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iii

Design of Experiments is an integral component of every scientific endeavour, 
particularly the agricultural sciences where the designing of an experiment 

is an inevitable component of research. This is due to the fact that advancement 
of any scientific discipline happens through new knowledge and technology 
developments and indeed, a scientifically designed experiment is a valuable tool 
in this process. The doyen of agricultural sciences Professor M.S. Swaminathan 
rightly said, “It is the effective use of the tools of statistical design of experiments 
that paved the way for the green revolution.” 

A carefully designed experiment is able to answer all the queries of a researcher 
with accuracy and reliability with efficient use of available resources of the 
experimenters. Thus, for successful experimentation, it is highly desirable that 
scientists and researchers of scientific disciplines, including agricultural sciences, 
understand the basic principles of designing an experiment and analysis of resultant 
data from the completed experiment. It may be emphasized that a researcher should 
always consult a statistician before, during and after experimentation, if he is not 
convinced enough about using a design for his experiment or an analysis technique 
for this data. In any designed experiments, there are certain factors which are 
beyond the control of the experimenter. In order to reduce the influence of these 
factors, the experiment has to be suitably planned and executed scientifically with 
immense care. In this regard, interactions with a statistician before the experiment 
begins is expected to be highly beneficial to the experimenter because he can devise 
a suitable design keeping in view the questions the experimenter has in mind, the 
factors he wants to consider and the amount of available resources he can afford. 

Though, a number of statistical books on designing and analysis of experiments 
are available, most of these books are intended for statisticians because the subject 
is treated through rigorous algebraic theories. Researchers of applied scientific 
disciplines are often not interested in the mathematical derivation of the statistical 
formulae. They would rather be happy with basic ideas behind using a design for 
a particular experimental situation and subsequently analysis steps with necessary 
precautions while doing the analysis. 

The authors have conducted a number of training programmes on designing and 
analysis of experiments for the research scientists of Indian National Agricultural 
Research and Education System. Through the interaction with the trainee scientists, 
the authors felt that there is a strong need for preparing a book on design and 
analysis of experiments covering basic concepts, enough examples of situations for 
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use of various designs, and easy to follow analysis steps. This book is an attempt 
in that direction. In this book, the subject of design and analysis of experiments 
has been treated in simple language giving basic concepts of various designs and 
essential steps of analysis of data from designed experiments. Moreover, examples 
of analysis of data have been provided for each of the designs covered in the book. 
The additional strength of the book is that for each of the designs covered in this 
book, SAS and R codes for analysis have been provided for performing the analysis. 
It is hoped that this will enable the readers to directly analyze their data from their 
experiments. 

Since the topic of design and analysis of experiments is vast, the book has been 
divided into two parts; first part covering fundamentals of design and analysis of 
experiments related to, by and large, single factor experiments and the second part 
focusing mostly on multifactor experiments and advanced topics. The composition 
of the first part of the book is as follows. It starts with an introductory Chapter 
on design of experiments which gives an introduction to the terminologies and 
basic concepts of experimental designs along with a brief history of the subject. 
No claim is being made for this Chapter to be completely exhaustive. In Chapter 
2, introduction is made to some most commonly used designs namely completely 
randomized designs, randomized complete block designs and Latin square designs. 
Chapter 3 discusses contrast analysis, a very useful tool for answering many 
questions of the experimenters through designed experiments. Chapter 4 deals 
with analysis of covariance, a useful technique for controlling variability when one 
or more covariates linearly related to response variable are available. Chapters 5, 6 
and 7 are devoted to study of various important classes of block designs. The topics 
such as outliers in experimental designs, groups of experiments are studied in the 
subsequent Chapters. One Chapter has been devoted to multivariate analysis of 
variance for simultaneously analyzing multiple response variables. The book has 
four Annexures. Annexure I gives introduction to SAS and Annexure II introduces 
the reader to the R software, currently trending open source statistical software. 
Annexure III is devoted to multiple comparisons while Annexure IV describes web 
resource “Design Resources Server.” The readers would find Annexure I and II very 
useful in having a good understanding of the codes that have been used throughout 
the book. Annexure III and IV will help in a better understanding of the contents 
of the book. Part I of the book ends with a bibliography on the topics covered in 
this book. Although an attempt has been made to give an elaborate bibliography, no 
claim is made to this being exhaustive. 

Help has been received from many places and persons in preparing the 
manuscript of this book. The ideas received from our teachers Dr. Arun Nigam 
and Dr. Aloke Dey have been very helpful in giving a shape to this book. In fact 
the authors are indebted to both Dr. Nigam and Dr. Dey for introducing us to this 
very important area of research in Statistics which is intertwined with agricultural 
sciences and helps improving the quality of agricultural research by making use 
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of appropriate and sophisticated designs of experiments and analysis of data. We 
convey our gratitude towards Dr. Bikas Sinha and Dr. Rahul Mukerjee who have 
always motivated us in this endeavour. They have always been a deep source of 
inspiration for us.

A special mention may be made about the invaluable help and support received 
from Mrs. Jyoti Gangwani, a technical officer working in the National Professor 
scheme who has very meticulously checked the results of all the experimental 
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the development of the manuscript of this book has been monumental in many 
ways. The authors would like to thank her whole heartedly for being always present 
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Introduction to Design of Experiments

Introduction to Design of Experiments

1.1   Introduction
It may be emphasized in the beginning itself that experimental design is first about 

agriculture, animal science, biology, chemistry, industry, education, etc. and then about Statistics 
and Mathematics.  In fact, experimental design forms the backbone of agricultural sciences; it 
is an integral component of every research endeavour in agricultural sciences. To design a good 
experiment the researcher first needs to outline questions to be answered or needs one or more 
well defined hypotheses. Some examples of typical questions or hypotheses are 

(i)	 How does the feed formulation affect the body weight of animals?
(ii)	 Which variety of crop species would be good for particular region?
(iii)	 Does the date of sowing affect the crop yield? 
(iv)	 How does the water availability and its quality influence the crop yield?
(v)	 How does greenhouse gases emission influence the global warming?
(vi)	 Does the use of pesticide in crops affect the health of farmers as well as the people 

consuming the produce? 
(vii)	 Do the micronutrients and minerals influence the productivity of crops? 
(viii)	 Are the resource conservation technologies counterproductive? 
(ix)	 How do altering manure management strategies at livestock operations or animal feeding 

practices control the methane emission?
It is hard to define a design of experiment, because it is a form of art along with the science. 

It may be borne in mind that no experiment could be the ultimate one. A good experiment 
would be one that allows testing what the researcher wants to test and exercises control over 
everything else. In that sense, a good experiment is one that estimates the effects that the 
researcher is interested in and simultaneously minimizes controls or eliminates confounding 
factor(s). A confounding factor is also at times called the nuisance factor. It potentially distorts 
the data. This factor is sitting hidden in a model and affects the variable being studied, but is not 
known or acknowledged. 

An example would be a study of nutrients like nitrogen, phosphorous, potash and sulphur 
on the yield of wheat. If the minerals like zinc and manganese in the soil are likely to be present 
along with the nutrients, and the study measures only nutrients but not the minerals, the study 
may find that the nutrients do affect the yield of wheat which may or may not be true. The 
presence of minerals in the soil might also be affecting the yield. If this confounding factor is 
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identified early enough, adjustments can be made so that the confounding does not destroy the 
results or introduces bias in results.  

Another example could be a study of feed formulation on body weight of animals. If the 
initial body weights of the animals are likely to be markedly different and the study measures 
only the periodic body weights of the animals after giving them feeds, the study may find that 
the feeds do affect the body weight of animals. But this may or may not be true. The initial body 
weights of animals might also be affecting the final bodyweight of the animals. If the experiment 
does not take care of this confounding factor, it may influence the results.

In planning any experiment, the experimenter needs to decide 

(a) 	 What conditions to study or what are the treatments, e.g., feed formulation, nutrients, 
irrigations, pesticides, varieties of a crop, resource conservation technologies, dates of 
sowing, etc.? 

(b) 	 What is the experimental material on which the experiment is to be conducted, e.g., 
animals, human beings, plots in a field, pots in a glasshouse, birds in a pen, tissues in 
a laboratory, trees, branches of a tree, leaf position on a tree, etc.? To be more specific, 
experimental material is actually a collection of subjects or units, or plots, etc. and is 
termed as experimental units or simply units. 

(c) 	 What measurements to make or what are the responses and how to measure these 
accurately and correctly, e.g., yield of crop, body weight of animal, milk yield, number 
of eggs layed, percentage of plants infected by disease, etc.? Response also denotes the 
measurable outcome as a result of application of treatments on the experimental units. 

 

In any planned experiment, there are four major sources of variability. These are 

(a)	 Variability due to the conditions under study or the treatments. This variability is desirable 
and is in fact a deliberate attempt of the researcher to create this variability.

(b)	 Variability in the experimental units. This variability is unwanted and undesirable but 
needs to be accounted for. Generally this variability is overlooked by the researchers.

(c)	 Variability in the measurement process or measuring the response. This part of the 
variability is unwanted and undesirable. We shall assume throughout that this variability 
is not present.

(d)	 Variability absolutely unaccounted for, unwanted and undesirable. The reason for this 
part of the variability is unknown to the experimenter. 

Since it will be assumed that the variability in the measurement process or measuring the 
response is absent and the response obtained is the true, accurate and correct response of the 
treatment applied, there will be in fact three major sources of variability to reckon with, viz., 
(a), (b) and (d). 
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Looking at the requirements of planning an experiment and the various sources of variability 
in the planned experiment, the thinking with respect to subject matter (agricultural, biological, 
industrial etc.) and statistical thinking is needed to reach for a good experimental design. In 
order to give a concrete form to this thinking, a strong interaction between the researcher and 
the statistician is absolutely essential for planning and executing an experiment. We begin with 
three important principles of a designed experiment. 

1.2   Principles of design of experiments
There are three basic principles of designing an experiment namely randomization, 

replication and local control (blocking). These techniques are discussed briefly in the sequel.

1.2.1	 Randomization
Randomization means random assignment of conditions to study or treatments to the 

subjects or experimental material (in fact experimental units), without an obvious plan, prior 
to start of the experiment. Randomization converts unplanned, systematic variability into 
planned, chance-like variability. An analytical reason in support of randomization is that 
essentially it ensures observations generated to be independent and hence the statistical tools 
used for analysis of observations gathered become applicable. This is more important for the use 
of test statistic like Snedecor’s F and Student’s t in hypothesis testing, wherein a pre-condition is 
that the observations are independent and are identically distributed as normal variate. This is 
the major concern of randomization. 

Randomization also serves the following purposes:
A random assignment of conditions to study or treatments to experimental units ensures that 

no experimental unit or no treatment received any favour in the beginning of the experiment.  
Randomization prevents systematic and subjective biases from being introduced into the 
experiment by the experimenter. In other words, randomization controls the experimenter 
bias. Lack of a random assignment of experimental units or subjects leaves the experimental 
procedure open to experimenter bias. It ensures that subjects or experimental units that are 
favoured or are adversely affected by unknown sources of variation are those “selected using 
chance device or random permutation” and not systematically selected. For example, in an 
initial varietal trial of a crop improvement programme, a breeder may assign his or her new 
strain of experimental crop to the parts of the field that look the most fertile to promote his or 
her strain; or a nutritionist may assign newly developed feed formulation to healthy and well 
growing animals to promote a favourite feed. The preferred variety or formulation may then 
appear to give better results no matter how good or bad it actually is.

Lack of random assignment can also leave the procedure open to systematic biases. Presence 
of systematic errors in an experiment makes the comparisons among treatments biased, no 
matter how precise measurements are or how many experimental units are used. 

Consider an experiment involving response of four feed formulations to influence the 
growth in terms of body weight of animals. Suppose that the four feeds, viz., A, B, C, D are given 
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to 12 animals. Each feed is observed on 3 animals. Without randomization experimenter would 
take 3 observations on feed one administered to three animals; then on feed two; then on feed 
three; and then on feed four, i.e., the order of the feeds given to 12 animals are A, A, A, B, B, B, 
C, C, C, D, D, D.  This order might be perfectly satisfactory but could equally well prove to be 
disastrous. It may be possible that the first three observations on feed A arise from animals that 
have no disease, the next three observations from feed B arise from animals that acquired foot 
and mouth disease recently, while the next three observations from feed C arise from animals 
that are suffering from bloat and the last three observations on feed D arise from animals that 
are suffering from mastitis. Obviously, the response to feed A would be more pronounced than 
that to feeds B, C or D, whereas in fact feed A may actually not be better than any of these feeds. 
Similarly the response to feed C may be more pronounced than that of feeds B or D. It is quite 
likely that the experimental conditions might favour a particular feed.  Order A, B, C, D, A, B, C, 
D, A, B, C, D, A, B, C, D might help to solve the problem, but it does not eliminate it completely.

Consider this experiment to study the influence of four feed compositions on growth of 
animals. The total number of ways in which 12 animals can be assigned to 4 feeds so that 3 
animals are assigned to each feed is

.600,369
!3!3!3!3

!12 =

A random assignment can lead to order A, A, A, B, B, B, C, C, C, D, D, D or A, B, C, D, A, B, 
C, D, A, B, C, D, A, B, C, D with probability 1/369,600. The probability is indeed infinitesimal, 
almost zero. Even though such arrangements can happen in a proper randomization, but to 
avoid such a thing happening purposefully, one must resort to a proper randomization.

Having said this, randomization has at times its limitations also because randomized 
experiments violate ethical standards and so cannot be adopted in practice in some situations. 
To make the exposition clear, an example is considered from clinical trials on human beings.

Suppose that a researcher wants to investigate the abortion–breast cancer hypothesis, 
which postulates a causal link between induced abortion and the incidence of breast cancer. A 
hypothetical controlled experiment starts with subjects (pregnant women) and divides them 
randomly into treatment group (receiving induced abortions) and control group (bearing 
children). Regular cancer screenings are conducted for women from both groups. Such an 
experiment would always run counter to common ethical principles. It would also suffer from 
various confounds and sources of bias, e.g., it would be impossible to conduct it as a blind 
experiment.

The published studies investigating the abortion–breast cancer hypothesis generally start 
with a group of women who already have received abortions. Membership in this “treated” 
group is not controlled by the investigator: the group is formed after the “treatment” has been 
assigned.

Consider another study in which a researcher wants to compare some phenotypic traits 
among animals of three different breeds. In this case the experimenter starts with a number 
of animals, some animals belong to breed one, some belong to breed two and rest of them 
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belong to breed three. The researcher collects observations on the phenotypic traits of interest. 
In this experiment, it is not possible to assign breed to an animal at random because the animals 
already are of a particular breed.  In other words, the assignment of breeds to animals is not 
under the control of the experimenter.

In view of this, design of experiments or experimental design is the design of all information-
gathering exercises where variation is present, whether under the full control of the experimenter 
or not. The latter situation is usually called an observational study, and would be beyond the 
scope of this book.  We shall, henceforth, focus on randomized experiments.  

1.2.2    Replication
Replication is the repetition of the conditions of study or treatments under investigation 

to different experimental units, be it animals or pots or plots in a field, or position of leaf on a 
plant. Replication intends to increase the size of the experiment.

Replication enables the experimenter to obtain a valid estimate of the experimental error. 
Estimate of experimental error permits statistical inference; for example, performing tests of 
significance or obtaining confidence interval, etc.  If there is no replication, then the researcher 
would not be able to estimate the experimental error. And as will be seen in the later Chapters, 
it is against this estimated experimental error the null hypotheses are tested. 

Consider an example where two levels of Nitrogen as A = 30 kg/ha and B = 60 kg/ha are 
applied to wheat crop. The interest of study is to see how nitrogen influences the yield of wheat.  
In experiment 1, there are four plots available and each level of nitrogen is applied to two plots 
randomly. The plots receiving the same level of nitrogen are expected to give the same response. 
The difference gives the experimental error. In experiment 2, there are six plots and each level of 
nitrogen is applied to three plots randomly. The yield in kg per plot is given in bracket.  

Experiment 1 A (31.5) B (30.6) B (28.2) A (32.8)

Experiment 2 B (26.8) A (31.7) A (33.4) B (28.6) A (32.9) B (27.9)

In experiment 1, the experimental error can be estimated as 

This can also be estimated as 

Here the average yield from A is 
 
and the average yield from B is 
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In this experiment, the experimental error is 3.725. 

In experiment 2, the experimental error can be estimated as 

This can also be estimated as 

Here the average yield from A is 
  

and the average yield from B is 

In this experiment, the experimental error is 3.173. 

Increasing the size of the experiment or increasing the replication also helps to increase 
the precision of estimating the pairwise differences among the treatment effects. This is so 
because with the increase in the size of the experiment, the experimental error reduces. As can 
be seen from the example above, the experimental error in experiment 2 reduces from that in 
experiment 1. 

It may be emphasized here that replication is different from repeated measurements. 
Suppose that the four animals are each assigned to a feed and a measurement is taken on each 
animal. The result is four independent observations on the feed. This is replication. On the 
other hand, if one animal is assigned to a feed and then measurements are taken four times 
on that animal, the measurements are not independent. We call them repeated measurements. 
The variation recorded in repeated measurements taken at the same time reflects the variation 
in the measurement process, while variation recorded in repeated measurements taken over a 
time interval reflects the variation in the single animal’s responses to the feed over time. Neither 
reflects the variation in independent animal’s responses to feed. We need to know about the 
latter variation in order to generalize any conclusion about the feed so that it is relevant to all 
similar animals. 

Generally speaking, all the treatments should be replicated same number of times. In that 
case the total number of experimental units is a scalar multiple of the number of treatments. In 
case the total number of experimental units is not a scalar multiple of the number of treatments, 
then the replication of treatments should be as equal as possible. In other words, the replications 
of treatments should not differ by more than one. For instance, if the number of treatments 
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is 7 and the number of experimental units is 24, then 4 treatments may be replicated three 
times and three treatments may be replicated 4 times. But there might occur some experimental 
situations where some treatments may need to be replicated more number of times than the 
other treatments and the difference in replications is more than one. In fact, there do occur 
experimental situations where some treatments are not replicated because not enough material 
is available for replication. There are other experimental situations where even a single complete 
replication is not experimented because of the resource constraint and economy. There will be 
occasions to refer to all such situations later in the book (both parts I and II).

1.2.3  Local control or blocking 
Experimental conditions under which an experiment is run should be representative of 

those to which the conclusions of the experiment are to be applied. For inferences to be broad in 
scope, experimental conditions should be rather varied. Unfortunate consequence of increasing 
scope of experiment is an increase in variability of response. Blocking is a technique that is often 
used to help deal with this problem

As mentioned earlier, one source of variability is the experimental material or experimental 
units. Local control or blocking is a technique to account for the variability in response because 
of the variability in the experimental units. To block an experiment is to divide the experimental 
units into groups or blocks of similar units in such a way that the observations in each block 
are collected under relatively similar experimental conditions. If blocking is done well, the 
comparisons of two or more treatments are made with more precision than similar comparisons 
from an unblocked design. 

It may be mentioned that the blocking is advantageous if the variability within the groups or 
blocks is as small as possible and between groups or blocks is as large as possible. 

In feeding trials litters of the same animal can form natural blocks. Similarly, animals with 
similar body weights can also form blocks; animals with genetic similarity can also form blocks; 
animals with same age can also be a criterion for forming the blocks; animals with same lactation 
number or stage can be another consideration for forming blocks. Fertility gradient in field 
experiments can be a way of forming blocks. In this case, the blocks are formed perpendicular 
to the fertility gradient. Salinity levels in the field could also be a criterion for forming blocks in 
field experiments. Age of the trees in horticultural experiments could be a source of variability 
and trees of same age can form natural blocks. The soil depth may be another criterion of 
blocking. In hilly areas, terraces may be taken as natural blocks.

From practical considerations, the contiguous experimental units should form blocks. But 
sometimes it may so happen that the homogeneous experimental units may not be contiguous. 
In that case blocks formed are irregular in shape. It is indeed possible that the blocks may not 
have same number of experimental units. If we force the blocks to be of same size, then again 
variability may creep in and the purpose of blocking is defeated. 
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There can be more than one source of variability in the experimental material. If there are 
two sources of variability in the experimental units, then recourse is made to forming blocks 
in two directions, called rows and columns. The conditions under study or the treatments are 
applied to the cells at the intersection of rows and columns. Row-column designs are also useful 
for the situations, wherein, the fertility gradient is along the diagonal in the field. Sometimes, 
the two blocking systems may be nested one within another. There may be larger blocks and 
within each larger block there are smaller blocks, called sub-blocks. The treatments are applied 
to the sub-blocks within larger blocks. There may be another type of experimental situation 
where within the larger blocks, rows and columns are formed. The treatments are applied to the 
cells within each larger block.

When there is blocking, then the randomization of conditions to study or treatments 
to experimental units changes. The exact randomization will be described in the respective 
chapters.

1.3  Brief history of design of experiments
The statistical principles underlying design of experiments were pioneered by R. A. 

Fisher in the 1920s and 1930s at Rothamsted Experimental Station, an agricultural research 
station around forty kilometres north of London. Fisher had shown the way on how to draw 
valid conclusions from field experiments where nuisance variables such as temperature, soil 
conditions, and rainfall are present. He had shown that the known nuisance variables usually 
cause systematic biases in results of experiments and the unknown nuisance variables usually 
cause random variability in the results and are called inherent variability or noise. He introduced 
the concept of analysis of variance (ANOVA) for partitioning the variation present in data 
(a) due to attributable factors, and (b) due to chance factors. The methodologies he and his 
colleague Frank Yates developed are now widely used. Their methodologies have a profound 
impact on agricultural sciences research. 

Though the experimental design was initially introduced in an agricultural context, the 
method has been applied successfully in the industry since the 1940s. George Box and his 
co-workers developed experimental design procedures for optimizing chemical processes, 
particularly response surface designs for chemical and process industries. W. Edwards Deming 
taught experimental designs to Japanese scientists and engineers in the early 1950s at a time 
when Japanese products were considered to be of poor quality. Genichi Taguchi, a Japanese 
engineer, suggested a number of techniques using orthogonal arrays. Taguchi coined the 
concept of robust parameter design and process robustness. Around 1990, Six Sigma, a new 
way of representing continuous quality improvement came into existence. Six sigma employs 
a technique that uses statistics to make decisions based on quality and feedback loops and is 
widely used by many large manufacturing companies. Design of experiments is considered an 
advanced method in the Six Sigma programs. 

Recently, experimental designs are also being used in clinical trials. This evolved in the 
1960s when medical advances were previously based on unreliable data. For example, doctors 
used to examine a few patients and publish papers based on such data. The biases resulting 
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from these kinds of studies became known. This led to a move toward making the randomized 
double-blind clinical trial the standard for approval of any new product, medical device, or 
procedure. The scientific application of the valid designing and analysis following proper 
statistical methods became very important in clinical trials.

More recently the experimental design techniques have started gaining popularity in the 
area of computer-aided design and engineering using computer/simulation models including 
applications in manufacturing industries. 

1.4   Some preliminaries
In the context of design of experiments, some widely used terminologies including those 

discussed earlier are now defined in the sequence. 

The term conditions to study or treatments is used to denote the different objects, methods 
or processes among which comparison is made. Some examples of treatments are different 
kinds of fertilizer in agronomic experiments, different irrigation methods or levels of irrigation, 
different fungicides in pest management experiments and doses of different drugs or chemicals 
in laboratory experiments, different varieties of crops, different pesticides, grazing systems for 
animals, different tree species in agro-forestry experiments, different concentrations of a solute 
in chemical experiments, etc. 

A control treatment is a standard treatment that is used as a baseline or basis of comparison 
for the other treatments. This control treatment might be the treatment which is currently in 
use, or it might be a no treatment at all. For example, a study of new pesticides could use a 
standard pesticide as a control treatment, or an experiment involving fertilizers may have one 
treatment as no fertilizers at all. In clinical trials, a control treatment is generally a placebo.

Experimental units are the subjects or objects on which the treatments are applied. For 
example, plots of land receiving fertilizer, groups of animals receiving different feeds, or batches 
of chemicals receiving different temperatures, pots in glasshouse experiments, Petri dishes or 
tissues to culture bacteria or micro-organisms in laboratory experiments, etc.

Responses are measurable outcomes, which are observed after applying a treatment to an 
experimental unit.  Alternatively, the response is what we measure to find out what happened 
in the experiment.  In an experiment, there may be more than one response. Some examples of 
responses are grain yield or straw yield, nitrogen content in plants or biomass of plants, quality 
parameters of the produce, percentage of plants infested by disease, weight gain by animals, etc.

Factors are the variables whose influence on a response variable is being studied in the 
experiment. If only one factor is being studied in an experiment then such an experiment is 
called a single factor experiment. If more than one factor is being studied simultaneously in an 
experiment, then such an experiment is called multi-factor or factorial experiment. The term 
factor is commonly used in the case of factorial experiments. For example, temperature and 
concentration of chemicals in a chemical experiment are two factors, Nitrogen, Phosphorus and 
Potassium fertilizers are three factors in an agronomic experiment, dose and time of application 
of a chemical formulation are two factors in a laboratory experiment.
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The term factor levels or a simply levels is used to denote the values or settings that a factor 
takes in a factorial experiment. For example, doses of a nitrogenous fertilizer as 0 kg/ha, 30 kg/
ha, 80 kg/ha are three levels of the fertilizer, 10oC, 20oC, 30oC are three levels of temperatures in a 
chemical experiment, 10%, 20%, 30%, 40% concentration of a solute in a solution are four levels 
in a laboratory experiment, presence of polythene sheet on the surface of soil or its absence 
could be two levels of a practice in water management study.

Treatment combination or level combination: In factorial experiments, the set of values for 
all factors in a trial is called treatment combination or level combination. For example, if in a 
chemical experiment, there are two factors viz., temperature and concentration and both these 
factors have three levels each as 10oC, 20oC, 30oC and 10%, 20%, 30%, respectively,  then total 
number of treatment combinations is 3 × 3 = 9 and these 9 combinations are (10oC, 10%); (10oC, 
20%); (10oC, 30%); (20oC, 10%); (20oC, 20%); (20oC, 30%); (30oC, 10%); (30oC, 20%); (30oC, 
30%). These combinations are in fact 9 treatments. We can label the 9 treatments as 1, 2, 3, 4, 5, 
6, 7, 8, 9. The association is the following: 1 ~ (10oC 10%); 2 ~ (10oC, 20%); 3 ~ (10oC, 30%); 4 
~ (20oC, 10%); 5 ~ (20oC, 20%); 6 ~ (20oC, 30%); 7 ~ (30oC, 10%); 8 ~ (30oC, 20%); 9 ~ (30oC, 
30%).

Conversely, if there are 9 treatments and these 9 treatments can be thought of as combination 
of levels of two factors, both having 3 levels each, then the same association can be used to 
convert the treatments into treatment combinations.

Application of a treatment combination to an experimental unit is called a run or a design 
point in factorial experiments.

An observational unit is a unit on which the response variables are measured. Observational 
units are often the same as experimental units, but this may not be true always. The mistake of 
confusing observational unit with experimental unit leads to pseudo-replication as discussed 
in a paper by Hurlbert (1984). For example, consider an experiment to investigate the effects of 
ultraviolet (UV) levels on the growth of smolt. The experiment is conducted in two tanks where 
one tank receives high levels of UV light and the other tank receives no UV light. Fish are placed 
in each tank and at the end of the experiment growths of the individual fish are measured. In 
this experiment, the tanks are the experimental units but the observational units are the smolts. 
The treatments, presence and absence of UV light, are applied to the tanks and not to individual 
fish but a whole group of fish are simultaneously exposed to the UV radiation. Here any tank 
effect is completely confounded with the treatment effect and cannot be separated.  Another 
example is that inorganic fertilizers are applied to plots in a field containing some plants. At the 
time of harvest, all the plants in the plot are not harvested. Only a sample of plants is harvested. 
In this case once again the plot is the experimental unit to which fertilizers are applied but the 
observational units are the plants sampled.  

A treatment contrast or simply a contrast is a linear function of treatment effects such that 
the sum of the coefficients is zero. For instance, if  denote the v treatment effects, then 

 is a contrast if and only if . A big advantage of contrast is 
that one can make all the possible pairwise treatment comparisons. It also enables to make any 
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other comparison among treatment effects. For details the reader may see Chapter 3. A contrast 
is said to be elementary contrast if and only if only two of the coefficients are non-zero while all 
other coefficients are zero. , etc. are elementary contrasts. Other contrasts could 
be  or .

1.5   Factorial experiment
There has been a description of treatments in Section 1.4. There has also been a description 

of factors and treatment combinations. It may be emphasised that the treatments in any 
experiment may either be unstructured or structured. Unstructured treatments are actually 
levels of a single factor in a single factor experiment. In these experiments, the interest is in 
making all the possible pairwise treatment comparisons. At times comparisons between subsets 
of treatments or among treatments within subgroups also form a part of the hypotheses to be 
tested. These experiments are generally conducted as unblocked design, block design or a row-
column design or a nested design depending upon the problem to be solved and the nature of 
the experimental material.

On the other hand, the treatments may be structured in the sense that there are several 
factors and each factor has several levels. The treatments in this case are the level combinations 
of all the factors. The interest of the researcher is in estimating the factorial effects comprising 
of main effects and the interaction effects rather than making all the possible pairwise treatment 
comparisons or subgroups testing. The treatment sum of squares in this case is partitioned into 
main effects and interaction effects sum of squares. Otherwise, the experiment once again is 
conducted using an unblocked design, a block design or a row column design or a nested design 
as one would have used in case of unstructured treatments. There are no special designs for 
running factorial experiments. However, treatment structure or their fraction may be obtained 
based on availability of resources and objectives of the experiment. An incomplete block design 
in factorial experiment may be obtained in such a way that the desired factorial effects are 
estimated with more precision by sacrificing information on factorial effects of less interest, 
particularly the higher order interactions.

If there are several factors it is always advantageous to study them simultaneously rather 
than studying them separately. Suppose that there are two factors A and B, A having three levels 
and B having four levels. Let the levels of the two factors be denoted by 0, 1, 2 and 0, 1, 2, 3, 
respectively. The association between the 12 treatment combinations and the treatments is the 
following:

1 ~ (0, 0); 2 ~ (0, 1); 3 ~ (0, 2); 4 ~ (0, 3); 5 ~ (1, 0); 6 ~ (1, 1); 7 ~ (1, 2); 8 ~ (1, 3); 9 ~ (2, 
0); 10 ~ (2, 1); 11 ~ (2, 2); 12 ~ (2, 3). The analysis of 12 treatments run in two replications as a 
completely randomized design (CRD) or an unblocked design is 

Source DF

Treatments 11

Error 12

Total 23 
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On the other hand if it is known that the treatments are structured as two factors with three 
and four levels, respectively, the same design can be analysed as factorial experiment run in a 
CRD with two replications. In that case the treatments can be partitioned into main effects and 
interaction effects as explained below.

Source DF

Treatments 11

Main Effect A 2

Main Effect B 3

Interaction A*B 6

Error 12

Total 23

Another advantage of using a factorial experiment is the following: If one looks carefully 
at the design in the example, each treatment combination appears twice in the completely 
randomized design (CRD) because the replication is two. However, if one looks at the 
replications of levels, then the levels 0, 1, 2 of factor A are replicated eight times each. Similarly 
the levels 0, 1, 2, 3 of factor B are replicated six times each. This replication of levels within the 
replication of treatment combinations is known as hidden replication. It is because of this hidden 
replication that some comparisons are made with higher precision in factorial experiments. 
These experiments have another advantage that these allow to study the interaction effects. If an 
experiment is conducted separately for each factor, the interaction effects cannot be estimated. 
Moreover, to achieve the same precision as in factorial experiment, the replications would have 
to be large. For example, if factor A with three levels is conducted as CRD, to have 12 degrees of 
freedom for error, one needs to have 5 replications making a total of 15 observations. Similarly, 
if the factor B is run as a CRD, then to have 12 degrees of freedom for error, the replication 
should be four making a total of 16 observations. So the total number of observations becomes 
31, but the interaction effect cannot be estimated.  On the other hand a factorial experiment 
requires only 24 observations to have 12 degrees of freedom for error and allows estimation of 
interaction effect also.  This means that running an experiment separately for each factor would 
result into an increase in the cost of the experimentation and interaction effects would have to 
be sacrificed. But factorial experiments have an advantage that not only the cost is reduced, the 
interaction effects are estimable and can be studied. Further the hidden replication in factorial 
experiments leads to an improved precision of the factorial effects. 

1.6   Variability in the experimental data
The data generated through designed experiments exhibit a lot of variability. In Section 

1.1 there was a mention of various type of variability in the data generated. The variability 
may be wanted, desirable, unwanted, undesirable but is controllable in the sense that it can be 
accounted for. There is also some more variability, unwanted, undesirable and uncontrollable. 
The reason for its presence is unknown. In an example in Section 1.2.2, it has been seen that 
even the experimental units (plots) subjected to the same treatment also give rise to different 
observations, thus creating variability. These plots are expected to give same response, but 



13

Introduction to Design of Experiments

actually the responses are different; reasons unknown. The statistical methodologies, in 
particular the theory of linear estimation and analysis of variance, enable us to partition the 
total variability in the data into two major components. The first major component comprises 
of that part of the total variability to which we can assign causes or reasons. The second 
component comprises of that part of the total variability to which we cannot assign any cause 
or reason. This variability arises because some factors are unidentified as a source of variation. 
Even after careful planning of the experiment, this component is always present and is known 
as experimental error. The observations obtained from experimental units identically treated are 
useful for the estimation of this experimental error. Ideally one should select a design that will 
give experimental error as small as possible. There is, though, no rule of thumb to describe what 
amount of experimental error is small and what amount of it can be termed as large. A popular 
measure of the experimental error is the percent Coefficient of Variation (CV). Generally the 
researcher desires the CV to be small, though there is no degree of smallness defined.

The explainable part of the total variability again has two major components. One major 
component is the conditions to study or the treatments. This part of the variability is wanted or 
desirable. There is always a deliberate attempt on the part of the experimenter to create variability 
by the application of several treatments. So in every designed experiment treatments are one 
component that cause variability. The other component of the explainable part of variability 
is the experimental units. This variability is unwanted and undesirable. The factors that cause 
this variability are called nuisance factors. This part of the variability is accounted for by using 
the principle of local control. Before planning the experiment, the experimenter must have a 
complete knowledge about the experimental units on which the experiment would be conducted 
and the sources of variability in the experimental units. If this variability is substantial and is 
not accounted for by proper designing of experiment, then this component would sit in the 
experimental error and make it unduly large. The end result would be a bad experiment. As 
mentioned earlier in Section 1.2.3, there could be many ways of accounting for the variability 
due to experimental units. The remedy will depend upon the sources and nature of the factors 
causing variability in the experimental units. As a matter of fact, the way to account for the 
variability in the experimental units will dictate what type of design is to be used. Many a time, 
depending upon practical constraints, a naive design may be the best design.   

As-a-matter-of-factly many designs have been evolved in the literature depending upon 
how the variability present in the experimental units is taken care of and how the treatments are 
allocated to the experimental units or how the randomization is done. If the experimental units 
are homogeneous and do not exhibit considerable variability, then the treatments are applied 
randomly to all the experimental units assuming that all the experimental units are uniform. 
Such designs are known as zero-way elimination of heterogeneity designs or completely 
randomized designs (CRD) and will be dealt with in detail in Chapter 2. On the contrary, if 
the variability present in the experimental units is sizeable, then forming groups called blocks 
containing homogeneous experimental units can account for this variability if the variability 
in the experimental units is due to one nuisance factor only. As opposed to the allotment of 
treatments randomly to all the experimental units in a CRD, the treatments in this case are 
allotted randomly to the experimental units within each block. Such designs are termed as one-
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way elimination of heterogeneity setting designs or the block designs. The most common block 
design is the randomized complete block (RCB) design which is also considered in Chapter 2. 
If there are two sources of variability in the experimental units, then the experimental units are 
grouped into arrays, called rows and columns, and the intersection of rows and columns, called 
cells are the experimental units. The treatments are allocated to the cells. For the randomization 
purpose, first the rows are randomized and then the columns are randomized.  There is no 
randomization of treatments possible within rows and/or within columns. Such designs are 
called row-column designs or two-way elimination of heterogeneity designs. A special class of 
these designs is the Latin square designs and will be studied in Chapter 2.

Generally in experimentation, the number of treatments is large. For large number of 
treatments, the blocks become large if one has to apply all the treatments in a block, as desired 
by the RCB design. It may then not be possible to maintain homogeneity among plots within 
a block and the basic purpose of forming blocks is defeated. The intra block variance or the 
variance per plot becomes large resulting in a large experimental error and thus a high value of 
coefficient of variation (CV). To overcome this problem, recourse may be made to an incomplete 
block design. A block design is said to be an incomplete block design if the design has at least 
one block that does not contain all the treatments. Some common incomplete block designs 
are balanced incomplete block (BIB) design, partially balanced incomplete block (PBIB) design 
including Lattice designs – square and rectangular, cyclic design, alpha design, etc. The concept 
of incomplete block design can also be extended to incomplete row and / or incomplete column 
designs. An example of incomplete row-column design is a Youden design or a Generalized 
Youden design or a Pseudo Youden design.

The unexplainable part of the variability, called the experimental error, is always present. 
But through controlled experimentation, it is always possible to control this component of 
variability. It is desirable that this component is as small as possible. This part, therefore, can 
be controlled by proper designing of an experiment. This means that the design should be such 
that it accounts for all the sources of variability in the experimental units. If the experimenter 
fails to control the variability in the experimental units through proper designing, then the 
experimental error can be controlled by a very useful and important statistical technique called 
analysis of covariance. This would be dealt with in Chapter 4.

1.7   Shape and size of experimental units
In agricultural field experiments, often plots in fields are used as experimental units. One 

important issue in this context is the shape and size of the plots and their arrangement. Some 
general considerations for plot arrangements are given in the sequence. 

i)	 The experimental area should be as uniform as possible. Uneven sites may lead to high 
error.

ii)	 Plots should be either rectangular or square and equal in area.
iii)	 The orientation of the plots should be same, for example, the longer side of the rectangular 

plots should be parallel to each other.
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iv)	 Uniformity trials may be conducted to get optimum shape and size of the plots. Uniformity 
trial involves growing a particular crop on a field or piece of land with uniform conditions. 
All sources of variation except that due to native soil differences, are kept constant. At the 
time of harvest the entire field is divided into smaller units of same size and shape and the 
produce from each such unit is recorded separately. The smallest the basic units, the more 
detailed are the measurements of soil heterogeneity.

v)	 It may not be economically feasible to conduct a uniformity trial. Even time constraint 
may be prohibitive in the conduct of a uniformity trial. If soil parameters are known, then 
these can be used for formation of plots and blocks. At times, the residuals obtained from 
a previous designed experiment conducted at that place may be used as covariate in the 
analysis of data generated.

1.7.1   Determining optimum size of plots
In the sequel are described some methods for understanding soil fertility variation/plot 

size. 

i)	 Fertility contour map: An approach to describe the heterogeneity of land is to construct 
the fertility contour map. This is constructed by taking the moving averages of yields of 
unit plots and demarcating the regions of same fertility by considering those areas, which 
have yield of same magnitude. This approach of describing the variation in fertility has 
been adopted by large number of workers in India and abroad. Fertility contour map can 
also be developed using the soil parameters in the observed samples obtained from the 
experimental area. 

ii)	 Maximum Curvature Method: In this method basic units of uniformity trials are 
combined to form new units. The new units are formed by combining columns, rows or 
both. Combination of columns and rows is done in such a way that no columns or rows 
are left out. For each set of units, the coefficient of variation (CV) is computed. A curve 
is plotted by taking the plot size (in terms of basic units) on X-axis and the CV values 
on the Y-axis of graph sheet. The point at which the curve takes a turn, i.e., the point of 
maximum curvature is located by inspection. The value corresponding to the point of 
maximum curvature will be optimum plot size. 

iii)	 Fairfield Smith’s Variance Law: Smith (1938) suggested an empirical relation between 
variance and plot size. Smith developed an empirical model representing the relationship 
between plot size and variance of mean per plot. This model is given by the equation 

where x is the number of basic units in a plot,  is the variance of mean per plot of x units, 
is the variance of mean per plot of one unit and b is the characteristic of soil and measure 
of correlation among contiguous units. If b = 1,   and the units making up the plots 
of x units are not correlated at all. If b = 0,   and the units making up the plots 
of x units are perfectly correlated and hence there is no gain due to larger size of plots. 
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Generally b lies between 0 and 1. The values of v1  and b are determined by least squares 
method.

This law can further be used for arriving at an optimum plot size. Smith recommended 
the cost function C = C1 + xC2, where C1 is overhead cost which is independent of plot 
size and C2 is the consideration of cost by a unit increase in the plot size. Optimum value 
of plot size is the one which minimizes the cost per unit of information viz. (C1 + xC2). 
Once b is estimated from uniformity trial data, the optimum size of plot can be obtained 
using the following formula

 .

Here it must be mentioned that the value of  xopt is some multiple of the basic plot size. For 
example, if   then it means that the optimum plot size is twice the basic plot size 
used in the uniformity trial for estimating b.

1.7.2   Shape of the plots
Shape of plots in agricultural field experiments should be decided after taking care of 

following points:

i)	 Crop to be grown
ii)	 Convenience of planting and harvesting crop
iii)	 Ability to use machineries (if machineries are going to be used)
iv)	 Presence or absence of fertility gradient
v)	 Variation in soil depth

1.8   Determination of number of replications
A very important question that needs to be answered by the experimenter is about the 

number of replications to be used in a design. Although the answer largely depends upon the 
resources available, there are some scientific reasons also that help in determining the optimum 
replication number. The following points should be kept in mind while determining number of 
replications of the treatments. 

i)	 The foremost important consideration in the determination of replication number is that 
there should be adequate error degrees of freedom. As far as possible, there should be 
about 12 degrees of freedom for error. The reason is not far to seek. The error mean square 
sits in the denominator of the test statistic to be used for testing the null hypothesis. If 
one looks at the tables of Snedecor’s F, the value below 12 degrees of freedom is very high 
and very variable. So small variations in treatment effects will not be detected significant 
for smaller degrees of freedom for error. On the other hand, the table values of Snedecor’s 
F stabilize after 12 degrees of freedom. So in order to be able to capture small variations, 
the error degrees of freedom should be at least 12.  On the other hand, the error degrees 
of freedom should not be unduly large. It would be wastage of resources to spend large 
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degrees of freedom for estimating experimental error.  It may be seen that if there are 
more number of treatments then lesser number of replications are required to ensure 
same number of error degrees of freedom. 

ii)	 Availability of resources and precision required: Number of replications should be 
determined in such a way that the experiment can be conducted with the available 
resources namely labour, cost, time, experimental material, etc. and it should be able to 
achieve desired precision of comparisons among treatments. The smaller the differences 
that are desired to be detected between treatment means or effects, the more is the number 
of replications needed. Sometimes it may not be possible to obtain desired precision with 
available resources and there may be a need of a trade-off between available resources and 
desired precision level either by sacrificing precision or by increasing available resources.

iii)	 Type of experimental material: Generally homogenous experimental units require less 
number of replications and heterogeneous experimental units require more number of 
replications of the treatments.

iv)	 Manageability of the experiment: It should also be kept in mind that the experimenter 
should be able to manage to conduct the experiment well. This entails that number of 
treatments, their replications and number of experimental units should not be very large, 
otherwise it may lead to a poorly managed experiment.

We describe below a method due to Cochran and Cox (1964) to obtain number of 
replications of treatments. In conducting an experiment, the experimenter may be interested to 
detect difference of at least, say d, between two treatment effects. Let the two treatment means be 

  and  . The significance of difference between two treatment effects is tested using Student’s 
t statistic given by

where  is the measure of error variation and r  is the number of replications for both the 
treatments. If the experimenter wants to detect a difference of at least d between the two 
treatment effects, then the t-statistic should come significant at desired level of significance   
and the corresponding t-statistic would be given by

where  t  denotes the critical value of t  distribution at level of significance . From the above 
equation one can get the number of replications as 

 .
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It may be noted that the above formula requires the knowledge of . This may be known 
from similar kinds of experiments conducted earlier or it may be estimated from a pilot 
experiment. 

The description of obtaining the replication number is valid for orthogonal equi-replicated 
designs. In general, the denominator in the test statistic (tα) would be the estimated variance of 
the estimated elementary contrast. The expression for replication number will then be obtained 
accordingly.

1.9   Steps for running an experimental design 
The main steps in conducting an experiment are given below:

i)	 State the objectives of the study and the hypotheses to be tested.
ii)	 Determine the response variable(s) of interest that can be measured.
iii)	 Determine the controllable factors of interest that might affect the response variable(s) 

and the levels of each factor to be used in the experiment. It is better not to pre-judge any 
factor to be not significant. Such factors should be included in the design.

iv)	 Determine the uncontrollable variables that might affect the response variables.
v)	 Determine the total number of experimental units and number of replications of the 

treatments in the experiment, based on available time and resources and if possible, using 
estimates of variability, precision required, size of effects expected. Keep some resources 
for unforeseen contingencies. 

vi)	 Select a suitable design for the experiment. The chosen design should block the known 
nuisance variables and randomize the experimental units to protect against unknown 
nuisance variables.

vii)	 Conduct a smaller pilot experiment to see if the results make sense and perform 
a performance analysis with response variables as random variables to check for 
estimability of the factor effects and precision of the experiment. Review steps i-vi in case 
of unsatisfactory situation.

viii)	 Perform the experiment strictly according to the experimental design.
ix)	 Analyse the data from the experiment. 
x)	 Interpret the results and state the conclusions. 
xi)	 Document the results and conclusions from the experiment.
xii)	 The most important thing to remember is that the treatments are always labelled randomly.

1.10   Scope of the present book
The purpose of the present book is to describe the commonly used experimental designs 

in agricultural research and using the actual experiments conducted by the researchers, give 
the analysis of data and interpretation of results. Since this book is targeted for agricultural 
researchers, there will be a bias towards agriculture, horticulture and animal sciences while 
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describing the examples. But the applications to other sciences and industry are straight forward. 

Since the topic of design and analysis of experiments is vast, the book has been divided 
into two parts; first part covering fundamentals of design and analysis of experiments related 
to, by and large, single factor experiments and the second part focusing mostly on multifactor 
experiments and advanced topics. The composition of the first part of the book is as follows. 
The book begins with an introductory chapter and then proceeds to describe the basic designs 
like CRD, RCB design and LSD. Contrast analysis and analysis of covariance are two very 
powerful techniques that help answer almost all the questions of the researcher. So these 
two Chapters follow the basic designs. The readers may devote time in understanding these 
important techniques of analysis of data keeping in mind their application and usefulness. The 
book then portrays the importance and usefulness of incomplete block designs and resolvable 
block designs in agricultural research. Alpha designs or resolvable block designs are very useful 
in crop improvement programmes.  Augmented designs also form a part of the discussion. 
Combined analysis of experiments is an important component of this book. 

Although Chapter 3 is devoted to contrast analysis, while making multiple comparisons, 
adjustments need to be made to attain overall significance level of the comparisons. Various 
methods of multiple comparisons are given in Annexure-III. The authors are advised to read 
Annexure-III before reading the main chapters of the book.

There are appendices dealing with the SAS commands and R codes. The readers may read 
Annexure-I on SAS for better understanding of the main chapters of the book. Annexure-IV 
describes a very important web resource “Design Resources Sever”, which is hosted at www.
iasri.res.in/design. The book is concluded with a bibliography.

The main aim of this book is to give simpler analytical solutions to all problems related 
to designed experiments. To achieve this end, each chapter of the book introduces the subject 
in detail in a very simple language that can be understood by the researchers in agricultural 
sciences and industry. Then the subject is explained with the help of an example, which is an 
actual experiment conducted by the researchers in agricultural sciences. The analysis of data 
is done using SAS. R code is also given for the benefit of readers who have familiarity with R 
software. These unique features make this book distinct from other books available on design 
of experiments.

The examples in all the chapters of the book have been solved using SAS software. The SAS 
commands are given in detail. The reason for using SAS is that in the National Agricultural 
Research System, SAS is available and is being used. In fact SAS is one of the popular software 
being used globally for analysis of data. For the benefit of readers, some codes for using R 
software are also given. The output obtained from the use of R software is not given to avoid 
duplication, because the results obtained are similar to those obtained using SAS. The readers 
may read Annexure-II for better understanding of the basics of R codes. Those using SPSS may 
refer to steps of analysis given in Design Resources Server.

While using SAS commands, the input variables and the class variables have been given 
abbreviated names, e.g., rep is used for replication, trt is used for treatment, etc. Obviously the 
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SAS output will also depict these names only. However, the output described in the book does 
not conform to this SAS output. Firstly, the SAS output would generally be more than what 
is described in the text. Secondly, the output may not be exactly in the format it is described. 
Lastly, the class variables reported in the analysis do not have abbreviated names. Instead we 
give the full names of the variables. The reader may also note that the word ‘block’ has been used 
throughout for ‘replication’, wherever replication is used as a block. The reader should not have 
any confusion of the two terms.



Some Basic Experimental Designs

2.1   Introduction
An experimental design is essentially a rule that determines the assignment of treatments to 

the experimental units keeping in mind the principles of randomization, replication and local 
control. The experiments, however, differ from each other greatly in many respects, depending 
upon the variability in the experimental units and how it is taken care of. Generally the process 
of randomization of the experimental units depends upon the way the variability present in the 
experimental units is accounted for. This then dictates what type of design is used in a given 
experimental situation. In some experimental situations, a naïve design, generated keeping in 
mind the experimental conditions and practical considerations, helps answering the objectives 
of the experiment. Nonetheless, there are some basic (or standard) designs that are used 
frequently by the experimenters because of the ease in running these experiments. The purpose 
of this Chapter is to describe such designs.

We begin with a Completely Randomized Design (CRD), which uses the principles of 
randomization and replication. This design is used when there are strong reasons to believe that 
there is no variability in the experimental units. This will be followed by Randomized Complete 
Block (RCB) Design and Latin Square Design, in which all the three principles of randomization, 
replication and local control are applied. RCB design and Latin Square Design are used when 
there are one and two sources of variability, respectively present in the experimental units. 
In both these designs, the treatment replications are equal. There is flexibility in the choice 
of number of replications in RCB design, but in case of Latin square design, the replication 
number is equal to the number of treatments. As would be seen later in this Chapter and in 
other Chapters as well, it is simply the change in the randomization procedure of the treatments 
to the experimental units that gives rise to different designs. There could, however, be more 
sources of variability present in the experimental units and the randomization would be done 
accordingly. It will become obvious through different Chapters that the randomization and 
control of variability through grouping(s) of the experimental units are related to each other 
and help in controlling the experimental error.

2.2   Completely randomized design
Consider an experimental situation where the experimenter is interested (a) in comparing 

four grazing systems (treatments), viz., rotational, deferred rotational, continuous and cut and 
carry, and (b) to study the effect of the grazing systems on the body weight of the animals. 
Suppose that 16 animals are available for conducting the experiment.  Suppose further that 
the choice of 16 animals is such that they do not contribute to the variability in the final body 
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weights of the animals after being subjected to the grazing systems. In other words, it is assumed 
that the experimental units (subjects or animals) do not contribute to the variability in the data 
and the only explainable part of variability present in the data is because of the four different 
grazing systems. The unexplained part of variability is the experimental error. An easy way of 
running this experiment is to allocate the 4 grazing systems randomly to the 16 animals such 
that each grazing system is received by four animals. However, it is not necessary to have equal 
replication of grazing systems. One can have unequal replication of the treatments as well. But 
as far as possible, it is better to have equal, or as equal as possible, replications of the treatments. 
If that be so, then the replications would differ by at most one. This is known as a design for 
zero-way elimination of heterogeneity.

A zero-way heterogeneity setting design or an unblocked design or a CRD is the simplest 
design in which only two principles of design of experiments viz. randomization and replication 
are used. There is no use of local control here, since the experimental units are assumed to be 
homogeneous. The only identifiable cause of variability is the treatments and the remaining part 
of the variability is the experimental error. 

To make the exposition general, suppose that there are v treatments and n homogeneous 
experimental units. The v treatments are allotted at random to the n experimental units. Let the 

ith treatment be replicated ri times (i = 1,2,…, v) such that . Normally the number of 

replications for different treatments should be equal as it ensures equal precision of estimates 
of linear functions of treatment effects. The average replication number is then n/v, which will 
be a positive integer if v divides n. The actual number of replications of treatments is, however, 
determined by the availability of experimental resources and the requirement of precision and 
sensitivity of comparisons. If the experimental material for some treatments is available in 
limited quantities, the number of replications of these treatments is reduced.  If the estimates of 
certain treatment effects are required with more precision, the number of replications of such 
treatments is increased.  

2.2.1   Randomization
There are several methods of random allocation of treatments to the experimental units.  The 

v treatments are first assigned numbers (or labels) randomly from 1 to v.  The n experimental 
units are also numbered randomly. One method of randomization uses the random number 
tables.  Any column (or columns) of a randomly opened page of a random number table is 
taken.  If v is a one-digit number, then only one column is consulted digit by digit.  If v is a two-
digit number, then two columns (or two-digit random numbers) are consulted. All numbers 
greater than v and zero, are ignored.

Let the first number chosen be  ; then the treatment numbered  is allotted to the first 
unit.  If the second number is  which may or may not be equal to  , then the treatment 
numbered   is allotted to the second unit.  This procedure is continued. When the ith treatment 
number has occurred ri times,  this treatment is ignored subsequently. This process 
terminates when all the units are exhausted.
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One drawback of the above procedure is that sometimes a very large number of random 
numbers may have to be ignored because they are greater than v. It may even happen that the 
random number table is exhausted before the allocation is complete. To avoid this difficulty the 
following procedure is adopted.  

Let v be an s-digit number. Choose P as the highest s-digit number divisible by v. For 
instance, if v = 13, then P = 91; when v = 31, then P = 93; when v = 123, then P = 984. All 
numbers greater than P and zero are ignored. If a selected random number is less than v, then 
it is used as such. If it is greater than or equal to v, then it is divided by v and the remainder is 
taken to be the random number and used for allotting treatment to experimental unit. When 
a number is divisible by v (i.e., the remainder is zero), then the random number is v.  For 
example, assume that v = 123 and the random number drawn is 991. This number would be 
rejected because this is greater than 984. If the random number drawn is 95, then the treatment 
labeled 95 is allotted to that experimental unit. Further, if the random number selected is 567, 
then dividing 567 by 123 would leave the remainder as 75. So treatment labeled 75 is allotted 
to that experimental unit. Further, if the random number selected is 615, then dividing 615 by 
123 would leave the remainder as zero. In this case, treatment labeled as 123 is allotted to that 
experimental unit.

Alternative methods of random allocation
If random number tables are not available, treatments can be allotted by drawing lots as 

explained in the sequel. However, these procedures may not help generate strictly random 
numbers. So these procedures need to be adopted with caution.

The number of the ith treatment is written on ri pieces of papers (i = 1,2,...v). The 
 

pieces of papers are then folded individually so that the numbers written on them are not visible. 
These papers are then drawn one by one at random. Before each draw the slips are thoroughly 
shuffled. The treatment that is drawn at the tth draw is allotted to the tth unit (t = 1,2,...,n)

Random allocation is also possible by using a fair coin.  Let there be 5 treatments and 20 
experimental units. Each treatment is to be replicated four times. Suppose that the experimental 
units are labeled by numbers from 1 to 20 randomly.

When a coin is tossed, there are two possible outcomes; either head or tail appears. Denote 
the “head” by H and the “tail” by T. When the coin is tossed twice, there are four possible 
outcomes; these are HH, HT, TH or TT. Similarly, when the coin is flipped three times, there 
are eight possible outcomes; HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. This can be easily 
generalized to n flippings of the coin.

The 5 treatments are now identified not by serial numbers as earlier but by any five of the 
above eight possible outcomes obtainable by flipping a coin three times. If any of the remaining 
three outcomes, say THT, TTH and TTT appear, no treatment is selected for allotment and the 
coin is again flipped thrice. 
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A coin is now thrown three times and the outcome is noted. If the outcome is any of the 
five outcomes HHH, HHT, HTH, HTT, THH, the treatment labeled by it is allotted to the first 
experimental unit. If the event happened is any of the three, THT, TTH, TTT, it is ignored. 
The coin is again tossed three times and this event is used to select a treatment for the second 
experimental unit. If the same outcome appears more than once, do not reject it until the number 
of times it has appeared equals the number of replications of the treatment it represents. This 
process is continued till all the experimental units are exhausted.

It may be worthwhile mentioning here that the labels are also allotted randomly to all the 
treatments.  This would hold everywhere, whether mentioned or not.

The linear model in this case is

Expected response = general mean + effect of treatments.

Since there is no source of variation in the experimental units, the model does not contain 
the effect due to experimental units.

This can also be written as

response = general mean + treatments effect + error,  

where the errors are independently distributed as normal variate with zero mean and constant 
variance . The partitioning of the total variability in this case is 

Source of variation

Due to model

Error

Total

The component “due to model” can be partitioned as 

Source of variation

Due to model

           Due to treatments      

2.2.2   Analysis of CRD
This design provides a one-way classified data according to levels of a single factor, the single 

factor being the treatments with v levels.  Since no variability is expected from the experimental 
units, the only identifiable source of variability is the treatments. We then have the following 
linear model: 
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where the random variable yij is the observation recorded on the jth replicate of the ith treatment, 
 is the general mean,  is the fixed effect of the ith treatment and eij is the random error 

component associated with the (i, j)th observation, i = 1,2,..., v; j = 1,2,...,ri. These are assumed 
to be distributed independently and normally with zero mean and constant variance . We also 
assume that the replication of the ith treatment is ri,  and .

Let us define the following:  

Treatment totals, , and Grand total as 
 

.

The following formulae can be employed for analysis of variance:

Correction factor (CF) = 

Total sum of squares (SS) = 

Sum of squares due to treatments (SST) = 

Error sum of squares (SSE) =  –  =  - 

 												          
					      							     
				     = Total SS – Treatment SS.

The interest of the experimenter is in testing the null hypothesis:  
against the alternative that  for at least one pair of treatment effects, say 

 and .  For testing this hypothesis, we set up the analysis of variance Table 2.1.
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Table 2.1: ANOVA table in CRD

Source DF SS MS = SS/DF F

Treatments v –1 SST = 

Error n – v SSE =     

Corrected Total n  – 1

If the calculated value of F is greater than the table value of  at  level of 
significance and (v – 1), (n – v) degrees of freedom, then the null hypothesis  is rejected 
at   level of significance and it can be concluded that equality of all the treatment effects does 
not hold. In that case, the researcher has no knowledge about the treatment effects except that 
there is at least one pair of treatments that differs significantly from each other. In that case the 
researcher has to go for the computation of least significant difference (LSD) or other multiple 
comparison procedures as explained in Annexure-III to make pairwise treatment comparisons. 

It may be seen here that the unbiased estimator of  is  

Further, all the elementary treatment contrasts (or treatment contrasts for pairwise 
treatment comparisons) are estimable through the design. The best linear unbiased estimator 
(BLUE) of any treatment contrast   is 

                           

The variance of   is .  The estimated standard error of the estimated difference 

between the ith  and lth treatment effects is  .

The least significant difference (LSD) is given as .

