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PREFACE

Analysis of Variance (ANOVA) procedure in the framework of experimental designs
has traditionally been based on assumptions of normality. However, in practical
situations non-normal distributions may be more useful than the usual normal
distributions. Therefore, it is of great interest to study the effect of non-normality on the
F statistics used for testing main and interaction effects in factorial experiments.
Factorial experiments are often considered as the best and most used designs in
agricultural and allied experiments when the effects of multiple factors are investigated
simultaneously. They also provide the estimates of interactions between the factorial

effects.

The present study focuses on the development of analytical procedure for the factorial
experiments in order to tackle the non-normal situations. Here, two non-normal
distributions have been considered out of which one is generalized logistic distribution
and another is Gompertz distribution. The theory of modified maximum likelihood
estimation has been applied and efficient estimators have been developed. SAS codes
have also been developed for analysis of the data under both the situations where error
follows logistic and Gompertz distribution. These would be helpful for providing a

ready reckoner to the users/researchers.

The author expresses his deep sense of gratitude to Dr. Rajender Parsad, Director,
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research work successfully. The cooperation received from Dr. Anil Kumar, Head,
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Statistical methodology is used almost often in practice to analyze data of scientific
experiments. For example, an agricultural scientist might wish to examine the effects of
different fertilizer on the growth of plants. A geneticist might wish to assess the effects
of various mutagens on bacterial cells. An engineer may be interested in tensile strength
of different alloy used in bridge construction. In each of these cases, various treatments
(fertilizer, mutagenic substance and type of alloy) are examined in a systematic way to
see if their effects are same or not. For instance, in case of fertilizer, if the mean height of
the plants grown with Fertilizer A is significantly larger than that of Fertilizer B or C,
then this suggests that Fertilizer A is the best choice.

In the light of a particular set of data, how does one decide if an observed difference is
significant, or merely due to sampling fluctuation. Statistical techniques for answering
this question are collectively termed as Experimental Design and Analysis.

Factorial experiments that were introduced by Fisher (1935) and Yates (1937) are often
the best and most used experiments in agricultural and industrial applications, when the
effects of multiple factors are investigated simultaneously. Evaluation of equipments and
materials, product designs, performance testing, process development, etc. are examples

where factorial experiments are used.

1.2 Genesis and rationale of the project:

Analysis of variance (ANOVA) procedure in the framework of experimental designs has
traditionally been based on assumptions of normality. However in practice non-normal
distributions are more prevalent, that is seen in Pearson (1932), Geary (1947), Elveback
et al. (1970), Huber (1981), Tiku et al. (1986) and Senoglu and Tiku (2001). It is
therefore of great interest to study the effect of non-normality on the F statistics used for
testing main and interaction effects in factorial experiments.

Senoglu and Tiku (2001) gave the analysis in the frame work of two way classification

model in experimental design, when the error follows the generalized logistic distribution



by adopting the procedure of modified maximum likelihood. Applying the modified
likelihood estimation procedure he obtained efficient and robust estimators of the
parameters, defined F statistics for testing main effects and interaction effects. Also
analyzed the Box-Cox data and showed that the methodology developed gives accurate

results besides being easy theoretically and computationally.

Large number experiments have been conducted in Agricultural Field Experiments
Information System (AFEIS). In AFEIS more than 20% of the experiments conducted do
not follow the assumptions of Analysis of Variance and in 10 to 12% of the experiments
the assumption of normality is violated. Blindly following statistical procedures without
understanding the underlying assumptions may result in misleading or incorrect

inference from the statistical analysis.

Thus, it is desirable to extend or modify classical statistical procedures based on
normality to include non-normal situations, and even to create entirely new approaches
not related to the classical procedures. Some of the alternate methods are being used in
an attempt to render the normality assumption less crucial. These are

i) Transformation of data

i) Non-parametric methods

iii) Employ robust procedures.

One of the ways of handling non-normal data is to invoke Box and Cox transformation
(1964) so that the transformed data is normal, at any rate close to it. This may not be the
proper solution because according to Bickel and Doksum (1981) all non-normal data
cannot be amenable to this transformation. Moreover, it is often difficult to interpret
transformed data. So in general we can say that the procedure of transformation is not the
appropriate procedure. Also non-parametric methods have been developed for some of
the specific experimental situations. Alternate way is to develop the robust procedures
for the analysis of data. When the data do not follow the normal distribution, the analysis
of data becomes problematic because the normal equations obtained from the log-
likelihood function are generally non-linear and so are not solvable as in case of normal
distribution. One may use Modified Maximum Likelihood Method of estimation and

then based upon this the analysis of variance can be performed.



Senoglu (2005) has investigated the robustness of 2 factorial experiments when the error
follows Weibull error distribution. He developed robust and efficient estimators for the
parameters in 2 factorial design and defined F-statistics based on modified maximum
likelihood estimators (MMLE) for testing the main effects and interactions. He showed
that these tests have high powers and better robustness properties as compared to the

normal theory solutions.

The methodology for factorial experiments with 2 levels when error follows logistic error
distribution are developed and it performs well over the usual least square estimator
based procedures Yadav (2013).

Under the present investigation, factorial experiments have been considered when error
follows non-normal distribution. More specifically, two non-normal distributions have
been taken, one is generalized logistic distribution and other is Gompertz distribution.
The theory of modified maximum likelihood estimation has been applied and efficient
estimators have been developed.

An experimental situation has been considered where error follows the Generalized
Logistic distribution. The pdf of GL distribution is

X_

5 ()}
GL(u,0,0)=— g

T [+ exp{-(—£)3°
O

where, o< x<o0; —co< u<o0; 6>0; o>0.

Here, W is the location parameter o is the scale parameter and @ is the shape parameter of
the distribution.

For <1, 6=1, and 6>1, represents negatively skewed, symmetric, and positively skewed
distributions, respectively. In particular GL(U, o, 1) = L(H, o). Indeed, the logistic and
normal distributions have a quite similar shape. The logistic distribution and the S-
shaped pattern of its cumulative distribution function (the logistic function) and quantile
function (the logit function) have been extensively used in many different areas. One of
the most common applications is in logistic regression, which is used for modelling
categorical dependent variables (e.g. yes-no choices or a choice of 3 or 4 possibilities),
much as standard linear regression is used for modelling continuous variables (e.g.
income or population). Specifically, logistic regression models can be phrased as latent

variable models with error variables following a logistic distribution. This phrasing is
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common in the theory of discrete choice models, where the logistic distribution plays the

same role in logistic regression as the normal distribution does in probit regression.

We have also considered the experimental situation when error follows Gompertz

distribution. The pdf of Gompertz distribution is
_ n
G(n,a)= nexp[ax——{exp(ax) —1}}
a

where, x>0; #7>0; a>0.

Gompertz distribution is a continuous probability distribution, named after Benjamin
Gompertz. The Gompertz distribution is often applied to describe the distribution of
adult life spans by demographers and actuaries. The Gompertz distribution is important
in describing the pattern of adult deaths Wetterstrand (1981) and Gavrilov and Gavrilova
(1991). The Gompertz distribution has received considerable attention from
demographers and actuaries. Pollard and Valkovics (1992) were the first to study the
Gompertz distribution thoroughly. However, their results are true only in the case when
the initial level of mortality is very close to zero. Kunimura (1998) arrived at similar
conclusions. They defined the moment generating function of the Gompertz distribution
in terms of the incomplete or complete gamma function and their results are either

approximate or left in an integral form.

Here is an example in the industry where one can find the use of Gompertz distribution
in estimation of the time of dysfunction of the pot required in the smelting process of
Aluminum from Alumina using the Hall-Héroult Process, Butler (2011). The entire
smelting process (during extraction of Aluminum from Alumina) requires rows of
reduction pots, or potlines, be in production 24 hours a day, 365 days a year. It is
difficult to stop and start the smelting process because the result is a loss of money,
energy, and product. Furthermore, if the temperature of the pots decreases and the molten
aluminum hardens, the repair and cleanup is costly and time consuming. Unfortunately,
as difficult as it is to change or repair the reduction pots, these pots do not last forever. It
is very difficult to estimate when a pot stops working. Being able to estimate when a pot
stops performing efficiently would not only save a company time, money, and energy but
also reduces the costs to consumers. Four models for the pot survival data were fitted and

it was found that the best model for the data is the Gompertz survival distribution.


https://en.wikipedia.org/wiki/Continuous_probability_distribution
https://en.wikipedia.org/wiki/Benjamin_Gompertz
https://en.wikipedia.org/wiki/Benjamin_Gompertz
https://en.wikipedia.org/wiki/Demographer
https://en.wikipedia.org/wiki/Actuaries

Similarly, there are many situations where this Gompertz distribution is more appropriate
one, specifically in survival analysis. In that case there is a need to develop the analysis

procedure for these experiments where the data obtained follows Gompertz distribution.

In literature, robust procedures are available when error follows different forms of non-
normal distribution in designed experiments. But no work could be traced for the
analysis of factorial experiments in general set-up (like asymmetrical factorial) when

error follows the Logistic distribution and Gompertz distributions.
Considering the above mentioned research gap, following objectives were framed:

1.3 Objectives
e To develop analytical procedure for factorial experiments when error follows
generalized logistic distribution.
e To develop analytical procedure for factorial experiments when error follows

Gompertz distribution.

1.4 Critical review of the technology at national and international levels

Box and Cox (1964) made inferences about the transformation and about the parameters
of the linear model by computing the likelihood function and the relevant posterior
distribution. The contributions of normality, homoscedasticity and additivity to the
transformation are separated. They discussed the relation of the present methods to

earlier procedures for finding transformations.

