-performance 

processors, Parallel computing, Distributed computing and Grid computing. 

Parallel computing is a single system with many processors working on the common task. 

The Distributed computing is configured as many systems loosely coupled by a scheduler to 

work on related problems and Grid Computing is defined as many systems tightly coupled by 

software and networks to work together on single problems or on related problems. 

Parallel computer is a computer that contains multiple processors where each processor 

works on its section of the problem and allowed to exchange information with other 

processors. 

Two big advantages of parallel computers are performance and memory. Parallel computers 

enable us to solve problems that benefit from or require, fast solution, require large amounts 

of memory and both. 

As per the Moore’s Law ‘predicts’ that single processor performance doubles every 18 

months, eventually physical limits on manufacturing technology will be reached as in figure 

1. 

 

Fig. 1: Moore’s Law towards performance of the system 

There are two types of parallel computers by their memory model namely shared memory 

and distributed memory.All processors have access to a pool of shared memory (Figure 2-A) 

while each processor has it’s own local memory indistributed memory (Figure 2-B).  



357 

 

 

 

Fig. 2: Shared Memory and distributed memory system 

Shared memory have two types of architecture i.e., Uniform memory access (UMA) and 

Non-uniform memory access (NUMA). Each processor has uniform access to memory in 

UMA and also called as symmetric multiprocessors, or SMPs (Figure 3-A).  Time for 

memory access depends on location of data in NUMA as local access is faster than non-local 

access but it is easy to scale up than SMPs (Figure 3-B). 

 

 

Fig. 3: Shared Memory with UMA and NUMA 

The distributed memory is two types namely Massively Parallel Processor (MPP) and cluster. 

MPP is tightly integrated, single system image and cluster isan individual computers 

connected by specialized softwareand connected using interconnect network. Distributed 

memory is shown in figure 4. 

 

Fig. 4: Distributed Memory 

Both types of memory systems haveprocessors, memory and network/interconnect.  

 

 

(A) (B) 

(B) (A) 
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Terminology 

Clock period (cp): The minimum time interval between successive actions in the processor. It 

is measured in nanoseconds (~1-5 for fastest processors) which is inverse of frequency 

(MHz). 

Instruction: An action executed by a processor, such as a mathematical operation or a 

memory operation. 

Register: A small and extremely fast location for storing data or instructions in the processor. 

Functional Unit (FU): A hardware element that performs an operation on an operand or pair 

of operations. Common FUs are ADD, MULT, INV, SQRT, etc. 

Pipeline: A Technique enables multiple instructions to be overlapped during execution. 

Superscalar: Multiple instructions are possible per clock period. 

Flops: Floating point operations per second. 

Cache: A Fast memoryin the processor which keep instructions and data close to functional 

units so processor can execute more instructions more rapidly.  

SRAM: Static Random Access Memory (RAM). Very fast (~10 nanoseconds), made using 

the same kind of circuitry as the processors, so speed is comparable. 

DRAM: Dynamic RAM. Longer access times (~100 nanoseconds), but hold more bits and 

are much less expensive (10x cheaper). 

Memory hierarchy: The hierarchy of memory in a parallel system, from registers to cache to 

local memory to remote memory.  

Networks Latency: How long does it take to start sending a "message"? Measured in 

microseconds. 

Networks Processors: How long does it take to output results of some operations, such as 

floating point add, divide etc., which are pipelined?) 

Networks Bandwidth: What data rate can be sustained once the message is started? Measured 

in Mbytes/sec or Gbytes/sec 

Types of Clusters/Processors 

Symmetric Multiprocessors (SMPs)connect processors to global shared memory using either 

bus or crossbar. It provides simple programming model, but has problems with buses can 

become saturated and crossbar size must increase with number of processors. Problem grows 

with number of processors, limiting maximum size of SMPs. Programming models are easier 

since message passing is not necessary. The techniques are auto-parallelization via compiler 

options, loop-level parallelism via compiler directives, OpenMP, and pthreads. 

In MPP, each processor has its own memory and is not shared globally but the processors 

adds another layer to memory hierarchy (remote memory). The processor/memory nodes are 

connected by interconnect network using many possible topologies. The processors must pass 

data via messages so the communication overhead can be minimized. Many vendors have 

custom interconnects that provide high performance for their MPP system such as Gigabit 

Ethernet, Fast Ethernet, etc. 

Clusters are similar to MPPs with processors and memory. The processor performance must 

be maximized and memory hierarchy needs remote memory as no shared memory for 

message passing to avoid the communication overhead. 
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Clusters are different from MPPs as commodity processors including interconnect and OS 

with multiple independent systems and separate I/O systems. The advantages of clusters are 

inexpensive, fastest processors first, potential for true parallel I/O and high availability while 

the disadvantages are less mature software (programming and system), more difficult to 

manage (changing slowly), lower performance interconnects (not as scalable to large 

number).  

Distributed Memory Programmingprovides message passing using MPI, MPI-2 and 

active/one-sided messages. 

There are two types of parallelism i.e., data and task. Each processor performs the same task 

on different sets or sub-regions of data in data parallelism. Each processor performs a 

different task in task parallelism. Most parallel applications fall somewhere on the continuum 

between these two extremes.  

Example of data parallelism in a bottling plant, there are several ‘processors’, or bottle 

cappers, applying bottle caps concurrently on rows of bottles. 

Example of task parallelism in a restaurant kitchen, there are several chefs, or ‘processors’, 

working simultaneously on different parts of different meals. A good restaurant kitchen also 

demonstrates load balancing and synchronization--more on those topics later. 

A common form of parallelism used in developing applications was Master-Worker 

parallelism where a single processor is responsible for distributing data and collecting results 

(task parallelism) and all other processors perform same task on their portion of data (data 

parallelism). 

According to Flynn’s Taxonomy, the computing systems are classified into the following 

broad categories: 

 SISD: Single Instruction and Single Data 

 SIMD: Single Instruction and Multiple Data 

 MISD: Multiple Instruction and Single Data 

 MIMD: Multiple Instruction and Multiple Data 

The purpose of High-performance computing (HPC) platform is to provide the access to the 

compute resources remotely. The user can login remotely and submit compute their jobs 

either from the command line or through the GUI based interface provided to them. The 

computing systems are connected together through a high bandwidth data transfer and made 

available to the users in a queue-based job submission system. There are many open-source 

and commercial software packages installed. 

At ICAR-IASRI, New Delhi 

The National Agricultural Bioinformatics Grid in ICAR consists of an advanced HPC 

infrastructure at ICAR-IASRI, New Delhi and moderate HPC facilities at the domain centres 

for undertaking research in the field of agricultural bioinformatics.  Clusters are collections of 

computers that are connected together. The special sets of software are used to configure 

HPC environment. This set up has been named as Advanced Supercomputing Hub for Omics 

Knowledge in Agriculture (ASHOKA). The importance of HPC is rapidly growing because 

more and more scientific and technical problems are being studied on the huge data sets 

which require very high computational power as well. HPC offers environment for biologists, 

scientists, analysts, engineers and students to utilize the computing resources in making vital 

decisions, to speed up research and development, by reducing the execution time. 
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The following HPC infrastructure are set up under NAIP project NABG which are as follows 

in the form of clusters, network and storage. 

Types of Clusters 

a. 256 Nodes Linux Based Cluster with two masters 

b. 16 Nodes Windows Based Cluster with one master 

c. 16 Nodes GPGPU Based Linux Cluster with one master 

d. 16 Nodes Linux based SMP system 

e. 16 Nodes Linux Based Cluster at each of the five domains with one master 

Types of Networks 

a. High bandwidth network with low latency (Q-logic QDR InfiniBand switch) 

b. Gigabit network for cluster administration and management  

c. ILO3 Management Network  

Types of Storage 

a. Parallel File System (PFS) for computational purpose 

b. Network Attached Storage (NAS) for user Home Directory 

c. Archival Storage for back up. 

The hardware configuration of the Head/Master node is as follows 

Server Name   : HP ProLiant DL380-G7 Server 

Type of Processor  : Intel Xeon X5675 3.07Ghz 

Number of Processors  : 2 

Core per Processor  : 6 

Total memory (RAM)  : 96GB 

Memory per Core  : 8GB 

Hard Disk   : 6*600GB SAS 

OS    : RHEL 6.2 (Linux) 

The hardware configuration of each compute node is as follows 

Server Name   : HP ProLiant SL390-G7 Server 

Type of Processor  : Intel Xeon X5675 3.07 Ghz 

Number of Processors  : 2 

Core per Processor  : 6 

Total memory (RAM)  : 96G 

Memory per Core  : 8GB 

Hard Disk   : 300GB SAS 

OS    : RHEL 6.2 (Linux) 

Measuring Performance 

The memory is measured in terms of bytes i.e., Kilo (210 or 103), Mega (220 or 106) ,Giga (230 

or 109) – Tera (240 or 1012), Peta (250 or 1015) ,Exa (260 or 1018) 

The computational performance is measured in Flop/s (Flop/s = floating point operations per 

second) i.e., Mega Flops, Tera Flops, Peta Flops etc.  