Here denotes the value of Student’s t at  level of significance and error degrees of 

freedom. The treatment means are given by . The pairwise comparison of 

treatment effects can be made by comparing the difference between any two treatment means 
with the LSD. Any two treatment effects are said to differ significantly if the difference of their 
means is larger than the LSD.  
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2.2.3   Example 1
An experiment was conducted in Rabi season on a variety of tomato during 2010-11 

with 5 treatments of integrated nutrient management viz. Trt1 ~ farmers’ practice (2.5 tonnes 
farmyard manure/ha), Trt2 ~ recommended dose of fertilizers (NPK 120:75:100), Trt3 ~ 50% 
recommended dose of fertilizers + vermin-compost 5 tonnes/ha, Trt4 ~ 50% recommended 
dose of fertilizers + vermin-compost 10 tonnes/ha and Trt5 ~ 50% recommended dose of 
fertilizers + vermin-compost 2.5 tonnes/ha + farmyard manures 5 tonnes/ha. The objective of 
the experiment was to find out the most appropriate integrated nutrient management system 
for tomato. The experiment was conducted using a completely randomized design and the dry 
matter accumulation (gm/plant) was recorded after the experiment was over. Table 2.2 gives the 
replicated data on dry matter accumulation in g/plant for each treatment:

Table 2.2: Dry matter accumulation in g/plant

Tr1 Tr2 Tr3 Tr4 Tr5
108.2 225.2 176.5 201.3 214.3
112.7 226.4 195.2 183.6 226.2
116.8 135.2 188.4 197.5 215.0
106.8 227.5 190.3 186.1 230.6
117.9 218.2 210.3 188.6 212.6

229.1 195.1 210.4 230.4
227.6
228.3

In the sequel the data are analyzed to identify the best integrated nutrient management 
system.

2.2.4   Procedure and Calculations
The inference problem being solved here is the testing of the following null hypothesis: H0: 

 (say) against the alternative hypothesis H1: at least two of the ’s 
are different. In the example, v = 5.

First compute the following totals:
Treatment totals
T1 = 108.2 + 112.7 + 116.8 + 106.8 + 117.9 = 562.4
T2 = 225.2+ 226.4 + 135.2 + 227.5 + 218.2+ 229.1 = 1261.6
T3 = 176.5 + 195.2 + 188.4 + 190.3 + 210.3 + 195.1 = 1155.8
T4 = 201.3+ 183.6 + 197.5 + 186.1 + 188.6 + 210.4 = 1167.5
T5 = 214.3 + 226.2 + 215 + 230.6+ 212.6 + 230.4 + 227.6 + 228.3 = 1785.0
Gross total (G) = T1 + T2 + T3 + T4 + T5 = 562.4+ 1261.6 + 1155.8 + 1167.5 + 1785 = 5932.3
Correction factor, CF = G2/n = (5932.3)2/31 = 1135231.719

SS due to treatments, SST =  
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= (562.4)2
 /5+ (1261.6)2/6 + (1155.8)2/6 + (1167.5)2/6 + (1785.0)2/8 – 1135231.719

=  41399.233

Total SS = 

= (108.2)2 + (112.7) 2 + … + (227.6)2 + (228.3)2 – 1135231.719

= 49891.17

Error SS = Total SS – SS due to treatments = SSE

= 49891.17 – 41399.233 = 8491.938

The following Analysis of Variance Table is then formed.

Table 2.3: ANOVA table for data in Example 1

Source DF SS MS F-value Prob > F

Treatments 4 41399.233 10349.808 31.69 <0.0001

Error 26 8491.938 326.613

Total 30 49891.171   

R-square CV RMSE Yield Mean

0.830 9.444 18.072 191.364

The model used has been able to explain 83 per cent of the total variability in the data. Since 
calculated F value = 31.69 is greater than the tabulated F at 4 and 26 degrees of freedom at 5% 
level of significance (= 2.742), the null hypothesis is rejected and at least two treatment effects 
are significantly different from each other at 5% level of significance. In fact, the probability of 
obtaining a value of F greater than 31.69 is smaller than 0.0001, meaning thereby that at least 
two treatments effects differ significantly even at smaller than 0.01% level of significance.

Now, to compare the treatment pairs, we calculate treatment means and LSD values at 5% 
level of significance. The treatment means are given in Table 2.4. 

Table 2.4: Treatment wise mean and standard deviation of dry matter accumulation

Level of treatment N
Dry matter accumulation

Mean Standard Deviation

1 5 112.480 4.967

2 6 210.267 36.967

3 6 192.633 11.031

4 6 194.583 10.316

5 8 223.125 7.740
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We now proceed to test the equality of treatments effects, i.e. H0: , for all 
. This is equivalent to making all the possible pairwise treatment comparisons. 

Table 2.5 gives |difference between two treatment means| and the least significant difference (LSD). 
Here |x| is the absolute value of x. In other words, it is the value of x ignoring the sign. If the 
difference of treatment means is larger than the LSD, then the two treatments are significantly 
different from each other at 5 per cent level of significance.

Table 2.5: Least significant differences of treatment pairs

Treatment Numbers Difference of treatments means Least Significant Difference

1, 2 97.79 22.35

1, 3 80.15 22.35

1, 4 82.1 22.35

1, 5 110.65 21.04

2, 3 17.64 21.31

2, 4 15.69 21.30

2, 5 12.86 19.93

3, 4 1.95 21.31

3, 5 30.5 19.93

4, 5 28.55 19.33

Alternatively, arrange the treatment means in ascending or descending order depending 
upon the character under study. If it is yield, it may be arranged in descending order and if it is 
disease infestation, it may be arranged in ascending order.

Table 2.6: Treatment means arranged in descending order

Dry matter 
accumulation

Treatment Rank

223.125 5 1

210.267 2 2

194.583 4 3

192.633 3 4

112.480 1 5

 
Take the different between two treatment means with consecutive ranks. In Table 2.6, the 
difference Trt5 ‒ Trt2 = 223.125 ‒ 210.267 = 12.858. The LSD at 5% for these two treatments 
is 19.93. Therefore, Trt5 and Trt2 are not significantly different and may be assigned the same 
letter A. Since treatments ranked 1 and 2 are statistically not significant, therefore, now check 
the difference between treatment with rank 1 and rank 3, i.e., Trt5 ‒ Trt4 = 223.125 ‒ 194.583 
= 28.542. The LSD at 5% for these two treatments is 19.33. Therefore, these are statistically 
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different, or we can say that Treatment 5 is statistically better than treatment 3 and we may 
assign a different letter, say B, to treatment rank 3. 

Since treatment with rank 1 is statistically significant compared to treatment with rank 3, 
now significance of treatment with rank 1 need not be tested with treatments with rank 4 and 5. 
Treatment with rank 1 will automatically be significantly different from treatments with ranks 
4 and 5. 

The procedure of making pairwise treatment comparisons just explained always holds 
when the estimated variance of the estimated difference of every possible pair of treatments 
is same as happens in CRD with equal replication, RCB design, LSD or any other variance 
balanced design. In case the estimated variance of the estimated difference of every possible pair 
of treatments is different, then we may need to check the significance of all treatment contrasts. 

In this example, however, estimated variances of the estimated difference of all other pairs 
of treatments is less than that between treatments with rank 1 and rank 3. Therefore, we may 
stop checking significance of treatment with rank 1 with treatments with ranks 4 and 5. Now, 
start with treatment with rank 2 and test the significance of difference of treatment effects with 
rank 2 and 3 as Trt2 ‒ Trt4 = 210.267 ‒ 194.583 = 15.684, which is less than corresponding LSD 
at 5% level of significance (21.30). Therefore, we assign a second letter to treatment with rank 
2 same as that was assigned to treatment with rank 3 earlier, i.e., B. Now, treatment with rank 
2 has two symbols A and B depicting that it is not significantly different from treatments with 
rank 1 and 3. Now, we proceed to test the significance of difference of treatment effects with 
ranks 2 and 4 as Trt2 ‒ Trt3 = 210.267 ‒ 192.633 = 17.634, which is less than corresponding LSD 
at 5% level of significance (21.31). Therefore, now treatment 3 with rank 4 may also be assigned 
the same letter B. Next, proceed to test the significance of difference of treatment effects with 
ranks 2 and 5 as Trt2 ‒ Trt1 = 210.267 ‒ 112.480 = 97.787, which is more than corresponding 
LSD at 5% level of significance (22.35). Therefore, now treatment with rank 5 may be assigned 
a different letter, say C.  Next, proceed to test significance of difference of effects of treatments 
with ranks 3 and 4, i.e., Trt4 ‒ Trt3 = 194.583 ‒ 192.533 = 2.050, which is less than the LSD at 
5%. Therefore, these two treatments are statistically at par and already assigned same letter B. 
We proceed with testing the same way and will get the Table 2.7.

Table 2.7: Treatments with letter display 

Dry matter accumulation Treatment Rank

223.125A 5 1

210.267A,B 2 2

194.583B 4 3

192.633B 3 4

112.480C 1 5
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Another way of presenting this Table is

Tr5 Tr2 Tr4 Tr3 Tr1

223.125 210.267 194.583 192.633 112.480

As per the Table 2.7, one can say that treatment 5 is significantly better than treatments 4, 3 
and 1. Treatment 2 although statistically not significant with treatments 5, 4 and 3, is significantly 
different from treatment 1. Similarly treatments 4 and 3 are significantly different from treatment 
1. Therefore, if treatment with highest mean is best, then any one of the treatments Tr5 or Tr2 
may be used as they are statistically at par.

It may be noted that LSD controls only individual error rate and should be used only when 
null hypothesis of equality of treatment effects through ANOVA is rejected. Other commonly 
used multiple comparison procedure test that controls only individual error rate is Duncan’s 
Multiple range Test. Some tests which control family error rate are Bonferroni correction and 
Tukey’s Honestly Significant Differences (HSD) test and can be used even when null hypothesis 
through ANOVA is not rejected. More details on multiple comparison procedures may be seen 
in Annexure-III.
2.2.5   Analysis using SAS

The design is a CRD with v = 5 treatments and n = 31 observations. The data has been 
analyzed using SAS software. The commands and the data preparation are given in the sequel.

DATA crd;
INPUT trt dma;
/* trt denotes the treatment number and dma denotes the dry matter accumulation 
in g/plant*/;
CARDS;
1	 108.2
1     	 112.7
1	 116.8
1	 106.8
1	 117.9
2	 225.2
2	 226.4
2	 135.2
2	 227.5
2     	 218.2
2	 229.1
3	 176.5
3	 195.2
3	 188.4
3     	 190.3
3     	 210.3
3     	 195.1
4     	 201.3
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4	 183.6
4	 197.5
4	 186.1
4	 188.6
4	 210.4
5	 214.3
5	 226.2
5	 215.0
5	 230.6
5	 212.6
5     	 230.4
5	 227.6
5	 228.3
;
PROC GLM DATA=crd;
CLASS trt;
MODEL dma = trt;
MEANS trt;
LSMEANS trt/PDIFF  LINES;
RUN;

Remark 2.1 It may be worthwhile mentioning here that in the INPUT statement, CLASS 
statement and MODEL statement etc. the terms like trt, rep, etc. have been used to represent 
treatments, replications, etc.  The output of analysis will also be using these notations. But while 
giving the results of analysis, the abbreviated forms are not used. Instead, the full forms are used 
for clarity and better understanding. 

2.2.6   Output of analysis
The results obtained by the analysis using SAS are given in Table 2.8. This output is same 

as described earlier. The model with treatment effects only has been able to explain 83 per cent 
of the total variation. It is seen from the analysis of variance table that the treatment effects are 
significantly different (p-value < 0.0001).

Table 2.8: SAS output for data in Example 1

ANOVA

Source SS DF MS F-value Prob > F

Model 41399.233 4 10349.808 31.69 <0.0001

Error 8491.938 26 326.613

Total 49891.171 30    

R-square CV RMSE dma Mean

0.830 9.444 18.072 191.364
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ANOVA

Source Type I SS DF MS F value Prob > F

Treatments 41399.233 4 10349.808 31.69 <0.0001

Error 8491.938 26 326.613

Total 49891.171 30    

The distribution of the observations for each treatment is given in the Figure 2.1.

Figure 2.1: Treatment wise Box plot of dry matter accumulation

The mean and standard deviation of the dry matter accumulation for each of the treatments 
is given in Table 2.9.

Table 2.9: Treatment wise mean and standard deviation of dry matter accumulation

Level of treatment N
Dry matter accumulation

Mean Standard Deviation

1 5 112.480 4.967

2 6 210.267 36.967

3 6 192.633 11.031

4 6 194.583 10.317

5 8 223.125 7.7434

Table 2.10 gives the p-values for making pairwise treatment comparisons. These comparisons 
are similar to the one made above using LSD table. A p-value smaller than 0.05 implies that the 
pair of treatment effects is significantly different.  For example, a p-value < 0.0001 indicates that 
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the treatment effects 1 and 2; 1 and 3; 1 and 4; 1 and 5; are significantly different. A p-value of 
0.1030 suggests that the treatment effects 2 and 3 are not significantly different at 5 per cent level 
of significance. Similarly, a p-value of 0.1990 suggests that the treatment effects 2 and 5 are not 
significantly different at 5 per cent level of significance

Table 2.10: P-values for pairwise comparison of the treatments 

Least Squares Means for effect treatment 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: Dry Matter Accumulation

i/j 1 2 3 4 5

1 <0.0001 <0.0001 <0.0001 <0.0001

2 <0.0001 0.1030 0.1450 0.1990

3 <0.0001 0.1030 0.8530 0.0040

4 <0.0001 0.1450 0.8530 0.0070

5 <0.0001 0.1990 0.0040 0.0070

It may be noted from Table 2.11 that in this case the LS means are the same as the unadjusted 
means. Table 2.11 is another way of explaining the significance of difference of two treatment 
effects. Treatments with same letter are not significantly different. 

Table 2.11: Treatments with letter display

t Comparison Lines for Least Squares Means of Treatments

LS-means with the same letter are not significantly different

DMA LSMEAN Treatment Rank of Treatment

A 223.125 5 5

B A 210.267 2 4

B 194.583 4 3

B 192.633 3 2

C 112.480 1 1

Since dry matter accumulation  is highest for Trt5 and is significantly different from all 
other treatment effects, except treatment 2, so Trt5 i.e., 50% recommended dose of fertilizers 
+ vermicompost 2.5 tonnes/ha + farmyard manures 5 tonnes/ha is the best integrated nutrient 
management system, which is at par with 100% NPK (Trt2)  so far as dry matter accumulation 
in tomato is concerned. 

The pairwise treatment comparisons can also be made without writing the treatments in 
descending order of the treatments LS Mean values. The results are given in Table 2.12.
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Table 2.12: Treatments with letter display

Treatment DMA LS Mean Rank of Treatment

1 112.480C 5

2 210.267A,B 2

3 192.633B 4

4 194.583B 3

5 233.125A 1

General Mean 191.364

In Table 2.12, any two treatments whose LS Means have at least one letter common 
are not statistically significant using LSD at given level of significance. Therefore, it follows 
that treatment 1 is significantly different from treatments 2, 3, 4, 5. Similarly, treatment 5 is 
significantly different from treatments 1, 3 and 4 but is not significantly different from treatment 
2.  On the other hand, treatment 2 is not significantly different from treatments 3, 4 and 5. 

It may be worthwhile mentioning here that all comparisons are made at 5 per cent level of 
significance.

2.2.7   Analysis using R
The purpose of this section is to give the R code for analysis of data generated from a CRD 

for the benefit of the readers who would like to use R software. It may be mentioned here that 
the output obtained from R code is not given to avoid repetition.

d1=read.table(“crd.txt”,header=TRUE)
attach(d1) 
names(d1)
#Treatment means and standard deviations
aggregate(dma, by=list(trt), mean)
aggregate(dma, by=list(trt), sd)
#Treatment wise box plot of dma 
boxplot(dma~trt)
#ANOVA
trt=factor(trt)
crdout<-aov(dma~trt)
summary(crdout)
#Tukey’s honest significant difference test is inbuilt part of Base R
TukeyHSD(crdout)
#LSD test, download and install agricolae package
library(agricolae)
lsd.result <- LSD.test(crdout,“trt”)
lsd.result
detach(d1)
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2.3   Randomized complete block design
A CRD assumes that there is no variability in the experimental units. The only source 

of variability in the data is the treatments. However, the experimental units selected for 
experimentation may exhibit variability because of many reasons. If the experimental units are 
the animals and the treatments are the grazing systems, then the initial body weight of the animal 
may be a major source of variability. Similarly, if the experimental units are plots in a field, and 
the treatments are the various levels of fertilizers and or irrigation, then the soil fertility may be 
a source of variability. Similarly with feeding trials in animal experiments, the lactation number 
may be a source of variability.  Litter mates of animals may be source of variability in animal 
experiments. The salinity patches in the soil may be source of variability in field experiments. 
The variability in the experimental units needs to be accounted for, otherwise the experimental 
error will be unduly large and the Coefficient of variation (CV) would be overly large, which 
may lead to not rejecting the null hypothesis.  

The focus of this Section is on designs useful for situations when there is heterogeneity 
in the experimental units and it is expected that there is only one source of variability in the 
experimental units. All the three principles of experimentation, viz., randomization, replication 
and local control are used in these designs. In these designs, the experimental units are 
partitioned into groups (called blocks) in such a way that experimental units within each block 
are as homogeneous as possible.  As the name itself suggests, a Randomized Complete Block 
(RCB) design is a complete block design in the sense that each block is a complete replication.  
In other words, all the treatments in the experiment appear once in each block.  Consequently, 
the block size, or the number of experimental units in each block is equal to the number of 
treatments.  Further, since each block is a complete replication, the number of blocks is also 
equal to the replication number of treatments.

The randomization procedure in a RCB design is the following: (i) the treatments are 
randomly allocated the treatment labels, (ii) the treatments are assigned randomly to the 
experimental units within each block, and (iii) a separate randomization is done in each block.

The linear model in this case is

Expected response = general mean + effect of treatments + effect due to experimental units 
(grouped as blocks)

Since there is only one source of variation in the experimental units, the model can be rewritten 
as 

Expected response = general mean + effect of treatments + effect of blocks (or replications).

This can also be written as

response = general mean + treatments effect + block (or replication) effect + error,  

where the errors are independently distributed as normal variate with zero mean and constant 
variance . The split of the total variability in this case is 
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Source of variation

Due to model

Error

Total

The component “due to model” can be split as 

Source of variation

Due to model

            Due to treatments

            Due to blocks (or replications)

2.3.1     Analysis of RCB design
Suppose that an experiment is run in a RCB design with v treatments and b replications (or 

complete blocks).  Suppose that the observation generated on the response variable from the 
ith treatment in the jth block is represented by yij, i = 1,2,....,v; j = 1,2,....,b.  The observations are 
represented by the following linear, additive model 

       

where  is the general mean effect;  is the effect of the ith treatment (fixed);  is the effect of 
the  jth block (fixed);  is random error associated with , assumed to be mutually independent 

and distributed identically as normal variable with mean zero and common variance , i.e., 

Let the treatment totals and the block totals be denoted as respectively,  

and , and grand total as    .

The following formulae can be employed for analysis of variance:

Correction factor (CF) = 

Total sum of squares = 



38

Statistical Analysis of Agricultural Experiments

Sum of squares due to treatments (SST) = 

Sum of squares due to blocks (or replications) (SSB) = 

Error sum of squares (SSE) = 

 = Total SS – Treatment SS – Block SS.

The interest of the experimenter is in testing the null hypothesis:  
against the alternative that  for at least one pair of treatment effects, say τi 
and .  For testing this hypothesis we set up the analysis of variance Table 2.13.

 Table 2.13: ANOVA table for RCB design

Source DF SS MS = SS/DF F

Treatments v – 1 SST = 

Blocks (or 
Replications)

b – 1 SSB =

Error (v – 1)(b – 1) SSE = 

Total vb – 1

If the calculated value of F is greater than the table value of  at  level of 
significance and (v – 1), (v – 1)(b – 1) degrees of freedom, then the null hypothesis  is rejected 
at  level of significance and it can be concluded that the treatment effects are significantly 
different from one another.
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It may be seen here that the unbiased estimator of  is .

Further, all the elementary treatment contrasts are estimable through the design. The Best 
Linear Unbiased Estimator (BLUE) of any treatment contrast   is

 . 

The variance of  is .  The estimated standard error of the estimated difference 

between the ith  and lth treatment effects is .

The Least Significant Difference (LSD) at  level of significance is given as  

Here  denotes the value of Student’s t at  level of significance and error degrees 

of freedom. The treatment means are given by .  The pairwise comparison of 

treatment effects can be made by comparing the difference between any two treatment means 
with the LSD. Any two treatment effects are said to differ significantly if the difference of their 
means is larger than the LSD.  

2.3.2   Example 2
An initial varietal trial (Late Sown, irrigated) was conducted to study the performance 

of 20 new strains of mustard vis-a-vis four checks (Swarna Jyoti: ZC; Vardan: NC; Varuna: 
NC; and Kranti: NC) using a Randomized Complete Block Design (RCB) design at Bhatinda 
with 3 replications under the aegis of All India Coordinated Research Project on Rapeseed and 
Mustard. The seed yield in kg/ha was recorded. The details of the experiment are given in Table 
2.14.

In the sequel, the data are analyzed (a) to test whether or not there is any difference among 
the treatment effects, (b) to make all the possible pairwise treatment comparisons to identify the 
best treatment i.e. the treatment giving highest yield, and (c) to test whether or not the average 
performance of check varieties (i) Swarna Jyoti (MCN-04-128), (ii) Vardan (MCN-04-129), (iii) 
Varuna (MCN-04-131), and (iv) Kranti (MCN-04-133) is significantly different from average 
performance of remaining strains. 
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Table 2.14:  Seed yield (kg/ha) data

Treatment 
Number Strain Code

Replications

1 2 3

1 RK-04-3 MCN-04-110 1539.69 1412.35 1319.73

2 RK-04-4 MCN-04-111 1261.85 1065.05 1111.36

3 RGN-124 MCN-04-112 1389.19 1516.54 1203.97

4 HYT-27 MCN-04-113 1192.39 1215.55 1157.66

5 PBR-275 MCN-04-114 1250.27 1203.97 1366.04

6 HUJM-03-03 MCN-04-115 1296.58 1273.43 1308.16

7 RGN-123 MCN-04-116 1227.12 1018.74 937.71

8 BIO-13-01 MCN-04-117 1273.43 1157.66 1088.20

9 RH-0115 MCN-04-118 1180.82 1203.97 1041.90

10 RH-0213 MCN-04-119 1296.58 1458.65 1250.27

11 NRCDR-05 MCN-04-120 1122.93 1065.05 1018.74

12 NRC-323-1 MCN-04-121 1250.27 926.13 1030.32

13 RRN-596 MCN-04-122 1180.82 1053.47 717.75

14 RRN-597 MCN-04-123 1146.09 1180.82 856.67

15 CS-234-2 MCN-04-124 1574.42 1412.35 1597.57

16 RM-109 MCN-04-125 914.55 972.44 659.87

17 BAUSM-2000 MCN-04-126 891.40 937.71 798.79

18 NPJ-99 MCN-04-127 1227.12 1203.97 1389.19

19 SWARNA JYOTI(ZC) MCN-04-128 1389.19 1180.82 1273.43

20 VARDAN(NC) MCN-04-129 1331.31 1157.66 1180.82

21 PR-2003-27 MCN-04-130 1250.27 1250.27 1296.58

22 VARUNA(NC) MCN-04-131 717.75 740.90 578.83

23 PR-2003-30 MCN-04-132 1169.24 1157.66 1111.36

24 KRANTI-(NC) MCN-04-133 1203.97 1296.58 1250.27

Note: Strains of mustard in bold are the four checks.

2.3.3    Analysis of data

Treatment Totals
T1 = 1539.69 + 1412.35+ 1319.73 = 4271.77

T2 = 1261.85 + 1065.05 + 1111.36 = 3438.26

T3 = 1389.19 + 1516.54 + 1203.97 = 4109.70

T4 = 1192.39 + 1215.55 + 1157.66 = 3565.60

T5 = 1250.27 + 1203.97 + 1366.04 = 3820.28
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T6 = 1296.58 + 1273.43 + 1308.16 = 3878.17

T7 = 1227.12 + 1018.74 + 937.71 = 3183.57

T8 = 1273.43 + 1157.66 + 1088.20 = 3519.29

T9 = 1180.82 + 1203.97 + 1041.90 = 3426.69

T10 = 1296.58 + 1458.65 + 1250.27 = 4005.50

T11 = 1122.93 + 1065.05 + 1018.74 = 3206.72

T12 = 1250.27 + 926.13 + 1030.32 = 3206.72

T13 = 1180.82 + 1053.47 + 717.75 = 2952.04

T14 = 1146.09 + 1180.82 + 856.67 = 3183.58

T15 = 1574.42+ 1412.35 + 1597.57 = 4584.34

T16 = 914.55 + 972.44 + 659.87 = 2546.86

T17 = 891.40 + 937.71 + 798.79 = 2627.90

T18 = 1227.12 + 1203.97 + 1389.19 = 3820.28

T19 = 1389.19 + 1180.82 + 1273.43 = 3843.44

T20 = 1331.31 + 1157.66 + 1180.82 = 3669.79

T21 = 1250.27 + 1250.27 + 1296.58 = 3797.12

T22 = 717.75 + 740.90 + 578.83 = 2037.48

T23 = 1169.24 + 1157.66 + 1111.36 = 3438.26

T24 = 1203.97 + 1296.58 + 1250.27 = 3750.82

Block Totals
B1 = 1539.69 + 1261.85 + 1389.19 + ... + 717.75 + 1169.24 + 1203.97 = 29277.25

B2 = 1412.35 + 1065.05 + 1516.54 + ... + 740.90 + 1157.66 + 1296.58 = 28061.74

B3 = 1319.73 + 1111.36 + 1203.97 + ... + 578.83 + 1111.36 + 1250.27 = 26545.19

Grand Total, G = 29277.25 + 28061.74 + 26545.19 = 4271.77 + 3438.26 + 4109.70 + ... + 
2037.48 + 3438.26 + 3750.82 = 83884.18

Correction Factor, CF =  = = 97729939.64

Treatments SS (SST) = 

	 = 100244098.93 - 97729939.64 = 2514159.29
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Block (or Replication) SS (SSB) = 

= 97886072.15 - 97729939.64 = 156132.51

Total SS =  

	 =100863347.59 - 97729939.64 = 3133407.95

Error SS (SSE) = Total SS - Treatments SS - Replication (or Block) SS 

	 = 3133407.95 - 2514159.29 - 156132.51 = 463116.15

We then have the analysis of variance as shown in Table 2.15.

Table 2.15: ANOVA table for the data in Example 2

Source DF SS MS F-value Prob > F

Treatments 23 2514159.289 109311.273 10.86 <0.0001

Blocks (or Replications) 2 156132.504 78066.250      7.75 0.0013

Error 46 463116.156 10067.743

Total 71 3133407.949

This analysis reveals that the treatment differences are highly significant (p-value < 0.0001). 
Similarly, the block effects are also highly significant (p-value = 0.0013) meaning thereby that the 
block formation has proved to be very effective. The blocks formation was genuinely required 
and blocks formation has been proper.

2.3.4   Analysis using SAS
The design is a RCB design with v = 24 treatments, b = 3 blocks (or replications) and n = 

72 observations. The data has been analyzed using SAS software. The commands and the data 
preparation are given in the sequel.

DATA rbd; /*one can enter any other name for Data*/;
INPUT trt $ 11. trtn rep syield;
*here 11. represents that the value of the variable trt is upto 11 columns;
/*trtn denotes the treatment number, rep the replication number and syield
the seed yield in kg/hectare*/;
CARDS; 
MCN-04-110	 1	 1	 1539.69
MCN-04-111	 2	 1	 1261.85 
MCN-04-112	 3	 1	 1389.19 
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MCN-04-113	 4	 1	 1192.39 
MCN-04-114	 5	 1	 1250.27 
MCN-04-115	 6	 1	 1296.58 
MCN-04-116	 7	 1	 1227.12 
MCN-04-117	 8	 1	 1273.43 
MCN-04-118	 9	 1	 1180.82 
MCN-04-119	 10	 1	 1296.58 
MCN-04-120	 11	 1	 1122.93 
MCN-04-121	 12	 1	 1250.27 
MCN-04-122	 13	 1	 1180.82 
MCN-04-123	 14	 1   	 1146.09 
MCN-04-124	 15	 1	 1574.42 
MCN-04-125	 16	 1	 914.55 
MCN-04-126	 17	 1	 891.40 
MCN-04-127	 18	 1	 1227.12 
MCN-04-128	 19	 1	 1389.19 
MCN-04-129	 20	 1	 1331.31 
MCN-04-130	 21	 1	 1250.27 
MCN-04-131	 22	 1	 717.75 
MCN-04-132	 23	 1	 1169.24 
MCN-04-133	 24	 1	 1203.97 
MCN-04-110	 1	 2	 1412.35 
MCN-04-111	 2	 2	 1065.05 
MCN-04-112	 3	 2	 1516.54 
MCN-04-113	 4    	 2	 1215.55 
MCN-04-114	 5	 2	 1203.97 
MCN-04-115	 6	 2 	 1273.43 
MCN-04-116	 7	 2	 1018.74 
MCN-04-117	 8	 2	 1157.66 
MCN-04-118	 9	 2	 1203.97 
MCN-04-119	 10	 2	 1458.65 
MCN-04-120	 11	 2	 1065.05 
MCN-04-121	 12	 2	 926.13 
MCN-04-122	 13	 2	 1053.47 
MCN-04-123	 14	 2	 1180.82 
MCN-04-124	 15	 2	 1412.35 
MCN-04-125	 16	 2	 972.44 
MCN-04-126	 17	 2	 937.71 
MCN-04-127	 18	 2	 1203.97 
MCN-04-128	 19	 2	 1180.82 
MCN-04-129	 20	 2   	 1157.66 
MCN-04-130	 21	 2	 1250.27 
MCN-04-131     	 22	 2	 740.90 
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MCN-04-132	 23	 2	 1157.66 
MCN-04-133	 24	 2	 1296.58 
MCN-04-110	 1	 3	 1319.73 
MCN-04-111	 2	 3	 1111.36 
MCN-04-112	 3	 3	 1203.97 
MCN-04-113	 4	 3	 1157.66 
MCN-04-114	 5	 3	 1366.04 
MCN-04-115	 6	 3	 1308.16 
MCN-04-116	 7	 3	 937.71 
MCN-04-117	 8	 3	 1088.20 
MCN-04-118	 9	 3	 1041.90 
MCN-04-119	 10	 3	 1250.27 
MCN-04-120	 11	 3	 1018.74 
MCN-04-121	 12	 3 	 1030.32 
MCN-04-122	 13	 3	 717.75 
MCN-04-123	 14	 3	 856.67 
MCN-04-124	 15	 3	 1597.57 
MCN-04-125	 16	 3	 659.87 
MCN-04-126	 17	 3	 798.79 
MCN-04-127	 18	 3	 1389.19 
MCN-04-128	 19	 3	 1273.43 
MCN-04-129	 20	 3	 1180.82 
MCN-04-130	 21	 3	 1296.58 
MCN-04-131	 22	 3	 578.83 
MCN-04-132	 23	 3	 1111.36 
MCN-04-133	 24	 3	 1250.27
; 
RUN;

PROC GLM ;
CLASS trtn rep;
MODEL syield = trtn rep;
LSMEANS trtn/PDIFF LINES;
CONTRAST ‘check vs strains’ trtn 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 -20 -20 4 -20 4 -20; 
RUN;

In order to compare the check varieties with the strains, the null hypothesis to be tested 
is that the average effect of strains is same as the average effect of check varieties. The null 
hypothesis H0:  is 
tested against

H1: .
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For testing the hypothesis H0, one needs to perform contrast analysis. The problem of 
contrast analysis has been dealt with in Chapter 3.  However, here we have given the SAS steps 
to perform the contrast analysis. 

	 The output of analysis using SAS is given in Table  2.16.

Table 2.16: Output of analysis using SAS

 ANOVA

Source DF SS MS F-value Prob > F

Model 25 2670291.793 106811.672 10.61 <0.0001

Error 46 463116.156 10067.743

Corrected Total 71 3133407.949

R-square CV Root MSE Yield Mean

0.852 8.612 100.34 1165.06

ANOVA

Source DF SS MS F-value Prob > F

Treatments 23 2514159.289 109311.273 10.86 <0.0001

Blocks 2 156132.504 78066.252     7.75 0.0013

Error 46 463116.156 10067.743

Corrected Total 71 3133407.949

The model with treatment effects and block effects explains about 85 per cent of the total 
variability in the data. The treatment effects are highly significant (p-value < 0.0001) meaning 
thereby that the null hypothesis is rejected. It is interesting to note that the block effects are also 
highly significant (p-value = 0.0013).

The mean and standard deviation of the treatments are given in Table 2.17.

Table 2.17: Treatment wise mean and standard deviation of seed yield

Level of treatment N SYIELD

Mean Standard Deviation

1 3 1423.92 110.44

2 3 1146.09 102.89

3 3 1369.90 157.18

4 3 1188.53 29.14

5 3 1273.43 83.48

6 3 1292.72 17.68

7 3 1061.19 149.30
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8 3 1173.10 93.57

9 3 1142.23 87.66

10 3 1335.17 109.42

11 3 1068.91 52.20

12 3 1068.91 165.48

13 3 984.01 239.22

14 3 1061.19 177.97

15 3 1528.11 100.92

16 3 848.95 166.29

17 3 875.97 70.73

18 3 1273.43 100.92

19 3 1281.15 26.74

20 3 1223.26 30.63

21 3 1265.71 104.40

22 3 679.16 94.28

23 3 1146.09 87.66

24 3 1250.27 46.31

The distribution of observations over replications for each treatment is given in Figure 2.2. 

Figure 2.2: Treatment wise Box plot of seed yield

Similarly, the Figure 2.3 gives the plot of observations in each block. It is quite evident from 
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here that the blocks differ in their effects, i.e. mean square between blocks is high as compared 
to mean square error, a fact supported by the ANOVA as well. 

            
Figure 2.3: Plot of observations in each block

The pairwise comparison of treatment effects is made and is presented in Table 2.18. 
Treatments having at least one letter common are not significantly different in their effects. The 
strain CS-234-2 and coded as MCN-04-124 (treatment 15) is the highest seed yielding strain. 
This strain produces significantly higher seed yield than all other treatments produce except 
treatment numbers 1 and 3, which produce seed yield statistically at par with the produce of 
treatment 15. So this strain may be recommended as the best among the lot. 
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Table 2.18: Treatments in descending order with letter display

Means with the same letter are not significantly different

Duncan Grouping Mean Treatment 
Number

Replication

A 1528.11      15 3

A B 1423.92      1 3

A B C 1369.90      3 3

B C D 1335.17      10 3

B C D 1292.72      6 3

B C D 1281.15      19 3

B C D 1273.43      18 3

B C D 1273.43 5 3

B C D 1265.71 21 3

B C D E 1250.27      24 3

C D E 1223.26      20 3

C D E 1188.53      4 3

F D E 1173.10      8 3

F D E 1146.09 23 3

F D E 1146.09 2 3

F D E 1142.23 9 3

F E 1068.91 11 3

F E 1068.91 12 3

F E 1061.19 14 3

F E 1061.19 7 3

F G 984.01      13 3

G 875.97 17 3

G 848.95      16 3

H 679.16 22 3

From Table 2.18 it is also evident that check variety (Treatment 19: best performing check) 
is significantly different from strains at Treatment 7, 11, 12, 13, 14, 15, 16, 17. Similarly, check 
variety (Treatment 20) is significantly different from strains at Treatment 1, 13, 15, 16, 17. 
Further, check variety (Treatment 24) is significantly different from strains at Treatment 13, 
15, 16, 17. The check variety (Treatment 22) is, however, the lowest yielding and is significantly 
different from all the strains.

The contrast analysis for testing the null hypothesis that the average effect of strains is same 
as the average effect of check varieties was done and the result is given in Table 2.19.
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Table 2.19: Result of contrast analysis

Contrast DF Type III SS MS F-value Prob > F

Check vs Strains 1 46126.736 46126.736 4.58 0.0377

It may be noted that the check varieties differ significantly from the strains (p-value = 
0.0377).

The pairwise treatment comparisons can also be presented without writing the treatments 
in descending order of the treatments LS Mean values. The results are given in Table 2.20.

Table 2.20: Treatments with letter display

Treatment 
Name

LS Mean of Syield Rank of Treatment Treatment 
Name

LS Mean of Syield Rank of 
Treatment

1 1423.92A,B                2 13 984.01G,H                21

2 1146.09E,F,G               15 14 1061.19F,G                19

3 1369.90A,B,C               3 15 1528.11A                 1

4 1188.53D,E,F               12 16 848.95H                 23

5 1273.43B,C,D,E              7 17 875.97H                 22

6 1292.72B,C,D,E              5 18 1273.43B,C,D,E              8

7 1061.19F,G                20 19 1281.15B,C,D,E              6

8 1173.10D,E,F               13 20 1223.26C,D,E,F              11

9 1142.23E,F,G               16 21 1265.71B,C,D,E              9

10 1335.17B,C,D               4 22 679.16I                 24

11 1068.91F,G                17 23 1146.09E,F,G               14

12 1068.91F,G                18 24 1250.27C,D,E               10

General Mean 1165.06

 81.927

LSD at 5% 164.91

It may be mentioned here that the SAS commands given in Section 2.3.4 do not compute 
LSD at 5%. This may, therefore, be computed by using the formula given in Section 2.3.1. One 
may also compute it by adding a SAS command “MEANS trtn/LSD;”. In Table 2.20, any two 
treatments whose LS Means have at least one letter common are not statistically significant 
using LSD. Therefore, it follows that treatment 15 is the one that produces highest seed yield 
and is not significantly different from treatments 1 and 3. It is significantly different from all the 
remaining treatments. Similarly, treatment 22, a control variety, produces the lowest seed yield 
and has in fact statistically significant lower seed yield from all other strains. The other three 
control varieties (Treatments 19, 20 and 24) are statistically at par with each other.
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2.3.5   Analysis of RCB design using R
R code
d2=read.table(“rbd.txt”,header=TRUE)
attach(d2)
names(d2)
#Treatment means and standard deviations
aggregate(syield, by=list(trt), mean)
aggregate(syield, by=list(trt), sd)
#Treatment wise box plot of yield 
boxplot(syield~trtn)
#ANOVA
trtn=factor(trtn)
rep=factor(rep)
aov.out=aov(syield~trtn+rep)
summary(aov.out)
library(lsmeans)
lsm <- lsmeans(aov.out, “trtn”)
contrast(lsm, list(con1 = c(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,-20,-20,4,-20,4,-20)))
#Tukey’s honest significant difference test
TukeyHSD(rbdout)
#LSD
library(agricolae)
lsd.result <- LSD.test(aov.out,“trtn”)
lsd.result
detach(d2)

2.4   Latin square design
A CRD assumes that there is no variability in the experimental units. The only source of 

variability in the data is the treatments and the remaining variability is the error. On the other 
hand, an RCB design assumes that other than the treatments, there is one source of variability 
in the experimental units and this variability in the experimental units is controlled by forming 
blocks of homogeneous experimental units. In this case, the sources of variability in the data are 
the treatments and the blocks (or replications) and the remaining part of the variability is the 
experimental error. This section is devoted to designs which control two sources of variability in 
the experimental units. When there are two sources of variability in the experimental units, we 
need to form blocks in two directions, perpendicular to each other. The two blocking systems 
are cross classified as rows and columns and the intersection of rows and columns is a cell or 
the experimental unit. Following on the example of four grazing systems and 16 experimental 
units (animals), one source of variability in the animals could be the initial body weight. The 
other source of variability could be their physiological behavior. For instance, the calving age 
or the number of lactations could be another source of variability in the experimental material. 
The physiological behavior and the initial body weights are the two sources of variability in 
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the animals and need to be controlled by proper designing of experiment. In the insecticide 
field trial where the insect migration has a predictable direction that is perpendicular to the 
dominant fertility gradient of the experimental field, there are two sources of variability in the 
experimental units. In order to control two-way heterogeneity in the experimental material, we 
use designs known as Latin Square obtained from Latin square arrangement. The following are 
examples of 4×4 and 5×5 Latin square designs:  

        

In such designs two restrictions are imposed by forming blocks in two directions, row-wise 
and column-wise. A Latin square arrangement is an arrangement of v Latin letters in a v×v 
square in such a way that each row and each column has all the v Latin letters appearing exactly 
once. A design based upon a Latin square arrangement is called a Latin square design. Ignoring 
rows and considering columns as blocks gives an RCB design. Similarly, ignoring columns and 
treating rows as blocks gives an RCB design. So a Latin square design is an RCB design in rows 
as well as columns. Treatments are allocated in such a way that every treatment occurs once and 
only once in each row and each column. In this design, the replication number of treatments is 
same as the number of treatments.

Latin squares have been classified as reduced and standard. The Latin squares have also 
been classified as squares with normalized or standard and semi-standard form, whereby 
reduced Latin square is synonym to normalized or standard form and standard Latin square 
is synonym to semi-standard form. Latin square is considered reduced if its first row and first 
column contains elements in the numerical (1,2,…,v) or lexicographic order (A,B,C,…).  On 
the other hand, it is considered standard if only its first row contains elements in the natural 
order. In the examples of Latin squares given earlier, the first two Latin squares of order 4 and 
5, respectively are the reduced squares (or Latin squares in standard form) while the third Lain 
square of order 4 is in standard (or semi-standard) form.

The randomization of the v treatments over the v2 experimental units arranged in a v×v 
square is difficult. The design obtained after randomization should be a Latin square design. In 
actual field arrangement during experimentation, first we select a v×v reduced or normalized or 
standard Latin square randomly from the Fisher and Yates Tables. Having selected the square, 
column-wise randomization is carried out first, followed by row-wise randomization. Of course, 
the treatments labels (or the Latin letters) are randomized separately before starting the actual 
randomization in the design. 
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The linear model in this case is

Expected response = general mean + effect of treatments + effect due to experimental units 

Since there are two sources of variation in the experimental material, the model can be rewritten 
as 

Expected response = general mean + effect of treatments+ effect of rows + effect of columns 

This can also be written as:

Response = general mean + treatments effect + rows effect + columns effect + error,

where the errors are distributed independently as normal variate with zero mean and constant 
variance . The partitioning of the total variability in this case is 

Source of Variation

Due to model

Error

Total

The component “due to model” can be split as

Source of Variation

Due to model

                     Due to Treatments

                     Due to Rows

                     Due to Columns

2.4.1   Analysis of Latin square design
The v2 observations generated from a Latin square design of order v are represented by the 

following linear, additive, fixed effects model:

 ;  ,

where  is the observation pertaining to the ith treatment appearing in the (j, k)th cell,  μ 
is the grand mean, τi is the ith treatment effect, βj is the effect of the jth row, γk is the effect of 
the kth column, and  is the random error associated with , assumed to be mutually 
independent and distributed normally with mean zero and common variance . 

Let the treatment totals, rows totals, column totals be denoted as, respectively,

, ; sum of observations over cells containing treatment i;

 sum of observations in the jth row;   
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; sum of observations in the kth column.

The grand total is, 

The following formulae can be employed for analysis of variance:

 Correction factor (CF) 

Total sum of squares 

Sum of Squares due to treatments (SST) = 

Sum of Squares due to rows (SSR) = 

Sum of Squares due to columns (SSC) = 

Error sum of squares (SSE)

= Total SS – Row SS – Column SS – Treatment SS

If the calculated value of F is greater than the table value of  at α level of 
significance and (v ‒ 1),(v ‒ 1)(v ‒ 2) degrees of freedom, then the null hypothesis  is rejected 
at α level of significance and it can be concluded that the treatment effects are significantly 
different from one another.

It may be seen here that an unbiased estimator of  is .

Further, all the elementary treatment contrasts are estimable through the design. The Best 
Linear Unbiased Estimator (BLUE) of any treatment contrast  

. 
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Table 2.21: ANOVA table in Latin square design

Source DF SS MS F

Treatments v – 1

 

Rows v – 1

Columns v – 1

Error (v-1) (v-2)

Total v2 – 1

The variance of  is .  The estimated standard error of the difference between the 

estimated ith  and lth treatment effects is .

The Least Significant Difference (LSD) is given as .

Here  denotes the value of Student’s t at  level of significance and error degrees 

of freedom. The treatment means are given by . The pairwise comparison of 

treatment effects can be made by comparing the difference between any two treatment means 
with the LSD. Any two treatment effects are said to differ significantly if the difference of their 
means is larger than the LSD.  

2.4.2   Example 3
An experiment was conducted at Agricultural Research Station, Kopurgaon, Maharashtra 

on Cotton using a Latin Square Design to study the effects of foliar application of urea in 
combination with insecticidal sprays on the cotton yield. The 6 treatments were { : Control 
(i.e. no N and no insecticides), : 100kg N/ha applied as urea (half at final thinning and half at 
flowering as top dressing), : 100kg N/ha applied as urea (80 kg N/ha in 4 equal split doses as 
spray and 20 kg N/ha at final thinning), : 100 kg. N/ha applied as CAN (half at final thinning 
and half at flowering as top dressing), : + six insecticidal sprays, :  + six insecticidal 
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sprays}. There were 6 replications, and the data of Cotton yield in kg per plot is given in Table 
2.22.

Table 2.22: Cotton yield data (kg/plot)

T3  3.10 T6  5.95 T1  1.75 T5  6.40 T2  3.85 T4  5.30
T2  4.80 T1  2.70 T3  3.30 T6  5.95 T4  3.70 T5  5.40
T1  3.00 T2  2.95 T5  6.70 T4  5.95 T6  7.75 T3  7.10
T5  6.40  T4  5.80 T2  3.80 T3  6.55 T1  4.80 T6  9.40
T6  5.20 T3  4.85 T4  6.60 T2  4.60 T5  7.00 T1  5.00 
T4  4.25 T5  6.65 T6  9.30 T1  4.95 T3  9.30 T2  8.40

In the sequence, the data are analyzed (a) to identify the best treatment, (b) to test whether 
or not the average effect of T3  (100kg N/ha applied as urea) and T4  (100 kg N/ha) is same as the 
average effect of T5  (T2  + six insecticidal sprays) and T6  (T4  +six insecticidal sprays).

2.4.3   Analysis of data
We compute the following totals in Table 2.23.

Table 2.23: Treatment, row and column totals 

Treatments Totals (Ti)                                                           Rows Totals (Rj)                             Columns Totals (Ck)

Grand Total, 

Correction factor (CF) 

Treatments SS = 
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Rows SS = 

                    

Columns SS = 
 

                     

Total 
  

                    

Error SS = Total SS – Treatments SS – Rows SS – Columns SS

                   

We now form the Analysis of Variance Table 2.24.

Table 2.24: ANOVA table for cotton yield data 

Source DF SS MS F-value Prob > F

Treatments 5 47.211 9.442 7.53 0.0004

Rows 5 34.442 6.883 5.49 0.0024

Columns 5 21.586 4.317 3.44 0.0210

Error 20 25.095 1.255  

Corrected Total 35 128.333   

From Table 2.24, one can easily see that the treatment effects are highly significant (p-value 
= 0.0004) meaning thereby that the null hypothesis of equal treatment effects is rejected. The 
treatments, therefore, influence the cotton yield. The rows and columns effects are also highly 
significant with respective p-values as 0.0024 and 0.0210. This is an evidence to the fact that the 
formation of rows and columns have been effective. 

2.4.4   Analysis using SAS 
The design is a LSD with v = 6 treatments and n = 36 observations. In this design the 

number of rows is same as the number of columns, which in turn is same as the number of 
treatments. So in this design the replication number of treatments is equal to the number of 
treatments.  The data has been analyzed using SAS. The commands and the data preparation are 
given in the sequel.

DATA lsd;
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INPUT row col trt cyield;
/*the first column ‘row’ denotes the row number; the second column ‘col’ denotes the column 
number; the third column “trt’ represents the treatment number and the last column ‘cyield’ 
represents the cotton yield*/
CARDS;
1  1  3  3.10
1  2  6  5.95
1  3  1  1.75
1  4  5  6.40
1  5  2  3.85
1  6  4  5.30
2  1  2  4.80
2  2  1  2.70
2  3  3  3.30
2  4  6  5.95
2  5  4  3.70
2  6  5  5.40
3  1  1  3.00
3  2  2  2.95
3  3  5  6.70
3  4  4  5.95
3  5  6  7.75
3  6  3  7.10
4  1  5  6.40
4  2  4  5.80
4  3  2  3.80
4  4  3  6.55
4  5  1  4.80
4  6  6  9.40
5  1  6  5.20
5  2  3  4.85
5  3  4  6.60
5  4  2  4.60
5  5  5  7.00
5  6  1  5.00
6  1  4  4.25
6  2  5  6.65
6  3  6  9.30
6  4  1  4.95
6  5  3  9.30
6  6  2  8.40
;



58

Statistical Analysis of Agricultural Experiments

PROC GLM data = lsd;
CLASS row col trt;
MODEL cyield = trt row col;
MEANS trt/tukey;
CONTRAST ‘T3 T4 vs T5 T6’ trt 0 0 1 1 -1 -1;
RUN;

2.4.5   Output of analysis
The results obtained from the analysis of data are described in the sequel.

Table 2.25: Output using SAS

ANOVA

Source DF SS MS F Value Prob > F

Model 15 103.238 6.882 5.49 0.0003

Error 20 25.095 1.255

Corrected Total 35 128.333

R-Square CV Root MSE cyield Mean

0.804 20.315 1.120 5.514

ANOVA

Source DF Type III SS MS F Value Prob > F

Treatment 5 47.211 9.442 7.53 0.0004

Row 5 34.442 6.888 5.49 0.0024

Column 5 21.586 4.317 3.44 0.0210

Error 20 25.095 1.255

Corrected Total 35 128.33

It is worthwhile noting that the model with treatments effects, row effects and column 
effects explains about 80 per cent of the total variability in the data. As mentioned earlier also, 
this analysis of variance table divulges that the treatment effects are highly significant (p-value = 
0.0004) meaning thereby that the null hypothesis of equal treatment effects is rejected. The rows 
and columns effects are also highly significant with respective p-values as 0.0024 and 0.0210. So 
running this experiment as a row-column design is justified and it is very apparent that there 
were two sources of variability in the experimental units.

The distribution of observations for each treatment is given Figure in 2.4. It is easily 
seen from the Figure also that the distribution of observations is very different for different 
treatments. The Figure clearly reveals that treatment number 3 is most variable and treatment 
number 5 is least variable.
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Figure 2.4: Treatment wise Box plot of seed yield

A pairwise comparison of treatment effects is made and the results are summarized in 
Table 2.26. Treatment 6 is the maximum yielding and is significantly different from treatment 1, 
which is the lowest yielding. Treatment 6 is, however, statistically at par with treatments 5, 3 and 
4. Similarly, treatment 1 is statistically at par with treatments 2, 4 and 3. On the basis of yield, 
treatment 6 may be recommended as the best for cotton yield.

Table 2.26: Treatments in descending order with letter display

Means with the same letter are not significantly different

Tukey Grouping Mean N Treatment

A 7.258 6 6

B A 6.425 6 5

B A C 5.700 6 3

B A C 5.267 6 4

B C 4.733 6 2
C 3.700 6 1

A comparison of treatments 3 and 4 with treatments 5 and 6 (null hypothesis that the 
average effect of treatments 3 and 4 is the same as the average effect of treatments 5 and 6) 
reveals that the difference is significant (p-value = 0.0076).

Table 2.27: Contrast analysis result

Contrast DF Contrast SS Mean Square F Value Prob > F

3 4 vs 5 6 1 11.070 11.070 8.82 0.0076
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The pairwise treatment comparisons can also be made without writing the treatments in 
descending order of the treatments LS Mean values. The results are given in Table 2.28.

Table 2.28: Treatments with letter display

Treatment 
Name Treatment Description Mean of ‘cyield’ Rank of 

Treatment
1 Control 3.70C 6

2 100kg N/ha applied as urea (half at final thinning and half at 
flowering as top dressing) 4.73B,C 5

3 100kg N/ha applied as urea (80 kg N/ha in 4 equal split doses 
as spray and 20 kg N/ha at final thinning) 5.70A,B,C 3

4 100 kg. N/ha applied as CAN (half at final thinning and half 
at flowering as top dressing) 5.27A,B,C 4

5 T5 : T2  + six insecticidal sprays 6.43A,B 2
6 T4 + six insecticidal sprays 7.26A 1

General Mean 5.51

0.647

Tukey HSD at 5% 2.033

In Table 2.28, any two treatments whose Means have at least one letter common are not 
statistically significant using Fisher’s Least Square Difference. Therefore, it follows that treatment 
1 is significantly different from treatments 3, 4, 5 and 6, but is not significantly different from 
treatment 2. Similarly, treatment 6 is significantly different from treatments 1, 2, 3 and 4, but 
is not significantly different from treatment 5. Also treatment 2 is significantly different from 
treatments 5 and 6. Following the Table 2.28, it is also evident that treatment 3 is significantly 
different from treatments 1 and 6. Treatment 4, however, is not significantly different from 
treatments 2, 3 and 5.

Further, 100 kg. N/ha applied as CAN (half at final thinning and half at flowering as top 
dressing) along with six insecticidal sprays produces the maximum yield, though it is at par 
with 100kg N/ha applied as urea (half at final thinning and half at flowering as top dressing) 
coupled with six insecticidal sprays. It may be worthwhile mentioning here that all comparisons 
are made at 5 per cent level of significance.

2.4.6   Analysis using R
R code
d3=read.table(“lsd.txt”,header=TRUE)
attach(d3)
names(d3)
#Treatment means and standard deviations
aggregate(cyield, by=list(trt), mean)
aggregate(cyield, by=list(trt), sd)
#Treatment wise box plot of yield 
boxplot(cyield~trt)
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#set the contrast coefficients for testing average of treatments 3 and 4 with average of treatments 
5 and 6
trt=factor(trt)
row=factor(row)
col=factor(col)
aov.out=aov(cyield~trt+row+col)
summary(aov.out)
library(lsmeans)
lsm <- lsmeans(aov.out, “trt”)
contrast(lsm, list(con1 = c(0,0,1,1,-1,-1)))
#Tukey’s honest significant diffence test
TukeyHSD(aov.out,“trt”)
#LSD
library(agricolae)
lsd.result <- LSD.test(aov.out,“trt”)
lsd.result
detach(d3)

2.5   Conclusion
This Chapter has been devoted to introducing the basic designs like CRD, RCB design and 

Latin square design. SAS has been used for the analysis of data. The PROC GLM has been the 
major procedure used for analysis of data. The R code for the analysis of data has also been 
given.

It has been observed that in many experiments conducted as an RCB design (very few 
experiments are conducted as Latin square design), the block mean square is not high as 
compared to mean square error. In other words, block mean square is smaller than the error 
mean square. This is not a healthy situation. The basic purpose of forming blocks (or two 
systems of blocks as in Latin square design) is that there was variability in the experimental 
units. It is expected that the between blocks variability would be large and the within block 
variability would be small. But if the block effects are not significant, it means that substantial 
part of variability arising in the experimental units has not been accounted for by forming 
blocks. Obviously then the CV would also be large. 

It may be re-emphasized that the variability in the experimental units is a very disturbing 
factor and it needs to be taken care of properly so as to enable a proper conduct of experiment.

For the benefit of the experimenters, a utility has been created at the “Design Resources 
Server” hosted at www.iasri.res.in/design to generate a randomized layout of these basic designs. 
There is also a provision for generating a data entry sheet based on the randomized plan either 
in TXT (Text file) or CSV (Comma Separated Values) formats.  CSV/TXT files can be opened 
using any text editor or in MS®-Excel®. The experimenter may use “Datasheet” hyperlink for 
downloading / opening generated datasheet. Besides randomized layout, an outline of ANOVA 
is also shown for the benefit of the experimenters. The users may visit http://iasri.res.in/design/
Basic Designs/basicdesign.aspx and take advantage of this utility.
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Contrast Analysis

Contrast Analysis

3.1   Introduction
The main technique adopted for the analysis and interpretation of the data collected from 

an experiment is the analysis of variance (ANOVA). This technique essentially consists of 
partitioning the total variation in an experimental data into components ascribable to different 
sources of variation due to the controlled factors and error. A standard analysis of variance 
provides an F-test, which is called an omnibus test, because it reflects all possible differences 
between the means of the groups analyzed by the ANOVA. The hypothesis generally tested 
using the F-statistic in analysis of variance is that all the treatment effects are same against 
an alternative that at least one treatment effect is different from others. The objective of an 
experiment is often much more specific than merely determining whether or not all of the 
treatment effects are same and are expected to  give rise to similar responses. Precise conclusions 
can be obtained from contrast analysis because a contrast expresses a specific question about the 
pattern of results of an ANOVA.

When performing a contrast analysis we need to distinguish whether the contrasts are 
planned or post hoc. Planned or a priori contrasts are selected before running the experiment. The 
design is chosen as per the planned contrasts of interest. In general, they reflect the hypotheses 
the experimenter wanted to test and there are usually few of them. Post hoc or a posteriori 
(after the fact) contrasts are decided after the experiment has been run. The goal of a posteriori 
contrasts is to ensure that unexpected results, if any, are reliable.

3.1.1   Examples  
Generally, all possible pairwise treatment comparisons need to be made. Similarly it may 

be of interest to test if the average effect of subgroup of treatments is equal to the average effect 
of another subgroup of treatments. Some examples are in order. A medical experimenter is 
concerned with the efficacy of each of several new drugs as compared to a standard drug. A 
nutrition experiment may be run to compare high fiber diets with low fiber diets. A plant breeder 
may be interested in comparing exotic collections with indigenous cultivars. An agronomist 
may be interested in comparing the effects of biofertilisers and chemical fertilizers. A water 
technologist may be interested in studying the effect of nitrogen with farmyard manure (FYM) 
over the nitrogen levels without FYM in presence of irrigation. A forestry scientist may be 
interested in comparing the various tree species in terms of timber volume, the tree species 
being the ones good from fuel point of view, fodder point of view or timber volume point of 
view.

3
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In order to answer these types of questions, one has to look beyond analysis of variance. 
Contrast analysis is an answer to these types of questions. As a matter of fact, almost all the 
questions of the experimenters can be answered through contrast analysis. The inference 
problem to be solved is translated in the form of a contrast and then the contrast analysis is 
done to answer the questions. Before we describe the contrast analysis, we define a contrast.

3.2   Contrasts
Let  denote the v parameters (or treatment effects).  Let 

 

be a linear function  of  . Here  are arbitrary real numbers such that 

 .

Such a function B is called a contrast or a treatment contrast and  are known as 
the coefficients of the contrast. A contrast is not unique because the choice of  
is arbitrary. For example, if there are three treatment effects, then   is a contrast 
because the coefficients of  and   are 1, 1 and -2, which satisfy 1 + 1 - 2 = 0. Similarly, 
another example of contrast is  , yet another is .

Let 

 

be another contrast. As above, once again  are arbitrary real numbers and 
 

When performing a planned analysis involving several contrasts, we need to evaluate if these 
contrasts are mutually orthogonal or not. Two contrasts, B and C, are orthogonal contrasts if and 
only if 	

	  . 

For example, the contrasts  and  are orthogonal because the coefficients  
of the treatments in these two contrasts are 1, ‒1, 0 and 1, 1 and -2 which satisfy

. One can obtain a large number of orthogonal contrasts. If there is a set 
of contrasts such that every pair of contrasts in the set is orthogonal to each other, then the set 
is said to be a set of mutually orthogonal contrasts. For v parameters (or treatment effects), the 
maximum number of mutually orthogonal contrasts is v – 1. In other words, the cardinality of 
the complete set of mutually orthogonal contrasts is v – 1.  But the total number of contrasts can 
be infinite. They need not be mutually orthogonal contrasts. 

