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4.1 Introduction

The rising human population, climate changes, decreasing arable land, as well as the increasing demand for valuable

natural compounds have significantly increased concern for global food security. Abiotic stresses such as salinity,

drought, flood, heat, nutrient deficiency, ozone, heavy metals, and ultraviolet radiation affect plant growth, productivity,

and decrease the quality of horticultural crops worldwide (Toscano et al., 2019). The frequent changes in weather

expected to be more common in the future, presenting a huge challenge for researchers globally. Abiotic stresses can

strongly increase crop yield losses, ranging from 50% to 70% (Francini and Sebastiani, 2019). Plants modulate various

physiological, biochemical, and molecular mechanisms to cope with the abiotic-stress conditions. However, the degree

of adaptability and tolerance varies among species and varieties (Mariani and Ferrante, 2017). Investigations of these

mechanisms lead to a better understanding of stress tolerance and identify the new sources of stress-tolerant traits.

Further, breeders translate this information into stress-tolerant varieties using available tools like conventional breeding,

marker-assisted selection, and plant transformation (Sarkar et al., 2019). However, horticulture crops typically have

long breeding cycles, and breeders require longstanding breeding programs and years for the development and introduc-

tion of improved cultivars (van Nocker and Gardiner, 2014).

The development of the new climate-resilient elite varieties takes several years in most of the crops. After hybridiza-

tion of selected parental lines and even in the case of the advancement of transgenic lines, it requires four to six succes-

sive cycles of inbreeding to achieve desirable homozygosity (Watson et al., 2018). Earlier, the shuttle breeding,

developed by Norman Borlaug in the 1950s, was the most known approach in wheat to harvest about two generations

per year (Ghosh et al., 2018). Other approaches were also being used like physiological stress for early flowering,

embryo rescue to shorten generation cycle, and embryo rescue coupled with the application of plant-growth regulators

and double haploid (DH) to obtain homozygous lines only in two generations, which otherwise takes six or more gen-

erations (Ghosh et al., 2018). Among these approaches, DH was most extensively used in breeding programs for a num-

ber of plant species (Hooghvorst et al., 2020). Shortening breeding cycles allow plant breeders to fast-track genetic

improvements such as yield gain, biofortification, disease resistance, and climate resilience (Ghosh et al., 2018).

The rapid development of functional genomics and gene technologies over the past decade, particularly sequencing

technologies, availability of the complete genome of various crops along with high-throughput analysis tools the geno-

mics have entered its pick stage (Varshney et al., 2009). However, available genetic information has not been effec-

tively exploited due to the archaic phenotyping techniques and the time-consuming traditional cultivation methods,

which have not kept pace with the flourishing high-throughput genotyping tools (Yang et al., 2020). Traditional plant

breeding is a slow process, attributed partly to the time required to complete the plant life cycle (Fiyaz et al., 2020).

Further developing stable lines, plants are grown for many generations, and each new generation is targeted to breed

out undesirable traits while keeping the desirable ones (Nawade et al., 2018). The quicker they can take a generation

from seed-to-seed, the quicker they can remove undesired traits while promoting wanted ones (Ghosh et al., 2018;

Watson et al., 2018). Indeed, it is apparent that generation time in most plant species has become a new bottleneck in

crop breeding. This has driven intense efforts by the scientific community of agriculture researchers and engineers to
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adapt newer technologies for generation advancement (Ghosh et al., 2018; Watson et al., 2018). Adapting horticulture

for faster development of new cultivars is essential to meet evolving consumer preferences, varying climatic conditions,

increasing demand for horticultural products, which requires tremendous research efforts from multiple disciplines.

The present chapter discusses the perspectives of speed breeding in horticultural research, emphasizing current

development in speed-breeding techniques.

4.2 Speed breeding: a concept to rationality

About 100 years back, Pfeiffer (1926), a botanist, first reported that plants can be grown under an artificial source of

light. The effects of continuous supplemented light by using incandescent and electric lamps were studied by Siemens

(1880). Subsequently, it was reported that continuous light induces early flowering in several plant species, including

cereals, pulses, weed species, vegetables, herbs, and ornamentals (Davis and Burns, 2016).

