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PREFACE

Next-generation sequencing (NGS) and microarrays are popular source of gene expression data.
The rapid and substantial cost reduction in NGS technology has significantly accelerated the
generation of huge amount of gene expression data. The ever increasing amount of gene
expression data has put emphasize on the scientists and statisticians to develop techniques and
methodology that supports the analysis of this complex and huge amount of data. Many times, the
number of genes in these datasets are much larger than the number of samples. Furthermore, the
relevant informative genes associated with the outcome are usually few in the data sets. In
addition, the complicated relations among different genes make analysis more difficult.
Informative gene selection plays a bigger role in removing redundant and irrelevant genes and
improves the quality of result. Various informative gene selection methods exist, and they are
being widely used. All these methods aim to remove redundant and irrelevant genes so that
classification of new instances is more accurate.

Advances and development of open source as well as commercial computational and statistical
tools containing advance techniques for biological data handling and analysis using high
performance computing, parallel programming, big data analytics and data visualization enabled
the easy way to uncover the biological complexity. Indian Council of Agricultural Research
(ICAR) has established a Centre for Agricultural Bioinformatics (CABin) at ICAR-Indian
Agricultural Statistics Research Institute, New Delhi in 2010 with a status of a division in the
institute to initiate the research in bioinformatics and development of biological data repository.
Centre is having researchers from computer application, statistics and biology. Centre is also
identified as nodal agency in the country to provide support to biotechnological research in the
country through computational biology and agricultural bioinformatics.

In this project, efforts were made to develop a new methodology that builds predictive model
from gene expression data and select set of trait specific genes (informative genes) which are
highly relevant. This methodology was developed by applying the combination of two
conventional machine learning algorithms, support vector machine (SVM) and genetic algorithm
(GA).
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Chapter 1: Introduction

Biological system is being comprehensively profiled by various expression data
through high-throughput technologies, such as gene expression data (measured by the
microarray or next generation sequencing technology), protein expression (measured
by the mass spectrometry-based flow cytometer) and medical imaging (measured by
functional magnetic resonance imaging or computerized tomography scan) [1, 2].
Owing to recent technological advances, it is possible nowadays to characterize
patients or healthy controls at multiple omics levels. For example, expression of
>20000 mRNA transcripts or the methylation status at >400 000 CpG sites in the
genome can be measured using microarrays. Next-generation sequencing (NGS)
technologies enable even larger numbers of molecules to be quantified. Although
different technologies are used for different omics levels, the resulting data sets have
several common characteristics making their analysis challenging. The number of
variables is often much larger than the number of individuals. Furthermore, the data
sets are usually sparse regarding relevant information, i.e. only a small set of variables
is associated with the outcome. Additionally, complex correlation patterns are present
between the variables. Computational and statistical methods for discovering
functional roles of features from expression data are required to have the ability of
handling large scale datasets. A straightforward analysis is to carry out statistical tests
to identify differentially expressed features between groups of samples [3]. Functional
analyses, such as the Gene Set Enrichment Analysis (GSEA) [4], can be followed to
discover pathways or biological functions that are over-expressed in the differential
feature list. Then the biological semantics of differential features can be explored.
Besides differential feature discovery, another important type of analysis is sample
classification, in which case samples are classified by characteristics such as disease
subtypes and treatment strategies [5]. The classification model constructed from
biological expression data can be used for disease diagnosis [6, 7] or clinical outcome
prediction [8, 9].

Mutual Information is taken as the basic criterion to find the feature relevance and
redundancy. The mutual information between a feature and class labels defines the
relevance of that feature. Again, the mutual information among different features
defines the correlation i.e., the redundancy among those features. Feature selection is
one of the ways to reduce the dimensionality of the data. It is an essential step in
successful data mining applications, which can efficiently reduce data dimensionality
by removing the irrelevant and redundant features from the original data [10, 11]. At
present, there are various kinds of methods to deal with the feature selection problem
[12-18]. The feature selection can be supervised or unsupervised. In a supervised
scenario [19], the correct class labels of all samples are additionally known and the
feature evaluation criterion is based on the known class labels of the samples. In
Unsupervised [20-24] case, the feature selection is performed on the basis of some
distribution function or clustering in the absence of class label information.
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In another context, the feature selection technique can be divided into three categories
namely filter, wrapper and embedded. Feature selection methods that make use of a
proxy measure to estimate utility are termed as ‘filter’ approaches [16, 17, 24] and
feature selection methods that assess feature utility with respect to a given classifier
or clustering method, are referred to as ‘wrapper’ [15, 19] approaches. Feature
selection methods that select the important features while the model is being trained
are termed as embedded methods [30, 31]. Filter-based approaches usually have good
generalization properties, but may be less effective at decreasing the dimensionality of
the feature space and boosting classification accuracy. Filter-based approaches are
computationally cheaper than the wrapper approaches. The real-life data sets
frequently contain attributes that are redundant or have a low information content for
which the attributes introduce noise and may slow down the classification process
gradually. Moreover, they also can introduce high cross-validation errors. Hence
selecting the most discriminative attributes [25] may therefore yield significant gains
in terms of classification performance. Whatever the way is, the focus of feature
selection is to select the features that are most relevant to classification while
minimizing the redundancy. But in most of the cases, it has been seen that the basic
objective of these methods is either relevance or redundancy.

1.1 Knowledge Gap

Dimensionality reduction transforms high-dimensional data into a meaningful
representation of reduced dimensionality [26]. Ideally, the reduced representation
should have a dimensionality that corresponds to the intrinsic dimensionality of the
data. The intrinsic dimensionality of data is the minimum number of parameters
needed to account for the observed properties of the data. In other words, the intrinsic
dimensionality is the minimum number of dimensions that represent a manifold on
which the original data is embedded. Dimensionality reduction reduces the amount of
memory and time required by data mining algorithms and it allows the data to be
easily visualized. It may also help to eliminate irrelevant features and noise out the
data. Dimensionality reduction methods can be subdivided in two subgroups: feature
selection when a subset of the original features set is selected or feature extraction
when a new set of features is built based on the old feature set.

Feature selection identifies subsets of data that are relevant to the parameters used and
is normally called Maximum Relevance. These subsets often contain material which
is relevant but redundant. The fundamental problem with redundancy is that the
feature set is not a comprehensive representation of the characteristics of the targeted
phenotypes. There are two aspects of this problem i.e., Efficiency and Broadness. In
efficiency, if a feature set of 50 genes contains quite a number of mutually highly
correlated genes, the true "independent™ or "representative” genes are therefore much
fewer, say 20, We can delete the 30 highly correlated genes without effectively
reducing the performance of the prediction; this implies that 30 genes in the set are
essentially "wasted". In Broadness, the features are selected according to their
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discriminative powers and they are not maximally representative of the original space
covered by the entire dataset.