Let  be the vectors of coefficients of p parametric (treatment) contrasts. 
This set of p contrasts is said to be linearly independent if and only if the only relationship 
among these contrasts  is , , . . . , , . . . , , 
where  are arbitrary scalar constants.
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It may be noted here that orthogonality implies linear independence; the converse, however, 
is not true.  

Consider that there are v = 3 treatments. The set of contrasts  and  is linearly 
independent but not orthogonal. The two vectors of coefficients of the contrasts in this case are 

 and . Further the two contrasts  and   are orthogonal. 
These contrasts are also linearly independent. The two vectors of coefficients of the contrasts in 

this case are  and .    

One way of writing the coefficients of the complete set of mutually orthogonal contrasts 
with v parameters is the following:

...

1 – 1 0 0 0 ... 0 0 

1 1 – 2 0 0 ... 0 0 

1 1 1 – 3 0 ... 0 0 

... ... ... ... ... ... ... ...

1 1 1 1 1 ... – (v – 2) 0 

1 1 1 1 1 ... 1 – (v – 1)

The matrix above gives the coefficients of the mutually orthogonal contrasts. The  
actual contrasts are ; ;   ; . . . ; 
; . This way of writing the complete set of mutually orthogonal 
contrasts gives complete set of linearly independent contrasts.

Remark 3.1 It may be noted that mutually orthogonal contrasts provide a technique for 
partitioning ANOVA sum of squares due to treatments into sum of squares due to single 
degrees of freedom contrasts or any contrast among subsets of treatments. If B and C are any 
two orthogonal treatment contrasts, then the tests for H0: B = 0 and H0: C = 0 are independent 
of one another. In other words, the results of one test (H0: B = 0) have no effect on the result of 
the other test (H0: C = 0). Further, if B1, B2, . . . , Bv‒1 are mutually orthogonal contrasts obtained 
from v parameters (or treatment effects), the treatment sum of squares can be partitioned into 
SStreat = SSB1 + SSB2 + . . . + SSBv‒1. This, however, holds only for orthogonal, equi-replicated 
designs. For non-orthogonal designs, this kind of partitioning, though possible, is difficult as it 
would involve some weighing factors. The description of this is beyond the scope of this book. 
However, the sum of squares for the various subsets of treatments can be obtained in the usual 
way and the testing of hypothesis can also be done in the usual way. 

The set of mutually orthogonal contrasts is not unique. There can be several sets of mutually 
orthogonal contrasts. For example, if v = 5, then the coefficients of the complete set of mutually 
orthogonal contrasts could be
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    or       or  

3.2.1   Contrasts in practice
Consider an experiment being conducted with 7 treatments (varieties of maize). For making 

comparisons of the 7 treatments, i.e. for testing H0: τ1 = τ2 = . . . = τi = . . . = τ7, we can write 6 
degrees of freedom as 6 mutually orthogonal contrasts with coefficient matrix as

For making pairwise comparisons of varieties, we may have null hypothesis as H0: τ1 = τ2 
or H0: τ1 = τ3, or H0:  τ3 = τ4 or  H0: τ6 = τ7, etc.  The coefficients of contrasts for testing these 
problems could be 

H0: τ1 = τ2 1 –1 0 0 0 0 0 

H0: τ1 = τ3 1 0 –1 0 0 0 0 

H0:  τ3 = τ4 0 0 1 –1 0 0 0 

H0: τ6 = τ7 0 0 0 0 0 1 –1 

Now suppose that the 7 treatments are divided into two disjoint groups, first four are test 
varieties and the last three are control varieties (local variety, national variety, disease resistant 
variety). The interest of the experimenter is to make comparisons among tests; among controls; 
and tests versus controls. This can be done by defining contrasts suitably. For comparing the 
tests (three degrees of freedom), the null hypothesis is H0: τ1 = τ2 = τ3 = τ4. The coefficient matrix 
of the three mutually orthogonal contrasts for testing this null hypothesis is  
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Similarly, for comparisons among controls (two degrees of freedom), the null hypothesis 
is H0: τ5 = τ6 = τ7. The coefficient matrix of mutually orthogonal contrasts for testing this null 
hypothesis is 

Finally, for making tests versus controls comparisons (one degree of freedom), we have H0: 
(τ1 + τ2 + τ3 + τ4)/4 = (τ5 + τ6 + τ7)/3.  The coefficients of the treatment effects for this hypothesis 
testing are 

1/4 1/4 1/4 1/4 –1/3 –1/3 –1/3 

The inference problem on a contrast is invariant with respect to the choice of coefficients. 
In other words, the choice of a contrast will not change the inference about the hypothesis to 
be tested. This is so because the sum of squares due to the contrasts would remain unchanged 
with a different choice of coefficients of the contrast. We can also choose the coefficients of the 
treatment effects for testing this null hypothesis as 

3 3 3 3 –4 –4 –4 

or

6 6 6 6 –8 –8 –8 

3.2.2   More about contrasts
Orthonormal contrasts are orthogonal contrasts which satisfy the additional condition 

that, for each contrast, the sum of squares of the coefficients add up to one. Suppose that 
 is a contrast, meaning thereby that  . Let 

. Then 

is a normalized contrast.  Here 

, 
.
. Obviously, 

 
and 

.

 For example with three treatment effects,   is a contrast. The coefficients of 
treatment effects in this contrast are 1, 1, ‒2 and sum of squares of the coefficients is 6. However, 

  is a normalized contrast because the sum of squares of the coefficients in 

this contrast is one. 
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A set of normalized treatment contrasts, which are pairwise orthogonal, is called a set of 
orthonormal contrasts. The cardinality of a set of orthonormal contrasts is v - 1.  For example, 
if v = 5, then the coefficients of the complete set of orthonormal contrasts could be

There are some advantages of using normalized and orthonormal contrasts. But this 
is beyond the scope of this book. For our purpose, it would suffice to understand mutually 
orthogonal contrasts.

3.2.3   Testing the hypothesis related to contrasts
Generally speaking, the testing of hypothesis pertaining to contrasts of interest is a difficult 

problem. However, using a good statistical package like SAS or R, one can easily test the 
hypothesis related to contrasts of interest. If the design adopted is a completely randomized 
design, or a randomized complete block design or a Latin square design, or a factorial experiment 
conducted in a completely randomized design, or a randomized complete block design or a 
Latin square design, then obtaining the sum of squares due to contrast (or the hypothesis related 
to contrast) is relatively easy. Suppose the experimenter wishes to test a null hypothesis about a 
contrast  using any of the designs just described. The null hypothesis 

is H0:  The contrast sum of squares is obtained as . Here 

 is the mean of the ith treatment obtained from the design and ri is the replication of the ith 
treatment,  If the design is equi-replicated, i.e., , 

then the contrast sum of squares is given by 

 

.

However, for other designs, which are not balanced (or non-orthogonal), like incomplete 
block designs, nested block designs, incomplete row column designs, etc., the computation of 
contrast sum of squares is quite involved. General procedure is described in the sequel.

Suppose that the linear model (pertaining to the design used for generation of data) is 
expressed as  . Here y is an n-component vector 
of observations, X is an n × p design matrix (depends upon the design used for generation of 
data), θ is a p-component vector of parameters and e is an n-component vector of random 
errors. The vector θ contains v-component vector of treatment effects τ and (p – v)-component 
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vector β of nuisance parameters.

Suppose that there are s(<v) testable hypothesis (a hypothesis that can be expressed in terms 
of estimable functions)

. 

.

.

.

A hypothesis is said to be testable if it is estimable through the design. This set of 

s testable hypotheses can be rewritten in matrix notations as: . Here , 

 and . If the s rows of   are linearly independent, 

then for testing this hypothesis the test statistic is 

, 

which under the null hypothesis follows a Snedecor’s F distribution with s and n – r degrees of 

freedom, where r is the rank of X and n is the total number of observations. If the s rows of   

are not linearly independent then s may replaced by s*, the number of linearly independent rows 

of . Here  , ,  

= Error sum of squares in the ANOVA.  Further, (n – r) is the error degrees of freedom in the 

ANOVA.

When m = 0, the testable hypothesis is , and then Q becomes 

  .

The test statistic once again follows Snedecor’s F distribution with s and n – r degrees of freedom. 

As mentioned earlier in this Chapter, contrast analysis is a very important technique 
of data analysis and using this technique almost all the questions of the experimenters can 
be answered. What at all needs to be done is to convert the problem to a contrast or a set of 
contrasts. Once this is done, the analysis follows immediately. Some practical situations have 
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been described above through examples. It has been demonstrated as to how the problems can 
be translated into contrasts. In the sequel some examples and the analysis is described through 
actual experimental data.

3.3   Example 1
In order to select suitable tree species for Fuel, Fodder and Timber an experiment was 

conducted in a randomized complete block design with ten different tree species and four 
replications.  The plant height was recorded in centimeter (cm).  The details of the experiment 
are given in Table 3.1.

Table 3.1: Plant height (cms)  (Place - Kanpur)

Tree species Number Tree Species Spacing Blocks (or Replications)

1 2 3 4

1 A. Indica 4×4 144.44 145.11 104.00 105.44

2 D. Sisso 4×2 113.50 118.61 118.61 123.00

3 A. Procer 4×2 60.88 90.94 80.33 92.00

4 A. Nilotic 4×2 163.44 158.55 158.88 153.11

5 T. Arjuna 4×2 110.11 116.00 119.66 103.22

6 L. Loucoc 4×1 260.05 102.27 256.22 217.80

7 M. Alba 4×2 114.00 115.16 114.88 106.33

8 C. Siamia 4×2 91.94 58.16 76.83 79.50

9 E. Hybrid 4×1 156.11 177.97 148.22 183.17

10 A. Catech 4×2 80.20 108.05 45.18 79.55

In the sequence the data are analyzed using analysis of variance for a two way classified data 
and then comparisons are made within and between different groups of tree species.

3.3.1   Procedure and Calculations

In this Example, v = 10, b = 4. We compute the following totals in Table 3.2.

Table 3.2: Treatment and block totals

Treatment Total Treatment mean 

= 144.44 +…+ 105.44 = 498.99  = 498.99/4 = 124.748

 = 112.50 + … + 123.00 = 473.72  = 473.72/4 = 118.430

  = 60.88 + … + 92.00 = 324.15  = 324.15/4 = 81.038

  = 163.44 + … + 153.11 = 633.98  = 633.98/4 = 158.495
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  = 110.11 + … + 103.22 = 448.99  = 448.99/4 = 112.248

  = 260.05 + … +217.8 = 836.34  = 836.34/4 = 209.085

  = 114.00 + … + 106.33 = 450.37  = 450.37/4 = 112.593

  = 91.94 + … + 79.50 = 306.43  = 306.43/4 = 76.608

  = 156.11 + … + 183.17 = 665.47  = 665.47/4 = 166.368

  = 80.20 + … + 79.55 = 312.98  = 312.98/4 = 78.245

Block Total (Bj) Block Mean  

 = 144.44 + … + 80.20 = 1294.67  = 1294.67/10 = 129.467

 = 145.11 + … + 108.05 = 1190.82  = 1190.82/10 = 119.082

 = 104.00 + … + 45.18 = 1222.81  = 1222.81/10 = 122.281

 = 105.44 + … + 79.55 = 1243.12  = 1243.12/10 = 124.312

Grand Total, .

Correction Factor, CF =  = (4951.42)2/40 = 612914.00

Treatments (Trees) SS = 

 =  

Blocks (or Replications) SS = 

.

Total SS = 

.
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Error SS = Total SS – Treatments SS – Blocks SS = 89101.42 – 66836.35 – 569.43 = 21695.262.

We now form the following Analysis of Variance Table 3.3.

Table 3.3: ANOVA table

Source DF SS MS F-value Prob > F

Tree Species 9 66836.355 7426.262 9.24         <0.0001

Blocks 3 569.431 189.810 0.24            0.8703

Error 27 21695.262 803.528

Corrected Total 39 89101.047  

The least significant difference (LSD) between any two treatment means for testing the null 

hypothesis that two treatment effects are equal, i.e.,  

= = = 41.09

The analysis of variance Table suggests that the treatment effects are highly significant 
(p-value < 0.0001), but the block effects are not significant or the block mean squares is small 
as compared to error mean square. On the basis of the LSD we prepare Table 3.4 giving the 
significance of the difference between two treatments effects:

Table 3.4: Treatments grouping with letter display 

Mean Tree No. (Treatment)

A 209.085 6

B 166.368 9

C B 158.495 4

D C 124.748 1

E D C 118.430 2

F E D 112.593 7

F E D 112.248 5

F E 81.038 3

F E 78.245 10

F 76.608 8

Treatments with the same letter are not significantly different from each other. It, therefore, 
follows from the Table that treatment 6 is significantly different from all other treatments. 
Thus, the tree species L. Loucoc is the best so far as plant height is concerned. Treatment 9 (E. 
Hybrid) is not significantly different from treatment 4 (A. Nilotica), but is significantly different 
from all other treatments.  Further, treatment 4 (A. Nilotica) is not significantly different from 
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treatments 1  (A. Indica) and 2 (D. Sisso), but is significantly different from all other treatments. 
Likewise we can draw conclusions about the pairwise treatment comparisons from all other 
alphabets. Tree species C. Siamia (Species 8) records the lowest height.

Suppose now that tree species numbers 1, 2, 3, 4, 10 are useful for fuel, fodder and timber 
and tree species numbers 5, 6, 7, 8, 9 are useful for fuel and fodder only. The interest of the 
experimenter is to test a null hypothesis that (i) the average effect of trees in the two groups is 
same. The null hypothesis can be formulated as 

H01: , or

H01: .

Similarly, suppose that the experimenter is also interested in testing the following null 
hypotheses: 

(ii) the average effect of tree species numbers 2, 3, . . . , 10 is same as that of tree species number 1; 
(iii) the average effect of tree species numbers 1, 2, 3, 4 is same as that of tree species number 9; 
(iv) the average effect of tree species numbers 1, 2, 3, 4 is same as that of tree species number 10; 
(v) the average effect of tree species numbers 5, 6, 7, 8 is same as that of tree species number 9; 
(vi) the average effect of tree species numbers 5, 6, 7, 8 is same as that of tree species number 10. 

We can formulate the hypotheses as:

The alternative hypothesis in all the cases is that the parametric contrast is not equal to zero. 
We have Table 3.5 for testing these null hypotheses. 

Table 3.5: Testing significance of the contrasts

Hypothesis DF Contrast  SS MS F Prob > F

H01 1 5377.297 5377.297 6.69 0.0154

H02 1 4.113 4.113 0.01 0.9435

H03 1 6680.244 6680.244 8.31 0.0076

H04 1 5761.655 5761.655 7.17 0.0125

H05 1 4801.126 4801.126 5.98 0.0213

H06 1 7805.398 7805.398 9.71 0.0043
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It is evident from Table 3.5 that the average effect of tree species numbers 2, 3, . . . , 10 is 
same as that of tree species number 1 at 5 percent level of significance. All other null hypotheses 
are rejected at 5 percent level of significance because the p-values are smaller than 0.05.

Suppose now that the interest of the experimenter is to test certain hypothesis concerning 
the five tree species in the Group 1 (comprising of Tree species Numbers 1, 2, 3, 4, and 10). The 
null hypothesis now is . The 4 × 10 coefficients matrix of the set of 
linearly independent treatment contrasts (which are actually mutually orthogonal) for testing 
this null hypothesis are 

The sum of squares for testing the equality of the five trees effects can be obtained by defining 
four linearly independent contrasts as

; ; ;  . 

Using these sets of contrasts we get the following:

Hypothesis DF SS MS F Prob > F

H0 4 17854.0908 4463.523 5.55 0.0021

It is again evident that the effect of tree species in this group are significantly different 
(p-value = 0.0021)

3.3.2   Analysis using SAS 
We now describe the analysis of the data in Example 1 by using SAS.  The preparation of the 

data file, the PROC to be adopted and the commands are given below:

DATA Treeheight;
INPUT tree rep height;
/*the first column ‘tree’ denotes the tree number (or tree species or treatments); the second 
column ‘rep’ denotes the replication number; the third column ‘height’ denotes the plant height*/
CARDS;
1	 1	 144.44
2	 1	 113.50
3	 1	   60.88
4	 1	 163.44
5	 1	 110.11
6	 1	 260.05
7	 1	 114.00
8	 1	   91.94
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9	 1	 156.11
10	 1	   80.20
1	 2	 145.11
2	 2	 118.61
3	 2	   90.94
4	 2	 158.55
5	 2	 116.00
6	 2	 102.27
7	 2	 115.16
8	 2	   58.16
9	 2	 177.97
10	 2	 108.05
1	 3	 104.00
2	 3	 118.61
3	 3	   80.33
4	 3	 158.88
5	 3	 119.66
6	 3	 256.22
7	 3	 114.88
8	 3	   76.83
9	 3	 148.22
10	 3	   45.18
1	 4	 105.44
2	 4	 123.00
3	 4	   92.00
4	 4	 153.11
5	 4	 103.22
6	 4	 217.80
7	 4	 106.33
8	 4	   79.50
9	 4	 183.17
10	 4	   79.55
;
PROC MEANS;
CLASS tree;
VAR height;
PROC MEANS;
CLASS  rep;
VAR height;
PROC GLM;
CLASS tree rep;
MODEL height = tree rep;
LSMEANS tree/PDIFF LINES;



76

Statistical Analysis of Agricultural Experiments

CONTRAST ‘1 2 3 4 10 vs 5 6 7 8 9’ tree 1 1 1 1 -1 -1 -1 -1 1 1; 
CONTRAST ‘1 vs 2 3 4 5 6 7 8 9 10’ tree 9 -1 -1 -1 -1 -1 -1 -1 -1 -1;
CONTRAST ‘1 2 3 4 vs 9’ tree 1 1 1 1 0 0 0 0 -4 0;
CONTRAST ‘1 2 3 4 vs 10’ tree 1 1 1 1 0 0 0 0 0 -4;
CONTRAST ‘5 6 7 8 vs 9’ tree 0 0 0 0 1 1 1 1 -4 0;
CONTRAST ‘5 6 7 8 vs 10’ tree 0 0 0 0 1 1 1 1 0 -4;
CONTRAST ‘within group’ tree 1 -1 0 0 0 0 0 0 0 0,
			     tree 1 1 -2 0 0 0 0 0 0 0,
			     tree 1 1 1 -3 0 0 0 0 0 0,
			     tree 1 1 1 1 0 0 0 0 0 -4;
RUN;

When the treatment is a character variable, then the coefficients of treatment effects should 
be entered with care as the SAS automatically arranges the treatments in lexicographic order.  
Suppose there are 3 treatments as varieties namely Sonalika, C-306 and PBW343, then if one 
wants to test H0: Sonalika + C-306 ‒ 2*PBW343 = 0, the coefficients then would be 1 ‒2 1 as 
lexicographic ordering of varieties is C-306, PBW343 and Sonalika.

3.3.3   Output of analysis
In what follows are described the results obtained from the analysis of data. Table 3.6 gives 

the mean and standard deviation of plant height for each tree species (or levels of treatment). 
The minimum and maximum values within each group are also given.

Table 3.6: Tree wise mean and standard deviation of plant height

Tree Number of Observations Mean Standard Deviation Minimum Maximum

1 4 124.748 23.135 104.000 145.110

2 4 118.430 3.884 113.500 123.000

3 4 81.038 14.434 60.880 92.000

4 4 158.495 4.227 153.110 163.440

5 4 112.248 7.190 103.220 119.660

6 4 209.085 73.721 102.270 260.050

7 4 112.593 4.204 106.330 115.160

8 4 76.608 13.950 58.160 91.940

9 4 166.368 16.847 148.220 183.170

10 4 78.245 25.737 45.180 108.050

Similarly, Table 3.7 gives the mean and standard deviation of plant height for each replication. 
The minimum and maximum values within each group are also given.
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Table 3.7: Replication wise mean and standard deviation of plant height

Replication Number of Observations Mean Standard Deviation Minimum Maximum

1 10 129.467 56.321 60.880 260.050

2 10 119.082 34.377 58.160 177.970

3 10 122.281 57.861 45.180 256.220

4 10 124.312 46.207 79.500 217.800

The analysis of variance is then performed and the results obtained are given in Table 3.8.

Table 3.8: Analysis of variance of plant height data

Source DF SS MS F value Prob > F

Trees 9 66836.35        7426.26         9.24         <0.0001

Blocks 3 569.43            189.81  0.24            0.8703

Error 27 21695.27      803.53

Corrected Total 39 89101.05

R Square CV Root MSE Height Mean

0.76 22.90 28.35 123.79

It is apparent that the model with trees and replications has been able to explain 76 per cent 
of the total variability in plant height. The CV is high, though (22.90).  It may be seen again from 
this ANOVA that the treatment effects are highly significant (p-value < 0.0001), but the block 
effects are not significant (this could be a reason for high CV).

Since the design is a randomized complete block design, the unadjusted means of various 
levels of treatments or tree species are same as the adjusted means or least square means. A 
pairwise comparison of the tree species is made and the results are given in Table 3.9. 

Table 3.9: Pairwise comparison of tree species

t Comparison Lines for Least Squares Means of tree species
LS-means with the same letter are not significantly different

height LSMEAN LSMEAN Number
A 209.085 6
B 166.368 9

C B 158.495 4
C D 124.748 1
C D E 118.430 2
F D E 112.593 7
F D E 112.248 5
F E 81.038 3
F E 78.245 10
F 76.608 8
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Treatments with the same letter are not significantly different from each other. It, therefore, 
follows from Table 3.8 that treatment 6 stands out in terms of plant height as this is significantly 
different from all other treatments. Treatment 9 is not significantly different from treatment 4, 
but is significantly different from all other treatments. Further, treatment 4 is not significantly 
different from treatments 1 and 2, but is significantly different from all other treatments. Likewise 
we can draw conclusions about the pairwise treatment comparisons from all other alphabets.  

Contrast analysis is also performed and once again it is implicit from the results presented 
in the Table 3.10 that all the contrasts are significantly different from zero except the contrast 
defining the equality of the effect of tree species 1 with the average effect of the tree species 2, 3, 
4, 5, 6, 7, 8, 9, 10. Similarly, the effect of tree species in the group comprising of trees 1, 2, 3, 4 
and 10 are significantly different.

Table 3.10: Result of contrast analysis

Contrast of Trees DF Contrast SS MS F Value Prob > F

1, 2, 3, 4, 10 vs 5, 6, 7, 8, 9 1 5377.30 5377.30 6.69 0.0154

1 vs 2, 3, 4, 5, 6, 7, 8, 9, 10 1 4.11              4.11           0.01 0.9435

1, 2, 3, 4, vs 9 1 6680.24        6680.24        8.31 0.0076

1, 2, 3, 4, vs 10 1 5761.65        5761.65        7.17 0.0125

5, 6, 7, 8 vs 9 1 4801.13        4801.13        5.98 0.0213

5, 6, 7, 8, vs 10 1 7805.40        7805.40        9.71 0.0043

Within Group (1, 2, 3, 4, 10) 4 17854.09        4463.52 5.55 0.0021

3.4   Analysis using R
For the benefit of the readers, the analysis using R software is also given in the sequel. The 

R code is given but the output is not given. The readers may like to use this code for analysis of 
data. 

R code
d4=read.table(“Treeheight.txt”,header=TRUE)
attach(d4)
names(d4)
#Treatment means and standard deviations
aggregate(height, by=list(tree), mean)
aggregate(height, by=list(tree), sd)
#Tree wise box plot of height 
boxplot(height~tree)
#Replication wise box plot of height
boxplot(height~rep)
tree=factor(tree)
rep=factor(rep)
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aov.out=aov(height~tree+rep)
summary(aov.out)
#contrast analysis
library(lsmeans)
lsm <- lsmeans(aov.out, “tree”)
#For grouping of treatments with letters, you need to install multcompView package and 
#run the following code
cld(lsm,Letters="ABCDEF")
contrast(lsm, list(con1 = c(1,1,1,1,-1,-1,-1,-1,-1,1),con2 = c(9,-1,-1,-1,-1,-1,-1,-1,-1,-1),con3 
= c(1,1,1,1,0,0,0,0,-4,0),con4 = c(1,1,1,1,0,0,0,0,0,-4),con5 = c(0,0,0,0,1,1,1,1,-4,0),con6 = 
c(0,0,0,0,1,1,1,1,0,-4)))
contrast(lsm,list(con7=c(1,-1,0,0,0,0,0,0,0,0),con8=c(1,1,-2,0,0,0,0,0,0,0),con9=c(1,1,1,-
3,0,0,0,0,0,0),con10=c(1,1,1,1,0,0,0,0,0,-4)))
#Through splitting terms in anova without lsmeans package, 
#Caution: works for orthogonal contrasts only
contrast.mat=matrix(c(1,-1,0,0,0,0,0,0,0,0,1,1,-2,0,0,0,0,0,0,0,1,1,1,-
3,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,-4),ncol=4)
contrasts(tree)<-contrast.mat
aov.out=aov(height~tree+rep)
summary(aov.out,split=list(tree=list(“1vs2”=1,“first2vs3”=2,“first3vs4”=3,“first4vs10”=4)))
detach(d4)

Remark 3.2 It may be worthwhile mentioning here that the contrast analysis is a very 
powerful statistical methodology for answering almost all the questions of the researchers. 
Generally speaking, the researchers finish their analyses after generating the ANOVA table. 
But there are many more probing questions that can be answered using contrast analysis. The 
only effort required is that the researcher should be able to write the problem in terms of a 
parametric contrast(s). Once this is done, the problem is easy to handle. In this Chapter, one 
example has been given to describe how contrast analysis helps in solving the problems of the 
researcher. Contrast analysis has also been done in Chapter 2. It has also been done in many 
other Chapters, particularly when dealing with the analysis of augmented designs. In Chapter 
12 is presented another very interesting application of contrast analysis in solving a difficult 
problem. The readers may try to grasp that application of contrast analysis because that would 
be immensely useful to them in their research. 

Remark 3.3  In this Chapter it has been demonstrated how contrast analysis helps in making 
comparisons among subsets of treatments. Once the problem is translated into a contrast, then 
the analysis can be done very easily for testing a null hypothesis about the contrast. This book 
is essentially devoted to single factor experiments. In factorial experiments, there are several 
factors and each factor has several levels. The treatments are all possible combinations of levels 
of different factors. In case of factorial experiments, like single factor experiments, comparisons 
can be made among levels of a factor at fixed levels of the other factors. For example, if there are 
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two factors A and B with 3 and 2 levels each represented as a0, a1, a2 and b0, b1, respectively, then 
the 6 treatment combinations are a0b0, a0b1, a1b0, a1b1, a2b0, a2b1. These 6 treatment combinations 
are in fact 6 treatments and all type of contrasts can be defined for making subset comparisons 
among treatment combinations. The contrasts of interest could be a0b0‒a2b0; a0b0‒2a1b0+a2b0; 
a2b0‒a2b1. We may define any other contrast. This would be described in more detail in Part-II 
of the book.
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Covariance Analysis

4.1   Introduction
 It has been discussed earlier in Chapters 1 and 2 that the data generated from experimental 

designs exhibits a large variability. The two major components of this variability are, (a) to which 
some cause can be assigned, (b) to which no cause can be assigned. The second component of 
variability to which no cause can be assigned is the experimental error. The major concern of 
any experimental design or statistical analysis of experimental data is to keep the experimental 
error as small as possible. There is no way the experimental error can be totally eliminated.

The two major components of the explainable part of variability are (a) the treatments, 
(b) the experimental material or to be specific the experimental units. The variability due to 
treatments is a deliberate attempt on the part of the experimenter to create variability. However, 
the experimental units on which the experiment is conducted (to which the treatments are 
subjected) is a major source of variability to be dealt with through designing the experiment 
properly. Generally, while designing an experiment the variability in the experimental 
material gets overlooked. At times this is not properly taken care of. This could be one cause 
of large experimental error. So in order to control the experimental error, proper designing of 
experiment is essential. However, there are analytical ways also of controlling the experimental 
error. One such technique is that of analysis of covariance (ANCOVA). It is expected that a good 
experiment attempts to incorporate all possible means of minimizing the experimental error.

The analysis of covariance, generally known as ANCOVA, is a technique that combines both 
the ANOVA (analysis for comparing population means of groups using data collected from a 
single factor or a multi-factor experiment using some appropriate design and then analyzed 
using ANOVA) and that of estimating the slope of a  straight line between two variables, y and 
X. In both the cases the response variable y is continuous (measured on interval or ratio scale). 
In case of the ANOVA, the X variables are generally in nominal or ordinal scale and these 
generally serve to identify the treatment groups, or the block groups or the sub-block groups 
within the block groups, or the rows and columns groups, etc. In the regression setting, the X 
variable is also continuous, like the response variable y.

Of the many uses of ANCOVA, two major uses are, (a) to check if the regression lines for 
each treatment group are parallel or not (meaning thereby that the regression lines have different 
intercepts but common slopes) or if the regression lines for each treatment group are coincident 
or not (meaning thereby that the regression lines have the same slopes and intercepts), (b) to test 
for the differences in the population means of groups when some of the variation in the response 
variable can be explained by the covariate. For instance, the effectiveness of different feeds given 

4
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to animals can be compared by randomizing the animals to the feeds and measuring the body 
weights at different points of time during the experiment. However, some of the variation in 
the body weights of animals after subjecting them to different feeds may be attributable to their 
initial body weights. So by standardizing all the animals to some common weight can help in 
detecting the differences among the groups more precisely. In this case the variation caused 
by different initial body weights of the animals is also taken away from the experimental error 
leading to a considerable reduction in the experimental error.

Another interesting application of the ANCOVA is the following: In a field experiment 
the rodents attack the field and as a consequence some of the plots in the experiment are 
partially damaged. So the observations recorded from the plots damaged by the rodent attack 
are naturally different from the plots not damaged by rodent attack and, therefore, there is a lot 
of variability caused in the data by rodent attack. Covariance analysis (ANCOVA), with rodent 
damage as a covariate, could be useful in adjusting plot yields to the levels that these should 
have been had there been no damage in any plot due to rodent attack.

ANCOVA requires measurement of the characteristic of primary interest plus the 
measurement of one or more variables known as covariates. It also requires that the functional 
relationship of the covariates with the character of primary interest is known beforehand. 
Generally a linear relationship is assumed, though other type of relationships could also be 
assumed. Further, it is important to note that the covariates used should be such that these are 
not influenced by the application of treatments. Otherwise, while adjusting the study variable 
over covariates may take away some part of the variability due to the application of treatments.

Consider the case of a variety trial in which weed incidence is used as a covariate and 
the grain yield is the characteristic of interest. With a known functional relationship between 
weed incidence and grain yield, the covariance analysis can adjust grain yield in each plot to 
a common level of weed incidence. With this adjustment, the variation in yield due to weed 
incidence is quantified and effectively separated from that due to varietal differences.

ANCOVA can also be used for more than one covariate as well. It can also be applied not 
only to linear functional relationship between the characteristic of interest and the covariates but 
also to any type of functional relationship between variables viz. quadratic, inverse polynomial, 
etc. The readers may note that all these are in fact strictly linear models only, because a linear 
model is one which is linear in parameters. Here we illustrate the use of covariance analysis with 
the help of a single covariate that is linearly related with the character of primary interest. It is 
expected that this simplification shall not unduly reduce the applicability of the technique, as 
a single covariate that is linearly related with the primary variable is adequate for most of the 
experimental situations in agricultural research.

The covariance analysis can also be used in the analysis of data generated from designed 
experiments with one or more missing observations. Suppose that an experiment is conducted 
in a RCB design with 8 treatments and 3 blocks (replications).  Suppose during experimentation, 
the observation pertaining to treatment 5 in block 2 is lost (or missing).  For the analysis of 
data, one can use covariance analysis technique by first assigning a value 0 to the missing 
observation and then defining an auxiliary variable which takes a value +1 for the missing 
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observation and 0 for all other observations. The values can also be taken as +1 and -1 instead 
of +1 and 0. Similarly, if in addition to the lost observation of treatment 5 in block 2, one more 
observation pertaining to treatment 3 in block 3 is also lost, then one can assign values 0 to the 
missing observations and then define two pseudo auxiliary variables X1 and X2, with X1 same 
as defined in case of loss of one observation and X2 as taking a value +1 for the lost observation 
pertaining to treatment 3 in block 3 and 0 (or -1) for all other observations. The results from this 
analysis would be exactly same as one would produce by ignoring the lost data and analyzing 
the remaining data as a block design (design for one-way elimination of heterogeneity) in the 
sense that the probability levels of significance of treatment effects and block effects would be 
the same in both the cases. In fact the results obtained by either using a covariate for each 
missing observation or by ignoring the lost observation in the analysis of data generated from 
any designed experiment are same.

As mentioned earlier and above also, it is a realized fact that proper blocking (or grouping) 
of experimental units helps in reducing the experimental error by maximizing the differences 
among the blocks and minimizing the differences within the blocks. In experiments conducted 
in agricultural sciences and other sciences, blocking, however, cannot cope with certain types of 
variability arising due to spotty soil heterogeneity, soil salinity, unpredictable incidence of pest 
and diseases, insect manifestation, appearance of weed, etc. In all these instances, heterogeneity 
among experimental plots will not follow a definite pattern, which causes difficulty in capturing 
large differences among blocks. Indeed, blocking is ineffective in the case of non-uniform insect 
incidences because blocking was done prior to the occurrence of insects or pests or disease. 
Furthermore, even though it is true that a researcher may have some information on the probable 
path or direction of insect movement, unless the direction of insect movement coincides with 
the soil fertility gradient, the choice of whether soil heterogeneity or insect incidence should be 
the criterion for blocking is difficult. The choice is especially difficult if both sources of variation 
have about the same importance.

Use of covariance analysis should be considered in such experiments where blocking 
couldn’t adequately reduce the experimental error. By measuring an additional variable (e.g., 
covariate X) that is known to be linearly related to the characteristic of interest y, the source of 
variation associated with the covariate can be deducted from experimental error.  This adjusts 
the primary variable y linearly upward or downward, depending on the relative size of its 
respective covariate. The adjustment accomplishes two important improvements:

1.	 The treatment mean is adjusted to a value that it would have had, had there been no 
differences in the values of the covariate. The adjustment in treatment mean is generally 
made using the mean value of the covariate.

2.	 The experimental error is reduced and the precision for comparing treatment effects is 
increased.

Although blocking and covariance techniques are both used to reduce experimental error, 
the differences between the two techniques are such that they are usually not interchangeable. 
The ANCOVA can be used only when the covariate representing the heterogeneity among the 
experimental units can be measured quantitatively. However, that is not a necessary condition 



84

Statistical Analysis of Agricultural Experiments

for blocking. In addition, because blocking is done before the start of the experiment, it can be 
used only to cope with sources of variation that are known or predictable. ANCOVA, on the 
other hand, can take care of unexpected sources of variation that occur during the experiment. 
Thus, ANCOVA is useful as a supplementary procedure to take care of sources of variation that 
could not be accounted for by blocking.  

When covariance analysis is used for error control and adjustment of treatment means/
effects, the covariate must not be affected by the treatments being tested. Otherwise, the 
adjustment removes both the variation due to experimental error and that due to treatment 
effects. A good example of covariates that are free of treatment effects are those that are measured 
before the treatments are applied, such as soil analysis and residual effects of treatments applied 
in the past experiments. Number of weeds in each plot in a varietal trial is another example of 
a covariate which is measured after the application of treatments. This cannot be controlled at 
the designing stage as the intensity of weeds is only known after its emergence, which happens 
once the experiment has been laid out. In other cases, care must be exercised to ensure that the 
covariates defined are not affected by the treatments being tested. 

A strong assumption while fitting analysis of covariance is that the regression coefficient is 
common for all the classes of the treatments. But in practice, this assumption may not hold. It 
may, therefore, be desired to fit a different regression coefficient for each class (or level) of the 
treatment. This is so because in addition to the usual assumptions on the error variables, the 
covariance analysis model assumes a linear relationship between the covariate (X) and the mean 
response with the same slope for each treatment. Therefore, it is essential to test the equality of 
slopes by comparing the fit of the analysis of covariance model assuming same slope for each 
treatment with the fit of the corresponding model that uses different slopes for each treatment. 
In the sequence is given an example that uses SAS commands for testing the equality of slopes 
for each treatment:

4.2   Example 1
An experiment was conducted with 25 bags of 15 oysters and 5 treatments viz. Trt1 as cool-

bottom, Trt2 as cool-surface, Trt3 as hot-bottom, Trt4 as hot-surface and Trt5 as control.  Each 
treatment is randomly allocated to the 25 bags so that each treatment receives 5 bags.  Each bag 
of 15 oysters is considered as one experimental unit. The oysters were washed, cleaned, dried 
and weighed at the beginning of the experiment and then again after 40 days of being subjected 
to treatments. The purpose of the experiment was, (a) to determine if artificially heated water 
has any affect on the growth of oysters, and (b) to determine if the position in the water column 
(surface vs bottom) has any affect on the growth of oysters.  The initial weight and the final 
weight of the 25 bags of 15 oysters each for different locations is given in Table 4.1. 
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Table 4.1: Oyster data

Treatment 1 1 1 1  1 2 2 2 2 2 3 3 3

Replication 1 2 3 4 5 1 2 3 4 5 1 2 3

Initial Weight 26.6 33.1 27.3 31.9 33.4 27.4 29.1 28.1 26.6 26.3 22.6 29.0 26.9

Final Weight 29.9 37.9 31.9 37.1 38.3 31.8 34.2 33.1 31.0 30.2 29.3 35.9 34.5

Treatment 3 3 4 4 4 4 4 5 5 5 5 5

Replication 4 5 1 2 3 4 5 1 2 3 4 5

Initial Weight 22.1 27.7 25.7 30.5 21.5 24.8 28.9 20.6 18.0 24.9 25.7 19.2

Final Weight 29.0 29.3 30.1 37.0 26.9 28.2 32.2 23.8 21.7 27.2 30.8 22.3

4.2.1   Analysis using SAS
In the sequel are described SAS commands and data structure for performing the analysis 

of covariance on the data generated. 

DATA Oyster;
INPUT trt rep Initialwt Finalwt;
/*the first column (trt) gives the treatment numbers; the second column (rep) gives the 
replication numbers; the third column (Initialwt) gives the initial weight of the bags; the last 
column (Finalwt) gives the final weight of the bags taken after 40 days*/
CARDS;
1	 1	 26.6	 29.9
1	 2	 33.1	 37.9
1	 3	 27.3	 31.9
1	 4	 31.9	 37.1
1	 5	 33.4	 38.3
2	 1	 27.4	 31.8
2	 2	 29.1	 34.2
2	 3	 28.1	 33.1
2	 4	 26.6	 31.0
2	 5	 26.3	 30.2
3	 1	 22.6	 29.3
3	 2	 29.0	 35.9
3	 3	 26.9	 34.5
3	 4	 22.1	 29.0
3	 5	 27.7	 29.3
4	 1	 25.7	 30.1
4	 2	 30.5	 37.0
4	 3	 21.5	 26.9
4	 4	 24.8	 28.2
4	 5	 28.9	 32.3
5	 1	 20.6	 23.8
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5	 2	 18.0	 21.7
5	 3	 24.9	 27.2
5	 4	 25.7	 30.8
5	 5	 19.2	 22.3
;
ODS RTF FILE = ‘OYSTER.RTF’;
PROC REG; /*simple overall regression analysis */;
MODEL Finalwt = Initialwt;
RUN;
PROC SORT;
BY trt; 
PROC REG; /*simple regression analysis for each treatment*/
MODEL Finalwt = Initialwt;
BY trt; 
RUN;
PROC GLM;/*anova for one way classified data*/
CLASS trt;
MODEL Finalwt = trt;
RUN;
PROC GLM;/*ancova for one way classified data*/
CLASS trt;
MODEL Final wt = trt Initialwt / solution;
LSMEANS TRT / STDERR PDIFF ADJUST = TUKEY OUT= adjmeans;
CONTRAST ‘Control vs. Treatment’ trt  -1 -1 -1 -1 4;
CONTRAST ‘Bottom vs. Top’ trt -1 1 -1 1 0;
CONTRAST ‘Cool vs. Hot’ trt -1 -1 1 1 0;
CONTRAST ‘Interaction Depth*Temp’ trt 1 -1 -1 1 0;
RUN;
PROC PRINT DATA = adjmeans; 
RUN;
PROC GLM;/*ancova for homogeneity of slopes*/
CLASS trt;
MODEL Finalwt = trt Initialwt trt*Initialwt;
RUN;
QUIT;
ODS RTF CLOSE;

4.2.2   Output of analysis
The results obtained by doing the analysis using the SAS procedures are given in the sequence. 

The first output of analysis corresponds to the first PROC GLM, which performs a simple linear 
regression analysis of the final weight on the initial weight over all the 25 observations. From 
the results it follows that for the overall experiment there is a significant linear relationship 
between the initial and the final weights. The model is able to explain about 90 per cent of the 
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total variability in the data (R2= 0.895; p< 0.0001).

Table 4.2: Output from analysis using SAS

ANOVA

Source DF SS MS F Value Prob > F

Initial Weight 1 441.662 441.662 195.27 <0.0001

Error 23 52.020 2.262

Corrected Total 24 493.682

R-Square CV Root MSE Finalwt Mean

0.895 4.859 1.504 30.948

Parameter Estimate Standard Error t Value Prob > |t|

Intercept 2.8194 2.0353 1.39 0.1793

Slope (Initialweight) 1.0689 0.0765 13.97 <0.0001

It may be seen that the regression coefficient (or slope) is also highly significant (p < 0.0001), 
though the intercept is not significantly different from zero. The plot of initial weight against 
final weight (Figure 4.1) also indicates that the relationship between these two variables is linear.

Figure 4.1: Plot of final weight vs initial weight

The highly significant slope in this linear regression analysis implies a strong dependence of 
final weight on the initial weight. This suggests that the initial weight may prove to be a useful 
covariate for the analysis. 

The second PROC GLM performs a similar linear regression analysis within each treatment 
group separately. This analysis is based on 5 observations (replications of each treatment).  The 
estimates of the slopes within each treatment group along with the standard errors and the t and 
p values are given in Table 4.3.
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Table 4.3: Estimates of slopes

Parameter Slope estimate Standard error t value Prob> |t|

Initialweight (Trt 1 ~ Cool bottom) 1.1713 0.0850 13.78 0.0008

Initialweight (Trt 2 ~ Cool surface) 1.4015 0.0938 14.94 0.0007

Initialweight (Trt 3 ~ Hot bottom) 0.7601 0.4320 1.76 0.1767

Initialweight (Trt 4 ~ Hot surface) 1.0588 0.2158 4.91 0.0162

Initialweight (Trt 5 ~ Control) 1.0664 0.1694 6.30 0.0081

From this analysis it is found that the slope of the linear regression is fairly uniform over 
all the five treatments, by and large, except for hot-bottom combination for which the slope is 
slightly low. This fact is important because the analysis of covariance adjusts all the treatment 
groups by the same slope. The fitted equations for each treatment group are given below:

Trt 1 y = -0.6574 + 1.1713X Trt 4 y = 3.0752 + 1.0588X

Trt 2 y = -6.4825 + 1.4015X Trt 5 y = 2.0398 + 1.0664X

Trt 3 y = 12.097 + 0.7601X	

The third PROC GLM has only ‘trt’ (treatments) as the class statement indicating thereby 
that the only classification variable in the design is the treatment and, therefore, the design is a 
CRD. The analysis of the data for CRD is given in Table 4.4.

Table 4.4: Analysis of data as a CRD

ANOVA

Source DF Type III SS MS F Value Prob > F

Treatment 4 258.730 64.683 5.51 0.0037

Error 20 234.952 11.748

Corrected Total 24 493.682

R-Square CV Root MSE Finalwt Mean

0.524 11.075 3.427 30.948

This analysis clearly reveals that the treatment effects are significantly different (p = 0.0037) 
meaning thereby that the location does affect the growth of oysters. The variation explained 
by fitting this model is merely 52 percent, though. Figure 4.2 gives the distribution of the final 
weight of oysters for each type of location (treatment).
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Figure 4.2: Treatment wise Box plot of final weight

T﻿he next PROC GLM is related to the ANCOVA, through which we try to answer the 
question as to whether or not the different locations (treatments) affect the final weights adjusted 
for differences in the initial weights of 25 bags of oysters. In other words, the ANCOVA answers 
the question about whether or not the different locations (treatments) affect the final weights if 
all the twenty five bags of oysters had started with the same initial weight. Once again, it may 
be noted that the class variable is the ‘trt’ only. The initial weight is not taken as a class variable, 
because this variable is designated as a covariate or regression variable. The output of ANCOVA  
is given in Table 4.5.

Table 4.5: Analysis of covariance result

Source DF Type I SS MS F Value Prob > F

Treatment 4 258.730 64.683 32.01 <0.0001

Initial weight 1 196.544 196.544 97.23 <0.0001

Error 19 38.408 2.021

Corrected Total 24 493.682

Source DF Type III SS MS F Value Prob > F

Treatment 4 13.612 3.403 1.68 0.1953

Initial weight 1 196.544 196.544 97.23 <0.0001

Error 19 38.408 2.021

Corrected Total 24 493.682

R-Square CV Root MSE Finalwt Mean

0.922 4.594 1.422 30.948
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One glaring thing that is noticeable from this analysis is that the model used explains about 
92 per cent of the total variability in the data. On the other hand, the model without covariate 
(CRD model), explains about 52 percent of the variability in the data. 

Since the two factors in the model, the class variable ‘treatments (or locations)’ and the 
regression variable ‘initial weight’ are not orthogonal to each other since all the five levels of 
treatments do not appear with every level of the variable initial weight, (orthogonality will be 
explained in detail in Chapter 5) the treatment sum of squares need to be adjusted for all other 
factors in the model. Similarly, the true test of the significance of the linear components of the 
relationship between ‘initial weight’(X) and final weight (y) needs to use an Initial weight sum 
of squares adjusted for the effects of locations (or treatments). For this reason, it is preferable to 
use Type III sum of squares in the ANOVA.

For a better understanding of the importance of Type III SS, the Type I SS is also given 
above before giving the Type III SS. The Type I treatment SS is 258.730. The treatment effects 
in this case are highly significant (p < 0.0001). The Type I treatment SS is in fact the unadjusted 
treatment SS and is the same as the one found in the one-way ANOVA. If we subtract this SS 
from the Total SS, we obtain the error SS for the simple one-way ANOVA (493.682 – 258.730 
= 234.952).

On the other hand the Type III SS for treatments is 13.612. Contrary to type I SS, this leads 
us to a conclusion that the treatment effects do not differ significantly (p = 0.1953). This is the 
adjusted treatment SS and allows us to test the treatment effects, adjusting for all other factors 
(in this case the initial body weights) included in the model. The reason for adjustments has 
already been described above. It is, therefore, evident that the covariate has an impact on the 
inference and treatment effects, which were significantly different in the absence of covariate 
have become homogeneous in the presence of covariate.

Table 4.6: Parameter estimates with standard errors

Parameter Estimate Standard error t value Prob > |t|

Intercept 2.7580 2.3592 1.17 0.2568

Trt1 0.7876 1.2865 0.61 0.5477

Trt2 0.8862 1.0865 0.82 0.4248

Trt3 2.3275 0.9912 2.35 0.0299

Trt4 0.9868 1.0203 0.97 0.3456

Trt5 0.0000 . . .

Initialweight 1.0333 0.1048 9.86 <0.0001

Note: The matrix X'X has been found to be non-singular, and a generalized inverse was used 
to solve the normal equations. Terms whose estimates are followed by the letter B are not uniquely 
estimable.

Table 4.6 provides a solution for testing the equality of slopes for each treatment. The last 
row of the Table “Initial Weight’ provides the combined weighted slope of the regressions of 
final weight on initial weight for each treatment.
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To compare the true effects of the locations (treatments), unbiased by differences in initial 
weights, the treatment means should be adjusted to what their values would have been if all the 
25 bags had the same initial weight. The estimated least-squares means followed by their standard 
errors and the p-values for all pairwise tests of treatment differences are given in Table 4.7.

Table 4.7: Standard error and p-values for the treatments

Treatment Finalwt LSMEAN Standard Error Prob > |t| LSMEAN Number
1 30.7380 0.7700 <0.0001 1
2 30.8366 0.6478 <0.0001 2
3 32.2778 0.6395 <0.0001 3
4 30.9372 0.6359 <0.0001 4
5 29.9504 0.8002 <0.0001 5

The pairwise treatment comparisons have also been made and are presented in Table 4.8.

Table 4.8: p-values for pairwise treatment comparisons

Least Squares Means for effect Treatment 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Finalweight

i/j 1 2 3 4 5
1 1.0000 0.5781 0.9996 0.9714
2 1.0000 0.5345 1.0000 0.9226
3 0.5781 0.5345 0.5826 0.1731
4 0.9996 1.0000 0.5826 0.8664
5 0.9714 0.9226 0.1731 0.8664

It may be noted from Table 4.8 that the p-values are high indicating that the differences are 
not significant.

It is also worthwhile noting the differences between the unadjusted to adjusted treatments 
means for the variable FINAL weight in Table 4.9.

Table 4.9: Treatment wise unadjusted and adjusted least square means

Treatment 
(or Location)

Unadjusted Means (Final 
weight)

Adjusted LS Means
(Final weight)

Calculations for

1 35.020 30.7380 35.02‒ 1.0333(30.46‒26.32)
2 32.060 30.8366 32.06‒ 1.0333(27.50‒26.32)
3 31.600 32.2778 31.60 ‒ 1.0333(25.66‒26.32)
4 30.900 30.9372 30.90‒ 1.0333(26.28‒26.32)
5 25.160 29.9504 25.16 ‒ 1.0333(21.68‒26.32)

The differences in unadjusted and adjusted treatment means are due to the differences 
in initial weights among the treatment groups (for example, Treatment 5 was assigned much 
smaller oysters than other treatments). In calculating these adjusted means, the coefficient β = 
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1.0333 is a weighted average of the slopes of the linear regressions for each of the five treatment 
groups. 

Table 4.10: Result of contrast analysis

Contrast DF Contrast SS MS F Value Prob > F

Control vs. Treatment 1 3.596 3.596 1.78 0.1980

Bottom vs. Top 1 1.859 1.859 0.92 0.3496

Cool vs. Hot 1 2.700 2.700 1.34 0.2622

Interaction Depth*Temp 1 2.382 2.382 1.18 0.2913

The output indicates that oyster growth is not significantly affected by differences in 
temperature (cool vs. hot) or the depth (bottom vs top). Similarly the interaction between 
the depth and temperature is not significant. Although constructed to be orthogonal, these 
contrasts are not orthogonal to the covariate; therefore, their sums of squares do not add to the 
adjusted treatment SS.

The last PROC GLM is used for testing the heterogeneity of regression coefficients of 
treatment groups (or slopes). This is important because the ANCOVA assumes the homogeneity 
of slopes or the regression coefficients (or equality of regression coefficients) of the covariate for 
each treatment group. In other words, since a single regression coefficient (or slope) is used 
to adjust all observations in the experiment, it is desirable that the regression coefficients are 
same for each treatment group. This also implies that the estimate of each regression coefficient 
for each treatment group is an estimate of the same common slope for the entire data. The 
null hypothesis for testing the heterogeneity of regression coefficients is 
, where βi is the regression coefficient (or slope) of the regression pertaining to the ith level (or 
group) of treatment, assuming that there are v groups of treatments. As a matter of fact, the 
presence of interaction between the treatments (treatment groups) and the covariate is indicative 
of heterogeneity of regression coefficients. It also means that the regression relationship differs 
for different treatment groups.

In the sequel is presented the output obtained from this PROC GLM.

Table 4.11: Output from PROC GLM in SAS

ANCOVA

Source DF Type III SS MS F Value Prob > F
Treatment 4 5.988 1.497 0.66 0.6277
Initialweight 1 105.143 105.143 46.51 <0.0001
Initialweight*Treatment 4 4.501 1.125 0.50 0.7377
Error 15 33.907 2.260
Corrected Total 24 493.682

R-Square CV Root MSE Finalwt Mean

0.931 4.858 1.503 30.948
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One obvious thing that is noticeable from this analysis is that this model explains about 93 
per cent of the total variability in the data. On the other hand, the model without interaction 
between treatment levels and the covariate explains about 92 percent of the variability in the 
data. Evidently, the interaction does not contribute much to the variability as is indicated 
by the p-value = 0.7377. Thus, it can be conclusively established that the null hypothesis of 
homogeneity of regression coefficients cannot be rejected. Performing an ANCOVA on this 
data with a common slope is, therefore, justified.

4.2.3   Analysis using R
In the sequence is described the R code for the analysis of covariance and testing the 

heterogeneity of slopes. Only the code is given for the benefit of readers more familiar with R 
software. The output of the analysis is not given to save space and repetition.

R code
d5=read.table(“Oyster.txt”,header=TRUE)
attach(d5)
names(d5)
#Treatment means and standard deviations
aggregate(Finalwt, by=list(trt), mean)
aggregate(Finalwt, by=list(trt), sd)
#Treatment wise box plot of Finalwt and Initialwt
boxplot(Finalwt~trt)
boxplot(Initialwt~trt)
#Regression of final weight on initial weight
lm1<-lm(Finalwt~Initialwt)
anova(lm1)
summary(lm1)
#Regression of final weight on initial weight for each treatment
summary(lm(Finalwt~Initialwt,trt==1,data=d5))
summary(lm(Finalwt~Initialwt,trt==2,data=d5))
summary(lm(Finalwt~Initialwt,trt==3,data=d5))
summary(lm(Finalwt~Initialwt,trt==4,data=d5))
summary(lm(Finalwt~Initialwt,trt==5,data=d5))
#onewayanova with treatments only
trt=factor(trt)
lm2=lm(Finalwt~trt)
anova(lm2)
#ancova with class variable treatments and contiuous initial body weight variable
lm3=lm(Finalwt~trt+Initialwt)
anova(lm3)
#To get type III sum of squares, download and install car package
library(car)
Anova(lm3,type=“III”)
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summary(lm3)
lsm=lsmeans(lm3,“trt”)
lsm
pairs(lsm)
contrast(lsm, list(con1 = c(-1,-1,-1,-1,4),con2=c(-1,1,-1,1,0),con3=c(-1,-1,1,1,0),con4=c(1,- 1,-
1,1,0)))
lm4=lm(Finalwt~trt+Initialwt+trt:Initialwt)
Anova(lm4,type=“III”)
detach(d5)

4.3   Another example of analysis of covariance
In view of the importance of the analysis of covariance in analyzing the data generated from 

designed experiments and to control the experimental error, it may not be out of place to give 
one more example of analysis of covariance and to highlight some other important applications 
of analysis of covariance in analysis of data.

4.3.1   Example 2 (Gomez and Gomez, 1984) 
A part of this example has been taken from Gomez and Gomez (1984). In order to study 

the effect of iron toxicity in soil on rice varieties, an experiment was designed as a RCB design 
with 15 rice varieties and three replications. The soil in the field where the experiment was 
conducted had a toxic level of iron. On two sides of each experimental plot, two guard rows of a 
susceptible check variety were planted to generate the iron toxicity score for a susceptible check 
variety. Scores for tolerance for iron toxicity were collected from each experimental plot as well 
as from guard rows. For each experimental plot, the score of susceptible check (averaged over 
two guard rows) provided the value of the covariate for that plot. Data on the tolerance scores 
of each variety (Y variable) and the corresponding susceptible check (X variable) are given in 
the Table 4.12.

In the sequence is done the analysis of covariance by treating the iron toxicity of susceptible 
check variety as covariate by making adjustments in the iron toxicity of rice varieties against the 
different values of iron toxicity of susceptible check variety. 
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Table 4.12: Scores of tolerance for iron toxicity (Y) of 15 rice varieties and those of the 
corresponding guard rows of a susceptible check variety (X) in a RCB design

Variety Number Replication-I Replication-II Replication-III

X Y X Y X Y

1. 15 22 16 13 16 14

2. 16 14 15 23 15 23

3. 15 24 15 24 15 23

4. 16 13 15 23 15 23

5. 17 17 17 16 16 16

6. 16 14 15 23 15 23

7. 16 13 15 23 16 13

8. 16 16 17 17 16 16

9. 17 14 15 23 15 24

10. 17 17 17 17 15 26

11. 16 15 15 24 15 25

12. 16 15 15 23 15 23

13. 15 24 15 24 16 15

14. 15 25 15 24 15 23

15. 15 24 15 25 16 16

4.3.2   Analysis of data
To begin with, the analysis is done without using the auxiliary information (or covariate X). 

The analysis would be same as that of a randomized complete block design as done in Chapter 
2. This analysis would clearly highlight the advantage of using the auxiliary information. The 
SAS commands for analysis are:

DATA irontoxicityinrice;
INPUT trt rep Y X;
/*the first column (trt) gives the treatment numbers; the second column (rep) gives the 
replication numbers; the third column (Y) gives the tolerance score of iron toxicity in rice; the 
last column (X) gives the tolerance score of iron toxicity in a susceptible check variety*/
CARDS;
1	 1	 22	 15
1	 2	 13	 16
1	 3	 14	 16
2	 1	 14	 16
2	 2	 23	 15
2	 3	 23	 15
3	 1	 24	 15
3	 2	 24	 15
3	 3	 23	 15
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4	 1	 13	 16
4	 2	 23	 15
4	 3	 23	 15
5	 1	 17	 17
5	 2	 16	 17
5	 3	 16	 16
6	 1	 14	 16
6	 2	 23	 15
6	 3	 23	 15
7	 1	 13	 16
7	 2	 23	 15	
7	 3	 13	 16
8	 1	 16	 16
8	 2	 17	 17	
8	 3	 16	 16
9	 1	 14	 17
9	 2	 23	 15
9	 3	 24	 15
10	 1	 17	 17
10	 2	 17	 17
10	 3	 26	 15
11	 1	 15	 16
11	 2	 24	 15
11	 3	 25	 15
12	 1	 15	 16
12	 2	 23	 15
12	 3	 23	 15
13	 1	 24	 15
13	 2	 24	 15
13	 3	 15	 16
14	 1	 25	 15
14	 2	 24	 15
14	 3	 23	 15
15	 1	 24	 15
15	 2	 25	 15
15	 3	 16	 16
;
ODS RTF FILE = ‘OYSTER.RTF’;
PROC GLM;/*anova for two way classified data*/
CLASS trt rep;
MODEL Y = trt rep / LSMEANS PDIFF;
RUN;
ODS RTF CLOSE;
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4.3.3   Output of analysis	
The results obtained by using the SAS procedures are described in Table 4.13.	

Table 4.13: Results from SAS for iron toxicity data

ANOVA

Source DF Type III SS Mean Square F Value Prob > F

Replications 2 104.044 52.022 2.85 0.0745

Treatments 14 265.911 18.994 1.04 0.4448

Error 28 510.622 18.237

Corrected Total 44 880.578

R-Square CV Root MSE y Mean

0.420 21.544 4.270 19.822

The fitted model is able to explain only 42 percent of the total variability in the data. It may 
be seen here that the treatment effects are not significantly different. The replications are also 
not significantly different at 5 % level of significance, although it appears from the figure below 
that the replications differ.