Inspired by the National Aeronautics and Space Administration (NASA) techniques for growing plants on space sta-

tion, scientists from the University of Queensland Australia, the John Innes Centre, United Kingdom and collaborators

optimized the technique for rapid plant growth and development naming it “speed breeding.” This technique has been

successfully utilized for a range of crops like wheat, barley, chickpea, and canola, which uses controlled modified glass-

houses fitted with light-emitting diode (LED) to grow plants under extended photoperiods to accelerate plant growth,

early flowering, and seed maturation consequently reducing plant generation time by 5 times compared to field condi-

tions and by 2.5 times compared to regular greenhouse (Ghosh et al., 2018; Watson et al., 2018). This advanced tech-

nology that shortens the plant breeding cycle and accelerates breeding research is receiving much attention worldwide.

4.3 Speed-breeding components

Speed-breeding techniques consist of setting up a controlled environment that meets all the plant needs and influences its

growth at every stage of its development (Ghosh et al., 2018). The basic components of speed breeding include the use of

growth chambers with supplemental LED for prolonged photoperiods, controlled temperature, and humidity (Fig. 4.1).

Environmental factors such as light, temperature, and humidity are significant in relation to determine plant’s

growth and health levels. Optimization of plant growth involves controlling these environmental factors to encourage

and boost photosynthesis and vegetative and reproductive growth (Fig. 4.1). In the case of horticulture crops, various

technology-driven approaches are employed to grow plants in highly controlled closed environments where various abi-

otic parameters essential for plant growth can be optimized and maintained throughout development (Goto, 2003).

4.3.1 Light

Light is the source of energy for plant photosynthesis and growth. Light characteristics such as intensity, duration, spec-

tral wavelengths, and direction can influence plant growth and development (Bayat et al., 2018). Light intensity influ-

ences photosynthesis, stem length, leaf color, and flowering (Yoshida et al., 2012). Artificial light is provided as a

photoperiodic light to control flowering and as a supplementary light to reduce the plant development time and obtain

higher produce quality and yield (Bergstrand and Schussler, 2013). Runkle and Heins (2001) demonstrated that far-red

light promotes flowering in several long-day ornamental plants. The petunias and pansies, grown under red:blue:far-red

light mixtures, showed earlier flowering up to 2 weeks in plants treated with far-red light compared to plants grown

without far-red light (Davis and Burns, 2016). Begonia and poinsettia flowering times were advanced in response to
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red1white1 far-red light treatments (Davis and Burns, 2016). In recent years the use of LEDs has become an increas-

ingly attractive option for lighting in horticultural systems because of its high radiant efficiency, long life, low heat

emission, narrow spectrum, capacity to meet the light intensity, and wavelength requirements of different plant species

(Bugbee, 2016). The recent achievements in horticulture with the use of LEDs have been reviewed in detail (Viršilė

et al., 2019; Bantis et al., 2018; Davis and Burns, 2016). These reviews discuss the application and advances of LED

light in horticulture to control flowering and increase transplant success, quality of preharvest, and postharvest produce.

The use of LEDs in amending phytochemical content for improvement of nutritional values in horticultural crops also

been discussed in the above reviews.

With a well-established platform, artificial growth further could be optimized for shorting the generation time of

horticulture crops. According to the recommendation of Ghosh et al. (2018), any light that produces a spectrum that

covers photosynthetic active radiation (PAR:400�700 nm), consisting blue, red, and far-red ranges, is suitable to use

for speed breeding. The LEDs, or a combination of LEDs, could be used to get an appropriate spectral range.

4.3.2 Temperature

Temperature is a primary factor affecting the rate of plant development. The responses to temperature differ according

to plant species and their phenological stage (Makhmale et al., 2015). The vegetative growth of plants increases with a

rise in temperature but within the required optimum level temperature. In general, in most of the plant species, vegeta-

tive phase generally requires a higher optimum temperature than its reproductive phase (Hatfield and Prueger, 2015).

The dormancy in temperate-zone fruits and nuts is naturally overcome by using extended periods of low winter temper-

ature under high-moisture conditions (van Nocker and Gardiner, 2014). There is a strong interaction between tempera-

ture and photoperiod for influencing flowering in many species. The combination of optimum temperature and

favorable photoperiod was used to accelerate flowering within critical limits (Adams et al., 1999). Environmental con-

trol of flowering by light and temperature has been practiced for many years (Hatfield and Prueger, 2015).

