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ABSTRACT
Development of mapping population is a prerequisite for genetic dissection of genomic
regions underlying complex traits. Nested Association Mapping (NAM) is an integrated
multi-parent population approach that combines the advantages of linkage mapping and
association mapping for high resolution and high-power mapping of complex traits. The
NAM population is constituent of independent RIL populations derived from crossing several
diverse donor parents with a common founder parent. The first NAM population was devel-
oped in maize and later on in several crops like barley, sorghum, wheat, rice, soybean, etc.
This review provides an overview of NAM population development, its features, advantages
over the other mapping populations, availability of high density genotyping platforms, key
considerations for their development, applications and future prospects. We propose that
the recent high-throughput analytical tools including high-end genotyping will accelerate
utilization of NAM population for prediction of genomic estimated breeding value and gen-
omic assisted selection in crop improvement program.

KEYWORDS
Combined linkage analysis
and linkage disequilibrium;
genomic prediction; GWAS;
quantitative traits; multi-
parent mapping population

I. Introduction

Most of the economically important traits in crop
plants are quantitative in nature. These traits are
influenced by several genes, environmental factors,
epistatic interactions of loci, and thus exhibit continu-
ous variations. With the recent advances in DNA
marker technology, it is now feasible to identify the
genomic regions controlling the quantitative traits.
The term “Quantitative Trait Loci” (QTLs), coined by
Gelderman (1975), refers to the physical location of
causative factors in the genome, associated with the
expression of quantitative traits. The concept of QTL
mapping depends on finding an association between
DNA sequence variation (genetic marker) and meas-
urable phenotypic variations of a complex trait. The
prerequisite for identification of precise QTLs associ-
ated with any quantitative traits is mapping popula-
tion along with their phenotypic variations and
molecular marker data. Understanding the genetic
architecture of quantitative traits is further

strengthened and accelerated by rapid advances in
sequencing and genotyping technologies, coupled with
improvement in phenotyping techniques (Choudhary
et al., 2019).

II. Evolution of mapping population – gradual
progress in precision and resolution
of mapping

Mapping population is a group of individuals suitable
for linkage mapping of genetic markers using princi-
ples of Mendelian inheritance. Over the years with a
better understanding of the breeding objectives, sev-
eral types of mapping populations have been devel-
oped. These populations have been categorized into
first generation, second generation, and third gener-
ation mapping populations which are described in
Table 1. Comparative features of different mapping
populations employed in crop plants are provided in
Table 2.
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The first-generation mapping population refers to
biparental populations developed by crossing two con-
trasting parents. It involves F2, F2:3, backcross popula-
tions (BC1, BC2), Advanced backcross populations,
NILs (Near Isogenic Lines), RILs (Recombinant
Inbred Lines), DH population (Double Haploids) and
CSSLs (Chromosome Segment Substitution Lines).
Using linkage analysis, these populations have been
extensively utilized for identification and mapping of
qualitative traits like disease resistance (controlled by
single or few genes) and also quantitative traits like
salinity tolerance, drought tolerance, etc. Although
linkage mapping is a powerful mapping strategy for
the detection of QTLs associated with complex traits,
its mapping resolution is poor due to the limited
amount of recombinations (Xu et al., 2017) and pos-
sible loss of recombinants during population advance-
ment. Increasing the density of markers (beyond one
marker per 15 cM) may not be fruitful without
increasing its population size to improve the reso-
lution of QTL mapping in biparental populations
(Darvasi and Soller, 1995; Kearsey and Farquhar,
1998). Besides, the biparental population will have a
low level of allelic variations (as there are two possible
alleles for each locus) and such populations show seg-
regation for only a few traits, which are contrasting
between the two parents (Rakshit, et al., 2012).

Thus, to overcome the shortfalls of first-generation
mapping populations, researchers utilized natural pop-
ulations and mutant populations as second generation
mapping populations for mapping complex traits. In
the recent past, association mapping is gaining much
more prominence as it promises to overcome the limi-
tations of linkage mapping. In the case of association
mapping, panels containing a diverse set of genotypes
with phenotypic diversity for target traits are used for
establishing marker-trait association using high-dens-
ity genotyping and multi-season/multi-environment
phenotyping data. It takes advantage of historical
recombination that occurred during evolution, ena-
bling higher precision and resolution for mapping
complex traits (Mackay and Powell, 2007). Association
mapping has low power than linkage mapping for the
detection of QTLs. The power of QTL detection in
association mapping depends on population size,
population structure, phenotyping of population, gen-
ome-wide markers, and suitable statistical methods
employed (Xu et al., 2017). Further, the accuracy of
detection of QTLs with the minor effect is low in the
association mapping approach as compared to linkage
mapping (Cockram and Mackay, 2018). Besides, rare
alleles are detected in much lesser frequency (mafTa
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threshold level set as to 0.01, 0.02, or 0.5 to reduce
false positives) during association mapping, even if
their effects are large (Cockram and Mackay, 2018).
However, while analyzing such alleles are filtered out
in order to reduce the chances of false positives
(Cockram and Mackay, 2018). Population structure in
the association mapping panel is another important
consideration, which can lead to the spurious marker-
trait association (Knowler et al., 1988). Filtering of
rare variations and the presence of inherent popula-
tion structure in association panels tend to reduce the
power of QTL detection. It is pertinent to note that
rare variants could be of economic interest for
breeders and if population structure is associated with
such rare variants, it is hardly be detected in GWAS
(Genome Wide Association Studies). In this scenario,
multiparent populations are suitable to reduce such
spurious association and to increase the power of rare
allele detection.