Figure 4.3: Replication wise iron toxicity
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Table 4.14: t comparison Lines for Least Squares Means of treatment

LS-means with the same letter are not significantly different

Y LSMEAN Treatment LSMEAN Number

A 24.000 14 14
A 23.667 3 3

B A 21.667 15 15
B A 21.333 11 11
B A 21.000 13 13

B A 20.333 12 12
B A 20.333 9 9
B A 20.000 2 2
B A 20.000 10 10

B A 20.000 6 6
B A 19.667 4 4
B 16.333 1 1
B 16.333 5 5

B 16.333 8 8
B 16.333 7 7

The analysis of covariance (ANCOVA) is now performed using the covariate, X.  The 
analysis is done as follows:

The SAS file has already been prepared while analyzing the data without covariate. To that 
file, the following SAS commands may be added: 

DATA irontoxicityinrice;
INPUT trt rep Y X;
/*the first column (trt) gives the treatment numbers; the second column (rep) gives the 
replication numbers; the third column (Y) gives the tolerance score of iron toxicity in rice; the 
last column (X) gives the tolerance score of iron toxicity in a susceptible check variety*/
CARDS;
. . . . . . . . . . . . . . . . . . .; /*insert data here*/
ODS RTF FILE = ‘RESULT.RTF’;
PROC GLM; /*ancova for two way classified data*/
CLASS trt rep;
MODEL Y = trt rep X;
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LSMEANS TRT/PDIFF LINES;
RUN;
ODS RTF CLOSE;
The results obtained are given in Table 4.15.

Table 4.15: Output of analysis of covariance

ANOVA

Source DF Type III SS MS F-Value Prob> F

Replication 2 22.480 11.240 2.71 0.0844

Treatment 14 152.561 10.897 2.63 0.0151

X (Check Variety as Covariate) 1 398.752 398.752 96.24 <0.0001

Error 27 111.871 4.143

Corrected Total 44 880.578

R-Square CV Root MSE y Mean

0.873 10.269 2.035 19.822

A glaring thing to notice is that the total variability explained by the model with covariate 
has gone up to 87 percent compared to 42 percent with a model without covariate. This clearly 
indicates that the covariate produces variability and the tolerance score of iron toxicity in rice 
varieties needs to be adjusted against the variable score of toxicity in the susceptible check 
variety. Obviously, therefore, the use of covariate has resulted into a considerable reduction in 
the error mean square and hence the CV has also reduced drastically from 21.544 to 10.269.
This has been possible because the effect of the covariate, X, is highly significant (p-value < 
0.0001). As a matter of fact, the treatments effects are now significantly different even at 2% 
level of significance. Without using the auxiliary information, the treatment effects were not 
significantly different. The use of covariate in the analysis has helped in catching the small 
differences among the treatment effects as significant. The covariance analysis will thus result 
into a more precise comparison of treatment effects.

The unadjusted means and the adjusted (LSMEANS) are given in the Table 4.16. It may be 
seen that the two means differ for all the varieties. This once again indicates that it has been 
worthwhile using the covariate in the model.
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Table 4.16: Treatment wise unadjusted and least square means

Level of Treatment N
Y

Unadjusted Mean LSMEAN

1 3 16.333 16.875

2 3 20.000 18.512

3 3 23.667 20.149

4 3 19.667 18.178

5 3 16.333 22.963

6 3 20.000 18.512

7 3 16.333 16.875

8 3 16.333 20.934

9 3 20.333 20.875

10 3 20.000 24.600

11 3 21.333 19.845

12 3 20.333 18.845

13 3 21.000 19.512

14 3 24.000 20.483

15 3 21.667 20.178

Table 4.17: t comparison lines for least squares means of treatments after ANCOVA

LS-means with the same letter are not significantly different

Y LSMEAN Treatment LSMEAN Number

A 24.600 10 10

B A 22.963 5 5

B C 20.934 8 8

B C 20.875 9 9

B C 20.482 14 14

B C D 20.178 15 15

B C D 20.149 3 3

B C D 19.845 11 11

B C D 19.512 13 13

C D 18.845 12 12

C D 18.512 6 6
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LS-means with the same letter are not significantly different

Y LSMEAN Treatment LSMEAN Number

C D 18.512 2 2

C D 18.178 4 4

D 16.875 7 7

D 16.875 1 1

	
It is easily seen from Table 4.17, in comparison to Table 4.14 when the analysis was done 

without the covariate, that small treatment differences have been caught as significant. The 
inference emerging from a model without covariate was altogether different from the one 
obtained using a model with covariate. For instance, treatment 14 was significantly different 
from treatments 1, 5, 7, 8 in the without covariate model. But in the covariate model, treatment 
14 is significantly different from treatments 1 and 7 only. Similarly, in the no covariate model, 
treatment 10 was statistically at par with all other treatments, whereas in the covariate model, this 
treatment performs the best and is statistically at par with only treatment 5 and is significantly 
higher in terms of toxicity compared with all other treatments.

4.3.4   Analysis using R
The purpose of this section is to provide the R code for analysis of covariance. The code 

is given for the benefit of readers who use R software for analysis. For saving the space and to 
avoid repetition, the results obtained from analysis using the R code are not given.

R code
d6=read.table(“irontoxicity.txt”,header=TRUE)
attach(d6)
names(d6)
#Treatment means and standard deviations
aggregate(y~trt,data=d6,mean)
aggregate(y~trt,data=d6,sd)
#Treatment wise box plot of y and x
boxplot(y~trt)
boxplot(x~trt)
#Two-way anova with treatments and replications
trt=factor(trt)
rep=factor(rep)
lm1=lm(y~trt+rep)
anova(lm1)
summary(lm1)
library(lsmeans)
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#ancova with class variable treatments and replication and continuous x variable
lm2=lm(y~trt+rep+x)
anova(lm2)
#to get type III sum of squares, install car package
library(car)
Anova(lm2,type=“III”)
summary(lm2)
library(lsmeans)
lsm=lsmeans(lm2,“trt”)
lsm
pairs(lsm)
detach(d6)

4.4   ANCOVA in analysis of data with missing observations
Loss of data from a well planned, designed and managed experiment is a common 

phenomenon.  The loss of data may render even a good design to lose its properties. For 
instance, if the experiment has been run as a randomized complete block (RCB) design or a 
balanced incomplete block (BIB) design and if there is loss of data, then the properties of the 
original design are lost. RCB design is an orthogonal design, but if there is a loss of data because 
of some accident, then the resulting design becomes a non-orthogonal design. Similarly, a BIB 
design is variance balanced and is most efficient for making all the possible pairwise treatment 
comparisons. However, with loss of data in a BIB design, the resulting design may not remain a 
variance balanced design. Further, the loss of data at times, may result in a design which is not 
treatment connected in the sense that it may not be possible to make all the possible pairwise 
treatment comparisons.

When there is a loss of data in any designed experiment, the analysis of data can be done in 
any of the following ways:

(a)	 Estimate the missing values of observations lost by minimizing the error sum of squares. 
Plug in the estimated values for the observations lost and analyze the data using the 
original design. The treatment sum of squares, however, needs to be adjusted in this case.

(b)	 Use analysis of covariance by defining covariates. The covariates in this case are the 
pseudo variables. The observations are taken as zero for the missing data. If n is the total 
number of observations in the original design and if p observations are lost, then the p 
observations lost are taken as zero and p covariates (pseudo variables) are defined one 
each for each of the missing observations. A covariate takes n - 1values as ‒1 (or 0) and 
the value corresponding to the one missing observation as +1.  A covariate is defined in 
a similar way for each of the p missing observations. The ANCOVA is performed using p 
covariates.
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(c)	 Analyze the residual design obtained after losing the data. The observations lost and the 
treatments corresponding to the lost observations are dropped. If n is the total number 
of observations in the original design and if p observations are lost, then the residual 
design in n – p observations is analyzed using ANOVA. Obviously the replication of the 
treatments and the block sizes change.

The use of ANCOVA in the analysis of data with missing observations is illustrated in the 
sequel.

4.4.1   Example 3 
An experiment was  conducted  at Jorhat under the aegis of Project Directorate 

of Cropping Systems Research, Modipuram (now known as Indian Institute of Farming Systems 
Research, Modipuram) using a balance incomplete block (BIB) design with parameters v = b 
= 7, r = k = 4, λ = 2 (for definition and meaning of the parameters, the reader may refer to 
Chapter 5).   The  treatment details, the block structure and the yields from each of the crop 
sequences converted into calories / hectare are given in the Table 4.18.

Table 4.18: Treatment and block details and yield (calorie/hectare) from crop sequence

Season
Treatments (Crop Sequences)

T1 T2 T3 T4 T5 T6 T7

Kharif Rice Rice Rice Rice Rice Rice Rice

Rabi - Boro Rice Mustard  Brinjal Tomato French Bean Potato

Summer Rice - Rice Rice Rice Rice Rice

Block 1 T2 (3325060) T4 (2606200) T5 (3279420) T6 (2330180)

Block 2 T1 (2992900) T2 (-) T5 (3348780) T7 (2982000)

Block 3 T1 (3639920) T4 (2467800) T6 (2196580) T7 (-)

Block 4 T3 (2602410) T5 (3696340) T6 (2388060) T7 (2921790)

Block 5 T1 (3055180) T3 (2653680) T4 (2501060) T5 (3594320)

Block 6 T2 (3380420) T3 (2760690) T4 (2522100) T7 (2961270)

Block 7 T1 (2921420) T2 (3380420) T3 (2677400) T6 (2594420)

T# denotes the treatment number and the figures in brackets are the Kilo calories/hectare

It may be noted that during the experimentation two observations pertaining to treatment 
T2 in block 2 and treatment T7 in block 3 are lost. In the sequel the data generated from a BIB 
design with two missing observations is analyzed using analysis of covariance. Two pseudo 
variables are defined, one for each of the missing observation.
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4.4.2   Analysis using SAS
The analysis of the data obtained from a BIB design with two missing observations is done 

using analysis of covariance. Two covariates (pseudo variables), X1 and X2, are defined, as 
described above. The data file for analysis using PROC GLM of SAS is given below.

DATA ancova_bibd; 
INPUT blk trt cal X1 X2;
/*In the input, blk denotes the block number; trt denotes the treatment number; cal denotes 
the total calorie obtained from the crop sequence; X1 denotes the first pseudo variable (or 
covariate) and X2 denotes the second pseudo variable (or covariate) */
CARDS;
1	 2	 3325060	 0	 0
1	 4	 2606200	 0	 0
1	 5	 3279420	 0	 0
1	 6	 2330180	 0	 0
2	 1	 2992900	 0	 0
2	 2	              0	 1	 0
2	 5	 3348780	 0	 0
2	 7	 2982000	 0	 0
3	 1	 2639980	 0	 0
3	 4	 2467800	 0	 0
3	 6	 2196580	 0	 0
3	 7	              0	 0	 1
4	 3	 2602410	 0	 0
4	 5	 3696340	 0	 0
4	 6	 2388060	 0	 0
4	 7	 2921790	 0	 0
5	 1	 3055180	 0	 0
5	 3	 2653680	 0	 0
5	 4	 2501060	 0	 0
5	 5	 3594320	 0	 0
6	 2	 3380420	 0	 0
6	 3	 2760690	 0	 0
6	 4	 2522100	 0	 0
6	 7	 2961270	 0	 0
7	 1	 2921420	 0	 0
7	 2	 3380420	 0	 0
7	 3	 2677400	 0	 0
7	 6	 2594420	 0	 0
;
ODS RTF FILE = ‘RESULT.RTF’;
PROC GLM;
CLASS trt blk;
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MODEL cal = blk trt X1  X2;
MEANS trt;
LSMEANS trt / PDIFF LINES;
RUN;
ODS RTF CLOSE;

4.4.3   Output of analysis
The results obtained from the analysis are given in Table 4.19.

Table 4.19: Output of analysis using SAS

ANCOVA

Source DF Type III SS MS F Value Prob > F

Blocks (adjusted) 6 152491189324 25415198221 1.89 0.1588

Treatments (adjusted) 6 3.2181177E12 536352954798 39.81 <0.0001

X1 (Covariate 1) 1 5.9843328E12 7878384853.3 0.58 <0.0001

X2 (Covariate 2) 1 3.9654507E12 8618880 0.00 <0.0001 

Error 13 175149529143 13473040703

Corrected Total 27 4.3125834E12

R-Square CV Root MSE cal Mean

0.991 4.346 116073.4 2670710

Using the model with two covariates, about 96 per cent of the total variability in the data 
is explained. Obviously, therefore, the CV obtained from the analysis is 4.025. From the above 
ANCOVA it may be concluded that the treatment effects differ significantly.

The unadjusted and the adjusted LSMEANS of the treatments are given in the Table 4.20. 

Table 4.20: Treatment wise least square mean

Level of 
Treatment N

cal

Unadjusted Mean LSMEAN

1 4 2902370.00 2696102.86

2 4 2521475.00 3122858.57

3 4 2673545.00 2396834.29

4 4 2524290.00 2341277.14

5 4 3479715.00 3245591.43

6 4 2377310.00 2190904.29

7 4 2216265.00 2701401.43

It may be seen from Table 4.20 that the unadjusted means differ substantially from the 
LS means. For any comparisons, therefore, LS means should be used. The pairwise treatment 
comparisons can be made using the Table 4.21.	
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Table 4.21: t comparison lines for least squares means of trt

LS-means with the same letter are not significantly different

cal LSMEAN Treatment LSMEAN Number

A 3245591.43 5 5

A 3122858.57 2 2

B 2701401.43 7 7

B 2696102.86 1 1

C 2396834.29 3 3

D C 2341277.14 4 4

D 2190904.29 6 6

4.4.4   Analysis of data after deleting the missing observations
The analysis of the data is done again after deleting the two missing observations 

corresponding to treatment 2 in block 2 and treatment 7 in block 3, as suggested above. In 
other words, instead of analyzing 28 observations, we now analyze 26 observations. The original 
design was balanced incomplete block design with parameters v = 7, b = 7, r = 4, k = 4, λ = 2. It is 
well known that a balanced incomplete block design is a non-orthogonal design and, therefore, 
the treatment sum of squares is adjusted for blocks and block sum of squares is adjusted for 
treatments. After deleting the two observations, the resulting design is again an incomplete 
block design with parameters v = 7, b = 7, r1 = 4, r2 = 3, r3 = 4, r4 = 4, r5 = 4, r6 = 4, r7 = 3, k1 = 4, k2 
= 3, k3 = 3, k4 = 4, k5 = 4, k6 = 4, k7 = 4. But this design is not a balanced incomplete block design. 
The analysis of the data is given in the sequel. The data file for analysis using PROC GLM of 
SAS is given below:

DATA ancova_bibd; 
INPUT blk trt cal;
/*In the input, blk denotes the block number; trt denotes the treatment number; cal denotes the 
total calorie obtained from the crop sequence*/
CARDS;
1	 2	 3325060
1	 4	 2606200
1	 5	 3279420
1	 6	 2330180
2	 1	 2992900
2	 5	 3348780
2	 7	 2982000
3	 1	 2639980
3	 4	 2467800
3	 6	 2196580
4	 3	 2602410
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4	 5	 3696340
4	 6	 2388060
4	 7	 2921790
5	 1	 3055180
5	 3	 2653680
5	 4	 2501060
5	 5	 3594320
6	 2	 3380420
6	 3	 2760690
6	 4	 2522100
6	 7	 2961270
7	 1	 2921420
7	 2	 3380420
7	 3	 2677400
7	 6	 2594420
;
ODS RTF FILE = ‘RESULT2.RTF’;
PROC GLM;
CLASS trt blk;
MODEL cal = trt blk;
MEANS trt;
LSMEANS trt/PDIFF LINES;
RUN;
ODS RTF CLOSE;

4.4.5   Output of analysis
 The results obtained by using PROC GLM for analysis of a general block design obtained 

after deleting the two missing observations are given in the Table 4.22.

Table 4.22: Result of analysis using PROC GLM

ANOVA

Source DF Type III SS MS F Value Prob > F

Treatments (adjusted) 6 3.2181177E12 536352954798 39.81 <0.0001

Blocks (adjusted) 6 152491189324 25415198221 1.89 0.1588

Error 13 175149529143 13473040703

Corrected Total 25 4.1690508E12

R-Square CV Root MSE cal Mean

0.958 4.036 116073.400 2876149.000
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It may be noted that the adjusted sum of squares due to treatments, adjusted sum of squares 
due to blocks and error sum of squares are exactly same in the two different approaches of 
analysis of data with missing observations. Consequently, the F-value and the Prob > F are 
also same in the two analysis. However, the corrected total sum of squares is different in the 
two cases. In one approach of analysis, the total number of observations is 28, because the two 
missing observations are taken as zero. In the second approach of analysis there are only 26 
observations. The two missing observations are deleted from the data. 

Table 4.23: Treatment wise unadjusted and least square means

Level of Treatments N

cal

Unadjusted Mean LS MEAN

1 4 2902370.00 2913120.00

2 3 3361966.67 3339875.71

3 4 2673545.00 2613851.43

4 4 2524290.00 2558294.29

5 4 3479715.00 3462608.57

6 4 2377310.00 2407921.43

7 3 2955020.00 2918418.57

It may be noticed that the unadjusted means of treatments 2 and 7 are different in the 
two approaches of analysis. The difference has occurred because in ANCOVA approach, the 
observations are treated as zero; so the total number of observations remains 4 for both these 
treatments. However, in the other approach, the two observations are deleted. Hence the number 
of observations for treatments 2 and 7 are 3 each and not 4. 

Table 4.24: t comparison lines for least squares means of treatment

LS-means with the same letter are not significantly different

cal LSMEAN Treatment LSMEAN Number

A 3462608.57 5 5

A 3339875.71 2 2

B 2918418.57 7 7

B 2913120.00 1 1

C 2613851.43 3 3

D C 2558294.29 4 4

D 2407921.43 6 6

Although the LS means obtained here are different from those obtained in the approach 
using ANCOVA, the inferences made are exactly the same.
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4.4.6   Analysis using R
The R code is given for the benefit of readers who use R software for analysis. For saving the 

space and to avoid repetition, the results obtained from using the R code are not given.

R code
d7=read.table(“ancova_bibd.txt”,header=TRUE)
attach(d7)
names(d7)
#Treatment means and standard deviations
aggregate(cal~trt,data=d7,mean)
aggregate(cal~trt,data=d7,sd)
#Treatment wise box plot of cal
boxplot(cal~trt)
#ancova with class variable treatments and block and contiuous x1 and x2 variable
trt=factor(trt)
blk=factor(blk)
lm1=lm(cal~trt+blk+x1+x2)
#To get type III sum of squares, install car package
library(car)
Anova(lm1,type=“III”)
summary(lm1)
library(lsmeans)
lsm=lsmeans(lm1,“trt”)
lsm
cld(lsm,Letters=“ABCDEF”)
pairs(lsm)
#Analysis after deleting missing observations
missing.obs=c(which(d7$x1==1),which(d7$x2==1))
d7=d7[-missing.obs,]
lm2=lm(cal~factor(trt)+factor(blk),data=d7)
Anova(lm2,type=“III”)
lsm2=lsmeans(lm2,“trt”)
lsm2
cld(lsm2,Letters=“ABCDEF”)
detach(d7)
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Incomplete Block Design without and with Interaction and Nested Classification

5.1   Introduction
In Chapter 2 it has been seen that if there is only one source of variability in the experimental 

material, then it can be taken care of by grouping (or blocking) the experimental units in such a 
way that within block variability is small and between blocks variability is large. Designs useful 
for such experimental situations are designs for one-way elimination of heterogeneity setting 
or block designs. The focus there was restricted to randomized complete block (RCB) designs, 
which have complete blocks in the sense that all the treatments appear precisely once in each 
block, i.e., each block is a complete replication. However, there do occur experimental situations 
where it is not possible to accommodate all the treatments in every block. Incomplete block 
designs (block designs in which some or all blocks are incomplete in the sense that these blocks 
are not complete replication) are useful for these experimental situations. The purpose of this 
Chapter is to study such incomplete block designs. 

 In actual practice there do occur experimental situations where the number of treatments 
is large. We have come across actual experiments being conducted with number of treatments 
as large as 36 or even more than 80. When the number of treatments in an experiment is large, 
it is not possible to form blocks that contain as many homogeneous experimental units as 
the number treatments in the experiment. This is because of the fact that when the block size 
becomes large, since large number of treatments is to be accommodated within each block, it 
is difficult to maintain homogeneity within large blocks, leading thereby to large variability 
within blocks. Further, in hilly areas or wastelands, it may not be possible to have number 
of experimental units same as the number of treatments even when the experimenter is 
interested in comparing small number of treatments. If the experimenter forces the blocks to 
accommodate all the treatments so as to form a complete block or a replicate, then the purpose 
of blocking would be defeated.  In that case the per plot variance would be very large and finally 
the CV of the design would be high. Many such experiments get rejected by the experimenters, 
particularly in the Initial Varietal Trials in the Crop Improvement Programme.

Intuitively, a remedy to this problem is to form blocks or groups of homogeneous 
experimental units by reducing the number of experimental units in each block. In other 
words, in order to overcome the problem of maintaining homogeneity among the experimental 
units within a block, form incomplete blocks instead of forming complete blocks, as in an RCB 
design.  Such a design will be termed as an incomplete block design. An incomplete block design 

Incomplete Block Design without and with
Interaction and Nested Classification

5
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is a block design in which there is at least one block that does not contain all the treatments. In 
other words, there is at least one block in the design which is not a complete block or a complete 
replication. 

Alternatively, one can view a block design as a design involving two factors each having 
certain number of levels. The two factors are the treatments and the blocks and the levels are the 
number of treatments and number of blocks. In case of an RCB design, every level of treatment 
occurs with every level of blocks. In that sense the design is orthogonal. On the contrary, in case 
of an incomplete block design, every level of treatment does not appear with every level of block. 
In that sense, these designs are non-orthogonal designs. Therefore, when we use an incomplete 
block design, there would be confounding of the treatments with the blocks. Consequently, 
there would be a loss of information in estimating treatment contrasts from an incomplete 
block design, unlike the RCB design, which is an orthogonal design, where all the treatment 
contrasts are estimated without any loss of information. In this sense incomplete block designs 
may not appear to be useful.  However, in these designs there is a substantial reduction in block 
size and consequently the per plot variance (intra block variance) also reduces considerably.  
This in itself is a very big advantage, which more than offsets the loss in precision because of 
incomplete blocks.

To make the exposition clear, suppose that an experiment is to be conducted as incomplete 
block design for v = 7 treatments in b = 7 blocks of size k = 3 each and replication of each 
treatment is r = 3.  The blocks with treatment contents are (1, 2, 4); (2, 3, 5); (3, 4, 6); (4, 5, 7); (5, 
6, 1); (6, 7, 2); (7, 1, 3). The treatments are labeled as 1 through 7 and the arrangement is without 
any randomization. Suppose block 1 is compared with block 2, then treatments 1, 3, 4, 5 get 
mixed up with the block differences. Similarly, when blocks 5 and 7 are compared, treatments 3, 
5, 6, 7 get mixed up with the block differences. Some other treatments would get mixed up with 
some other pair of block comparisons. Thus, treatment effects get mixed up or entangled with 
the block differences and the two cannot be separated. In other words, the treatment effects are 
said to be confounded with the block effects. Therefore, the use of an incomplete block design 
will always be accompanied with loss of information in estimating differences of treatment 
effects, unlike the RCB design, which is an orthogonal design, where all the treatment contrasts 
are estimated without any loss of information under the assumption that error variance is same 
for RCB design and incomplete block designs. Obviously, since RCB design is a complete block 
design, for any block comparisons, all the treatment effects get eliminated. Thus, there is no 
confounding of treatments with blocks and consequently, there is no loss of information in 
treatment comparisons. In this sense, incomplete block designs may appear not to be useful.  
However, following on the example above one can easily see that the block size has reduced 
from 7 in case of a complete block design to 3 in an incomplete block design. In other words, in 
an incomplete block design, there is a reduction of more than 50 per cent in the block size. This 
considerable reduction in block size leads to a sizeable reduction in the block variability or the 
per plot variance (intra block variance or error variance). This in itself is a very big advantage 
which more than offsets the loss in precision because of incomplete blocks.

A problem that immediately arises in the adoption of an incomplete block design is to 
get such a design. Because the blocks are incomplete, the block structure needs to be decided 
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on statistical considerations. An arbitrary arrangement of treatments in blocks may lead to a 
design that may not allow the estimation of all the pairwise differences among the treatments.   
The other problem associated with such designs is that the ease of analysis is lost. The analysis 
of data generated from incomplete block design would also become complicated. Since the 
design is non-orthogonal, for testing any hypothesis about treatment effects, the treatment sum 
of squares would need to be adjusted for the blocks. The unadjusted treatment sum of squares 
would not be the correct sum of squares for testing the null hypothesis about homogeneity of 
treatment effects. Similarly, for testing any hypothesis about block effects, the block sum of 
squares would need to be adjusted for treatments. The unadjusted block sum of squares would 
not be the correct sum of squares for testing the null hypothesis about the homogeneity of block 
effects. However, in case of orthogonal designs, the adjusted sum of squares is equal to the 
unadjusted sum of squares. Further, the unadjusted treatment means would not suffice to test 
the hypotheses about pairwise treatment comparisons, since the design is non-orthogonal. In 
this case one would have to work out the adjusted means called least square means (LS means). 
In case of orthogonal designs, the unadjusted means are same as the adjusted means.

From the point of view of the stakeholders or experimenters from other sciences, using an 
incomplete block design may not be an easy affair. A strong interaction with the statistician 
before the actual experiment is laid out is absolutely essential. But from practical considerations, 
the advantages are enormous.

The class of incomplete block designs is very wide. Among the class of incomplete block 
designs, a Balanced Incomplete Block (BIB) design is the simplest design. For making all the 
possible pairwise treatment comparisons, a BIB design is the most efficient design among all 
designs with given number of treatments, number of blocks and block sizes. Among the other 
incomplete block designs are partially balanced incomplete block designs, which form a very 
broad class of designs containing group divisible and extended group divisible designs, square 
and rectangular lattice, alpha designs, etc. It would be beyond the scope of this book to give 
details of such designs. We shall restrict ourselves to defining BIB design with some detail. For 
the analysis of data generated from any incomplete block design, the SAS and R commands 
would be given. Some examples would also be given to explain how the SAS commands are 
useful in analysis of such data. These SAS and R commands are similar for other classes of 
incomplete block designs.

5.2   Randomization of treatments in an incomplete block design
Since the blocks are incomplete in an incomplete block design, the randomization of 

treatments to the blocks is slightly different from that of a RCB design. The randomization of 
treatments to experimental units comprises of the following steps:

1.  Randomize the treatment labels. 
2.  Randomize the blocks.
3.  Randomize the treatments within each block. 
4.  A separate randomization is done in each block.
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5.3   Analysis of incomplete block design
The model for analysis of data from an incomplete block design is 

response = general mean + treatments effects + blocks effects +error

Alternatively, the mathematical model is

		  , ; u = 0 or 1

where  is the observation recorded on the ith treatment in the jth  block, ; 
,   is the general mean;  is the effect of ith treatment,  is the effect of jth block, 

and ’s are uncorrelated random error components assumed to be distributed normally with 
zero mean and constant variance  u = 0 or 1 indicates that the (i, j)th cell has no observation 
or one observation, i.e., a treatment can appear at most once in a block.

In intra-block analysis we assume that the treatment effects and the block effects are fixed, 

though unknown and  are uncorrelated random variables.  Since an incomplete block 

design is a non-orthogonal design, there would be entanglement/confounding of effects of 
treatment differences with the block comparisons, and so the treatment sum of squares would 
have to be adjusted for blocks. For an incomplete block design with v treatments, b blocks, 
replication of treatments r and block sizes k, the ANOVA for testing the null hypothesis 

 against an alternative hypothesis  

takes the form given in Table 5.1.

Table 5.1: ANOVA table

Source DF SS MS F

Treatments (adjusted) v ‒ 1 SST

Blocks (unadjusted) b ‒ 1 SSB

Error (Intra-block) bk ‒ b ‒ v + 1 SSE

Total bk – 1

If , then the treatment effects are significant. Here is the 
table value of Snedecor’s F distribution with v - 1 and bk - b -  v +1 degrees of freedom and at 
α level of significance.  

On the other hand for making block comparisons, the analysis of variance would be 
different. In this case the null hypothesis would be  against an 
alternative hypothesis . The ANOVA in this case is given in 
Table 5.2.
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Table 5.2: ANOVA table

Source DF SS MS F

Blocks (adjusted) b ‒ 1 SSB

Treatments (unadjusted) v ‒ 1 SST

Error (Intra-block) bk  ‒ b ‒ v + 1 SSE

Total bk  – 1

If , then the block effects are significant. Here is the 

table value of Snedecor’s F distribution with b ‒ 1 and bk ‒ b ‒  v +1 degrees of freedom and at 

α level of significance.  

Remark 5.1. The following identity holds:

Treatment sum of squares (adjusted) + Block sum of squares (unadjusted) = Treatment sum 
of squares (unadjusted) + Block sum of squares (adjusted). 

This is so because of the fact that the model sum of squares in both the cases would be same. 
As a consequence, the error sum of squares in both the cases would also be the same.

5.4   Balanced incomplete block design
A BIB design is an arrangement of v treatments in b blocks such that

i.	 each treatment occurs at most once in a block, i.e., a treatment either occurs or does not 
occur in a block and all treatments do not occur in a block, 

ii.	 each block contains k (<v) treatments, i.e., the block size is k (<v),
iii.	 each treatment occurs in exactly r (<b) blocks,
iv.	 every pair of treatments occurs together in exactly λ (<b) blocks.

The symbols  are called the parameters of the design. These parameters are not 
independent.  The following parametric relations hold:   

(i)  vr = bk, (ii) . Besides the two parametric relations, for a BIB design the 
inequality,  holds. This is known as Fisher’s inequality.

Let , , define the difference of two treatment effects. An incomplete 

block design is said to be balanced (variance balanced) if the variance of any estimated difference 

of treatment effects,  (or estimated elementary contrast of treatments), is constant, i.e.  

constant for all 
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For a BIB design, for all , where σ2 is the intra block variance 

or per plot variance or error variance.

Remark 5.2 If λ = b, i.e., every pair of treatments appears together in all the b blocks, then 
v = k and r = b. In that case a BIB design reduces to RCB design.

Example 1 A BIB design for is the following:

Blocks

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

1 2 3 4 5 6 7 3 4 5 6 7 1 2

2 3 4 5 6 7 1 5 6 7 1 2 3 4

4 5 6 7 1 2 3 6 7 1 2 3 4 5

8 8 8 8 8 8 8 7 1 2 3 4 5 6

5.4.1   Symmetric BIB Design
A BIB design with v = b (and consequently r = k) is called a symmetric BIB design. In a 

symmetric BIB design any two blocks have λ treatments common. The following is an example 

of a symmetric BIB design with : 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

1 2 3 4 5 6 7 8 9 10 11

3 4 5 6 7 8 9 10 11 1 2

4 5 6 7 8 9 10 11 1 2 3

5 6 7 8 9 10 11 1 2 3 4

9 10 11 1 2 3 4 5 6 7 8

In this design there are always two treatments common in any two blocks.

5.4.2   Efficiency of BIB design

Let , , denote the difference of two treatment effects. The variance of the 

estimated difference between any two treatment effects from a BIB design is given by

, where 
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The variance of the estimated difference between any two treatment effects from a RCB 
design with same number of treatments v and same replication r, as that in BIB design, is given 

by

where  is the per observation variance in case of RCB design. Thus the efficiency of BIB 
design as compared to RCB design is given by  

Efficiency =

The quantity E is called the Efficiency Factor of BIB design. Here E<1, since k < v. However,  
is expected to be very small compared to  because the block size in incomplete block design 
is much small compared to the block size in a complete block design. As such the efficiency is 
expected to be greater than 1.

The estimated variance of the estimated difference between any two treatment effects, from 
a BIB design, is given by

Therefore, the estimated standard error of estimated difference between any two treatment 
effects is given by 

5.4.3   Example 2
An experiment was conducted at Jorhat under the aegis of Project Directorate of Cropping 

Systems Research (now Indian Institute of Farming Systems Research), Modipuram using a BIB 
design with parameters v = b = 7, r  = k = 4, λ = 2.  The treatment details are as given in Table 5.3.

Table 5.3: Treatment details of an experiment

Treatments (Crop Sequences)

Season T1 T2 T3 T4 T5 T6 T7

Kharif Rice Rice Rice Rice Rice Rice Rice

Rabi - Boro Rice Mustard Brinjal Tomato French Bean Potato

Summer Rice - Rice Rice Rice Rice Rice
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The returns from each of the crop sequence were converted into calories / hectare. The 
block structure and the calories of the output per hectare obtained are given in the Table 5.4.

Table 5.4: Returns from different crop sequences in calories / ha

Block 1 T2 (3325060) T4 (2606200) T5 (3279420) T6 (2330180)

Block 2 T1 (2992900) T2 (3228180) T5 (3348780) T7 (2982000)

Block 3 T1 (3639920) T4 (2467800) T6 (2196580) T7 (2730780)

Block 4 T3 (2602410) T5 (3696340) T6 (2388060) T7 (2921790)

Block 5 T1 (3055180) T3 (2653680) T4 (2501060) T5 (3594320)

Block 6 T2 (3380420) T3 (2760690) T4 (2522100) T7 (2961270)

Block 7 T1 (2921420) T2 (3380420) T3 (2677400) T6 (2594420)

T# denotes the treatment number and the figures in bracket are the calories / hectare 

The purpose of the experiment is to determine the crop sequence that produces maximum 
calories / ha.

5.4.4   Analysis of Data 
The data has been generated using a BIB design with parameters v = b = 7, r  = k = 4, λ= 2. 

The data has been analyzed using SAS software. The SAS commands and the data structure are 
given in the sequel.

DATA BIBD;
INPUT blk  trt	   calorie;
CARDS;
1	 2	 3325060
1	 4	 2606200
1	 5	 3279420
1	 6	 2330180
2	 1	 2992900
2	 2	 3228180
2	 5	 3348780
2	 7	 2982000
3	 1	 2639980
3	 4	 2467800
3	 6	 2196580
3	 7	 2730780
4	 3	 2602410
4	 5	 3696340
4	 6	 2388060
4	 7	 2921790
5	 1	 3055180
5	 3	 2653680
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5	 4	 2501060
5	 5	 3594320
6	 2	 3380420
6	 3	 2760690
6	 4	 2522100
6	 7	 2961270
7	 1	 2921420
7	 2	 3380420
7	 3	 2677400
7	 6	 2594420
;
PROC GLM;
CLASS blk trt;
MODEL calorie = trt  blk;
LSMEANS trt/PDIFF  LINES; /*pairwise comparisons using Fisher’s protected LSD*/
LSMEANS trt / PDIFF ADJUST = BON LINES; /*pairwise comparisons using BONFERRONI 
correction*/
LSMEANS trt / PDIFF ADJUST = TUKEY LINES; /*pairwise comparisons using Tukey’s 
Honest significant difference test*/
RUN;

5.4.5   Output of analysis    
PROC GLM gives the analysis of variance for a block design.                    

Table 5.5: Results of PROC GLM for calorie data

ANOVA

Source DF SS MS F value Prob > F

Model 12 4.1295465E12 344128876386 28.20 <0.0001

Error 15 183036843371  12202456225

Corrected Total 27 4.3125834E12

R-Square         CV    Root MSE           calorie Mean

0.958          3.831           110464.70                 2883530

It is evident from these results that the model with treatments and blocks explains about 96 
per cent of the total variability in the calorie values (data). This result is also supported by the 
fact that the model component is highly significant (p-value < 0.0001).

While dealing with non-orthogonal data, the way the terms are described in the model in the 
PROC GLM is very important. If the interest of the experimenter is in testing the homogeneity 
of treatment effects, then the statement is MODEL calorie = trt blk. For this description of 
model, the following ANOVA is produced: 
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Table 5.6: ANOVA table for testing homogeneity of treatment effects

ANOVA

Source DF Type I SS Mean Square F Value Prob > F

Treatments 6 3.2867911E12 = 
3.2867911×1012

547798519371 44.89 <0.0001

Blocks 6 842755400400 140459233400 11.51 <0.0001

Error 15 183036843371  12202456225

Corrected Total 27 4.3125834E12

In ANOVA Table 5.6, the F-value for treatments component can be used for testing the 
equality of treatment effects, but the F-value for blocks component cannot be used for testing 
the equality of block effects. On the other hand, if the interest of the experimenter is in testing 
the homogeneity of block effects, then the statement is MODEL calorie = blk trt. The following 
ANOVA is then produced. 

Table 5.7: ANOVA table for testing homogeneity of block effects

ANOVA

Source DF Type I SS Mean Square F Value Prob > F

Blocks 6 195740712429 32623452071 2.67 0.0573

Treatments 6 3.9338058E12 655634300700 53.73 <0.0001

Error 15 183036843371  12202456225

Corrected Total 27 4.3125834E12

In the ANOVA Table 5.7, the F-value for blocks component can be used for testing the 
equality of block effects, but the F-value for treatments component cannot be used for testing 
the equality of treatment effects. As described earlier also, the error sum of squares in both 
the ANOVAs is same. This means the treatment sum of squares and the block sum of squares 
in both the ANOVAs, though different, have the same sum and that sum would be equal to 
the sum of squares due to model, as given in the first ANOVA above. In the first case where 
treatments appear before blocks in the model, the treatments sum of squares are adjusted for 
blocks, but the block sum of squares are unadjusted. In the second case where blocks appear 
before treatments in the model, the block sum of squares are adjusted for treatments, but the 
treatment sum of squares are unadjusted. So while using Type I sum of squares, one has to be 
very careful about the order in which the variables appear in the model.

A remedy to such a problem is that while analyzing the non-orthogonal data, one should 
use the Type III sum of squares, because the ANOVA produced has all the effects adjusted for 
all other remaining effects. The SAS code for obtaining Type III sum of squares is given below.
PROC GLM;
CLASS blk trt;
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MODEL calorie = trt  blk/SS3;
RUN;
This ANOVA is given in Table 5.8.

Table 5.8: ANOVA table with type III sum of squares

Source DF Type III SS MS F Prob > F

Treatments               6 3.2867911E12       547798519371 44.89 < 0.0001

Blocks 6 195740712429 32623452071 2.67     0.0573

Error 15 183036843371 12202456225

Total 27 4.3125834E12

In ANOVA Table 5.8, both the treatments and blocks sums of squares are adjusted for blocks 
and treatments, respectively. One may also notice that the difference between the adjusted and 
the unadjusted sum of squares is quite large. 

Such a thing, however, does not happen in case of an orthogonal design. For an orthogonal 
design, the Type I and Type III sum of squares are identical. So to conclude, it would always be 
better to use the Type III sum of squares. 

For making the multiple comparisons in the form of pairwise treatment comparisons, 
LSMEANS trt / PDIFF LINES is used. This command makes by default the pairwise treatment 
comparisons using Student’s t statistic and least square means. The unadjusted and the least 
squares means (LSMEANS) of the calorie value for each treatment are given in Table 5.9.

Table 5.9: Unadjusted and LS MEANS of the treatments

Treatment Unadjusted Calorie Mean Calorie LSMEAN

1 2902370.00 2917317.14           

2 3328520.00 3309634.29           

3 2673545.00 2609654.29           

4 2524290.00 2553810.00           

5 3479715.00 3467092.86           

6 2377310.00 2403437.14           

7 2898960.00 2923764.29

It is clearly visible from Table 5.9 that the unadjusted means are substantially different from 
the least square means. Once again, it is important to realize that the non-orthogonality has a 
major role to play and the adjustments need to be made for the non-orthogonality. 

In order to make pairwise treatment comparisons through LSMEANS, Table 5.10 is 
produced.  
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Table 5.10: Least squares means for treatment effects

 Pr > |t| for H0: LSMean(i)=LSMean(j) 
Dependent Variable: Calorie Values

i/j 1 2 3 4 5 6 7

 1 0.0003 0.0022 0.0006 <0.0001 <0.0001 0.9395

2 0.0003 <0.0001 <0.0001 0.0789 <0.0001 0.0003

3 0.0022 <0.0001 0.5138 <0.0001 0.0260 0.0019

4 0.0006 <0.0001 0.5138 <0.0001 0.0919 0.0005

5 <0.0001 0.0789 <0.0001 <0.0001 <0.0001 <0.0001

6 <0.0001 <0.0001 0.0260 0.0919 <0.0001 <0.0001

7 0.9395 0.0003 0.0019 0.0005 <0.0001 <0.0001

It may be seen from Table 5.10 that mostly, the pairwise treatments are significantly different 
except the pairs (1, 7) and (3, 4) which are not significantly different from each other. The pairs 
of treatments (2, 5) and (4, 6) are also marginally not significantly different.  Alternatively, these 
comparisons can also be made using the Table 5.11. 

Table 5.11: t comparison lines for least squares means of treatments

CALORIE LSMEAN LSMEAN Number

A 3467093 5

A 3309634 2

B 2923764 7

B 2917317 1

C 2609654 3

D C 2553810 4

D 2403437 6

It may be seen that treatment 5 (Rice - Tomato - Rice sequence) is the cropping sequence 
that yields maximum calorific value and the treatment 6 (Rice - French Bean - Rice sequence) 
is the cropping sequence that yields lowest calorific value.  It may also be seen from the table of 
t-comparison lines for least squares means of treatments that treatments 5 and 6 are significantly 
different from each other. In fact treatment 5 is significantly different from all other treatments 
except treatment 2 (Rice - Boro Rice Sequence). There is not much to choose between these two 
crop sequences. Similarly, treatment 6 is at par with treatment 4 but is significantly different 
from all other treatments. 

LSMEANS trt / PDIFF ADJUST = BON LINES;   LSMEANS trt / PDIFF ADJUST = TUKEY 
LINES; commands, respectively make the pairwise treatment comparisons using Bonferroni 
and Tukey’s methods. The results obtained are given in the sequel.
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Bonferroni method

Using Bonferroni method, the pairwise comparison of treatment effects are made using 
LS MEANS. The results are presented in Tables 5.12 and 5.13. It may be easily seen that using 
this method the significance levels are higher than those obtained using t statistic for pairwise 
treatment comparisons. This is so because the probability levels have been adjusted for the 
multiple comparisons. The pair of treatments that were not significantly different earlier are 
once again not significantly different, though the probability levels have increased. However, 
using Bonferroni method, the pair of treatments 3 and 6 is not significantly different, though 
these were significantly different using t statistic. The same results are also presented through 
the Table giving alphabets A, B, C, for representing the significance of the difference. 

Table 5.12: Least squares means for treatment effects for calorie values

Pr > |t| for H0: LSMean(i) = LSMean(j) 
Dependent Variable: Calorie values

i/j 1 2 3 4 5 6 7

1 0.0060 0.0464 0.0119 0.0002 0.0004 1.0000

2 0.0060 <0.0001 <0.0001 1.0000 <0.0001 0.0070

3 0.0464 <0.0001 1.0000 <0.0001 0.5464 0.0396

4 0.0119 <0.0001 1.0000 <0.0001 1.0000 0.0102

5 0.0002 1.0000 <0.0001 <.0001 <0.0001 0.0002

6 0.0004 <0.0001 0.5464 1.0000 <0.0001 0.0003

7 1.0000 0.0070 0.0396 0.0102 0.0002 0.0003

Table 5.13: Bonferroni comparison lines for least squares means of treatments

LS-means with the same letter are not significantly different

CALORIE LSMEAN LSMEAN Number

A 3467093 5

A 3309634 2

B 2923764 7

B 2917317 1

C 2609654 3

C 2553810 4

C 2403437 6
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Tukey’s method

Using Tukey’s method, the pairwise comparison of treatment effects is made using LS 
MEANS. The results are presented in Tables 5.14 and 5.15. It may be easily seen that using this 
method the significance levels are higher than those obtained using t statistic, but not as high 
as obtained using Bonferroni methods. The results obtained are similar to one obtained using 
Bonferroni method. The results are also depicted through the Table giving alphabets A, B, C, for 
representing the significance of the difference. 

Table 5.14: Least squares means for treatment effects

Pr > |t| for H0: LSMean(i) = LSMean(j) 
Dependent Variable: Calorie values

i/j 1 2 3 4 5 6 7

1 0.0042 0.0285 0.0080 0.0001 0.0003 1.0000

2 0.0042 <0.0001 <0.0001 0.5173 <0.0001 0.0048

3 0.0285 <0.0001 0.9926 <0.0001 0.2372 0.0246

4 0.0080 <0.0001 0.9926 <0.0001 0.5667 0.0069

5 0.0001 0.5173 <0.0001 <0.0001 <0.0001 0.0002

6 0.0003 <0.0001 0.2372 0.5667 <0.0001 0.0003

7 1.0000 0.0048 0.0246 0.0069 0.0002 0.0003

Table 5.15: Tukey comparison lines for least squares means of treatments

LS-means with the same letter are not significantly different

CALORIE LSMEAN LSMEAN Number

A 3467093 5

A 3309634 2

B 2923764 7

B 2917317 1

C 2609654 3

C 2553810 4

C 2403437 6

Alternatively, the pairwise treatment comparisons can be represented as given in Table 5.16. 
Means with at least one letter common are not statistically significant using Tukey’s Honest 
Significant Difference. These results are same as obtained earlier using Bonferroni method or 
Tukey’s method. 
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Table 5.16: Treatments with letter display

Treatment 
Calorie value

Treatment LSMEAN Rank of Treatment

1 2917317.14B                 4

2 3309634.29A                 2

3 2609654.29C                 5

4 2553810.00C                 6

5 3467092.86A                 1

6 2403437.14C                 7

7 2923764.29B                 3

General Mean 2883530.00 .

p-Value <0.0001 .

CV (%) 3.83 .

5.4.6   Analysis using R
The data has also been analyzed again using R software. The R code is given in the sequence. 
The results obtained are same as obtained using SAS and, therefore, have not been reported to 
avoid duplication. 

R code
d8=read.table(“bibd.txt”,header=TRUE)
attach(d8)
names(d8)
#Treatment means and standard deviations
aggregate(calorie~trt,data=d8,mean)
aggregate(calorie~trt,data=d8,sd)
#Treatment wise box plot of calorie
boxplot(calorie~trt)
#anova with class variable treatments and block
trt=factor(trt)
blk=factor(blk)
lm1=lm(calorie~blk+trt)
anova(lm1)
lm2=lm(calorie~trt+blk)
anova(lm2)
library(car)
#produces both adj trtss and adj blkss
Anova(lm1,type=“III”)
Anova(lm2,type=“III”)
library(lsmeans)
lsm=lsmeans(lm1,“trt”)
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lsm
pairs(lsm)
#to provide letters for groups, need to install multcompView
library(multcompView)
cld(lsm,Letters=“abcdef ”) 
#Comparisons are based only on Tukey’s HSD. It is also suggested that the number of letters 
#here should be equal to expected number of groups or equal to the number of treatments, 
#when number of treatments is more than 26, then one may add numerals.*/
detach(d8)

Here, the function cld() in R gives letter display of treatment comparisons based on Tukey’s 
Honest Significant Different test.

Remark 5.3 As mentioned earlier in Section 5.1, as the experimenter moves away from 
a complete block design to an incomplete block design, obtaining the layout of the design 
becomes difficult for the experimenter. Unlike RCB design, the experimenter cannot write 
down the layout of an incomplete block design without the help of a statistician. However, for 
the benefit of experimenters, a catalogue of balanced incomplete block designs is available at 
Design Resources Server at www. iasri.res.in/ design/. 

Remark 5.4 It may be worthwhile mentioning here that the procedure of analysis described 
above holds also for any incomplete block design, other than balanced incomplete block design. 
The other incomplete block designs could be partially balanced incomplete block design 
including group divisible design, rectangular design, etc. This analysis is also applicable to the 
incomplete block designs with unequal replications and unequal block sizes, as described in 5.4.

5.5   Other incomplete block designs
Incomplete block designs are used because of practical considerations. When the number of 

treatments is large, it may not be possible to form homogeneous complete blocks. But forming 
incomplete blocks of equal sizes may also lead to the problem of forming blocks which are 
not homogeneous. If soil salinity is a source of variability in the field, then different patches of 
salinity can form natural blocks. But the patches may be of unequal sizes, which may demand 
forming blocks of unequal sizes. Similarly litter mates of animals are the natural blocks. But the 
number of litter mates need not be equal. Once again, there would be a need to form blocks of 
unequal sizes. In the same spirit, it is indeed possible to have unequal replication of treatments 
because of not having enough replications possible for every treatment. In view of this, block 
designs with unequal block sizes or / and unequal replication of treatments are available in the 
literature. The following are the examples of a variance balanced incomplete block design with 
unequal replication of treatments or / and unequal block sizes: 

Consider an incomplete block design D1 [v = 8, b = 12, r = 5, k1 = k2 = k3 = k4 = k5 = k6 = k7 
= k8 = 4, k9 = k10 = k11 = k12 = 2]:
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1 5 2 6 3 7 4 8 1 2 3 4

2 6 7 3 8 4 1 5 5 6 7 8

3 7 8 4 1 5 6 2

4 8 1 5 6 2 7 3

This design has n = 40 experimental units. The design D1 is with unequal block sizes but has 
equal replications of treatments. This design is also variance balanced. The variance of the 

estimated contrast of the difference of any two treatment effects is given by  for 
all 

Consider another example of a variance balanced design with unequal replication of 
treatments and unequal block sizes, D2 [v = 6, b = 11, r1 = r2 = r3 = r4 = 4, r5 = r6 = 5, k1 = k2 = 4, 
k3 = k4 = k5 = k6 = k7 = k8 = k9 = k10 = k11 = 2]:

1 1 1 1 2 2 3 3 4 4 5

2 2 5 6 5 6 5 6 5 6 6

3 3

4 4

The parameters of this design are v = 6, b = 11, r1 = r2 = r3 = r4 = 4, r5 = r6 = 5, k1 = k2 = 4, k3 = k4 
= k5 = k6 = k7 = k8 = k9 = k10 = k11 = 2. The number of experimental units in this design is n = 26.  
This design is also variance balanced and the variance of the estimated contrast of the difference 
of any two treatment effects is given by  for all 

These designs have strong potential for application. Although BIB designs have been used 
in agricultural experiments, these designs can also be used in experimentation without any 
problem. But as has been mentioned above, the researcher would have to interact with the 
statistician to get these designs. For the benefit of experimenters, however, the randomized 
layout of the design can be obtained from Design Resources Server at www.iasri.res.in/design. 
Designs with equal and unequal block sizes can be obtained from this web resource.

5.6   Crossed classification with interaction
This chapter has been devoted to incomplete block designs. These designs are in fact two 

way crossed classification in the sense that all the levels of one factor appear with all or some 
levels of the other factor. Since there can at most be one observation at the ith level of one factor 
and jth level of the other factor, it was not possible to fit/estimate the interactions. However, if 
there are more than one observation at the ith level of one factor and jth level of the other factor, 
then it is possible to fit the interactions also. But if like an incomplete block design, there are 
some cells in which there are no observations, then the interaction cannot be defined in that 
cell. Consider the following example to make the exposition clear.
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Suppose that an agronomist conducts a series of experiments with four different fertilizer 
treatments on each of the five varieties of wheat. For each fertilizer-by-variety combination, the 
researcher plants several 5'×5' plots. At harvest time it is found that many of the plots have been 
lost due to some accident and the researcher is left with the data given in Table 5.17.

Table 5.17: Weight of wheat produced from 5’×5’ plots

Fertilizer
Variety of Wheat

1 2 3 4 5

1 12 14 15 - 09

09 13 12 - 12

11 15 - - 10

- - - - 08

2 11 17 - 14 12

13 14 - 12 13

10 16 - 10 -

11 - - 15 -

3 16 18 17 09 14

13 20 17 11 -

13 15 - 14 -

- 13 - 08 -

4 20 19 18 15 18

17 16 21 14 21

- 18 - 16  16

- - - 12 -

The suitable linear model for analyzing the data of the type just described is the following:

	

Here  is the uth observation obtained from the jth level of factor B (variety) and the ith  

level of factor A (Fertilizer), μ is the general mean, αi is the effect of the ith level of factor A, βj 

is the effect of the jth level of factor B,  is the interaction effect due to the jth level of factor B 

(variety) and the ith level of factor A (Fertilizer), and εiju is the random error term associated with 

the observation  and distributed independently and identically with mean zero and constant 

variance σ2. Here . Let  denote the number of observations in the jth 

level of factor B and ith level of factor A. For the incomplete block designs described earlier, 

 takes values 0 or 1 for all  . But in the present context, , and  
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,  and . Wherever , the interaction is not 

defined for that cell. The total number of interactions, therefore, would be less than or equal to 
ab. We shall let s denote the total number of cells in which 

For the example under consideration, a = 4, b = 5, s = 18, 

 

 

The SAS commands for the analysis of data generated are the following:

DATA twoway_interaction;
INPUT Factor A  FactorB   response;
CARDS;
.
INSRT DATA HERE
.
;
PROC GLM;
CLASS FactorA  FactorB;
MODEL response = FactorA  FactorB  FactorA*FactorB;
LSMEANS FactorA  FactorB  FactorA*FactorB / PDIFF ADJUST = TUKEY LINES
RUN;

The R code for similar analysis is given below.
twoway_interaction=read.table(“twoway_interaction.txt”,header=TRUE)
attach(twoway_interaction)
names(twoway_interaction)
lm1=lm(response~factor(A)+factor(B)+factor(A):factor(B),data= twoway_interaction)
anova(lm1)
#Tukey comparison
aov.fit=aov(response~factor(A)+factor(B)+factor(A):factor(B),data= twoway_interaction)
TukeyHSD(aov.fit,“factor(A)”)
TukeyHSD(aov.fit,“factor(B)”)
TukeyHSD(aov.fit,“factor(A):factor(B)”)
detach(twoway_interaction)

The analysis of variance obtained from this analysis would be as shown in Table 5.18.
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Table 5.18: ANOVA table for two way cross classification

ANOVA for the Example ANOVA for two-way crossed classification

Source DF Source DF

Factor A 3 Factor A a - 1

Factor B 4 Factor B b - 1

FactorA*FactorB 10* FactorA*FactorB s

Error 35 Error n.. - a - b - s + 1

Corrected Total 52 Corrected Total n..- 1

* indicates the number of interactions defined. In this case there are 12 cells but two cells are empty. So the number 
of interactions defined is 10.

For the example given above, the results obtained using the SAS commands are described 
in the sequel. It may be mentioned here that only the results are reported for the purpose of 
illustration only. There will be a reference to this type of analysis in subsequent Chapters as well 
where the analysis will be reported and discussed in detail. 

Table 5.19: Result obtained using SAS commands

ANOVA

Source DF Type III SS MS F- Value Prob > F

Fertilizer 3 243.655 81.218 20.95 <0.0001

Variety 4 152.547 38.137 9.84 <0.0001

Fertilizer*Variety 10 58.627 5.863 1.51 0.1763

Error 35 135.667 3.876

Corrected Total 52 580.528

R-Square CV Root MSE yield Mean

0.766 13.969 1.969 14.094

From the analysis of variance, it is obvious that the fitted model has been able to explain 
about 77 per cent of the total variability in the data. The CV is slightly high, though (13.969). The 
effect of fertilizer and the variety are highly significant. But the interaction between fertilizer 
and variety is statistically not significant.

	 Table 5.20: LS MEANS for variety and fertilizer levels

Variety yield LSMEAN  Fertilizer yield LSMEAN

1 13.604 1 Non-est

2 15.958 2 Non-est

3 Non-est 3 14.400

4 Non-est 4 17.650

5 13.646
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The LS MEANS for various levels of fertilizers and varieties are given in Table 5.20. It 
may be seen that the levels 3 and 4 of the variety and levels 1 and 2 of the fertilizer are not 
estimable. The reason is that the interaction for these combinations are not defined because of 
no observation in two cells corresponding to level 1 of fertilizer, level 4 of variety and level 2 of 
fertilizer and level 3 of variety. It is for this reason that in Table 5.21 of LS MEANS of interaction, 
the combination (1, 4) and (2, 3) of variety and fertilizer is not included.

Table 5.21: LSMEANS for the combinations of variety and fertilizer levels

Fertilizer Variety yield LSMEAN Fertilizer Variety yield LSMEAN

1 1 10.667 3 2 16.500

1 2 14.000 3 3 17.000

1 3 13.500 3 4 10.500

1 5 9.750 3 5 14.000

2 1 11.250 4 1 18.500

2 2 15.667 4 2 17.667

2 4 12.750 4 3 19.500

2 5 12.500 4 4 14.250

3 1 14.000 4 5 18.333

The pairwise comparison of variety×fertilizer interaction effect is made by using Tukey’s 
adjustment. The highest yield is obtained from third level of variety used with fourth level of 
fertilizer, while the lowest yield is obtained from fifth level of variety and first level of fertilizer. 
The two responses are statistically significant. 

 Table 5.22: Tukey-Kramer comparison lines for least squares means of fertilizer*variety

LS-means with the same letter are not significantly different
yield LSMEAN Fertilizer Variety LSMEAN Number

A 19.500 4 3 16
A 18.500 4 1 14
A 18.333 4 5 18
A 17.667 4 2 15

B A 17.000 3 3 11
B A 16.500 3 2 10
B A C 15.667 2 2 6
B D A C 14.250 4 4 17
B D A C 14.000 1 2 2
B D A C 14.000 3 1 9
B D A C 14.000 3 5 13
B D A C 13.500 1 3 3
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LS-means with the same letter are not significantly different
yield LSMEAN Fertilizer Variety LSMEAN Number

B D A C 12.750 2 4 7
B D A C 12.500 2 5 8
B D C 11.250 2 1 5
B D C 10.667 1 1 1

D C 10.500 3 4 12
D 9.750 1 5 4

The LINES display does not reflect all significant comparisons. The following additional pairs are 
significantly different: (16,7); (10,5); (10,1).

 Remark 5.5:  In the Example described just above, the interaction effect is found to be 
non-significant. Therefore, in this case the interpretation should have been based on a model 
without interaction effects, i.e., main effects alone. In presence of interactions, LSMEANS of 
main effects are non-estimable. However, just for the sake of completing the example so as to 
help the experimenters understand the way in which the results would be obtained, have the 
Tables 5.20, 5.21 and 5.22 given. This may not be done in practice.

5.7   Nested classification
In Chapter 2 while describing RCB design it has been seen that every level of one factor 

crosses with every level of the other factor. The two factors are the treatments and the blocks. 
In a Latin square design also there are three two-way classifications, viz. treatments vs rows, 
treatments vs columns and rows vs columns. In all the three classifications, like RCB design, every 
level of one factor crosses with every level of the other factor. In order to make the exposition 
clear, consider RCB design with v = 6 and b = 5. The 6×5 matrix N with cell entries giving the 
replication of each treatment in each block, known as incidence matrix, of this design is 

In a BIB design described in this chapter, once again there are two classifications viz. 
treatments and blocks. But in an incomplete block design, be it a BIB design or any other 
incomplete block design, all the levels of one factor do not cross with every level of the other 
factor. It is for this reason these designs are non-orthogonal. To make the exposition clear, 
consider an incomplete block design with v = 6 and b = 5. The design is (1, 2, 11); (3, 4, 11); (5, 
6, 11); (7, 8, 11); (9, 10, 11). The 11×5 incidence matrix N of this design is 
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It may be seen from the above two examples that some levels of one factor do cross some 
levels of the other factor, if not all the levels. It does not happen that a given level of one factor 
crosses only one level of the other factor. However, there do occur experimental situations 
where it is not practically feasible to cross levels of one factor with each of the levels of the other 
factor. Levels of one factor can only be crossed with only one of the levels of the second factor. 
One such experimental situation is described in the sequel.

Consider an experiment in which 4 sires are mated to 15 dams. The first sire is mated to 4 
dams, the second sire is mated to 3 dams, the third sire is mated to 3 dams and the fourth sire is 
mated to 5 dams. The birds produced lay eggs and the weight of eggs are recorded. The number 
of birds produced may vary from dam to dam between sires to which these dams are mated as 
well as within sires also. The details of the experiment are given in Table 5.23.