One can calculate peak performance of the cluster using standard formula i.e. Cluster 

Performance = (Number of nodes) * (number of CPUs per node) * (number of cores per 

CPU) * (CPU speed in GHz) * (CPU instruction per cycle)  

The grid has been established using the following network diagram as in figure 5. 
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Fig. 5: Network diagram of NABG Grid 

The hardware and software specifications of the SMP is as follows 

Server Name   : HP ProLiant DL 980 G7 

Type of Processor  : Intel Xeon E7- 2830 2.13GHz 

Number of Processors  : 8 

Core per Processor  : 8 

Total memory (RAM)  : 1.5 TB 

Hard Disk   : 396 GB 

OS    : RHEL 6.2 

Aswitched fabric computer network communications link, is being used in HPC and 

enterprise data centre with InfiniBand interconnect switch. The InfiniBand architecture 

specification defines a connection between processor nodes and high performance I/O nodes 

such as storage devices as in figure 6. 

 

Fig. 6: InfiniBand interconnect switch 
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Main purpose of Ethernet network in the cluster is to provide services like cluster 

management, cluster monitoring, compute node deployment and many other things in figure 

7.  

 

Fig.7: InfiniBand interconnect switch 

Different types of file system are configured for storing user’s data, running parallel jobs and 

archiving the important data. There are three types of storage (i) Network Attached Storage 

(NAS), (ii) Parallel File System (PFS) and (iii) Archival Storage. 

The following challenges in bioinformatics are exists which essentially require the grid based 

architecture. 

 Protein folding & structure prediction 

 Homology search 

 Multiple alignment 

 Genomic sequence analysis 

 Gene finding 

 Gene expression data analysis 

 Drug discovery 

 Phylogenetic inference 

 Computational genomics, proteomics 

 Computational evolutionary biology 



Genome Wide Association Study and Genomic Selection 

Neeraj Budhlakoti, D C Mishra and Anil Rai  

ICAR-IASRI, Library Avenue, New Delhi – 110 012 

 

Genome-wide approaches i.e. Genome-Wide Association Study (GWAS) and Genomic Selection 

(GS) seems to offer promising strategies for genetic improvement of complex traits and to shorten 

the generation interval (Iwata et al., 2011; Heslot et al., 2015; Grattapaglia et al., 2018). GWAS 

provides potential capacity to identify the genes that are causally associated with phenotypes of 

underlying traits, especially traits which are governed by one or a few major genes. However, it 

has been not very promising in identifying such genes in species where traits are influenced by 

several minor quantitative trait loci (QTLs) (Kainer et al., 2015; Bhat et al., 2016). GS is 

fundamentally different from GWAS, as it involves use a full-genome information, regardless of 

its significance, in relation to a specific trait, rather than a few markers as in GWAS. In a breeding 

programs, GWAS and GS could substantially reduce the length of breeding cycles and increase 

genetic gain per unit time through early selection of superior progeny or genotypes especially in 

case of animals. Therefore, the entire cycles of progeny field testing can potentially be skipped in 

the selection process 

The analysis of QTL effects for minor QTLs using linkage mapping and genome-wide association 

mapping is often biased. Therefore, scientific groups have been trying for years to solve the issue 

of how to tackle these complex traits and outcomes in terms of genomic selection (GS). Genomic 

selection is a breeding approach exploiting high-density DNA markers distributed across the 

genome to facilitate the rapid selection of the best candidates and offers opportunities to enhance 

genetic gains (Meuwissen et al., 2001). GS uses different prediction models by combining the 

genotyping and phenotyping datasets of the training population (TP), which is subsequently used 

to determine genomic-estimated breeding values (GEBVs) for every genotype of breeding 

population (BP) from their genotyping scores. These GEBVs permit breeders to envisage superior 

genotypes that would be suitable either as a parent in hybridization or for next-generation 

advancement of the breeding program. The basic principle is that the information derived from 

several markers widely distributed over the genome, having the potential to reveal genetic 
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variations in the genome, can evaluate breeding values without prior information of where the 

selected genes are located (Crossa et al., 2017). 

Genome Wide Association Study 

Association mapping  is a method of mapping quantitative trait loci (QTLs) that exploits linkage 

disequilibrium to link phenotypes (observable characteristics) to genotypes (the genetic 

constitution of organisms), discovering genetic associations. Association mapping is based on the 

idea that traits that have entered in a population only recently will still be linked to the 

surrounding genetic sequence of the original evolutionary ancestor. It is generally performed by 

scanning the entire genome for looking into significant associations between a panel of SNPs and 

a particular phenotype i.e. linking SNP to a trait. These associations must be then independently 

validated to check that either they are contributing to the trait of interest directly, or are in linkage 

disequilibrium with a quantitative trait locus (QTL) that is related to our trait of interest. 

The mapping approaches are basically of two Categories namely family mapping and population 

mapping. A family mapping is constructed by crossing generally two homozygous lines are used 

for linkage mapping of markers and genes/QTLs. That means it deals with closely related families 

derived from common parents using a specific mating scheme (Myles et al. 2009). In population 

mapping, also sometime  referred as association mapping (AM), the mapping population consists 

of a diverse set of individuals/lines drawn from natural populations, e.g., random mating 

populations of wild species; wild relatives of crops like wheat, barley, maize, rice, etc.; as well as 

breeding populations. Basically there are two approaches for association mapping namely genome-

wide and candidate gene approaches. In genome-wide association studies (GWAS), the markers 

used for genotyping are distributed, preferably evenly and densely, over the whole genome. In this 

approach, all the loci involved in the control of all the traits showing variation in the sample can 

be evaluated in one go. In later one candidate gene based approach where problem is restricted to 

candidate genes/QTLs for the trait(s) of interest. A candidate gene is a gene that is expected, on 

the basis of past knowledge and experience, to be involved in the control of a trait of interest. 

In recent years, genome-wide association studies has been used as successful strategy to identify 

genetic contributors to complex traits. Their success has meant that genome wide association 

studies (GWAS) are fast becoming the default study design for discovery of new genetic variants 

https://en.wikipedia.org/wiki/Quantitative_trait_locus
https://en.wikipedia.org/wiki/Phenotype
https://en.wikipedia.org/wiki/Genotype
https://en.wikipedia.org/wiki/Genetic_association
https://en.wikipedia.org/wiki/Genetic_sequence
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that influence a clinical trait or phenotype. A genome-wide association study is an approach which 

involves in rapidly scanning markers across the complete sets of DNA, or genomes, of many 

people to find genetic variations associated with a particular disease such as cancer. Once new 

genetic associations are identified, researchers can use the information to develop better strategies 

to detect, treat and prevent the disease. Such studies are particularly useful in finding genetic 

variations that contribute to common, complex diseases, such as asthma, cancer, diabetes, heart 

disease and mental illnesses 

Definition: A genome-wide association study is defined as any study of genetic variation across 

the entire human genome that is designed to identify genetic associations with observable traits 

(such as blood pressure or weight), or the presence or absence of a disease or condition.

 

Schematic diagram of GWAS procedure 

 

Selected Key Considerations: 

Ascertainment and recruitment 

 Ethical issues 

 Genetic architecture of trait/s of interest 

 Study design 
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 Is use of common control data appropriate? 

 Power (sample size) 

 

Phenotyping and collection of genetic material 

 Careful and consistent phenotypic characterization 

 Sample tracking and storage 

 Contingency planning 

 

Genotyping 

 Choice of genotyping platform: commonly 

 Illumina or Affymetrix 

 Choice of genotyping product (SNP density) 

 DNA quantity and preparation 

 

Data cleaning 

 Sample genotyping success rate 

 SNP genotyping success rate 

 Hardy Weinberg proportions 

 Heterozygosity 

 Minor allele frequency 

 

In silico genotyping (imputation of untyped SNPs) 

 Availability of existing LD data for race/ethnic group 

 

Tests of association 

 Choice of appropriate statistical tests 

 Admixture adjustment 

 Multivariate approaches 

 Haplotype analyses 

 Adjustment for multiple tests 
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Replication 

 Establishing new collaborations or consortia 

 Comparability of study designs 

 Imputation of HapMap SNPs for GWAS conducted on 

 different genotyping platforms 

 Meta-analyses 

Populations Used for Association Mapping in Plants 

The population used for AM is one of the key factors which decides success of AM. The population 

may be based on a natural/breeding population or it may be a family-based population. AM can 

also be performed in biparental and multiparent populations, but single biparental populations are 

generally not preferred for AM. Generally, doubled haploid, F3, etc., families derived from several 

biparental crosses generated by mating a group of inbreds in diallel scheme or in a random manner 

are favored for AM. In case of multiparent populations, two populations, namely, multiparent 

advanced generation intercrosses (MAGIC) and nested association mapping (NAM) populations, 

have become very popular because they allow both AM and linkage mapping and can also be 

further utilized in variety development Programme. 