Tiku (1967) and Tiku and Stewart (1977) have developed the theory of modified
maximum likelihood estimation (MMLE). The theory of MMLE has an explicit solution
of these equations and is asymptotically identical with MLE. It has been shown (Tiku et
al. (1986)) that modified maximum likelihood estimates (MMLESs) are almost as efficient
as maximum likelihood estimates (MLES).

Tiku (1967, 1968a, 1968b) have examined the estimation of parameters of mean and
standard deviation for the censored normal and log non-normal distributions. The
estimation of coefficients in a simple regression model with auto-correlated errors is
considered. The underlying distribution is assumed to be symmetric, one of Student's t
family for illustration. Closed form estimators are obtained and shown to be remarkably

efficient and robust. They assumed normality but based on their estimators on censored



samples, they showed that the resulting estimators are robust to plausible deviations from

normality.

Andrews et al. (1972) discussed various robust procedures for the estimation of location,
the theory of robust estimation is based on specified properties of specified estimators
under specified conditions, he showed the result of a study undertaken to establish the
interaction of these three components while Schrader and McKean (1977) studied some

robust methods of analysis.

Tiku (1980) obtained the modified maximum likelihood estimates for the censored data

and developed the robust procedures.

Tiku, et al. (1986) made a detail study of robust estimation when error follows non-
normal distribution such as log-normal distribution, logistic distribution, etc. or for the
censored data.

Tiku and Suresh (1992) have pointed out that the maximum likelihood equations are
(under some very general regularity conditions) asymptotically equivalent to the

likelihood equations.

Tiku and Kambo (1992) gave the method of estimation for a new family of bivariate

non-normal distribution.

Milosevic-Hill (1995) obtained the procedure of analysis of one-way and two-way
classified data with equal number of observations per cell by using MML procedure
when the errors follow symmetric t-family of distributions. The MML estimators
Produced are found to be very similar in form to results from classical procedures, and
not much more computationally intensive. From the simulation studies he showed that
MML technique is remarkably efficient and powerful, even for small sample from a
decidedly non-normal distribution.

Vaughan and Tiku (2000) observed that in numerous situations, one deals with a random
vector (X, Y), where Y is a consequence of X but not so much the other way round. Often
in such situations, X has a non-normal distribution while the conditional distribution of Y
given X = x may or may not be normal. So, they assumed the distribution of X to be the

extreme value distribution and the conditional distribution of Y to be normal. They



derived the MML (modified maximum likelihood) estimators and showed that they are

highly efficient. They also developed hypothesis testing procedures.

Senoglu and Tiku (2001) gave the analysis in the frame work of two way classification
model in experimental design, when the error follows the generalized logistic distribution
by adopting the procedure of modified maximum likelihood. From an application of the
modified likelihood estimation he obtained efficient and robust estimators of the
parameters, defined F statistics for testing main effects and interaction. Also analyzed the
Box-Cox data and showed that the method developed gives accurate results besides
being easy theoretically and computationally.

Suresh (2004) considered the estimation of scale and location parameters in the two-
parameter exponential distribution using type-Il censored sample. They have derived the
MML estimators using the approach of Tiku and Suresh (1992). They have compared

these estimators with the existing estimators and studied their properties.

Wong and Bian (2005) develop the modified maximum likelihood (MML) estimators for
the multiple regression coefficients in linear model with the underlying distribution
assumed to be symmetric, one of Student's t family. Their empirical study reveals that
the modified maximum likelihood (MML) estimators are more efficient than the Least
Square Estimator (LSE) in terms of relative efficiency of one-step-ahead forecast mean

square error for small samples.

Senoglu (2005) has investigated the robustness of 2 factorial designs when the error
follows Weibull error distribution. From the methodology of modified likelihood, he has
developed robust and efficient estimators for the parameters in 2 factorial design and
defined F statistics based on modified maximum likelihood estimators (MMLE) for
testing the main effects and interaction. He showed that they have high powers and better

robustness properties as compared to the normal theory solutions.

Ayesen et al. (2008) derived modified maximum likelihood estimators and showed that
they are robust and considerably more efficient than the least square estimators besides

being insensitive to moderate design anomalies.

Kantar and Senoglu (2008) made a comparative study for the location and scale
parameters of the Weibull distribution with given shape parameter. Nine parametric

estimators of the location and scale parameters of a two-parameter Weibull distribution
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have been compared in terms of their bias and efficiency in a simulation study. The
estimators considered were the maximum likelihood estimators (MLE), moment
estimators (ME), generalized spacing estimators (GSE), modified maximum likelihood
estimators | (MMLE-I), modified maximum likelihood estimators Il (MMLE-II), Tiku’s
modified maximum likelihood estimators (TMMLE), least-squares estimators (LSE),
weighted least-squares estimators (WLSE) and percentile estimators (PCE). The aim of
the comparisons was to identify the most efficient estimators among these nine
estimators for different shape parameters and sample sizes.

Tiku et al. (2008) have developed the procedure for estimation of non-normal bivariate
distributions of stochastic variance functions. They showed that data sets in humerous
areas of application can be modelled by symmetric bi-variate non-normal distributions.
Estimation of parameters in such situations is considered when the mean and variance of
one variable is a linear and a positive function of the other variable. This is typically true
of bi-variate t-distribution. They found the resulting estimators remarkably efficient.

Hypothesis testing procedures are developed and shown to be robust and powerful.

Tiku and Akkaya (2010) derived Modified maximum likelihood estimators of the
parameters in a second order polynomial regression model. These estimators are shown
to be considerably more efficient and robust than the commonly used least squares

estimators.

Lal et al. (2012) developed the MMLE procedures for the analysis of designs of one-way
elimination of heterogeneity, two-way elimination of heterogeneity and for factorial
experiments when error follows t-family of symmetric distribution. They have developed
the estimation and testing procedures using the modified maximum likelihood estimation
for all the three kinds of designs.

Yadav (2013) obtained the estimators of the model parameters by using the modified
maximum likelihood methodology; proposed new test statistics based on these

parameters in case of 2% factorial experiments when error follows logistic distribution.



1.5 Scope of Present Study

The present study focuses on the development of analytical procedure for the factorial
experiments with Generalized logistic distribution and Gompertz error distribution in

order to tackle the situations where the error term violated the normality assumptions.

The present investigation would help agricultural scientist, research scholars and students
under NARES dealing with factorial experiments where error term follows a non normal
distribution specifically generalized logistic distribution and Gomperts error distribution.
For easy accessibility by the users, the SAS codes were developed for the analytical

procedure which provides a readymade solution to the users.



CHAPTER 2

FACTORIAL EXPERIMENTS WITH LOGISTIC ERROR DITRIBUTION

2.1 Introduction:

Factorial experiments that were introduced by Fisher (1935) and Yates (1937) are often
the best and most used designs in agricultural experiments when the effects of multiple
factors are investigated simultaneously. They also provide the ability to detect and
estimate interactions between the factors. It indicates major trends to determine a
direction for further experimentation Box et al. (1978), Montgomery (1984) and
Hinkelmann & Kempthorne (1994).

Under the assumption of normality and independence of observations, the normal
equations obtained from maximum likelihood function are linear and hence solvable. On
the other hand when the data do not follow the normal distribution, the equations
obtained from maximum likelihood estimation are not linear and so these equations are
not easy to handle. In this chapter, it is assumed that the error follows generalized

logistic distribution.

2.2 Modified Maximum Likelihood Procedures for 2x3x3 Factorial Experiments

A case has been considered where three factors (say A, B and C), in which factor A has 2
levels and factors B and C have 3 levels (2x3x3 factorial experiments) in unblocked

situation. The statistical model for such experiment is

Yiju = HTT; +ﬂj +A4,+ (Tﬂ)ij + (), +(BA) ju T (Tﬁﬂ’)iju + €ju (2.1)
(i=1 2,j=12,3;u=1 2, 3;1=L12,...,n)

where y;,, denotes the observation for of i level of factor A, | level of factor B, u™

level of factor C, | = 1,..., n, i is the overall mean, z; is the effect of the i level of the

factor A, Bj is the j™ effect of factor B, A, is the effect of the u™ level of factor C, (zB)ij is

the effect of the interaction between z; and f; and ejju ~ Logistic Distribution and is a

random error component. Without loss of generality, we assume that

2.5 =2 5= (B)y =2 (@) = 2 (), =2 (P, =2 (BA),, =2 (BA), =

> (B =2 (WBA)y, =2 (#BA),, =0



Furthermore, the factors are considered as fixed and the design is assumed to be

completely randomized design. Since the error follows generalized logistic distribution,

its functional form is

y..  —T..
exp| - jul  “iju
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where, 7, = pu+1,+ f; + A, +(@B); +(2A),, +(BA) j, + (WBA)y,

The likelihood function L is
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Let Vijuw) < Yiue) < Yiue) < - < Yijum be the order statistics of yju (1 <1 < n). Since

complete sum is invariant to ordering then ih(y.):ih(y(.)) where, h(y) is any function of
y. Now,

n
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i=1 j

I
UN

n

-(6+1)22:ZS“23:IZI09 [1+ exp (- ”u(,))] (2.6)

i=1 j=1u=l

Differentiating with respect to the parameters and equating to zero, we have

8IogL 18n 0+122123:ZS: . exp(_ziju(l)) _0
ou o T T+ exp(_ziju(l)) '

dlogL _9n 0+l b eXP(=Zy0)

A_vr- -0,
8Ti o ;uzlgl+exp( Zuu(l))
dlog L @_Hﬂiii exp(=2zj,4)) o
aﬂ o O a1 u=1 I1=1 1+eXp( Zuu(l)) ,
dlog L @_mliii exp(-Zyw) _
Gﬂu o O ia j=1 121 1+exp( ZIJU(|)) ,
dlogL _3n 0+1i2“: exXp(—Z;, ) 0
a(rﬁ)u o O u=11= 1+exp( Z|Ju(|)) ,
ologL _3n 9+123:Z“: exp(=Z;, ) 0
8(7/1) o O j=1 121 1+exp( ZI]U(|)) '
dlogL _2n 9+1Z§n: exp(=Z,qy)
_0’

8(,8&)Ju o it 11 1+ exp(=2z;,))

dlogL _£_0+1i exp(=Z;, ) _
o(apA)y, o o Tl+exp(=z,)

ologL  18n 1 &S

n O+1& S S & exp(_zijul)
oo T __ZZZZ iju)y — i ZZZZ —():0 (27)

iju(l)
O 'id j1u1 11 O T j1uaia 1+exp(=z;,q))

The equations obtained from the first derivative of log likelihood function with respect

to parameters do not yield the explicit solutions for the estimates due to non-linearity of
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the function. Solving them by iterations is indeed problematic for reasons of (i)

multiple roots, (ii) non-convergence of iterations, and (iii) convergence to wrong

values; see, for example, Smith (1985), Puthenpura and Sinha (1986) and Vaughan

(1992, 2002). To alleviate these problems modified likelihood equations are used by

linearizing the intractable terms (in likelihood equations). The resulting equations have

explicit solutions called MML estimators. The MMLE are known to be asymptotically

fully efficient under regularity conditions Bhattacharyya, (1985); Vaughan and Tiku,

(2000).