The third-generation mapping populations are
developed to combine the principles of linkage map-
ping and association mapping for QTL detection by
developing family-based populations using several
diverse parents by breeding designs. Rebai and
Goffinet (Rebai and Goffinet, 1993) proposed the con-
cept of utilizing multi-parents for molecular mapping
of QTLs in six F2 populations derived from diallel
crosses using high-density RFLP. Later, Jannink and
Jansen (2000) employed double haploids populations
derived from three parents in diallel crosses for map-
ping higher-order epistasis (involves multiple QTLs)
and genetic background interaction in one-dimen-
sional genome search wherein QTL allelic values are
either nested within or fixed over populations. The
four kinds of multiparent mapping populations devel-
oped in animals and plants are four way crosses, dia-
llel cross population, multiparent advanced generation
inter-cross (MAGIC) population and Nested
Association Mapping population (Mackay and Powell,
2007; Cavanagh et al., 2008). Four-way crosses popu-
lations are derived from a cross between two F1

hybrids [F1 (A1/A2)/F1 (A3/A4] and developed in
maize (Anderson et al., 2018). Several multiparent
intercross mapping populations have been developed
in mice (Churchil et al., 2004), Drosophila
(MacDonald and Long, 2007), Arabidopsis (Kover
et al., 2009), maize (Anderson et al., 2018).

In mice, MAGIC population was reported for
development of the first multiparental inter-mated
population to constitute collaborative cross, a commu-
nity resource for the genetic analysis of complex traits
(Churchil et al., 2004). The multiparent mapping pop-
ulations have been utilized for mapping candidate
genes for serum cholesterol and coat color traits
(Cavanagh et al., 2008; Svenson et al., 2012).
Development of the MAGIC population involves
crossing eight diverse founder parents in a designed
manner and further intermating of siblings (2-way
crosses, 4-way crosses) to develop eight independent
RIL populations through SSD (Single Seed Descent)
method which represent mosaic genome of eight
founder lines. MAGIC populations have been devel-
oped in Arabidopsis, tomato, barley, maize, sorghum,
wheat, and rice (Ladejobi et al., 2016).

Although linkage analysis offers high power of
QTL detection, its mapping resolution is low, whereas,
the association mapping gives a higher resolution of
QTL mapping with lower power of QTL detection.
Consequently, an integrative mapping strategy com-
bining the principles of both linkage analysis and
association mapping for high resolution and high
power mapping is indeed imperative to unearth the
genetic architecture of complex traits. The develop-
ment of such an integrative mapping strategy is
known as Nested Association Mapping (NAM). The
deployment of multiple parents in the development of
NAM population augment accurate trait mapping as
well as gainful utilization of allelic diversity. It enhan-
ces the resolution power of mapping complex traits
and broadens the genetic base of the breeding popula-
tion by shuffling the diverse genomic regions control-
ling quantitative traits.

Table 2. Comparative features of different mapping populations in plants.
S. No. Characters NAM MAGIC Association mapping Biparental mapping

1. Parents involved >2 8 >100 2
2. Power of mapping High Moderate Low High
3. Resolution of mapping High High High Low
4. Historical LD Yes Yes Yes No
5. Recombination derived LD Yes Yes No Yes
6. Detection of multiple alleles Yes Yes Yes 2 Alleles
7. Power of detection of rare QTLs High Moderate Less High
8. Population structure Low No Yes No
9. Genetic base and diversity of parents Broad Moderate Broad Narrow
10. Hybridization for development of population Required Required No Required

QTL: quantitative trait locus; LD: linkage disequilibrium.
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NAM population was first developed in maize by
crossing 25 diverse founder inbred parents with B73,
the common founder parent, and 5000 RILs were
developed to constitute maize NAM population (Yu
et al., 2008). Subsequently, NAM populations were
developed in barley, wheat, rice, sorghum, rapeseed,
soybean, groundnut etc. (Table 3). Once populations
are developed, many studies can be undertaken using
a single NAM population since diverse parents with
divergent traits are involved in the process. For
example, the NAM population in maize by Yu et al.
(2008) or in barley by Maurer et al. (2015) have lead
to 12 and 6 studies independent from the base popu-
lations, respectively. Since, more number of crosses is
to be made for construction of NAM population; it is
much easier to develop them in cross pollinated crops
like maize as against highly self-pollinated crops
like chickpea.

Considering the importance of NAM and its utility,
various aspects of NAM population development,
their application in crop improvement, current status,
and prospects of NAM strategies in conjunction with
the genomics are reviewed and discussed in pre-
sent review.

III. Strategy for developing Nested Association
Mapping population

The NAM population is a multiparent mapping strat-
egy wherein multiple diverse donor parents (named
founder donor parents) are crossed with a single par-
ent (named common founder parent). From each
cross of founder donor parent with common founder
parent is subjected to create independent RIL popula-
tions. Together these individual RIL populations con-
stitute the NAM population. Various steps in the
development of NAM population and chromosomal
inheritance are depicted in Figures 1 and 2. Each line
of the NAM population represents a mosaic segment
of genomes from respective donor founder parents
and a common founder parent (Yu et al., 2008;
McMullen et al., 2009; Bazakos et al., 2017). The
NAM design nests the historical Linkage
Disequilibirum (LD) within the new recombinations
and exploits both historical LD (due to the use of a
large number of diverse founder parents) and recom-
bination derived LD (during the development of RILs)
(Yu et al., 2008; Guo et al., 2013; Nice et al., 2016).
During the development of NAM populations, the
genome of founder parents gets reshuffled causing
segregation of loci in the populations (Buckler et al.,
2009). Owing to the use of diverse founder parentsTa
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Figure 1. Flow diagram depicting development of different stages of activities involved in nested association mapping. Figure 1
depicts selection of common founder parent (for example, genotype A) from crop cultivar to cross with donor diverse founder
parents (for example, I0 donor parents, namely, B,C,D,E,F,G,H,I,J,K) drawn from germplasm/landraces/wild relatives. It further
explains development of NAM population through, SSD, backcross and DH technique to develop RIL-NAM, NIL-NAM, and DH NAM,
respectively. It also shows the utilizing NAM population high throughput genotyping and phenotyping and QTL analysis.

Figure 2. Chromosomal segments of NAM population that looks in each generation: it depicts genome composition of common
founder parents and donor founder parents in different generation. P1, P2, P3, P4, P5, P6, P7, P8, P9, and PIO are 10 different F1
populations derived from 10 different crosses A� B, A� C, A�D, A� E, A� F, A�G, A�H, A� I, A� J, and A� K, respectively.
R1, R2, R3… R10 are the 10 different RIL populations of NAM population derived from 10 different crosses as mentioned above.
These 10 RIL populations show mosaic segment of donor founder parents in the background of common founder parents.
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for the development of NAM population, multiple
alleles and rare alleles are enriched in the population
(Yu et al., 2008).