For speed breeding, it is recommended that an optimal temperature regime (maximum and minimum temperatures)

should be applied for each crop (Ghosh et al., 2018). A higher temperature during the photoperiod and lower tempera-

ture during the dark period successfully accelerated the generation times of wheat (Ghosh et al., 2018).

4.3.3 Humidity

Relative humidity directly impacts the water relations of plants and indirectly affects leaf growth, photosynthesis, and

pollination. Plant stomatal movements are based on the vapor pressure deficit and air humidity (Taiz and Zeiger, 1991).

At high air humidity, plant’s water-usage efficiency slows down even when the stomates are open. While at low humid-

ity, transpiration is too high; therefore plants close the stomatal openings to reduce water loss, and wilting consequently

slows the photosynthesis resulting in stunted plant growth (Georgii et al., 2017).

Humidity is the most difficult environmental factor to control in controlled-environment chambers, but a reasonable

range of 60%�70% is ideal (Ghosh et al., 2018). For crops that are more adapted to drier conditions, a lower humidity

level may be advisable (Ghosh et al., 2018).

4.4 Advances in the optimization of conditions for speed breeding

Speed-breeding components are optimized according to crop for reducing generation time, and crop-specific protocols

are developed. Mainly three types of approaches were used for speed breeding: controlled environment chamber, use of

glasshouse conditions, and benchtop growth cabinet (Watson et al., 2018). The benchtop growth cabinet can be used to

conduct experiments before it scaled-up to larger glasshouse conditions (Ghosh et al., 2018). Watson et al. (2018) used

a prolonged photoperiod with supplementary lighting and temperature control in the glasshouse or fully enclosed

growth chambers and reported that they can grow up to six generations of long-day or day-neutral crops in a year, while

traditional techniques only enable one to two generations. The phenotypes and key growth stages in wheat and barley

were not affected under speed-breeding conditions (Watson et al., 2018). Till now, speed breeding is successfully

implemented for long-day and day-neutral plants that do not require vernalization (Table 4.1). The optimized conditions

accelerate the germination of the immature seed, the developmental rate of plants, and induce early flowering and matu-

rity, thereby reducing generation time (Chiurugwi et al., 2019; Ghosh et al., 2018; Watson et al., 2018) (Fig. 4.1).
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TABLE 4.1 Speed breeding protocols optimized for shortening the breeding cycle.

Crop Type of

plant

Growth parameters under RGA or SB Generation time (days) References

Photoperiod Temperature Light and other parameters Humidity

(%)

Field

condition

Speed

breeding

Wheat (bread) LD 22 h 22�C/17�C light/dark SB-I: 360�500 μmol m22 s21

SB-II: 440�650 μmol m22 s21

70 105
87

SB-I: 62
SB-II:65

Watson

et al. (2018)

Wheat (durum) LD 22 h 22�C/17�C light/dark 360�500 μmol m22 s21 70 102 62 Watson

et al. (2018)

Chickpea Quantitative

LD

22 h 22�C/17�C (day/night) 440�650 μmol m22 s21 (adult plant

stage)

70 115 82 Watson

et al. (2018)

Barley LD 22 h 22�C/17�C light/dark SB-I: 360�500 μmol m22 s21

SB-II: 440�650 μmol m22 s21

70 102�115 55�60 Watson

et al. (2018)

Sorghum SD Continuous

light

30�C � � 119 77 Rizal et al.

(2014)

Peanut SD Continuous

light (SVLs)

28�C6 3�C/17�C6 3�C
(day/night)

Continuous 65 145 89 Ochatt

et al. (2002)

Oat LD 12 h initial
stage

18 h later
stage

21�C6 1�C/
18�C6 1�C
light/dark

340�590 μmol m22 s21(50 cm

above the pot)

� 114 100 Ghosh

et al. (2018)

Soybean SD 14 h 30�C/25�C (light/dark) 220 μmol m22 s 21 at the canopy
level
(CO2 supplementation at .400 p.
p.m)

50�80 102�132 70 Nagatoshi

and Fujita

(2019)

Canola
(1) Brassica
rapa
(2) Brassica
oleracea
(3) Brassica
napus

LD 22 h 22�C/17�C (day/night) 440�650 μmol m22 s21 (adult plant

stage)

70 171 98 Watson

et al. (2018)