Need of GWAS 

 Current understanding of disease etiology is limited  

o Therefore, candidate genes or pathways are insufficient 

 Current understanding of functional variants is limited 

o Therefore, the focusing on non-synonymous changes is not sufficient 

 Results from linkage studies are often inconsistent and broad 

o Therefore, the utility of identified linkage regions is limited 

 GWA studies offer an effective and objective approach 

o Better chance to identify disease associated variants 

o Improve understanding of disease etiology 

o Improve ability to test gene-gene interaction and predict disease risk 

Issues in GWAS 

 Population stratification 
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 Multiple Testing: False Positives 

 Gene-Environmental Interaction 

 High Costs 

Statistical requirements for a successful GWAS  

 Sufficient sample sizes  

 LD coverage  

 Genotype quality  

 Design of genome-wide association studies   

 Handling of the multiple testing problem  

Table: Statistical software packages generally used for association mapping in 

plants (Zhu et al., 2008; Gupta et al., 2014) 

 

Software 

 

Brief description 

 

Free packages  

TASSEL LD statistic calculation and graphic visualization; sequence analysis; 

association mapping using logistic regression, GLM, MLM, and some 

other models; structure and kinship analyses; analysis of 

insertion/deletion, diversity estimation, etc. 

(http://sourceforge.net/projects/tassel; http://www.maizegenetics.net) 

 

EMMAX Fast computation, for large AM studies, corrects for population 

structure and kinship (http://genetics.cs.ucla.edu/emmax/) 

 

GenAMap Implements structured association mapping, employs various 

algorithms, good graphical presentation 

(http://sailing.cs.cmu.edu/genamap/) 

 

GenABEL GWAS for both quantitative and qualitative traits 

(http://www.genabel.org/packages/GenABEL) 

 

FaST-LMM AM based on large samples of up to 120,000 individuals 

(http://fastlmm.codeplex.com/) 

 

GAPIT Implements CMLM, R-based, fast computation 

(http://www.maizegenetics.net/gapit) 

 

http://sourceforge.net/projects/tassel
http://fastlmm.codeplex.com/
http://www.maizegenetics.net/gapit
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STRUCTURE  Population structure analysis; generates Q matrix; computation 

intensive (http://pritch.bsd.uchicago.edu/structure.html)  

                                                                                                                                                    

SPAGeD Kinship analysis; generates K matrix 

(http://www.ulb.ac.be/sciences/ecoevol/spagedi.html) 

 

EINGENSTRAT Association analysis; PCA to generate P matrix to be used in the place 

of Q matrix (http://genepath.med/harvard.edu/~reich/software.html) 

 

R Generic package; convenient for simulation work; useful for 

researchers with good statistics and computer programming 

background (http://www.r-project.org/) 

 

GenStat Implements GLM and MLM, corrects for population structure 

(http://www.vsni.co.uk/software/genstat) 

 

JMP Genomics Computation of population structure and kinship coefficient (marker-

based) (http://www.jmp.com/software/genomics/) 

 

SAS Standard statistical package used for data analysis and methodology 

work (http://www.sas.com) 

 

 

Recent successes using GWAS approaches have generated considerable enthusiasm about the 

utility of this approach to identify variants that contribute to variation and disease susceptibility. 

In a relatively short span of time, significant advances have already been made in genotyping 

efficiency and cost, imputation approaches, and analytical methods. In future, further 

understanding of the roles of epistasis (gene–gene interactions), gene–environment interactions, 

copy number variants, and epigenetic phenomena are anticipated to provide additional insights 

into our understanding of complex traits. 

Genomic Selection 

 

Traditional genetic improvement of livestock, using information on phenotypes and pedigrees to 

predict breeding values, has been found very successful. However, breeding values should be able 

to predict more accurately by using information on variation in DNA sequence between animals 

and plants. Research towards marker- assisted selection (MAS) has been extensive but 

implementation has been limited and increases in genetic gain have been small. Genomic selection 

has been proposed to address these deficiencies. Genomic selection is a form of marker-assisted 

http://www.ulb.ac.be/sciences/ecoevol/spagedi.html
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selection in which genetic markers covering the whole genome are used so that all quantitative 

trait loci (QTL) are in linkage disequilibrium (LD) with at least one marker. Genomic selection 

predicts the breeding values of lines in a population by analyzing their phenotypes and high-

density marker scores. Various methods have been developed for predicting phenotype. Methods 

are based on analysis of data consist of genotype and phenotype information. 

As it is known earlier selection based on phenotypic data has been successfully used in past. As 

abundance of DNA and marker data, trend slightly shifted to marker assisted selection. MAS is an 

indirect selection process where a trait of interest is selected, not based on the trait itself, but on a 

marker linked to it. MAS has been shown to be efficient and effective for traits that are associated 

with one or a few major genes with large effect but does not perform as well when it is used for 

selection of polygenic traits (Bernardo 2008).As most economic traits are influenced by many 

genes, tracking a small number of these through DNA markers will only explain a small proportion 

of the genetic variance. In addition, individual genes are likely to have small effects and so a large 

amount of data is needed to accurately estimate their effects. To overcome these difficulties, 

Meuwissen et al. (2001) proposed a variant of MAS that they called genomic selection. The key 

features of this method are that markers covering the whole genome are used so that potentially all 

the genetic variance is explained by the markers and the markers are assumed to be in LD with the 

QTL so that the number of effects per QTL to be estimated is small.  

The major limitation to the implementation of genomic selection has been the large number of 

markers required and the cost of genotyping these markers are very high. Recently both these 

limitations have been overcome in most livestock and plant species following the sequencing of 

the livestock genomes, the subsequent availability of hundreds of thousands of single nucleotide 

polymorphisms (SNP), and dramatic improvements in development of SNP genotyping 

technology. Various regression methods have been developed for predicting phenotype. Methods 

are based on analysis of data consist of genotype and phenotype information. These methods are 

primarily based on linear models, which are easy to interpret and able to fit to the data without 

over fitting. However, the relationship between breeding value and genetic markers is likely to be 

more complex than a simple linear relationship, particularly when large numbers of SNPs are fitted 

simultaneously in the model. To answer these issues, model-free or so-called nonparametric 

methods which side-step linearity and require lesser genetic assumptions have gained more 
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attention (Gianola et al, 2006). Here we will only discuss the parametric genomic selection 

methods which are suitable for simple or additive kind genetic architecture. 

 

Fig. 1: Diagram Depicting the Basic Workflow of Genomic Selection. 

 

Overview of Most Commonly Used Parametric Methods in Genomic Selection 

In GS, the main goal is to predict the individual’s breeding value by modeling the relationship 

between the individual’s genotype and phenotype. Simplest form of such a model is: 

ij
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Where   is an intercept, ijX  is the genotype of the thi  individual at the thj  marker pj ,...,2,1 , 

and j  is the corresponding marker effect. This simply takes the form of linear model 

eXY  
 

To estimate   ˆ,ˆ    , we can use least squares to minimize the sum of squared vertical distance 

between the observed response and the estimated response. 
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Entries in design matrix X  depend on the number of different alleles present. For example, 

individuals with marker genotypes aaAaAA ,,  have elements coded as -1, 0, and 1 in ijX , 

respectively. With advanced genotyping technologies, data generated on markers is huge, and 

therefore the number of parameters to be estimated, can exceed the number of observations. To 

confront the problems emerging in these large p  with small n  regressions np  , estimation 

procedures performing variable selection, shrinkage of estimates, or a combination of both are 

commonly used. But it can still perform poorly if the relative ratio of the number of markers and 

the number of individuals or records is large or has multicollinearity problem, i.e., linkage 

disequilibrium (LD) exists among the markers. Therefore, a second element of model choice is to 

utilize type of shrinkage estimation procedure. Here, we will discuss briefly the effects of 

shrinkage on the statistical properties of estimates and will review some of the most commonly 

used penalized and variable selection and shrinkage estimation procedures for genomic selection. 