IV. Major considerations in the NAM
development approach

Several factors need to be considered in NAM such as
a selection of founder parents, the methodology fol-
lowed in population development (crossing and self-
ing), mating design, size of the population, the
heritability of traits, number of QTLs governing the
trait, genetic components of traits (additive effects and
epistatic interactions), method of phenotyping, geno-
typing and statistical tools. These are briefly
described below.

A. Selection of common founder parent

The selection of a common founder parent is governed
by its morpho-physiological attributes and also target
traits under consideration. An elite cultivar of the crop
is generally selected as the common founder parent for
developing the NAM population. This not only facili-
tates the mapping of novel QTLs but also leads to the
genetic improvement of the elite cultivar. Further, a
widely adopted cultivar of a crop as a founder parent
makes it possible to evaluate the derived NAM popula-
tion across multiple locations in different ecologies. In a
wide variety of crops, the elite cultivars have been
deployed as common founder parents. For example, in
maize, B73 was used as a common founder parent, as it
is a reference cultivar used for maize genome sequence
and also widely deployed in breeding, genetic and gen-
omic studies (Yu et al., 2008). In barely, Rasmusson, a
high-yielding and six-rowed spring malting cultivar was
used as a common founder parent (Nice et al., 2016).
Similarly, IR64 in rice (Fragoso et al., 2017), RTx430 in
sorghum (Bouchet et al., 2017), IA3023 (Song et al.,
2017) and JS335 in soybean (Shivakumar et al., 2019),
LMPG 6 (Bajgain et al., 2016), Berkut (Jordan et al.,
2018), Avocet-YrA (Ren et al., 2017) in wheat, Merlo in
common bean (Hoyos-Villegas et al., 2016), PBY061
and Zhongshuang 11 (ZS11) in rapeseed (Li, Anja,
et al., 2016) were used as common founder parents for
the development of NAM population. In addition to
mapping of complex traits, the use of popular and well-
adapted varieties as common parent opens up the possi-
bility for developing highly diverse breeding material
which is a great resource for selecting better performing
lines than the common parent for potential replacement
in farmer’s field.

B. Selection of donor founder parents

The selection of donor founder parents is a critical
factor in the development of the NAM population.
Donor founder parents should be as diverse as pos-
sible and should represent the maximum genetic
diversity for target traits in the crop. Further, the
donor parents can be selected from adopted cultivars,
germplasm, landraces and wild relatives of crops. The
donor founder lines can be selected based on genetic
diversity, pedigree information, morphological data,
agronomic data, adaptability, geographical and eco-
logical data.

In rice, IR64 as common founder parent was taken
to represent indica, whereas 10 diverse donor lines
(including Azucena) were drawn from tropical japon-
ica based on their resistance/tolerance against biotic/
abiotic stresses, physiological traits, and genetic diver-
sity (Fragoso et al., 2017). In the case of rapeseed, Hu
et al. (2018) collected 307 inbred lines representing
adaptations to major rapeseed producing countries
and evaluated the growth adaptability to the local cli-
mate in Wuhan, China. Based on findings, 192 lines
were selected for genotyping using 451 SSR markers.
Finally, a total of 15 inbred lines representing genetic
diversity were chosen as diverse donor parents for the
development of the rapeseed NAM population.
Similarly, in soybean, 120 lines were selected from the
United States, China, Korea, Japan, and other coun-
tries based on their high yield, diverse ancestry,
drought tolerance features, and were genotyped with
Illumina GoldenGate assay containing 1536 SNPs.
Based on cluster analysis, 40 lines were selected as
donor founder parents for the development of the
soybean NAM population (Song et al., 2017). The
mini core developed from the core collection repre-
sents the maximum genetic diversity of crop plants
and paves the way for the selection of diverse lines as
donor founder parents for the development of NAM
populations (Gireesh et al., 2015; Rakshit and Swapna,
2015). For instance, in the barely NAM population, 25
diverse founder parents were selected from 318 acces-
sions of germplasm collection using SNP markers
(Nice et al., 2016). In another study, 10 diverse lines
were selected as donor founder parents from the sor-
ghum association panel representing global sorghum
diversity for the development of NAM population
(Bouchet et al., 2017). Alternatively, donor founder
lines can also be chosen based on traits of interest, for
instance, stem rust resistant lines were used as donor
founder parents for the NAM population in wheat
(Bajgain et al., 2016). Depending on the objectives of
the geneticist/breeder for developing the NAM
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population for multiple agronomic traits or few traits
containing the maximum allelic trait diversity, the
founder parent is chosen. The NAM populations can
also be developed for different subgroups/subspecies
separately as was the case in groundnut where separ-
ate NAM populations were developed for two market
types namely Spanish and Virginia (Pandey
et al., 2016).

The number of donor lines to be selected for the
development of NAM populations depends on the
purpose of the development of NAM. It has been
reported to vary from four donor lines in soybean (Li
et al., 2017) to 51 donor lines in rapeseed (Li, Anja,
et al., 2016). A study of Stich (2009) in maize and
Arabidopsis has revealed that with a higher number of
founder parents used for the development of the
NAM population, the power of QTL detection (1-b�)
increases. However, what should be the optimum
number of donor lines to be used for the development
of NAM population is still a point of further deliber-
ation and the decision lies with the geneticist/breeder
considering the target traits and available resources.

C. Population development

Breeding design, size of individual RIL population,
and total NAM populations are important criteria to
be considered. By increasing the population size, the
number of recombination increases, which in turn
improves the power of QTL detection (1-b�) and also
ensures precise estimation of allelic effect (Schon
et al., 2004; Stich, 2009; Cockram and Mackay, 2018).
Nevertheless, the use of an unequal size of sub-popu-
lations (individual RIL population) will undermine the
power of QTL detection in the NAM approach,
because it leads to unbalanced allelic frequencies
across the sub-populations. This will in turn reduce
the power of QTL detection and therefore, it is
important to develop proper and optimum popula-
tions/sub-populations for efficient use of the NAM
approach (Li, Anja, et al., 2016). Three kinds of NAM
populations can be developed based on the breeding
design employed (Li, Anja, et al., 2016) which are dis-
cussed below.