20�C/15�C day/night 356.86 16.5 to 956.56 185.0 μmol

m22 s21 at bench height

� (1) 112
(2) 169
(3) 109

i- 91ii-

128iii- 91

Ghosh

et al. (2018)

Pea LD 22 h 22�C/17�C light/dark 360�500 μmol m22 s21 70 84 51 Watson

et al. (2018)

LD 16 h In vivo 24�C/20�C
In vitro 24�C/22�C

In vitro plus in vivo system and

embryo axis explants

70 143 67 Ochatt

et al. (2002)



Lentil Quantitative

LD

20 h � � � 100�110 56 Lulsdorf

Banniza

(2018)

Quantitative

LD

18 h 22�C/18�C light/dark 178 μmol m22 s21, use of plant

growth regulators and immature

seed

� 104 45 Mobini

et al. (2015)

Faba bean DN or LD 18 h 22�C/18�C light/dark 178 μmol m22 s21 � 365 field,

120

greenhouse

54 Mobini

et al. (2015)

Medicago

truncatula

LD 22 h 22�C/17�C light/dark 360�500 μmol m22 s21 70 90�180 78�80 Watson

et al. (2018)

Brachypodium
distachyon

SD 22 h 22�C/17�C light/dark 360�500 μmol m22 s21 70 73 48 Watson

et al. (2018)

Sugarcane SD 11 h 42 min

to 12 h

45 min

.24�C Continuous fertilizer to induce

synchronous flowering

� . 365 � Hale et al.

(2017)

Amaranthus Quantitative

SD
LD—16 h in
initial stage
SD—8 h
later stage

LD—35�C/30�C
day/night
SD—30�C/25�C
day/night

LD—150 mmol
SD—150 mmol

� 180 60 Stetter et al.

(2016)

Tomato DN � � Introgressed a continuous light-

tolerance gene CAB13, which

increased productivity under

continuous light

� 80 � Velez-

Ramirez

et al. (2014)

Potato LD or DN � � Speed-breeding protocol is under

development at James Hutton

Institute

� 140 � �

Rice SD 11 h 30�C/25�C
day/night

350 μmol m22 s21 and CO2 at

475 ppm (biotron speed breeding)

70 122 80 Ohnishi

et al. (2011)

LD-14 h for
30 days
SD 10 h
after that

30�C/25�C light/dark 350 μmol m22 s21 70 135 100 Rana et al.

(2019)

LD, linkage disequilibrium; RGA, rapid generation advancement; SB, speed breeding; SB-I, speed-breeding method I; SB-II, speed-breeding method II; SD, Short Day; LD, Long Day; DN, Day Neutral; SVL, Sodium Vapour Light.



4.4.1 Acceleration of plant growth

In general, physiological stresses, namely, nutrient deficiency, water access, and plant exposure to intense light induce

growth and early flowering (Taiz and Zeiger, 1991). Speed breeding combines some of these techniques avoiding the

deficiencies and stress with a good quantity supply of water and nutrients during the growth. The excess of light and

heat during daytime gets offset by cooler temperatures at night, and this extended photoperiod is the basis to hasten

plant growth (Ghosh et al., 2018). Under 22-h photoperiod and a controlled temperature regime, generation times were

substantially reduced for wheat, barley, chickpea, pea, and canola as compared to those of plants grown in a field or a

glasshouse with no supplementary light (Table 4.1) (Ghosh et al., 2018; Watson et al., 2018).

4.4.2 Induction of early flowering

A higher temperature is maintained during the photoperiod, while a fall in temperature during the dark period can hasten

the flowering (Pazos-Navarro et al., 2017). In the case of amaranth (Amaranthus spp. L.) extended light was applied before

and following a shortened photoperiod to induce flowering, and hasten initial vegetative growth (Stetter et al., 2016).

4.4.3 Induction of early seed ripening

Seed ripening gets accelerated by higher temperature or water shortage, enabling harvest 1 week after the seed has set

in the plant (Ghosh et al., 2018). Optimal values may vary by species, cultivar, and planting conditions. The best results

were observed with sowing at 1000 plants m22, 22 h of LED light at 22�C, 2 h of night at 17�C, and the light spectrum

for spring barley (Ghosh et al., 2018).