Effect of Shrinkage on Mean Squared Error of Estimates 

Accuracy of any estimator can be calculated as squared distance between estimated, ,̂  and actual 

value of parameter  . This we can write as simply the squared deviation: 

    22
ˆˆ   YY  Then mean-squared error is defined as     2ˆˆ   YEMSE  

Further we can decompose this MSE in two terms i.e.      2ˆˆ  BiasVarMSE   

As variance of the estimator decreases with increase in sample size, with standard estimation 

procedures, such as ordinary least squares (OLS), with sample size remains fixed, the variance of 

estimates increases rapidly as p  increases, yielding high MSE of estimates. One way of solving 

this problem emerging in large p  with small n   regressions is by shrinking estimates toward a 

fixed point (e.g., 0); this may increase bias but reduces the variance of the estimator. To understand 

the effects of shrinkage on MSE of estimates. Let’s have a simple shrinkage estimator obtained by 

multiplying an unbiased estimator ,̂  to a constant a  1,0  so that    ˆ01ˆˆ   the 

new estimator shrinks the original one towards 0 . If ,0    is biased, but the variance of the 

new estimator,     ˆˆ 2VarVar   is definitely to be lower for any .1  Penalized and 

Bayesian methods are the two most widely used shrinkage estimation procedures, brief overview 

of these methods is discussed below. 
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Penalized methods 

In penalized methods, regressions estimates are calculated as the solution to an optimization 

problem that control model goodness of fit to the training data and model complexity. Model 

complexity is commonly defined as a function of model unknown’s function;  J  therefore, 

penalized estimates are generally derived as the solution to an optimization problem, generally of 

the form: 
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Where 0 a regularization parameter that controls the trade is-offs between lack of fit and model 

complexity. At 0 above form reduces to ordinary least square. There are several estimation 

procedures have been already in literature, and they differ only for choice of penalty function  J

. In ridge regression (RR) (Hoerl and Kennard 1970), the penalty is directly proportional to the 

sum of squares of the regression coefficients i.e. L2 norm   
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 with 0 . RR is a special case at 2 which yields L2 norms. Subset selection 

occurs as a limiting case of 0 . Which penalizes the number of nonzero effects regardless of 

their magnitude,    .01
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jJ   At 1 penalty function reduces to another special form 

called least absolute angle and selection operator (LASSO) (Tibshirani 1996),   
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. This penalty function induces a solution which zeros out some regression coefficients and 

shrinkage estimates of the other effects; therefore LASSO technique combines variable selection 

and shrinkage of estimates. These methods are quite useful for many applications. But these 

methods have several limitations. As in case of whole genome regression (WGR) of complex traits, 

there is no reason to restrict the number of markers with nonzero effect to be limited by certain 

number i.e. by n which is the number of observations. Second, when predictors are correlated, 

occurs when LD span over long regions, methods performing variable selection such as the 
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LASSO are usually outperformed by RR (Hastie et al. 2009). Therefore, in an attempt to combine 

the good features of RR and of LASSO in a single estimation framework, Zou and Hastie (2005) 

proposed to use as a penalty a weighted average of the L1 and L2 norm, that is, for ,10   

   



p

j

j

p

j

jJ
1

2

1

1  . 

Bayesian Methods: Meuwissen et al. (2001) proposed two hierarchical models for GS based on 

Bayesian approach Bayes A and Bayes B. In both cases data and the variances of the marker 

positions need to be modelled. For individual 𝑖 one can write: 

ij

p

j

iji eXY  



1

 

Where 𝑖 = 1(1)𝑛 individual, 𝑖 = 1(1)𝑝  in marker position, 𝑌𝑖 is the phenotypic value for 

individual 𝑖 𝜇 is the 1n  dimensional overall mean vector, 𝑋𝑖𝑗 is an element of an incidence matrix 

for marker 𝑗 and individual 𝑖, jm  is a random effect for marker 𝑗 and 𝑒𝑖  is a random residual.  

In general the model can be written as:     

emZY
p

j

jj  
1

  

Inferences about model parameters are based on the posterior distribution. As it is well known 

using Bayes Theorem, the posterior can be obtained by combining the prior distribution with 

likelihood function. The difference between Bayes A and Bayes B is mainly depend how we model 

the variances of parameters. In both methods each marker position has its own variance. The Bayes 

A approach applies the same prior distribution of variances for each marker positions. Here we 

uses scaled inverted chi-squared distribution 𝜘−2(𝑣, 𝑆2  )  with degrees of freedom 𝑣  and scale 

parameter 𝑆2  for prior distribution. This is a convenient choice because it is a conjugate prior so 

the posterior distribution is in the same family of distributions as the prior distribution. Here 

posterior distribution is also scaled inverse chi-square distribution 𝜘−2(𝑣 + 𝑛𝑗 , 𝑆2 +

𝑚𝑗́ 𝑚𝑗   ) where 𝑛𝑗 is the number of haplotype effects at marker position 𝑗.  

The Bayes B approach is generally more realistic in compare to Bayes A for GS. The only 

difference is of the prior for the variance components. Bayes B assumes that not all markers 
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contributes to the genetic variation and has a prior density on the variance that is a mixture. It has 

a high probability mass at 𝜎𝑚𝑗 = 0  and an inverted chi-square distribution when     𝜎𝑚𝑗 > 0  . 

Bayes B can be summarized as 𝜎𝑚𝑗 = 0 with prob =  𝜋 and 𝜎𝑚𝑗  ~ 𝜘−2(𝑣, 𝑆  )  with prob = 1 − 𝜋. 

For the Bayes B method if �́�𝑚 > 0́ , then one cannot sample 𝜎𝑔𝑗
2 = 0. so, we can sample 𝑚𝑗 and 

𝜎𝑔𝑗
2  simultaneously by 𝑝(𝜎𝑚𝑗

2 , 𝑚𝑗|𝑦∗) = 𝑝(𝜎𝑚𝑗
2 |𝑦∗)𝑝(𝑚𝑗|𝜎𝑚𝑗

2 , 𝑦∗), where 𝑦∗ is the data that are 

corrected for the mean and for all genetic effects except 𝑚𝑗. 

To sample from the distribution 𝑝(𝜎𝑚𝑖
2 |𝑦∗) one can use the Metropolis-Hastings algorithm in the 

following way: 

a. Sample 𝜎𝑚(𝑛𝑒𝑤)
2  from the prior distribution of 𝑝(𝜎𝑚𝑗

2 ). 

b. 𝜎𝑚𝑗
2 =  𝜎𝑚(𝑛𝑒𝑤)

2  with probability of 𝑀𝑖𝑛 [
𝑝(𝑦∗|𝜎𝑚(𝑛𝑒𝑤)

2 )

𝑝(𝑦∗|𝜎𝑚𝑗
2 )

; 1] . 

It can be easily shown using simulated data, that the Bayesian methods perform better than linear 

least squares regression, ridge regression, and BLUP methods (Meuwissen et al. 2001; Habier et 

al. 2009, 2010) in terms of prediction accuracy. However, the choice of the degrees of freedom 

and the scale parameters of the scaled inverse chi-square distribution can affect the outcome 

(Gianola et al., 2009). Improved Bayesian approach like Bayes C and Bayes D were developed by 

Habier et al. (2011) to deal with the weakness of earlier used Bayesian approaches. The method 

Bayes C uses a common variance for all SNPs, and for Bayes D the scale parameter of the scaled 

inverse chi-square distribution is estimated instead of specified by the user. Bayes C𝜋 and Bayes 

D𝜋 (Habier et al. 2011) are modification of Bayes C and Bayes D where the probability of having 

a zero effect SNP 𝜋 is estimated. 

Bayesian LASSO: A new method has been introduced the Bayesian LASSO for estimating the 

regression coefficients (Park and Casella, 2008). This idea is from Tibshirani (1996) to connect 

the LASSO method with the Bayesian analysis. Tibshirani (1996) noticed that the LASSO 

estimates of the regression coefficients can be viewed as posterior mode estimates assuming that 

the regression coefficients have double exponential prior distributions. The Bayesian LASSO is 

also used in GS (Delos Campos et al. 2009, 2010a; Long et al. 2011) using the hierarchical model 

with the likelihood function: 
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𝑓(𝑌|𝜇, 𝑋, 𝑚, 𝜎2) ~ 𝑁(𝜇 + 𝑋𝑚, 𝜎2𝐼) 

Where 𝑌 is the 𝑛 × 1 data vector, 𝜇 is the overall mean vector, 𝑚 is a vector of the marker effects, 

and 𝑋 is the design matrix that connects 𝑚 to 𝑌.  𝑁(𝜇 + 𝑋𝑚, 𝜎2𝐼) Denotes the normal density with 

mean 𝜇 + 𝑋𝑚 and variance 𝜎2𝐼 where I is an 𝑛 × 𝑛 identity matrix. The prior distribution on the 

marker effects 𝑚𝑗
, 𝑠 𝑗 = 1(1)𝑝 can be written as 𝑝(𝑚𝑗|𝜏𝑗

2)~ 𝑁(0, 𝜏𝑗
2  ), and the prior distribution 

on 𝜏𝑗 is 𝑝(𝜏𝑗|𝜆) ~ 𝐸𝑥𝑝(𝜆) where 𝐸𝑥𝑝(𝜆)  denotes the exponential distribution with rate 

parameter 𝜆.  

Best linear unbiased prediction (BLUP): The BLUP theory and the mixed model formulation 

were first discussed by Henderson (1949), and they were influential for selection purposes in 

animal breeding (Henderson 1959). BLUP is a statistical procedure, which is useful in situations 

when the data is unbalanced (for example, in different locations the number of individuals varies), 

and it can also accommodate family information (Bernardo 2010). Model takes the form: 

𝑌 = 𝑋𝛽 + 𝑍𝑚 + 𝑒 

Where  𝛽   is a 𝑝 × 1 vector of unknown fixed effects where usually the first element is the 

population mean, and  𝑋 is the incidence matrix that relates 𝑌 to 𝛽. The above equation is generally 

called a mixed effect model. The vector 𝛽 is estimated by the best linear unbiased estimator 

(BLUE) and BLUP is the predictor of the random effects.  