1. Recombinant inbred Line-NAM (RIL-NAM)
populations

The founder and donor parents, selected from germ-
plasm are crossed with common founder parent.
Resultant F1s and their subsequent segregation popu-
lations are advanced through the single seed descent
(SSD) method until attaining homozygosity to

constitute individual RIL populations. This approach
was initially employed in maize, wherein a common
founder parent B73 was crossed with 25 donor foun-
der parents and developed 25 RIL population to con-
stitute maize NAM population, having 200 RILs from
each cross (Yu et al., 2008; McMullen et al., 2009).
This approach is suitable for NAM population
wherein the donor parents are selected from a cross-
able set of germplasm and cultivars. This is the most
common and popular approach for NAM population
development in crops.

2. Backcross-NAM/advanced Backcross-NAM
(BC-NAM/AB-NAM) populations

In this approach, donor founder parents selected from
unadapted germplasm (wild species or landraces) pos-
sessing some special characters (for e.g., resistance/tol-
erance to stresses) are used as male parents to cross
with the elite cultivar (common founder parent)
which serve as the female parent. The resultants F1s
are backcrossed with the recurrent parent (common
founder parent) to generate backcross progenies. In a
subsequent generation, the backcross progenies are
advanced through SSD till the population reaches
homozygosity (for e.g., BC1F6). Such populations are
known as BC-NAM or AB-NAM populations. This
approach was employed in barley, wherein, 25 wild
barley accessions were crossed to elite cultivar
Rasmusson to develop 796 BC2F4:6 lines (Nice
et al., 2016).

3. Development of Double Haploid-NAM (DH-NAM)
populations

The NAM populations can also be developed using
the double haploidy approach. The common founder
parent is crossed with donor founder parents and
resultant F1s are utilized for the development of DH
populations in each cross separately. This approach
helps in the development of homozygous lines in a
single generation. DH-NAM approach reduces the
breeding duration enormously while at the same time,
significantly increasing the genetic gain. However, this
approach is suitable only for those crops where the
well-established protocols for DH development
are available.

D. Experimental designs and phenotyping of the
NAM population

Appropriate experimental designs should be employed
for accurate and efficient estimation of genotypic
effects in the mapping population. The most
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commonly used experimental design in a field experi-
ment is Randomized Complete Block Design (RCBD),
which is useful for a small number of genotypes
(<25) (Gomez and Gomez, 1984). However, a large
number of genotypes in RCBD will lead to more het-
erogeneity within the block. Un-replicated designs
with systematically spaced checks are the most prom-
inent experimental designs for phenotyping of a large
number of genotypes (Federer and Crossa, 2012).
Augmented designs are the class of incomplete block
designs, useful for controlling variability and estima-
tion of experimental errors. The NAM populations
will have a large number of genotypes, hence aug-
mented designs should be employed for phenotyping.
Different types of augmented experimental designs
were discussed by Federer in series of papers;
Augmented RCBD (Federer, 1961), Row-Column
Augmented Design (Federer and Raghavarao, 1975),
and Augmented split-plot (F�ed�erer and Arguillas,
2006). Augmented RCBD is useful when we have a
large number of genotypes with one-way elimination
of heterogeneity. When the field layout is in row-
column or in a square shape, row-column augmented
design can be used to eliminate the two-way hetero-
geneity. To compare the two different factors with
varying importance such as genotypes and nutrient
dosages, genotypes and insecticides, genotypes and
tillage practices etc., an augmented split-plot design is
most appropriate. The efficiency of augmented design
lies in the selection of several checks, the general rec-
ommendation is to use between 10 and 15% of the
treatments as checks (Burgue~no et al. 2018). Yates
(1936) proposed that number of checks in an aug-
mented design should be the order of the square root
of the genotypes under testing. Therefore, based on
the size of the NAM population and the environmen-
tal condition of the experimental field, a suitable
design with the appropriate number of checks should
be employed.

The quality of the phenotyping data generated
from mapping populations in target environments will
influence the output of mapping studies. Therefore,
the deployment of robust and precise phenotyping
techniques is one of the most important considera-
tions. It is a well-known fact that the expression of
quantitative traits is highly influenced by environmen-
tal factors, which makes it necessary for generating
phenotypic data from across years (target seasons)
and locations (hot spot locations in target geogra-
phies) to understand the complexity of trait. Despite
advances in agricultural technologies, precise estima-
tion of quantitative traits remains a difficult task and

this considerably affects the accurate estimation of the
effects of individual QTLs. High throughput pheno-
typing of mapping populations has become an
imperative in the era of high-throughput genomics to
maximize gains from vast genomic data generated.
High-throughput phenotyping can be undertaken
under controlled conditions like glasshouse and
growth chambers. Field-based high throughput pheno-
typing is also an important tool that can be employed
for phenotyping a large number of lines if proper con-
trols are included in the phenotyping exercise. In gen-
eral, the size of the NAM population is higher than
the usual biparental populations and association pan-
els, therefore, applications of high throughput pheno-
typic techniques are indeed essential to realize its full
potential. Employing high-throughput phenotypic
techniques in NAM for trait characterization saves
time, labor, and inputs required (Bouchet et al., 2017;
Barbadikar et al., 2019).