2.3 Parameter Estimation

For obtaining the solutions, the method given by Tiku and Suresh (1992) by expanding log-

likelihood function using Taylor series is applied for attaining the estimates of parameters.

These solutions are called modified maximum likelihood estimates.

Let exp(_ziju(l)) _
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OlogL 18n O0+1& &GSy
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1

|

For large n, zjjyg) is close to its expected value. Let tgy=E(zjjuq)) ; 1< | <n. The first two terms

of the Taylor Series expansion namely,

g(ziju(l)) =7u + O Zinqy

9Zjuay) = 9(ty) + [Ziue —tn] 9'()

—exp(-t;,)
[1+ exp(—t(,))]2

_exp(-t)
1+exp(-t,))

+ (Ziju(l) _t(|))

_ eXp(_t(n) n t(|) exp(—t“)) _ EXp(_tu)) )
1+exp(-t,)) [1+exp(—t(,))}2 [1+exp(—t(,))]2 no

_ [1+t(|) +exp(—t(,))] eXp(_tu)) _ eXp(_tu))
[l—k exp(—t(l))T I:l"‘ eXp(_tu))]Z

iju(l)

Multiplying exp(2tg)) in numerator and denominator, we have

[1+1, exp(t,,) +exp(t,)] i exp(t,) -
[1+ exp(t(,))]2 [1+ exp(t(,))]2 o (2.17)

g(ziju(l)) =

Although table of the expected values of tjj,q), 1< | < n are available for n <15 [Balakrishnan
and Leung(1988)] but, for convenience, we use their approximate values of tjj obtained

from the equations

tiik (1

i oexp(-2) . _ | . _ (l_}‘w_l
J @A+exp(-2)"* n+1’ MO n+1 (2.18)

Using approximate values instead of exact values does not adversely affect the efficiency of
the MML estimators. [Senoglu and Tiku (2001)]
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Putting the approximate value of g(zijug)) from equation in the normal equations (2.8) — (2.16)
we have,

Thus,
g(ziju(l)) =70 +5(|)Ziju(|)
Hence,
ologL 1810 O+1& Gy Yiut) ~ T
o o _ ZZ Yoy +on| = =11=0,

u o O I jaut i o

ologL 9 O+1& 3¢ Yiua) = T

> 7= I A CIO B TR =0,
or > o ;ulell Yy T O o
dlogL 6n 0+1& S I yi'u(l)_T:u |
B, o o 222 7ot 0| = =0,

j ENENE o i
dlogL 6N O+41& S| Yiot) ~ 7o ||
ologL _bn 0o+1 L5, | 0 " g
o4, o o ;;Il_% 0] o |
ologL 3n 0+13 & yi'u(l)_T:u |
e 2

ij u=l I=1 o |
dlogL 3n 0+13 yi'u(l)_T:u |
e D)3 TR = |=0,
o(th), o o aa o |
ologL  2n 0+1& & Yiut) ~ T
G, o o X y‘”m“)(J Bl

ju i=1 I=1
dlogL  n 6+1¢ Yoty ~ Ti
aphy o o &0 T, Jﬂzo'

iju 1=1
dlogL _ 180 1 23323: " (Yiuty ~ i
oo O O iajt1ual=a o 519
0+1233n y z._’_‘ Y. —Z'* ( )
Zzz iju(l) iju 7| +5| iju(l) iju :0
O T jau= =z o o0 o
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Now solving the normal equations one by one, we have:

(o} o

18n 9+1{18k +(18m,u....—18my—0—0—...—0
O

ﬂ =0; Herek=>y, and m=> ¢,
I=1 I=1

_18n _ 9+1[18k +(18m,u....—18m,uﬂ
o o o

_ 18 _ [18k +[18my....—18m/¢ﬂ

0+1 o
_n _(my.. —myj
0+1 o
n
:>[——kja=m,u —my
0+
n o
= pu=M.—| ——-k |— 2.20
= (9+1 jm (2.20)

g_n_ﬂzs:izn:|:7(|) + 5(” (_yiju“)o-_ Tiju J:| =0

3 3 n >
Yiuy ~ Tiju 9n
22 {7“”5“)[ Ty Jﬂ:bﬂ

omg,...—9mag—-9mz;  9n

= 9%k + ' =
o 0+1
o n
Ol kl=(h. —h-%
m(6’+1 ) (4= fi=2)
=7 = [ _‘_E(L_kj
™ ]
=7 =[..— fl..+ L—k 9.9 L—k ; (substituting the value of /1)
I P T ™ ! #
=7 =fl..— f.. (2.21)
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BN O+l Vi) — Tiio
- ZZI}/(D (I)( ju(l) j J:|:O

O izt u=l 1=l (o2

6n  6+1 6m,[t.j..—6m[1—6m,éj
= 6k +
o

M(fj..— 1= 3
=1 k= ( ' J)

0+1 o

n o n

=>|——k|—=4...—4a-

(9+1 jm P = H=F;

A N ~ n o
= by=imi{ )

~ n o n o
=8 =i.—ft| —-k|—| —-k |—

Py = ey i (9+1 ]m (9+1 jm

= B =Ly~ f...

Similarly, we can have

~n
~

Ay = Pl e

Further,
3N 0+1S & Yiu _T:u
Z {70) 50)( J“; J H—O

=T Bk =y 4 4 By +(Tﬂ)ij)}=

Iy

= est(gf); = - — Lo — fjot [l
Similarly, we can have

est(zA)y, = -y — oo — oo+ foe..

A A

eSt(BA)j, = fejyr— o= ooyt L.

OSL(TBA)y = Ayt et fle oot fleogem By = o= = e

(2.22)

(2.23)

(2.24)

(2.25)
(2.26)

(2.27)



6I0gL:_1 n_liii 5 [yuu(l) T;u]_ 9+1iii . (yiju(l)_f;;uj[y(l)+5(l)[yiju(l)_z-;;u
oo oy - o

j-1u=l I=1

=3

or —18no” +O-|:iiiZ(yUU(l T'JU) (0+1)Zzlizn:y(| (y'JU(l) 2-'JU):| (6+1)iii (')(y'JU 'JU)ZZO

i=1 j=lu=l1 i=1 j=11=1 i=1 j=11=1
2 3 n . 2 3 n L2
-18nc? +0(9+1){Zz 7(|)j(yiju(|)_7iju )}_(9"'1)22250)()’@0)_Tiju) =0
i=1 j=1u=l I=1 (9 1) i=1l j=1 1=l
Thus
/ 2
o= B+VB +4NC here N=18n

2N(N-18) '
where, B=(9+1>{ZZ i((g D 7’(|)J(Yiju(l)_75u)} (2.28)

2 3
C= (9+1)ZZ 5u> (Vi = )2
=t

> C
w

It may be noted that, unlike the maximum likelihood (ML) estimator of o, the Modified
Maximum Likelihood estimator & is always real and positive. The MML estimators have
closed forms and have the similar structure with the classical procedures irrespective of the
underlying distribution. They can also be easily represented in matrix form. For these

reasons, the MML procedures become very attractive for practitioners. The divisor N in the
expression for & has been replaced byﬂ/N(N —18), as a bias correction.
2.4 Main and Interaction Effects

The treatments consisting of all combinations that can be formed from the different factors
may be represented as A, B, AB, B?, AB? C, AC, BC, ABC, B%C, AB*C, C?, AC? BC? ABC?
B°C?, AB?’C?

Letters (1), a, b, ab, b? ab? c, ac, bc, abc. b, ab’c, ¢, ac? bc? abc? b’*c? and ab’c?

represent the weighted totals of n observations obtained from each treatment combination.

= zé] Yy a:zé] Yor1q1ys b:Zé‘l Yiouay ab:zé] Yoouqys b2:25| Yizuay
| 1 ] | |
ab’ :Z(S]Ym(l)’ C:Zéﬂﬁlz(n ' aC:Zé'I Yoro01y: bCzZ‘inzz(n’ abczzé‘ﬂhzzu)'
] | i | |
Zczzé]ylsz(l)' ab2c=25,y232(|), szzé‘l Y1301y aCZ:Zd Yor3ay bc? :Zé]ym(l)’
i ] i i i

abe®=) & Yoy DC* =D 6 Viagqys AD°C*=D 6 Yiaq)-
[ ' !

(2.29)
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The contrast are obtained using Yates algorithm and consequently sum of squares and F

statistics for the main effects, two-factor and three-factor interactions have been computed.