Table 5.23: Mating plan of sires and dams and the egg weight (in gms) of birds produced

Sire Dams Egg weight (in grams) of birds 

1 1 52, 45, 43, 49

2 50, 52, 49

3 46, 53

4 45, 49, 50, 47, 50

2 1 49, 50 , 54, 47

2 55, 55, 50, 50, 54

3 50, 47, 50

3 1 50, 47, 48

2 43, 43, 48, 51, 47

3 45, 46, 49

4 1 45, 44, 49

2 50, 57, 45, 47, 50

3 41, 37, 47, 48, 49 

4 45, 45, 48, 50

5 58, 50, 41, 47, 37, 47
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In this experiment the sire vs dams incidence matrix would be the following:

It may be seen that in this Example, the levels of the second factor appear with only one of 
the levels of the first factor. For example, levels 1, 2, 3, 4 of the second factor appear only with 
level 1 of the first factor and not with any other level of the first factor; similarly levels 5, 6, 7 of 
the second factor appear with only level 2 of the first factor and not with any other level of the 
first factor; levels 8, 9, 10 of the second factor appear with only level 3 of the first factor and not 
with any other level of the first factor; levels 11, 12, 13, 14, 15 of the second factor appear with 
only level 4 of the first factor and not with any other level of the first factor. 

Sometimes, constraints prevent us from crossing every level of one factor with every or few  
levels of the other factor. In these cases one is to adopt what is known as a nested layout. We say 
we have a nested layout when fewer than all levels of one factor occur within each level of the 
other factor. The example given above is that of a nested layout wherein dams are nested within 
sires.  

If Factor B is nested within Factor A, then a level of Factor B can only occur within one level 
of Factor A and there can be no interaction between factors A and B. The following model is 
used for a nested classification:

Here  is the response on the kth unit of the jth level of factor B nested within the ith level 
of factor A, μ is the general mean, αi is the effect of the ith level of factor A, βij is the effect 
of the jth level of factor B nested within the ith level of factor A and εijk is the random error 
term associated with the observation  and distributed independently and identically with 
mean zero and constant variance σ2. Here . Let  denote the number of 
observations in the jth level of factor B and ith level of factor A. Further

   
e.g., a = 4,  and s = 15, in the example above. 

Moreover,  and . Similarly   and ; 

 and ;  and . Further n.. = 

61.

The SAS commands for the analysis of data generated are the following:

DATA Nested_Classification;
INPUT  Factor A   Factor B  response;
CARDS;
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.
INSRT DATA HERE
.
;
PROC GLM;
CLASS FactorA  FactorB(FactorA);
MODEL response = FactorA  FactorB(FactorA);
LSMEANS FactorA/PDIFF  LINES; /*comparisons based on LSD*/
LSMEANS FactorA / PDIFF ADJUST = TUKEY LINES; /*Comparisons based on Tukey’s 
HSD*/
RUN;

The R code for similar analysis is given below.

Nested_Classification =read.table(“Nested_Classification.txt”,header=TRUE)
attach(Nested_Classification)
names(Nested_Classification)
lm1=lm(response~factor(A)+factor(B)/factor(A),data= Nested_Classification)
anova(lm1)
#Tukey comparison
aov.fit=aov(response~factor(A)+factor(B)/factor(A),data= Nested_Classification)
TukeyHSD(aov.fit,“factor(A)”)
detach(Nested_Classification)

The analysis of variance obtained from this analysis would be the following:

Table 5.24: ANOVA table for nested classification

ANOVA for the Example ANOVA for nested classification

Source DF Source DF

Factor A 3 Factor A a - 1

Factor B nested within Factor A 11 Factor B nested within Factor A s - a

Error 45 Error n..- b

Corrected Total 59 Corrected Total n..- 1

For the example given above, the results obtained using the SAS commands are described 
in the sequel. It may be mentioned here that only the results are reported for the purpose of 
illustration only. There will be a reference to this type of analysis in subsequent Chapters as well 
where the analysis will be reported and discussed in detail. 
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Table 5.25: Output from SAS command for data in Table 5.23

ANOVA

 Source DF Type III SS MS F-Value Prob > F

Sire 3 106.11 35.37 0.40 0.75

Dam within Sire 11 961.12 87.37 0.99 0.47

Error 45 3975.38 88.34

Corrected Total 59 5056.58

R-Square CV Root MSE eggwt Mean

0.214 20.24 9.39 46.42

It may be seen from the results above that the total variability explained by the model is very 
low (about 21 per cent).  The sire effect is not significant. Similarly, the dam within sire effect is 
also no significant. 

The LSMEANS for the sires are obtained and given in Table 5.26. Pairwise comparison of 
the sire effects reveals that sire 2 produces the highest egg weight while the lowest egg weight is 
produced by sire 4. The differences among sires are not statistically significant.

Table 5.26: Least square means for sires

sire Eggweight LSMEAN LSMEAN Number

1 46.32 1

2 48.60 2

3 47.80 3

4 45.10 4

Table 5.27: t comparison lines for least squares means of sires

LS-means with the same letter are not significantly different

eggwt LSMEAN sire LSMEAN Number

A 48.60 2 2

A 47.80 3 3

A 46.32 1 1

A 45.17 4 4
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Table 5.28: Tukey-HSD comparison lines for least squares means of sires

LS-means with the same letter are not significantly different

eggwt LSMEAN sire LSMEAN Number

A 46.32 1 2

A 48.60 2 2

A 47.80 3 3

A 45.17 4 4

The pairwise comparison of sire effects was also made using the Tukey’s adjustment. It is 
found that the difference between the egg weight of the highest producing sire and the lowest 
producing sire is not statistically significant. In fact, all the sire effects are at par so far as 
producing egg weight is concerned.
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Designs with Nested Structure

6.1   Introduction
It has been emphasized over and again that the total variability in the data has two major 

explainable components of variability, viz. (a) due to treatments, and (b) due to experimental 
material. The remaining unexplainable component of variability is the experimental error. The 
variability in the experimental material is accounted for by forming groups of homogeneous 
experimental units or by forming rows and columns, etc.  Designs with one blocking system 
i.e. with only one source of variability in the experimental material are called block designs. In 
these designs the experimental units are divided into groups called blocks, which comprise of 
homogeneous experimental units. The between blocks variability should be large and within 
blocks variability should be small. Designs with two cross classified blocking systems i.e. with 
two sources of variability in the experimental material are called row-column designs.  In these 
designs, the experimental units are grouped in an array. The experimental units within the rows 
and within the columns are as homogeneous as possible.  A block design is said to be a complete 
block design if each block is a complete replication. Further, a block design is said to be an 
incomplete block design if the design has at least one block that is not a complete replication in 
the sense that there is at least one treatment that does not appear in that block.  In other words, 
each block has every treatment appearing at most once, if it appears in that block. We shall 
restrict our attention to such incomplete block designs only. There are, however, incomplete 
block designs where a treatment may appear more than once in a block. Similarly in a row - 
column set up, the rows or / and the columns may be complete in the sense that all the treatments 
appear in each row or / and column exactly once; in other words the rows or / and columns 
are complete replications. Similar to incomplete block designs, there may be incomplete row-
column designs in the sense that there is at least one row or / and column that does not contain 
all the treatments. Like incomplete block designs, incomplete row-column designs may also 
have a treatment appearing more than once in a row or / and column. Most commonly used 
block designs are randomized complete block (RCB) design, balanced incomplete block (BIB) 
design, partially balanced incomplete block (PBIB) design, square lattice, rectangular lattice, 
alpha designs, etc. Similarly, commonly used row-column designs are Latin Square designs, 
Youden square designs, Generalized Youden designs, Pseudo Youden designs, etc. Henceforth 
in this Chapter, the focus would be restricted to block design set up.

Although incomplete block designs help in reducing the intra block variance to a considerable 
extent because of the reduction in block size, yet the agricultural experimenters are hesitant to 
adopt these designs because the blocks are not complete blocks (or complete replications). One 
major concern of the experimenters to adopt incomplete block designs for experimentation 

Designs with Nested Structure

6
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could be the fear of analysis of data generated. However, with the advent of high speed 
computers and software and the presence of statisticians around, this fear is unfounded. The 
other major concern of the experimenters is to demonstrate the effect of all the treatments to the 
farmers/monitoring  team at one place and for that reason the experimenters prefer a complete 
block design over an incomplete block design. But complete block designs are accompanied 
with large intra block variances. In the Agricultural Field Experiments Information System, 
which contains information about more than thirty three thousand experiments conducted 
by scientists of National Agricultural Research System in India, it is found that of the 70 per 
cent experiments conducted as randomized complete block design, the block (or replication) 
effects are not significantly different from each other (in other words block mean squares are 
not large as compared to mean square error) in about 70 per cent of the experiments. The 
field contour maps prepared for some experiments also indicate that it may not be possible to 
form long rectangular blocks because there are several fertility patches within the rectangular 
blocks. So it is always better to form long blocks and then have smaller sub blocks within each 
of the big blocks. The treatments may then be allocated randomly to the sub-blocks instead of 
allocating randomly to the plots within larger blocks. This type of blocking structure gives rise 
to a nested classification and the design is a nested block design.  A particular class of nested 
designs, which could be of great interest to the experimenters, is the one in which the bigger 
block is a complete replication and the smaller blocks are incomplete blocks. In this way, the 
experimenters can demonstrate the effect of all the treatments at one place using the larger 
blocks which are complete replication and at the same time, the sub-blocks would address the 
problem of large blocks and would take care of the heterogeneity creeping in because of the 
large blocks.

Such designs in which the larger blocks are complete replication have been termed as 
resolvable designs in the literature. The concept of resolvability in incomplete block designs 
was introduced by Bose (1942). An incomplete block design is said to be resolvable if the blocks 
can be grouped in such a manner that each group of blocks is a complete replication.  A block 
design with v treatments, b blocks, replication r and block size k (<v) is called resolvable if b 

blocks can be divided into r groups containing  blocks of size k each such that each group 

is a complete replication; in other words the x blocks in each of the r groups contain all the v 
treatments exactly once.  Obviously, v = xk and b = rx. Square lattice, rectangular lattice designs 
are also resolvable block designs.

6.2   Example 1	
An experimenter is interested in comparing v = 20 genotypes. A total of n = 60 experimental 

units are available that can be arranged in b = 15 blocks of size k = 4 experimental units each. 

The 15 blocks can be so arranged that one gets r = 3 replications with five blocks of size four 

each in each replication. Here .  A resolvable block design with the block contents is 
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Design 1

Replication I Replication II Replication III

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

1 2 3 4 5 14 16 3 6 19 13 2 3 20 5

6 7 8 9 10 8 9 11 12 7 9 18 15 7 16

11 12 13 14 15 1 2 17  5 1 14 6 11 12

16 17 18 19 20 20 15 10 4 13 17 10 19 4 8

In another experiment, the experimenter is interested in comparing v = 35 genotypes. A 
total of n = 105 experimental units are available that can be arranged in b = 21 blocks of size k 
= 5 experimental units each. The 21 blocks can be so arranged that one gets r = 3 replications 

with seven blocks of size five each in each replication. Here . A resolvable block design 

with the block contents is 

Design 2

Replication  I Replication  II Replication  III

B1 31 11 23 20 5 B8 24 3 10 17 31 B15 19 11 1 35 24

B2 13 7 25 33 15 B9 11 4 18 25 32 B16 2 29 25 12 20

B3 4 30 22 19 10 B10 6 13 34 27 20 B17 10 34 7 18 23

B4 18 28 9 29 3 B11 26 12 19 33 5 B18 13 3 21 26 30

B5 27 8 35 17 2 B12 9 30 16 2 23 B19 6 9 33 17 22

B6 21 12 6 24 32 B13 35 7 28 14 21 B20 31 4 27 15 14

B7 1 34 16 26 14 B14 1 29 15 8 22 B21 28 8 5 16 32

B# denotes the block number

Resolvable block designs have a lot of practical significance as these designs allow 
performing an experiment one replication at a time. For example, field trials with large number 
of crop varieties cannot always be laid out in a single location or a single season. It is desired that 
variation due to location or time periods may also be controlled along with controlling within 
location or within time period variation. This can be handled by using resolvable block designs. 
Locations or time periods can be taken as replications and the variation within locations or 
within time periods can be taken care of by blocks within replications. In some experimental 
situations, it may not be feasible to run the entire experiment in one session. The experiment 
may have to be run in different sessions. Resolvable designs become useful in these situations 
too.  A single replication may be run in one session. If the experiment is discontinued after 
first session or second session, it would not matter much to the experimenter because all the 
treatments would have appeared till the time the experiment has been run. If the experiment 
is run up to second session and discontinued from the third session, the experimenter can still 
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analyze the data in the same way as it would have been analyzed had the experiment run for 
all the sessions. But if the experiment is discontinued after first session, then there would be a 
problem in the analysis of data because of single replication of treatments. The experimenter 
would not be able to get the experimental error and so testing of hypotheses would be a problem.

For resolvable block designs, the randomization has five steps. These are the following:

Randomize the treatments, i.e., random allocation of treatment numbers (or labels) to 
treatments.

Randomize the replications.

Randomize the blocks within replications.

Randomize the treatments to experimental units within each block of all the replications; 
separate randomization should be done for each of the blocks.

An interesting feature of resolvable block designs is that these are run in complete replications. 
In that sense, these designs look like RCB designs. But in case of RCB designs there are no 
blocks within replications. The replication itself is a block.  All the v treatments are randomized 
within the replication.  However, in case of a resolvable design, the treatments are randomized 
within blocks in each replication. This is an advantage, which enables the experimenter to take 
out a part of the variability between blocks within replications from the error.  

Following on the Example 1, the difference in randomization of treatments in an RCB 
design and a resolvable (nested) design is demonstrated below: The randomization in case of 
an RCB design is over the 20 experimental units within each replication. There would be no 
smaller blocks. The randomized layout for an RCB design could be 

Replication I Replication II Replication III

15 2 8 20 7 14 16 13 6 19 13 12 3 20 8

16 10 18 19 12 20 8 11 17 5 11 1 15 7 16

3 5 13 14 1 7 2 1 18 12 9 14 6 18 2

6 17 11 9 4 9 15 10 4 3 17 10 19 4 5

However, as a resolvable or nested design, the randomization is a restricted randomization. 
Following the steps of randomization given above, the randomized layout in this case would be

Replication III Replication I Replication II

B3 B5 B1 B4 B2 B8 B6 B9 B10 B7 B14 B15 B12 B11 B13

15 8 9 4 14 3 1 4 5 2 6 19 16 14 3

6 12 17 7 2 8 6 9 10 7 12 7 9 8 11

19 5 1 20 10 13 11 14 15 12 18 5 2 1 17

3 16 13 11 18 18 16 19 20 17 4 13 15 20 10
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It is obvious from this example that simply changing the randomization helps in controlling 
the experimental error.

6.2.1   Analysis
The statistical model for analysis of data generated from a resolvable design is the following:

response = general mean + treatments effects + blocks (or replications) effect + sub-blocks 
nested within blocks effect + error.

This model can also be written as 

where   denotes the response from the lth experimental unit receiving ith treatment in 
sub-block j of block (or replicate) h. Thus, the triplet (h, j, l) identifies the experimental unit 
and the design is an allocation of a set of v treatments to these experimental units (h, j, l). 
The standard linear model for the responses incorporates a mean effect µ, block (or replicate) 
effect  , sub-block effect  , treatment effect  and mean zero, independent, equi-variable 
( ) random error terms  ,  ; ; ; .

For the Example 1 given above in Section 6.2, as well as for a general resolvable block design, 
the analysis of variance is given in Table 6.1. 

Table 6.1: Skeleton ANOVA table for a resolvable design

ANOVA (Resolvable Design) ANOVA (Resolvable Design) for v, b, k, r

Source DF Source DF

Treatments 19 Treatments (v - 1)

Blocks 14 Blocks (b - 1)

Replications 2 Replications (r - 1)

Sub-Blocks  within Blocks 
(or replications)

12 Sub-Blocks within Blocks 
(or replications)

r(x - 1) = (b – r)

Error 26 Error (vr - v - b + 1) 

Total 59 Total (vr - 1)

However, in case of an RCB design with v = 20 treatments and r = 3 replications (or blocks), 
the analysis of variance is given in Table 6.2.

Table 6.2: Skeleton ANOVA table for a RCB design

ANOVA (RCBD) ANOVA (RCBD) v, r

Source DF Source DF

Treatments 19 Treatments (v - 1)

Blocks (or Replications) 2 Blocks (or Replications) (r - 1)

Error 38 Error (v - 1) (r - 1)

Total 59 Total (vr - 1)



144

Statistical Analysis of Agricultural Experiments

It may be seen from these Tables that the use of a resolvable incomplete block design leads 
to a reduction in error on account of sub-blocks within blocks. In case of a RCB design this 
component of variability because of sub-blocks within blocks is merged with the error. A strong 
message that follows from here is that changing the randomization and allocation of treatments 
to smaller block structure in a RCB design by forming smaller blocks within large blocks helps 
in reducing the experimental error. 

Remark 6.1 Resolvable block designs are in fact a special class of designs called nested block 
designs wherein there are two systems of blocking. There are bigger blocks, which are complete 
blocks (or complete replications) and each bigger block is subdivided into smaller blocks (or 
sub-blocks) to which the treatments are allotted randomly. The union of all the smaller blocks 
forms the bigger block which is a complete replication. Therefore, the resolvable designs are 
nested designs with the smaller (incomplete) blocks nested within the larger blocks (or complete 
replications). These designs have been shown to be very useful in on-farm agricultural research 
experiments (see for example, Nigam et al., 2003). 

Resolvable block designs have been studied extensively in the literature. For instance, there 
may be a resolvable BIB design. A BIB design with v = 9, b = 12, r = 4, k = 3, λ = 1 is resolvable. 
The block contents are {(1, 2, 3), (4, 5, 6), (7, 8, 9)}; {(1, 4, 7), (2, 5, 8), (3, 6, 9)}; {(1, 6, 8), (2, 4, 
9), (3, 5, 7)}; {(1, 5, 9), (3, 4, 8), (2, 6, 7)}, here {.} denotes the set of blocks forming a complete 
replication. Even Partially Balanced Incomplete Block (PBIB) designs could be resolvable. 
Lattice designs introduced by Yates (1936) especially for varietal trials are resolvable incomplete 
block designs. Lattice designs are available for limited number of varieties and block sizes.  The 
simple (r = 2) and triple (r =3) Lattices require  and number of blocks per replication 
is also s, where s is a prime number.  Further conditions are imposed on v in quadruple and 
higher order Lattices.  Harshbarger (1949) extended the principle of square lattice to simple and 
triple rectangular Lattice with  (see also Nair, 1951). Patterson and Williams 
(1976) generated special class of resolvable designs called alpha designs. These designs are 
less restrictive in the sense that the number of treatments and the number of blocks have a 
common integer multiple s ≥ 2. The parameters of alpha design are .  Parsad 
et al. (2007a) obtained a catalogue of A-efficient and D-efficient alpha designs. For more details 
on alpha designs and also for getting a randomized layout of alpha design, please see Design 
Resources Server at www.iasri.res.in/design/. R software can be used to obtain alpha design as 
well. The following code in R generates a alpha design for 30 treatments with block size 3 in two 
replications.

library(agricolae)

design.alpha(trt=1:30,k=3,r=2,serie=2)

In order to give a better exposition of the subject of resolvable designs, another example is 
in order.

6.3   Example 2
An initial varietal trial was conducted to study the performance of 24 strains of Toria using 
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an alpha design at Pantnagar with three replications. The seed yield in kg/ha was recorded. The 
details of strains, design adopted and data obtained are given as under.

Table 6.3: Treatment details and seed yield data of initial varietal trial

RAU DT-01-03 1 TK–06-1 9 RH- 304 17

RAU DT-01-02 2 TK–06 - 2 10 TH– 302 18

BAUSM-92-24 3 TL-2027 11 JMT-05 19

RGN-186 4 TL-2013 12 PT–303 (National Check) 20

EJ-17 5 JMT–02-6	 13 Zonal Check 21

NPJ–112 6 NDT–05-5 14 PTC–99-14 22

VLT-4 7 NDRE–2002-16 15 JD–6 (Check) 23

RRN-612 8 PT–2004-3 16 ORT-17-6-16 24

Replication 1

Block 1 1 (1555.6) 5 (1160.5) 9 (1308.6) 13 (1382.7) 17 (987.7) 21 (1135.8)

Block 2 2 (1284.0) 6 (1086.4) 10 (1284.0) 14 (1111.1) 18 (938.3) 22 (1308.6)

Block 3 3 (1234.6) 7 (419.8) 11 (1308.6) 15 (963.0) 19 (963.0) 23 (987.7)

Block 4 4 (1234.6) 8 (987.7) 12 (1284.0) 16 (913.6) 20 (1160.5) 24 (790.1)

Replication 2

Block 5 1 (1481.5) 6 (1086.4) 11 (1308.6) 16 (1284.0) 19 (1111.1) 22 (1185.2)

Block 6 2 (987.7) 7 (308.6) 12 (1234.6) 13 (1308.6) 20 (765.4) 23 (938.3)

Block 7 3 (1012.3) 8 (864.2) 9 (1234.6) 14 (938.3) 17 (913.6) 24 (864.2)

Block 8 4 (1135.8) 5 (987.7) 10 (987.7) 15 (740.7) 18 (963.0) 21 (1135.8)

Replication 3

Block 9 1 (1284.0) 7 (333.3) 12 (1135.8) 15 (839.5) 18 (814.8) 24 (888.9)

Block 10 2 (1135.8) 8 (913.6) 9 (1456.8) 16 (1037.0) 19 (938.3) 21 (1037.0)

Block 11 3 (963.0) 5 (1209.9) 10 (1259.3) 13 (1234.6) 20 (963.0) 22 (1111.1)

Block 12 4 (1086.4) 6 (765.4) 11 (1111.1) 14 (1037.0) 17 (938.3) 23 (938.3)

Figures in the parenthesis give the seed yield in kg/ha.

In the sequel we perform the analysis of the data generated using a resolvable design. 
The following analyses are performed: (a) analysis of variance to test the homogeneity of the 
treatment effects, (b) since the data are unbalanced or non-orthogonal, obtain the LSMEANS 
or adjusted means of the treatments and make pairwise treatment comparisons to identify the 
best performing treatment, and (c) to make comparisons of the 3 check strains (treatments 20, 
21, 23) with the 21 new strains of Toria.        
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6.3.1   Analysis of data
This is an Example of a resolvable (nested) block design in which the bigger blocks are the 

replications and the four blocks of size 6 each within each replication are the sub-blocks.  In 
this experiment, there are 21 new strains of Toria and 3 check strains. In order to compare new 
strains with check, appeal will be made to contrast analysis. 

The design adopted is an alpha design, which is a resolvable incomplete block design. The 
parameters of the design are v = 24, b = 12, r = 3, Number of blocks per replication = x = b/r = 
4. The data has been analyzed using SAS software.  The analysis of data is in continuation below:

DATA resolvable_design;
INPUT blk sblk trt syield;
CARDS;
1               1               1               1555.6 
1               1               5               1160.5
1               1               9               1308.6
1               1               13             1382.7
1               1               17             987.7       
1               1               21             1135.8
1               2               2               1284.0
1               2               6               1086.4
1               2               10             1284.0
1               2               14             1111.1
1               2               18             938.3       
1               2               22             1308.6
1               3               3               1234.6
1               3               7               419.8       
1               3               11             1308.6
1               3               15             963.0       
1               3               19             963.0       
1               3               23             987.7       
1               4               4               1234.6
1               4               8               987.7       
1               4               12             1284.0
1               4               16             913.6       
1               4               20             1160.5
1               4               24             790.1       
2               1               1               1481.5
2               1               6               1086.4
2               1               11             1308.6
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2               1               16             1284.0
2               1               19             1111.1
2               1               22             1185.2
2               2               2               987.7       
2               2               7               308.6       
2               2               12             1234.6
2               2               13             1308.6
2               2               20             765.4       
2               2               23             938.3       
2               3               3               1012.3
2               3               8               864.2       
2               3               9               1234.6
2               3               14             938.3       
2               3               17             913.6       
2               3               24             864.2       
2               4               4               1135.8
2               4               5               987.7       
2               4               10             987.7       
2               4               15             740.7       
2               4               18             963.0       
2               4               21             1135.8
3               1               1               1284.0
3               1               7               333.3       
3               1               12             1135.8
3               1               15             839.5       
3               1               18             814.8       
3               1               24             888.9       
3               2               2               1135.8
3               2               8               913.6       
3               2               9               1456.8
3               2               16             1037.0
3               2               19             938.3       
3               2               21             1037.0
3               3               3               963.0       
3               3               5               1209.9
3               3               10             1259.3
3               3               13             1234.6
3               3               20             963.0       
3               3               22             1111.1
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3               4               4               1086.4
3               4               6               765.4       
3               4               11             1111.1
3               4               14             1037.0
3               4               17             938.3       
3               4               23             938.3       
;
PROC GLM;
CLASS blk sblk trt;
MODEL syield = trt blk sblk(blk);
MEANS trt;
LSMEANS trt/PDIFF LINES;
CONTRAST ‘Controls’ trt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0,
		        	   trt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 -2 0;
CONTRAST ‘Tests’ 	   trt 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
		     	   trt 1 1 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 -6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 -7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 -8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 -9 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 1 -10 0 0 0 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 1 1 -11 0 0 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 1 1 1 -12 0 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 1 1 1 1 -13 0 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -14 0 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -15 0 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -16 0 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -17 0 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -18 0 0 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -19 0 0 0,
 		     	   trt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 -20;
CONTRAST ‘Tests vs Controls’ trt 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 -21 -21 3 -21 3;
RUN;
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6.3.2   Output of analysis
The results obtained from the analysis are described in Table 6.4.

Table 6.4: Output of analysis using SAS command

ANOVA

Source DF SS MS F-value Prob > F

Model 34 3535274.91 103978.67 12.79 <0.0001

Error 37 300877.64 8131.83

Corrected Total 71 3836152.55

R-Square CV Root MSE Syield Mean

0.922 8.543 90.177 1055.564

ANOVA

Source DF Type-III SS MS F-value Prob > F

Treatments 23 2555476.22 111107.66 13.66 <0.0001

Blocks 2 135161.75 67580.88       8.31           0.0010

Sub-Blocks  within Blocks 9 194315.00 21590.56       2.66 0.0175 

Error 37 300877.64 8131.83

Corrected Total 71 3836152.55

The model with nested classification has been able to explain about 92 per cent of the total 
variability in the data. It is evident from the ANOVA that the treatment effects are significantly 
different (p-value < 0.0001). But more prominently, it is relevant to note that the sub-blocks 
within blocks are highly significant (p-value = 0.0175) meaning thereby that it has been 
advantageous to form sub-blocks within blocks as it has resulted in considerable reduction in 
error mean square.

Remark 6.2. It may be noted from ANOVA in Table 6.4 above that the sum of squares due 
to the three components viz., treatments, blocks and sub-blocks do not add up to the model sum 
of squares. The reason is simple. The blocks are incomplete and, therefore, the treatment sum 
of squares is adjusted for blocks. In this case the unadjusted sum of squares due to treatments is 
not the same as adjusted sum of squares due to treatments. 

The summary of treatments and their LS Means are given in the Tables 6.5.
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Table 6.5: Treatment wise mean and standard deviation of seed yield

Treatment Syield Treatment Syield

Mean Standard Deviation Mean Standard Deviation 

1 1440.37 140.39 13 1308.63        74.05

2 1135.83       148.15 14 1028.80           86.69

3 1069.97 144.69 15 847.73       111.38

4 1152.27        75.46 16 1078.20       188.61

5 1119.37       116.67 17 946.53        37.73

6 979.40 185.33 18 905.37        79.40

7 353.90 58.39 19 1004.13        93.46

8 921.83        62.16 20 962.97       197.55

9 1333.33       113.15 21 1102.87       57.04

10 1177.00 164.40 22 1201.63 99.77

11 1242.77 114.03 23 954.77  28.52

12 1218.13        75.46 24 847.73 51.42

Treatment Syield LS 
Mean

Treatment Syield LS 
Mean

Treatment Syield LS 
Mean

1 1403.80 9 1343.11          17 982.92         

2 1135.83       10 1164.35          18 913.14          

3 1074.43           11 1164.35          19  928.32        

4 1198.44           12 1270.22         20  994.63         

5 1136.00           13 1330.61         21 1112.75        

6 912.96           14 1035.89         22 1115.35       

7 384.24           15 872.74         23 984.53         

8 941.29           16 1024.13         24 894.38         

The pairwise treatment comparisons using the LS means are given in Table 6.6.

From Table 6.6, it is evident that the new strain RAU DT-01-03 (Treatment 1) is the most 
promising in terms of seed yield. It is significantly different from all the three check strains. It is, 
however, statistically at par with the new strains TK–06-1 (Treatment 9); TL-2013 (Treatment 
12); JMT–02-6 (Treatment 13). The new strain VLT-4 (Treatment 7) is the lowest yielding in 
terms of seed yield. Its seed yield is significantly lower than even the check strains. The check 
strains (treatments 22 and 23) are statistically at par but are significantly different from the third 
check strain (Treatment 21).
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Table 6.6: t comparison lines for least squares means of treatments

LS-means with the same letter are not significantly different

Syield LS MEAN Treatment LSMEAN Number

A 1403.80 1 1

B A 1343.11 9 9

B A 1330.61 13 13

B A C 1270.22 12 12

B D C 1198.44 4 4

B E D C 1193.56 11 11

F E D C 1164.35 10 10

G F E D C 1136.00 5 5

G F E D C 1121.76 2 2

G F E D C 1115.35 22 22

G F E D C 1112.75 21 21

G F E D H 1074.43 3 3

G F E I H 1035.89 14 14

G F I H 1024.13 16 16

G I H 994.62 20 20

G I H 984.53 23 23

G I H 982.92 17 17

I H 941.29 8 8

I H 928.32 19 19

I H 913.14 18 18

I H 912.96 6 6

I 894.38 24 24

I 872.74 15 15

J 384.24 7 7

In case the experimenter is interested in making further comparisons among tests, among 
controls and tests vs controls, then the results obtained are given in Table 6.7.

Table 6.7: Splitting of treatment sum of squares

Contrast DF Contrast SS MS F-value Prob > F

Among Tests 20 2535129.68 126756.48 15.59 <0.0001

Among Controls 2 23375.33 11687.67 1.44 0.2505

Tests vs Controls 1 5660.36          5660.36 0.70 0.4095
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It is once again very evident from Table 6.7 that the new strains are significantly different 
(p-value < 0.0001); but the check strains are not significantly different (p-value = 0.2505). The 
difference between new strains and the check strains is also not statistically significant (p-value 
= 0.4095). However, from Table 6.6, it can be seen that some of the pairwise comparisons of 
check with test varieties are significantly different. Using LS MEANS, one can see that based on 
the character yield, Check variety 21: Zonal Check is the best performing check and varieties 
numbered as 1,2,4,5,9,10,11,12,13 and 22 give higher yield than the best performing check. 
The varieties  2,4,5,10,11,12 and 22 are statistically at par with best performing check variety 
21; whereas tests 1,9,13 are statistically significant from best performing check variety 21 at 5% 
level of significance. Therefore, one may conclude that the group of test varieties 1,9,13 is the 
best performing group.

6.3.3   Analysis using R
The data has also been analyzed using R software. The R code for the analysis of data is 

given in the sequel. The output obtained is similar to the one obtained using SAS and to avoid 
repetition, the same is not reported here.

d9=read.table(“resolvable_design.txt”,header=TRUE)
attach(d9)
names(d9)
#Treatment means and standard deviations
aggregate(syield~trt,data=d9,mean)
aggregate(syield~trt,data=d9,sd)
#Treatment wise box plot of calorie
boxplot(syield~trt)
#anova with class variable treatments and block
trt=factor(trt)
rep=factor(rep)
blk=factor(blk)
lm1=lm(syield~trt+rep+blk/rep-blk)
#anova(lm1)
library(car)
Anova(lm1,type=“III”)
library(lsmeans)
lsm=lsmeans(lm1,“trt”)
lsm
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pairs(lsm)
#to provide letters for groups, need to install multcompView
library(multcompView)
cld(lsm,Letters=“abcdefgh”)
controls=contrast
(lsm,list(con3  =c(1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
                    con4=c(1,1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
                    con5=c(1,1,1,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
                    con6=c(1,1,1,1,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
                    con7=c(1,1,1,1,1,-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
                    con8=c(1,1,1,1,1,1,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
                    con9=c(1,1,1,1,1,1,1,-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
                    con10=c(1,1,1,1,1,1,1,1,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
                    con11=c(1,1,1,1,1,1,1,1,1,-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
                    con12=c(1,1,1,1,1,1,1,1,1,1,-10,0,0,0,0,0,0,0,0,0,0,0,0,0),
                    con13=c(1,1,1,1,1,1,1,1,1,1,1,-11,0,0,0,0,0,0,0,0,0,0,0,0),
                    con14=c(1,1,1,1,1,1,1,1,1,1,1,1,-12,0,0,0,0,0,0,0,0,0,0,0),
                    con15=c(1,1,1,1,1,1,1,1,1,1,1,1,1,-13,0,0,0,0,0,0,0,0,0,0),
                    con16=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,-14,0,0,0,0,0,0,0,0,0),
                    con17=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-15,0,0,0,0,0,0,0,0),
                    con18=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-16,0,0,0,0,0,0,0),
                    con19=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-17,0,0,0,0,0,0),
                    con20=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-18,0,0,0,0,0),
                    con21=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,-19,0,0,0),
                    con22=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,0,-20)))
tests.vs.controls=contrast(lsm,list(con23=c(3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-21,-21,3,-21,3)))
lht(lm1,controls@linfct)
lht(lm1,tests@linfct)
lht(lm1,tests.vs.controls@linfct)
detach(d9)

6.4   Nested designs
In Remark 6.1, there has been a mention of nested designs. It was mentioned there that 

the resolvable block designs are in fact nested block designs with blocks (bigger blocks)  as 
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complete replications and the sub-blocks (smaller blocks) as  incomplete blocks. Since the bigger 
blocks are complete replications, these nested designs find favour with the researchers and it is 
recommended that such designs should be used more often than not in field experimentation, 
particularly when it is not possible to have uniformity trials support to form blocks.

Since we have nested designs with bigger blocks as complete blocks, it is indeed possible 
to have nested designs with incomplete bigger blocks. The bigger blocks need not necessarily 
be complete blocks. These could very well be incomplete blocks. Kleczkouski (1960) devised 
a form of nested block design for v = 8 treatments for a series of experiments in which beans 
plants, in the two primary leaves stage, were inoculated with sap from tobacco plants infected 
with tobacco necrosis virus. The treatments were eight different virus concentrations. Each leaf 
had two inoculations, one for each half-leaf. Ignoring the leaf positions, plants and leaves were, 
respectively, the blocks of (size 4) and sub-blocks (of size 2) of a nested balanced incomplete 
block design. Preece (1967) for the case of two blocking systems, one nested within the other, 
introduced a Nested Balanced Incomplete Block (NBIB) design. An arrangement of v treatments 
each replicated r times in two systems of blocks is said to be a NBIB design with parameters (v, 
r, b1, k1, λ1, b2, k2, λ2, m) if the second system of blocks is nested within the first system of blocks, 
with each block from the first system containing exactly m blocks from the second system (sub-
blocks); ignoring the second system of blocks leaves a balanced incomplete block (BIB) design 
with b1 blocks each of size k1 and λ1 concurrences; ignoring the first system of blocks leaves a BIB 
design with b2 = b1m blocks each of size k2 = k1/m units with λ2 concurrences.

The parameters of a nested BIB design satisfy the following parametric relations:

vr = b1k1 =  b1k2m = b2k2;

λ1(v ‒ 1) = r(k1 – 1); λ2(v ‒ 1) = r(k2 – 1)

(λ1 ‒ mλ2)(v ‒ 1) = r(m ‒ 1).

6.5   Example 3
The following is a NBIB design with parameters v = 8, r = 14, b1 = 28, k1 = 4, λ1 = 6, b2 = 56, 

k2 = 2, λ2 = 2, m = 2:

(1, 5); (2, 3) (1, 6); (4, 7) (3, 5); (8, 6) (2, 1); (8, 4)

(2, 6); (3, 4) (2, 7); (5, 1) (4, 6); (8, 7) (3, 2); (8, 5)

(3, 7); (4, 5) (3, 1); (6, 2) (5, 7); (8, 1) (4, 3); (8, 6)

(4, 1); (5, 6) (4, 2); (7, 3) (6, 1); (8, 2) (5, 4); (8, 7)

(5, 2); (6, 7) (5, 3); (1, 4) (7, 2); (8, 3) (6, 5); (8, 1)

(6, 3); (7, 1) (6, 4); (2, 5) (1, 3); (8, 4) (7, 6); (8, 2)

(7, 4); (1, 2) (7, 5); (3, 6) (2, 4); (8, 5) (1, 7); (8, 3)
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The bigger blocks form a BIB design with parameters v = 8, b1 = 28, r1 = 14, k1 = 4, λ1 = 6 and the 
design is (1, 5, 2, 3); (2, 6, 3, 4); (3, 7, 4, 5); (4, 1. 5, 6); (5, 2, 6, 7); (6, 3, 7, 1); (7, 4, 1, 2); (1, 6, 4, 
7); (2, 7, 5, 1); (3, 1, 6, 2); (4, 2, 7, 3); (5, 3, 1, 4); (6, 4, 2, 5); (7, 5, 3, 6); (3, 5, 8, 6); (4, 6, 8, 7); (5, 
7, 8, 1); (6, 1, 8, 2); (7, 2, 8, 3); (1, 3, 8, 4); (2, 4, 8, 5); (2, 1, 8, 4); (3, 2, 8, 5); (4, 3, 8, 6); (5, 4, 8, 7); 
(6, 5, 8,1); (7, 6, 8, 2); (1, 7, 8, 3). Similarly, the sub-blocks form a BIB design with parameters v 
= 8, b2 = 56, r = 14, k2 = 2, λ2 = 2 and the design is (1, 5); (2, 3); (2, 6); (3, 4); (3, 7); (4, 5); (4, 1); 
(5, 6); (5, 2); (6, 7); (6, 3); (7, 1); (7, 4); (1, 2); (1, 6); (4, 7); (2, 7); (5, 1); (3, 1); (6, 2); (4, 2); (7, 3); 
(5, 3); (1, 4); (6, 4); (2, 5); (7, 5); (3, 6); (3, 5); (8, 6); (4, 6); (8, 7); (5, 7); (8, 1); (6, 1); (8, 2); (7, 2); 
(8, 3); (1, 3); (8, 4); (2, 4); (8, 5); (2, 1); (8, 4); (3, 2); (8, 5); (4, 3); (8, 6); (5, 4); (8, 7); (6, 5); (8,1); 
(7, 6); (8, 2); (1, 7); (8, 3).

Thus far the focus has been on experimental settings in which one blocking system is 
nested within another blocking system. There may, however, be experimental settings where 
two cross classified factors cause variability in the experimental material and are nested within 
the blocking factor. Nested row-column designs have been developed for such situations. 
Consider the case of animal nutrition experiments where lactation number has been taken as 
a blocking factor. However, the age and stage of lactation within animals of same lactation 
number may contribute significantly to the variability and thus to the error variance and these 
two factors are cross classified with each other. Therefore, for such experimental situations, 
within blocking factor (lactation number), two cross classified factors, age (rows) and stage of 
lactation (columns) are nested.

For these experimental settings the experimental units are broadly classified into b bigger 
blocks such that within each bigger block the experimental units are arranged in p rows and 
q columns. The block sizes are k = pq and the total number of experimental units are bpq. 
The number of treatments v may be equal to pq, in which case the bigger block is a complete 
replication. It is indeed possible that v > pq and in that case the bigger block is an incomplete 
block.

To cope with these type of situations, Cochran and Cox (1957) suggested the use of repeated 
lattice square designs where each square can be considered a block (complete replication) within 
which are nested two other factors, denoted by rows and columns, so that one can eliminate 
two sources of variability within each block. These designs, however, demand that the number 
of treatments is v = s2, where s is a prime number or power of a prime number. Similar to a 
NBIB design, for these situations, Singh and Dey (1979) introduced Balanced Incomplete Block 
Designs with Nested Rows and Columns (BIB-RC design). A block design with nested rows and 
columns with v treatments and b blocks, each containing p rows and q columns (pq < v) is said 
to be a BIB-RC design if the following conditions are satisfied:

1.	 every treatment occurs at most once in a block;
2.	 given a pair of treatments (i, j)
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where  denote the number of blocks in which treatments i and j 
occur together in the same row, same column and elsewhere respectively and λ is a constant 
independent of i and j. 

It is easy to see that in a BIB-RC design every treatment occurs in exactly r blocks, where

.

The following is a BIB-RC design with v = 9, b = 4, r = 4, p = 3, q = 3 and λ = 2 using

 and the fact that 

,  ,   for all .

Block 1 Block 2 Block 3 Block 4

1 2 3 1 4 7 1 6 8 1 9 5

4 5 6 2 5 8 9 2 4 6 2 7

7 8 9 3 6 9 5 7 3 8 4 3

	

It may be seen that the four blocks, ignoring rows and columns, are four complete blocks 
(or complete replications). Ignoring columns, and treating rows as blocks one gets a BIB design 
with parameters v = 9, b = 12, r = 4, k = 3, λ* = 1. The blocks of this design are (1, 2, 3); (4, 5, 6); 
(7, 8, 9); (1, 4, 7); (2, 5, 8); (3, 6, 9); (1, 6, 8); (9, 2, 4); (5, 7, 3); (1, 9, 5); (6, 2, 7); (8, 4, 3). Similarly, 
ignoring rows and treating columns as blocks, one gets a BIB design with parameters v = 9, b 
= 12, r = 4, k = 3, λ** = 1.  The blocks of this design are (1, 4, 7); (2, 5, 8); (3, 6, 9); (1, 2, 3); (4, 5, 
6); (7, 8, 9); (1, 9, 5); (6, 2, 7); (8, 4, 3); (1, 6, 8); (9, 2, 4); (5, 7, 3). It may be seen that both the 
BIBDs have the same blocks.

The following is another BIB-RC design with v = 13, b = 26, r = 12, p = 2, q = 3, λ = 2 

using  and the fact that  for all  

.

1 3 9 7 8 11 2 4 10 8 9 12

12 10 4 6 5 2 13 11 5 7 6 3

3 5 11 9 10 13 4 6 12 10 11 1

1 12 6 8 7 4 2 13 7 9 8 5

5 7 13 11 12 2 6 8 1 12 13 3

3 1 8 10 9 6 4 2 9 11 10 7
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7 9 2 13 1 4 8 10 3 1 2 5

5 3 10 12 11 8 6 4 11 13 12 9

9 11 4 2 3 6 10 12 5 3 4 7

7 5 12 1 13 10 8 6 13 2 1 11

11 13 6 4 5 8 12 1 7 5 6 9

9 7 1 3 2 12 10 8 2 4 3 13

13 2 8 6 7 10

11 9 3 5 4 1

One can see that each 2×3 array of 6 experimental units is a big block and these 26 blocks 
form a BIB design with parameters v = 13, b = 26, r = 12, k = 6, λ* = 5. But each array has 2 rows 
of 3 experimental units each (or 3 columns of 2 experimental units each). In that respect, it is 
a BIB-RC design with parameters v = 13, b = 26, r = 12, p = 2, q = 3, λ = 2. In this Example, the 
bigger block is not a complete block because it has only 6 treatments whereas the total number 
of treatments in the design is 13.

6.6   Example 4 
An agricultural field experiment was conducted in 9 treatments with 36 plots arranged in 

4 complete blocks and a sample of harvested output from all the 36 plots had to be analyzed 
block wise by three technicians using three different operations. The data collected are given in 
Table 6.8.

Table 6.8: Data from an experiment conducted using a nested row column design

Block I Block II

Technicians Technicians

Operations 1 2 3 Operations 1 2 3

1 1 (1.1) 2 (2.1) 3 (3.1) 1 1 (2.1) 4 (5.2) 7 (8.3)

2 4 (4.2) 5 (5.3) 6 (6.3) 2 2 (3.2) 5 (6.7) 8 (9.9)

3 7 (7.4) 8 (8.7) 9 (9.6) 3 3 (4.5) 6 (7.6) 9 (10.3)

Block III Block IV

Technicians Technicians

Operations 1 2 3 Operations 1 2 3

1 1 (1.2) 6 (6.3) 8 (8.7) 1 1 (3.1) 9 (11.3) 5 (7.8)

2 9 (9.4) 2 (2.7) 4 (4.8) 2 6 (8.1) 2 (4.5) 7 (9.3)

3 5 (5.9) 7 (7.8) 3 (3.3) 3 8 (10.7) 4 (6.9) 3 (5.8)
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The numbers in the cells are the treatment labels and figures in brackets are the responses. 
In the continuation of this example is presented the analysis of the data for identifying the best 
performing treatment.

6.6.1   Analysis 
This experiment has been conducted as a block design with nested rows and columns. Of 

course the blocks are complete blocks. In that sense, if one ignores the rows and columns, the 
resulting design is a RCB design.  The parameters of the design are v = 9, b = 4, p = q = 3. We give 
in the sequence the analysis of the data using SAS. The SAS commands and the data structure 
has also been given in detail.

DATA ncbrcd;
INPUT blk tech oper trt obs;
CARDS;
1  1   1  1    1.1
1  1   2  4    4.2
1  1   3  7    7.4
1  2   1  2    2.1
1  2   2  5    5.3
1  2   3  8    8.7
1  3   1  3    3.1
1  3   2  6    6.3
1  3   3  9    9.6
2  1   1  1    2.1
2  1   2  2    3.2
2  1   3  3    4.5
2  2   1  4    5.2
2  2   2  5    6.7
2  2   3  6    7.6
2  3   1  7    8.3
2  3   2  8    9.9
2  3   3  9  10.3
3  1   1  1    1.2
3  1   2  9    9.4
3  1   3  5    5.9
3  2   1  6    6.3
3  2   2  2    2.7
3  2   3  7    7.8
3  3   1  8    8.7
3  3   2  4    4.8
3  3   3  3    3.3
4  1   1  1    3.1
4  1   2  6    8.1
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4  1   3  8  10.7
4  2   1  9  11.3
4  2   2  2    4.5
4  2   3  4    6.9
4  3  1  5    7.8
4  3  2  7    9.3
4  3  3  3    5.8
;
ODS RTF FILE=‘nestedcomplete.rtf ’;
PROC PRINT;
PROC GLM;
CLASS blk tech oper trt;
MODEL obs = blk tech(blk) oper(blk) trt/ss3;
MEANS trt;
LSMEANS trt oper(blk)/PDIFF LINES;
RUN;
ODS RTF CLOSE;

The results obtained from the analysis are given in Table 6.9.

Table 6.9: Results of analysis using SAS commands

ANOVA

Source DF SS MS F Value Prob > F

Model 27 285.09 10.56 439.44 <0.0001

Error 8 0.19 0.02

Corrected Total 35 285.28

R-Square CV Root MSE obs Mean

0.999 2.50 0.16 6.20

ANOVA

Source DF Type III SS MS F Value Prob > F

Blocks 3 26.38 8.79 365.90 <0.0001

Technicians within blocks 8 0.40 0.05 2.06 0.1641

Operations within blocks 8 0.73 0.09 3.81 0.0380

Treatments 8 122.44 15.30 636.95 <0.0001

Error 8 0.19 0.02

Corrected Total 35 285.28
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It may be observed that the model with nested terms explains almost 100 per cent variability 
in the data. The CV is also very low of the order of 2.50. The treatments and more importantly 
the blocks have been found to be highly significant (p-value < 0.0001). Further, the operations 
effect within blocks is significant but the technician effect within blocks is not significant 
(p-value = 0.1641). 

The unadjusted and the adjusted (LS) treatment means are given in Table 6.10. 

Table 6.10: Treatment wise unadjusted and least square means 

Level of 
Treatment

N Obs Mean Level of 
Treatment

N Obs Mean

Unadjusted 
Mean

LS Mean Unadjusted 
Mean

LS Mean

1 4 1.875 2.150 6 4 7.075 7.167

2 4 3.125 3.133 7 4 8.200 8.150

3 4 4.175 4.017 8 4 9.500 9.533

4 4 5.275 5.250 9 4 10.150 9.917

5 4 6.425 6.483

It may be seen that these means are quite different. The pairwise treatment comparisons are 
made and are presented in Table 6.11.

Table 6.11: t comparison lines for least squares means of treatments

LS-means with the same letter are not significantly different

obs LSMEAN LSMEAN Number

A 9.917 9

B 9.533 8

C 8.150 7

D 7.167 6

E 6.483 5

F 5.250 4

G 4.017 3

H 3.133 2

I 2.150 1

It may be seen from Table 6.11 that all the treatments are pairwise significantly different 
from one another. However, treatment 9 is the best in terms of getting maximum response. 
Treatment 1 is the lowest yielding treatment.
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Table 6.12: t comparison lines for least squares means of operation within block

Operation Block Observation  LSMEAN LSMEAN Number

1 1 5.200 1

2 1 5.167 2

3 1 5.567 3

1 2 6.217 4

2 2 6.417 5

3 2 6.633 6

1 3 5.317 7

2 3 5.733 8

3 3 5.650 9

1 4 7.417 10

2 4 7.350 11

3 4 7.733 12

Table 6.13: t comparison lines for least squares means of oper(blk)

LS-means with the same letter are not significantly different

Observation LSMEAN Operation Block LSMEAN Number

A 7.733 3 4 12

B A 7.417 1 4 10

B 7.350 2 4 11

C 6.633 3 2 6

D C 6.417 2 2 5

D 6.217 1 2 4

E 5.733 2 3 8

F E 5.650 3 3 9

F E 5.567 3 1 3

F G 5.317 1 3 7

G 5.200 1 1 1

G 5.167 2 1 2

The LS Means were also obtained for operations within blocks. The pairwise comparisons 
of the operation levels within each block were also made. These are summarized in the Tables 
6.12 and 6.13. It may be seen that operation 3 within block 4 produces largest response, though 
statistically it is at par with operation 1 within block 4. It is significantly different from all other 
operations within blocks. The lowest observation is produced by operation 2 within block 1. 
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This is also statistically at par with operation 1 within block 1, and operation 1 within block 3. 
It is significantly lower than all other operations within blocks.

6.6.2   Analysis using R
In the sequel is given the R code for the analysis of data using R software. The results 

obtained are not reported to avoid duplication.

R code
d10=read.table(“nrcd.txt”,header=TRUE)
attach(d10)
names(d10)
#Treatment means and standard deviations
aggregate(obs~trt,data=d10,mean)
aggregate(obs~trt,data=d10,sd)
#Treatment wise box plot of calorie
boxplot(obs~trt)
#anova
trt=factor(trt)
tech=factor(tech)
oper=factor(oper)
blk=factor(blk)
lm1=lm(obs~trt+blk+tech/blk-tech+oper/blk-oper)
#anova(lm1)
library(car)
Anova(lm1,type=“III”)
library(lsmeans)
lsm=lsmeans(lm1,“trt”)
lsm
pairs(lsm)
#to provide letters for groups, need to install multcompView
library(multcompView)
cld(lsm,Letters=“abcdefghij”)
#operator in block wise least square means and grouping
lsm2=lsmeans(lm1,~oper:blk)
lsm2
cld(lsm2,Letters=“abcdefghij”)
detach(d10)

6.7   Example 5 
We continue once again with Example 4 in Section 6.6 and assume that there are 9 treatments 

to be allocated to 30 plots arranged in 4 blocks of sizes 6, 9, 9 and 6, respectively. Two blocks 
are complete blocks while remaining two blocks are incomplete blocks. A sample of harvested 
output from all the 30 plots has to be analyzed block wise using three different operations. The 
data collected is given in Table 6.14.
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Table 6.14: Harvest data from thirty plots

Block I Block II

Operations 1 2 Operations 1 2 3

1 1 (1.1) 2 (2.1) 1 1 (2.1) 4 (5.2) 7 (8.3)

2 4 (4.2) 5 (5.3) 2 2 (3.2) 5 (6.7) 8 (9.9)

3 7 (7.4) 8 (8.7) 3 3 (4.5) 6 (7.6) 9 (10.3)

Block III Block IV

Operations 1 2 3 Operations 1 2

1 1 (1.2) 6 (6.3) 8 (8.7) 1 1 (3.1) 9 (11.3)

2 9 (9.4) 2 (2.7) 4 (4.8) 2 6 (8.1) 2 (4.5)

3 5 (5.9) 7 (7.8) 3 (3.3) 3 8 (10.7) 4 (6.9)

In the continuation of this example is presented the analysis of the data for identifying the 
best performing treatment.

6.7.1   Analysis 
This design is a nested block design with unequal block sizes. Two bigger blocks are complete 

blocks with 9 treatments each while the other two bigger blocks are incomplete blocks with 6 
treatments each. Since the bigger blocks are of unequal sizes, the sub-blocks within each block 
are also of unequal sizes. Three sub-blocks within each of the two incomplete bigger blocks have 
two treatments each while three sub-blocks within each of the two complete bigger blocks have 
three treatments each. The parameters of this design are v = 9, b = 4, block sizes as 6, 9, 9, 6 and 
sub-block sizes as 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2. We analyze the data using SAS. The commands 
are given below:

DATA nbib;
INPUT blk oper trt obs;
CARDS;
1	 1	 1	 1.1
1	 1	 2	 2.1
1	 2	 4	 4.2
1	 2	 5	 5.3
1	 3	 7	 7.4
1	 3	 8	 8.7
2	 1	 1	 2.1
2	 1	 4	 5.2
2	 1	 7	 8.3
2	 2	 2	 3.2
2	 2	 5	 6.7
2	 2	 8	 9.9
2	 3	 3	 4.5
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2	 3	 6	 7.6
2	 3	 9	 10.3
3	 1	 1	 1.2
3	 1	 6	 6.3
3	 1	 8	 8.7
3	 2	 9	 9.4
3	 2	 2	 2.7
3	 2	 4	 4.8
3	 3	 5	 5.9
3	 3	 7	 7.8
3	 3	 3	 3.3
4	 1	 1	 3.1
4	 1	 9	 11.3
4	 2	 6	 8.1
4	 2	 2	 4.5
4	 3	 8	 10.7
4	 3	 4	 6.9
;
ODS RTF FILE=‘nestedincomplete.rtf ’;
PROC PRINT;
PROC GLM;
CLASS blk oper trt;
MODEL obs=blk oper(blk) trt/ss3;
MEANS trt;
LSMEANS trt oper(blk)/PDIFF LINES;
RUN;
ODS RTF CLOSE;

6.7.2   Output of analysis
The results obtained from the analysis are given in Table 6.15.

Table 6.15: Output of analysis from SAS commands

ANOVA

Source DF Type III SS MS F Value Prob > F

Model 19 250.752 13.197 460.24 <0.0001

Error 10 0.287 0.0287

Corrected Total 29 251.034

R-Square CV Root MSE Observation Mean

0.999 2.802 0.169 6.043
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ANOVA

Source DF Type III SS MS F Value Pr > F

Blocks 3 16.546 5.515 192.34 <0.0001

Operations within blocks 8 0.506 0.063 2.21 0.1201

Treatments 8 170.543 21.318 743.44 <0.0001

Error 10 0.287 0.0287

Corrected Total 29 251.034

It may be observed that the model with nested terms explains almost 100 per cent variability 
in the data. The CV is also very low of the order of 2.80. The treatments and more importantly 
the blocks have been found to be highly significant (p-value < 0.0001). However, the operations 
effect within blocks is not significant (p-value = 0.1201).

Table 6.16: Treatment wise unadjusted and least square means

 Level of 
Treatment

N Obs Mean Level of 
Treatment

N Obs Mean

Unadjusted Mean LS Mean Unadjusted Mean LS Mean

1 4 1.875 1.985 6 3 7.333 6.985

2 4 3.125 3.101 7 3 7.833 8.299

3 2 3.900 3.905 8 4 9.500 9.487

4 4 5.275 5.332 9 3 10.333 9.891

5 3 5.967 6.444

It may be seen that the unadjusted means are quite different from the LS MEANS. The 
pairwise treatment comparisons are made and are presented in Table 6.17.

Table 6.17: t comparison lines for least squares means of treatments

LSMEANS with the same letter are not significantly different

observation LSMEAN LSMEAN Number

A 9.891 9

B 9.487 8

C 8.299 7

D 6.985 6

E 6.444 5

F 5.332 4

G 3.905 3

H 3.101 2

I 1.985 1
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It may be seen from comparisons in Table 6.17 that all the treatments are pairwise 
significantly different from one another. Treatment 9 is the highest yielding treatment while 
treatment 1 is the lowest yielding treatment.

The LSMEANS were also obtained for operations within blocks. The pairwise comparisons 
of the operation levels within each block were also made. These are summarized in the Tables 
6.18 and 6.19. 

Table 6.18: Least square mean for operation within block

Operation Block Observation LSMEAN LSMEAN Number

1 1 5.216 1

2 1 5.021 2

3 1 5.315 3

1 2 6.154 4

2 2 6.415 5

3 2 6.698 6

1 3 5.406 7

2 3 5.684 8

3 3 5.610 9

1 4 7.421 10

2 4 7.415 11

3 4 7.549 12

It may be seen that operation 3 within block 4 produces largest observation, though 
statistically it is at par with operations 1 and 3 within block 4. It is significantly different from 
all other operations within blocks. The lowest observation is produced by operation 2 within 
block 1. This is also statistically at par with operation 1 within block 1, operation 3 within block 
1 and operation 1 within block 3. It is significantly lower than all other operations within blocks.

Table 6.19: t comparison lines for least squares means of operation within block

LS-means with the same letter are not significantly different

Observation LSMEAN Operation Block LSMEAN Number

A 7.549 3 4 12

A 7.421 1 4 10

A 7.415 2 4 11

B 6.698 3 2 6

C B 6.415 2 2 5

C 6.154 1 2 4

D 5.684 2 3 8
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LS-means with the same letter are not significantly different

Observation LSMEAN Operation Block LSMEAN Number

E D 5.610 3 3 9

E D F 5.406 1 3 7

E D F 5.315 3 1 3

E F 5.216 1 1 1

F 5.021 2 1 2

6.7.3   Analysis using R
The R code for the analysis of data using R software is given in the sequence. To avoid 

duplication, the results obtained have not been included.

R code
d11=read.table(“nbib.txt”,header=TRUE)
attach(d11)
names(d11)
#Treatment means and standard deviations
aggregate(obs~trt,data=d11,mean)
aggregate(obs~trt,data=d11,sd)
#Treatment wise box plot of calorie
boxplot(obs~trt)
#anova
trt=factor(trt)
oper=factor(oper)
blk=factor(blk)
lm1=lm(obs~trt+blk+oper/blk-oper)
#anova(lm1)
library(car)
Anova(lm1,type=“III”)
library(lsmeans)
lsm=lsmeans(lm1,“trt”)
lsm
pairs(lsm)
#to provide letters for groups, need to install multcompView
library(multcompView)
cld(lsm,Letters=“abcdefghij”)
#operator in block wise least square means and grouping
lsm2=lsmeans(lm1,~oper:blk)
lsm2
cld(lsm2,Letters=“abcdefghij”)
detach(d11)
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Augmented Design

Augmented Design

7.1   Introduction
So far the attention has been focused on designs in which the interest of the experimenter 

is to make all the possible pairwise treatment comparisons. However, this is not the case 
always. There exist situations where the treatments studied in an experiment comprise of two 
disjoint groups and each group of treatments has different importance to the researcher. The 
comparisons of treatments within groups may not be of interest or may be of less importance 
to the researcher while the comparisons of treatments between groups may be of interest or 
of more importance to the researcher. In other words, the interest of the experimenter is only 
in a subset of all the possible pairwise treatment comparisons. We illustrate this fact through 
examples studied in the literature.