Henderson (1953) proposed that the BLUE and BLUP of (𝛽, 𝑚) be obtained by maximizing the 

joint likelihood of (𝑦, 𝑚) given by: 

𝐿(𝑦, 𝑚) = 𝑓(𝑦|𝑚)𝑓(𝑚) 

 =
1

2𝜋𝑛/2|𝑅|1/2 [−
1

2
(𝑦 − 𝑋𝛽 − 𝑍𝑚)′𝑅−1(𝑦 − 𝑋𝛽 − 𝑍𝑚)] ×

1

2𝜋𝑝/2|𝐺|1/2 [−
1

2
𝑚′𝐺−1𝑚] 

By maximizing the likelihood L(y, m) with respect to b, m and equating it to zero, we obtain a set 

of linear equations [known as Henderson’s mixed model equations (MME)]: 

(𝑋′𝑅−1𝑋 𝑋′𝑅−1𝑍
𝑍′𝑅−1𝑋 𝑍′𝑅−1𝑍 + 𝐺−1) (�̂�

�̂�
) = (

𝑋′𝑅−1𝑦

𝑍′𝑅−1𝑦
) 

Where 𝑅 = 𝑣𝑎𝑟(𝑒) and 𝐺 = 𝑣𝑎𝑟(𝑚). The solution to the MME is the BLUE of 𝛽 and the BLUP 

of 𝑚. Henderson’s derivation assumes that 𝑚 and 𝑒 are normally distributed and maximizes the 
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joint likelihood of (𝑦, 𝑚) over the unknowns 𝛽 and 𝑚. Maximizing the likelihood implies an 

optimization criterion of (𝑦 − 𝑋𝛽 − 𝑍𝑚)′𝑅−1(𝑦 − 𝑋𝛽 − 𝑍𝑚) + 𝑚′𝐺−1𝑚 , and it can be viewed 

as the “ridge regression formulation” of the BLUP (Ruppert et al. 2003). 

Widespread use of DNA markers will have a significant impact on breeding programmes. Accurate 

prediction of GEBVs is a central challenge in animal and plant breeding. Selection will be based 

on a predication equation which itself based on reference population in compare to traditional 

phenotypic based selection methods. This will definitely lead to improvement in selection 

throughput.  
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1. Introduction 

Metagenomics is the study of microbial communities sampled directly from their natural 

environment, without prior culturing. By enabling an analysis of populations including many 

(so-far) unculturable and often unknown microbes, metagenomics is revolutionizing the field 

of microbiology, and has excited researchers in many disciplines that could benefit from the 

study of environmental microbes, including those in ecology, environmental sciences, and 

biomedicine. Specific computational and statistical tools have been developed for 

metagenomic data analysis and comparison. In sequencing studies, unlike traditional microbial 

genomic sequencing projects, metagenomics research attempts to determine directly the whole 

collection of genes within an environmental sample (i.e., the metagenome), and analyze their 

biochemical activities and complex interactions. 

 

Metagenomics, in principle, enables the study of any microbial organism, including the large 

number of microorganisms (more than 99%) that cannot be isolated or are difficult to grow in 

lab. More importantly, microbes by nature live in communities, where they interact with each 

other by exchanging nutrients, metabolites and signaling molecules. Although the conventional 

pure-culture paradigm remains important for complete characterization of a species, its 

traditional exclusive usage limits exploring the microbial world. Traditional clonal culture 

microbiology needs to be complemented by culture-independent microbiology that can directly 

characterize microbes in natural environments, and can address important biological questions 

related to those microbial environments, such as the diversity of microbes in different 

environments, microbial (and microbe-host) interactions, and the environmental and 

evolutionary processes. 

 

Various computational techniques are applied to explore the relationship between microbes 

and their habitat to make inferences about the community: 

 Marker genes 

 Metagenomes 

 Metatranscriptomes 

 Metaproteomes 

 Metametabolomes 

 

Computational analysis has shown an even greater impact on metagenomic studies compared 

to traditional genomic projects, due not only to the large amount of metagenomic data, but also 

to the new complexity introduced by metagenomic projects (e.g., assembly of multiple 

genomes simultaneously is more challenging than the assembly of single genomes), and the 

new questions we are asking (e.g., host-microbe interaction). 

 
2. Computational and statistical tools for metagenomic studies 

 

2.1 Assembly Metagenome Data 

Once the sequences are collected, the first step in data analysis is to reconstruct the entire 

microbial genomes from metagenomic sequence reads using fragment assemblers. Assembly 

of metagenome consists of three main steps namely (i) sequence cleaning, (ii) fragment 

assembly and (iii) Binning/ taxonomic assignment (Figure-1).  Sequence cleaning deals with 
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the filtering of duplicated, short, low quality, contaminated reads and reads containing 

ambiguous bases. The Amplicon based sequencing methods also requires trimming of primer 

or tag sequences. String matching algorithms are employed to identify these sequencing errors. 

Fragment assembly of metagenomic sequences is performed following two approaches namely 

OLC and DBG. OLC based methods are found to be useful for long sequencing reads, while, 

DBG based methods is employed in case of short sequencing reads. Although, OLC based 

methods performs well with small number of reads having significant overlap but their 

performance degrades as genome size increases. Binning/ taxonomic assignment is needed to 

classify/associate these data with the organisms from which they were originated. This process 

of association between sequence data to their related species is called binning or 

classification. Existing binning methods can be classified into two categories, 

namely taxonomy dependent and taxonomy independent.  In case of taxonomy dependent   

methods, the extent of ‘similarity’ of the reads with sequences (in reference databases) or pre-

computed models (built using sequences in reference databases) helps in this assignment 

process. Further, based on the strategy used for comparing sequence reads with existing 

sequences/pre-computed models, taxonomy-dependent methods can be further classified into 

three categories i.e. alignment-based, composition-based and hybrid methods (Mande et al., 

2012). Alignment based algorithms uses existing alignment and read mapping algorithms to 

align the reads to known and characterized genomes. This approach is used in MG-RAST, 

CAMERA, MEGAN, MetaPhyler and MARTA etc. Faster methods based on composition 

features uses GC content, codon usage, oligonucleotide usage patterns for comparing reads to 

reference databases. Under this method, specific models are built for various genomes using 

various statistical and data mining approaches. Some binning tools based on this method are 

Phylophthia, TACOA, Phymm, ClaMS and RAIphy etc. Hybrid approaches combines the 

alignment and composition based methods for classification of metagenomic data. In case of 

taxonomy independent methods, simply group/bin of sequence reads are made from given 

dataset based on their mutual similarity and it does not involve any database comparison. Tools 

following this approach are TETRA (Teeling et al., 2004), CompostBin (Chatterji et al., 2008), 

AbundanceBin (Wu et al., 2011) and MetaCluster (Leung et al., 2011). 
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Figure-1. Metagenome Assembly Process 

 

The various computational features of metagenomic assemblers are provided in Table 1. Also, 

the chronological development of metagenomic assemblers are shown in Figure-2.  

 

Table 4: Computational Features of Metagenome Assemblers ( Sharma et al. , 2020)  

Name of 

Assemble

r 

Yea

r 

Data 

Struct

ure 

Novelty in 

approach 

Parallelis

m 

Limitation Langua

ge 

Develop

ed 

Read 

Size/platfo

rm 

Genovo 

.  

2010 OLC Extracts 

more 

information 

from 

datasets and 

thus is 

suitable for 

low 

abundance 

sequences. 

Single 

Server 

Assessment 

with 

Illumima 

dataset  

C++ 454 

sequencing 

Meta-

IDBA  

2011 DBG -Handled the 

polymorphis

m in similar 

species. 

 

-Change in 

abundance 

ratio does 

not affect the 

performance  

Single 

Server  

 

 

 

 

-Quality of 

assembly 

depends on 

the quality of 

DBG.  

 

-Many 

species leads 

to many false 

positive 

edges which 

C++ NGS 

Sequence Cleaning

•Trimming(FASTQ,FASTX)

•De-replication(DUST)

•Screening(Bowtie2)

Fragment Assembly

•OLC (OMEGA, XGenovo)

•De-Bruijn (PRICE, META-
IDBA)

Binning/ 
Taxonomic 
Assignment

•Taxonomy Dependent 
(MG_RAST, MEGAN)

•Taxonomy Independent
(MetaCluster,
CompostBin)
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leads to 

many small 

components. 

MetaVelv

et  

2012 DBG Decompositi

on of DGB 

graph 

constructed 

from the 

mixed short 

reads into 

sub-graphs 
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Server 

Accurate 

identification 

of chimeric 

reads 

C++ Short Read 

PRICE 
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read 
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threading 
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CPU.  
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Shotgun 

metagenom

ics data 

XGenovo  2013 OLC -Additional 
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for solving 
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sampling 

process for 

the location 

of read in a 
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al cost 
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Long Reads 
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nodes by 
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GPU 

memory.  
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t DBG 
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memory 
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Figure-2. Chronological Development of Metagenome Assemblers 

 

 

2.2. Function Prediction 
 

Function prediction on metagenomic data is generally more difficult than that for genomic 

studies, because short reads are more difficult to annotate, and some information (such as the 

gene neighbourhood in a genome) that is very important for function prediction in sequence 

data from individual genomes may not be so useful in working with metagenomics data. 