As the dimensionality of the data rises, the amount of data required to provide a
reliable analysis grows exponentially. Bellman referred to this phenomenon as the
“curse of dimensionality” when considering problems in dynamic optimisation [27].
A popular approach to this problem of high-dimensional datasets is to search for a
projection of the data onto a smaller number of variables (or features) which preserves
the information as much as possible. Microarray and NGS data are typical of this type
of small sample problems. Each data point (sample) can have large number of
variables and processing a large number of data points involves high computational
cost. When the dimensionality of a dataset grows significantly there is an increasing
difficulty in proving the result statistically significant due to the sparsity of the
meaningful data in the dataset in question. Large datasets with the so-called “large p,
small n” problem (where p is the number of features and n is the number of samples)
tend to be prone to over fitting. An over fitted model can mistake small fluctuations
for important variance in the data which can lead to classification errors.

NGS and microarrays are a popular source of data for gathering gene expressions.
Analysing these can be difficult due to the size of the data. In addition, the
complicated relations among the different genes make analysis more difficult and
removing excess features can improve the quality of the results. Feature selection
plays a bigger role in removing irrelevant features. Many different feature selection
and feature extraction methods exist and they are being widely used. All these
methods aim to remove redundant and irrelevant features so that classification of new
instances will be more accurate.

Many feature selection algorithms (FSA) are introduced in past decade but most of
them do not perform well on high-dimensional datasets with a large number of
redundant features. These algorithms focus only on the necessary features pertaining
to build the efficient and accurate model [28]. There are three different types of
feature selection methods named Filter, Embedded and Wrapper method. Apart from
this, feature selection can be Univariate or Multivariate. When a Univariate method
does not take into account the dependency among the features, a Multivariate method
does it [29]. The drawbacks of wrapper and filter method are that the former suffer
from high computational cost while the later does not interact with classifiers.
Embedded methods can be a solution to this problem that uses classifiers to rank
features. SVM was trained with the current set of features and the least performing
feature indicated by SVM was removed using a new embedded method of SVM on
Recursive Feature Elimination (SVM-RFE) [30]. Further, a new method called
kernel-penalized SVM has also been proposed [31].

A particularly well-suited method to tackle the presented challenge is random forest
(RF) [32], an ensemble learning method based on decision trees. RF provide variable



importance measures, which can be used to rank variables based on their predictive
importance. However, it is difficult to distinguish relevant from irrelevant variables
based on their ranking only. Therefore, several variable selection procedures have
been proposed that used different criteria and approaches to report the set of truly
relevant variables. One popular approach that is also used in combination with other
machine learning methods is recursive feature elimination (RFE) [33]. RFE uses the
prediction error to select a minimal set of variables needed for a good prediction.
Hence, only a limited number of variables need to be measured for further application
of the prediction model. A popular alternative to the RF approach for variable
selection is penalized regression methods (also called regularized or shrinkage
regression methods) such as Least Absolute Shrinkage and Selection Operator [34] or
elastic net [35], which have been applied to omics data sets [36, 37]. The general idea
is to add a penalty to the loss function so that regression coefficients are shrunken
toward zero resulting in a sparse model. The performance of different types of
penalized regression methods has been evaluated in several studies, e.g. [38, 39];
however, to the best of our knowledge, no comprehensive and neutral study
comparing RF and penalized regression methods has been performed regarding
selection of all relevant variables, In a study [40], combined parametric (t test based p
value) and non-parametric (fold change value) method with more predictive power
has been developed for microarray data. In a similar way, we will apply different
techniques and modify the existing methods. Once the dataset is reduced, it will be
combined with a classifier to check for accuracy and the best combination will be
determined. The ability of an FSA will be measured by testing the accuracy of the
classifier trained by using the reduced subset. Different well-known classifiers, such
as Random Forest (RF), Decision Tree (J48), k-nearest neighbours (k-NN), Naive
Bayes (NB) and Support Vector Machine (SVM) etc. will be used for validating the
output of FSAs. Reduced feature subset will be used to train the classifiers and
thereby measure its classification ability.

Selection of informative genes from high dimensional gene expression data has
emerged as an important research area in transcriptomic. One of the major issues with
the RNA-Seq approach in whole genome transcriptome analysis is that, the expression
dynamics of various different genes are captured. This result in very high
dimensionality in the data, which means the number of genes, is much larger than the
number of samples. Therefore, it is important to select most relevant genes related to
condition class from thousands of genes with the help of appropriate computational
approaches. Most of the existing gene selection methods either fail to identify a list of
predictive genes or ignores the spurious relations between genes and trait under study.
In this project a new methodology had been developed that builds predictive model
from gene expression data and select set of trait specific genes (informative genes )
which are highly relevant. This methodology was developed by applying the
combination of two conventional machine learning algorithms, support vector
machine (SVM) and a genetic algorithm (GA). They are integrated effectively based



on a wrapper approach. GA was used to control and optimize the subset of genes sent
to the SVM for classification and evaluation. Using SVM as the classifier
performance and the Genetic algorithm for feature selection, a set of informative
genes set was obtained. The classification accuracy of the obtained genes set from the
developed methodology was compared with the genes set obtained from methods
such as Boot-MRMR, MRMR, t-score and F-score of R- package “GSAQ” [81].

1.2 Objectives

To develop the methodology for trait specific genes identification based on gene
expression data

To evaluate the developed methodology with the existing methods

To develop R package/web server of developed methodology

This project report is organized into five chapters, as follows

Chapter 1 gives the introduction, problem definition including knowledge gap and it
also specifies the objectives of the project.

Chapter 2 provides the review of literature in the area and specify the scope of work.
Chapter 3 in this chapter, the methodology and tools used to develop the algorithm for
informative gene selection from gene expression data has been discussed.

Chapter 4 provides the result of data analysis and comparative evaluation of the
developed methodology, It also shows the sample report obtained using the developed
web tool TSGS.

Finally, the report is concluded in chapter 5 followed by references.



Chapter 2: Review of Literature

Features can be selected in many ways. One scheme is to select features that correlate
strongest to the classification variable. This has been called maximum-relevance
selection [65, 66]. Many heuristic algorithms can be used, such as the sequential forward,
backward, or floating selections. On the other hand, features can also be selected to be
mutually far away from each other while still having "high" correlation to the
classification variable. This scheme, termed as Minimum Redundancy Maximum
Relevance (mMRMR) selection has been found to be more powerful than the maximum
relevance selection. As a special case, the "correlation” can be replaced by the statistical
dependency between variables. Mutual information can be used to quantify the
dependency. Minimum redundancy feature selection is an algorithm frequently used in a
method to accurately identify characteristics of genes and phenotypes and narrow down
their relevance and is usually described in its pairing with relevant feature selection as
Minimum Redundancy Maximum Relevance [67, 68 ]. There are some examples of
embedded feature selection methods which achieve the feature selection by imposing
regularisation on existing classification methods, such as regularised SVM [41] and
sparse logistic regression [42, 43]. The work in [44] develops a Bayesian approach based
on a probit regression model with a generalised singular g-prior distribution for
regression coefficients.