Experimental Situation 1: (Federer, 1956). In a sugarcane breeding trial conducted at 
Hawaii, four sugarcane varieties viz., A, B, C, or D, and eleven-seedling tests e, f, g, h, i, j, k, l, m, 
n, or o, were tried to evaluate the seedlings.  Replicated plots on the individual seedlings were not 
possible because of the scarcity of seed cane and the large plots required for experimentation.  
One of the objectives of the trial was to make comparisons among the members of the two 
groups of sugarcane variety and seed cane.  For obtaining the experimental error, sugarcane 
varieties were replicated.  The trial was conducted in four blocks (b = 4) with seven plots in 
three blocks (k1 = k2 = k3 = 7) and six plots in the fourth block (k4 = 6).  The layout of the design, 
without randomization, is the following:

B1 B2 B3 B4

A A A A

B B B B

C C C C

D D D D

e h k n

f i l o

g j m

Experimental Situation 2: (Pearce, 1960). In a strawberry weed killer trial, it was intended 
to find out whether the application of any of the weed killers, A, B, C, or D, all of which were 
apparently suitable for controlling weeds in strawberry fields, would harm the growth of fruiting 

7
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strawberry plants.  The trial was run in a design comprising of four blocks (b = 4) of seven plots 
each (k = 7) and there were four treatments comprising of four kinds of herbicides (w = 4) 
besides an untreated control (O).  The layout, without randomization, is given as:

B1 B2 B3 B4

O O O O

O O O O

A A A A

A B B B

B C B C

C D C C

D D D D

Interestingly, initially the design planned was randomized complete block (RCB) design 
with five test treatments (weed killers, A, B, C, D, or E) modified by adding two control 
replications in each block.  But at last moment it was observed that supply of herbicide E still 
had not arrived and a decision had to be made quickly.  It was thought of merging treatment E 
with any one of the treatments A, B, C, or D, in each block thus doubling the number of plots 
assigned to one of other substances.  But sufficient supplies were not available for any of them 
(i.e. merging of treatments was not possible).  Hence in desperation it was thought that in each 
of the four blocks treatment E will be exchanged with distinct treatments like A, B, C, and D in 
block I, II, III and IV, respectively.  As a result of this a new class of designs, described above, 
was discovered.

Experimental Situation 3: In a trial, seven treatments (test treatments) were tried along 
with three controls.  The purpose of the experiment was to make comparisons between the 
treatments in the two groups.  The trial was laid out in ten blocks (b = 10), the first seven 
blocks having six plots each ( ) and the last three blocks having ten plots each 
( ).  The design adopted is the following:

B1 1 2 4 A B C

B2 2 3 5 A B C

B3 3 4 6 A B C

B4 4 5 7 A B C

B5 5 6 1 A B C

B6 6 7 2 A B C

B7 7 1 3 A B C

B8 1 2 3 4 5 6 7 A B C

B9 1 2 3 4 5 6 7 A B C

B10 1 2 3 4 5 6 7 A B C
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Experimental Situation 4: (Ture, 1994).  A certain type of synthetic fiber is used in the 
production of various consumer goods.  The research team of the manufacturer of this fiber 
has developed three new types of synthetic fibers that can be used for the same purpose.  Each 
of these alternative fibers is more cost-efficient than the present one and can replace it if any 
one of them is proved to be stronger.  An experiment was conducted to compare the breaking 
strengths of all these synthetic fibers.  Suppose that 4 testing machines and 5 operators are 
available for the experiment.  Because variability between the machines and the operators is 
suspected, the experiment must be designed to control such variability.  Assuming that each 
operator can work on each testing machine once only, the following design may be used which 
is efficient for making tests vs controls comparisons.

Machine ↓ Operator →

A B C D E

I 0 3 0 1 2

II 1 2 0 0 3

III 3 1 2 0 0

IV 2 0 1 3 0

For the experimental settings considered here, all the possible pair-wise comparisons among 
treatments are not of equal interest to the researcher.  In fact, the researcher is interested only in 
a subset of comparisons comprising of tests vs controls comparisons or pairwise comparisons 
among treatments belonging to the two groups. The comparisons among tests and among 
controls may be of little or no consequence to the researcher. For this experimental setting the 
variance-balanced designs for making all possible pair-wise treatment comparisons may not be 
useful.  

Suppose that there are 6 treatments tried in an experiment viz., A, B, C, D and 0, 1. If one is 
interested in making all the possible pairwise treatment comparisons, then there would be the 
following 15 comparisons: (A, B), (A, C), (A, D), (A, 0), (A, 1), (B, C), (B, D), (B, 0), (B, 1), (C, 
D), (C, 0), (C, 1), (D, 0), (D, 1), (0, 1). In these comparisons one may notice that every treatment 
appears 5 times in the 15 pairwise comparisons. So using any design described so far with equal 
or as far as possible equal replications will be an obvious choice. But suppose that the treatments 
A, B, C, D are tests (new treatments) and treatments 0, 1 are the controls (standard treatments or 
existing practices).  The experimenter is not interested in making pairwise comparisons among 
treatments within groups. The interest is only in pairwise comparisons between the two groups. 
The following 8 pairwise comparisons of treatments are of interest now to the experimenter: (A, 
0), (A, 1), (B, 0), (B, 1), (C, 0), (C, 1), (D, 0), (D, 1). Now it may be seen that treatments A, B, C, 
D appear twice in the comparisons but treatments 0, 1 appear 4 times each. Thus intuitively it is 
apparent that one needs to have designs with unequal replications of treatments with treatments 
0, 1 replicated more times than the treatments A, B, C, D. Obviously then the designs with equal 
replications of treatments may not be good for these experimental situations.
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The experimental situations described above can be classified in two broad categories viz. 
Category A: where it is not possible to replicate the test treatments (Experimental Situation 1) 
and Category B: where it is possible to have replication of test treatments as well (Experimental 
Situations 2,3, and 4). The designing and analysis of these experimental situations is described 
in the sequel.

7.2   Category A experiments with single replication of tests  
          (Augmented designs) 

Category-A designs are essentially augmented designs. In genetic resources environment, 
which is a field in the forefront of biological research, an essential activity is to test or evaluate 
the new germplasm / provenance / superior selections (test treatments), etc. with the existing 
provenance or released varieties (control treatments). A problem in these evaluation studies 
is that the quantity of the genetic material collected from the exploration trips is very limited 
or cannot be made available since a part of this is to be deposited in Gene Bank. The available 
quantity of seed is often not sufficient for replicated trials. Moreover, the number of new 
germplasm or provenance to be tested is very high (usually about 1000-2000 and sometimes 
up to 3000 accessions), and it is very difficult to maintain the within block homogeneity. These 
experimental situations may also occur in the fields of entomology, pathology, chemistry, 
physiology, microbiology, agronomy and perhaps others for screening experiments on new 
material and preliminary testing of experiments on promising material. In some other cases 
(e.g. physics), a single observation on new material may be desirable because of relatively low 
variability in the experimental material. These types of situations came to be known to Federer 
around 1955 in screening new strains of sugarcane and soil fumigants used in pineapples. 
Augmented (Hoonuiaku) designs were introduced by Federer (1956) to fill a need arising 
in screening new strains of sugarcane at Experimental Station of Hawaii Sugarcane Planters 
Association on the basis of agronomic characters other than yield.

Thus, we have seen that we have to design an experiment in which the experimental material 
for new (test) treatments is just enough for a single replication. However, the connectedness 
property of the design is ensured by augmenting any standard connected design in control 
treatments with new (test) treatments and replications of the control provide the estimate of 
error. More precisely, an augmented experimental design is any standard experimental design 
in standard (or control) treatments to which additional (new) treatments have been added.  
The additional treatments require enlargement of the complete blocks or incomplete blocks in a 
block design set up or rows or / and columns in a row - column design set up, etc. The groupings 
(or blocks) in an augmented design may be of unequal sizes.

Augmented designs can be run in 0-way and 2-way elimination of heterogeneity settings 
also. Augmented designs eliminating heterogeneity in one direction are called augmented 
block designs and augmented designs eliminating heterogeneity in two directions are called 
augmented row-column designs. Federer (1956, 1961) gave the analysis, randomization 
procedure and construction of these designs by adding the new treatments to the blocks of RCB 
design and balanced lattice designs in control treatments. Federer (1963) gave procedures and 
designs useful for screening material inspection and allocation with a bibliography.  Federer 
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and Raghavarao (1975), who obtained augmented designs using RCB design and linked block 
design for one-way heterogeneity setting, gave a general theory of augmented designs.  They 
also gave a method of construction of augmented row-column design using a Youden Square 
design and also provided formulae for standard errors of estimable treatment contrasts. Federer 
et al. (1975) gave systematic methods of construction of augmented row column design.  A 
procedure of analysis of data generated from these designs has also been given.  The estimable 
contrasts in such designs may be (i) among new varieties (test treatments), (ii) among check 
varieties (control treatments), and (iii) among all check and new varieties simultaneously.  
Indeed it may be possible to estimate the contrasts between check and new varieties. We shall 
concentrate on augmented designs for 1-way elimination of heterogeneity settings. In general, 
the randomization procedure for an augmented block design is:

1.	 Follow the standard randomization procedure for the known design in control treatments 
or check varieties. 

2.	 Test treatments or new varieties are randomly allotted to the remaining experimental 
units. 

3.	 If a new treatment appears more than once, assign the different entries of the treatment 
to a block at random with the provision that no treatment appears more than once in a 
block until that treatment appears once in each of the blocks.

The analysis of variance of the data generated from an augmented block design with v = 
u + w treatments comprising of w tests and u controls arranged in b blocks having k1 plots 
(experimental units) in block 1, k2 plots (experimental units) in block 2, and so on, and kb 
plots (experimental units) in block b, such that , the total number of plots 
(experimental units) in the design, is sketched in Table 7.1.

Table 7.1: ANOVA table for augmented block design 

Source DF SS MS F-value

Blocks (Eliminating treatments) b – 1 ASSB MSSB MSSB/MSE

Treatments (Eliminating blocks) v – 1 ASST

       Among Tests w – 1 SST MSST MSST/MSE

       Among Controls u – 1 SSC MSSC MSSC/MSE

       Tests vs Controls 1 SSTC MSSTC MSSTC/MSE

Error n – v – b + 1 SSE MSE

Corrected Total n – 1 TSS

For making the exposition clear, we shall consider the Augmented Randomized Complete 
Block Design. Let us consider the experimental situation where w test treatments (tth test 
denoted by ) are to be compared with u control treatments (sth control denoted 
by  via n experimental units arranged in b blocks such that jth block is of size 

.  For an augmented randomized complete block design, each of the control 
treatments is replicated b times and occurs once in every block and test treatments occur only 
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once in any one of the b blocks.  Therefore, it can be seen easily that in the jth block there will 
be  test treatments,   The randomization procedure is given as follows:

1.	 Randomly allot u controls to u of the kj experimental units in each block, j=1,2,...,b. 
2.	 Randomly allot the w test treatments to the remaining experimental units.
3.	 If a new treatment appears more than once, assign the different entries of the treatment to 

a complete block at random with the provision that no treatment appears more than once 
in a complete block until that treatment occurs once in each of the complete blocks. 

For augmented randomized complete block design standard errors for comparing mean 
differences are as follows

Estimated standard errors of the estimated difference

(i)  Between two control treatments, SE(1) =  

(ii) Between two test treatments in the same block, SE(2) = 

(iii) Between two test treatments not in the same block, SE(3) = 

(iv)  Between a test treatment and a control treatment, SE(4) = 

7.3   Example 1 
An experiment was conducted with w = 8 new accessions (that were to be tested) denoted 

by  and u = 4 control treatments denoted by  of a genotype.  There are 
20 plots (experimental units) that could be arranged in three blocks (b = 3).  There are 7 plots 
(4 for control treatments and 3 for new accessions) in the first and third block and 6 plots (4 
for control treatments and 2 for new accessions) in the second block, i.e., . For 
random allocation of these treatments in the experiment, we have to proceed as:

(i)	 Allot the 4 control treatments to each block randomly.  In this process, say following is the 
arrangement:

Blocks			   Experimental units

		  1	 2	 3	 4	 5	 6	 7

1			   C3	 C4		  C1	 C2

2		  C4	 C2	 C1	 C3

3			   C3	 C1		  C4	 C2

 The 7th experimental unit is for blocks 1 and 3 and not for block 2. Of the 20 experimental 
units, 12 have been allotted to the control treatments. The remaining 8 will be allotted to the 8 
new accessions.
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8 new accessions are allotted randomly to the remaining experimental units of the 3 blocks.  
This way 4 controls and 8 new accessions randomly occupy 20 experimental units.  The final 
arrangement looks as in Table 7.2.

Table 7.2: Data from an augmented block design

Blocks Experimental units

1 2 3 4 5 6 7

1 N8  (74) C3 (78) C4  (78) N3  (70) C1  (83) C2  (77) N7(75)

2 C4 (91) C2 (81) C1  (79) C3 (81) N1 (79) N5 (78)

3 N4 (96) C3 (87) C1 (92) N2 (89) C4 (81) C2 (79) N6 (82)

The figures in the parenthesis represent the observed value of the character under study 
from an experiment conducted in the above layout.  Source for this data is Federer (1956). The 
analysis of the data has been carried out and the ANOVA Table 7.3 is given. 

Table 7.3: Analysis results of the data in Table 7.2 

ANOVA

SOURCE DF SS MS F-value Prob  > F

Blocks(eliminating treatments) 2 69.500 34.750 1.29 0.3424

Treatments(eliminating blocks) 11 285.095 25.918 0.96 0.5499

       Among Tests 7 215.169 30.738 1.14 0.4447

       Among Controls 3 52.917 17.639 0.650 0.6092

       Tests vs Controls 1 15.047 15.042 0.56 0.4834

Error  6 161.833 26.972

R2 CV Root MSE Yield Mean

0.800 6.372 5.194 81.500

Estimated standard errors of the estimated difference
(i)	 between two controls is 4.24.
(ii)	 between two tests in the same block is 7.34. 
(iii)	 between two tests in different blocks is 8.21. 
(iv)	 between a control and a test is 6.36.

We can use the adjusted values/means of the test treatments for comparison purpose. All 
those treatments for which yield levels are up to the satisfaction of breeder can be selected for 
further national level trials.  In these kinds of experiments, generally, multiple characteristics 
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are observed.  It may, therefore, be desirable to perform multivariate analysis of variance and 
use other related multivariate analytic techniques like cluster analysis, discriminant analysis, 
etc.

Keeping in view the importance of this design and for the ease of Biological Research 
Workers Agarwal and Sapra (1995) developed a user friendly program AUGMENT1 at the 
Documentation Unit of National Bureau of Plant Genetic Resources, New Delhi, to analyze 
the data of Augmented RCB design.  It is interesting to note that the augmented RCB design is 
variance balanced with respect to tests vs controls comparisons. 

7.4   Optimum replication of controls in a block
A survey of the literature reveals that generally the experiments described above are 

conducted using an augmented randomized complete block design. However, the experimenters 
would often like to know how many times the control treatments be replicated in each of the 
blocks so as to maximize the efficiency per observation for making test treatments vs control 
treatments(s) comparisons? An answer to this question was obtained by Parsad and Gupta 
(2000) and is described in the sequence. 

Suppose that there are w test treatments which occur only once in the design and each of 
the u controls occurs in each of the b blocks, then to maximize the efficiency per observation 
the number of times each control appears in each of the blocks is 

provided  For example, consider the problem of obtaining the optimum number of 

replications of the controls in an experiment with w = 24, u = 3, b = 4. We have  

Similarly, for w = 98, u = 2, b = 7, we have  .

Remark 7.1 For a single control situation, i.e. u = 1, the above expression reduces to   

and it can easily be seen that for u = 1, the condition  becomes b<w, which is always 
true.

There may, however, arise many combinations of w, u and b for which the above expression 
of  r does not yield a positive integer value of r.  In such situations, a question that arises is as to 
what integer value of r should be taken?  To answer this question, the efficiency per observation 
has been calculated for w<100, b<25 and u<10 such that b + u –1<w and r has been taken as r* 

= int(r) and int(r) + 1 besides taking r = 1.  A close scrutiny reveals that if value of r > #.42 then 
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take r* = int(r) + 1 and for values of r smaller than or equal to  #.42 take r* = int(r) for u> 2. For u 
= 1, the same rule applies but the value of r is taken as #.45 instead of #.42. Here # is the integral 

part of 

7.5   Statistical package for augmented designs
A user friendly, menu driven, graphic user interface (GUI) based Statistical Package called 

“Statistical Package for Augmented Design” (SPAD) has been developed at IASRI, New Delhi. 
The package generates randomized layout of augmented designs and performs the analysis of 
data generated. For given number of test treatments, number of control treatments and number 
of blocks, it computes the optimum replication number of each control treatment in every 
block of the design such that the efficiency per observation of the test treatments vs control 
treatment(s) comparisons is maximum. The user may choose the optimum replication number. 
However, the package provides flexibility in choosing the replication number of each control 
treatment in every block. The user can choose the replication of each control treatment in every 
block according the resources available. It also asks the user to give the block sizes. One can have 
unequal block sizes as well. Once the user defines the number of test treatments, number of 
control treatments, and number of blocks in the design, the randomized layout of the design is 
generated. The package also provides the analysis of the data generated from augmented designs. 
A null hypothesis on any user-defined contrast can also be tested. This software is available 
at Design Resources Server. The URL is  http://www.iasri.res.in/design/AugmentedDesigns/
home.htm.

7.6   Example 2 
An experiment was conducted at Directorate of Wheat Research during 2002-03 to 

compare 54 new accessions with 4 check varieties to see whether any of the check varieties can 
be replaced by any of the new accessions. The experiment was conducted using an augmented 
randomized complete block design with 6 blocks each of size 13 such that each of 4 check 
varieties are allocated in each of the six blocks and accessions are allocated only once in the 
design. The data on (i) days to 75% SE, (ii) FLL in centimeters and (iii) 1000 grain weight in 
grams is given in Table 7.4.

Table 7.4: Experiment data from an augmented RCB design

Accession 
No.

Block Days 
to 75 
% SE

FLL 
(cm)

1000 
Grain 

Weight 
(gm)

Accession 
No.

Block Days 
to 75 
% SE

FLL 
(cm)

1000 
Grain 

Weight 
(gm)

IC-028532 1 85 21.8 36.7 IC-079026 4 85 22.8 28.6

IC-028661 1 88 22.98 31.6 C-3 4 86 19.8 33.1

IC-028696 1 85 21 22.7 IC-079008 4 86 26.8 25.4
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Accession 
No.

Block Days 
to 75 
% SE

FLL 
(cm)

1000 
Grain 

Weight 
(gm)

Accession 
No.

Block Days 
to 75 
% SE

FLL 
(cm)

1000 
Grain 

Weight 
(gm)

IC-028741 1 85 22.4 30.2 IC-079027 4 86 23.1 19.9

C-4 1 84 23.3 36 C-1 4 87 17.5 28.2

IC-028764 1 81 22.2 31.4 IC-079034 4 84 26.1 20.9

IC-028794 1 82 22.6 29.5 IC-079037 4 88 27.3 25.5

IC-028835 1 85 22.22 28.3 IC-079047 4 82 23.8 27.9

C-1 1 86 19.34 27.2 C-4 4 85 23.3 34.9

IC-028843 1 85 20.8 34.7 IC-079048 4 92 23.7 27

IC-028847 1 85 21 33.4 IC-079050 4 87 22.8 22.8

C-2 1 86 22.8 29.6 IC-079007 4 88 25.3 25.5

C-3 1 88 22.88 24.4 C-2 4 87 28.7 31.2

IC-036882 2 85 23.9 25.7 C-3 5 87 15.2 30.9

C-1 2 88 20.2 29.3 IC-082330 5 85 20.7 18.3

IC-036875 2 87 22.7 23.6 IC-082335 5 90 21.8 31.2

IC-042408 2 79 24.3 35.9 IC-082336 5 85 22.2 29

C-3 2 86 13.7 37.9 IC-082338 5 88 19.2 27.9

IC-036885 2 84 23.34 16.6 C-1 5 86 15.5 34.4

IC-041405 2 92 24.9 24.9 IC-082343 5 88 19.9 23.5

C-4 2 82 23.7 35.8 IC-082351 5 90 19.6 27.5

IC-036884 2 85 28.4 28.3 C-2 5 85 23.7 36.3

IC-042458 2 80 25.1 28.7 IC-082352 5 85 20.8 27.9

IC-036871 2 89 25.9 24.9 IC-082362 5 84 14.6 28.9

C-2 2 81 23.1 38.1 C-4 5 86 20.7 36.9

IC-042343 2 83 25.5 26.1 IC-082326 5 83 21.2 18.5

C-4 3 88 26.9 35.9 IC-104612 6 83 26.4 39.9

IC-060221 3 83 22.24 33.5 IC-104601 6 87 19.7 36.5

IC-073491 3 82 25.36 34.6 C-4 6 85 18.8 30.1

IC-063947 3 82 21.6 19.9 C-2 6 87 22 36.5

IC-066518 3 85 21.04 26.9 IC-104609 6 87 20.4 32.5

IC-073214 3 81 22.9 36.9 IC-104607 6 85 21.4 39.2

C-1 3 88 17.4 33.5 IC-104611 6 87 21.4 34.4

C-2 3 85 23.6 24.8 C-3 6 86 17.7 36.5

IC-073207 3 90 21.32 21.4 IC-104613 6 86 21.7 24.3

IC-073493 3 86 21.6 18.9 IC-104614 6 84 21.3 34.6

IC-060218 3 82 19.9 23 C-1 6 87 18.4 31.1
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Accession 
No.

Block Days 
to 75 
% SE

FLL 
(cm)

1000 
Grain 

Weight 
(gm)

Accession 
No.

Block Days 
to 75 
% SE

FLL 
(cm)

1000 
Grain 

Weight 
(gm)

C-3 3 88 18.2 21.6 IC-104610 6 88 22.8 29.2

IC-060997 3 83 20.52 22.9 IC-104604 6 87 23.1 24.8

In what follows, the data are analyzed (a) to test the homogeneity of all the 58 treatment 
effects, (b) to test the equality of  (i) all check varieties, (ii) all new accessions, and (iii) all 
new accessions with all check varieties, (c) to make all possible pairwise comparisons of check 
varieties with each of the new accessions to identify the best performing accession.  

Remark 7.2 Using the online package, the following augmented design may be generated. 
It is indeed possible to generate another randomized layout of this design. The optimum 
replication of control in each block works out to one in this case. C# denotes the label of the 
control treatment and T# denotes the label of the new accession.

B1: (T4, T24, T46, T13, T17, C4, T34, T23, C1, T3, C2, C3, T16)

B2: (T12, T1, C4, C3, T54, C1, T10, T49, T37, C2, T43, T25, T30)

B3: (T21, T50, C3, T26, T47, C2, T48, C4, T20, C1, T40, T28, T29)

B4: (C2, T53, T22, T39, T5, T52, T11, C3, T18, C4, C1, T6, T42)

B5: (T14, T27, C4, T31, T9, C1, T45, C3, C2, T32, T36, T38, T2)

B6: (C4, C2, T8, T35, C3, T41, T15, C1, T7, T51, T44, T33, T19)

Remark 7.3 For preparing the data file for SAS, the treatment labels have to be given as 
numerals 1,2,3, . . . . For the Example 2 in Section 7.6, the numerals 1, 2, 3, 4 denote the controls 
(or check varieties) and the numerals 5, 6, 7, 8, . . . , 54, 55, 56, 57, 58 denote the 54 tests (or new 
accessions). While writing down the contrasts also, this has to be borne in mind.

7.6.1   Analysis of data
The parameters of the augmented design are given as:

Number of tests, w = 54; Number of controls, u = 4; Block sizes, k1 = k2 = k3 = k4 = k5 = k6 = 13

Replication of controls, r0 = 6, Replication of tests, r = 1, Total number of observations, n 
= 78. The data has been analyzed using SAS software. The commands and the data preparation 
are given in the sequel.

DATA augmented;
INPUT  block   trt   SE  FLL  GW;
CARDS;
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1	 1		  86	 19.34	   27.2
1	 2		  86	 22.8	   29.6
1	 3		  88	 22.88	   24.4
1	 4		  84	 23.3	   36.0
1	 5		  85	 21.8	   36.7
1	 6		  88	 22.98	   31.6
1	 7		  85	 21	   22.7
1	 8		  85	 22.4	   30.2
1	 9		  81	 22.2	   31.4
1	 10	 82	 22.6	   29.5
1	 11	 85	 22.22	   28.3
1	 12	 85	 20.8	   34.7
1	 13	 85	 21	   33.4
2	 1		  88	 20.2	   29.3
2	 2		  81	 23.1	   38.1
2	 3		  86	 13.7	   37.9
2	 4		  82	 23.7	   35.8
2	 14	 85	 23.9	   25.7
2	 15	 87	 22.7	   23.6
2	 16	 79	 24.3	   35.9
2	 17	 84	 23.34	   16.6
2	 18	 92	 24.9	   24.9
2	 19	 85	 28.4	   28.3
2	 20	 80	 25.1	   28.7
2	 21	 89	 25.9	   24.9
2	 22	 83	 25.5	   26.1
3	 1		  88	 17.4	   33.5
3	 2		  85	 23.6	   24.8
3	 3		  88	 18.2	   21.6
3	 4		  88	 26.9	   35.9
3	 23	 83	 22.24	   33.5
3	 24	 82	 25.36	   34.6
3	 25	 82	 21.6	   19.9
3	 26	 85	 21.04	   26.9
3	 27	 81	 22.9	   36.9
3	 28	 90	 21.32	   21.4
3	 29	 86	 21.6	  18.9
3	 30	 82	 19.9	  23.0
3	 31	 83	 20.52	  22.9
4	 1		  87	 17.5	  28.2
4	 2		  87	 28.7	  31.2
4	 3		  86	 19.8	  33.1
4	 4		  85	 23.3	  34.9
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4	 32	 85	 22.8	  28.6
4	 33	 86	 26.8	  25.4
4	 34	 86	 23.1	 19.9
4	 35	 84	 26.1	 20.9
4	 36	 88	 27.3	  25.5
4	 37	 82	 23.8	  27.9
4	 38	 92	 23.7	  27.0
4	 39	 87	 22.8	  22.8
4	 40	 88	 25.3	  25.5
5	 1		  86	 15.5	  34.4
5	 2		  85	 23.7	  36.3
5	 3		  87	 15.2	  30.9
5	 4		  86	 20.7	  36.9
5	 41	 85	 20.7	  18.3
5	 42	 90	 21.8	  31.2
5	 43	 85	 22.2	  29.0
5	 44	 88	 19.2	  27.9
5	 45	 88	 19.9	  23.5
5	 46	 90	 19.6	  27.5
5	 47	 85	 20.8	  27.9
5	 48	 84	 14.6	  28.9
5	 49	 83	 21.2	  18.5
6	 1		  87	 18.4	  31.1
6	 2		  87	 22	  36.5
6	 3		  86	 17.7	  36.5
6	 4		  85	 18.8	  30.1
6	 50	 83	 26.4	  39.9
6	 51	 87	 19.7	  36.5
6	 52	 87	 20.4	  32.5
6	 53	 85	 21.4	  39.2
6	 54	 87	 21.4	  34.4
6	 55	 86	 21.7	  24.3
6	 56	 84	 21.3	  34.6
6	 57	 88	 22.8	  29.2
6	 58	 87	 23.1	  24.8
;
ODS RTF FILE='Model1.rtf ';
PROC GLM;
CLASS trt block;
MODEL SE FLL GW = trt block;
LSMEANS trt/PDIFF LINES;
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CONTRAST 'Among New Accessions' trt 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0, 
trt 0 0 0 0 1 1 1 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 -6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 -7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 -8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 -9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 -11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
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trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -33 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -34 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -35 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -36 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -37 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -38 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -39 0 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -40 0 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -41 0 0 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -42 0 0 0 
0 0 0 0 0 0 0 0,
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trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -43 0 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -44 0 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -45 
0 0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -46 
0 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
-47 0 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 -48 0 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 -49 0 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 -50 0 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 -51 0 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 -52 0,
trt 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 -53;
CONTRAST 'Among Controls'       
trt 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0,
trt 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0,
trt 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0;
CONTRAST 'Control vs New Accessions' 
trt  -27 -27 -27 -27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 2 2;
RUN;
ODS RTF CLOSE;
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Note: It may appear difficult to generate the contrasts for each experimental situation. Therefore, 
a SAS Macro has been developed where user has only to enter the data file and variable names 
and with that information all other steps are generated automatically. This macro is available at 
http://www.iasri.res.in/sscnars/augblkdsgn.aspx.

7.6.2   Output of analysis
The results obtained from the analysis are given in Table 7.5.

Table 7.5: Results for the character SE

ANOVA for the character “Days to 75 % SE”

Source DF Type III SS MS F-Value Prob > F

Treatments 57 432.564 7.5889 3.28 0.0069

Among New Accessions 53 405.251 7.646 3.31 0.0068

Among Controls 3 20.333 6.778 2.93 0.0676

Controls vs New Accessions 1 6.980 6.980 3.02 0.1027

Blocks 5 19.000 3.800 1.64 0.2087

Error 15 34.667 2.311

Corrected Total 77 507.295

R-Square CV Root MSE SE Mean

0.932 1.777 1.520 85.551

It may be noted that the model explains about 93 percent of the total variability in the data 
pertaining to “Days to 75 % SE.” The CV is also very low (CV = 1.78). The treatment effects are 
significantly different (p-value = 0.0069), but the block effects are not significant. The effect of 
new accessions is also significantly different (p-value = 0.0068), but the effects of controls and 
new accessions vs controls are not significantly different.

The pairwise treatment comparisons using LS MEANS produce Table 7.6.

Table 7.6: t comparison lines for least squares means of treatments

LS-means with the same letter are not significantly different

SE LSMEAN LSMEAN  of Treatment 
Number

A 93.750 18

B A 91.750 38

B A C 90.750 21

B D A C 90.000 42

B D A C 90.000 46
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LS-means with the same letter are not significantly different

SE LSMEAN LSMEAN  of Treatment 
Number

E B D A C 88.750 15

E B D A C 88.750 28

E B D C 88.000 45

E B D C 88.000 44

E B D F C 88.000 6

E B D F C 87.750 57

E B D F C G 87.750 40

E B D F C G 87.750 36

E B D F C G 87.000 1

E B D F C G 86.833 3

E B D F H C G 86.750 19

E B D I F H C G 86.750 39

E B D I F H C G 86.750 51

E B D I F H C G 86.750 52

E B D I F H C G 86.750 14

E B D I F H C G 86.750 54

E B D I F H C G 86.750 58

E J D I F H C G 85.750 17

E J D I F H C G 85.750 33

E J D I F H C G 85.750 55

E J D I F H C G 85.750 34

E J D I F H G 85.167 2

E J D I F H G 85.000 5

E J D I F H G 85.000 11

E J D I F H G 85.000 13

E J D I F H G 85.000 47

E J D I F H G 85.000 8

E J D I F H G 85.000 41

E J D I F H G 85.000 4

E J D I F H G 85.000 43

E J D I F H G 85.000 12

E J D I F H G 85.000 7

E J I F H K G 84.750 32

E J I F H K G 84.750 53
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LS-means with the same letter are not significantly different

SE LSMEAN LSMEAN  of Treatment 
Number

E J I F H K G 84.750 22

E J I F H K G 84.750 29

E J I F H K G 84.000 48

E J I F H K G 83.750 35

E J I F H K G 83.750 56

E J I F H K G 83.750 26

J I F H K G 83.000 49

J I H K G 82.750 50

J I H K 82.000 10

J I H K 81.750 31

J I H K 81.750 37

J I H K 81.750 23

J I K 81.750 20

J K 81.000 9

J K 80.750 16

J K 80.750 25

J K 80.750 24

J K 80.750 30

K 79.750 27

The LINES display does not reflect all significant comparisons. The following additional pairs are significantly 
different: (18, 15) (38, 1) (38, 3) (38, 39) (21, 3) (21, 17) (42, 2) (42, 47) (42, 41) (42, 4) (42, 43) (46, 2) (46, 47) (46, 
41) (46, 4) (46, 43) (28, 26) (1, 4) (1, 49) (1, 50) (3, 49) (3, 50) (39, 37) (14, 20) (17, 16) (2, 9) (2, 16) (2, 25) (2, 24) 
(2, 30) (4, 9) (4, 16) (4, 25) (4, 24) (4, 30) (29, 27)

Note: While interpreting the results care need to be taken to convert the treatment numbers 
back to new accessions and control varieties. The control varieties are labeled 1 – 4 and the 
new accessions are labeled 5 – 58. This means that treatment number 5 is actually new strain 1; 
treatment number 58 is actually new strain 54, and so on.

The estimated standard errors of various estimated comparisons can be obtained by using 
the online portal “Strengthening Statistical Computing for NARS” at www.iasri.res.in/sscnars/. 
The estimated standard errors are given below:

Estimated standard errors of the estimated difference

(i)	 between two controls is 0.878 and Tukey’s HSD at 5 % is 6.172.
(ii)	 between two new accessions  in the same block is 2.150 and Tukey’s HSD at 5 % is 	

15.119.
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(iii)	 between two new accessions in different blocks is 2.404 and Tukey’s HSD at 5 % is 	
16.904.

(iv)	 between a control and a new accession is 1.783 and Tukey’s HSD at 5 % is 12.536.
Table 7.7: Results for the character FLL

ANOVA for the character “FLL (cm)”

Source DF Type III SS MS F-Value Prob > F

Treatments 57 425.265 7.461 1.26 0.3196

Among New Accessions 53 188.509 3.557 0.60 0.9116

Among Controls 3 179.234 59.745 10.10 0.0007

Control vs New Accessions 1 57.523 57.523 9.73 0.0070

Blocks 5 45.524 9.105 1.54 0.2366

Error 15 88.698 5.913

Corrected Total 77 672.516

R-Square CV Root MSE SE Mean

0.868 11.067 2.432 21.972

It may be noted that the model explains about 87 percent of the total variability in the 
data pertaining to “FLL.” The CV is little high compared to the one obtained for the character 
“days to 75 % SE.” (CV = 11.067). The treatment effects are not significantly different (p-value = 
0.3196); similarly the block effects are also not significant (p-value = 0.2366). The effect of new 
accessions is also not significantly different (p-value = 0.9116), but the effects of controls and 
controls vs new accessions are highly significant (p-values = 0.0007 and 0.0070, respectively).

Estimated standard errors of the estimated difference
i)	 between two controls is 1.404. 
(ii)	 between two new accessions  in the same block is 3.434.
(iii)	 between two new accessions in different blocks is 3.845.
(iv)	 between a control and a new accession is 2.851.

Note: While interpreting the results care need to be taken to convert the treatment numbers 
back to new accessions and control varieties. The control varieties are number 1 – 4 and the new 
accessions are numbered 5 – 58. This means that treatment number 5 is actually new strain 1; 
treatment number 58 is actually new strain 54, and so on.
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Table 7.8: Results for the character 1000 grain weight

ANOVA for the character “1000 grain weight (gm)”

Source DF Type III SS MS F-Value Prob > F

Treatments 57 1907.634 33.467 1.85 0.0946

Among New Accessions 53 1507.241 28.439 1.57 0.1694

Among Controls 3 74.508 24.836 1.37 0.2899

Controls vs New Accessions 1 325.884 325.884 17.98 0.0007

Blocks 5 144.933 28.987 1.60 0.2202

Error 15 271.817 18.121

Corrected Total 77 2512.795

R-Square CV Root MSE GW Mean

0.892 14.582 4.257 29.192

It may be noted that the model explains about 89 percent of the total variability in the data 
pertaining to “1000 grain weight.” The CV is little high compared to the one obtained for the 
character “days to 75 % SE.” (CV = 14.582). The treatment effects are not significantly different 
(p-value = 0.0946); similarly the block effects are also not significant (p-value = 0.2202). The 
effect of new accessions is also not significantly different (p-value = 0.1694), similarly, the effect 
of controls is also not significantly different (p-value = 0.2899). However, the effect of controls 
vs new accessions is highly significant (p-value = 0.0007). 

Estimated standard errors of the estimated difference
(i)	 between two controls is 2.458.
(ii)	 between two new accessions  in the same block is 6.020.
(iii)	 between two new accessions in different blocks is 6.731.
(iv)	 between a control and a new accession is 4.992.

7.6.3   Analysis using R
In the sequence are give the R code for analysis of data generated from an augmented 

design. The results obtained are not given to avoid duplication. 

R code
d12=read.table(“augmented.txt”,header=TRUE)
attach(d12)
names(d12)
#anova
trt=factor(trt)
block=factor(block)
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lm1=lm(SE~trt+block)
#anova(lm1)
library(car)
Anova(lm1,type=“III”)
library(lsmeans)
lsm=lsmeans(lm1,“trt”)
#to provide letters for groups, install and then load multcompView
library(multcompView)
cld(lsm,Letters=“abcdefghij”)
#generating the contrasts, trts 1-4 are the controls and 5-58 are new accessions 
contrast.mat1=matrix(0,53,58)
for (i in 1:53)
{
  contrast.mat1[i,(5:(4+i))]=1
  contrast.mat1[i,(5+i)]=-i
}
contrast.mat2=matrix(0,3,58)
for (i in 1:3)
{
  contrast.mat2[i,1]=1
  contrast.mat2[i,(1+i)]=-1
}
controls.vs.newaccessions=contrast(lsm,list(con1=c(rep(-27,4),rep(2,54))))
Among.New.Accessions=contrast(lsm,list(apply(contrast.mat1,1,list)))
Among.controls=contrast(lsm,list(apply(contrast.mat2,1,list)))
lht(lm1,Among.New.Accessions@linfct)
lht(lm1,Among.controls@linfct)
lht(lm1,controls.vs.newaccessions@linfct)
lm2=lm(FLL~trt+block)
Anova(lm2,type=“III”)
lsm2=lsmeans(lm2,“trt”)
controls.vs.newaccessions=contrast(lsm2,list(con1=c(rep(-27,4),rep(2,54))))
Among.New.Accessions=contrast(lsm2,list(apply(contrast.mat1,1,list)))
Among.controls=contrast(lsm2,list(apply(contrast.mat2,1,list)))
lht(lm2,Among.New.Accessions@linfct)
lht(lm2,Among.controls@linfct)
lht(lm2,controls.vs.newaccessions@linfct)
cld(lsm2,Letters=“abcdefghij”)
lm3=lm(GW~trt+block)
Anova(lm3,type=“III”)
lsm3=lsmeans(lm3,“trt”)
controls.vs.newaccessions=contrast(lsm3,list(con1=c(rep(-27,4),rep(2,54))))
Among.New.Accessions=contrast(lsm3,list(apply(contrast.mat1,1,list)))
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Among.controls=contrast(lsm3,list(apply(contrast.mat2,1,list)))
lht(lm3,Among.New.Accessions@linfct)
lht(lm3,Among.controls@linfct)
lht(lm3,controls.vs.newaccessions@linfct)
cld(lsm3,Letters=“abcdefghij”)
detach(d12 )

Remark 7.4 This Chapter has focused essentially on augmented design or Category A 
designs in which the test treatments have single replication.  Category B designs are the ones in 
which both the test treatments and control treatments are replicated.  In Category B a standard 
design (RCB design, BIB design, Latin Square, nested, etc) in test treatments is supplemented 
with the additional control treatments. Generally all the controls appear together. The analysis 
of such designs has been described at several places in the book. It is for this reason that the 
analysis of these designs has not been discussed separately in this Chapter. For instance in 
Section 2.3.2 in Chapter 2, the Example described is actually a Category B design. The analysis 
steps are almost same as category A experiments or augmented randomized complete block 
designs except that formulae for standard error of pairwise comparisons for tests, controls and 
test vs controls will change as per the design adopted.
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Combined Analysis of Groups of Experiments

8.1 	 Introduction
We have so far studied design and analysis of experiments for single factor with many levels 

conducted at one place or in one season or in one lab. There could, however, be situations where 
a single factor experiment may be conducted over a number of locations (or places) and / or 
a number of seasons (or years) or in different labs. In large scale experimental programmes, it 
is necessary to repeat the trial of a set of treatments like varieties or manures at a number of 
places or in a number of seasons. For example, in a crop improvement programme, the trial may 
be run over different centres or locations. Similarly, a crop sequence programme may be run 
over seasons or years. The places where the trial is repeated are usually experimental stations 
located in the tract. The main objective of running the experiment over different time periods 
or over different locations or both is to study the performance of treatment effects over different 
locations or different time periods. Henceforth, we shall talk of experiments being repeated 
over different environments in place of writing that the experiments are being repeated over 
locations or seasons or both. More generally, the purpose of repetition is to find out treatments 
suitable for particular environment in which case the trials are carried out simultaneously on a 
representative selection of environments.

The purpose of the research carried out at experimental stations is also to formulate 
recommendations for the practitioners, which consist of a population quite extensive either over 
time or space or both. Therefore, it becomes imperative to ensure that the results obtained from 
researches are valid for at least several places in the future and over reasonably heterogeneous 
environments.

A single experiment will precisely furnish information about only one place where the 
experiment is conducted and about the season in which the experiment is conducted. It has, thus, 
become a common practice among the agricultural research trials to repeat an experiment over 
different environments to obtain valid recommendations taking into account the environment 
to environment variation. It also allows the experimenter to study the interaction of the 
treatments with environment. In such cases where the experiment is repeated over space or 
time, appropriate statistical methodologies would have to be followed for the combined analysis 
of data obtained from individual experiments. In combined analysis of data, the interest of the 
experimenter is to obtain answers to the following questions:

(a)	  What is the estimate of the average response to given set of treatments?

(b)	  Is there consistency of the responses from environment to environment, i.e., is the 		
interaction of the treatments with environments present or absent?

8
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The utility and the significance of the estimates of average response depend on whether the 
response is consistent from environment to environment or changes with it; in other words, it 
depends on the presence or absence of the interaction between treatments and environments. 

The results of a set of trials may, therefore, be considered as belonging to one of the following 
four types:

a)	 the error variances pertaining to individual experiments are homogeneous and the 
interaction is absent;

b)	 the error variances pertaining to individual experiments are homogeneous and the 
interaction is present;

c)	 the error variances pertaining to individual experiments are heterogeneous and the 
interaction is absent;

d)	 the error variances pertaining to individual experiments are heterogeneous and the 
interaction is present.

Remark 8.1: The meaningfulness of average estimates of treatment responses would, 
therefore, depend largely upon the absence or presence of the interaction. If treatment × 
environment interaction is present then first identify whether the interaction is a cross-over 
(treatment ranks changes from one environment to another) or non-cross-over type where 
treatment differences change in magnitude but not in direction from one environment to 
another. In non-cross-over interaction, the treatments with superior means (or adjusted 
means) can be used in all the environments. If there is cross-over interaction, then the subsets 
of treatments are to be recommended only for certain environments. One way to identify the 
sub-sets of treatments for certain environments is to use the technique of biplots (generally Site 
Regression biplots).   

In the sequel, we describe the analysis procedure for group of experiments conducted in 
different environments as a block design. 

8.2 	 Analysis procedure
The model for the individual experiments would be the same as described in the earlier 

chapters. However, for the combined analysis of data from a block design, the model would be 

response = general mean + environment effect + block   effect(environment) + treatment effect + 
interaction between treatments and environments + error.

This model can alternatively be written as 

 

where yuij is the response to the ith treatment in the jth block on the uth environment, μ is 
the general mean, πu is the effect of the uth environment, τi is the effect of the ith treatment, 
βj is the effect of the jth block, (ππ)ui is the interaction effect of the uth environment and the 
ith treatment and euij is the random error component associated with the observation yuij and 
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follows a normal distribution with mean zero and variance . The euij 's are assumed to be 
independently distributed. Here      

The model has been described for combined analysis of data generated from block designs 
conducted across environments. Similar procedure can be used for other designs by modifying 
the model statement as per the design adopted. For example for a row-column design the model 
would be

response = general mean + environment effect + rows (environment) effect+ columns (environment) 
effect + treatment effect + interaction between treatments and environments + error.

For a resolvable block design, it can be written as

response = general mean + environment effect + replications (environments) effect+ blocks 
(replication, environment) effect + treatment effect + interaction between treatments and 
environments + error.

It may be noted here that treatment effect include treatment effect in case of single factor 
experiments and treatment combination effect in case of multi-factor experiments. In case of 
multi-factor experiments, one may include main effects and interaction effects in the model in 
place of treatment effect. In that case, interaction between treatments and environments may 
also be replaced with interaction of environments with main effects and interaction effects.

For the combined analysis of data, the following steps need to be followed:

Step 1.  Construct an outline of combined analysis of variance over environments (over years or 
over locations or over artificially created environments), based on the basic design used.

Step 2.  Perform the usual analysis of variance for the individual experiment (environment 
wise) depending upon the design adopted.

Step 3.  Test the homogeneity of the error variances using the error mean squares obtained 
from the individual experiments. Suppose that there are v treatments in each experiment and 
the experiment is repeated over p environments. So there would be p error variances and it 
would be required to test the homogeneity of these p error variances using the p error mean 

squares. Let  be the error variances for the respective p environments. Further, 

 let be the error mean squares obtained from the p experiments, with respective 

degrees of freedom as . For u = 1, 2, . . . , p,  is an unbiased estimator of . We 
may have the following two cases:

Case 1: p = 2.

In this case, use Snedecor's F distribution to test the equality of two variances. In this 
case, the null and alternate hypotheses are H0:  and H1: , respectively. The test 

statistic is . The computed value of F will be compared with the table value of Snedecor's 

F-distribution with n1 and n2 degrees of freedom and α level of significance. If the computed 
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value of F is greater than the table value of , then the null hypothesis of homogeneity of 
variances is rejected and it is concluded that the data are heterogeneous on the two environments; 
otherwise it is homogeneous.

Case 2. p > 2. In this case use Bartlett's chi-square to test the homogeneity of error variances. 
In this case, the null hypothesis and the alternate hypotheses are H0:  and H1: at 
least two of the  are not equal, respectively. The test statistic is

, where 

Further, if , then 

 and .

Here  follows a -distribution with p – 1 degrees of freedom. The computed value of 

will be compared with the table value of -distribution with p – 1 degrees of freedom and 
level of significance. If the computed value of   is greater than the table value of  , then 
the null hypothesis of homogeneity of error variances is rejected and it is concluded that the data 
are heterogeneous over different environments or different years; otherwise it is homogeneous.

Step 4. If error variances are heterogeneous, then for performing the combined analysis, 
one has to use weighted least squares. One choice of weights could be the reciprocals of the 
square root of error mean square of the individual experiments. The weighted analysis is carried 

out by defining a new response variable as {i.e., . This 

new variable is homogeneous and combined analysis can be performed on the transformed 
variable. If, however, the error variances are homogeneous, then no transformation is required.

Step 5: The group of experiments can now be viewed as a nested design with environments 
as the bigger blocks and the individual experiments nested within each bigger block. The 
replication wise data for each treatment on each environment provides useful information and 
one could work out the interaction of treatments with environments. There is a tendency among 
the experimenters to take the average of the replicated data for each treatment and environment. 
By doing so, one can't get the interaction.
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Step 6: The next step in the analysis is to test for the significance of the treatments × 
environments interaction to see if the treatment effects differ or not from environment to 
environment. The significance of the interaction between treatments and environments is tested 
by comparing the mean square of the interaction with the error mean square of the combined 
analysis of variance table using F-statistic. If the interaction effect is not found to be significant, 
it means the interaction is absent. When the interactions are absent then the model gets reduced 
to a no-interaction model. In this case, the sum of squares due to interaction is pooled with 
the error sum of squares to get a more precise estimate of the error variance for testing the 
significance of treatment effects. If, however, the interaction effect is significant, meaning thereby 
that the treatments differ in effect over environments, then the treatment effects are tested for 
significance by using the mean square due to interactions. In this case, the valid error for testing 
the significance of treatment effects is the mean square due to interactions. The significance is 
tested using Snedecor's F- statistic. 

 Remark 8.2: It may be noted that to study the interaction of treatments and environments, 
the experimental unit wise data is required. If for each environment, only the average value 
of the observations pertaining to each treatment is given then it is not possible to study the 
interaction of treatment and environments. 

 Remark 8.3: The environments depending upon their nature may either be fixed or random 
effects. Generally the different environments or the years are natural environments. The natural 
environments are usually considered as random sample from the population. Therefore, the 
effect of environment may be considered as random. All other effects in the model that involve 
the environment either as nested or as crossed classification are also considered as random. 
For instance the interaction term would also be random. The assumption of these random 
effects helps in identifying the proper error terms for testing the significance of various effects. 
The combined analysis of data can easily be carried out using PROC GLM of SAS along with 
Random statement with TEST option or PROC MIXED of SAS.

Remark 8.4: Some other experimental situations that can be viewed as groups of experiments 
are those in which it is difficult to change the levels of one of the factors because of practical 
considerations. For example, consider an experimental situation where the experimenter is 
interested in studying the long-term effect of irrigation and fertilizer treatments on a given 
crop sequence.  There are 12 different fertilizer treatments and three-irrigation treatments viz. 
continuous submergence, 1 day drainage and 3 days drainage. It is very difficult to change the 
irrigation levels and randomize them. Therefore, the three irrigation levels may be taken as 3 
artificially created environments and the experiment may be conducted using RCB design with 
12 fertilizer treatments with suitable number of replications in each of the 3 environments. The 
data from each of the three experiments may be analyzed individually and the mean square 
errors so obtained may be used for testing the homogeneity of error variances and combined 
analysis of data be performed. In case of artificially created environments, the environment 
effect also consists of the effect of soil conditions in field experiments, initial quality parameters 
in food processing experiments, etc. Therefore, it is suggested that the data on some auxiliary 
variables may also be collected. These auxiliary variables may be taken as covariate in the 
analysis.
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8.3	 Example  
An initial varietal trial was conducted to study the performance of 9 new strains of quality 

mustard vis-a-vis 3 checks using an RCB design with three replications at each of the respective 
environments (centres) at Bathinda, Hisar, IARI New Delhi, Ludhiana, Navgaon and TERI, 
New Delhi. The seed yield in kg/ha was recorded. The details of strains, design adopted and data 
obtained are given in Table 8.1.

Table 8.1: Treatment details of a group of experiments

Treatment Treatment No. Treatment Treatment No.
ELM-123 1 PRQ-2005-10 7
LET-5 2 RH(HO)  0501 8
VARUN(NC) 3 ZONAL CHECK 9
TERI HOJ-48 4 LET-14-1 10
ELM-108 5 ELM-134 11
KRANTI(NC) 6 RH(OH) 0502 12

Note: Strains of quality mustard in boldface are the three checks, i.e., treatment numbers 3, 6 
and 9 are checks.

The data for each of the environments is given in Table 8.2.

Table 8.2: Data for the experiment

Replication Replication
Environ Treat 1 2 3 Environ Treat 1 2 3
Bathinda 1 1794 2014 2581 Hisar 1 3286 2459 3286

2 1134 1736 1898 2 2518 2364 2364
3 718 764 880 3 757 993 875
4 1852 1551 1887 4 2553 2388 2884
5 2245 2361 2407 5 2908 2482 2884
6 1111 1065 1111 6 1797 1560 2033
7 1181 880 1528 7 1749 1537 1537
8 1644 1991 2060 8 1501 2317 2577
9 1551 1435 1991 9 1513 1608 2104

10 1968 1551 2569 10 2447 2459 2813
11 2662 2338 3056 11 2600 2884 2648
12 1065 1227 1343 12 1631 1466 1844
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Replication Replication
Environ Treat 1 2 3 Environ Treat 1 2 3

IARI 
New Delhi

1 2600 2444 2711 Ludhiana
 
 
 
 
 
 
 
  

1 1370 1209 1320
2 3289 2667 2889 2 904 729 1007
3 2756 2511 2400 3 858 942 839
4 2600 2444 2222 4 904 959 1155
5 2689 2422 2444 5 1438 1456 1695
6 2578 2400 2222 6 873 959 946
7 3178 3044 2889 7 848 639 643
8 3244 2911 3111 8 1668 1770 1607
9 2444 2222 2667 9 910 907 1081

10 3156 2978 2756 10 1558 1606 1705
11 2667 2267 2111 11 1508 1389 1447
12 2689 2444 2289 12 1280 1207 1256

Replication Replication
Environ Treat 1 2 3 Environ Treat 1 2 3
Navgaon 1 2233 2222 2222 TERI, 

New 
Delhi

1 1666 1333 2222
2 2222 2444 2722 2 1611 1389 1944
3 2000 1778 1778 3 1389 1244 2056
4 2667 3289 3333 4 1511 1778 1889
5 2444 2000 2000 5 1644 1622 1711
6 1778 1889 1556 6 1833 1822 2111
7 1778 1722 1722 7 1788 2333 1711
8 3000 2889 3222 8 1644 2220 2220
9 1778 1611 1333 9 1889 1822 2444

10 3778 3667 3556 10 2000 1556 1356
11 3111 3111 3222 11 944 388 722
12 2222 2000 2222 12 1488 1400 1356

The objectives of the experiment are (i) to study the significance of strains for each 
environment vis-a-vis checks, (ii) to identify which of the new strains among those tried in the 
experiment can be adopted in which of the environments (environments), and (iii) to identify, 
if possible, which of the new strains can be recommended for adoption considering their 
performance over all the environments (environments). In order to answer these questions, the 
combined analysis of groups of experiments needs to be done. 

The analysis is described in the sequel.
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8.3.1	 Environment wise analysis of data 
The combined analysis of data is done using SAS. This analysis is quite involved and, 

therefore, for the benefit of clarity and understanding, the SAS commands have been split into 
parts. The steps involved are described in the sequel. The SREG or GGE plot analysis will be 
taken up later.

First prepare a data file.
DATA combined_analysis_data;
INPUT env $ block  varn syield;
/*env ~ indicates environment and $ indicates that the environment is expressed in alphabets; 
rep indicates replication; varn indicates the strains or the varieties; syeild indicates seed yield*/
CARDS;
Bathinda	 1	 1	 1794
Bathinda	 1	 2	 1134
Bathinda	 1	 3	 718	
Bathinda	 1	 4	 1852
Bathinda	 1	 5	 2245
Bathinda	 1	 6	 1111
Bathinda	 1	 7	 1181
. 
.
.
IARINewDelhi	 1	 1	 2600
IARINewDelhi	 1	 2	 3289
IARINewDelhi	 1	 3	 2756
IARINewDelhi	 1	 4	 2600
IARINewDelhi	 1	 5	 2689
IARINewDelhi	 1	 6	 2578
.
.
.
Hisar	 1	 1	 3286
Hisar	 1	 2	 2518
Hisar	 1	 3	 757	
Hisar	 1	 4	 2553
Hisar	 1	 5	 2908
.
.
.

Ludhiana	 1	 1	 1370
Ludhiana	 1	 2	 904	
Ludhiana	 1	 3	 858	
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Ludhiana	 1	 4	 904	
.
.
.
Navgaon	 1	 1	 2233
Navgaon	 1	 2	 2222
Navgaon	 1	 3	 2000
Navgaon	 1	 4	 2667
Navgaon	 1	 5	 2444
.
.
.
TERINewDelhi	1	 1	 1666
TERINewDelhi	1	 2	 1611
TERINewDelhi	1	 3	 1389
TERINewDelhi	1	 4	 1511
.
.
.
TERINewDelhi	 3	 10	 1356
TERINewDelhi	 3	 11	 722	
TERINewDelhi	 3	 12	 1356
;
/* Sort the data with respect to the environments*/
PROC SORT; 
BY env;      
RUN;
 /*To perform the analysis of data for each of the environments separately use the following SAS 
statements.*/
PROC GLM data = combined_analysis_data;
CLASS rep  varn;
MODEL syield = block  varn;
LSMEANS varn/pdiff adjust=tukey lines; 
BY  env;
run;

If one wants to see the Tukey's HSD values in case of balanced data as generated by RCB 
design, then one may add the following statement /*Means varn/tukey*/. 

8.3.2	 Output of environment wise analysis
The results obtained through the analysis are described in the sequence. The first PROC 

GLM does the analysis of variance for each centre individually. The class variables are varieties 
and blocks (or replications), which means the analysis is done for a two way classified data (or 
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RCB design). The results are given in the sequence. Since the design adopted at all the centres 
is an RCB design, which is essentially an orthogonal design, Type I and Type III sum of squares 
are identical. The above SAS code will give results for each environment separately. To save on 
space, the ANOVA Tables for each environments and means/adjusted means along with multiple 
comparison procedures are presented in Table 8.3. The results obtained are reformatted as to be 
presented in research output (following changes in labelling has been done: block: Blocks; varn: 
Treatments)

Environment wise results

Table 8.3: ANOVA for Bathinda centre

Source DF Type III SS MS F Value Prob > F
Blocks 2 1071654.00 535827.00 11.99 0.0003
Treatments 11 10254463.42 932223.95 20.87 <0.0001
Error 22 982897.33 44677.15
Corrected Total 35 12309014.75

R-Square CV Root MSE syield Mean
0.92 12.44 211.370 1698.58

It may be seen that the model has been able to explain 92 per cent of the variability in 
the data obtained from Bathinda centre. Both the treatment effects and the block effects are 
significantly different.

Table 8.4: ANOVA for Hisar centre

Source DF Type III SS MS F Value Prob > F
Blocks 2 509922.06 254961.03 3.98 0.0335
Treatments 11 13043363.89 1185760.35 18.50 <0.0001
Error 22 1410037.28 64092.60
Corrected Total 35 14963323.22

R-Square CV Root MSE syield Mean
0.91 11.74 253.165 2156.28

The fitted model has been able to explain 91 per cent of the variability in the data obtained 
from this centre. The treatment effects are highly significant. The block effects are also 
significantly different.
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Table 8.5: ANOVA for IARI New Delhi centre

Source DF Type III SS MS F Value Prob > F
Blocks 2 553955.17 276977.58 13.55 0.0001
Treatments 11 2515742.08 228703.83 11.19 <0.0001
Error 22 449781.50 20444.61
Corrected Total 35 3519478.75

R-Square CV Root MSE syield Mean
0.87 5.40 142.98 2648.75

The fitted model has been able to explain 87 per cent of the variability in the data obtained 
from IARI, New Delhi centre. The treatment effects are highly significant. The block effects are 
also significantly different.    

Table 8.6: ANOVA for Ludhiana centre

Source DF Type III SS MS F Value Prob > F
Blocks 2 36727.06 18363.53 2.18 0.1374
Treatments 11 3607440.22 327949.11 38.85 <0.0001
Error 22 185714.28 8441.56
Corrected Total 35 3829881.56

R-Square CV Root MSE syield Mean
0.95 7.77 91.88 1183.11

The fitted model has been able to explain 95 per cent of the variability in the data obtained 
from Ludhiana centre. The treatment effects are highly significant. The block effects are, however, 
not significantly different.

Table 8.7: ANOVA for Navgaon centre

Source DF Type III SS MS F Value Prob > F
Blocks 2 6589.06 3294.53 0.09 0.9181
Treatments 11 15204645.64 1382240.51 36.00 <.0001
Error 22 844617.61 38391.71
Corrected Total 35 16055852.31

R-Square CV Root MSE syield Mean
0.95 8.15 195.94 2403.361

The fitted model has been able to explain 95 per cent of the variability in the data obtained 
from Navagaon centre. The treatment effects are highly significant. The block effects are not 
significantly different, though. 
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Table 8.8: ANOVA for TERI, New Delhi center

Source DF Type III SS MS F-Value Prob > F
Blocks 2 381651.39 190825.69 2.39 0.1146
Treatments 11 4408968.89 400815.35 5.03 0.0006
Error 22 1753633.94 79710.63
Corrected Total 35 6544254.22

R-Square CV Root MSE syield Mean
0.73 16.92 282.33 1668.22

The fitted model has been able to explain 73 per cent of the variability in the data obtained 
from TERI, New Delhi centre. The treatment effects are highly significant. The block effects are 
not significantly different, though.  