1 _ 1 2. 1
SS, =——(Contrast,)?;  SSs = o—(Contrasty)"; SS. = ——(Contrast, )?;
18m" ) 18m 1om' c)
1 2. 1 2. 1 2.
SS.e =m(ContrastAB) ; SS,. = Dom (Contrast,.)*; SSgc =8—m(Contrasth) ;
vy SS e —m(ContrastABzcz) .

The test statistics for testing the hypotheses are

FA= ~2 FB = Fc =2 FAB 52 FBC ~2 ! FAC_ ~2 !
* SS BZ * SS ABZ * SSABZCZ
FBz = 62 1ren FABz = &2 ] FABZCZ = ~D

For large n, their null distributions are central F with degrees of freedom

(U, V), (0, 0), (U3,015), (U4, U3), (U5, U1), (Vg Ug), (U, U1g), (U5, Uyg), (g, L),
(V101 Usg), (U11,U35), (U1, U3g), (U35, U3g), (D14, Ugg), (U35, Ugg), (U35, Uyg), and (v, 0;), respectively;
where v, = U, = U;= U, = U;= V=0, = Uy =0,

= U, =Uy =0, =03 =0, =05 =0 =u;; =1and v, = 18(n-1).

The results are valid for different values of 9, (6 <1, 6 =1, 6 >1) of the logistic distribution

when the distribution is negatively skewed, symmetric, and positively skewed, respectively.

2.5 Discussion

The analytical procedure have been developed for the 2x3x3 factorial experiments when
error follows generalized logistic distribution. The estimates are obtained through Modified
Maximum Likelihood Estimation procedure (MMLE) for the main effect and interaction
effects. SAS code has been developed for the developed procedure.
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CHAPTER 3

FACTORIAL EXPERIMENTS WITH GOMPERTZ ERROR DITRIBUTION

3.1 Introduction:

Factorial experiments that were introduced by Fisher (1935) and Yates (1937) are often the
best and most used designs in agricultural experiments when the effects of multiple factors
are investigated simultaneously. They also provide the ability to detect and estimate
interactions between the factors. It indicates major trends to determine a direction for further
experimentation, see Box et al. (1978), Montgomery (1984) and Hinkelmann & Kempthorne
(1994).

Under the assumption of normality and independence of observations, the normal equations
obtained from maximum likelihood function are linear and hence solvable. On the other hand
when the data do not follow the normal distribution, the equations obtained of MLE are not
linear and so these equations are difficult to handle. In this chapter, it is assumed that error

follows Gompertz distribution.

3.2 Modified Maximum Likelihood Procedures for 2x3x3 Factorial Experiments

A case has been considered where three factors (say A, B and C), in which factor A has 2
levels, factors B and C have 3 levels (2x3x3 factorial experiments) in unblocked situation.

The statistical model for such experiments is

Viu =H+T+ B+ 4, + (rﬂ)ij +(z1),, + (BA) Wt (rﬂ/l)iju + 8y

(=1 2j=123;u=123;1=12..,n) (3.1)

where y;, denotes the observation for of i™ level of factor A, j™ level of factor B, u™ level of
factor C, | = 1,..., n, W is the overall mean, 7 is the effect of the i level of the factor A, B; is
the j™ effect of factor B, A, is the effect of the u™ level of factor C, (zf);j is the effect of the
interaction between 7; and f; and eju ~ Gompertz distribution and is a random error
component. Without loss of generality, we assume that

ZTi =Zﬂj :Z (Tﬁ)ij =Z (Tﬂ)ij = Z(Tﬂ)iu :Z (74),, :Z (ﬂﬂ’)ju =Z (BA) ju=

Z(rﬂi)iju =Z (ZBAYy, = (zBA);, =0



Furthermore, the factors are considered as fixed and the design is assumed to be completely

randomized design. Since the error follows Gompertz distribution, its functional form is

G(n,a) =nexp [ax - 2{exp(ocx) —1}}
a

where, x>0; 7>0; >0

(3.2)

where, n and a are the shape and scale parameter of the distribution respectively.
The likelihood function L is

2 3 3

L=n" HHHf[exp [a(yuu. -7°) —g{exp(a(yi,«u. -77)) —1}} ; where, N =18n. (3.3)

i=1 j=1 u=l I=1

Log likelihood function is

Zi: ” [ (yuul 'JU)]

2
logL = Nlogn+z

i=1

I Mw

H

(3.4)

N

_Mw

=1

a -

Z [exp {a(Yju _T;u )}_1}

1u=l I=1

For obtaining the solutions, the method given by Tiku and Suresh (1992) by expanding log-

likelihood function using Taylor series is applied for obtaining the estimates of parameters.

Let Zijy = a(yijul uu)

2 3 3 n 2 3 3 n
log L =N log7+ 353 3.3 (2) - - 2353 > exp(z) 1] (35)
i=1 j=1u=l I=1 i=l j=1u=l I=1
Lety <y <y <..<y Dbethe order statisticsof y (1 < <n). Since complete
iju(l) iju(2) iju(3) iju(n) ijul

sum is invariant to ordering then Zh(yl) :Z h(y,,) where, h(y) is any function of y. Now
1=1 1=1

>

|°9L2N|°9’7+iii (Zw) - liiii[“p(zuum) -1] (3.6)

i=l j=1 u=l 1=1 O i1 =1 u=l 1=l
The equations obtained from the log likelihood function do not yield the explicit solutions for

the estimates, due to non-linearity of the function exp(z,,)

dlog L Y3y
og -——a N+UZZZZEXp(Z““(”) 0,
i=1 j-1u=l 1=l
log L "Y'
6 Og =_9na+nzzzexp(zlju(|)) O
az.i j=1 u=l I=
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aﬂj i=1 u=l I=1
2 3 n
ologL _ —6n +UZZ exp(z;,qy) =0,
oA, i=1 j=1 1=1
dlogL 32
=-3n +17 eXp(zm ) 0:
o(B); 2,20ty
dlogL 3
=-3na+7 exp(z;,1y) =0,
o, £8P
dlogL 2 Q
=-2na+n exp(z;,y) =0,
2(62),, 2. 2P0
ologL u
————=-na+n) exp(z,,,)=0,
8(OCﬂﬁv)iju ; uw
alo L 1 2 3 3 n 2 3 3 n
SN Q+_ZZZZ Zijuq) —%ZZZ o €XP(24,0)) {Ziuy 1} =0 (3.7)
oa o a1 14 O o=l A

The equations obtained from the first derivative of log likelihood function with respect to
parameters do not yield the explicit solutions for the estimates due to non-linearity of the
function. Solving them by iterations is indeed problematic for reasons of (i) multiple roots,
(if) non-convergence of iterations, and (iii) convergence to wrong values; see, for example,
Smith (1985), Puthenpura and Sinha (1986) and Vaughan (1992, 2002). To alleviate these
problems modified likelihood equations are used by linearizing the intractable terms (in
likelihood equations). The resulting equations have explicit solutions called MML estimators.
The MMLE are known to be asymptotically fully efficient under regularity conditions
Bhattacharyya, (1985); Vaughan and Tiku, (2000).

3.3 Parameter Estimation

For obtaining the solutions, the method given by Tiku and Suresh (1992) by expanding log-
likelihood function using Taylor series is applied for attaining the estimates of parameters.

These solutions are called modified maximum likelihood estimates.

For largen, z_ 0 is close to its expected value. Let t(l):E(z__ (I)); 1<1<n. The first two terms of
Ju iju

the Taylor Series expansion namely,
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Let exp(z;,4))=9(Z;ju (1))

9Ziw) =70+ SnZiua

9@y0) = 9(ty) + [Zge —tn] 9'(t,)
9(Zjuqy) = @=1g)) eXp(ty) )+ exp(ty)) zyq)
eXP(Zi))=9Ziua)) =70 + S Ziway

Approximate values of tjj,) are obtained from the equation

Ly

I n exp{z— U (exp(z) — 1)}dz = nl_+1

=>t,=In {1—2In (1+ I—ﬂ
a n+1

Thusy,, = 1-t,)exp(t,,) and 5,, =exp(t,,) is computed.

Using approximate values instead of exact values does not adversely affect the efficiency of
the MML estimators. [Senoglu and Tiku (2001)]

Putting the approximate value of g(zijug)) from equation in the normal equations (3.7) we

have,
Thus,
9(Ziuey) = 70y + % Zinay
olog L ZIE R .
_g ==18na+1, >, > > 7y + @ (Yiuey — 7ju) =0 (3.8)
i=1 j-1u=l =1
dlogL L& .
: :_9”0‘“72227(!) Sy Yiugy = %) =0 (3.9)
0T, j=L u=l 1=
ologL 23,0 .
=—6na "'7722 ay +0m Yiuay — i) =0 (3.10)
aﬂj i=1 u=1 I=1
dlog L e AL .
9 —6n0!+772227(|) + 60y (Yiuqy — Tiju) =0 (3.11)
04, i1 j= I=1
dlogL 3 & .
=-3na + +0na(Y: i —7.)=0 3.12
a(Tﬁ)ij U;é?’a) o (ylju(l) leu) ( )
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dlogL ——3na+n23:zn:7 +0na(Yiuqy — Ty ) =0 (3.13)
o), AU R TR :
dlogL 2 & .
——=— = 2na+ +o (Y =7, )=0 3.14
6(ﬂ/1)ju 77;%:70) 0 (yuu(l) leu) ( )
dlogL n .
—————=—na+n) 7y +onYiuny — %) =0 (3.15)
Xap),, ; M T OnEWijuay ~ T
dlog L I AR R .
=-18n—+— a(Yiug) = i)
da a aggél_l jul) j
N &GS (3.16)
_?ZZZ a {70 + SV~ Ti) e Wioey ~73) =1} =0
i=1 j-1u=l I=1
Now solving the normal equations one by one (3.8 to 3.16), we have
—18na +7[18k +18meyt.... —18mait—0] = 0; Herek=) 7, and m=> 6,
1=1 1=1
o A A
n— =K+ Majt....—Ma
n
.1 X
,u=—[k+ma,u —n—}
mo n
~ k. n
f=— E—
Mo mn
LS (3.17)
mp  Mma

—9nex +77[9K +9Mary...—Imarit —9mer, | =0

n . . .
9—05:9k+9m04ui...—9m01,u—9m0n'i

n

R 1 { . na}
7. =—| K+ mag,...—majit——

ma n
A oa .~ N k
L= m e —
mn Mo

A~ A R n k n . R
T =f...— ———— ——+—— ; (substituting the value of 1)
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A

T.=[...— fL....