Traditional feature selection methods include statistics tests to reduce feature space by
examining whether the significant values of features of a test pass the predefined
threshold. For biological data, there are many advanced feature selection methods being
proposed. For example, the binary particle swarm optimisation (BPSO) based model is
proposed in [45] for the gene selection of Microarray data. To improve the performance
of feature selection, BPSO uses gene-to-class sensitivity (GCS) information in the
feature selection process. GCS information is obtained from gene expression data
indicating whether a gene is sensitive to sample classes. To evaluate candidate gene
subsets selected from BPSO, extreme learning machine (ELM) is used for classification
model construction.

There are a large range of machine learning methods to construct classification models.
Examples of such methods include deep learning [46, 47], graphical models [48, 49],
nonparametric Bayesian models [50, 51], linear discriminant analysis [52], and Naive
Bayes [53]. Many tools are particularly designed for biological data. For example, a
Python package called Pse-Analysis [54], is developed to automatically generate
classifiers for genomics and proteomics datasets. It is based on the framework of
LIBSVM [55] and inherits the characteristics of the SVM method. Another classification
method, Sparse Bayesian Learning (SBL) [56, 57, 58] is featured in overcoming the
dimensionality problem. SBL only uses a small subset of input features for prediction,
based on the observation that relevant features are sparse compared to the dimension of
whole feature space. Bayesian inference is adopted to obtain solutions for probabilistic
classification. SBL is in the same functional form of SVM, but provides probabilistic
6



classification. SBL uses a fully probabilistic framework and introduces a prior over the
model weights governed by a set of hyper parameters. The feature set returned from
these methods cannot be easily used to discover predictive pathways or biological
functions. Random Forest has been successfully applied in genetic [59], gene expression
[60, 61], methylation [62], proteomics [63] and metabolomics studies [64]. It is a flexible
approach that can be used to both perform classification, i.e. predicting case-control
status, and regression, i.e. predicting quantitative traits.

Worapper method tend to perform better in selecting features since they take the model
hypothesis into account by training and testing in the feature space. This leads to the big
disadvantage of wrappers, the computational inefficiency which is more apparent as the
feature space grows. Unlike filters, they can detect feature dependencies. They are
generally categorised into two types randomised and deterministic. Randomized
Wrappers use genetic algorithms (GA). Best Incremental Ranked Subset (BIRS) [70] is
an algorithm that scores genes based on their value and class label and then uses
incremental ranked usefulness based on the Markov blanket to identify redundant genes.
Linear discriminant analysis was used in combination with genetic algorithms. Subsets of
genes are used as chromosomes and the best 10% of each generation is merged with the
previous ones. Part of the chromosome is the discriminant coefficient which indicates the
importance of a gene for a class label [71]. Genetic Algorithm-Support Vector Machine
(GA-SVM) [72] creates a population of chromosomes as binary strings that represent the
subset of features that are evaluated using SVMs.

Next chapter describes the materials used and methodology adopted for obtaining trait
specific genes based on feature selection data.



Chapter 3: Materials and Methods

In this study an improvised gene selection approach has been proposed, i.e. SVM-GA
wrapper method for selection of informative genes from high dimensional genome
expression data. The proposed approach can select informative gene through an
optimization procedure that is modelled on the principles of evolution via natural
selection, employing a population of individuals that undergo selection in the presence
of operators such as mutation and crossover. A genetic algorithm works with a
population of individual strings called chromosomes, each representing a possible
solution to a given problem. In this case we are using binary chromosomes. In genetic
algorithm a fitness value is used to evaluate individual chromosome present in the
population. Those chromosomes with the highest fitness values are given more
opportunities to reproduce and the offspring share features taken from their parents.
This ensures that the selected genes are carried to the next generation. In genetic
algorithm a fitness function is used to assign the fitness values to each chromosome.
Here we used SVM to define a fitness function.

The process flow representation of the developed methodology is shown in following
diagram.

The following steps were used to carry out the proposed work

Select and extract trait specific suitable NGS Data from NCBI
Simulation of gene expression NGS Data

Pre-processing of the real data

Obtaining differentially expressed genes

Relevant Gene’s selection using wrapper methods



Wrapper Methods: Wrapper methods consider the selection of a set of features as a
search problem, where different combinations are prepared, evaluated and compared
to other combinations. A predictive model is used to evaluate a combination of
features and assign a score based on model accuracy. An example of a wrapper
method is the recursive feature elimination algorithm.

Selecting the Best Subset
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All the steps to develop the methodology were implemented in R. The major steps of
the developed methodology to obtain optimal number of informative genes are as
follows:

3.1 Filtering to remove lowly expressed genes

Genes with very low read counts were filtered out across all the samples prior to
further steps as these genes provide little evidence and impose problems for
differential expression analysis [74]. Further, the removal of genes will reduce the
dimension of data, thereby making the program more efficient in terms of time. We
selected the genes with at least 10 counts in 2 samples. Then, the genes having the
counts per million (cpm) values above a threshold value were retained for next step.

3.2 Data normalization

Data normalization is required to account for the within library and between library
variability. For further downstream analysis, normalization by trimmed mean of M-
values (TMM) has been used to obtain the effective library sizes [76]. The
“calcNormFactors” function normalizes the library sizes by finding a set of scaling
factors for the library sizes that minimizes the log fold changes between the samples
for most genes. These scale factors use TMM values between each pair of samples.

3.3 Identification of significantly differentially expressed genes

The biological coefficient of variation (BCV) is estimated by using a negative
binomial model [77]. We fit a quasi-likelihood negative binomial generalized log-
linear model to the count data. Then, we perform statistical test for each gene at a
desired level of significance (e.g., o = 0.05). Further, we adjust the p-values for
multiple testing of genes. We have provided various options of adjusting p-values



such as "bonferroni" (default option), "BH", "holm", "hochberg"”, "hommel" and
"BY". The significantly differentially expressed genes are identified and the count
data corresponding to these genes are used for further steps. R Package “edgeR” [75]
was used for above steps.

3.4 Obtaining optimal set of informative genes using SVM as the classifier performance
and genetic algorithm for gene selection

10

e Primary screening of the genes was done by identifying the differentially
expressed genes. The proposed algorithm consists of a Support Vector
Machine (SVM) and a Genetic Algorithm (GA). GA was used to control and
optimize the subset of genes sent to the SVM for classification and evaluation.

o Initially, the dataset was split randomly into test and training data.

e To initialize GA, first generation of individuals were created by picking
random subsets of genes and training the SVM on those genes.

e The fitness of an individual was then determined by the performance of the
SVM on the test data

e Once an initial population of individuals is generated, the GA procedure was
then used to evolve a new generation of individuals and the process was
repeated for several generations. In this way GA progressively iterates onto a
near optimal set of genes.

e Best Individual of each generation was selected and frequency of occurrence
of each genes was computed across all the generation.

e To obtain the final subset of genes, the genes that are selected the most often
were collected to form the optimal set of genes.

e R package/web server was developed to obtain trait specific genes from gene
expression data through developed methodology.