Existing functional annotation pipelines (developed for annotating genomic sequences derived 

from traditional genome projects) have been extensively used for functional annotation of 

metagenomics sequences. An often used practice is to predict COG families, KEGG families 

(Kanehisa et al., 2008), FIG families (Overbeek et al., 2005), and other functional categories 

for metagenomic short reads based on BLAST search results. Currently, BLAST is the only 

readily available or established similarity tool that can handle comprehensive analyses of a 

metagenomic dataset (with the support of a big computer cluster with hundreds or thousands 

of CPUs). Very often, an E-value cutoff (e.g., 1e-5) has been adopted for annotating if a read 

has a certain function (Dinsdale et al., 2008). Biological pathways (or subsystems) can also be 

reconstructed for metagenome building from protein family predictions. (In most studies, the 

information obtained is on pooled biological pathways from various species in the same 
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microbial community). MG-RAST is an automatic server for subsystem annotation for 

metagenomic datasets, based on an extension of the very successful microbial genome 

annotation server RAST (Meyer et al., 2008). Pooled biological pathways provide key insights 

into the functional/metabolic ability of a microbial community (e.g., the functional profiling 

by KEGG pathways in (Tringe et al., 2005), although in most metagenomic studies, many 

details, such as the contribution of individual species to the total metabolic ability of a 

microbial community, are not well defined. 

 

In addition to mapping reads onto known protein families, discovering how many protein 

families are encoded in a metagenome (including known and unknown families) is important 

for understanding the functionality and functional diversity of a community and is also 

important for expanding the protein (family) universe. Li et al. 2008 developed an approach 

for rapid analysis of the sequence diversity for very large metagenomics datasets using a 

clustering approach powered by CD-HIT algorithm (Li et al., 2001). Similarity search (by 

BLAST or by a more sensitive similarity search tool) helps predict the function of some of 

these protein families; yet, the functions of numerous small, rare protein families remain to be 

discovered.  

 

3. Conclusion 

The growth of public DNA sequence data over the last two decades has been exponential, with 

a doubling time of about 14 months; the doubling time appears likely to be substantially 

shortened due to the addition of metagenomic data, as well as the impact from NGS 

approaches. The massive metagenomic data poses great challenges in many areas involving 

data management and data mining. More developments of efficient and powerful 

computational tools that can deal with (or, even better, take advantage of) the huge amount of 

metagenomic sequences. Besides, these tools need to be able to deal with the high species 

complexity of the metagenomic datasets. Further, integrating metaproteomic, 

metatranscriptomic and metagenomics data sets to gain a more comprehensive picture of the 

organization and function of microbial communities is also desired. 
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Proteomics 

Proteins are important large biomolecules or macromolecules performing a wide variety of functions. The 

word “proteome” is defined as the entire set of proteins translated and/ or modified within a living organism. 

The word “proteome” was coined by Marc Wilkins in 1994 in a symposium on “2D Electrophoresis: from 

protein maps to genomes” held in Siena in Italy while he was a Ph.D. student at Macquarie University. An 

organism’s genome is more or less constant whereas proteome is not constant. Proteomes differs from cell 

to cell and from time to time. That’s why proteomics is more complicated when compared to genomics.  

 Proteomics more generally refers to large-scale liquid chromatography (LC) coupled with mass 

spectrometry (MS) [LC-MS] based discovery studies designed to address both quantitative and qualitative 

aspects of the proteome research (Figure 1). 

 

Figure 1. Liquid chromatography coupled with mass spectrometry [LC-MS] 

Source: https://upload.wikimedia.org/wikipedia/en/f/f9/Liquid_chromatography_tandem_Mass_spectrometry_diagram.png 

 

 Now proteomics has emerged as a powerful tool across various fields such as biomedicine mainly 

applied to diseases, agriculture, and animal sciences. It is important for studying different aspects of plant 

functions such as identification of candidate proteins involved in the defensive response of plants to biotic 

and abiotic stresses, effect of global climate changes on crop production, etc. In animal sciences, proteomics 

studies play important role in studying physiology, immunology, reproduction and lactational biology. The 

practical application of proteomics includes expression proteomics, structural proteomics, biomarker 

discovery, interaction proteomics, protein networks, etc.  

https://en.wikipedia.org/wiki/Marc_Wilkins_(geneticist)
https://en.wikipedia.org/wiki/Macquarie_University
https://upload.wikimedia.org/wikipedia/en/f/f9/Liquid_chromatography_tandem_Mass_spectrometry_diagram.png
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 The proteomic abundance (expression) data are usually generated using high throughput 

technologies usually involving MS. LC-MS is used in proteomics as a method for identification and 

quantification of peptides and proteins in complex mixtures. There are two basic proteomics approaches, 

namely bottom-up and top-down. The most common proteomics approach is the bottom-up in which 

proteins in a sample are enzymatically digested into peptides and subjected to chromatographic separation, 

ionization and mass analysis. Conversely, top-down proteomics addresses the study of intact proteins and 

consequently is most often used to address purified or partially purified proteins, Further, the quantification 

of features (peptides or proteins) may be either label-free or labelled (metabolic, enzymatic, or chemical) 

to detect differences in feature abundances among different conditions. In label-free quantification, MS ion 

intensity (peak area) and spectral counting of features are the major approaches.  

 

Problem of missing values and heterogeneity in proteomics data 

Various approaches exist for proteomics data analysis in which the first step is to summarize the intensities 

of all features using a quantitative summary followed by logarithmic transformation to approximate it to 

normal distribution. In spite of availability of various tools/methods, there are various challenges in 

analyzing proteomics data such as missing value (MV) and data heterogeneity. There are various drawbacks 

of the methods which can be studied by examining the statistical properties of these methods.  

 The variations in the biological data or technical approaches to data collection lead to heterogeneity 

for the samples under study. The data set usually consists of biological replicates only or both biological 

and technical replicates. Biological variability arises from genetic and environmental factors and it is 

intrinsic to all organisms. The technical approaches include sample collection and storage, sample 

preparation, extraction, LC separation and MS detection. 

 The data set is called balanced when it contains an equal number of subjects/ samples in each group, 

and the features have no missing observations. However, this is not always the condition. Sometimes the 

data can be unbalanced having unequal number of subjects, or missing observations, or both. MVs in 

proteomics data can occur due to biological and/or technical issues. These are of three types of MVs: (i) 

missing completely at random (MCAR) in which MVs are independent of both unobserved and observed 

data; (ii) missing at random (MAR) if conditional on the observed data, the MVs are independent of the 

missing measurements; and (iii) missing not at random (MNAR) when data is neither MCAR nor MAR. 

The data with missing observations can be analyzed either by excluding the features having missing 

observations, by using statistical methods that can handle unbalanced data, or by using imputation methods. 

If the features having missing observations are excluded, then there is loss of information from the 

experiment. Therefore, the use of methods that can handle MVs, such as imputation methods, are generally 
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preferred. However, the use of imputation methods may lead to wrong interpretation and these methods are 

questionable in statistical terms.  

 

Differential abundance/ expression data analysis 

Differential abundance analysis is carried out to detect significant features in two or more conditions such 

as normal versus different disease conditions. However, data normalization is necessary before performing 

further analysis. There are various transformation and/ or normalization methods such as logarithmic 

transformation, quantile normalization, variance stabilizing normalization, median scaling normalization, 

etc. In case of missing values, the user has to impute the data using imputation techniques such as singular 

value decomposition, k-nearest neighbor, maximum likelihood estimation, etc. The statistical approaches/ 

tests such as t-test, moderated t-test, ANOVA, linear mixed model, etc. can be used for detecting significant 

features. There are various tools and packages available for proteomics abundance data analysis such as 

“RepExplore”, “MSstats”, “PANDA”, “MSqRob”, etc.  

 In this article, we are dealing with the bottom-up approach in which peak area values have been 

used in label-free quantification of proteins. An example of proteomics abundance data analysis using 

“RepExplore” has been illustrated below. A portion of an example dataset for a case-control study is shown 

in Figure 2. The dataset has two biological replicates each having two technical replicates in each group 

(case and control). 

 

Figure 2. A portion of test dataset for a case-control study 

The user has to upload the abundance data as given in Figure 3. The user has to choose various options after 

uploading the data (Figure 4). Then, the user has to click on “Run Analysis!” button. 
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Figure 3. Upload the data 

 

Figure 4. Selecting the options 

Then, the user will get menus of various results as shown below in Figure 5. 

 

Figure 5. The menus of various results obtained 

The ranking table of differential abundant/ expressed features is given in Figure 6. 
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Figure 6. The ranking table of differential abundant/expressed features 

The user can generate the bar plot of any feature by clicking “generate_bar_plot” button for which an 

example is shown below. 