—6na+n[6k +6Ma. j..—6maﬁ—6maﬁj}= 0

a A . .
— =K+mMayt...—Mai —map,

A k . . N
By=—+p.—p——
Mo mn
A .k n
ﬂl:ﬂj - T
Mo mpy

B, = =i

—3na + U[Sk +3Marj;..— 3mal —3ma(r,AB)ij —3mat, —3map, } =

3na

— =3k + 3Mayt;..— 3Marjit —3ma(z',AB)ij

n

n n A
(T,B)” +/Jij--_zu___7i_ﬂj
mrn
k n .
(TIB)U ﬂu 1u+ ___Ti _ﬂ
Mo mny

(@B = fbjee— Moo= flejo+ [

Similarily,
(A)iy = fioge = o= e+ [

(BA) = = = o+ e

(aPA)ijy = Myt et g+ fley— [

Where,

-3mat, —3m0¢ﬁj

A~

— flejy— .

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)



R 1 2 3 3 n R 1 3 3 n R l 2 3 n
T ™ ZZ SayYiuay 5 Moo= ZZZ n Yijuq) - ﬂ-j--=—ZZZ ) Yiiua)
18m 75 5= M= v = em T T =
1 2 3 n R 1 3 n R 1 3 n
fL.., G_mlz_l:JZ_lZZ a) Yijua) /uij":3_mu2:l: - 5(I)yiju(l); Hiwye :3_mjz_lllz_1:5(l)yiju(l)
R l 2 n n
Hejy =%Z SyYiuay 5 Hiju-= Zé‘(l)yiju(l) (3.27)
i1 1= =)
77 1 2 3 3 n 77 2 3 3 n .
—18n _+_Zzzza(yuu(|) leu __zzzz a{?/(l) + (I)a(yuu(l) Tuu }{a(yiju(l) _Tiju)_l} =0
(04 aia j-lu=l I=1 a i j-lu=l I=1

n n

O‘ZUZZZZ@!)(VM) T) +a ﬂZZZi(Vuum—Tf}u)(nn-@n)}ﬂZZZ Yoy —Nn=0

i=1l j-1u=l I= i=1 j-1u=l i=1 j-1u=l I=1

. :—B+\}BZ—4AC

o
2A
2 3 3 n 2
where, A=7> > > (|)(y.,u(|) i
i=l j-1u=l I=

= n;;§| (yuu(l) z-uu)(y(l) (|)) (328)
M)

The MML estimators have closed forms and have the similar structure with the classical
procedures irrespective of the underlying distribution. They can also be easily represented in

matrix form. For these reasons, the MML procedures become very attractive for practitioners.

R 1 2 3 3 R 1 3 3 n R 1 2 3 n

i =— iy s My = —— a5 e =—— O Vi
M= Tem 2 JZUZ;Z m Yiuay » A ngZ;;le m Yiuay 7 A GmZﬂ:;; m Yijum

1 2 3 n 1 3 n 1 3 n

[q.. .= — 0, ; =— O V.. ; Ai'u':_ o i
M.y 6m IZ_l:JZ_l: A ayYiiuq) 7 ,u” 3m ; - ayYiuay » 4 3 Jz_ll 2 ) Yium
7 —LZZ: n O Yiuny 5 A —125 y (3.29)
Hejy- 2m & ay Yiuqy + Hiju- m & oy Yiju :
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3.4 Main and Interaction Effects

The treatments consisting of all combinations that can be formed from the different factors
may be represented as A, B, AB, B?, AB?, C, AC, BC, ABC, B°C, ABC, C?, AC? BC? ABC?
B?C?, AB*C?

Letters (1), a, b, ab, b% ab? c, ac, bc, abc. b%c, ab’c, ¢, ac?, bc? abc? b’c® and ab*c?

represent the weighted totals of n observations obtained from each treatment combination.

= 25] Yy a:zé] Yor1q1ys b:Zé‘l Yiouay ab:zé] Yooy b2:25| Yiziay
[ I [ [ [

ab’ :Zé] Yoz C:Zé] Yioqy o aC:Zé'I Yor2ay bCZZé‘I Yi2o(1) s abC:Zé'l Y220y
| [ I [ [

b%:Zé‘l Yizoqy s abzc:25| Yasqy 02225" Yisqy ac’ :Zd Ya13ay bc? :Zé] Yiosqy:
I | [ [ [

abe* =" 6 Yoays D*C =D 6 Visaqys AD*C=D " 8 Yonaqy-
I I !

The contrasts are obtained using Yates algorithm and consequently sum of squares and F

statistics for the main effects, two-factor and three-factor interactions have been computed.

1 1 1
SS, =——(Contrast,)?: SS. =——(Contrast.)*: SS. =———(Contrast.)?:
18m ( A) ® = Tam ( 8) om ( c)
1 2, 1 2. 1 2,
SS.e :%(ContrastAB) 7SS, :ﬁ(ContrastAc) ; SSge :8—m(ContrastBC) ;

1
..., SS = 2—(ContrastABzcz)2.

2n2
AB“C 7m

The test statistics for testing the hypotheses are

« SS « SS « SS « SS « SS «~ SS
Fa=— Fe=—3 F=—% Fe=—"3" Fc=—713" Fp=—15"
o c c o c
oD e B Swe
BZ &2 1 1 ABZ 6—2 1 ABZCZ &2

For large n, their null distributions are central F with degrees of freedom

(U, 0), (Uy,01), (U3, 035), (U1 U3g)s (U5, V1), (Vg Usg), (U7, U1), (Vg Ugg), (U5, Uyg),
(U2 Vig)s (D11, U3g), (13, Ug), (U35, U3g), (g, i), (U35, U3g), (U6, L), aNd (07, 0,), TESPECiVElY;
where v, = v, = ;= U, = U= U, =0, = Uy =V,

= U, =Uy =0, =03 =0, =05 =0 =u;; =1and vy = 18(n-1).
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3.5 Discussion

The analytical Procedure have been developed for the 2x3x3 factorial experiments when
error follows Gompertz distribution. The estimates are obtained through Modified Maximum
Likelihood Estimation procedure (MMLE) for the main effect and interaction effects and F
statistics have been obtained. SAS code has been developed for the developed procedure.
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CHAPTER 4

APPLICATION OF THE MODIFIED MAXIMUM LIKELIHOOD ESTIMATION
PROCEDURE ON SIMULATED DATA

4.1 Introduction:

In this Chapter, a factorial experiment has been considered in which there are three factors A,
B and C. In which factor A has 2 levels, factor B and C have 3 levels. Data sets for 2x3x3
factorial experiments have been obtained for both the situations of non-normality. The
developed procedure has been applied on the generated data and sum of squares and F
statistics have been obtained for all the treatment combinations. The analysis of the datasets
of 2x3x3 factorial experiments considering the two cases generalized logistic distribution and

Gompertz distribution have been given.

Probability density function of generalized logistic distribution

X —
exp{-(——)}
GL(u,0,0) =— g . —w<x<w; 0>0; 8>0.

T [+ exp{-(C—£)31°"
O

Probability density function of Gompertz distribution

G(n,a) =nexp [ax—g{exp(ax) —1}}

where, x>0; >0; >0
Procedure for calculation of sum of squares has been worked out for 2x3x3 factorial
experiments.
4.2 Generation of data in case of logistic error distribution
In some situations, when the errors are non-normal, the distribution of test statistic is
unknown. It is, therefore, necessary to generate empirical critical values in order to test Ho
against Hy. This is done by means of simulation studies. In this Section, data has been
generated for which error follows the logistic distribution for different values of 8 which
gives different shape of the distribution. A real data set has been taken in 2x3x3 factorial set
up with three observation per cell (54 observationsO and predicted values and residuals have
been obtained then a sample of 54 observations of logistic error has been generated with the

parameter values 6 =0.5, 1 and 2 for which the data is positively skewed, symmetric and



negatively skewed respectively. The predicted values are added with the logistic error and

therefore we have three sets of data for the 2x3x3 Factorial experiments where error follows

logistic distribution. The generated data for 8 =0.5, 1 and 2 has been given in Table: 4.1, 4.2

and 4.3 respectively.