4.5 Abiotic stresses: where speed breeding can be implemented

Abiotic stresses are always being serious constraints of crop production and alone account for nearly 50% yield loss in agri-

cultural crops worldwide (Theilert 2006; Wang et al., 2007; Shinwari et al., 2020). Plants are frequently exposed to differ-

ent abiotic stresses such as drought, salinity, high and low temperatures, flood, heavy metal toxicity (e.g., Al31, Cl2, Cd21,

Fe21, and Na1), and mineral deficiency (e.g., Fe31, N, P, S, and Zn21) (Mickelbart et al., 2015). Among these, drought,

salinity, cold, and heat lead to nearly 70% yield reduction of food crops across the globe (Kaur et al., 2008; Thakur et al.,

2010). These abiotic stresses have a major impact on crop productivity and production (Roy et al., 2011). Approximately

40% yield loss is caused due to high-temperature stress, 20% yield loss occurs due to salinity, and 17% and 15% yield loss

is caused by drought and low temperature, respectively (Ashraf et al., 2008). Other abiotic stresses like low temperature,

excess water, heavy metal, mineral deficiency, and radiation also lead to considerable yield penalty in crop production.

Further global warming and climate change has increased the impact of abiotic stresses on crop yield.

Limited success has been achieved in elucidating genetic and molecular mechanisms for abiotic stresses tolerance

like drought, salinity, cold, ion toxicity, mineral deficiency (Roy et al., 2011; Bechtold and Field 2018). Understanding

of tolerance mechanism to abiotic stress right from the perception of environmental signal to cellular response to put

forth the adaptive response is very important in the development crop-improvement strategies for stress tolerance

(Suprasanna et al., 2016). In the case of abiotic-stress experiments, generation advancement, or phenotypic evaluation

in abiotic-stress studies, speed breeding can be integrated in a better way as it requires controlled growth conditions of

glasshouse. A controlled environment can minimize the experimental error and reduce the complexity of interactions

between genetic and environmental effects on phenotype (G3E interaction) (Berger et al., 2010; Roy et al., 2011).

Controlled environment allows monitoring the start of some stresses like limiting water in drought stress, the addition

of salts to hydroponics in salinity, and excessive watering. On the other hand, control conditions do not completely

mimic the natural environment and cost-reduced reality, as plants are being grown in the pot conditions compared to

field (Passioura, 2006). Under glasshouse conditions, preliminary abiotic-stress experiments are usually performed like

water-deficit stress (drought), excess water, temperature extremes, and salinity. Speed breeding can be a reliable tool

and can be incorporated in regular breeding programs. The advanced breeding technologies, focusing on the improve-

ment of abiotic stresses tolerance, are transgenics, marker-assisted breeding, genomic selection, express genome editing,

etc. It can be used in various stages in the development of stress-tolerant cultivars. Speed breeding assists in defining

target stress and environments, identification of superior parents, standardization of screens for stress tolerance, eluci-

date mechanisms of stress tolerance, identification and characterization of genes imparting tolerance, pyramiding differ-

ent tolerance in elite lines through marker-assisted breeding, evaluation of breeding lines in target stress environments,

etc. However, the use of speed breeding in abiotic-stress tolerance is in infancy stages.
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4.5.1 Drought

Drought is considered one of the major constraints in sustainable crop production (Pennisi, 2008; Berger et al., 2010).

Unavailability of sufficient water in the soil creates water-deficit stress to plant. Drought stress has been found to limit

productivity by reducing stem diameter, leaf area, plant height, and plant biomass in different crops (Farooq et al.,

2009; Zheng et al., 2016). The unpredictable heterogeneous nature of drought stress (variations between seasons and

years and between regions) is of major concern. The constraints faced by breeders for developing drought-tolerant vari-

eties can be easily removed by using speed breeding (Mitra, 2001). Speed-breeding platform helps to identify a repre-

sentative drought stress condition, thereby providing homogenous condition for screening. Evaluation of genotypes in

controlled conditions makes selection of promising individual plants. Reproducible and precise screening techniques

can be used for the identification of superior genotypes in speed breeding, thereby eliminating the selection of lines

having negative association of stress tolerance traits with yield. It is usually observed that there is an effect of multiple

stresses on plants; however, speed breeding helps to study each stress independently and elucidates the mechanism of

stress tolerance. Speed breeding will help to expand the research on abiotic stress in pulses and oilseed crops as most of

the efforts are confined in cereals.