3. 4.1 Genetic Algorithm

Each possible subset of genes corresponds to an “individual” or “chromosome” in the
GA algorithm and is represented by a string of bits of length N ; suppose there are
50000 genes, so N =50000 in each case. Each chromosome is a bit-string of length
50000 with binary representation 1 or 0; 1 means that particular gene is included in
the subset of genes to be supplied to the SVM while 0 means that it is excluded.

The initial set of individuals is generated randomly with the restriction that each gene
is required to be represented at least once in the initial pool. The pool of individuals
which constitutes the first generation is then evolved using the GA which consists of a
number of operations.

Each individual is used to train a SVM. Then a fitness score is assigned to each
individual based on how well the corresponding SVM classifier classifies the test
dataset. The fitness function, f, is as follows;

f=1/(X-Xp) + 1/ Xy



where Xp is the number of samples known to be classified correctly as 0
(control class) and X; is the number of samples known to be classified correctly as
1(treatment class) in the test dataset.

Once the fitness has been calculated for all individuals, parent individuals are selected
to undergo crossover with a probability proportional to their fitness.

To produce the next generation of individuals, crossover will be performed on two
parent individuals. One-point crossover will be used with the crossover point selected
at random. To generate a child, data from the two parent-individuals will be swapped,
suitable number of individuals will be produced for the next generation. Elitism will
be employed which means the best solution from each generation will be copied
unchanged to the next generation.

PROCESS Flow of Informative Gene Selection consists of eight step procedure.

3.5 Performance Evaluation of gene selection techniques based on classification
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The performance of the proposed and existing gene selection techniques was
evaluated based on subject classification accuracy, the number of top ranked genes
selected through the proposed and other existing techniques were then used in SVM
classifier to discriminate the class labels of samples between samples (stress; +1/
control; -1) on different datasets (real and simulated data).

An SVM learn to discriminate between the members and non-members of a given
functional class based on expression data. Having learned the expression features of
the class, the SVM could recognize new genes as members or non-members of the
class based on their expression data. Leave-One-Out Cross-Validation (LOOCV)
method was used to assess the classifying ability of the developed system. The
LOOCYV procedure works as by dividing all samples into K subsets randomly, where
K is the total number of samples. Then K - 1 subsets are used to train the model and
the remaining Kth sample is used for testing and the same is repeated for K times such
that each sample is given a chance for testing the performance.



In the SVM classifier, three basic kernel functions, i.e. linear (SVM-LBF), radial
(SVM-RBF) and polynomial (SVM-PBF) were used to compute the classification
accuracy. Further, the techniques which provide maximum discrimination between
the two groups through classification will be the better technique for informative gene
selection and vice-versa. The performance of these techniques was adjudged on the
basis of classification accuracy.

The other criteria viz. sensitivity, specificity, False Discovery Rate (FDR), False
Positive Rate (FPR), False Negative Rate (FNR), Accuracy (ACC), and F1-Score
were also used in this performance evaluation.

3.6 R programming and R packages

R is a programming language and free software environment for statistical computing
and graphics supported by the R Foundation for Statistical Computing. The R language is
widely used for statistics and data mining for developing statistical software. R and its
libraries implement a wide variety of statistical and graphical techniques, including linear
and nonlinear modelling, classical statistical tests, time-series analysis, classification,
clustering, and others. R is easily extensible through functions and extensions, and the R
community is noted for its active contributions in terms of packages. The packages used
for this study are as follows:

CARET

The caret package short for Classification And REgression Training (CARET) contains
functions to streamline the model training process for complex regression and
classification problems. The package utilizes a number of R packages but tries not to
load them all at package start-up by removing formal package dependencies, the package
startu33p time can be greatly decreased. The package “suggests” field includes 30
packages. caret loads packages as needed and assumes that they are installed.

Caret has several functions that attempt to streamline the model building and evaluation
process, as well as feature selection and other techniques. One of the primary tools in the
package is the "train" function which is used toe evaluate, using resampling, the effect of
model tuning parameters on performance® choose the optimal model across these
parameterse estimate model performance from a training set

The functions used from this package are "createDataPartition™ which is used to divide
the data into training and testing subsets. The model was trained on the training dataset
using the "train” function. The "predict" function was used to predict the classes of the
testing datasets. Calculation a cross-tabulation of observed and predicted classes with
associated statistics was done by “confusionMatrix" function from where we obtain the
accuracy of the model.

edgeR
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This R package is available for Differential expression analysis of RNA-seq expression
profiles with biological replication. Implements a range of statistical methodology based
on the negative binomial distributions, including empirical Bayes estimation, exact tests,
generalized linear models and quasi-likelihood tests. This package was applied in our
work for primary screening of genes, normalization of gene expression data and
obtaining differentially expressed genes which were used with SVM and GA to obtain
the informative genes.

Genalg

The package has R based genetic algorithm for binary and floating point chromosomes.
In this package we use "rbga.bin™ which is a R based genetic algorithm that optimizes,
using a user set evaluation function and a binary chromosome which can be used for
variable selection. The optimum is the chromosome for which the evaluation value is
minimal. It requires a "evalFunc" method to be supplied that takes as argument the
binary chromosome, a vector of zeros and ones. Additionally, the GA optimization can
be monitored by setting a "monitorFunc” that takes a rbga object as argument. Results
can be visualized with "plot.rbga™ .

SimSeq

SimSeq performs data based simulation of RNA-Seq data creating a dataset with a
known list of DE and EE genes. The core function that implements of the methodology
of SimSeq is the SimData function. The vector of read counts simulated for a given
experimental unit has a joint distribution that closely matches the distribution of a source
RNA-seq dataset provided by the user. Users control the proportion of genes simulated to
be differentially expressed (DE) and can provide a vector of weights to control the
distribution of effect sizes. The algorithm requires a matrix of RNA-seq read counts with
large sample sizes in at least two treatment groups.

CompcodeR

It is an R package that provides extensive functionality for comparing results obtained by
different methods for differential expression analysis of (mainly) RNAseq data. It also
contains functions for simulating count data and interfaces to several packages for
performing the differential expression analysis.