E. High throughput genotyping and
transcriptomics analysis of NAM populations

High throughput genotyping (HTG) using next-
generation sequencing (NGS) technology viz. whole
genome sequencing, Genotyping-by-sequencing (GBS)
whole-genome resequencing, RNA-sequencing or
transcriptome sequencing, epigenetic sequencing have
been deployed for cost-effectively generating large
genomic resources for dissecting complex trait-pheno-
type relationship (https://nam-genomes.org/). With
the advent of time, the NGS tools and algorithms
have been improved for genotyping large populations
like NAM. The HTG make it possible to genotype a
large number of lines with a higher density of markers
and increased mapping resolution. GBS has been
employed for genotyping several NAM populations of
maize, wheat, chickpea resulting in millions of SNPs
and increases the mapping resolution (Varshney et al.,
2014). The SNP-based arrays can be well utilized for
genotyping the NAM populations and the significant
SNP-trait associations physically linked to the QTLs
can be identified.

Ploidy, large genome size, heterozygosity, repetitive
sequences and cost of genotyping are some of the
important determining factors for applications of
HTG in NAM (Ray and Satya, 2014). Common foun-
der and donor founder lines have been sequenced
using NGS platforms for maize, wheat, soyabean, bar-
ley, oilseed rape, chickpea (https://www.maizegdb.org/
NAM_project, https://www.soybase.org/SoyNAM/,
http://hickeylab.com/wheat-nam-population/).
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The RNA-seq or transcriptome sequencing captures
the spatial and temporal expression of genes of tissues
in a particular developmental stage, condition or
stress. This enables a better understanding of the
genes underlying the QTLs/candidate genes identified
through GWAS. The genomic data combined with the
transcriptome data is a powerful and efficient
approach for the identification of causal candidate
genes with the phenotypic trait. The SNPs identified
from founder lines subjected to different conditions
can be effectively used to genotype the NAM popula-
tion. Moreover, such data can be combined with gen-
etic data for understanding the basis of a stress
response. Lin et al. (2017) sequenced the transcrip-
tomes of maize tissues (seedling shoot apex, immature
unpollinated ears, immature tassels, seedling shoots,
and roots) from 27 diverse NAM founder lines to
identify the gene expression patterns and variations.
This study reported development of a complementary
method to SNP-based GWAS called eRD-GWAS, a
Bayesian-based method for GWAS. The gene expres-
sion of transcription factors was compared with other
genes within and among the NAM founder parents
and significant association was noticed with pheno-
typic traits retrieved from a panel of 369 maize
diverse inbreds. Li, Sun, et al., 2016 used a combined
approach for dissecting the genomic regions associ-
ated with drought tolerance traits in maize NAM pop-
ulations using GWAS, joint QTL mapping, GBS, and
transcriptome sequencing. The mapping resolution
was increased by constructing high-density recombin-
ation maps using GBS data. The GBS generated SNPs
underlying the identified genomic regions were associ-
ated with drought tolerance traits and certain genes
harboring SNPs were highly upregulated in the inbred
line B73 under drought stress. The combined strategy
of high throughput genotyping, phenotyping, and
transcriptome sequencing can detect the causal genes
as well as decipher the regulatory variations operating
for a specific trait of interest. It is suggested that a
combination of two or more technologies like geno-
typing by sequencing and re-sequencing can detect
the causal region with higher resolution and accuracy.

F. Statistical tools for analyzing NAM populations

The QTL analysis for understanding the genetic archi-
tecture of complex traits is generally carried out by
linkage analysis in bi-parental mapping populations
and GWAS in the natural population (Li, Sun, et al.,
2016). Statistical approaches viz., Single Marker
Analysis (SMA), Interval Mapping (IM), Composite

Interval Mapping (CIM), and Inclusive Composite
Interval Mapping (ICIM) have been employed for
QTL analysis (Soller et al., 1976; Lander and Botstein,
1989; Haley and Knott, 1992; Zeng, 1994; Li et al.,
2007), but these methods are mainly designed for
individual bi-parental mapping populations. Linkage
analysis in bi-parental populations will only detect
two alleles per locus and has poor mapping resolution
(Li, Sun, et al., 2016). Whereas, population structure
and genetic relatedness will often lead to spurious
associations in GWAS. The NAM is primarily
designed to address some of the inherent limitations
of linkage analysis and GWAS.

The nested association mapping requires specially
designed statistical tools for achieving the high power
and high-resolution mapping of complex traits. While
the NAM population is derived from multiple parents,
all the families need to be taken together for analysis
to realize the advantages of the breeding design. Three
approaches currently being employed in the NAM
design are joint linkage analysis and NAM-GWAS.
These are briefly described below.

1. Joint linkage analysis
Joint linkage analysis refers to QTL analysis of complex
traits across all families of the NAM population. Two
methods viz., Joint Composite Interval Mapping (JCIM)
and Joint Inclusive Composite Interval Mapping
(JICIM) are being employed for joint linkage analysis of
complex traits in various NAM studies (Table 4).

The joint QTL analysis has a high power of QTL
detection (Buckler et al., 2009; Li et al., 2011) and
also identifies effects of more than two alleles per
locus as compared to individual family analysis
(Sneller et al., 2009; Ogut et al., 2015). For instance,
joint stepwise regression and JICIM were employed
for mapping flowering time in the maize NAM popu-
lation. The joint QTL analysis has identified nearly
twice as many QTL effects as identified by individual
family-wise (Buckler et al., 2009). In the case of
Arabidopsis, JICIM has identified nine QTLs contribu-
ting 83% to the phenotypic variance of flowering time
wherein, LOD scores were much higher than the LOD
score of these nine QTL identified from individual
families (Li et al., 2011). Further, among the nine
QTLs identified in Arabidopsis for flowering time,
four QTLs were significant only in one family indicat-
ing the higher power of detecting such rare QTL
using joint linkage QTL analysis (Li et al., 2011). Li,
Anja, et al. (2016) developed a JCIM algorithm with a
combination of LASSO (Least absolute shrinkage and
selection operator) regression model for the selection
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of co-factors (nontargeted QTLs), while carrying out
QTL mapping in rapeseed. The JCIM model showed
higher power of QTL detection than the existing
JICIM model due to the higher efficiency of the cofac-
tor selection method.