Table: 4.1 Data generated for 2x3x3 factorial experiment when error follows logistic
distribution for  =0.5

Treatment | mean A B AB B? AB? C AC BC
effects
000 100 010 011 020 120 | o001 | 101 011
Observations
46.600 | 85.510 | 39.367 | 78.188 | 91.575 | 75.483 | 79.415 | 77.445 | 88.546
Generated
por col| | |46:996 | 86546 | 57.851 | 95.894 | 91.920 | 79.452 | 81.132 | 78.751 | 89.907
47965 | 91.348 | 58.888 | 97.297 | 97.552 | 81.559 | 87.255 | 80.108 | 101.604
ABC B’C | AB*C c? AC? BC? | ABC? | B?C? | ABC?
111 021 121 002 102 012 | 112 | 022 122
Observations
82.349 | 66.439 | 71.914 | 67.579 | 78.601 | 55.315 | 74.496 | 66.271 | 82.349
Generated  "g/ 10 68.450 | 73.483 | 85.913 | 78.681 | 74.976 | 78.088 | 69.679 | 84.240
Per cell 91.306 | 73.036 | 73.517 | 92.569 | 84.751 | 78.099 | 82.332 | 72.187 | 91.306

Table: 4.2 Data generated for 2x3x3 factorial experiment when error follows logistic
distribution for 6 =1

Treatment | mean A B AB B’ AB? C AC BC
effects
000 100 010 011 020 120 | o001 | 101 | o11
Observations
49.076 | 93.326 | 63.210 | 97.339 | 98.980 | 78.881 | 82.652 | 82.655 | 76.091
Generated
Der cell 54.074 | 96.483 | 66.496 | 98.388 | 99.516 | 84.450 | 86.161 | 84.171 | 77.578
58.041 | 98.360 | 69.754 | 101.581 | 102.059 | 89.242 | 91.532 | 87.465 | 79.757
ABC B’C AB°C c? AC? BC® | ABC® | B’C® | AB*C?
111 021 121 002 102 012 | 112 | 022 | 122
Observations
81.430 | 81.502 | 69.237 | 78.890 | 79.159 | 76.033 | 72.382 | 79.171 | 65.790
Generated  "gg ™65 | 83.077 | 69.254 | 79.646 | 82.162 | 80.455 | 76.224 | 81.099 | 68.286
Per cell 93.432 | 87.729 | 73.805 | 80.923 | 94.030 | 82.140 | 79.452 | 85.431 | 72.087
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Table: 4.3 Data generated for 2x3x3 factorial experiment when error follows logistic
distribution for 6 =2

Treatment | mean A B AB B’ AB? C AC BC
effects

000 100 010 011 020 120 | 001 | 101 | o11

Observations
51.268 | 95.302 | 65.432 | 99.452 | 100.865 | 82.320 | 85.302 | 84.911 | 78.385

Generated
por ol |53:885 | 98292 | 68.389 | 100.388 | 101374 | 86.501 | 88.217 | 86.226 | 79.662
59.790 | 100.130 | 71.533 | 103.397 | 103.838 | 91.048 | 93.309 | 89.297 | 81.655
ABC B’C AB*C c? AC? BC? | ABC? | B?C? | AB*C?
111 021 121 002 102 012 | 112 | 022 | 122

Observations
) 85.257 | 84.742 | 71.756 | 80.939 | 82.300 | 79.883 | 75.766 | 81.398 | 69.981
Generated  "g) 5157 85868 | 71.769 | 81.623 | 84.562 | 82.999 | 78.612 | 83.095 | 71.594
Percell | 95995 | 89728 | 75.721 | 82.810 | 95.772 | 84.372 | 81.418 | 87.216 | 74.439

4.3 Analysis 2x3x3 factorial experiment when error follows logistic distribution

A dataset for 2x3x3 factorial experiments with three observations per cell is taken with total

of 54 observations for which error follows the logistic distribution which have been generated

in above section 4.2. This data has been analyzed with the methodology developed and

presented in Table: 4.4, 4.5 and 4.6 for the different values of the distribution parameter 6

(0.5, 1 and 2). SAS code has been developed for the analysis with modified maximum
likelihood procedure developed and given in ANNEXURE.

Table: 4.4 Analysis of 2x3x3 factorial experiments for # = 0.5

Source DF Mean F Value
Square
A 1 96.9584 5.52785*
B 1 29.0356 1.65539
AB 1 387.597 22.0979*
B’ 1 0.26204 0.01494
AB? 1 132.118 7.53237*
C 1 0.39498 0.02252
AC 1 287.006 16.3629*
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BC 1 160.285 9.13824*
ABC 1 106.141 6.05139*
B°C 1 8.31018 0.47378
AB°C 1 136.191 7.7646*

c? 1 67.7792 3.86426
AC? 1 57.0143 3.25053
BC? 1 46.4333 2.64728
ABC? 1 59.0471 3.36643
B°C? 1 29.8689 1.7029

AB°C? 1 64.4351 3.67361
3.107
Error 36

Table: 4.5 Analysis of 2x3x3 factorial experiments for 6 =1

Note: F~ Value is obtained from the procedure of MMLE methodology.

Source DF Mean F~ Value
Square

A 1 60.682 9.989*
B 1 0.651 0.107
AB 1 401.210 | 66.042*
B? 1 0.065 0.011
AB? 1 07.348 | 16.024*
C 1 43.566 7.171*
AC 1 260.292 |  42.846*
BC 1 184508 | 30.371*
ABC 1 125.465 | 20.652*
B°C 1 0.010 0.002
AB’C 1 37.050 6.099*
C? 1 2.755 0.454
AC? 1 58.745 9.670*
BC? 1 75.838 | 12.483*
ABC? 1 74974 | 12.341*
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B°C? 1 2.487 0.409
AB°C? 1 8.341 1.373
2.465
Error 16

Table: 4.6 Analysis of 2x3x3 factorial experiments for 6 = 2

Source DF Mean F~ Value
Square

A 1 57.2572 9.61416*
B 1 2.32479 0.39036
AB 1 358.294 60.1618*
B 1 0.00912 0.00153
AB? 1 84.8404 14.2457*
C 1 31.558 5.29897*
AC 1 240.451 40.3745*
BC 1 165.154 27.7313*

ABC 1 130.723 21.95*
B°C 1 0.00219 0.00037
AB°C 1 37.34 6.26983*
c? 1 2.95179 0.49564
AC? 1 56.3878 9.46819*
BC? 1 68.5124 11.504*
ABC? 1 61.956 10.4031*
B>C? 1 1.45181 0.24378
AB°C? 1 7.38491 1.24001

2.440
Error 36

4.4 Computation of Size of the Test
The probability P (F >Fqs) (v1, Vig) is calculated empirically. The computation of size of the
test is done by using a program in SAS-IML. Further, the size of the test has been obtained by

re-sampling technique to obtain the distribution using Monte Carlo simulation in 5000 runs
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and SAS code has been developed for the purpose which is given in ANNEXURE-2 and the

results are given in the Table: 4.7.

Table: 4.7 Size of the Test from Monte Carlo simulation of 5000 runs

For n=3

Source 0=1 0=05 0=2
A 0.0742 0.303 0.1334
B 0.1392 0.2842 0.4098
AB 0.0028 0.1052 0.0432
B 0.2006 0.1092 0.0594
AB? 0.0278 0.2682 0.1572
C 0.0758 0.1402 0.2706
AC 0.0052 0.1076 0.1146
BC 0.0286 0.2122 0.0624
ABC 0.0286 0.1592 0.1958
B°C 0.0222 0.3482 0.0242
AB’C 0.1162 0.2648 0.1718
C? 0.3422 0.161 0.3978
AC? 0.0956 0.2946 0.1462
BC? 0.0592 0.2268 0.1794
ABC? 0.0904 0.2358 0.1126
B°C? 0.3156 0.3202 0.4116
AB’C? 0.1696 0.2768 0.3234

From the above it can be seen that size of the test is approximate 0.05 for some of the main
effects and some of the interactions for the parameter value & = 1. For other parameter values
it considerably deviates from the value 0.05. This also validates the procedure of modified

maximum likelihood estimation.

4.5 Generation of data in case of Gompertz error distribution
In this Section, data has been generated for which error follows the Gompertz distribution for
different values of 7. A real data set has been taken in 2x3x3 Factorial set up with three

observation per cell (54 observations) and predicted values and residuals have been obtained
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then a sample of 54 observations of error has been generated which follows Gompertz

distribution with the parameter values » =1 and 2. The predicted values are added with these

errors and therefore we have two data sets for the 2x3x3 Factorial experiments where error

follows Gompertz distribution. The data generated for # =1 and 2 has been given in Table: 4.8

and 4.9 respectively.

Table: 4.8 Data generated for 2x3x3 factorial experiment when error follows Gompertz

distribution for =1

Treatment | mean A B AB B? AB? C AC BC
effects
000 100 010 011 020 120 001 101 011
Observations
49.248 | 91.689 | 63.407 | 96.926 | 95.670 | 84.135 | 85.087 | 83.281 | 76.732
Generated
Per cell 49.466 | 91.943 | 63.666 | 96.959 | 95.976 | 84.362 | 85.753 | 83.451 | 76.991
49.747 | 92.071 | 63.799 | 97.487 | 96.397 | 84.480 | 85.784 | 83.535 | 77.274
ABC B’C AB*C c? AC? BC? | ABC? | B?C? | AB*C?
111 021 121 002 102 012 112 022 122
Observations
o 4 87.673 | 86.224 | 71.128 | 78.322 | 83.513 | 82.835 | 77.505 | 79.334 | 73.249
enerated |"go 996 | 86.273 | 71.246 | 78.379 | 83.583 | 82.864 | 77.627 | 79.449 | 73.569
Per cell 88.190 | 86.743 | 71.307 | 78.911 | 83.789 | 82.893 | 77.696 | 79.766 | 73.791

Table: 4.9 Data generated for 2x3x3 factorial experiment when error follows Gompertz

distribution for =2

Treatment | mean A B AB B’ AB? C AC BC
effects

000 100 010 011 020 120 | 001 | 101 | o1l

Observations
49.086 | 91.475 | 63.398 | 96.670 | 95.704 | 84.057 | 85.151 | 83.131 | 76.698

Generated
bor col| | 49182 | 91.636 | 63.748 | 96.944 | 95.804 | 84.286 | 85.299 | 83.204 | 76.838
49280 | 91.737 | 64.061 | 97.139 | 95.844 | 84.406 | 85.358 | 83.540 | 76.886
ABC B’C AB°C c? AC? BC® | ABC® | B’C® | AB*C?
111 021 121 002 102 012 | 112 | 022 | 122

Observations
| | B7.949 | 86249 | 71.027 | 77.667 | 83542 | 82.345 | 77.357 | 79382 | 73211
Generated  "gg o0 86.460 | 71.281 | 77.980 | 83.568 | 82.915 | 77.456 | 79.394 | 73.317
Percell | ga347 | 86.566 | 71.430 | 78.016 | 83.947 | 83.217 | 77.921 | 79.442 | 73.351
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4.6 Analysis of 2x3x3 factorial experiment when error follows Gompertz distribution

A SAS code has been developed (which in given in ANNEXURE) to analyse the data sets
which follows Gompertz error distribution for the above mentioned factorial setup. The data
sets generated in the above section have been analysed and presented in tables 4.10 and 4.11.