3.7 Data collection

For real balanced dataset, we used KIRC RNA-seq dataset (The version of the KIRC
dataset unc.edu_KIRC.llluminaHiSeq_RNASeqV2.Level 3.1.5.0 accessed from Simseq
package of R) containing 20,531 genes and 72 paired columns of data with rows
corresponding to genes and columns corresponding to replicates; replic vector specifies
replicates and treatment vector specifies non-tumour and tumour group samples
respectively within replicate (The Cancer Genome Atlas Research Network, 2013). The
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GE experimental datasets [73] of UV stress on Arabidopsis thaliana were collected from
Gene Expression Omnibus database of NCBI
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL19290). GEO series file
GSE64870, the response of Arabidopsis thaliana accessions to UV radiation stress was
obtained and analysed. The data was for the platform GPL176309.

For real unbalanced dataset, we used TCGA re-processed RNA-Seq data from 9264
tumor samples and 741 normal samples across 24 cancer types available
via GSE62944 from GEO. We have used an R package “ExperimentHub” (82) to obtain
the count data of TCGA’s Low Grade Glioma (LGG) samples. There are total 97
samples corresponding to two groups: (i) IDH1 mutant (70 samples) and (ii) IDH1 wild
(27 samples). The total number of genes is 23368. The data is unbalanced as it has
unequal number of samples in each group

Further R codes were also written for generating simulated dataset and testing model
accuracy and classification. We used synthetic and real RNA-Seq datasets. The synthetic
dataset following parametric distribution was generated using compcodeR() package
(Soneson, 2014). The simulation was performed following the description by Soneson
and Delorenzi (2013). The count dataset contained 15,000 genes for two groups of 15
samples each, where 10% of the genes are simulated to be deferentially expressed
between the two groups (equally distributed between up- and down regulated in group 2
compared to group 1). Furthermore, the counts for all genes were simulated from a
Negative Binomial distribution with the same dispersion in the two sample groups. For
simulating dataset following non parametric distribution, we used package SimSeq
(Benidt and Nettleton, 2015), the generated count dataset contained 15,000 genes for two
groups of 35 samples each, where 10% of the genes were simulated to be deferentially
expressed between the two groups.

S(I)'_ Description Source Genes Samples Class
1 KIRC RNA- unc.edu_KIRC.HluminaHiSeq_RNAS
seq dataset eqV2.Level 3.1.5.0 20531 144 2
2 UV stress on GSE64870 24185 22 2
Arabidopsis
thaliana
3 TCGA (LGG) | GSE62944 23368 97 2
RNA-Seq data
4 Simulated SimSeq package of R 15000 70 2
Data 1
5 Simulated compcodeR package 15000 30 2
Data 2

Table 3.1: Gene expression data used

14



http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944

3.8 R Codes
a. Code for the GA-SVM feature selection

featureSelect <- function(X, y, p = 20, n.iter = 5, alpha = 0.05, p.adj.method =
"bonferroni™){

countDatal <- X

geneNamesl <- rownames(X)

Labels <- as.numeric(y)

group <- unique(y)

z <- factor(Labels, levels = group, labels = group)
nl <- length(which(z == group[1]))

n2 <- length(which(z == group[2]))

n <- nl+n2

## Filtering to remove low count reads: [74].
LS <- colSums(countDatal)

LS.CPM <- LS/10"6

t <- round(10/min(LS.CPM), 1) # Threshold
y <- DGEList(counts = countDatal, genes = geneNames1)
keep <- rowSums(cpm(y) > t) >=2

y <- y[keep, , keep.lib.sizes=FALSE]
countData <- y$counts

geneNames <- y$genes

nGenes <- nrow(countData)

y <- calcNormFactors(y)

design <- model.matrix(~z)

y <- estimateDisp(y, design = design)
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fit <- gImQLFit(y, design)

glf <- gImQLFTest(fit, coef=2)

res2 <- topTags(qlf, n=nGenes)

res.tab <- res2$table

ind1 <- which(res.tab$PValue < alpha)

adj.pval <- p.adjust(res.tab$PValue, method = p.adj.method)
res.tab$ Adjusted PValue <- adj.pval

ind <- which(adj.pval < alpha)

geneNames.sel <- res.tab$genes[ind]

res.f <- res.tab[ind,]
log.counts <- cpm(y$counts, log = TRUE)
countData.f <- log.counts[ind,] # Final log cpm data for feature selection
data <- t(countData.f)
s <- data.frame(data)
t<-z
eval_funct <- function(indices){
evl_df <- chind(s[,indices==1],t)
evl_trng <- createDataPartition(evl_df$t, p=0.60,list = FALSE)
evl_test <- evl_df[-evl _trng,]
evl_train <- evl_df[evl_trng,]
evl_svm <- train(t~.,data=evl_train,method="svmRadial",preProc=c("zv"),
trControl=trainControl(method = "cv",number = 5),savePredictions = "all")

evl_cls <- predict(evl_svm,newdata=evl_test)
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evl_tbl <- confusionMatrix(evl_cls,evl_test$t)
thl <- evl_tbl$table
tp <- thl[1,1]
tn <- thl[2,2]
t <- thl[1,1]+tbl[1,2]+tbI[2,1]+tbI[2,2]
result <- -(tn+t-tp)/((tn*t)-(tp*tn))
return(result)
}
monitor <- function(obj) {
minEval = min(obj$evaluations);
filter = obj$evaluations == minEval,
bestObjectCount = sum(rep(1, obj$popSize)[filter]);
# ok, deal with the situation that more than one object is best
if (bestObjectCount > 1) {
bestSolution = obj$population(filter,][1,];

}else {

bestSolution = obj$population[filter,];

ky

outputBest = paste(obj$iter, " #selected=", sum(bestSolution),
" Best (Error=", minEval, "): ", sep="");
for (var in 1:length(bestSolution)) {
outputBest = paste(outputBest,

bestSolution[var], " ",

sep="")
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outputBest = paste(outputBest, "\n", sep="");

cat(outputBest);

¥

woppa <- rbga.bin(size=ncol(s),popSize=p,iters=n.iter, mutationChance=0.30,
zeroToOneRatio=20,

evalFunc=eval_funct, verbose=TRUE, monitorFunc=monitor)
bestSolution <- woppa$population[which.min(woppa$evaluations),]
result <- cbind(data[,bestSolution==1],z)
feature.selected <- res.f[bestSolution ==1,1]
logcpm.feature.selected <- t(result)
ind.m <- fmatch(as.character(feature.selected), as.character(res.f[,1]))
result.pval <- res.f[ind.m, ]
list("InformativeGenes™ = feature.selected,
"LogCPM" = logcpm.feature.selected,
"DEA_Result™ = result.pval)
}
b. R function for evaluation of classification method:

We used “svmRadial” method and “LOOCV” resampling method for building the
training model and validation using “caret” R package.