Multiple comparisons of treatments are made using Tukey's Honest Significant Difference 
procedure of comparisons. The results obtained are presented in Table 8.9.

Table 8.9: Centre Wise Treatment Means and Multiple Comparison Procedure Results

Treatment 
Name

Bathinda 
SYIELD

Hisar 
SYIELD

IARI New 
Delhi SYIELD

Ludhiana 
SYIELD

Navgaon 
SYIELD

TERINewDelhi 
SYIELD

1 2129.67ABC               3010.33A                 2585.00BC                1299.67BC                2225.67DE                1740.33A                 
2 1589.33CDE               2415.33ABC               2948.33AB                880.00EF                2462.67CD                1648.00A                 
3 787.33F                 875.00E                 2555.67BC                879.67EF                1852.00EF                1563.00A                 
4 1763.33BCD               2608.33AB                2422.00C                 1006.00DE                3096.33AB                1726.00A                 
5 2337.67AB                2758.00AB                2518.33C                 1529.67AB                2148.00DEF               1659.00A                 
6 1095.67EF                1796.67CD                2400.00C                 926.00EF                1741.00EF                1922.00A                 
7 1196.33DEF               1607.67DE                3037.00A                 710.00F                 1740.67EF                1944.00A                 
8 1898.33BC                2131.67BCD               3088.67A                 1681.67A                 3037.00BC                2028.00A                 
9 1659.00CDE               1741.67CD                2444.33C                 966.00EF                1574.00F                 2051.67A                 

10 2029.33BC                2573.00AB                2963.33AB                1623.00A                 3667.00A                 1637.33A                 
11 2685.33A                 2710.67AB                2348.33C                 1448.00ABC               3148.00AB                684.67B                 
12 1211.67DEF               1647.00D                 2474.00C                 1247.67CD                2148.00DEF               1414.67AB                

General 
Mean

1698.58 2156.28 2648.75 1183.11 2403.36 1668.22

p-Value <.0001 <.0001 <.0001 <.0001 <.0001 0.0006
CV (%) 12.44 11.74 5.40 7.77 8.15 16.92
SE(d) 172.58 206.71 116.75 75.02 159.98 230.52

Tukey's HSD 
at 5%

627.78 751.92 424.67 272.88 581.95 838.54
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It can be observed that at Bhatinda Centre Treatment 11 gives the highest seed yield though 
statistically it is at par with treatments 5 and 1. Treatment 3 gives the lowest seed yield. At 
Hisar Centre, Treatment 1 produces the highest seed yield, though statistically it is at par with 
treatments 5, 11, 4, 10, 2. Treatment 3 gives the lowest seed yield. At IARI, New Delhi, Treatment 
8 gives the highest seed yield, though statistically it is at par with treatments 7, 10, 2. Treatment 
11 gives the lowest seed yield. At Ludhiana Centre, Treatment 8 gives the highest seed yield, 
though statistically it is at par with treatments 10, 5, 11. Treatment 7 gives the lowest seed yield. 
For Navagaon Centre,  Treatment 10 gives the highest seed yield, though statistically it is at par 
with treatments 11, 4. Treatment 9 gives the lowest seed yield. For TERI, New Delhi, Treatment 
9 gives the highest seed yield, though statistically it is at par with all other treatments except 
treatment 11, which gives the lowest seed yield.  

8.3.3	 Combined analysis of data using mixed effects model
As discussed earlier location or seasons may be considered as random. Therefore, assuming 

environment effect as random, the blocks within environments and environment × treatment 
interaction are also random effects. 

/*To perform the combined analysis of the above data set considering the environments as 
random effects one can perform the combined analysis as follows.;*/

/*Analysis using Proc Mixed*/

PROC MIXED ratio covtest DATA = combined_analysis_data;

class env block varn;

MODEL syield = varn;

RANDOM env block(env) env*varn;

LSMEANS varn/PDIFF adjust=tukey; 

RUN;

However, if one wants estimates for all random effects, then one may use the modify the random 
statement by include option s as follows

RANDOM env rep(env) env*varn/s;

To save on space, the  results obtained are reformatted as to be presented in research output. 
These are presented in the sequel(following changes in labelling has been done: block: Blocks; 
varn: Treatments; env:environment)
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Table 8.10: Results from mixed model analysis

Covariance Parameter Estimates
Covariance Parameter Ratio Estimate Standard Error Z Value Prob > Z

Environment 6.413 273382 185538 1.47 0.0703
Environment*Treatment 3.939 167895 34770 4.83 <.0001

Block (Environment) 0.334 14229 7272.32 1.96 0.0252
Residual 1.000 42626 5246.94 8.12 <.0001

Fit Statistics
-2 Res Log Likelihood 2975.5
AIC (smaller is better) 2983.5
AICC (smaller is better) 2983.7
BIC (smaller is better) 2982.6

Type 3 Tests of Fixed Effects
Effect Numerator DF Denominator DF F Value Prob > F

Treatment 11 55 3.16 0.0023

It can be observed that variance components pertaining to Environment*Treatment and 
Block (Environment) are significant. Treatment effects are also significantly different at 5% level 
of significance. Tukey's HSD at 5% level of significance was used for performing multiple pair 
wise comparisons. The results based on LSD at 5% level of significance are also presented in 
Table 8.11. The results obtained after reformatting are summarised as follows:

Table 8.11: Overall treatment means and grouping of treatments  
using Tukey's HSD/LSD at 5% level of significance

Treatment Number Adjusted Mean/ BLUP and Grouping 
based on Tukey's HSD

Adjusted Mean/ BLUP and Grouping 
based on Tukey's LSD

1 2165.11AB                2165.11AB                
2 1990.61AB                1990.61ABC               
3 1418.78B                 1418.78D                 
4 2103.67AB                2103.67ABC               
5 2158.44AB                2158.44AB                
6 1646.89AB                1646.89CD                
7 1705.94AB                1705.94BCD               
8 2310.89A                 2310.89A                 
9 1739.44AB                1739.44BCD               

10 2415.50A                 2415.50A                 
11 2170.83AB                2170.83AB                
12 1690.50AB                1690.50BCD               

Prob > F 0.0023 0.0023
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It can be seen that using Tukey's HSD, treatments 10 and 8 are best performing and these two 
treatments are at par with treatments 1, 2 ,4, 5, 6, 7, 9, 11, 12 statistically. However, using Least 
Significant Difference, treatments 10, 8, 11, 1, 5, 4 and 2 are best performing treatments, which 
are not significantly different from each other. Since Treatment × Environment interaction is 
significant, it follows that the treatments do not perform equally well over all locations. As a 
consequence, the above described procedure should not be used for interpretation and Site 
Regression Biplots should be used to interpret the performance of the treatments over different 
locations. The procedure of generating SREG Biplots is described in the sequel. 

Remark 8.5: In the above analysis, the structure of variance-covariance matrix for all 
random effects has been assumed as diagonal with constant diagonal elements. Depending 
upon the requirement of the experimental situation, one may assume different structure of 
variance-covariance matrix of random effects.

Remark 8.6: So far the focus of combined analysis of data has been on PROC MIXED of 
SAS. It may be worthwhile mentioning here that one could also use PROC GLM along with 
Random statement for random effects. The same is now described in the sequel. This would give 
the expected mean squares for each of the effects and perform the testing against appropriate 
error terms based on expected mean squares.

PROC GLM DATA = combined_analysis_data;

CLASS env block varn;

MODEL syield = env block(env) varn env*varn;

RANDOM env env*varn block(env)/TEST;

LSMEANS varn/PDIFF lines; 

RUN;

8.4.	 SREG biplot
It has been seen above while doing the analysis of individual environments that the 

performance of treatments is different at different environments. The best performing treatments 
and the worst performing treatments are different at different environments. This fact has also 
been supported by the combined analysis of data. The environment*treatment interaction is 
significant both in the fixed effects model where the environment effect is assumed to be fixed 
and in the mixed effects model where the environment effect is assumed to be random. In 
such a situation, the same treatment cannot be recommended for all the environments and the 
environment specific recommendations need to be made. For this purpose appeal is made to 
SREG biplot approach described in the sequel.
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8.4.1	 SREG biplot
As varn × env  (treatment × environment)  interaction is significant, same treatment cannot 

be recommended for all environments. In such a situation, one can see the performance of 
treatment and treatment × environment interaction using SREG biplot or GGE biplot. For 
performing SREG Biplot, one needs to obtain means / adjusted means / best linear unbiased 
predictor (BLUP) for treatments across environment. For a balanced data (RCB design with 
same treatments and same number of replications in all the environments), it is means.  If 
incomplete block design is used at some or all environments but the treatments are same in 
all the environments, then use adjusted mean of treatments for each environment. For an 
unbalanced data, when there are some empty cells in treatment × environment table, then one 
can use the best linear unbiased predictor (BLUP) of treatment × environment interaction 
as means.  BLUPs can be obtained by using PROC MIXED of SAS by using the option ‘s’ in 
Random statement.  If some of the cells in treatment into environment table are missing, then 
one can obtain BLUP and use in place of lsmeans. The experimenters may exercise caution to 
ensure that no more than 20% of cells are empty in treatment × environment Table.

For performing SREG Biplot, create a data file named RAW where Environments are termed 
as ENV, treatment numbers as GEN and means for GEN as GYLD. The computer program used 
here for analysis is a slightly modified version of the program developed by Jose Crossa and his 
co-workers at CIMMYT, Mexico. 

OPTIONS PS = 5000 LS = 78 NODATE;

/*after removing * one can get the output as a cgm file directly, which can be imported in 
PowerPoint or word documents for clarity. */

*FILENAME BIPLOT 'C:\Documents and Settings\owner\Desktop\comana.cgm'; *To have 
cgm files run it in BATCH; 

*GOPTIONS DEVICE = CGMOF97L GSFNAME = BIPLOT GSFMODE = REPLACE;

/*one has to run the program twice, first time to see the portion of variation explained by 
two components in the output file, then one has to change the value of factor 1 and factor 2 in 
the file at appropriate place.*/

DATA RAW;
INPUT ENV $ GEN $ GYLD;
YLD=GYLD;
CARDS;
Bathinda	 1	 2129.66667
Bathinda	 2	 1589.33333
Bathinda	 3	 787.33333
Bathinda	 4	 1763.33333
Bathinda	 5	 2337.66667
Bathinda	 6	 1095.66667
Bathinda	 7	 1196.33333
Bathinda	 8	 1898.33333
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Bathinda	 9	 1659
Bathinda	 10	 2029.33333
Bathinda	 11	 2685.33333
Bathinda	 12	 1211.66667
Hisar		  1	 3010.33333
Hisar		  2	 2415.33333
Hisar		  3	 875
Hisar		  4	 2608.33333
Hisar		  5	 2758
Hisar		  6	 1796.66667
Hisar		  7	 1607.66667
Hisar		  8	 2131.66667
Hisar		  9	 1741.66667
Hisar		  10	 2573
Hisar		  11	 2710.66667
Hisar		  12	 1647
IARINewD	 1	 2585
IARINewD	 2	 2948.33333
IARINewD	 3	 2555.66667
IARINewD	 4	 2422
IARINewD	 5	 2518.33333
IARINewD	 6	 2400
IARINewD	 7	 3037
IARINewD	 8	 3088.66667
IARINewD	 9	 2444.33333
IARINewD	 10	 2963.33333
IARINewD	 11	 2348.33333
IARINewD	 12	 2474
Ludhiana	 1	 1299.66667
Ludhiana	 2	 880
Ludhiana	 3	 879.66667
Ludhiana	 4	 1006
Ludhiana	 5	 1529.66667
Ludhiana	 6	 926
Ludhiana	 7	 710
Ludhiana	 8	 1681.66667
Ludhiana	 9	 966
Ludhiana	 10	 1623
Ludhiana	 11	 1448
Ludhiana	 12	 1247.66667
Navgaon	 1	 2225.66667
Navgaon	 2	 2462.66667
Navgaon	 3	 1852
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Navgaon	 4	 3096.33333
Navgaon	 5	 2148
Navgaon	 6	 1741
Navgaon	 7	 1740.66667
Navgaon	 8	 3037
Navgaon	 9	 1574
Navgaon	 10	 3667
Navgaon	 11	 3148
Navgaon	 12	 2148
TERINewD	 1	 1740.33333
TERINewD	 2	 1648
TERINewD	 3	 1563
TERINewD	 4	 1726
TERINewD	 5	 1659
TERINewD	 6	 1922
TERINewD	 7	 1944
TERINewD	 8	 2028
TERINewD	 9	 2051.66667
TERINewD	 10	 1637.33333
TERINewD	 11	 684.66667
TERINewD	 12	 1414.66667
;
PROC GLM DATA = RAW OUTSTAT = STATS ;
CLASS  ENV GEN;
MODEL YLD =  ENV GEN ENV*GEN/SS4;
/*If this is required, then replace, MSE by the MSE in combined analysis, DFE with error degrees 
of freedom in combined analysis, NREP number of replications at each environments*/
DATA STATS2;
SET STATS ;
DROP _NAME_ _TYPE_;
IF _SOURCE_ = 'ERROR' THEN DELETE;
MSE = 42626.4;            * MSE in combined analysis when environments are random;
DFE = 132;                   * degrees of freedom in combined analysis;
NREP = 3;                   * number of replications at each environments;
SS = SS*NREP;
MS = SS/DF;
F = MS/MSE;
PROB = 1- PROBF(F,DF,DFE);
PROC PRINT DATA = STATS2 NOOBS;
VAR _SOURCE_ DF SS MS F PROB;
PROC GLM DATA = RAW NOPRINT;
CLASS ENV GEN;
MODEL YLD = ENV / SS4 ;
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OUTPUT OUT = OUTRES R = RESID;
PROC SORT DATA = OUTRES;
BY GEN ENV;
PROC TRANSPOSE DATA = OUTRES OUT = OUTRES2;
BY GEN;
ID ENV;
VAR RESID;
PROC IML;
USE OUTRES2;
READ ALL INTO RESID;
NGEN = NROW(RESID);
NENV = NCOL(RESID);
USE STATS2;
READ  VAR {MSE}  INTO MSEM;
READ  VAR {DFE}  INTO DFEM;
READ  VAR {NREP} INTO NREP;
CALL SVD (U,L,V,RESID);             
MINIMO = MIN(NGEN,NENV);
L = L[1:MINIMO,];
SS=(L##2)*NREP;                     
SUMA = SUM(SS);
PERCENT = ((1/SUMA)#SS)*100;          
MINIMO = MIN(NGEN,NENV);              
PERCENTA = 0;
DO I = 1 TO MINIMO;
DF = (NGEN-1)+(NENV-1)-(2*I-1);
DFA = DFA//DF;
PORCEACU = PERCENT[I,];
PERCENTA = PERCENTA+PORCEACU;
PORCENAC = PORCENAC//PERCENTA;
END;
DFE = J(MINIMO,1,DFEM);
MSE = J(MINIMO,1,MSEM);
SSDF = SS||PERCENT||PORCENAC||DFA||DFE||MSE;
L12=L##0.5;                         
SCOREG1 = U[,1]#L12[1,];
SCOREG2 = U[,2]#L12[2,];
SCOREG3 = U[,3]#L12[3,];
SCOREE1 = V[,1]#L12[1,];
SCOREE2 = V[,2]#L12[2,];
SCOREE3 = V[,3]#L12[3,];
FACTOR1 = MAX(ABS(SCOREG1||SCOREG2));
FACTOR2 = MAX(ABS(SCOREE1||SCOREE2));



212

Statistical Analysis of Agricultural Experiments

FACTOR = MAX(FACTOR1,FACTOR2);
SCOREG = (SCOREG1||SCOREG2||SCOREG3)*(1/FACTOR);
SCOREE = (SCOREE1||SCOREE2||SCOREE3)*(1/FACTOR);
SCORES = SCOREG//SCOREE;
CREATE SUMAS FROM SSDF;             
APPEND FROM SSDF;                  
CLOSE SUMAS;                        
CREATE SCORES FROM SCORES;
APPEND FROM SCORES;
CLOSE SCORES;
DATA SS_SREG;
SET SUMAS;
SS_SREG = COL1;
PERCENT = COL2;
PORCENAC = COL3;
DF_SREG = COL4;
DFE = COL5;
MSE = COL6;
DROP COL1 - COL6;
MS_SREG = SS_SREG/DF_SREG;
F_SREG = MS_SREG/MSE;
PROBF = 1 - PROBF(F__SREG,DF_SREG,DFE);
PROC PRINT DATA = SS_SREG NOOBS;
VAR SS_SREG PERCENT PORCENAC;
PROC SORT DATA = RAW;
BY GEN;
PROC MEANS DATA = RAW NOPRINT;
BY GEN ;
VAR YLD;
OUTPUT OUT = MEDIAG MEAN=YLD;
DATA NAMEG;
SET MEDIAG;
TYPE = 'GEN';
NAME = GEN;
KEEP TYPE NAME YLD;
PROC SORT DATA = RAW;
BY ENV;
PROC MEANS DATA = RAW NOPRINT;
BY ENV ;
VAR YLD;
OUTPUT OUT = MEDIAE MEAN=YLD;
DATA NAMEE;
SET MEDIAE;
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TYPE = 'ENV';
NAME1 = 'S'||ENV;
NAME = COMPRESS(NAME1);
KEEP TYPE NAME YLD;
DATA NAMETYPE;               
SET NAMEG NAMEE;
DATA BIPLOT;
MERGE NAMETYPE SCORES;
DIM1=COL1;
DIM2=COL2;
DIM3=COL3;
DROP COL1-COL3;
TITLE1 'Biplot of Grain Yield';
PROC PRINT DATA = BIPLOT NOOBS;
VAR TYPE NAME YLD DIM1 DIM2 DIM3;
DATA labels;
SET BIPLOT;
retain xsys  '2' ysys  '2' ;
length function text $8 ;
text = name ;
IF type = 'GEN' THEN DO;
color = 'red ';
size = 1.0;
style = 'hwcgm001';
x = dim1;
y = dim2;
IF dim1 >=0
THEN position = '5';
ELSE position = '5';
function = 'LABEL';
OUTPUT;
END;
if type = 'ENV' then DO;
color = 'blue ';
size = 1.0;
style = 'hwcgm001';
x = 0.0;
y = 0.0;
function = 'MOVE';
output;
x = dim1;
y = dim2;
FUNCTION = 'DRAW';
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OUTPUT;
IF dim1 >=0
THEN position = '6';
ELSE position = '4';
FUNCTION = 'LABEL';
OUTPUT;
END;
/*one has to run the program twice, first time to see the portion of variation explained by two 
components, then change in the file at appropriate places for the factor 1 and factor 2 */
PROC GPLOT data = biplot;
PLOT  dim2*dim1 / Annotate=labels frame
Vref = 0.0 Href = 0.0
cvref = black chref = black
lvref = 3 lhref = 3
vaxis = axis2 haxis = axis1
vminor = 1  hminor = 1 nolegend;
symbol1 v=none  c=black  h=0.7;
symbol2 v=none  c=black  h=0.7;
axis2
length = 5.0 in
order = (-1 to 1.0 by 0.2)
/*one has to change the value for factor 2(.)*/
label = (f=hwcgm001 c=green h=1.2 a=90 r=0 'Factor 2 (15.25%)') /*please change the 
percent  variation explained as per data*/
offset = (3)
value = (h = 1.0)
minor = none;
* length = 7.0 in FOR CGM files;
axis1
length = 7.0 in
order = (-0.8 to 1.0 by 0.2)
/*one has to change the value for factor 1(.)*/
label = (f = hwcgm001  c = green h=1.2 'Factor 1 (66.91%)') /*please change the percent variation 
explained as per data*/
offset = (3)
value = (h = 1.0)  
minor = none;
*length = 7.0 in FOR CGM files;
Title1 f=hwcgm001 c=Red h=2.0 'SREG biplot of the Grain Yield of Quality_zone2 at 6 
Environments';
/*Give the title as is required in output*/
RUN;
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The results obtained are given in the sequel. After performing Singular value Decomposition, 
the first two dimensions and variance explained by them are obtained. These dimensions are 
then used for plotting SREG biplot.  First two dimensions /factors explain 66.91% and 15.25% 
variation which is more than 80%. THE SREG biplot obtained using these two dimensions is

Figure 8.1: SREG biplot of grain yield at six environments

Remark 8.7: Since the error variances may be heterogeneous, there would be a need for 
transformation of data. Therefore, it would not be out of place here to describe the testing of 
homogeneity of error variances. 

From environment wise analysis in Section 8.3.2, one can see that  that there is a large 
variability among the error mean squares of different environments. It appears that the error 
variances over different environments may not be homogeneous.  So it would be desirable to 
test for the homogeneity of error variances using Bartlett’s chi square test. The SAS code for the 
same is given in the sequel.

/*To check the homogeneity of variances we apply Bartlett's Chi-square test*/

/* SAS Code for testing the homogeneity of variances, when variances and the degrees 
of freedom are given. It is useful for testing the homogeneity of error variances when the 
experiments are conducted over environments*/
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SAS Code for applying Bartlett's test for homogeneity of variances

DATA mn;
INPUT df mse;
CARDS;
22 44677.15
22 64092.60
22 20444.61
22 8441.56
22 38391.71
22 79710.63
;
PROC IML;
USE mn; 
READ ALL INTO a; /* use variances of residual variance putting it in m1 variable*/
*a =m1[2:nrow(m1),ncol(m1)-1:ncol(m1)];/*from m1 we extracting variances and number of 
observations */
v =0; ct = 0; nchi = 0; St = 0;
DO i = 1 TO NROW(a);  /* computing pooled variance */
	 St = St + (a[i,1]-1)*a[i,2];
	 v = v + (a[i,1]-1);
 	 ct = ct + 1/(a[i,1]-1);
END;
S = St/v;
dchi = (1 + (1/(3*(nrow(a)-1)))*(ct-(1/v))); /*computing denominator of Bartlett's chi-square 
statistic*/
DO i = 1 TO NROW(a);
nchi = nchi + (a[i,1]-1)*(log(S/a[i,2])); 
END; 
chi = nchi/dchi;
probability = 1 - probchi(chi,(nrow(a)-1)); /*computinf chi value and prob.*/
df = (NROW(a)-1);
PRINT probability chi df S; /* printing chi value, prob and degee of freedom*/
IF PROBABILITY >= 0.05 THEN Interpretation = "Data is Homogeneous at 5% level of 
Significance";
ELSE Interpretation = "Data is Heterogeneous at 5% level of Significance";
PRINT Interpretation; /* testing and printing interpretation*/
pb = CHAR(probability);

The results obtained for testing  the homogeneity of error variances using Bartlett's chi square  
are given in Table 8.12.
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Table 8.12: Result of Bartlett’s chi square test

probability Chi square DF S
0.00003 28.41 5 42626.38

Since the probability of getting a chi square value of 28.41 at 5 degrees of freedom is so 
small (0.00003), it may be concluded that the error variances are significantly different and 
the data are heterogeneous. Once it is known that the errors are heterogeneous, it calls for 
transformation of data before doing the combined analysis of data from all the centres. In what 
follows is described the transformation of data using SAS package. The transformation involves 
dividing observations of each environment by the square root of MSE of that environment

/*In this example, error variances are heterogeneous; transform the data by dividing each 
observation by its corresponding square root of the error mean square and create a new variable 
new_var  and use the following SAS statements for the combined analysis of data*/

DATA tranformed; /* This set of SAS statements transforms the data*/
SET combined_analysis_data; 
IF  env = "Bathinda" THEN 
new_var = syield/sqrt(44677.15); 
IF  env = "Hisar" THEN 
new_var = syield/sqrt(64092.6); 
IF  env = "IARINewDelhi" THEN 
new_var = syield/sqrt(20444.61); 
IF  env = "Ludhiana" THEN 
new_var = syield/sqrt(8441.56);
IF  env = "Navgaon" THEN 
new_var = syield/sqrt(38391.71); 
IF env = "TERINewDelhi" THEN 
new_var = syield/sqrt(79710.63); 
RUN; 

/*To perform the combined analysis of the above data set considering the environments as fixed 
effects one can use the following SAS statements*/

PROC GLM DATA = transformed;
CLASS env block varn;
MODEL new_var = env block(env) varn  env*varn;
MEANS varn /TUKEY;
RUN;
RUN;
/*please note that for performing comparisons, transformed data (new_var) should only be 
used. However, for just having the original means, the analysis of syield should be seen*/ 
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8.5   Analysis using R 
In the sequence is given R code for the analysis of data using R software. The results obtained 

are similar to those obtained using SAS. To avoid duplication and to save space, the results 
obtained using R code are not reported.

d13=read.table("combined_analysis_data.txt",header=TRUE)
attach(d13)
names(d13)
#anova
env=factor(env)
levels(env)
out=by(d13,d13[,"env"],function(x) aov(syield~factor(rep)+factor(varn),data=x))
out=as.list(out)
sapply(out,summary)
lapply(out,TukeyHSD,"factor(varn)")
MSE=sapply(1:6,function(i,out) sum(out[[i]]$residual^2)/out[[i]]$df.residual,out)
residfs=sapply(1:6,function(i,out) out[[i]]$df.residual,out)
#Check homogeneity of error variances across environments
bartlett.test(out)
#Transform the observations as variances are heterogeneous
tsyield=unlist(tapply(syield,env,function(syield,MSE) syield/sqrt(MSE),MSE))
#for combined anova
varn=factor(varn)
rep=factor(rep)
lm2=lm(tsyield~env+varn+env/rep-rep+env:varn)
library(car)
Anova(lm2,type="III")
TukeyHSD(aov(tsyield~env+varn+env/rep-rep+env:varn),"varn")
#environments as random effects
#Need to install lme4 package
library(lme4)
lm3=lmer(syield~varn+(1|env:varn)+(1|env)+(1|env/rep))
anova(lm3)
library(car)
Anova(lm3,type="III")
summary(lm3)
#install pbkrtest package for testing random effects
library(lsmeans)
lsmeans(lm3,"varn") 
detach(d13)
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9.1  Introduction
The interpretation of results based on analysis of variance (ANOVA) of data from a designed 

experiment is valid only when the assumptions on which ANOVA is based are satisfied. Some 
of these assumptions are as follows:

1.  Additive Effects: Treatment effects and block (environmental) effects are additive.
2.  Independence of errors: Experimental errors are independent.
3.  Homogeneity of Variances: Errors have common variance.
4.  Normal Distribution: Errors follow a normal distribution.

Further, the statistical tests like t, F,  and z are valid under the assumption of independence 
of errors and normality of error distribution. The departures from these assumptions make 
the interpretation based on these statistical techniques invalid. Therefore, before analysing the 
data, it is necessary to check whether or not these assumptions are met by the data. If one or 
more of these assumptions are violated, then there is a need to apply appropriate remedial 
measures. The assumption of independence of errors, i.e., error of an observation is not related 
to or depends upon that of another, is usually assured with the use of proper randomization 
procedure. However, if there is any systematic pattern in the arrangement of treatments from 
one replication to another, errors may not be independent. This may be handled by using 
nearest neighbour methods in the analysis of experimental data. In the sequel are described the 
procedures for detecting violation of these assumptions and then the corresponding remedial 
measures to be used are also outlined.  

9.2  Additivity of effects
The effects of two factors, say, treatment and replication, are said to be additive if the effect 

of one-factor remains constant over all the levels of the other factor. A hypothetical set of data 
from a randomized complete block (RCB) design, with 2 treatments and 2 replications, with 
additive effects is given in Table 9.1.

9
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Table 9.1:  A dataset with additivity of effects

Treatment Replication Replication Effect

I II I – II

A 190 125 65

B 170 105 65

Treatment Effect (A – B) 20 20

Here, the treatment effect is equal to 20 for both the replications and replication effect is 65 
for both the treatments.

When the effect of one factor is not constant at all the levels of other factor, the effects 
are said to be non-additive. A common departure from the assumption of additivity in 
biological experiments is one where the effects are multiplicative. Two factors are said to have 
multiplicative effects if their effects are additive only when expressed in terms of percentages. 
Table 9.2 illustrates a hypothetical set of data with multiplicative effects.

Table 9.2: A dataset with multiplicative effects

Treatment Replication Replication Effect

I
(log {I})

II
(log {II})

I – II
(log {I} ‒ log{II})

100(I – II)/II

A
(log {A}) 

200
(2.30103)

125
(2.09691)

75
(0.20412)

60

B
(log {B})

160
(2.20412)

100
(2.0000)

60
(0.20412)

60

Treatment 
Effect

(A – B)
(log {A} ‒ log{B})

40
(0.09691)

25
(0.09691)

100 (A – B)/B 25 25

In this case, the treatment effect is not constant over replications and the replication effect 
is not constant over treatments. However, when both treatment effect and replication effect are 
expressed in terms of percentages, an entirely different pattern emerges. For such violations 
of assumptions, logarithmic transformation is quite suitable. For illustration, the logarithmic 
transformation of data in Table 9.2 is given in brackets.

This is, however a crude method for testing the additivity. This method cannot be applied 
when there are more than two factors and/or levels of factors. Tukey (1949) suggested a statistical 
test for testing the additivity in a RCB design. This test is known as one degree of freedom test 
for non-additivity. In this test, one degree of freedom is isolated from error and this degree of 
freedom is called as the degree of freedom for non-additivity. In the sequel, we describe the 
procedure in brief.
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Suppose that an experiment has been conducted to compare v treatments using RCB design 
with b replications or blocks. Let denote the observed value of the response variable for ith 
treatment in jth replication; i = 1,2, …, v;  j = 1,2, …, b. Arrange the data in a v × b table as 
given below.

Treatment 1 2 . . . j . . . b Treatment 
Total

Treatment
Mean

Deviations 
from Grand 

Mean

Sum of 
Cross 

Product

1  . . . . . . C1

2 . . . . . .

... ... ... . . . ... . . . ... ... ... ... ...

i . . . . . .

... ... ... . . . ... . . . ... ... ... ... ...

v . . . . . .

Replication 
or Block 
Total

. . . . . . G (Grand 
total)

Replication 
Mean

. . . . . .

Deviation 
from Grand 
Mean

. . . . . .

where  ;    ;  ; 

; 

Let    ;  ; 

Now sum of squares of different sources can be calculated by the following formulae:

Sum of squares due to non-additivity (SSNA) = 

Sum of squares due to treatments (SST) = 
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Sum of squares due to replications (SSR) = 

Total sum of squares (TSS) = 

Sum of squares due to Error (SSE) = TSS – SST – SSR – SSNA

An outline of ANOVA is given in Table 9.3.

Table 9.3: ANOVA table for test of additivity

Source DF SS MS

Treatments v – 1 SST MST

Replications b – 1 SSR MSR

Non-additivity 1 SSNA MSNA

Error (v – 1)( b – 1) – 1 SSE MSE

Total vb – 1 TSS

Then the non-additivity is tested by F-statistic, given by F =  , with 1 and (v – 1)(b – 1) 
–1 degrees of freedom. 

9.3  Normality of errors
The assumptions of homogeneity of variances and normality are generally violated 

together. To test the validity of normality of errors, both graphical and statistical procedures 
are now available. One of the most popular graphical tests is Normal probability plot. Among 
statistical tests, Kolmogorov-Smirnov test is most widely used test. Other statistical tests include 
Anderson-Darling test, D’Agostino’s test, Shapiro-Wilk’s test and Ryan-Joiner test. In general, 
moderate departures from normality are of little concern in the fixed effects ANOVA as F-test 
is slightly affected by moderate departures but in case of random effects, it is more severely 
impacted by non-normality. However, significant deviations of errors from normality make the 
inferences invalid. It is, therefore, important to detect non-normality of errors before analysing 
the data and take appropriate measures if non-normality is detected. For testing normality of 
errors, we need to estimate them. The estimates of errors are taken as the residuals. To obtain 
residuals, we have to first fit model corresponding to the design adopted, i.e., to obtain the 
predicted values of the response after eliminating the effects of treatments, blocks, rows, etc. 
These residuals are then used for testing the normality of the errors. In other words, we want 
to test the null hypothesis H0: errors are normally distributed against alternative hypothesis H1: 
errors are not normally distributed. For details on these tests, one may refer to D’Agostino and 
Stephens (1986). Most of the standard statistical packages are capable of testing the normality 
of the data. 
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9.3.1  Correlation test for normality 
In addition to visually assessing the appropriate linearity of the points plotted in a normal 

probability plot, a formal test for normality of the error terms can be conducted by calculating 
the coefficient of correlation between residuals ei and their expected values under normality. A 
high value of the correlation coefficient is indicative of normality.

9.3.2  Kolmogorov-Smirnov test 
The Kolmogorov-Smirnov test  is used to decide if a sample comes from a population with a 

specific distribution. The Kolmogorov-Smirnov (K-S) test is based on the empirical cumulative 
distribution function (ECDF). Given N ordered data points , the ECDF is defined as 

where n(i) is the number of points less than Yi and the Yi are ordered from smallest to largest 
value. This is a step function that increases by 1/N at the value of each ordered data point. The 
K-S test is based on the maximum distance between these two curves. In designed experiments 
variable Y is taken as residuals obtained from the fitted model corresponding to a design 
adopted.

An attractive feature of this test is that the distribution of the K-S test statistic itself does not 
depend on the underlying cumulative distribution function being tested. Another advantage is 
that it is an exact test (the chi-square goodness-of-fit test depends on an adequate sample size 
for the approximations to be valid). Despite these advantages, the K-S test has several important 
drawbacks:

1.	 It applies to continuous distributions only. 
2.	 It tends to be more sensitive near the center of the distribution than at the tails. 
3.	 Perhaps the most serious limitation is that the distribution must be fully specified. That 

is, if location, scale, and shape parameters are estimated from the data, the critical region 
of the K-S test is no longer valid. It typically must be determined by simulation. 

Due to limitations 2 and 3 above, many analysts prefer to use the Anderson-Darling 
goodness-of-fit test.  

The Kolmogorov-Smirnov test is defined by: 

H0: The data follow a specified distribution

H1: The data do not follow the specified distribution

The Kolmogorov-Smirnov test statistic is defined as 

	 (9.1)

where F is the theoretical cumulative distribution of the distribution being tested which must be 
a continuous distribution (i.e., no discrete distributions such as the binomial or Poisson), and it 
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must be fully specified (i.e., the location, scale, and shape parameters cannot be estimated from 
the data).

The hypothesis regarding the distributional form is rejected if the test statistic, D, is greater 
than the critical value obtained from a table. There are several variations of these tables in the 
literature that use somewhat different scalings for the K-S test statistic and critical regions. These 
alternative formulations should be equivalent, but it is necessary to ensure that the test statistic 
is calculated in a way that is consistent with how the critical values were tabulated. These values 
are given in a Table in Appendix 1.

9.3.3  Anderson-Darling test 
The Anderson-Darling test is used to test if a sample of data came from a population with a 

specific distribution. It is a modification of the Kolmogorov-Smirnov (K-S) test and gives more 
weight to the tails than does the K-S test. The K-S test is distribution free in the sense that the 
critical values do not depend on the specific distribution being tested. The Anderson-Darling 
test makes use of the specific distribution in calculating critical values. This has the advantage 
of allowing a more sensitive test and the disadvantage that critical values must be calculated for 
each distribution. Currently, tables of critical values are available for the normal, lognormal, 
exponential, Weibull, extreme value type I, and logistic distributions.  

The Anderson-Darling test is defined as: 

H0: The data follow a specified distribution.

H1: The data do not follow the specified distribution

The Anderson-Darling test statistic is defined as  

where  , F is the cumulative distribution function of the 

specified distribution. Note that the Yi are the ordered data. The critical values for the Anderson-
Darling test are dependent on the specific distribution that is being tested. Tabulated values 
and formulas are available in literature for a few specific distributions (normal, lognormal, 
exponential, Weibull, logistic, extreme value type 1). The test is a one-sided test and the 
hypothesis that the distribution is of a specific form is rejected if the test statistic, A, is greater 
than the critical value. 

9.4  Homogeneity of error variances
A crude method for detecting the heterogeneity of variances is based on scatter plots of 

means and variance or range of observations or errors, residual vs fitted values, etc. To be 
clearer, let  be the observation pertaining to ith treatment (i = 1,2,...,v) in the jth replication 
(j = 1,2,...,ri). Compute the mean and variance for each treatment across the replications (the 
range can be used in place of variance) as

Mean =  ; Variance = 
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Draw the scatter plot of mean vs variance (or range). If 's (i = 1,2,...,v) are equal (constant) 
or nearly equal, then the variances are homogeneous. Based on these scatter plots, the 
heterogeneity of variances can be classified into two types: 

1.	 where the variance is functionally related to mean.
2.	 where there is no functional relationship between the variance and the mean.

The first kind of variance heterogeneity is usually associated with the data whose distribution 
is non-normal viz., negative binomial, Poisson, binomial, etc. The second kind of variance 
heterogeneity usually occurs in experiments, where, due to the nature of treatments tested, 
some treatments have errors that are substantially higher (lower) than others.

The scatter-diagram of means and variances of observations for each treatment across the 
replications gives only a preliminary idea about homogeneity of error variances.  Statistical 
tests to confirm it are needed. Before, testing homogeneity of error variances, one should test 
normality of the errors. If the errors are normally distributed, Bartlett’s test is used for testing 
homogeneity of error variances. On the other hand, if the error distribution is non-normal, one 
can use Levene or Modified Levene test. We now describe these tests.  

9.4.1   Bartlett’s test for homogeneity of variances
Suppose that there are v independent samples drawn from same population and ith sample 

is of size ri and . In the present case, the independent samples are the residuals 
of the observations pertaining to v treatments and ith sample size is the number of replications 
of the treatment i. One wants to test the null hypothesis   against the 
alternative hypothesis  at least two of the  are not equal, where  is the error variance 
for treatment i.

Let  denotes the residual pertaining to the observation of treatment i from replication j, 
then it can easily be shown that the sum of residuals pertaining to a given treatment is zero. 

In this test  is taken as unbiased estimate of . The procedure 

involves computing a statistic whose sampling distribution is closely approximated by the   
distribution with v – 1 degrees of freedom. The test statistic is

and null hypothesis is rejected when , where  is the upper α percentage point of 
distribution with v – 1 degrees of freedom.

The steps to compute  are given in the sequel. 

Step 1: Compute mean and variance of all v-samples.

Step 2: Obtain pooled variance 
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Step 3: Compute 

Step 4: Compute 

Step 5: Compute .

Bartlett’s test for homogeneity of variances is a modification of the normal-theory 
likelihood ratio test. While Bartlett’s test has accurate Type I error rates and optimal power when 
the underlying distribution of the data is normal, it can be very inaccurate if that distribution is 
even slightly non-normal (Box, 1953). Therefore, Bartlett’s test is not recommended for routine 
use. 

An approach that leads to tests that are more robust to the underlying distribution is to 
transform the original values of the dependent variable to derive a dispersion variable and then 
to perform analysis of variance on this variable. The significance level for the test of homogeneity 
of variance is the p-value for the ANOVA F-test on the dispersion variable.  Commonly used 
test for testing the homogeneity of variance using a dispersion variable is Levene Test given by 
Levene (1960). The procedure is described in the sequel.

9.4.2   Levene test for homogeneity of variances 
The test is based on the variability of the residuals. The larger the error variance, the larger 

the variability of the residuals will tend to be. To conduct the Levene test, we divide the data into 
different groups based on the number of treatments. If the error variance is either increasing or 
decreasing with the treatments, the residuals in one treatment will tend to be more variable than 
those in other treatments. The Levene test then consists of simply F-statistic based on one way 
ANOVA used to determine whether the mean of absolute / square root deviation from mean 
are significantly different or not. The residuals are obtained from the usual analysis of variance. 
The test statistic is given as

 ~ 

where  ;  ;   and  is the jth residual for the ith plot, and  is 

the mean of the residuals of the ith treatment.
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It may be noted that this test was modified by Brown and Forsythe (1974). In the modified 
test, the absolute deviation is taken from the median instead of mean in order to make the test 
more robust. 

In this Chapter, the Bartlett’s -test has been used for testing the homogeneity of error 
variances when the distribution of errors is normal. 

Remark 9.1: In a block design, it can easily be shown that the sum of residuals within a given 
block is zero. Therefore, the residuals in a block of size 2 will be same in magnitude but opposite 
in sign. As a consequence, q in Bartlett’s test and numerator in Levene test statistic become 
zero for the data generated from experiments conducted to compare only two treatments 
in a RCB design. Hence, the tests for homogeneity of error variances cannot be used for the 
experiments conducted to compare only two treatments in a RCB design. Inferences from such 
experiments may be drawn using Fisher-Behren t-test. Further, Bartlett’s test cannot be used for 
the experimental situations where some of the treatments are singly replicated.

Remark 9.2: In a RCB design, it can easily be shown that the sum of residuals from a 
particular treatment is zero. As a consequence, the denominator of Levene test statistic is zero 
for the data generated from RCB designs with two replications. Therefore, Levene test cannot 
be used for testing the homogeneity of error variances for the data generated from RCB designs 
with two replications. 

9.5   Remedial measures
The purpose of this Section is to describe some remedial measures for non-normal and/or 

heterogeneous data in greater details. 

Data transformation is the most appropriate remedial measure in the situation where 
the variances are heterogeneous and are some functions of means. With this technique, the 
original data are converted to a new scale resulting into a new data set that is expected to 
satisfy the homogeneity of variances. Because a common transformation scale is applied to 
all observations, the comparative values between treatments are not altered and comparison 
between them remains valid.

Error partitioning is the remedial measure of heterogeneity that usually occurs in 
experiments, where, due to the nature of treatments tested some treatments have errors that are 
substantially higher (lower) than others.

Here, we shall concentrate on those situations where character under study is non-normal 
and variances are heterogeneous. Depending upon the functional relationship between 
variances and means, suitable transformation is adopted. The transformed variate should satisfy 
the following:

1.	 The variances of the transformed variate should be unaffected by changes in the means. 
This is also called the variance stabilizing transformation.

2.	 It should be normally distributed.
3.	 It should be one for which effects are linear and additive.
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4.	 The transformed scale should be such for which an arithmetic average from the sample is 
an efficient estimate of true mean.

The following are the three transformations, which are being used most commonly, in 
agricultural  research.

a)	 Logarithmic transformation
b)	 Square root transformation
c)	 Arc Sine or angular transformation

a)  Logarithmic transformation
This transformation is suitable for the data where (a) the variance is proportional to square 

of the mean, or (b) the coefficient of variation (S.D./mean) is constant, or (c) the effects are 
multiplicative. These conditions are generally found in the data that are whole numbers and 
cover a wide range of values. This is usually the case when analysing growth measurements such 
as trunk girth, length of extension growth, weight of tree or number of insects per plot, number 
of egg mass per plant or per unit area, etc.

For such situations, it is appropriate to analyse log Y instead of actual data, Y. When data set 

involves small values or zeros, log (Y + 1),   or log  should be used instead of log 

Y. This transformation would make errors normal, when observations follow negative binomial 
distribution like in the case of insect counts.

b)  Square-root transformation 
This transformation is appropriate for the data sets where the variance is proportional to the 

mean. Here, the data consists of small whole numbers. For example, data obtained in counting 
rare events, such as the number of infested plants in a plot, the number of insects caught in 
traps, number of weeds per plot, etc. This data set generally follows Poisson distribution and 
square root transformation approximates Poisson to normal distribution.

For these situations, it is better to analyse   than analysing Y, the actual data. If Y is 

confirmed to small whole numbers then,   or   should be used instead of .

c)  Arc Sine transformation
This transformation is appropriate for the data on proportions, i.e., data obtained from 

counts and expressed as decimal fractions and percentages. The distribution of percentages 
is binomial and this transformation makes the distribution normal. Since the role of this 
transformation is not properly understood, there is a tendency to transform any percentage 
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data using arc sine transformation. But only that percentage data that are derived from count 
data, such as % barren tillers (which is derived from the ratio of the number of non-bearing 
tillers to the total number of tillers), should be transformed and not the percentage data such as 
% protein or % carbohydrates, % nitrogen, etc. which are not derived from count data. For these 
situations, it is better to analyse  than Y, the actual data. A value of Y as 0% should be 

substituted by  and a value of Y as 100% should be substituted by , where n is the 

number of units upon which the percentage data is based.

It may be noted here that not all percentage data need to be transformed, and even if they 
do, arc sine transformation is not the only transformation possible. The following rules, as given 
by Gomez and Gomez (1984), may be useful in choosing the proper transformation scale for 
percentage data derived from count data.

Rule 1:	 The percentage data lying within the range of 30 to 70% is homogeneous and no    	
	 transformation is needed.

Rule 2:	 For percentage data lying within the range of either 0 to 30% or 70 to 100%, but not 	
	 both, the square root transformation should be used.

Rule 3:	 For percentage data that do not follow the ranges specified in Rule 1 or Rule 2, the Arc 	
	 Sine transformation should be used.

The rules just described may only be some indicative guidelines. However, it is always better 
to test the normality of errors and homogeneity of error variances. If the errors follow a normal 
distribution and error variances are homogeneous, then no transformation is required. If any 
one or both of these assumptions are not satisfied, then appropriate transformation may be 
used.

For performing different transformations of a variable X in SAS,  one can use the following 
statements between INPUT and CARDS statement.

/*Arc sine transformation (variable X to be transformed is in % with values 0 to 100)*/
x1=ARSIN(SQRT(x/100))*180*7/22;
x2=100-1/400;
IF st=0 THEN x1=ARSIN(SQRT(1/400))*180*7/22;
IF st=100 THEN x1= ARSIN(SQRT(x2/100))*180*7/22;
However if variable X to be transformed is in proportions with values 0 to 1, then 
X1=ARSIN(SQRT(x))*180*7/22;
/*Square root transformation for Variable X*/
X3=SQRT(X+0.5);
/*Logarithmic transformation for variable X;*/
X4=LOG(X+1);

The transformations discussed above are a particular case of the general family of 
transformations known as Box-Cox transformation.
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d)   Box-Cox transformation
The description thus far clearly implies that if the relation between the variance and the 

mean of  the observations is known then this information can be utilized in selecting the form of 
the transformation. We now elaborate on this point and show how it is possible to estimate the 
form of the required transformation from the data. The transformation suggested by Box and 
Cox (1964) is a power transformation of the original data. Let Yut be the observation pertaining 
to the uth plot; then the power transformation implies that we use Yut’s as

 .  			             

The transformation parameter λ in  may be estimated simultaneously with the 
other model parameters (overall mean and treatment effects) using the method of maximum 
likelihood. The procedure consists of performing, for the various values of λ, a standard analysis 
of variance on 

 	 (9.1)

 .

 is the geometric mean of the observations. The geometric mean of n numbers  is 

defined as the nth root of their product, i.e., . The maximum likelihood estimate of 

λ is the value for which the error sum of squares, say SSE (λ), is minimum. Notice that we cannot 
select the value of λ by directly comparing the error sum of squares from analysis of variance on 

 because for each value of λ the error sum of squares is measured on a different scale. Equation 
(9.1) rescales the responses so that the error sums of squares are directly comparable. This is a 
very general transformation and the commonly used transformations follow as particular cases. 
The particular cases for different values of  λ are given below.

λ Transformation

1 No Transformation

½ Square Root

0 Log

‒1/2 Reciprocal Square Root

‒1 Reciprocal

Remark 9.3: If any one of the observations is zero then the geometric mean is undefined. 
In the expression (9.1), geometric mean is in denominator, so it is not possible to compute that 
expression. For solving this problem, one may add a small quantity to each of the observations.
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It should be emphasized that transformation, if needed, must take place right at the 
beginning of the analysis, all fitting of missing plot values, all adjustments by covariance etc. 
being done with the transformed variate and not with the original data. At the end, when the 
conclusions have been reached, it is permissible to ‘re-transform’ the results so as to present 
them in the original units of measurement. This may be done only to render the results more 
intelligible.

As a result of this transformation followed by back transformation, the means will rather be 
different from those that would have been obtained from the original data. A simple example is 
that without transformation, the mean of the numbers 1, 4, 9, 16 and 25 is 11. Suppose a square 
root transformation is used to give transformed values as 1, 2, 3, 4 and 5. The mean now is 3, 
which after back- transformation gives a value 9. Generally the difference will not be so big 
because the data do not usually vary as much as in this Example, but logarithmic and square 
root transformations always lead to a reduction of the mean, just as angles of equal formation 
usually lead to its moving away from the central value of 50%.

However, in practice, computing treatment means from original data is more frequently 
used because of its simplicity, but this may change the order of ranking of converted means 
for comparison. Although transformations make possible a valid analysis, they can be very 
awkward. For example, although a significant difference can be worked out in the usual way 
for means of the transformed data, none can be worked out for the treatment means after  
back- transformation.

9.6   Non-parametric tests in the analysis of experimental data
When the data remains non-normal and/or heterogeneous even after transformation, 

recourse is made to non-parametric test procedures. A lot of attention is being paid to develop 
non-parametric tests for analysis of experimental data. Most of these non-parametric test 
procedures are based on rank statistic. The rank statistic has been used in development of these 
tests as the statistic based on ranks is distribution free, easy to calculate, and simple to explain 
and understand.

Another reason for use of rank statistic is due to the well known result that the average 
rank approaches normality quickly as n (number of observations) increases, under the rather 
general conditions, while the same might not be true for the original data {see e.g. Conover 
and Iman (1976, 1981)}. The non-parametric test procedures available in the literature cover 
completely randomized design, randomized complete block design, balanced incomplete block 
design, design for bioassays, split plot design, cross-over design and so on. For an excellent and 
elaborate discussions on non-parametric tests in the analysis of experimental data, one may 
refer to Siegel and Castellan Jr. (1988), Deshpande, Gore and Shanubhogue (1995), Sen (1996), 
and Hollander and Wolfe (1999).

Kruskal-Wallis test can be used for the analysis of data from completely randomized design. 
Skillings and Mack test helps in analysing the data from a general block design. Friedman test 
and Durbin test are particular cases of this test. Friedman test is used for the analysis of data 
from RCB design and Durbin test for the analysis of data from BIB design. We now describe 
some of these tests for analysis of experimental data generated through block designs.  
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9.6.1   Kruskal-Wallis Test 
This test is used for testing the equality of population mean of several groups or the treatment 

effects. Hence, this test is quite useful for the analysis of experimental data generated through 
a completely randomized design. Consider that there are v treatments and the ith treatment is 

replicated ri times; i =1, 2, …, v, such that N = . The data generated through CRD can be 

represented by usual one-way classified linear model as 

yij = µ + τi + єij                   i = 1, 2, …, v;  j = 1, 2, …, ri.	 			 

where yij is the yield or response of jth replication of ith treatment, µ is the general mean, τi is the 
ith treatment effect, єij is the error due to ith treatment and jth observation.

The experimenter is interested to test the equality of treatments effects against the alternative 
that at least two of the treatments effects are not equal. In other words, we want to test the null 
hypothesis H0: τ1 = τ2 = τ3 = … = τv = τ (say) against the alternative H1: at least two of the τi’s are 
different. 

To test the above null hypothesis using the Kruskal-Wallis Statistic, we rank all N 
observations by giving rank 1 to smallest observation and N to largest observation. Once this is 
done, we obtain the sum and average of the ranks of the observations pertaining to each of the 
treatments. Now, if the treatment effects are equal, then the average ranks are expected to be 
same. The differences, if any, would be due to sampling fluctuations. The Kruskal-Wallis statistic 
is based on the assessment of the differences among the average ranks. This may be explained 
as below:

Let Rij be the rank of yij; i = 1, 2, 3, …, v;   j = 1, 2, …, ri  and Ri = 

 

( the sum of the ranks 

of the observations pertaining to the ith treatment) and  (the average of the ranks of 
the observations pertaining to the ith treatment). Let  be the mean of the all . The Kruskal-
Wallis statistic is, then, given by

 

          

The method of determining the significance of the observed values of T depends on the 
number of treatments (v) and their replications (ri).  The null distribution (distribution under 
null hypothesis) of T for v =3 and ri < 5 is extensively tabulated and available in several texts. 
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For a ready reference, the Table has been included as Appendix-I of this Chapter. In other cases, 
under null hypothesis, T may be approximated by the  with (v – 1) degree of freedom. 

Remark 9.4: When ties occur between two or more observations, each observation is 
given the mean of ranks for which it is tied. The T-statistic after correcting the effect of ties is 
computed by using following formula

where g is number of treatments of different tied ranks, ts is the number of tied ranks in the sth  
treatment. The effect of correcting for ties is to increase the value of T and thus to make the 
result more significant than it would have been had no correction been made. Therefore, if one 
is able to reject null hypothesis without making the correction, one will be able to reject H0 at an 
even more stringent level of significance if the correction is used. 

Pair-wise comparisons
If the Kruskal-Wallis test rejects the null hypothesis of equality of v treatment effects, it 

indicates that at least two of the treatment effects are unequal. It does not tell the researcher which 
one are different from each other. Therefore, a test procedure for making pair wise comparisons 
is needed. For this, the null hypothesis  against    can be 
tested at α level of significance by using the inequality 

where p = α/v(v‒1) and zp is the quantile of order 1 ‒ p under the standard normal distribution. 
From the above, we can say that the least significant difference between the treatments i  and 
i'  is 

Therefore, if   then the difference between i and i' treatment effects is considered 
significant at α level of significance. The above procedure is illustrated with the help of the 
following example.

Example 9.1: An experiment was conducted with 21 animals to determine if the four 
different feeds have the same distribution of weight gains on experimental animals. The feeds 1, 
3 and 4 were given to 5 randomly selected animals and feed 2 was given to 6 randomly selected 
animals. The data obtained is presented in Table 9.4.
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Table 9.4: Weight gain data of animals

 Feeds Weight gains (kg)

1 3.35 3.80 3.55 3.36 3.81

2 3.79 4.10 4.11 3.95 4.25 4.40

3 4.00 4.50 4.51 4.75 5.00

4 3.57 3.82 4.09 3.96 3.82

We use Kruskal-Wallis test to analyse the data in Table 9.4.  We arrange the data in ascending 
order and give the ranks 1 to 21 to the observations. The ranks are then arranged feed wise as 
given in Table 9.5.

Table 9.5: Rank of the observations

Feeds Ranks of Weight gains Sum of ranks (Ri)
Average of 
Ranks ( )

1 1 6 3 2 7 19 3.80

2 5 14 15 10 16 17 77 12.83

3 12 18 19 20 21 90 18.00

4 4 8.5 13 11 8.5 45 9.00

Then the Kruskal-Wallis test statistic is obtained as:

, where

  = 80.139 – 66.000 = 14.139,

. Here ts = 2 for s = 4, because only two 

observations are tied for feed 4. 

Thus     

The tabulated value of χ2 at 3 degree of freedom at 5% level of significance is 7.815 and the 
calculated value is 14.140. It, therefore, follows that the feed effects differ significantly. 

Pair-wise comparisons for the feeds

Here r1 = r3 = r4 = 5;  r2 = 6, N = 21, v = 4 and v(v – 1) = 12. Let a = 0.05. Then p = 0.05/12 = 
0.00417. For this value of p, the value of zp obtained from the tables is zp ≈ 2.64.  We can compute 
cii’ as
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= 10.360.

Thus   = 9.03;  = 14.20;  = 5.20;  = 5.17;

 = 3.83;  = 9.00.

Here we see that   > c13 so the effect of feeds 1 and 3 are significantly different at 5% 
of level of significance while all other pairs of feeds effects do not differ significantly.

9.6.2   Friedman test 
The Kruskal-Wallis test is useful for the data generated through completely randomized 

designs. A completely randomized design is used when experimental units are homogeneous 
in a block. However, there do occur experimental situations where one can find a factor (called 
nuisance factor), which, though not of interest to the experimenter, does contribute significantly 
to the variability in the experimental material. Various levels of this factor are used for blocking. 
For the experimental situations where there is only one nuisance factor, block designs are used. 
The simplest and most commonly used block design by the agricultural research workers is a 
randomized complete block (RCB) design. The problem of non-normality of data may also 
occur in RCB design as well. Friedman test is useful for such situations (see Friedman, 1937). 
Let there be v treatments and N = vb experimental units arranged in b blocks of size v each. Each 
treatment appears exactly once in each block.  The data generated through a RCB design can 
analysed using the following linear model

yij = µ + τi + βj + єij,         i = 1, 2, …, v;  j = 1, 2, …, b.		  		

where yij is the yield (response) of the ith experimental unit receiving the treatment in jth block, 
τi is the effect due to ith treatment, βj is the effect of jth block, єij is random error in response. The 
interest of the experimenter is to test the equality of treatment effects. In other words, we want 
to test the null hypothesis H0: τ1 = τ2 = τ3 = … = τv =τ (say) against the alternative H1: at least two 
of the ti’s are different. For using Friedman test, we proceed as follows.

Arrange the observations in v rows (treatments) and b columns (blocks). The observations 
in the different rows are independent and those in different columns are dependent. Rank all 
the observations in a column (block), i.e. ranks are assigned separately for each block. Let Rij be 
the rank of the observation pertaining to ith treatment in the jth block. Then 1 < Rij < v. As the 
ranking has been done within blocks from 1 to v, therefore sum of ranks in jth block is 

 
 and  and the variance is  . The sum of ranks for ith 

treatment is 
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If all the treatment effects are same (under H0), then we expect each Ri to be equal b(v+1)/2, 
that is, under H0,

 .

The sum of squared deviations of Ri’s from E(Ri) is, therefore, a measure of the differences 
in the treatment effects.

 Let  

The Friedman test statistic is then defined as

The method of determining the probability of occurrence of an observed value of T when 
H0 is true depends upon the sizes of v and b. For small values of b and v, the null distribution 
of T has been tabulated. For a ready reference, the table has been included in Appendix-II. For 
large b and v, the associated probability may be approximated by the χ2 distribution with v – 1 
degrees of freedom.

 Remark 9.5: When there are ties among the ranks for any given block, the statistics T must 
be corrected to account for changes in the sampling distribution. So if ties occur then we use 
following statistic

   ~ χ2
(v‒1)

	

where gj is the number of sets of tied ranks in the jth block and tjs is the size of the jth set of tied 
ranks in the ith block.

Pair-wise comparisons
When the Friedman test rejects the null hypothesis that treatment effects are homogeneous, 

it is of interest to identify significant difference between the paired treatments. Therefore, a test 
procedure for making pair wise comparisons is needed. The null hypothesis  against  

     can be tested at α level of significance using the inequality.
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 for all i, i' = 1,2,...,v, i ≠ i'       

where p = α/v(v‒1) and zp is the quantile of order 1 ‒ p under the standard normal distribution. 
From the above, we can say that the least significant difference between the treatments i  and 
i′  is

If  
 
then the difference between treatments i and i' is considered as significantly 

different at α level of significance. The above procedure is illustrated with the help of following 
example:

Example 9.2: An animal feeding experiment involving 8 different rations was laid out in a 
RCB design using 24 animals in 3 groups of size 8 each. The grouping was done on the basis of 
initial body weight.

Table 9.6: Data from animal feeding experiment

Rations

Block

1 2 3

1 138.46 400.00 461.50

2 387.60 369.20 384.60

3 436.90 430.80 467.70

4 424.60 461.50 421.50

5 430.70 455.30 406.10

6 424.61 384.60 384.50

7 424.59 350.80 307.60

8 360.00 400.10 400.00

The first step is to check the normality of observations. For testing the normality of 
observations we use the Shapiro-Wilk Test and Kolmogorov-Smirnov test. Here H0: Observations 
come from normal population against H1: Observations do not come from normal population. 