2. NAM-GWAS
The GWAS is a popular technique employed in nat-
ural populations for high-resolution mapping of com-
plex traits (Rafalski, 2002). However, the genetic
relatedness and population structure exist in the nat-
ural population will lead to the spurious marker-trait
association (Yu and Buckler, 2006). Besides, rare
alleles and small effect loci are difficult to detect in
GWAS (Lu et al., 2010). These limitations of GWAS
in a natural population can be addressed by employ-
ing GWAS in the NAM population (known as NAM-
GWAS). Population structure is reduced in the NAM
population due to recombination during the develop-
ment of populations. A study in sorghum showed that
the presence of a low level of population structure in
the NAM population as compared to the association
panel (Bouchet et al., 2017). While in Brassica, the
population stratification/clustering was significantly
low in the NAM population while it was completely
absent in the MAGIC population (Hu et al., 2018).
Although, recombination events during the develop-
ment of NAM population breakdown traits correla-
tions due to LD, the NAM population still retains low
population structure (Bouchet et al., 2017).

The frequency of rare alleles derived from one or
few diverse donor parents will be enriched in the indi-
vidual population to a detectable level. Consequently,
such rare alleles could be detectable by joint QTL ana-
lysis and NAM-GWAS. The NAM has a higher power
of QTL detection than GWAS under high and low
heritability, small population size, low effects of QTLs.
However, GWAS has a high power of QTL detection
than NAM under large sample size and high heritabil-
ity which could be due to loss of allelic diversity in
the NAM population as compared to association panel
(Bouchet et al., 2017). By increasing the common
founder parents, we can increase the power of QTL

detection and reduce the FDR (false discovery rate) in
NAM (Bouchet et al., 2017). High-resolution mapping
can be achieved due to preserving historical LD within
the novel recombinations. The LD could be decayed
during the development of the population due to
recombination between loci and QTLs. Small LD
blocks offer a better resolution for identifying causal
candidate genes, while the contrary is the case for
large LD blocks. In linkage analysis, due to limited
recombination during development of the population,
the closely spaced QTLs or alleles will lead to a fused
QTL signal, while NAM-GWAS will separate into dif-
ferent components due to historical recombinants pre-
sent in the founder parents (Tian et al., 2011). Several
studies have employed NAM-GWAS for mapping
complex traits in NAM populations viz., maize (Kump
et al., 2011; Poland et al., 2011; Tian et al., 2011;
Peiffer et al., 2014; Zhang et al., 2015; Lin et al.,
2017); barely (Schnaithmann et al., 2014; Maurer
et al., 2015, Nice et al., 2016; Saade et al., 2017; Vatter
et al., 2017) Sorghum (Bouchet, et al., 2017) and soy-
bean (Li et al., 2017; Diers et al., 2018).

Several studies have employed both joint linkage
analysis and NAM-GWAS independently for mapping
complex traits using NAM population. However, the
findings of joint linkage analysis and NAM-GWAS in
some cases are not similar (Tian et al., 2011). For
instance, Tian et al., 2011 employed both joint linkage
analysis and NAM-GWAS for mapping leaf architecture
traits in maize. The joint linkage analysis with 1106
markers identified 30, 34, and 36 QTLs for upper leaf
angle, leaf width, and leaf length explaining 74, 80, and
77% phenotypic variations respectively. While NAM-
GWAS studies using 1.6 million tested SNPs have
detected 203, 287, and 295 significant SNPs for upper
leaf angle, leaf length and leaf width, respectively. But
studies in the maize NAM population (Kump et al.,
2011, Olukolu et al., 2014) reveal that GWAS-associated
SNPs mostly localize to the joint linkage QTL. The
QTLs have been shown to contain multiple causal genes
in these NAM studies and other biparental studies. The
joint linkage analysis has been shown to narrow QTL
interval as compared to single linkage analysis.

Table 4. QTL analysis methods in NAM population.
S No. Mapping design/Method Cofactor selection method Crop Traits References

1. Joint composite interval
mapping (JCIM)

LASSO regression model Rapeseed (Brassica
napus L.)

Li, Anja, et al., 2016

2. Joint inclusive composite
interval mapping (JICIM)

Regression model Common bean Agronomic traits Hoyos-Villegas et al., 2016.
Joint stepwise regression model Maize

Groundnut
Flowering time

Seed weight
Buckler et al., 2009

Gangurde et al., 2020
Forward stepwise regression/

principle component regression
Maize Carbon and nitrogen

metabolism in maize
Zhang et al., 2015
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3. Combined linkage analysis and linkage disequi-
librium mapping approach

To further improve the statistical power of QTL ana-
lysis, several studies employed combined linkage ana-
lysis and linkage disequilibrium mapping strategy to
overcome the limitations of using linkage analysis and
LD mapping independently. The combined linkage
analysis and linkage disequilibrium mapping approach
is a very powerful statistical tool for mapping complex
traits wherein both linkage and LD between markers
and QTLs will be estimated. It captures information
about the linkage of markers based on recombination
frequency and LD created historically. Consequently,
it greatly enhances the mapping resolution and power
of QTL detection (Wu and Zeng, 2001; Wu et al.,
2002; Bardol et al., 2013). The integrated approaches
have been employed in humans and animals for map-
ping complex traits (Allison 1997; Rabinowitz 1997;
Meuwissen and Goddard, 2001; Wu and Zeng, 2001;
Meuwissen et al., 2002).

In case of plants, Lu et al., 2010 employed a com-
bined linkage and LD mapping strategy in three inde-
pendent RIL populations and 305 inbred lines for
mapping drought tolerance in maize. The integrated
mapping identified 18 additional QTLs that were not
detected either by linkage analysis or LD mapping
indicating the higher mapping efficiency of the inte-
grated mapping strategy. Further, the study also
showed that the effect of QTL detected in integrated
mapping is larger as compared to linkage mapping
and LD mapping. For instance, linkage mapping and
haplotype-based LD mapping could able to detect
QTL with PVE up to 22.7% while integrated mapping
strategy identified QTL with PVE (phenotypic varia-
tions expalined) up to 34.7%. While Bardol et al.,
2013 compared different mapping strategies and
reported the higher efficiency of integrated mapping
strategy in multi-parent mapping population for
unraveling the complex traits (Lu et al., 2010). It is a
pertinent note that combined linkage analysis and
linkage disequilibrium mapping strategy should be an
appropriate statistical strategy to be employed in
NAM population for realizing higher resolution and
higher power of QTL detection.