eval_funct<- function(data){
s<-data[,-ncol(data)]
t<-data[,ncol(data)]
evl_df<-cbind(s,t)

evl_svm<-train(t~.,data=evl_df,method="svmRadial”,
18



trControl=trainControl(method = "LOOCV" ),savePredictions = "all")
evl_cls<-predict(evl_svm,newdata=evl_df)
evl_tbl<-confusionMatrix(as.factor(evl_cls), as.factor(evl_df$t))
return(evl_tbl)

¥

c. Code for generating simulated data following parametric distribution

library(compcodeR)

simdata <- generateSyntheticData(dataset = "B_625 625", n.vars = 15000,
samples.per.cond = 15, n.diffexp = 1500,

relmeans = "auto", dispersions = "auto",

repl.id = 1, seqdepth = 1e7,

fraction.upregulated = 0.5,

between.group.diffdisp = TRUE,

filter.threshold.total = 1,

filter.threshold.mediancpm = 0,
fraction.non.overdispersed = 0,

random.outlier.high.prob = 0, random.outlier.low.prob =0,
single.outlier.high.prob = 0, single.outlier.low.prob = 0,
output.file = "B_625 625 5spc_repll.rds™)

write.csv(simdata@count.matrix, file="filepath”)

d. Code for generating simulated data following non parametric distribution

library(SimSeq)
data(kidney)
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counts <- kidney$counts # Matrix of read counts from KIRC dataset
replic <- kidney$replic # Replic vector indicating paired columns

treatment <- kidney$treatment # Treatment vector indicating Non-Tumor or Tumor
columns

nf <- apply(counts, 2, quantile, 0.75)

library(fdrtool)

sort.list <- SortData(counts = counts, treatment = treatment, replic = replic,
sort.method = "paired", norm.factors = nf)

counts <- sort.list$counts

replic <- sort.list$replic

treatment <- sort.list$treatment

nf <- sort.list$norm.factors

probs <- CalcPvalWilcox(counts, treatment, sort.method = "paired",

sorted = TRUE, norm.factors = nf, exact = FALSE)

weights <- 1 - fdrtool(probs, statistic = "pvalue", plot = FALSE, verbose = FALSE)$Ifdr
data.sim <- SimData(counts = counts, replic = replic, treatment =treatment,
sort.method ="paired", k.ind = 35, n.genes = 15000, n.diff = 1500,

weights = weights, norm.factors = nf)

write.csv(data.sim$counts, file="path’)

e. R function to filter and transform RNA-Seq count data:

The function is used to filter lowly expressed genes and transform the RNA-Seq count
data to log counts per million (log cpm) values. The resulting log cpm values have also
been used for feature selection using different methods given in “GSAQ” R package.

datalogcpm <- function(X, y){
countDatal <- X
geneNames1 <- rownames(X)

Labels <- as.numeric(y)
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group <- unique(y)

z <- factor(Labels, levels = group, labels = group)
nl <- length(which(z == group[1]))

n2 <- length(which(z == group[2]))

n <-nl+n2

## Filtering to remove low count reads: [74]

LS <- colSums(countDatal)

LS.CPM <- LS/10"6

t <- round(10/min(LS.CPM), 1) # Threshold

y <- DGEL.ist(counts = countDatal, genes = geneNames1)
keep <- rowSums(cpm(y) > t) >=2

y <- y[keep, , keep.lib.sizes=FALSE]

countData <- y$counts

geneNames <- y$genes

nGenes <- nrow(countData)

log.cpm <- cpm(countData, log = TRUE)
return(as.data.frame(log.cpm))

by
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Chapter 4: RESULTS & DISCUSSION

This section describes the experimental results obtained by applying the developed
algorithms to the data sets. For experimentation, two read count data sets were obtained.
The present study divided the data into 10 folds where 1 fold was for testing and 9 folds
were for training for the 10-fold crossover validation for training the SVM classifier for
the genetic algorithm. A population size of 100 was created for 100 generations in the
genetic algorithm. The default mutation probability of 0.30 and an elitism probability of
0.10 was applied in the algorithm. An informative gene set of size 350 was selected from
GSE64870 gene expression dataset and gene set of size 551 was selected from Kidney
data using developed algorithm.

4.1 Analysis Results
a. Real Balanced Data

1. UV stress on Arabidopsis thaliana data with population size=100 and Iterations =100
and 22 variables

Reference
Prediction Control Treatment
Control 11 0
Treatment 0 11

Table 4.1: Confusion Matrix for UV stress on Arabidopsis thaliana data

Method | Accuracy | Sensitivity | Specificity PPV NPV Precision

TSGS 1 1 1 1 1 1

Table 4.2: Statistics for UV stress on Arabidopsis thaliana data
95% CI : (0.8316, 1)

2. KIRC RNA-seq data with population size=100 and Iterations =100 and 144 variables

Reference
Prediction Control Treatment
Control 71 1
Treatment 1 71

Table 4.3: Confusion Matrix for KIRC RNA-seq data
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Method

Accuracy

Sensitivity

Specificity

PPV

NPV

Precision

TSGS

98.61

98.61

98.61

98.61

98.61

98.61

Table 4.4: Statistics for KIRC RNA-seq data

95% CI : (0.9507, 0.9983)

b. Real Unbalance data

TCGA (LGG)RNA-Seq data with population size=100 and Iterations =100 and 97

variables
Reference
Prediction Control Treatment
Control 20 0
Treatment 7 70
Table 4.5: Confusion Matrix for TCGA (LGG) RNA-seq data
Method | Accuracy | Sensitivity | Specificity PPV NPV Precision
TSGS 0.9278 0.7407 1.00 1.00 0.9091 1.00

Table 4.6: Statistics for TCGA RNA-seq data

95% ClI: (0.857, 0.9705)

c. Simulated data 1 with population size=100 and Iterations =100 and 35 variables

Reference
Prediction Control Treatment
Control 35 1
Treatment 0 34
Table 4.7: Confusion Matrix for simulated data 1
Method Accuracy | Sensitivity | Specificity | PPV NPV Precision
TSGS 98.57 1.00 97.14 97,22 1.00 98.57

Table 4.8: Statistics for simulated data 1

95% CI : (0.923, 0.9996)
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d. Simulated data 2 with population size=100 and Iterations =100 and 15 variables

Reference
Prediction Control Treatment
Control 15 0
Treatment 0 15
Table 4.9: Confusion Matrix for simulated data 2
Method Accuracy Sensitivity Specificity | PPV NPV | Precision
TSGS 1 1 1 1 1 1

Table 4.10: Statistics for simulated data 2
95% CI: (0.8843, 1)
4.2 Performance Analysis

We got 551 genes selected using developed method TSGS. Here, we have used
“DESeq2” for the differential expression analysis. For comparison with other methods,
we sorted the genes according to “BH” adjusted p-value with 0.05 level of significance
and then selected top 100 genes for determining the accuracy of our developed
methodology.