4.5.2 Salinity

Salinity is another major abiotic stress and affects more than 20% of global agricultural irrigated land (Glick et al.,

2007). Soil salinity is becoming an acute problem to the agricultural world, because of low water quality in arid and

semiarid regions (Flowers, 2004; Ghassemi et al., 1995; Rhoades and Loveday, 1990). Salinity affects plant growth in

many ways and slightly similar manner as drought by creating water-deficit stress. Even though water is available in

the soil in sufficient amount, it cannot be taken up by the plant roots due to difference in water potential, which is cre-

ated under saline conditions. Salinity also causes nutrient deficiency to plant and thereby suppress growth, metabolism,

and productivity. To develop salt-tolerant cultivars, effort is being made through approaches like convention breeding,

transgenics, and marker-assisted breeding. Although transgenic and marker-assisted breeding approaches have shortened

the breeding process to a certain extent, still there is a need to boost the breeding process to meet the increasing food

demand. Speed breeding can further hasten these processes. For example, salt-tolerant lines have been developed in rice

in shorter time through combined marker-assisted breeding and speed-breeding approach (Rana et al., 2019). Speed

breeding offers scope to improve salinity tolerance and develop better cultivars in other crops like, cereals, pulses, oil-

seeds, and vegetables at a faster rate.

4.5.3 Temperature

Extreme temperatures (high/low) exerted a significant negative influence on crop productivity worldwide. High-

temperature stress witnessed significant yield loss in different crops. High-temperature stress creates oxidative stress to

the crop plants and often occurs along with drought and other abiotic stresses (Mittler, 2006). Like drought and salinity,

low temperature or cold stress is also the most harmful abiotic stress (Mboup et al., 2012). Cold stress is divided into

two types, namely, chilling stress (0�C�15�C) and freezing stress (,0�C). Agricultural and horticultural crops culti-

vated in tropical and subtropical regions are more prone to low-temperature stress compared to temperate crops

(Ritonga and Chen 2020). Low temperature negatively affects many aspects of plant growth, namely, water transport,

cell division, photosynthesis, survival, growth, and at the end crop yield (Hasanuzzaman et al., 2013). Conventional

breeding, transgenics, markers assisted breeding, and genome editing approaches are being used by the researchers all

over the world for the improvement of temperature-stress tolerance in different crop species. Improvement of crops to

these major abiotic stresses (drought salinity and temperature) can be fast-tracked with the integration of speed

breeding.

4.6 Integration of speed breeding with advance breeding technologies for abiotic-
stress tolerance

Abiotic stresses pose a major challenge for crop production and cause substantial yield reduction worldwide (Wang

et al., 2003; Wania et al., 2016). Abiotic stresses adversely affect the vegetative and reproductive stages of plant growth

and trigger a series of changes at physiological, biochemical, and molecular levels, often resulting in cellular machinery

damage (Rai et al., 2011). Plants respond to abiotic stress by different mechanisms that trigger the plant signaling pro-

cess and transcriptional regulation and produce several stress-responsive compounds like proteins, antioxidants, and
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osmotic solutes (Nakashima et al., 2009). Many genes have been identified from various plants that are responsible for

the synthesis of these stress-responsive compounds. These genes are classified into three categories: (1) genes responsi-

ble for the synthesis of various osmolytes such as heat-shock proteins, mannitol, proline, glycine betaine; (2) genes that

code for ion and water uptake and transport like aquaporins and ion transporter; and (3) genes that regulate transcription

and signal transduction mechanism, for example, WRKY1, MAPK, and DREBI (Sarkar et al., 2016; Parmar et al.,

2017). Such genes are targeted in breeding programs for the development of stress-resistant cultivars using classical as

well as modern breeding techniques like Marker-assisted selection and genetic engineering (Jain, 2015).

However, one of the key limitations in the improved variety development is time. The traditional approaches take

more than a decade from making the critical cross to releasing the improved variety. In the current challenges, breeders

are facing call for an integration of technologies to enable us to develop crops faster than ever before (Fig. 4.2). Speed

breeding is all about growing plants quickly, efficiently, and as cheaply as possible. Speed-breeding technology revolu-

tionizes the concept of growing the plants to keep pace with the recently advanced genomic technology. Speed breeding

enables breeders to exploit the collection of germplasms and mutant lines for rapid gene discovery and gene deploy-

ment. This approach has been adapted to a range of important crops, particularly field crops, and it is just a matter of

optimizing the protocol for inducing early flowering and achieving rapid generation advances.