V. Applications of NAM populations in crop
improvement

A. Understanding the genetic architecture of
complex traits

Quantitative traits are controlled by several genomic
regions with small effects. By employing the principles

of linkage analysis and GWAS, the NAM enables the
identification of genomic regions associated with com-
plex traits at higher resolution with a higher power of
QTLs detection. The use of several diverse founder
parents enables the detection of multiple alleles and
rare alleles. The large-sized NAM population provides
high-quality phenotypic data that helps in understand-
ing genetic variations underlying complex traits. For
example in maize, flowering time is a complex trait
that controls the adaptability of maize cultivars to dif-
ferent environments. The NAM in maize (Buckler
et al., 2009) revealed that unlike other crops flowering
time in maize is controlled by numerous small addi-
tive QTLs with genetic and environmental interac-
tions. In another study, a total of 208 SNPs associated
with northern leaf blight resistance in maize NAM
population was identified, of which, five SNPs were
located in or adjacent to LRR receptor-like-kinase
genes (Poland et al., 2011). In groundnut, using two
NAM populations, 11 and 8 major effect QTLs were
detected for pod weight (PW) and seed weight (SW),
respectively in NAM_Tifrunner, while 13 and 11
major effect QTLs for PW and SW, respectively, in
another NAM population (called NAM_Florida-07)
(Gangurde et al., 2020). Most of the QTLs associated
with PW and SW were co-localized suggesting these
traits regulated by a common set of candidate genes.

B. Discovery of novel alleles/QTLs/genes from
unadapted germplasm, landraces and wild
species of crops and broadening the genetic
base of crop plants

Unadapted germplasm, landraces, and wild species of
crops are known to possess novel genes/QTLs for sev-
eral important traits and valuable resource for broad-
ening the genetic base of crop plants. By using
principles of the AB-QTL approach and NAM, the
AB-NAM enable the simultaneous introgression and
detection of genomic regions associated with complex
traits at high resolution and high power mapping. The
AB-NAM population is a robust resource for explor-
ing unadapted germplasm for crop improvement. The
barley AB-NAM population developed from 25 acces-
sions of wild species were utilized for mapping of the
glossy spike, glossy sheath, black hull color, and grain
protein content (Nice et al., 2016). Further, a major
QTL allele on 2H chromosome derived from wild bar-
ley was identified which increases 37% yield under
saline stress conditions. The study also identified SNP
(BOPA2_12_30822) in the alpha-glucosidase gene
(AK375658) associated with the major QTL (Saade
et al., 2016). The TeoNAM (Teosinte NAM)
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population in maize developed from the wild progeni-
tor of maize, Teosinte (Chen et al., 2019). Genetic
studies in TeoNAM revealed 255 QTLs for 22 domes-
tication and agronomic traits, many of these either
located at earlier reported regions or novel candidate
genes. The AB-NAM helps in bringing diverse novel
genomic regions and traits in the background of an
elite cultivar (i.e., common founder parent) and
enhances the genetic base of the crop plants.

C. Identification of candidate genes

Applications of omics in NAM has tremendous ability
to unearth the candidates genes underlying complex
traits. Using the NAM, four candidate genes on
chromosome 3, viz., CCCH-type zinc finger protein,
MIKC-type MADS-box protein (OsMADS50), DNA-
binding with one finger 12 gene (OsDof12) and Rice
phytochrome B (OsPhyB) responsible for days to
heading in rice were identified (Fragoso et al., 2017).
Similarly, in groundnut using two NAM populations
and SNP-based array, candidate genes having SNP-
trait associations for 100-pod and 100-seed weight
were identified (Gangurde et al., 2020). With the
availability of low-cost and affordable sequencing,
such results are expected to increase in coming years
and expected to accelerate gene discovery and marker
development.

D. Delineation of traits for pleiotropy vis-�a-
vis linkage

Co-inheritance of QTLs/traits is caused by either due
to linkage (physically linked) or pleiotropy (multiple
effects of single gene). The occurrence of recombin-
ation events in large-sized NAM population will help
in delineating linkage from pleiotropy. The negative
correlation between flowering time and northern leaf
blight resistance was detected among maize founder
parents. This negative correlation was broken in the
NAM population due to genome reshuffling. This
showed that the strong phenotypic association
between flowering time and northern leaf blight resist-
ance among founder parents is due to confounding
population structure coupled with weak linkage within
families rather than pleiotropy (Poland et al., 2011).

E. Mapping of recombination events and
segregation distortions

The SNP data of founder parents and NAM popula-
tion can be utilized for estimation of segregation

distortion and recombination events. As NAM
involves diverse parents and wild species, segregation
distortion will be evident in the population. The com-
mon segregation distortion loci across the population
and the loci specific to a particular population can be
estimated in NAM population. In bi-parental mapping
population, if loci have the same allele in both the
parents, it is not possible to estimate recombination
events, while in the case of the NAM population, due
to the use of diverse founder parents, if such loci have
allelic variations, the recombination events can be esti-
mated through joint linkage analysis. Allelic frequency
in each family can be estimated which is expected to
segregate in a 1:1 ratio. Chi-square test (v2) can be
carried out to determine whether observed allelic fre-
quency segregates as per expected frequency. Through
a joint analysis of the NAM population, the segrega-
tion distortion can be dissected and characterized.

A rice NAM population developed from IR64 and
tropical japonica (10 accessions) identified segregation
distortion on chromosomes 3, 6, 7 and 9. A detailed
study of the regions on Chromosome 3 associated
with segregation distortions showed that three genes
namely ras-related protein (regulates pollen tube
growth in Arabidopsis), actin-depolymerizing factor
(essential for pollen tube growth elongation) and
another gene region homologous to maize pollen gene
aberrant pollen 1 contribute for segregation distor-
tions (Fragoso et al., 2017). Further, it was utilized for
the estimation of recombination and an average num-
ber of recombination was found to be 18.9 with a
standard deviation of 10.9 (Fragoso et al., 2017).