Our developed method TSGS was compared with “t-score”, “F-score”, “MRMR” and
“bootMRMR” methods available in “GSAQ” R package. Informative gene selection
using each of these methods was performed. Since, “MRMR” and ‘“boot-MRMR”
methods are for smaller dataset they were unable to select 100 genes using the complete
dataset. Therefore, for these two methods, we performed differential expression analysis
and selected top 1000 genes. We apply the filtering criteria: “BH” adjusted p-value <
0.05 and log fold change cut off of +1 (logFC > 1 and logFC < -1). We used data
corresponding to 100 genes selected using these four methods We used “svmRadial”
method and “LOOCV” resampling method for building the training model and validation
using “caret” R package. We performed the validation 100 times. The mean of various
measures of accuracies (in %) obtained using each method are shown in Table 4.2.1:

Precisi
Accuracy | Sensitivity | Specificity | PPV NPV on Recall F1
TSGS 98.61 98.61 98.61 98.61 | 98.61 98.61 | 98.61 98.61
t-score 97.30 95.99 98.61 98.57 | 96.13 98.57 | 95.99 97.25
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F-score 97.81 97.00 98.61 98.59 | 97.06 98.59 | 97.00 97.78

MRMR 98.06 97.5 98.61 98.60 97.53 98.60 97.50 98.04
bootMRM
R 98.15 97.69 98.61 98.60 97.72 98.60 97.69 98.14

Table 4.2.1: Evaluation of TSGS with other methods

The performance analysis showed that the developed methodology TSGS selects
informative genes which are more biologically relevant. The developed methodology
TSGS is also found to be quite competitive with the existing techniques with respect to
subject classification accuracy. Our results also showed that under the multiple criteria
decision-making setup, the proposed technique is better for informative gene selection
over the above compared methods.

Initially, we have used “DESeq2” for the differential expression analysis in our
method. Later on, based on various suggestions, we used “edgeR” package for
differential expression analysis. Furthermore, we used a portion of our program to get the
expression data and used this data as input to the different methods of “GSAQ” package.
After modifying our program, 622 genes got selected using our method. For comparison
with other methods, we selected the genes according to “BH” adjusted p-value with 0.05
level of significance. Our proposed method was compared with “t-score”, “F-score”,
“MRMR” and “bootMRMR” methods available in “GSAQ” package. We performed
gene selection using each of these methods. We used the expression data obtained from
our method as input data for these methods. However, “MRMR” and ‘“boot-MRMR”
methods were unable to select any genes using the complete dataset. This is one of the
limitations of “GSAQ” R package. Therefore, we discarded these two methods from
further comparison. We selected 622 genes using the methods “t-score” and “F-score”.
We used “svmRadial” method and “LOOCV” resampling method for building the
training model and validation using “caret” R package. We performed the validation 100
times. The mean of various measures of accuracies (in %) obtained using each method
are shown in Table 4.2.2:

Specific Precisio
Accuracy | Sensitivity | ity PPV NPV n Recall | F1
TSGS 97.65 98.61 96.69 96.8 98.58 | 97.69 97.65 | 98.61
t-score* 97.73 98.61 96.85 96.94 | 9859 | 97.76 97.73 | 98.61
F-score* 98.01 98.61 97.42 97.46 | 98.59 | 98.03 98.01 | 98.61
MRMR* NA NA NA NA NA NA NA NA
bootMRMR* | NA NA NA NA NA NA NA NA
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Table 4.2.2: Evaluation of TSGS using KIRC RNA-seq data, TSGS was used to get the
expression data which was then used as input to the different methods of “GSAQ”
package.

From the above table, we observe that “F-score” method has more accuracy as compared
to other methods. However, the results are comparable. Thus, we can say that after
including a portion of our method TSGS, the accuracy of other methods also increases.
Same conclusion was drawn when we used simulated data (Benidt and Nettleton, 2015)
consisting of 15000 genes and 35 samples in each of the two classes (Please see section
3.7 & 3.8 d). We got 67 genes selected using developed method TSGS. The mean of
various measures of accuracies (in %) obtained using each method are shown in Table
4.2.3:

Specific Precisio
Accuracy | Sensitivity | ity PPV NPV n Recall | F1

TSGS 98.5 99.89 97.11 97.2 99.89 | 98.52 98.5 99.89
t-score® 98.41 99.89 96.94 97.04 |99.89 |98.44 98.41 | 99.89
F-score* 98.57 100 97.14 97.22 | 100 98.59 98.57 | 100
MRMR* NA NA NA NA NA NA NA NA
bootMRM | NA NA NA NA NA NA NA NA
R*

Table 4.2.3: Evaluation of TSGS using simulated datal, TSGS was used to get the expression
data which was then used as input to the different methods of “GSAQ” package.

Comparison using TCGA’s Low Grade Glioma (LGG) unbalanced Dataset

We applied our method “TSGS” with population size 100, number of iterations 100,
level of significance 0.05, “bonferroni” method of adjusting p-values. We got 53 genes
selected using our method “TSGS”. We have used “svmRadial” method and “LOOCV”
resampling method for building the training model and validation using “caret” R
package. TSGS was compared with “t-score”, “F-score”, “MRMR” and “bootMRMR”
methods available in “GSAQ” R package. Gene selection using each of these methods
was performed. However, “t-score” and “F-score” methods were unable to select any
genes as it cannot handle unbalanced data. Similarly, we also tried “MRMR” and “boot-
MRMR” methods, but these methods also failed to select any genes. This is one of the
limitations of “GSAQ” R package that it cannot handle unbalanced data whereas TSGS
worked for unbalanced data also.
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4.3 Development of Web tool:

We have developed a user-friendly tool TSGS (Trait Specific Gene Selection) for gene
selection based on RNA-Seq expression data. We have implemented all the steps in R
[77] and used “shiny” package [79] for developing the web application. Besides these,
we have also used various Bioconductor packages [80]. The tool is available at
https://icar-iasri.shinyapps.io/tsgs/

@ TGS x  + o - X
c @ https://ulbbf1.shinyapps.io/tsgs/?_ga=2.26663293.173469032.1618646016-1795889910.1610439533 * » I\ln_ Paused )
i Apps % Bookmarks @ http:/icarerpiasrir Research @ MTNL Delhi- Custo.. G Google (& Google 7 PLOS Genetics: Evid.. @ Login G How to compute p »  [E) Reading list

TSGS: Trait Specific Gene Selection

Inputs selected Summary Features selected LogCPM of feature selected DE Analysis Result
Choose file to upload data :
PCA Plot Before PCA Plot After
Browse... exampleData.csv
Upload complete