4.6.1 Combining speed breeding with marker-assisted breeding and genomic selection

The advancement in genotyping has been huge. The low-cost genotyping and advanced sequencing techniques are

offering breeders high-density DNA markers across the genome. Advanced high-throughput technologies have revolu-

tionized plant breeding, for instance enabling scientists to track genes and even develop predictive breeding approaches

such as genomic selection (Wang et al., 2018). The speed-breeding technique was successfully integrated with marker-

assisted backcross for salinity-tolerance rice (Rana et al., 2019). It took 17 months to achieve six backcross generations

with an average of 85 days/generation. The obtained BC3F3 lines, further subjected to salinity stress, showed signifi-

cantly less accumulation of Na1, higher survival rate, and biomass compared to recipient parent (Rana et al., 2019).

The genomic selection uses sequence information, SNP markers, and algorithms to predict the performance of plants

without field testing and reduces the breeding timeframe by the direct identification of parents or lines that can be used

for the next breeding cycle. Genomic selection has been combined with speed breeding for the prediction of breeding

value of quantitative traits (e.g., yield) in wheat (Watson et al., 2019). Integrated genomic selection and speed-breeding

approach were used to develop recombinant inbred lines and enabled indirect phenotypic selection for the improvement

of important traits, like height and flowering time, before field trials (Watson et al., 2019). The predicting performance

of a plant for any trait, like yield or quality, stress or disease, field-testing operations, and the predictive breeding cycles

can go very, very fast. In the future, researchers are planning to use artificial intelligence to predict plant performance

based on genotyping, also predicting the best parents to use for crossing. Dr. Lee Hickey from The University of

Queensland, Australia and his collaborators developed a new methodology that combines speed breeding and the geno-

mic selection and call it “speed genomic selection.”
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Rapid genetic gain

FIGURE 4.2 Integration of speed breeding with advance

breeding technologies for rapid genetic gain.
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4.6.2 Combining speed breeding with genome editing and transgenic pipelines

Biotechnology allows the transfer of the desired genes from any organism, plant, or microorganism into targeted crops,

extending the opportunities for stress tolerance by offering new genotypes and phenotypes for breeding purposes, and

ultimately the development of new improved cultivars (Wang et al., 2019). The precise genome-editing technique,

Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated (CRISPR/Cas), have been successfully

applied in fruits, vegetables, and ornamental crops like potato, apple, citrus, grape, tomato, pear, banana, kiwifruit, cab-

bage, carrot, and petunia for gene mutation, repression, activation, and epigenome editing (Corte et al., 2019). There

are a lot of bottlenecks in the genome editing and transgenic pipelines that prevent scaling developments up and deliv-

ering improved crop varieties. For example, the lengthy tissue culture systems that often require 9 months from particle

bombardment to seed production. Moreover, this whole process is limited to just one or two specific genotypes that are

very favored for the tissue-culture regeneration process.

The CRISPR/Cas system enables breeders to create multiple targets that can be modified simultaneously in an effi-

cient way and allows immediate pyramiding of beneficial traits into an elite background within one generation (Wolter

et al., 2019). This technique with speed breeding could help to utilize the enormous genetic diversity present in wild

species, uncultured varieties, and germplasm of crops as a source of allele-mining for various abiotic stresses.

4.7 Challenges ahead

So far, speed breeding has shown the biggest potential in long-day plants that flower in response to longer days, which

increase the possibility that it will work with horticultural crops like pepper and radish. According to crop species and

breeding objectives, several key components need to be evaluated and customized for the development of speed-

breeding protocols. The integrations of multiple disciplines such as, high-throughput genotyping and phenotyping with

speed breeding to rapidly improve orphan crops and bring them to the forefront of the quest for a well-nourished world

population, in the context of unpredictable environmental and socioeconomic conditions. Speed breeding must, there-

fore be integrated with other breeding techniques as well as cost-efficient high-throughput genotyping and phenotyping

to speed up the generation. Therefore speed breeding could be a pivotal tool for accelerating crop growth and reproduc-

tion, through which breeders around the world will be able to breed plants and generate improved cultivars that are bet-

ter adapted to changing climate to feed the increasing population.
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