F. Detection of rare alleles and minor QTLs

The NAM approach maximizes the detection of rare
alleles and minor QTLs due to larger population sizes
derived from diverse parents. It increases the fre-
quency of rare alleles to a detectable level as compared
to the natural population. However, this depends on
the number of founder parents possessing the rare
allele and their frequencies in the corresponding
NAM populations (Nice et al., 2016). A simulation
study by Guo et al., 2010 showed that the NAM
approach has adequate power to precisely identify the
functional markers associated with minor QTLs con-
tributing at least 5% of the phenotypic variation and
segregating in at least five RIL families of the NAM
population derived from 28 crosses. In the maize
NAM population, 32 QTLs for southern leaf blight
resistance were identified with small effects and the
absolute values of allelic effects ranged from 0.09 to
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0.39 on the nine-point scale (Kump et al., 2011). In
another study, Sharma et al. (2018) identified 96
QTLs for yield-related traits under varying nitrogen
levels in barley NAM population.

VI. NAM populations for genomic selection

Genomic selection predicts the phenotype of selected
individuals (in nonphenotyped breeding population)
using GEBV (genomic estimated breeding value)
derived from genome-wide marker loci and pheno-
typic data of training population (Meuwissen et al.,
2001). It is gaining importance for genetic improve-
ment of quantitative traits in plant species owing to
its advantage over conventional breeding and marker-
assisted selection approaches (Nakaya and Isobe,
2012). The effect of an individual marker is estimated
in the training population using appropriate predic-
tion models. The training population is a set of indi-
viduals that is phenotyped for quantitative traits and
genotyped using genome-wide markers. Size and gen-
etic relatedness between training population and
breeding population, the population structure of train-
ing population are important factors that influence
the accuracy of genomic prediction (Habier et al.,
2007; Nakaya and Isobe, 2012). Investigations have
been undertaken in the NAM population of soybean
and maize to study the impact of training population
size, marker density, and prediction models on the
accuracy of genomic prediction (Xavier et al., 2016;
Bian and Holland, 2017; Rincent et al., 2017). NAM
population is a structured population that can be
employed for prediction across families. Thus, the
NAM population can be considered an important
genetic resource for genomic selection.

VII. Constraints in deploying NAM approach

The NAM offers great prospects to unravel the genetic
architecture of complex traits as has been demon-
strated well in maize, barley, sorghum, rice, ground-
nut, and in few other crops as described in earlier
sections. However, several constraints need to be
addressed for better utilization of the approach.

The selection of donor founder parents, that har-
bors functionally distinct alleles as compared to the
common founder parent is pivotal for the develop-
ment of NAM families. It is necessary to select subsets
of founder lines with the maximum diversity based on
previous simulation algorithms and genealogy of core
sets. Hence, a thorough understanding of core set,
whole germplasm based on large morphological and

molecular data is required for deciding the number of
donor founder parents and also for a selection of
appropriate diverse founder parents. The cross-com-
patibility of diverse founder lines with common foun-
der parents is a prerequisite for the development of
NAM populations. The species originating in different
ecologies have different adaptation mechanisms and
heterogeneity, which can affect the cross-compatibility.
The utilization of wild relatives as donor founder
parents leads to segregation distortion and requires
more time for population stabilization. It also involves
carrying forward large segregating populations of indi-
vidual crosses and multi-location evaluation, requiring
a large experimental field area and resource inputs. It
is crucial to standardize the optimum number of
diverse founder parents, size of the NAM population
depending on crop species, ploidy level and the num-
ber of SNPs required for high throughput genotyping.

Haplotype diversity in the NAM population
depends on the number of diverse parents used and is
higher than the biparental population. However,
haplotype diversity of the NAM population is lower as
compared to the association panel. This could be
addressed by cautious selection of diverse parents and
also by increasing the number of parents (Guo et al.,
2010; Cockram and Mackay, 2018). For enhancing the
haplotype diversity, it has been suggested to increase
the number of common founder (Guo et al., 2010),
Multi-location evaluation of the NAM populations in
replications enables higher power of QTL detection
(Stich et al., 2010). Based on the availability of resour-
ces, one has to decide whether to use RIL-NAM, AB-
NAM or DH-NAM. We suggest the speed breeding
technique for accelerating breeding cycles during the
development of NAM populations.

VIII. Prospects of NAM populations in
crop plants

Recent advances witnessed in genomic technologies
are improving our understanding of genetic architec-
ture of complex traits and they are increasingly being
utilized for genetic improvement of various crops.
Next-generation sequencing tools can be better
employed in NAM populations to identify the diverse
QTLs/genes and their favorable alleles and further use
them for functional characterization, gene identifica-
tion and finally for trait improvement through breed-
ing. Further, NAM population has the potential to be
utilized for genomic selection for rapid genetic
improvement of quantitative traits. The breeding pro-
cess of development of NAM populations generates a
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large number of breeding resources that would be a
valuable resource for plant breeders and geneticists.
Due to the unparallel importance of NAM approaches
in molecular breeding and genomics assisted breeding,
higher emphasis should be given for the development
of NAM populations in many other crops and inten-
sify such efforts in all the major crops. However, in
this regard, the ease in making more number of
crosses, population stabilization times etc. are import-
ant considerations and may be a limiting factor in
many crops. In crops like maize where DH technology
is well established, developing countries also need to
invest in this to generate NAM populations, which
will serve not only as an important resource for gene/
QTL identification but also as a valuable resource for
breeding and genetic studies. However, in the process
of the development of NAM resources in hybrid based
crops, care must be taken so that the heterotic groups
do not get mixed up while selecting diverse parents.
Creating separate NAM populations for contrasting
heterotic groups is indeed a good strategy. Global and
national platforms should accelerate efforts in the
development of NAM populations so that the NAM
approach can be better exploited for genetic improve-
ment of various major food and commercial crops.
Finally, we would also like to reiterate that NAM pop-
ulations are community resources that may be freely
shared with researchers across the globe for their
gainful utilization.
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