 

Figure 7. An example of bar plot of a feature 

Conclusion 
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In this article, we have given the basic introduction of proteomics, problem of MVs and heterogeneity in 

proteomics data and different methods for analysis of proteomics data. Further, proteomics abundance data 

analysis has been demonstrated by using an online web tool “RepExplore”. This article will be useful for 

the researchers working in the field of proteomics and bioinformatics. Furthermore, the methods for 

proteomics data analysis can further be used for analyzing the expression data obtained from similar 

experiments (e.g., microarray and metabolomics data).  
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Abstract 

In recent years, a tremendous interest has emerged in the area of deep learning approach which 

has gained considerable prominence fuelled by numerous applications in the field of image and 

speech recognition, automatic translation, genomics, agriculture, time series modelling and 

many more areas. Deep learning can be considered as a subset of machine learning 

computational models that are composed of multiple processing layers to learn representations 

of data with multiple levels of abstraction. Deep learning discovers intricate structure in large 

data sets by following the principle of backpropagation algorithm to interpret how a machine 

should change its internal parameters that are used to compute the representation in each layer 

from the representation in the previous layer. Convolutional neural network is a deep neural 

network model which has focused attention in images, video recognition in recent years. 

Recurrent neural networks and its variants Long-Short-Term-Memory (LSTM) networks are 

also shown their effectiveness in modelling sequential data such as text, speech and machine 

translation, etc. 

Keywords: artificial, intelligence, machine, learning, deep, neural, network, recurrent, 

convolution, image, sequence, time, series 

1. Introduction 

Deep learning has sparked a lot of interest in recent years. Deep Learning is a subset of machine 

learning algorithm, which has been introduced with the objective of moving machine learning 

closer to one of its original goals: artificial intelligence. The term artificial intelligence (AI) 

was first coined in the year 1956 which makes the machines to perform cognitive tasks like 

thinking, perceiving, learning, problem solving and decision making and is achieved by 

mimicking human brain, by understanding how it thinks, how it learns, decides, and work while 

trying to solve a problem. 

Artificial intelligence is successfully applied in many fields such as self-driving car, speech 

recognition, understanding natural language, image recognition and in many other real-life 

situations. In recent years with the help of easier data collection methods and storage facility 

for larger datasets, specialized hardware devices like graphics processing unit (GPU), improved 
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software, artificial intelligence has become an indispensable part of computing for every 

discipline. 

In the modern era of computing, machine learning (ML) techniques which can be viewed as a 

subset of AI, empowers the ability to learn objects, translate speech to text, environmental 

prediction and etc., without being explicitly programmed. Deep learning (DL) models which 

are subset of machine learning techniques now increasingly replacing machine learning models 

in several real-life application viz., image or video recognition, sequence data modelling, 

environmental modelling, genomics and so on. The problems of ML models due to their 

suffering from the curse of dimensionality for solving crucial AI problems viz., natural 

language processing, image recognition, handwriting recognition, etc. make them vulnerable 

as compared to the DL models. 

The term “deep learning” was introduced by Geoffrey Hinton in the year 2006. Deep learning 

(DL) is machine learning algorithms based on learning multiple levels (i.e., deep) of 

representation inspired by the structure and function of the brain called artificial neural 

networks. The easiest way to think of the relationship among the AI, ML and DL can be 

visualized from the following figure 1 as 

 

 

 

 

 

 

 

Fig. 1: DL is a subset of ML & ML is a subset of AI 

2. Machine Learning Technology 

ML involves a learning process with the objective to learn from the “experience” (training 

AI: Broad area which enables computers to mimic 

human behavior 

ML: Usage of statistical tools enables machines to 

learn from experience 

DL: Learn from its own method of 

computing-its own brain 
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data) to perform a specific task.  Data in ML consists of a set of examples.  Usually, an 

individual example is described by a set of attributes, also known as features or variables. A 

feature can be nominal, binary, ordinal, or numeric, etc. The performance of the ML model 

for a specific task is measured by a performance metric that is improved with the experience 

over time. The performance of ML models and algorithms, for the designed task which is 

achieved by learning the features can be tested by statistical models. When the learning 

process is over, the trained model can be used to classify, predict, or cluster new examples 

(testing data). ML algorithms are typically classified into three different broad categories 

depending on the learning type as supervised, unsupervised and reinforcement learning.  

In supervised learning every input pattern that is used to train the network is associated with 

an output pattern, which is the target or the desired pattern i.e., with the available input variables 

(𝑥) and an output variable (𝑦), an algorithm is used to learn the mapping from the input to the 

output. In unsupervised Learning the target output is not presented to the network i.e., to train 

a model using information that is neither classified nor labelled and hence can be used to cluster 

the input data in classes on the basis of statistical properties whereas a reinforcement learning 

algorithm is achieved by interacting with space or an environment. 

3. How Deep Learning Models Work? 

The deep learning models are inspired by the working principle of a basic unit of the human 

brain cell or a neuron. Inspired from a neuron, an artificial neuron or a perceptron was 

developed. Artificial neural networks (ANNs) are computational methods that mimic the 

behaviour of the human brain’s central nervous system (biological neural networks) that are 

made from layers of connected units called artificial neurons. The basic building block of a 

neural networks model is a single neuron which is also called as perceptron as depicted in fig. 
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2

 

Fig. 2: A Single Neuron (Perceptron) 

Neural network is a class of non-linear, nonparametric, data driven approach can be viewed as 

a powerful learning models that achieve state-of-the-art results in a wide range of supervised 

and unsupervised machine learning tasks. A general neural networks architecture consist of an 

input layer that accepts external information, one or more hidden or middle layer that provide 

non-linearity to the model and an output layer that provides the target value. Each layer contains 

one or more nodes. This model is characterized by a network of three layers of simple 

processing units, and thus termed as multilayer perceptron. All the layers in a multi-layer neural 

network are connected through an acyclic arc. The schematic representation of a neural 

networks model can be viewed in fig. 3 as 

 

Fig. 3: Schematic representation of neural network 
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In this network, the information moves only in one direction i.e., from the input nodes, through 

the hidden nodes and to the output nodes. A neuron can be considered as a real characteristic 

of the input vector ( 𝑦1, 𝑦2, … , 𝑦𝑘). The output is obtained as 

𝑓(𝑥𝑗) = 𝑓(𝛼𝑗 + ∑ 𝑤𝑖𝑗𝑦𝑖
𝑘
𝑖=1 )                                                                                                      (i) 

where, f is an activation function, usually the sigmoid or tangent hyperbolic function. 

Activation function defines the relationship between inputs and outputs of a network in terms 

of degree of the non-linearity. To train a neural network model (update weight), the principle 

of gradient descent algorithm can be used by minimizing the cost function in a neural network 

model by following backpropagation algorithm and the steps are: 

i. Input a dataset. 

ii. Randomly initialize variables (weights and biases). 

iii. Compute errors by calculating the difference between the actual and model 

predicted values. 

iv. Propagate the error back through the same path to adjust the variables. 

v. Steps ii-iv are repeated until it is confident to say that the variables are well 

defined. 

vi. A prediction is made by applying these variables on a new unseen input dataset. 

4. Types of neural networks architecture 

There are several sorts of architectures of ANNs. However, the most broadly used ANNs are 

discussed here: 

4.1 Feed Forward Neural Network Model 

In feed forward neural network, data flows in one route alongside connecting pathways, from 

the input layer via the hidden layers to the final output layer. There is not any feedback (loops) 

i.e., the output of any layer does not have an effect on that same layer. A graphical illustration 

of feed forward network is given in figure 4. 
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Fig. 4: Multi-layer Feed Forward Neural Network 

4.2 Recurrent Neural Networks (RNNs) Model 

An artificial neural network with recurrent connection is called as recurrent neural networks 

(RNNs) which are capable of learning features, modelling sequential data for sequence 

recognition and prediction. Recurrent neural networks are made up of high dimensional hidden 

states with non-linear dynamics. The structure of hidden states work as the memory of the 

network and state of the hidden layer at a time is conditioned on its previous state. The type of 

structure enables the RNNs to store, remember, and process past complex signals for long time 

periods. RNNs can map an input sequence to the output sequence at the current time step and 

predict the sequence in the next time step. RNNs are the heart of speech recognition, language 

modelling, translation, and in many more cases. 

RNN is more efficient to learn the dependency between observations. The simple architecture 

and unrolled version of RNN is shown in figure 5. The simple RNN is a network with loops 

which allows persisting information to be passed from one step of the network to the next. In 

the diagram for the time steps 0,1,2, … , 𝑡; 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑡 are the inputs, A is the hidden state 

and ℎ0, ℎ1, ℎ2, … , ℎ𝑡 are the outputs. 𝐴𝑡 hidden state is an activation function which takes its 

input from the hidden state of the previous step 𝐴𝑡−1 and the output of the current step 𝑥𝑡.