Table: 4.10 Analysis of 2x3x3 factorial experiments for =1

Source DF Mean F Value
Square
A 1 270.157 | 113.823
B 1 51.747 21.802°
AB 1 924.881 | 389.672
B? 1 3.912 1.648
AB? 1 216.694 91.298
C 1 6.792 2.862
AC 1 748.180 | 315.224
BC 1 523.071 | 220.381"
ABC 1 418.124 | 176.165
B°C 1 2.787 1.174
AB*C 1 158.786 66.900"
c’ 1 31.040 13.078
AC® 1 251.824 | 106.099
BC? 1 207.316 87.347
ABC? 1 114.996 48.450"
B*C? 1 0.014 0.006
AB*C® 1 67.047 28.248"
Error 36 Lodl

Table: 4.11 Analysis of 2x3x3 factorial experiments for = 2
Source DF Mean F~ Value
Square
A 1 278.895 | 106.155
B 1 57.489 21.882"
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AB 1 944362 | 359.449
B* 1 5.381 2.048
AB? 1 213.847 81.395"
C 1 7.059 2.687
AC 1 731.705 | 278.506
BC 1 522.991 | 199.064"
ABC 1 400.743 | 152.533
B°C 1 2.722 1.036
AB“C 1 157.216 59.840"
c? 1 34.607 13.172
AC® 1 248.788 94.695"
BC? 1 205.700 78.295"
ABC? 1 117.856 44.859"
B*C? 1 0.008 0.003
AB*C? 1 73.705 28.054"
Error 36 1621

4.7 Discussion

Error has been generated which follows logistic distribution for different values of 6 which
gives different shapes of the distribution. The distribution is negatively skewed, positively
skewed or symmetric for the values of 8 = 0.5, 1 and 2, respectively. Using these generated
logistic error 3 sets of 54 observations in 2x3x3 factorial setup has been obtained. The model
is assumed to be fixed effect model and design considered is completely randomized design
for equal number of observations per cell. These sets are analysed through the developed
modified maximum likelihood estimation procedure and sum of squares and F statistics have
been computed. Similarly two data sets have been generated for Gomperz error distribution
with the parameter values =1 and 2 The SAS code have been developed and generated data
sets have been analyzed and presented. Finally, SAS code has been developed for the

computation of size of the test.
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SUMMARY

Factorial experiments are widely used in agriculture and allied sciences. In the present study,
2x3? factorial experiments have been considered under the assumption that the error follows
non-normal distribution. Under the assumption of normality and independence of
observations, the normal equations obtained from maximum likelihood function are linear
and solvable. On the other hand when the data do not follow the normal distribution, the

equations obtained of MLE are not linear and so these equations are difficult to handle.

The present study focuses on the development of analytical procedure for the factorial
experiments in order to tackle the situations where error term violates normality assumptions.
Here, factorial experiments have been considered where error follows non-normal
distribution. Two non-normal distributions have been considered from which one is
generalized logistic distribution and another is Gompertz distribution. The theory of modified
maximum likelihood estimation has been applied and efficient estimators have been
developed. New modified maximum likelihood estimates have been developed and the
estimates of parameters are obtained for both the situations of non-normality.

The developed procedure is applied in the analysis of 2x3? factorial experiments in which
error follows the generalized logistic and Gompertz error distributions. Data have been
generated for the simulation studies for which error follows generalized logistic distribution.
Three data sets have been generated for parameter values (6 =0.5, 1 and 2) in 2x3? factorial
set up where the data are positively skewed, symmetric and negatively skewed respectively.
In the same way, two data sets have been generated with the parameter values (7 =1 and 2)
where error follows Gompertz distribution. These data sets are analyzed through developed

procedure.

SAS codes have been developed for analysis of the data sets generated through 2x3? factorial
experiments where error follows logistic and Gompertz distributions. The output for the data
sets of all mentioned five parameter values i.e. § =0.5, 1, 2 and =1, 2 are given in table 4.4,
45, 4.6,4.10 and 4.11 of Chapter 4 where sum of squares and F~ statistics have been given.
The probability P (F">Fqs) (v1, Vig) is calculated empirically for the developed F statistics.
Further, size of the test is computed with 5000 Monte Carlo runs using re-sampling

technique.



This present investigation would help scientist, research scholars and students under NARES
dealing with factorial experiments where error follows generalized logistic distribution and
Gompertz distribution. For easy accessibility by the users, the SAS codes have been

developed which provide a readymade solution.
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ANNEXURE

SAS code for the analysis when error follows logistic error distribution

data mrin;

input x;

datalines;

<data set>

proc iml;

use mrin;

read all into data;
obs=data(]|,1]);

b=1;/* value of parameter b*/
trt=18;/* number of treatment*/
n=3;/* number of replication*/

dfc={-1 1 -1 1 -1 1 -1 1 -1 1 -1
-1 1 -1 1 -1 1,

-1 -1 0 0 1 1 -1 -1 0 0 1 1
-1 0 0 1 1,

1 -1 0 0 -1 1 1 -1 0 0 -1 1
-1 0 0 -1 1,

1 1 -2 -2 1 1 1 1 -2 -2 1 1
1 -2 -2 1 1,

-1 1 2 -2 -1 1 -1 1 2 -2 -1 1
1 2 -2 -1 1,

-1 -1 -1 -1 -1 -1 0 0 0 0 0 0
1 1 1 1 1,

1 -1 1 -1 1 -1 0 0 0 0 0 0
1 -1 1 -1 1,

1 1 0 0 -1 -1 0 0 0 0 0 0
-1 0 0 1 1,

-1 1 0 0 1 -1 0 0 0 0 0 0
-1 0 0 -1 1,

-1 -1 2 2 -1 -1 0 0 0 0 0 0
1 -2 -2 1 1,

1 -1 -2 2 1 -1 0 0 0 0 0 0
1 2 -2 -1 1,

1 1 1 1 1 1 -2 -2 -2 -2 -2 -2
1 1 1 1 1,

-1 1 -1 1 -1 1 2 -2 2 -2 2 -2
1 -1 1 -1 1,

-1 -1 0 0 1 1 2 2 0 0 -2 -2
-1 0 0 1 1,

1 -1 0 0 -1 1 -2 2 0 0 2 -2
-1 0 0 -1 1,

1 1 -2 -2 1 1 -2 -2 4 4 -2 -2
1 -2 -2 1 1,

-1 1 2 -2 -1 1 2 -2 -4 4 2 -2
1 2 -2 -1 1};/* define contrast*/

k=nrow (obs) ;
c=sum (obs) ;
mean=b/k;

p=J (k,1,mean) ;
sg=obs-p;
fl=sqg#sq;
f2=sum(£fl);
var=£f2/k;
sd=sqrt (var) ;



Z=sq/sd;
%$let h=n;
p2=j(&h,1,0);
do t=1 to &h;

p2 [t/ ]:t;
a=exp (t);
end;

qr=p2/ (n+1) ;
gl=repeat (qr, trt);
gl=-(1/b);
mgl=ql##gl;
pl=j(k,1,1);
dmgl=mgl-pl;
tl=-log(dmgl) ;
%let h=k;
dell=j(&h,1,0);
gal=j(&h,1,0);
do t=1 to &h;
a=exp(tl[t]):;

bl=tl[t];
delllt,]=(a/((1+a)*(1l+a)));
gallt,]=((1+bl*a+a)/ ((1+a)*(1+a)));
end;

cont=dell#obs;
$let hl=trt;
pcl=j(&hl,1,0);
do t=1 to &hl;
pclt,]=t;
end;
pc2=repeat (pcl,n);
call sort(pc2,1);
pc3=design (pc2) ;
contl=cont’;
contf=contl*pc3;
contfn=contf’;
m=sum (dell) /trt;
muij=contfn/m;
muijj=pcl]| |muij;
crast=dfc*contfn;
muijjj=repeat (muijj,n);
call sort (muijjj,1);
start delcol(x,1);
return(x[,setdif(l:ncol(x),1)]);
finish;
muijl=delcol (muijjj,1);
new=obs-muijl;
f=1/(b+1);
newl=repeat (f, k) ;
new2=newl-gal;
new3=new2#new;
fl=1+b;
newd=repeat (f1l, k) ;
bij=newd#new3;
newb=new#new;
new6=dell#new5;
cij=fl#newb;
ray=sum(bij);
rayl=sum(cij);
nume=ray+sqrt (ray*ray+4*k*rayl) ;
denom=2*sqrt (k* (k-18)) ;
sigma=nume/denom;
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jani=crast#crast;

trtdiv={18 12 12 36 36 12 12 8 8 24
36 24 24 72 72} *m;

sss=Jjani/trtdiv;

sig=sigma*sigma;

fstat=sss/sig;
print sigma sss fstat;
$mend;

SAS Code for computation of Size of the Test

dm output 'clear' output;
dm log 'clear' output;

$let
$let
$let
$let
$let
data

b=1;/* value of parameter b*/

trt=18;/* number of treatment*/

n=3;/* number of replication*/

obs=54; /*total number of observations */
rep=10;/*total number of iterations */
mrin;

input id x;
datalines;
<data set>;

run;

data mrin2;

input g a b ab b2 ab2 c ac bc abc b2c ab2c c2 acz
abc2 b2c2 ab2c2 ;

cards;