Specify the population size
10

Specify the number of iterations
4

Specify the level of significance
0.05

Select adjustment method

bonferroni -

Submit

Fig 4.1 Home Page of TSGS

The user has to upload data in a specified format either in csv, tsv, txt, xIs or xlsx format
(Please see Figure 4.2). The sample names are specified in the first row starting from
second position of row. The classes of each samples are specified in the second row
corresponding to the sample names in first row. From third row and onwards, we have to
put the RNA-Seq count data corresponding to genes in the first column and samples of
the first row. A portion of KIRC RNA-Seq count data with 72 samples in each of the two
classes is shown below:
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& [M136542 0 0 ] 0 0 0 0 0 0 0
9 |7|155060 207 105 66 426 146 359 736 542 556 173
10 | 26823 3 0 0 4 2 1 9 2 1 3
11 7280660 0 0 0 ] 1] 0 ] 0 0 0
127317712 0 0 (] 0 0 0 0 0 0
13 7340602 1 0 0 1 0 5 ] 0 0 17
14 | N3RETOE 1 2 1 0 1 5 4 3 0 1
15 | 7390284 22 13 5 23 10 20 20 7 10 20
16 | 7391343 0 0 0 0 0 1 0 0 0
17 | 7391714 1 2 ] 0 0 3 0 2 2 1
18 | 7404770 0 0 0 0 1] 1] 0 0 0 0
19 7441362 0 0 0 0 0 0 0 0 0 0
20 | 442388 0 0 0 0 0 0 0 0 0 0
21 | %553137 1812 L £03 341 1492 1823 1944 1139 4136 886
22 |7|57714 Qo8 1006 520 4835 2316 3048 2930 1597 TD4E 437
23 | 7645851 101 35 14 19 90 £3 35 20 33 7

Fig 4.2 A portion of RNA-Seq count data

Then, the user has to specify other parameters, namely, population size, number of
iterations, level of significance (default value 0.05) and method of adjusting p-values for
multiple testing of genes. We have provided the following options for adjusting p-values:
“BH”, “bonferroni”, “holm”, “Hochberg”, “hommel” and “BY”. The method
“bonferroni” is the default adjustment method.

@ TSGs x o+ © - o X
> C @ https//ulbbfi.shinyapps.io/tsgs/?_ga=2.26663293.173469032.1618646016-1795889910.1610439533 * » H
i1 Apps % Bookmarks @ http//icarerpiasrir... Research @ MINLDelhi- Custo.. G Google G Google ¥ PLOS Genetics: Evid.. @ Login ‘G How to compute p- » Reading list

Job completed

AP Type here to search

Fig 4.3 Status of Job
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@ T15Gs x  + o — X

c @ https://ulbbf1.shinyapps.io/tsgs/?_ga=2.26663293.173469032.1618646016-1795889910.1610439533 * »
Apps % Bookmarks @ http://icarerpiasrir... Research @ MINL Delhi - Custo.. (& Google (& Google i PLOS Genetics:Evid.. @ Login G How to compute p-.. »  [E] Reading list
Inputs selected Summary Features selected LogCPM of feature selected DE Analysis Result

Choose file to upload data

PCA Plot Before PCA Plot After

Browse... exampleData.csv
pounicad lnputs Seiected
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4.4 Interface for Biocomputing Portal

In order to provide access to users to analyse their data using the HPC facility at
ASHOKA, TSGS has been made available at Biocomputing portal
(ashoka.cabgrid.res.in:4443/pbsworks/login). The user can login to the portal with their
credentials and access the tool and submit the job on the cluster.
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Chapter 5: Conclusion

NGS and microarrays are a popular source of data for gathering gene expressions.
Analysing these can be difficult due to the size of the data. The analysis of huge amount
of gene expression data requires the execution of algorithm and tools to infer the hidden
information or knowledge from these resources. Selection of informative genes from
available high dimensional GE data is a challenging task. The complicated relations
among the different genes make analysis more difficult and removing excess features can
improve the quality of the results. Feature selection plays a bigger role in removing
irrelevant features. In this study combination GA-SVM technique was used to develop a
methodology which is a heuristic approach for informative gene selection from such GE
data by considering gene relevance and redundancy simultaneously. In this methodology
fitness value is used to evaluate individual chromosome present in the population.
Fitness of the population can be increased in hope of producing child chromosomes with
better genetic material in the subsequent generations. The average fitness could be
improved by eliminating the unfit chromosomes in a population and replacing them with
fitter chromosomes. Those chromosomes with the highest fitness values are given more
opportunities to reproduce and the offspring share features taken from their parents. This
ensures that the selected genes are carried to the next generation. The classification
accuracy of the obtained gene set from the developed methodology was found to be
better when compared with the gene sets obtained from methods such as Boot-MRMR,
MRMR, t-score and F-score of R- package “GSAQ”. The findings of this study will
guide the genome researchers and experimental biologists to select informative gene set
scientifically and objectively.
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Summary

In last few decades, huge amount of data is being generated in most of the industry
including research labs. This ever-increasing amount of experimental data has enabled
the scientists to develop the method and tools that provide an ease of access including
analysis of this huge amount of data. The amount and type of biological data generated
by high throughput technologies have posed many challenges of large-scale data
handling and its analysis. NGS and microarrays are a popular source of data for
gathering gene expressions. Analysing these can be difficult due to the size of the data.
In addition, the complicated relations among the different genes make analysis more
difficult and removing excess features can improve the quality of the results. Feature
selection plays a bigger role in removing irrelevant features. Many different feature
selection and feature extraction methods exist and they are being widely used. All these
methods aim to remove redundant and irrelevant features so that classification of new
instances will be more accurate.

Selection of informative genes from high dimensional gene expression data has emerged
as an important research area in transcriptomic. One of the major issues with the RNA-
Seq approach in whole genome transcriptome analysis is that, the expression dynamics
of various different genes are captured. This result in very high dimensionality in the
data, which means the number of genes is much larger than the number of samples.
Therefore, it is important to select most relevant genes related to condition class from
thousands of genes with the help of appropriate computational approaches.

Many feature selection algorithms (FSA) are introduced in past decade but most of them
do not perform well on high-dimensional datasets with a large number of redundant
features. Thus in the present project, it was planned to develop the methodology for
obtaining relevant set of trait specific genes from gene expression data. Under this
project trait specific gene selection tool (TSGS) has been developed by applying
combination of two conventional machine learning algorithms, support vector machine
(SVM) and a genetic algorithm (GA). They are integrated effectively based on a wrapper
approach. GA is used to control and optimize the subset of genes sent to the SVM for
classification and evaluation. Using SVM as the classifier performance and the Genetic
algorithm for feature selection a set of informative gene set can be obtained. The
classification accuracy of the obtained gene set from the developed methodology was
compared with the gene sets obtained from methods such as Boot-MRMR, MRMR, t-
score and F-score of R- package “GSAQ”.

For the easy availability of the TSGS the user a web tool using shiny app has been
created further the tool is also provided access through Biocomputing portal for the user
to analyse their high dimensional gene expression data using ASHOKA.
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