 

 

Fig. 5: An unrolled recurrent neural network 
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This process is described by the following equation 

𝐴𝑡 = 𝑓(𝐴𝑡−1, 𝑥𝑡)                                                                                                                       (ii) 

RNNs use backpropagation through time (BPTT) to optimize weights during training by using 

the chain rule to go back from the latest time step to the previous steps. Figure 6, presents a 

RNN looks like which is being unfolded into a full network. By unfolding, it means to write out 

the network for the complete sequence. For example, if the sequence is a sentence of five words, 

the network would be unrolled into five-layer neural network, one layer for each word. The 

formulas that govern the computation happening in a RNN are as follows: 

 

Fig. 6: A recurrent neural network and the unfolding in time of the computation 

involves in its forward computation 

𝑥𝑡 is the input at time step 𝑡. 𝑠𝑡 is the hidden state at time step 𝑡. It is the “memory” of the 

network.  𝑠𝑡 is calculated based on the previous hidden state and the input at the current time 

step as 

𝑠𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1)                                                                                                                                     (iii) 

The function 𝑓 is usually nonlinear such as 𝑡𝑎𝑛ℎ or 𝑅𝑒𝐿𝑈. 𝑠−1 which is required to calculate 

the first hidden state, is typically initialized to all zeroes. 𝑜𝑡 is the output at time step 𝑡. For 

example, to predict the next word in a sentence it would be a vector of probabilities across our 

vocabulary. 

𝑜𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠𝑡)                                                                                                                        (iv) 
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5. Long-Short-Term-Memory (LSTM) Networks Model 

LSTM is a special kind of RNNs that are designed to learn long term dependencies i.e., to 

memorize the sequence of data. The memory in LSTMs is called cells that are connected 

through layers. Each memory cell contains gates which handle information flow into and out 

of the cell. Internally these cells decide what to keep in (and what to erase from) memory. They 

then combine the previous state, the current memory and the input. Hence the gates which are 

based on sigmoidal neural network layer, enable the cells to optionally let data pass through or 

disposed. Each sigmoid layer yields numbers between 0 and 1, depicting every segment of data 

ought to be let through in each cell. More precisely, an estimation of 0 value implies that “let 

nothing pass through”; whereas; an estimation of 1 indicates that “let everything pass through”. 

There are three types of gates in the LSTM unit with the aim of controlling the state of each 

cell: 

i. Forget gate outputs a number between 0 and 1, where 1 shows “completely keep 

this”; whereas, 0 implies “completely ignore this”. 

ii. Memory gate chooses which new data need to be stored in the cell. First, a 

sigmoid layer, called the “input door layer” chooses which values will be 

modified. Next a tanh layer makes a vector of new candidate values that could 

be added to the state. 

iii. Output gate decides what will be yield out of each cell. The yielded value will 

be passed on the cell state along with the filtered and newly added data. 

The structure of the LSTM unit is shown in figure 7.  

 

Fig. 7: LSTM unit 



401 
 

As seen from figure 7, Eq. v-vii, the LSTM unit gets the information from the previous state 

ℎ𝑡−1 and the input 𝑥𝑡, and uses the activation function (sigmoid) in the “input layer gate” to 

decide which part of the information to pass to the output and next LSTM unit. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                                                                (v) 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                                                                (vi) 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                                                                             (vii) 

𝐶�̃� = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                                                                                     (viii) 

𝐶𝑡 = 𝑓𝑡⨂𝐶𝑡−1 + 𝑖𝑡⨂𝐶�̃�                                                                                                      (ix) 

ℎ𝑡 = 𝑜𝑡⨂𝑡𝑎𝑛ℎ(𝐶𝑡)                                                                                                            (x) 

Eq. v-vii describes the sigmoid function (𝜎(𝑥) = 1
1 + 𝑒−𝑥⁄ ) where W’s and b’s are the 

parameters (weights and biases) for forget, input and output gates. 𝑓𝑡, 𝑖𝑡 and 𝑜𝑡 are forget, input 

and output gates respectively. In Eq. viii, the tanh layer creates the vector of new candidate 

values 𝐶�̃� that could be added to the cell state. LSTM unit has two kinds of hidden state: “slow” 

state 𝐶𝑡 and a “fast” state ℎ𝑡. The slow state 𝐶𝑡 is updated by summing the multiplication the 

forget gate 𝑓𝑡 by the previous cell state 𝐶𝑡−1 and the multiplication the input gate 𝑖𝑡 by the new 

candidate value 𝐶�̃�. The ℎ𝑡 state is updated using the hyperbolic tangent function (tanh) of 𝐶𝑡 

state and 𝑜𝑡 output gate. The calculation in the step is pretty much straightforward and 

eventually leads to the output. However, the outputs consist of only the outputs those were 

decided to be carry forwarded in the previous steps and not all the outputs at once. The main 

feature of LSTM unit is that its cell state accumulates activities over time. As derivatives of 

the error are summed over time, they do not vanish quickly that’s why LSTMs can implement 

tasks over long term dependencies. 

6. Convolutional Neural Networks Model 

Convolutional neural network (CNN), a deep learning model that has become dominant in 

various computer vision tasks, is attracting interest across a variety of domains, even in 

agriculture also. CNN is inspired by the organization of animal visual cortex and is designed to 

automatically and adaptively learn spatial hierarchies of features through backpropagation 

algorithm by using multiple building blocks, viz., convolution layers, pooling layers, and fully 

connected layers. Convolutional Neural Networks have wide applications in image and video 
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recognition, recommendation systems and natural language processing. For a given dataset of 

gray scale images with the standardized size of 32 × 32 pixels each a conventional feedforward 

neural network will need 1,024 input weights, plus one bias as each layer is full-connected with 

the previous input layer. But the major problem is by flattening the pixel image matrix to a 

long pixel value vector loses much of the image's spatial structure. The neural networks will 

have great difficulty with the problem as it is very easy to get over fitted and needs large volume 

of data and also computation time for training will increase. This spatial relation between pixels 

is expected and maintained by convolutional neural networks by using small squares of input 

data by studying internal feature representations. The characteristics are learned and used in 

the entire image, allowing the objects in the images to be moved throughout the scene or 

translated and still detectable by the network. This is why the network is very helpful for object 

recognition in photographs, picking out digits, faces, objects and so on with varying orientation. 

The building blocks of convolutional neural networks are: Convolutional layers, pooling layers 

and fully-connected layers. 

6.1. Convolutional Layers 

Convolutional layers are comprised of filters and feature maps 

6.1.1 Filters 

The filters are actually the layer's neurons and are the locally connected networks, each of 

which learns some particular features of the images. They have weighted inputs and, like a 

neuron, produce an output value. The input size is a fixed square called a patch or a receptive 

field. If the convolutional layer is an input layer, then the input patch will be pixel values. Each 

filter moves around the images with the configured step size called as Stride. For example, for 

a filter of size 10 × 10 with stride 1, each time the filter window will overlay an image with 

an area of 10 × 10 pixels to calculate the inner product between the pixel values and the 

parameters, and will move horizontally and vertically by 1 pixel (stride) on an image until it 

covers the whole image 

6.1.2 Feature Maps 

The feature map is the output of one filter applied to the previous layer. A given filter is 

drawn across the entire previous layer, moved one pixel at a time. Each position results in an 

activation of the neuron and the output is collected in the feature map. 
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6.2. Pooling Layers 

The pooling layers down-sample the function map for the previous layers. Pooling layers 

follow a series of one or more convolutional layers and are structured to combine the 

characteristics learned and expressed in the feature map of the previous layers. There are two 

type of pooling layers: Max-pooling and Average pooling layers. Max pooling layer picks the 

maximum value from each window and average pooling layer calculate the average value from 

each window 

6.3. Fully Connected Layers 

Fully connected layers are the normal flat feedforward neural network layer. These layers may 

have a nonlinear activation function or a softmax activation in order to output probabilities of 

class predictions. Fully connected layers are used at the end of the network after feature 

extraction and consolidation has been performed by the convolutional and pooling layers. They 

are used to create final nonlinear combinations of features and for making predictions by the 

network. The convolutional neural network (CNN) model architecture is shown by the 

following figure 8 as 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Convolutional Neural Network (CNN) Model Architecture 
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7. Application areas of deep learning 

In recent years deep learning models are successfully applied in many fields from natural 

language processing, visual recognition, healthcare, language translations, gaming to self-

driving car and in more situations. In agriculture, there are also a huge scope of deep learning 

techniques in respect of forecasting weather data, monitoring crop and soil health, decrease 

pesticide application by employing AI-enabled systems to detect pests, plant disease 

identification, plant recognition, land cover classification, weed classification, precision 

irrigation and crop yield estimation and in many agricultural situations. 

8. Conclusion 

Deep learning models are belonging to the field of artificial intelligence approach and work by 

following the principle of the network of human brain neurons to learn things automatically by 

extracting features and decisions making process in a human like way. The deep leaning 

architecture like convolutional neural network (CNN) model has achieved a tremendous 

success over other existing machine learning models for image and video recognition problem 

due to its high computational efficiency. A recurrent neural networks (RNNs) model is also a 

class of deep neural networks model that can use internal state (memory) to process sequences 

of inputs. Long-Short-Term-Memory (LSTM) networks are a modified version of RNNs with 

its architecture for predicting sequences containing longer term patterns of unknown length, 

due to their ability to maintain long term memory. 
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