=1l 1 =1l 1 =il 1 =il 1 =il 1 =il
1 =1l 1 =il 1

=1l =1l 0 0 1 1 =1l =1 0 0 1
=1l 0 0 1 1

1 =1l 0 0 =il 1 1 =il 0 0 =il
=il 0 0 =1 1

1 1 =2, =2 1 1 1 1 =2 =2 1
1 =2 =2 1 1

=1l 1 2 =2 =1l 1 =1l 1 2 =2 =1
1 2 =2 =il 1

=1l =1l =1l =il =il =il 0 0 0 0 0
1 1 1 1 1

1 =i 1 =1 1 =1 0 0 0 0 0
1 =1 1 =1 1

1 1 0 0 =1l =1l 0 0 0 0 0
=il 0 0 1 1

=il 1 0 0 1 =1l 0 0 0 0 0
=1 0 0 =1 1

=il =i 2 2 =1 =1 0 0 0 0 0
1 =2 =2 1 1

1 =il =2 2 1 =1l 0 0 0 0 0
1 2 =2 =il 1

1 1 1 1 1 1 =2 =2 =2 =2 =2
1 1 1 1 1
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bc2

1 =il
1 =1,
1 1
1 1
1 =1,
0 1
0 =1,
0 =il
0 1
0 1
0 =il
=2 1



e N = = =l

1
=1l 1 2 =2 =1l
1

run;
$macro sunil;
proc iml;
use sunill;
read all into data;
obs=data(]|,1]);
b=&b;
trt=&trt;
n=&n;
use mrin2;
read all into dfc;
k=nrow (obs) ;
c=sum (obs) ;
mean=b/k;
p=J (k,1,mean) ;
sg=obs-p;
fl=sqg#sq;
f2=sum(£fl);
var=£f2/k;
sd=sqrt (var) ;
Z=sq/sd;
$let h=n;
p2=3j(&h,1,0);
do t=1 to &h;
p2[t,]1=t;
a=exp (t);
end;
qr=p2/ (n+1) ;
gl=repeat (qr, trt);
gl=-(1/b);
mgl=gql##gl;
pl=7 (k,1,1);
dmgl=mgl-pl;
tl=-log(dmgl) ;
$let h=k;
dell=j (&h,1,0);
gal=j(&h,1,0);
do t=1 to &h;
a=exp (tl[t]);
bl=tl[t];
delllt,]=(a/((1+a)*(1l+a)));
gall[t,]=((1+bl*a+ta)/ ((1+a)*(1l+a)));
end;
cont=dell#obs;
$let hl=trt;
pcl=j (&h1,1,0);
do t=1 to &hl;
pCl [t,]1=t;
end;
pc2=repeat (pcl,n);
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call sort(pc2,1);
pc3=design (pc2) ;
contl=cont’;
contf=contl*pc3;
contfn=contf;

m=sum (dell) /trt;
muij=contfn/m;
muijj=pcl| |muij;
crast=dfc*contfn;
muijjj=repeat (muijj,n);
call sort (muijjj,1):;
start delcol(x,1);

return(x[,setdif(l:ncol(x),1i)]);

finish;

muijl=delcol (muijjj,1);
new=obs-muijl;
f=1/ (b+1) ;
newl=repeat (f, k) ;
new2=newl-gal;
new3=new2#new;
fl=1+b;
newd=repeat (f1l, k) ;
bij=newd#new3;
newb=new#new;
new6=dell#new5;
cij=fl#new6;
ray=sum (bij);
rayl=sum(cij) ;

nume=ray+sqrt (ray*ray+4*k*rayl) ;

denom=2*sqgrt (k* (k-18)) ;

sigma=nume/denom;

jani=crast#crast;

trtdiv={18 12 12 36
36 24 24 72

sss=jani/trtdiv;

sig=sigma*sigma;

fstat=sss/sig;

print fstat;

$mend;

$macro resamplingl;
*dm log 'clear' output;

36
72}

12
*m;

12

24

24

36

proc surveyselect data=mrin out=sunil method=srs sampsize=&obs seed=-20141

noprint;
run;

proc sql;

create table sunill as select x from sunil;

quit;

$sunil;

create Temp org from fstat[colname="fstat org"];

append from fstat;
quit;

data final fstat org;
set Temp org ;

run;

$mend;
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$macro resampling2;
%do i=1 %to &rep;
*dm log 'clear' output;

FPUL v e e e ;
%put iteration no.&i;
FPUL v e e e ;

proc surveyselect data=mrin out=sunil method=urs sampsize=&n outhits seed=-
20141 noprint;

strata id;

run;

proc sqgl;
create table sunill as select x from sunil;
quit;

$sunil;

create Temp &i. from fstat[colname="fstat &i."];
append from fstat;

quit;

%end;

data final fstat;
%$do i=1 %to &rep;
set Temp &i. ;
send;

run;

proc iml;

use final fstat org;
read all into dataZ2;
fmatl=dataZz;

use final fstat;

read all into datal;
fmat=datal;
finmat=fmatl]| | fmat;
powerl=1/fmatl;
power2=finmat#powerl;
power3=j (nrow (power2), ncol (power2),0);
do i=1 to nrow (power2);
do j=1 to ncol (power?2);
if power2[i,j]< 1 then power3[i,jl=1;
end;

end;

powerd=power3[,+];
rep=&rep;
power=powerd/rep;

print power;

quit;

$mend;

sresamplingl;
$Sresampling2;
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SAS code for the analysis when error follows Gompertz error distribution

data mrin;

input x;

datalines;

<Data set>

proc iml;

use mrin;

read all into data;
obs=data(]|,1]);

b=1;/* value of parameter b*/
trt=18;/* number of treatment*/
n=3;/* number of replication*/

dfc={ -1 1 -1 1 -1 1 -1 1 -1 1 -1
-1 1 -1 1 -1 ,

-1 -1 0 0 1 1 1 -1 0 0 1 1
-1 0 0 1 1,

1 -1 0 0 -1 1 1 -1 0 0 -1 1
-1 0 0 -1 1,

1 1 -2 -2 1 1 1 1 -2 -2 1 1
1 -2 -2 1 1,

-1 1 2 -2 -1 1 -1 1 2 -2 -1 1
1 2 -2 -1 1,

-1 -1 -1 -1 -1 -1 0 0 0 0 0 0
1 1 1 1 1,

1 -1 1 -1 1 -1 0 0 0 0 0 0
1 -1 1 -1 1,

1 1 0 0 -1 -1 0 0 0 0 0 0
-1 0 0 1 1,

-1 1 0 0 1 -1 0 0 0 0 0 0
-1 0 0 -1 1,

-1 -1 2 2 -1 -1 0 0 0 0 0 0
1 -2 -2 1 1,

1 -1 -2 2 1 -1 0 0 0 0 0 0
1 2 -2 -1 1,

1 1 1 1 1 1 -2 -2 -2 -2 -2 -2
1 1 1 1 1,

-1 1 -1 1 -1 1 2 -2 2 -2 2 -2
1 -1 1 -1 1,

-1 -1 0 0 1 1 2 2 0 0 -2 -2
-1 0 0 1 1,

1 -1 0 0 -1 1 -2 2 0 0 2 -2
-1 0 0 -1 1,

1 1 -2 -2 1 1 -2 -2 4 4 -2 -2
1 -2 -2 1 1,

-1 1 2 -2 -1 1 2 -2 -4 4 2 -2
1 2 -2 -1 1};/* define contrast*/

k=nrow (obs) ;
c=sum (obs) ;
mean=b/k;

p=Jj (k,1,mean) ;
sg=obs-p;
fl=sqg#sq;
f2=sum (fl) ;
var=£f2/k;
sd=sqgrt (var) ;
Z=sq/sd;

%let h=n;
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p2:j (&hlll 0);
do t=1 to &h;

p2[t,]=t;
a=exp (t);
end;

qr=p2/ (n+1);
gl=repeat (qr, trt);
pl=j(k,1,1);
gz2=pl+qgl;
a3=log(g2);
q4=b*q3;
dmgl=pl-g4;
tl=log (dmgl) ;
%let h=k;
dell=j (&h,1,0);
gal=j(&h,1,0);
do t=1 to &h;
a=exp (tl[t]);

bl=tl[t];
dell[t,]1=(a);
gallt,]=((1-bl)*a);
end;

cont=dell#obs;
$let hl=trt;
pcl=j (&h1,1,0);
do t=1 to &hl;
pcllt,l=t;
end;
pc2=repeat (pcl,n);
call sort(pc2,1);
pc3=design (pc2);
contl=cont’;
contf=contl*pc3;
contfn=contf’;
m=sum (dell) /trt;
muij=contfn/m;
muijj=pcl]| |muij;
crast=dfc*contfn;
muijjj=repeat (muijj,n);
call sort (muijjj,1);
start delcol(x,1);

return(x[,setdif (l:ncol(x),1)]);

finish;

muijl=delcol (muijjj,1);
new=obs-muijl;
newl=new#new;

new2=sum (newl) ;
A=b*new?2;
new3=gal-dell;
newd=new#new3;

newb=sum (newd) ;
B=b*new5;
new6=sum(gal) ;
new/7=b*newb6;

new8=b*k;

C=new/7-new8;
nume=-B+sqrt (B*B-4*A*C) ;
denum=2*A;
sigma=nume/denum;
jani=crast#crast;
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trtdiv={18 12 12 36 36 12 12
36 24 24 72 72} *m;

sss=Jjani/trtdiv;

sig=sigma*sigma;

fstat=sss/sig;

print sigma sss fstat;

$mend;
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