Table 9.7: Result of normality test

Kolmogorov-Smirnov Shapiro-Wilk

Statistic DF Significance level Statistic F Significance level

Residual 0.200 24 0.014 0.873 24 0.010

We can see that the observations are non-normal at 5% level of significance. Now we use 
usual method of ANOVA and get the result as shown in Table 9.8.
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Table 9.8: ANOVA results

Source DF SS MS F Value Prob > F
Replication 2 3889.956 1944.978            0.405                0.6747
Treatment 7 32075.242        4582.177 0.954                0.4988
Error 14 67273.420        4805.244
Total 23 103238.6190

From this analysis, we can see that treatments are not significantly different. Now we use the 
Friedman Test for analysis of the same data. After ranking the observations within each block, 
we get Table 9.9.

Table 9.9: Ranked observations in each block

Block Sum of ranks (Ri)
Ration 1 2 3

1 1 4 7 12
2 3 2 3 8
3 8 6 8 22
4 5 8 6 19
5 7 7 5 19
6 6 3 2 11
7 4 1 1 6
8 2 5 4 11

Here b = 3 and v = 8, so the Friedman statistic is

   

= 94 - 81 = 13.

The tabulated value of χ2 at 7 degrees of Freedom and 10% level of significance is 12.017 
while the calculated value of χ2 is 13.000. So the rations are significantly different at 10% level of 
significance. Here the probability of getting a value of χ2 greater than 13.000 is 0.0721.

Pair-wise comparisons
As mentioned above, here b = 3, v = 8 and v(v – 1) = 56. Let α = 0.1 then p = 0.1/56 = 

0.00179. For this value of p, the value of zp obtained from the tables is zp = 2.1. Then we calculate   

  
= 12.6

So the critical difference of rank sum is 12.6. If |Ri – Ri’| > 12.6, the treatments i and i' are 
significantly different. For example |R2 – R3| = 14 is more than 12.6, so we conclude that these 
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two treatments are significantly different at 10% level of significance. Similarly, |R3 – R7|, |R4 – R7| 
and |R5 – R7| are greater than 12.6. So these pair of treatments also differ significantly at 10% 
level of significance.

9.6.3   Durbin’s Test   
In this Section just above, we have discussed the non-parametric analysis of experimental 

data of a RCB design. In a RCB design, the number of experimental units required in each 
block is same as the number of treatments. However, when the number of treatments increases, 
the blocks become large and it is not possible to maintain homogeneity with blocks. If an 
experimenter persists with a RCB design it results into large intra block variances and hence 
reduced precision on treatment comparisons. To circumvent this problem, recourse is made to 
incomplete block designs. Many a time an experimenter may have to use an incomplete block 
design because of the nature of experimental units. The simplest design among the class of 
incomplete block designs is a balanced incomplete block (BIB) design described in Chapter 5. 
The standard notations used for describing the parameters of  a BIB design are (i) v, the number 
of treatments, (ii) b, the number of blocks, (iii) r, the replication number of treatments, (iv) k, 
the number of experimental units per block (k < v), and (v) λ, the number of blocks in which a 
given treatment pair occurs together

The model of a BIB design is same as described in Chapter 5. For comparing the treatments 
from the non-normal data generated from a BIB design, Durbin (1951) proposed a test statistic. 
We want to test the equality of the treatment effects i. e.  the null hypothesis H0: τ1 = τ2 = τ3 = … 
= τv =τ (say) against the alternative H1:  at least two of the τi’s are different. 

 To test the above hypothesis, rank the observations yij from 1 to k within a block. Let Rij be 
the rank of yij. Then following the lines of Friedman test, Durbin test statistic is given by

The test rejects H0 if T is more than the cut-off point. The cut off point is obtained by 
referring to the chi-square distribution with (v – 1) degree of freedom. The exact test can be 
obtained by rejecting H0 when T > mα , where some values of mα are given in Skillings and 
Mack (1981).

Pair-wise comparisons 
When the Durbin test rejects the null hypothesis that the treatment effects are homogeneous, 

it is of interest to identify pairs of treatments that differ significantly. Therefore, a test procedure 
for making pair wise treatments comparisons is needed. The null hypothesis  against 

   can be tested at α level of significance using the 
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where p = α/v(v-1) and zp is the quantile of order 1 – p under the standard normal distribution. 
From the above, we can say that the least significant difference between the treatments i  and 
i′  is

If   then the difference between treatments i and i' is considered significant at α 
level of significance. The above procedure is illustrated with the help of following example:

Example 9.3: In an experiment to compare palatability of four varieties of rice (cooked), 
four judges were asked to rank three varieties each. The results obtained are given in Table 9.10.

Table 9.10: Data from palatability study

Rice Variety Judges Sum of ranks (Ri)

1 2 3 4

1 1 2 1 - 4

2 3 1 - 2 6

3 2 - 2 1 5

4 - 3 3 3 9

Using the Durbin test statistic gives

  = 5.25

The tabulated value of χ2 at 3 degree of freedom and at 5% level of significance is 7.815 while 
the calculated value of χ2 is 5.250. So the treatments do not differ significantly at 5% level of 
significance. Here the probability of getting a value of χ2 greater than 5.250 is 0.0724. 

The R code for analysis of data is given below

d35=read.table(“variety_ranking.txt”,header=TRUE)
attach(d35)
names(d35)
library(agricolae)
out=durbin.test(judge,variety,rank)
out
detach(d35)
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9.6.4. Skillings and Mack test 
In some experimental situations, even the use of a BIB design may not be feasible and a 

recourse may have to be made to use of a partially balanced incomplete block (PBIB) design. 
In some other experimental situations, a non-proper (unequal number of experimental units 
in blocks) block design may be useful. Skillings and Mack (1981) proposed a Friedman-type 
test statistic, which is useful for the analysis of data generated from any binary block design. 
Let  represent a binary block design in which v treatments are 
arranged in b blocks such that jth block contains kj ≥ 2 distinct treatments and ith treatment is 
replicated ri times; i = 1, 2, …, v, j =1, 2, …, b. For the analysis of experimental data generated 
through a binary block designs, we make use of test  statistic given by Skillings and Mack 
(1981). To compute the test statistic, we find adjusted treatment sums for ranked data. For this 
we proceed as follows:

1.	 Within each block, rank the observations from 1 to kj, where kj is the number of experimental 
units (or treatments) in the jth block.

2.	 Let Rij be the rank of yij, if the observation is present; otherwise, let Rij = (kj+1)/2

3.	 Compute an adjusted treatment sum of ranks for the ith treatment, namely

		

Let ∑ denote the covariance matrix (diagonal elements are variances and off-diagonal 
elements are covariances) of the random vector A' = (A1, …, Av). The covariance structure of 
the Rij’s is well known and in this case only minor modifications are required because of missing 
cells. In block j, under H0: τ1 = τ2 = τ3 = …= τv= τ (say), we have

	

	

where nij is the number of times treatment i  appears in block j. Thus 

	  i = 1, 2, …, v 

and 	  1≤ i ≠ i' ≤ v.

Let  denote the number of blocks containing observations for both treatments i and i'. It 
can be seen by inspection that under H0, the matrix ∑ = (( )) can be rewritten as

= –  , 1 ≤ i ≠ i' ≤ v

and 
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	  , i = 1, 2, …, v.

Thus the elements of  ∑ are simple to obtain. The off-diagonal elements are (- ), and the 
diagonal elements are the negative of the sum of off-diagonal elements in that row. We note that 
the covariance matrix ∑ is singular, because the sum of the rows (columns) is always zero. In 
any connected block design, the rank of  ∑ will be v – 1. The proposed test statistic is of the form

T =A'∑–A 

where ∑- is a generalized inverse of ∑. T follows an approximate x2-distribution with degrees of 
freedom as the rank of  ∑. The above procedure is illustrated with the help of following example:

Example 9.4: An experimenter is interested in comparing the performance of four chemicals 
in a hilly area in terms of the effect of chemicals on the crop yield. There are 9 terraces in the hill, 
but these are of unequal sizes and it is not possible to accommodate all the chemicals on all the 
terraces. The data in kg/plot is given in Table 9.11.

Table 9.11: Chemical experiment data

Chemicals Terraces (Blocks)
1 2 3 4 5 6 7 8 9

A 3.2 3.1 4.3 3.5 3.6 4.5 4.3 3.5
B 4.1 3.9 3.5 3.6 4.2 4.7 4.2 4.6
C 3.8 3.4 4.6 3.9 3.7 3.7 3.4 4.4 3.7
D 4.2 4.0 4.8 4.0 3.9 4.9 3.9

Now we rank the data within each block. If an observation corresponding to some treatment 
is not present in a block, then we use Rij = (kj +1)/2. We get the Table 9.12 of ranks.

Table 9.12: Ranked data within each terrace (block)

Chemical Terrace ( Block)
1 2 3 4 5 6 7 8 9

A 1 1 2 1 1 2 1.5* 1 1
B 3 3 1 2 4 3 2 3 2*
C 2 2 3 3 2 1 1 2 2
D 4 4 4 4 3 2* 1.5* 4 3

* Represents rank for the missing observations.

Now we calculate adjusted treatment sums (Ai) as in Table 9.13.
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Table 9.13: Adjusted treatment means

Block Chemical
A B C D

1 ‒2.324 0.775 ‒0.775 2.324
2 ‒2.324 0.775 ‒0.775 2.324
3 ‒0.775 ‒2.324 0.775 2.324
4 ‒2.324 ‒0.775 0.775 2.324
5 ‒2.324 2.324 ‒0.775 0.775
6 0.000 1.732 ‒1.732 0.000
7 0.000 1.000 ‒1.000 0.000
8 ‒2.324 0.775 ‒0.775 2.324
9 ‒1.732 0.000 0.000 1.732
Adjusted Treatments 
Sum of Ranks (Ai)

14.127 4.282 ‒4.282 14.127

So, Ai = (‒14.127    4.282    ‒4.282    14.127)' 

The covariance matrix ∑ is obtained by counting the number of times treatment pairs occur 

together. Thus                        

A generalized inverse ∑- of ∑ is

	

Now, 

  =

 [‒14.127 4.282 ‒4.282 14.127]   = 15.49
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The tabulated value of χ2 at 3 degrees of freedom and 5% level of significance is 7.815 while 
the calculated value of χ2 is 15.49. So the treatments are significantly different at 5% level of 
significance. Here the probability of getting a value of χ2 greater than 15.49 is 0.0014.

The statistic is quite general and the commonly used Friedman test statistic and Durbin test 
statistic discussed above are the particular cases of this test. For example, in a RCB designs all  
nij = 1, all  = b and kj = v, therefore, for a RCB design

    and Ai = .

Substituting, these values in T gives

Now in case of a BIB design, all blocks have k < v observations and the number of 
blocks in which any pair of treatments occur together is λ. Therefore, for a BIB design 

. The statistic T reduces to

 

 , since λ(v‒1) = r(k‒1)

9.6.5.	 Gore test for multiple observations per plot 
The test discussed above can also be used for analysis of data generated from a general block 

design where only one observation per plot is available. However, sometime more than one 
observation is available from each cell. The appropriate model for such situation is 

yijs = µ + τi + βj + єijs, i = 1, 2, …, v;  j = 1, 2, …, b; s = 1, 2, …, nij.

where yijs is the sth observation in the  (i, j)th cell, nij is the number of observations in the (i, j)
th cell, that is the number of experimental units receiving ith treatment and ith block. єijs are 
independent errors that follow a continuous distribution with a zero median. We are interested 
to test the equality of the treatment effects i.e. H0: τ1 = τ2 = τ3 = …= τv= τ (say) against an 
alternative hypothesis that at least two of the τi’s are different. 

Now, suppose , denotes the total number of observations and 

 ,  ,       
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Consider a pair of plots (i, j) and (i’, j), located in the same column j. We can form nij×ni’j 
pairs of observations by taking one observation from each of these cells. Suppose that  denotes 
the proportion of the nij×ni’j pairs in which the observations from plot (i, j) are greater than the 
observations in the plot (i', j). Then define

Using these, the test statistic is

The test rejects H0 if T is greater than the upper cut off point of the chi-square distribution 
with (v – 1) degrees of freedom. The above procedure is illustrated with the help of the following 
example:

Example 9.5: Table 9.14 gives the number of days to maturity for three varieties of a cereal 
crop grown in two soil conditions.

Table 9.14: Number of days to maturity of three variety under two soil conditions

Variety Soil type
Light Heavy

A 130, 115, 123, 142 117, 125, 139
B 108, 114, 124, 106 91, 111, 110
C 155, 146, 151, 165 97, 108

In this Example v = 3, b = 2, n11 = 4, n12 = 3, n21 = 4, n22 = 3, n31 = 4, n32 = 2 and N = 20. 

Now 

 p11 = p21 = p31 =  4/20 = 0.20; p12 = p22 = 3/20 = 0.15;  p32 = 2/20 = 0.10.

Then 

q11 = q21 = q31 = 1/0.20 = 5.00; q12 = q22 = 1/0.15 = 6.67; q32 = 1/0.1 =10.00,

 q1.= 5.00+6.67=11.67;  q2.= 5.00+6.67=11.67; q3.= 5.00+10.00=15.00,

We now proceed to compute . Let us first illustrate computation of u121. Here 16 (4×4) 
pairs of observations can be formed from row 1 and row 2 in column 1. Take each observation 
in cell (1,1) and compare it with four observations in cell (2, 1). Observation 130 is greater than 
all the four values in cell (2, 1). Hence, its contribution to u121 is 4. Similarly the observation 115 
contributes 3, observation 123 contributes 3 and observation142 contributes 4. The total is 14. 
So, u121 is 14/16.
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Similarly u122 = 9/9 = 1; u131 = 0; u132 = 1; u231 = 0; u232 = 4/6; u211 = 2/16; u212 = 0; u311 = 1; u312  
= 0; u321 = 1; u322 = 2/6.

Hence 

 ;  ; 

The test statistic T is then computed as 

 	     

= 5.280. 

The tabulated value of χ2 at 2 degrees of freedom and at 5% level of significance is 5.991 
and the calculated value is 5.280. It, therefore, follows that the varieties of cereal crop are not 
significantly different at 5% level of significance. Here the probability of getting a value of  
χ2 greater than 5.280 is 0.071361.

A lot of efforts have also been made at IASRI to develop the non-parametric test procedures 
for the analysis of groups of experiments conducted in Randomized block designs and split plot 
designs. For details one may refer to Rai and Rao (1980, 1984). 

9.7. Some more examples for testing normality and homogeneity of  
         variances

Some examples of testing the assumptions of normality and homogeneity of errors and 
remedial measures are discussed in the sequence. 

Example 9.6: Suppose an entomologist is interested in determining whether four different 
kinds of traps caught equivalent insects when applied to same field. Each of the traps is used six 
times on the field and resulting data (number of insects per hour) are as shown in Table 9.15 
along with mean, variance and range.

Table 9.15: Data on insects per hour

Treatment
(Trap)

Replication Mean Variance Range
I II III IV V VI

A 3 1 12 7 17 2 7 40.4 16
B 9 29 21 24 28 45 31 138.4 36
C 63 84 97 61 98 71 79 270.8 37
D 172 118 109 172 143 168 147 798.4 63
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A scatter plot of mean and variance and mean versus range are given as follows:

Figure 9.1: Scatter plot of mean versus range and variance

Both the plots indicate that variances are heterogeneous and variance is proportional to 
mean. The residuals for testing the normality and homogeneity of error terms are obtained and 
are given in Table 9.16.

Table 9.16: Residuals for the insect data

Treatment (Trap) Replication Mean Variance
I II III IV V VI

A ‒1.00 0.75 10.00 ‒1.25 3.25 ‒11.75 0 50.35
B ‒14.00 9.75 0.00 ‒3.25 ‒4.75 12.25 0 94.85
C ‒13.00 11.75 23.00 ‒19.25 12.25 ‒14.75 0 314.85
D 28.00 ‒22.25 ‒33.00 23.75 ‒10.75 14.25 0 650.20

The SAS code for testing normality of a variable y in a dataset mydata is given below.  
PROC UNIVARIATE DATA=mydata NORMAL; 
VAR y; 
RUN; 

The R code for testing normality of a variable y using Shapiro-Wilk test is shapiro.test(y). 
and using Kolmogorov-Smirnov test is ks.test(y, "pnorm", mu, sigma) where mu and sigma are 
the mean and standard deviation of the normal distribution.
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Table 9.17: Result of normality tests

Shapiro-Wilk test Kolmogorov-Smirnov test
Statistic (SW) p-value Statistic (KS) p-value

0.980 0.882 0.110 0.200

The errors were found to be normally distributed. Therefore, homogeneity of error variances 
was tested using Bartlett's test. It is described in the sequel.

Pooled Variance  

Since , therefore, we reject the null hypothesis and conclude that the variances 
are unequal. 
The SAS commands for Bartlett's test using SAS is given below.
PROC GLM data=insect;
CLASS treatment replication;
MODEL number = treatment replication;
MEANS treatment / HOVTEST=Bartlett; 
RUN;
The R code for Bartlett's test using R software is
insect=read.table("insect.txt",header=TRUE)
bartlett.test(number ~ treatment, data = insect)

The values of  are 5.77, 5.32, 3.43 and 5.43, indicating that variance is proportional to 

mean. Therefore, square root transformation should be used. After application of square root 
transformation, the residuals are presented in Table 9.18.

Table 9.18: Residuals for the insect data after square root transformation

Treatment Replication Variance
I II III IV V VI

A – 0.03614 – 0.92542 1.05800 0.20614 0.98287 – 1.28544 0.928
B – 1.34939 0.87854 – 0.40473 – 0.12183 – 0.42993 1.42735 0.999
C – 0.28226 0.78841 0.99143 – 1.08068 0.30794 – 0.72483 0.694
D 1.66779 – 0.74153 – 1.64469 0.99637 – 0.86087 0.58293 1.622
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Results of test of normality of error terms on the transformed data are shown in Table 9.19.

Table 9.19: Result of normality tests after square root transformation

Shapiro-Wilk test Kolmogorov-Smirnov test
Statistic (SW) p-value Statistic (KS) p-value

0.956 0.414 0.127 0.200

The errors remain normally distributed after transformation. The results of homogeneity of 
error variances using Bartlett's test are

Bartlett's Test (normal distribution): test statistic = 0.89, p-value = 0.828

Hence, we conclude that the errors are normally distributed and have a constant variance after 
transformation. 

The results of analysis of variance with original and transformed data are given in Table 9.20.

Table 9.20: ANOVA with original data

Source DF Seq SS Adj. SS MS F value Prob > F
Replication 5 689.0 689.0 137.8 0.37 0.86
Treatment 3 70828.5 70828.5 23609.5 63.80 0.00
Error 15 5551.0 5551.0 370.1
Total 23 77068.5

R-Square Root MSE
92.80% 19.237

Tukey Simultaneous tests for all pair wise treatment comparisons

1 2 3 4
1 .
2 0.3525 .
3 0.0001 0.0013 .
4 0.0000 0.0000 0.0001 .

ANOVA for transformed data

Source DF Seq SS Adj. SS MS F-value Prob > F
Replication 5 5.055 5.055 1.011 0.71 0.622
Treatment 3 326.603 326.603 108.868 76.98 0.000
Error 15 21.214 21.214 1.414
Total 23 352.872

R-Square Root MSE
93.99% 1.18922
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Tukey Simultaneous tests for all pair wise treatment comparisons

1 2 3 4
1 .
2 0.0091
3 0.0000 0.0003
4 0.0000 0.0000 0.0015 .

With transformed data treatments 1 and 2 are significantly different whereas with original 
data, they were not.

The Box-Cox transformation on the experiments was used, wherever, the data were 
found to be non-normal/heterogeneous. If the data becomes normal and homogeneous after 
transformation, then the analysis was performed on the transformed data. If the data remains 
non-normal after transformation, then the data were analysed using Skillings and Mack non-
parametric test. For illustration the results of some of these experiments are discussed in the 
sequel.

Example 9.7: A varietal trial on Rapeseed-Mustard was conducted at Faizabad with 11 
varieties using a randomized complete block design with 3 replications. The experimental data 
(Yield in kg/ha) obtained from the above experiment is given in Table 9.21.

Table 9.21: Yield data on Rapeseed-Mustard trial

Treatments Replications
R1 R2 R3

MCN-157 952.380 1058.200 1079.364
MCN-158 846.560 634.920 687.830
MCN-159 529.100 687.830 687.830
MCN-160 1058.200 1005.290 952.380
MCN-161 1111.110 888.888 846.560
MCN-162 899.470 634.920 1005.290
MCN-163 1058.200 1164.020 952.380
MCN-164 687.830 740.740 529.100
MCN-165 952.380 952.380 867.724
MCN-166 1058.200 1058.200 529.100
MCN-167 1269.840 1164.020 1216.930

The analysis of variance of the original data is given in Table 9.22.
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Table 9.22: ANOVA with original data

Sources DF SS MS F Prob. >F
Replication 2 52534.9880    26267.4940     1.46  0.2563
Treatment 10 967055.0471    96705.5047     5.37  0.0007
Error 20 360218.589 18010.929
Total 32 1379808.624

R-Square CV RMSE Yld Mean
0.738936 14.878 134.2048 902.035

The normality of error terms was tested, and the results obtained are given in Table 9.23.

Table 9.23: Result of tests of normality

Shapiro-Wilk test Kolmogorov-Smirnov test
Statistic (SW) p-value Statistic (KS) p-value
0.9679 0.4249 0.1018 >0.1500

Since the data is normal, therefore, Bartlett’s test is used for testing the homogeneity of error 
variances. The test gives Bartlett’s test statistic 20.177 with p-value 0.0276. Hence, the errors 
were found to be heterogeneous. Therefore, it can be concluded that the data is heterogeneous 
and normal. Therefore, Box-Cox transformation was used as a remedial measure. In the sequel, 
we describe the results of the Box-Cox transformation.

For this, the data was transformed by varying λ from – 10 to + 10 with an increment of 0.01.  
The error sum of squares is computed for each value of λ. The value of λ with minimum error 
sum of squares is used for transformation given in (9.1).  The minimum value of SSE is obtained 
for λ = 2.38. Therefore, reciprocal transformation was used. 

The assumptions of normality and homogeneity of error variances are again tested using 
the transformed data. Normality of error terms was tested and the results obtained are given in 
Table 9.24.

Table 9.24: Result of tests of normality

Shapiro-Wilk test Kolmogorov-Smirnov test
Statistic (SW) p-value Statistic (KS) p-value

0.984 0.8885 0.0867 >0.1500

Since the data is normal, therefore, Bartlett’s test is used for testing the homogeneity of error 
variances. The test gives Bartlett's test statistic value of 15.725 with p-value 0.107757. Therefore, 
the transformed observations were found to be normal and homogeneous. So, ANOVA was 
performed on the transformed data. The results obtained are given in Table 9.25.
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Table 9.25: ANOVA for transformed data

Sources DF SS MS F Prob. >F
Replication 2 3.865471E13 1.93273335E13 1.62 0.2238
Treatment 10 7.8841391E14 7.8841391E13 6.59 0.0002
Error 20 2.3934391E14 1.1967195E13
Total 32 1.0664125E15

R-Square CV RMSE Transformed Yld Mean
0.7756 29.563 3459363 11701777

It is seen that there is no change in the results of significance of treatment and replication 
effects. However, the transformed data satisfied the assumptions of ANOVA.

Example 9.8: [AFEIS Reference No. 1988(092)]. An experiment was conducted at Regional 
Research Station, Brahmavar (Karnataka) in 1988 to study on efficiency of large granular Urea 
on the growth and yield of paddy. The design adopted for this is Randomized Complete Block 
Design with 10 treatments in 3 replications. The net plot size is 3.60 x 2.40 m2. The treatment 
details are given below.

Treatment Treatment Details
1 Control (Untreated)
2 Untreated with N but treated with P @75kg/ha as Super Phosphate and K @50 kg/ha as Murate of 

Potash.
3 N @ 60 kg/ha as Urea Super Granule at planting.
4 N @ 120 kg/ha as Urea Super Granule at planting.
5 N @ 60 kg/ha as Urea Large Granule at planting.
6 N @ 120 kg/ha as Urea Large Granule at planting.
7 N @ 60 kg/ha as Prilled Urea in 3 splits as per recommendation.
8 N @ 120 kg/ha as Prilled Urea in 3 splits as per recommendation.
9 N @ 60 kg/ha as Large Granular Urea in 3 splits as per recommendation.

10 N @ 120 kg/ha as Large Granular Urea in 3 splits as per recommendation.

The experimental data (Yield in kg/plot) obtained from the above experiment is

Treatments 

→

Replications→
R1 R2 R3

T1 1.27 1.40 1.70
T2 1.71 1.65 1.87
T3 1.65 1.62 1.75
T4 1.65 1.62 1.65
T5 2.10 2.05 1.86
T6 1.57 2.00 1.77
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T7 2.95 2.02 2.15
T8 1.97 2.45 2.05
T9 2.25 2.15 2.48
T10 1.87 1.85 1.90

The analysis of variance of the original data is given in Table 9.26

Table 9.26: ANOVA with original data

Source of variation DF SS MS F-value Prob. >F
Replication 2 0.0068 0.0034 0.06 0.9373
Treatment 9 2.4315 0.2702 5.12 0.0016
Error 18 0.9489 0.0527
Total 29 3.3872

R-Square CV RMSE Yld Mean
0.7199 12.088 0.2296 1.900

Shapiro-Wilk test was applied to test the assumption of normality of data. The data was 
found to be non-normal (Prob < W = 0.0482). Since the data is non-normal, therefore, Levene 
test is used for testing the homogeneity of error variances. The test resulted into heterogeneous 
errors (Prob > F as 0.0007). Therefore, we can conclude that the data is heterogeneous and non-
normal. Therefore, Box-Cox transformation was used as a remedial measure. In the sequel we 
describe the results of the Box-Cox transformation.

For this, the data was transformed by varying λ from -10 to +10 with an increment of 0.01.  
The error sum of squares is computed for each value of λ. The value of λ with minimum error 
sum of squares is used for transformation given in (9.1). For illustration purposes, some values 
of λ and corresponding error sum of squares (SSE) are given below.

λ SSE

-1.30 0.666901
-1.20 0.664440
-1.10 0.663444
-1.09 0.663409
-1.08 0.663386
-1.07 0.663375
-1.06 0.663376
-1.05 0.663389
-1.04 0.663414
-1.00 0.663629
-0.90 0.664997
-0.80 0.667553
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From the above table, it may be seen that the minimum value SSE is 0.663375 for λ = –1.07. 
There data were transformed using λ = –1.07 in (9.1). 

The assumptions of normality and homogeneity of errors are again tested using the 
transformed data. The transformed observations were found to be normal using Shapiro Wilk 
test (Prob. < W as 0.2624) and homogeneous using Bartlett’s test (Prob. > Chi-square as 0.0679). 
Therefore, ANOVA was performed on the transformed data. The results obtained are given in 
Table 9.27. 

 9.27: ANOVA with transformed data

Source of variation DF SS MS F-value Prob. >F
Replication 2 0.0033 0.0016 0.52 0.6031
Treatment 9 0.2005 0.0223 7.07 0.0002
Error 18 0.0567 0.0032
Total 29 0.2605

R-Square CV RMSE Transformed Yld Mean
0.7822 10.7985 0.0561 0.520

We can see that there is no change in the results of significance of treatment and replication 
effects. However, the transformed data satisfied the assumptions of ANOVA.

Example 9.9: [AFEIS Reference No. 1985(015)]. An experiment was conducted at 
Agricultural Research station, Ponnempet (Karnataka) in 1985 to study the nitrogen 
management for low land pest and disease endemic area of paddy crop. The design adopted for 
this is Randomized Complete Block Design with 6 treatments in 5 replications. The net plot size 
used 5.00 × 3.00 m2. The treatment details are given below.

Treatment Treatment Details
1 Control
2 Split application of prilled (ordinary) Urea (50%Basal dose, 25% at 4 weeks after planting and 

25% at panicle initiation stage) 
3 Neem Cake Coated Urea
4 Coal Tar Coated Urea
5 Rock Phosphate Coated Urea
6 Urea Gypsum
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The experimental data (yield in kg/plot) is 

Treatments 

→

Replications →
R1 R2 R3 R4 R5

T1 1.00 1.37 0.73 0.53 2.85
T2 0.25 0.35 0.20 0.31 0.53
T3 0.73 0.62 0.76 0.24 0.38
T4 0.49 0.31 0.49 2.56 0.60
T5 0.80 0.8 0.52 0.95 0.37
T6 0.78 1.35 0.32 0.51 0.58

The results of the Analysis of Variance on the original data are given in Table 9.28.

Table 9.28: ANOVA with original data

Source of Variation DF SS MS F-value Prob. >F
Replication 4 0.5815 0.1454 0.39 0.8142
Treatment 5 2.7135 0.5427 1.45 0.2496
Error 20 7.4799 0.3740
Total 29 10.7750

R-Square CV RMSE Yld Mean
0.3058 82.345 0.6115 0.743

Shapiro Wilk test was applied to test the assumption of normality of data. The data was 
found to be non-normal (Prob. < W = 0.0009). Since the data is non-normal, therefore, Levene 
test is used for testing the homogeneity of error variances. The test resulted into homogeneous 
errors ( Prob. > F as 0.1160). Therefore, we can conclude that the data is homogeneous and non-
normal. As the data is homogeneous and non-normal, we can directly use the non-parametric 
test. But, here, we use the Box-Cox transformation to see its effect on normality. In the sequel, 
the results of the Box-Cox transformation are described.

The data was transformed by varying λ from – 10 to + 10 with an increment of 0.01.  The 
error sum of squares are computed for each value of λ. The value of λ with minimum error sum 
of squares is used for transformation given in (9.1). The minimum value SSE is for λ = –0.47. 
The data were transformed using λ = –0.47 in (9.1). 

The assumptions of normality and homogeneity of errors are again tested using the 
transformed data. The transformed observations were found to be normal using Shapiro Wilk 
test (Prob. < W as 0.7977) and homogeneous using Bartlett’s test (Prob. > Chi-square as 0.6793). 
Therefore, ANOVA was performed on the transformed data. The results obtained are given in 
Table 9.29:
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Table 9.29: ANOVA with transformed data

Source of Variation DF SS MS F-vlaue Prob. >F
Replication 4 0.2107 0.0527 0.48 0.7489
Treatment 5 1.5571 0.3114 2.85 0.0423
Error 20 2.1868 0.1093
Total 29 0.9545

R-Square CV RMSE Transformed Yld Mean
0.4470 24.8990 0.3307 1.328

We can see that treatment effects became significant at 5% level of significance where as 
the treatments were non-significant at 5% level of significance through the original data. CV% 
reduced about one third.

As the data in this experiment is non-normal and homogeneous. Therefore, one could 
have thought of applying the  Skillings and Mack non-parametric test for testing equality of 
treatments effects. The result obtained from this test is

   Degree of freedom 	 5

Statistic: 		  9.8000

Prob. >Chi-Square	 0.0810

In can be observed that the treatments remain non-significant at 5% level of significance, where 
as these were significant with the transformed data.

Example 9.10: [AFEIS Reference No. 1991(040)]. An experiment was conducted at 
Agricultural Research station, Bagalkot (Karnataka) in 1991 to study the effect of crop residue on 
the growth and yield of Rabi Sorghum. The design is adopted for this is Randomized Complete 
Block Design with 6 treatments in 4 replications. The net plot size used is 4.20 × 10.20 m2.  The 
treatment details are given below.

Treatment Treatment Details
1 Control
2 50 kg/ha N as Urea + 25 kg/ha of P2O5 as Super Phosphate (Recommended dose)
3 Subabul Stalks @ 5 Tons/ha 
4 Jowar Stubbles @ 5 Tons/ha  
5 Jowar Stubbles @ 2.5 Tons/ha + Subabul Stalks @ 2.5 Tons/ha
6 Jowar Stubbles @ 1.25 Tons/ha + Subabul Stalks @ 3.25 Tons/ha
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The experimental data (yield in kg/plot) is

Treatments 

→ Replications →
R1 R2 R3 R4

T1 8.90 9.30 9.20 9.10
T2 10.65 10.50 10.10 11.05
T3 10.60 11.25 10.25 11.50
T4 9.15 8.90 9.30 10.30
T5 13.00 9.91 10.14 8.85
T6 9.80 9.95 9.95 10.20

The results of the Analysis of Variance on the original data are given in Table 9.30.

Table 9.30: ANOVA with original data

Source of Variation DF SS MS F-value Prob. >F
Replication 3 0.9523 0.3174 0.42 0.7392
Treatment 5 9.7680 1.9536 2.60 0.0690
Error 15 11.2547 0.7503
Total 23 21.9751

R-Square CV RMSE Yld Mean
0.4878 8.5958 0.8662 10.077

Shapiro Wilk test was applied to test the assumption of normality of data. The data was 
found to be non-normal (Prob. < W = 0.0082). Since the data is non-normal, therefore, Levene 
test is used for testing the homogeneity of error variances. The test resulted into homogeneous 
errors ( Prob. >F as 0.0842). Therefore, we can conclude that the data is homogeneous and non-
normal. As the data is homogeneous and non-normal, we can directly use the non-parametric 
test. But, here, we use the Box-Cox transformation to see its effect on normality. In the sequel, 
the results of the Box-Cox transformation are described.

For this, the data was transformed by varying λ from -10 to +10 with an increment of 0.01.  
The error sum of squares are computed for each value of  λ. The value of λ with minimum 
error sum of squares is used for transformation given in (9.1). The minimum value SSE is for  
λ = – 4.03. Therefore data were transformed using λ = – 4.03.

The assumptions of normality and homogeneity of errors are again tested using the 
transformed data. The transformed observations were found to be non-normal using Shapiro 
Wilk test (Prob. < W as 0.0253) and homogeneous using Bartlett’s test (Prob. > Chi-square as 
0.1376). 

In this situation where data remains non-normal even after transformation, we cannot use 
usual analysis of variance for analysis of data. So, here, Skillings and Mack test (here Friedman) 
non-parametric test for testing equality of treatment effects was performed. The result obtained 
from this test is 
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Degree of freedom 	 5

Statistic: 		  12.8714

Prob. >Chi-Square	 0.0248

When original observations were analysed by using usual analysis of variance, it was found 
that the treatment and replication effect is non-significant. The treatment became significant at 
5% level of significance by using the Skillings and Mack non-parametric test.

The complete SAS code for testing the normality of errors, homogeneity of error variances, 
applying Box-Cox transformation, applying ANOVA on transformed data or using appropriate 
non-parametric test in analysis of data generated from RCB design is available at http://www.
iasri.res.in/design/Analysis%20of%20data/Diagnostics%20_Remedial_measures_sas.html. 
This may be appropriately modified in case of other designed experiments.
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APPENDIX – I

Kruskal-Wallis Test Statistic
Each table entry is the smallest of the Kruskal-Wallis T such that its right-tail probability is 

less than or equal to the value given on the top row for v = 3, each sample size less than or equal 
to five.

r1 r2 r3 0.100 0.050 0.020 0.010 0.001
2 2 2 4.571 - - - -
3 2 1 4.286 - - - -
3 2 2 4.500 4.714 - - -
3 3 1 4.571 5.143 - - -
3 3 2 4.556 5.361 6.250 - -
3 3 3 4.622 5.600 6.489 7.200 -
4 2 1 4.500 - - - -
4 2 2 4.458 5.333 6.000 - -
4 3 1 4.056 5.208 - - -
4 3 2 4.511 5.444 6.144 6.444 -
4 3 3 4.709 5.791 6.564 6.745 -
4 4 1 4.167 4.967 6.667 6.667 -
4 4 2 4.555 5.455 6.600 7.036 -
4 4 3 4.545 5.598 6.712 7.144 8.909
4 4 4 4.654 5.692 6.962 7.654 9.269
5 2 1 4.200 5.000 - - -
5 2 2 4.373 5.160 6.000 6.533 -
5 3 1 4.018 4.960 6.044 - -
5 3 2 4.651 5.250 6.124 6.909 -
5 3 3 4.533 5.648 6.533 7.079 8.727
5 4 1 3.987 4.985 6.431 6.955 -
5 4 2 4.541 5.273 6.505 7.205 8.591
5 4 3 4.549 5.656 6.676 7.445 8.795
5 4 4 4.668 5.657 6.953 7.760 9.168
5 5 1 4.109 5.127 6.145 7.309 -
5 5 2 4.623 5.338 6.446 7.338 8.938
5 5 3 4.545 5.705 6.866 7.578 9.284
5 5 4 4.523 5.666 7.000 7.823 9.606
5 5 5 4.560 5.780 7.220 8.000 9.920
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APPENDIX - II

Friedman Test Statistic Critical value for the Friedman two-way analysis 
of variance by rank statistics, T

 v          b    а ≤ 0.10                                     а ≤ 0.05                                   а ≤ 0.01
3              3
                4
                5
                6
                7
                8
                 9

                 10
                 11
                 12
                 13
                  

6.00                                          6.00                                            ---
  6.00                                          6.50                                             8.00
  5.20                                          6.40                                             8.40 
  5.33                                          7.00                                             9.00
  5.43                                          7.14                                             8.86
  5.25                                          6.25                                             9.00
  5.56                                          6.22                                             8.67
  5.00                                          6.20                                             9.60
  4.91                                          6.54                                             8.91
  5.71                                          6.17                                             8.67
  4.77                                          6.00                                             9.39
  4.61                                          5.99                                             9.21 

4            2
              3
             4
             5
             6
             7
             8 
             

6.00                                          6.00                                             ---
  6.60                                          7.40                                              8.60
  6.30                                          7.80                                              9.60
  6.36                                          7.80                                              9.96
  6.40                                          7.60                                             10.00
  6.26                                          7.80                                             10.37
  6.30                                          7.50                                             10.35
  6.25                                          7.82                                             11.34

5           3
              4
              5
             

  7.47                                          8.53                                             10.13
  7.60                                          8.80                                             11.00
  7.68                                          8.96                                             11.52
  7.78                                          9.49                                             13.28
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Outliers in Designed Experiments

10.1	 Introduction
Designing an experiment and the analysis of data generated form an integrated component 

of agricultural research. A properly designed experiment taking care of the variability in the 
experimental units, the subsequent analysis of data using appropriate methodologies satisfying 
all the assumptions and then drawing valid conclusions helps in improving the quality of 
agricultural research. Thus far the attention has been focused on the two components viz., 
proper designing of experiment and analysis of data using appropriate methodologies to 
answer the questions of the experimenter. However, in practice there is a tendency to ignore 
the assumptions of the analysis and go ahead with the statistical processing of data as if the 
assumptions were satisfied. The assumptions, however, get violated during experimentation and 
as such the statistical analysis that is carried out no longer remains valid.  At times, the inferences 
drawn are not the valid inferences. The different diagnostics procedures and remedial measures 
for validating the assumptions of ANOVA have been discussed in Chapter 9. 

Another assumption of ANOVA is that the data do not have any abnormally high or low 
observation(s), or outliers.  The purpose of this Chapter is to address this problem arising 
because of presence of outlier(s) in the data. 

 An outlier is an observation that lies at an abnormal distance from other values in a random 
sample from a population.  An observation that "lies outside" (is much smaller or larger than) 
most of the other observations in a set of data is called an outlier. However, occurrence of outliers 
is very common wherever data collection is involved. For instance, during the experimentation, 
there might be an infestation of a disease or insect attack on some plots in the field, or there 
may be unintentional heavy irrigation on some particular block(s) or plot(s) of the experiment, 
or at times there may be mistakes creeping in during recording of data, etc. These result in 
occurrence of outliers in experimental data. It is important to detect these outlying observations 
and apply appropriate remedial measures.  

Outliers in a set of data are defined to be sub-set of observations that appear to be inconsistent 
with the remainder set of data. Occurrence of outliers are very common in every field involving 
data collection and outliers arise from heavy tailed distributions or are simply bad data points 
due to error. When outliers are present in the data, the results obtained from the analysis of such 
data may lead to erroneous inferences. To be clearer, consider the following example.

Example 10.1: {Agricultural Field Experiments Information System (AFEIS) Reference 
No. 1985(015)}. An experiment in 6 treatments was conducted in a randomized complete block 
design in 5 replications at Agricultural Research station, Ponnempet (Karnataka) in 1985 to 

10
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study the nitrogen management for low land pest and disease endemic area of paddy crop [Net 
plot size used 5.00×3.00 m2]. The treatment details are

T1: Control

T2: Split application of prilled (ordinary) Urea (50% Basal dose, 25% at 4 weeks after planting 
and 25% at panicle initiation stage

T3: Neem Cake Coated Urea

T4: CT Coated Urea

T5: Rock Phosphate Coated Urea

T6: Urea Gypsum

Table 10.1 shows the data on yield in kilogram per plot for different treatments.

Table 10.1: Yield of paddy in kg/plot

Treatments Replications →

R1 R2 R3 R4 R5 

T1 1.00 1.37 0.73 0.53 2.85 

T2 0.25 0.35 0.20 0.31 0.53 

T3 0.73 0.62 0.76 0.24 0.38 

T4 0.49 0.31 0.49 2.56 0.60 

T5 0.80 0.8 0.52 0.95 0.37 

T6 0.78 1.35 0.32 0.51 0.58 

The analysis of the data is presented in Table 10.2 below. It is observed that the treatment 
effects are not significant at 5% level of significance.

Table 10.2: ANOVA with original data

Source of Variation DF SS MS F-value Prob. >F 

Replication 4 0.5815 0.1454 0.39 0.8142 

Treatment 5 2.7135 0.5427 1.45 0.2496 

Error 20 7.4799 0.3740 

Total 29 10.7750 

→
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It was then followed by residual analysis of this data. The studentized residuals may be obtained 
by using the following code:

DATA arsponem;
INPUT rep trt yield;
CARDS;
1	 1	 1.00
1	 2	 0.25
1	 3	 0.73
1	 4	 0.49
1	 5	 0.80
1	 6	 0.78
2	 1	 1.37
2	 2	 0.35
2	 3	 0.62
2	 4	 0.31
2	 5	 0.80
2	 6	 1.35
3	 1	 0.73
3	 2	 0.20
3	 3	 0.76
3	 4	 0.49
3	 5	 0.52
3	 6	 0.32
4	 1	 0.53
4	 2	 0.31
4	 3	 0.24
4	 4	 2.56
4	 5	 0.95
4	 6	 0.51
5	 1	 2.85
5	 2	 0.53
5	 3	 0.38
5	 4	 0.60
5	 5	 0.37
5	 6	 0.58
;
PROC glm;
CLASS rep trt;
MODEL yield = rep trt;
OUTPUT OUT=a STUDENT =s;
RUN;
PROC PRINT DATA=a;
RUN;
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Studentized residuals are presented in Table 10.3.

Table 10.3: Studentized residuals

Treatments 

→

Replications →

R1 R2 R3 R4 R5 

T1 -0.45728 0.03338 -0.65421 -1.74901 2.82712 

T2 -0.02069 -0.07076 0.22297 -0.25100 0.11949 

T3 0.50401 0.03338 0.90788 -0.82778 -0.61749 

T4 -0.66556 -1.27638 -0.32176 3.12952 -0.86583 

T5 0.35982 0.10948 0.14286 0.30975 -0.9219 

T6 0.27971 1.1709 -0.29773 -0.61149 -0.54139 

It is observed from the table that the observations pertaining to T1 in replication 5 and 
T4 in Replication 4 stand out because of their high value of studentized residuals. These two 
observations seem to be influential. The analysis is carried out again after removing these two 
observations. The results of this analysis are presented in the Table 10.4. The dramatic effect 
of removing these two observations is worth noticing. The treatment effects now become 
significant at 5% level of significance. Removal of any other observation or pair of observations 
does not affect the analysis. These two observations, therefore, definitely are influential.

Table 10.4: ANOVA after removing two observations

Source of Variation DF SS MS F-Value Prob > F 

Blocks (Adjusted) 4 0.4138 0.1035 1.63 0.2102 

Treatments (Adjusted) 5 0.9082 0.1820 2.86 0.0451

Error 18 1.1429 0.0635

Total 27 2.4813 

The present example clearly shows how the presence of outliers affects the analysis of the 
data and inferences drawn.

10.2	 What is an outlier?
Daniel (1960) defines an outlier as “an observation whose value is not in the pattern of 

values produced by the rest of the data”. A more comprehensive definition is due to Beckman 
and Cook (1983). They defined the following: Discordant observation is any observation that 
appears surprising or discrepant to the investigator. Contaminant observation is any observation 
that is not a realization from the target distribution. Outlier is a collective to refer to either a 
contaminant or discordant observation.

Influential cases: An outlier need not be influential in the sense that the result of an analysis 
may essentially remain unchanged when an outlying observation is removed. It is useful to 
regard an influential observation as a special type of outlier.
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Approaches to outliers are divided into two broad categories, viz. 

(i) To identify the outlier(s) for further study. This forms the detection part. 

(ii) To accommodate the possibility of outlier(s) by suitable modifications of the models and / or 
method of analysis. The robust methods of estimation or analysis, which were created to modify 
least squares procedure so that the outliers do not have much influence, fall under this category.  

10.3  Detection of outliers in designed experiments
Removal of the individual suspected case or group of suspected cases in turn may change 

the result of the analysis of the data. This is the idea behind the study of the influential cases 
in linear models. Using this idea many statistics have been developed for detecting outliers in 
linear regression model, viz., Cook-statistic given by Cook (1977, 1979), Qk-statistic given by 
Gentleman and Wilk (1975) and AP-statistic given by Andrews and Pregibon (1978). However, 
these statistics cannot be applied to designed experiments as such due to rank deficiency of its 
design matrix. Moreover, in design of experiments we are generally interested in estimation 
of some contrasts of parameters rather than the whole set of parameters. Keeping these in 
mind Bhar and Gupta (2001) modified these statistics for application in designed experiments. 
However, here we concentrate on only Cook-statistic.  

10.3.1  Cook statistic in designed experiments
Consider the mathematical model for a block design d (say)

 ,  	 (10.1)

where  is the observation recorded on the ith treatment in the jth  block,  ;   
;  is the general mean;  is the effect of ith treatment,  is the effect of jth block, 

and  are uncorrelated random error components assumed to be distributed normally with 
zero mean and constant variance    

Cook-statistic is based on the effect on the parameter estimates after removing the suspected 
outlier(s) from model (10.1). Since in designed experiments, we are interested in estimation of 
treatment effects or some suitable functions of treatments, Bhar and Gupta (2001) developed 
Cook statistic for detecting outliers in data obtained from a block design. We assume that the 
design d considered here is connected, i.e., all (v – 1) orthonomalized contrasts for the parameters 
of interest, i.e.,  are estimable. Let  be a vector of all v treatment effects and  be the set of all  
(v – 1) orthonormalized contrasts for the parameters  with best linear unbiased estimate as . 
Then Cook-statistic is defined as:

Definition 10.1: Cook-statistic for the set of contrasts  is given by

 = 

where  is the estimate of functions of treatment effects  obtained after removing the k 
suspected outliers.
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The statistic  provides a measure of the distance between  and  in terms of 
descriptive levels of significance, because  is actually 100( ) % confidence ellipsoid for the 
vector  under normal theory, which satisfies   .

Suppose, for example, . Then the removal of the k data points moves the 
least squares estimate to the edge of the 50% confidence region for  based on . Such a 
situation may be a cause for concern. For any analysis one would like each  to stay well 
within 10%, say, confidence region (See Cook, 1977). Cook has also shown that this statistic can 
be used to assess the degree of influence for a subset of parameters as well as can be extended 
for more than one outlier. Thus, one can test the significance of an outlier by F-test because  
is approximately distributed as F distribution with k and n – k degrees of freedom.

Another approach for testing an outlier is due to Tukey (1977). The Cook-statistic here 
is obtained for a particular set of k outlying observations. In practice, we have to apply this 
statistic for all possible set of k outlying observations. Internal scaling defines extreme values 
of a diagnostic measure (Cook-statistic here) relative to the “weight of the evidence” provided 
by the given diagnostic series itself. The calculation of each Cook-statistic results in a series of 
values  (k =1, 2, 3…). Following Tukey (1977), we compute inter-quartile range  for this 
series and indicate as extreme values that exceeds .  This limit can be viewed as convenient 
point of departure in the absence of a more exact distribution theory.

Example 10.2: {AFEIS Reference No. 1989(451)}An experiment with twelve manurial 
treatments was conducted at Punjab Rao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra 
in 1989 in a randomized complete block (RCB) design with three replications to study 
the effect of micnelf and other micro nutrients on the yield of groundnut  crop [net plot  
size: 1.80m × 4.20m]. The treatment details are

T1 =  Control

T2 =  One spray of micnelf + magsulf at 20 days after sowing (DAS)

T3 =  Two spray of micnelf + magsulf at 20 DAS and 40 DAS

T4 =  Three spray of micnelf + magsulf at 20 DAS, 40 DAS and 55 DAS

T5 =  One spray of micnelf + murate of potash at 55 DAS

T6 =  Three spray of micnelf  at 20 DAS, 40 DAS and 55 DAS

T7 =  Two spray of borax at 40 DAS and 55 DAS

T8 =  Three spray of urea+ dap at 20 DAS, 40 DAS and 55 DAS

T9 =  Two spray of 0.5 ml/lit nutron  at 20 DAS and 40 DAS

T10 = Two spray of 1.0 ml/lit nutron  at 20 DAS and 40 DAS

T11 = Three spray of ferrous sulphate

T12 =  Water spray 

Table 10.5 shows the data on yield per plot in kilogram for different treatments.
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Table 10.5: Yield of groundnut in kg/plot

Replications Treatments

1 2 3 4 5 6 7 8 9 10 11 12

1 0.55 0.72 0.62 0.67 0.59 0.65 0.75 0.95 0.57 0.61 0.57 0.62

2 0.54 0.62 0.53 0.57 0.58 0.49 0.61 0.51 0.53 0.58 0.52 0.56

3 0.50 0.60 0.57 0.54 0.48 0.47 0.71 0.51 0.48 0.60 0.53 0.54

The ANOVA is obtained through SAS. The codes are given in Chapter 2 for analysis of a 
randomized complete block design.

Table 10.6: ANOVA with original data

Source DF SS MS F Value Prob > F

Replication 2 0.09223889 0.04611944 9.53 0.0010

Treatment 
(adjusted)

11 0.09735556 0.00885051 1.83 0.1100

Error 22 0.10649444 0.00484066

Total 35 0.29608889

Analysis of this data is presented in Table 10.6. It is observed that the treatment effects are 
not significantly different at 5% level of significance. Cook-statistic was computed for each of 
the observations. For calculating the Cook-statistic, the following programme is written. This 
programme was run in SAS.

DATA test;
INPUT trt rep yield;
CARDS;
1	 1		  0.55
2	 1		  0.72
3	 1		  0.62
4	 1		  0.67
5	 1		  0.59
6	 1		  0.65
7	 1		  0.75
8	 1		  0.95
9	 1		  0.57
10	 1		  0.61
11	 1		  0.57
12	 1		  0.62
1	 2		  0.54
2	 2		  0.62
3	 2		  0.53
4	 2		  0.57
5	 2		  0.58
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6	 2		  0.49
7	 2		  0.61
8	 2		  0.51
9	 2		  0.53
10	 2		  0.58
11	 2		  0.52
12	 2		  0.56
1	 3		  0.50
2	 3		  0.60
3	 3		  0.57
4	 3		  0.54
5	 3		  0.48
6	 3		  0.47
7	 3		  0.71
8	 3		  0.51
9	 3		  0.48
10	 3		  0.60
11	 3		  0.53
12	 3		  0.54
;
PROC iml   ;
USE outlier ;
READ ALL  var{rep trt yield} INTO x  ;
y =x[,3];
trt=x[,2];
d1=design(trt);
rep=x[,1];
d3=design(rep);
b1=max(rep);
v1=max(trt);
n=b1*v1;
o=j(n,1,1);
d2=o||d3;
b=i(n)-d2*ginv(t(d2)*d2)*t(d2);
c=t(d1)*b*d1;
p=i(n);
x1=o||d1||d3;
v=p-x1*ginv(t(x1)*x1)*t(x1);
 sigma=(t(y)*v*y)/(n-b1-v1+1);
ddd=b*d1*ginv(c)*t(d1)*b;
dd=diag(ddd);
ddv=diag(v);
w1=(t(y)*v);
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w2=diag(w1);
w3=w2*inv(ddv)*dd*inv(ddv)*w2;
ww=(w3)*o;
cook=ww/((v1-1)*sigma);
PRINT y trt rep cook;
RUN;

This programme can be used for detecting a single outlier in any block design. Only data set 
has to be changed. Other things remain unchanged. 

The values of Cook-statistic for each of the observations are presented in Table 10.7. It is 
observed from the Table that the observation at serial number 8 stands out. Comparing the 
statistic with the table value of F(11, 22)(0.90) is 0.472245, it was found that this observation is an 
outlier. 

Table 10.7: Cook-statistics

Sl. No. Replication Treatment Cook-statistics Sl. No. Replication Treatment Cook-statistics

1 1 1 0.0405781 19 2 7 0.036726

2 1 2 0.0000581 20 2 8 0.2051798

3 1 3 0.0093913 21 2 9 0.0182302

4 1 4 0.000428 22 2 10 0.0032059

5 1 5 0.0151393 23 2 11 0.001897

6 1 6 0.0270335 24 2 12 0.0048563

7 1 7 0.001993 25 3 1 0.0016231

8 1 8 0.7569051 26 3 2 0.0006272

9 1 9 0.0120946 27 3 3 0.0209725

10 1 10 0.0517893 28 3 4 0.002619

11 1 11 0.0263221 29 3 5 0.0135742

12 1 12 0.0093913 30 3 6 0.0107003

13 2 1 0.02597 31 3 7 0.05583

14 2 2 0.0003035 32 3 8 0.1739184

15 2 3 0.0022954 33 3 9 0.0006272

16 2 4 0.0009295 34 3 10 0.0292245

17 2 5 0.0573843 35 3 11 0.0140864

18 2 6 0.0037181 36 3 12 0.000741 

Remark 10.1: For block designs with block size two, Cook-statistic cannot be applied to 
detect the outlying observations. Similarly, the AP- and Qk- statistic also fail to detect an outlier 
in block designs with block size two. The reason is not far to see. The residuals in a block design 
with blocks of size 2 will have the same magnitude but would be opposite in sign (because the 
sum of residuals in a block is zero). As a consequence the Cook statistic for the two observations 
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in the same block would be the same.  Therefore, some efforts are required for development of 
the procedure of detection of a single outlier in the experimental data generated from block 
designs with block size two.

Remark 10.2: Cook-statistic has also been applied to many real data sets taken from 
“Agricultural Field Experiments Information System (AFEIS)”, IASRI, New Delhi. The 
experimental data from these experiments were investigated for the presence of any kind of 
problems like non-normality or heterogeneity of error variance under a project entitled ‘A 
diagnostic survey of field experiments’ conducted at IASRI. For more details, one may refer 
to Parsad et al. (2004). Based on the normality and homogeneity of errors, these data were 
grouped into the following groups:

(i)	 Experiments having non-normal and heterogeneous error variance

(ii)	 Experiments having non-normal and homogeneous error variance

(iii)	Experiments having normal and heterogeneous error variance

(iv)	Experiments having normal and homogeneous error variance

Experiments from the first three groups have some problems. One of the reasons of such   
problems might be presence of outlier(s). We, therefore, took these experiments for applying 
the test statistic for detection of outlier(s). It was found that several of these experiments contain 
outliers.  

10.4	 Multiple outliers
In the case of multiple outliers, the well known problem of ‘masking’ hinders the 

identification problem. In masking, effect of one outlier is masked by the presence of another 
outlier; hence an observation cannot be detected as outlier if we apply single outlier detection 
procedure. Much attention was paid to this problem in linear regression model. A number 
of methodologies are now being emerged to handle such problems. Recently, Pena and Yohai 
(1995) proposed a new method to identify influential subsets in linear regression in presence 
of masking. As mentioned earlier, linear regression diagnostics cannot be applied directly to 
the case of designed experiments. Modification is required for the method to be applied in 
designed experiments. The modified method is based on influence matrix which is defined as 
the matrix of uncentred covariances of the effect on the whole data set deleting each observation. 
In the new statistic developed, influence matrix is defined on the basis of the vector of Cook 
statistic for all observations. In case of design of experiments, Cook statistic is developed using 
treatment contrast of interest. Therefore, defining influence matrix using Cook statistic is quite 
appropriate. The rest of the procedure is based on the “Eigen-structure” of the Influence matrix. 
The developed statistic was applied to experimental data from AFEIS. It was found in some 
experiments that individually some observations were not influential, but jointly with some 
other observations they become influential, i.e., some observations were masked by some 
other outlying observations and, therefore, were not detected when we apply single diagnostic 
procedure. The following example will clarify this point further.



271

Outliers in Designed Experiments

Example 10.3: {AFEIS: Reference Number 1988(251)} An experiment with 10 treatments 
was carried out in the randomized block design with 4 replications at Sugarcane Research 
Institute, Shahjahanapur, Uttar Pradesh in 1988 with a view to find out the suitable herbicide 
to control weeds in Sugarcane (Net plot size: 8.00m × 5.40m.). The treatments (Weedicidal and 
Cultural) of the experiments are:

T0 = Control weeded check

T1 = Local conventional method

T2 = Trash mulching

T3 = 1.0 kg ai/ha of 2,4-D sodium salt and 0.50 kg a.i./ha of gramoxone at 3 weeks  of 

      	planting followed by application of the same at 6-8 weeks of planting.

T4 = 2.0 kg ai/ha of Atrazine as Pre-emergence spray

T5 = 1.00 kg ai/ha of 2,4-D sodium salt at 8-10 weeks after planting

T6 = 2.0 kg ai/ha of 2,4-D (Amine) as Pre-emergence spray followed by spray of the same at 

      	8-10 weeks after planting.

T7 = 2.0 kg ai/ha of Atrazine as Pre-emergence spray followed by spray of glyphosate at 1.0 

      	kg ai/ha at 6-8 weeks after planting.

T8 = 1.00 kg ai/ha of arochlor and 1.00 kg ai/ha of atrazine as pre-emergence spray

T9 = 2.00 kg ai/ha of arochlor as pre-emergence spray

Table 10.8 shows the data on yield per plot in kilogram in different treatments.

Table 10.8: Yield of sugarcane in kg/plot

Replications
Treatments

1 2 3 4 5 6 7 8 9 10

1 2.52 2.82 2.42 2.67 2.50 3.01 2.65 2.62 2.18 2.57

2 2.77 2.77 2.52 3.69 3.21 3.05 2.64 2.53 2.47 2.82

3 2.32 2.38 2.44 2.30 1.90 2.46 2.35 2.47 2.15 2.26

4 2.31 2.14 2.38 2.13 2.51 2.79 2.21 2.52 2.66 2.35

Analysis of this data is presented in Table 10.9. It was observed that the treatment effects 
were not significant at 5% level of significance.
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Table 10.9: ANOVA (with original data)

Source DF SS M S F Value Prob > F

Replication 3 1.73105000      0.57701667       8.64    0.0003

Treatment 9 0.63781000      0.07086778       1.06    0.4206

Error 27 1.80225000      0.06675000

Total 39 4.17111000

Then the Cook statistic was computed for every observation. Cook statistics are presented 
in Table 10.10. It is observed from the Table that the observation number 14 stands out. It 
was tested with F value and found that this observation is statistically influential. No other 
observation is found to be influential.

 Table 10.10: Cook-statistic values

Sl. No. Replication Treatment Cook-statistic Sl. No. Replication Treatment Cook-statistic

1 1 1 0.0003126 21 3 1 0.0044407

2 1 2 0.0446265   22 3 2 0.0060796

3 1 3 0.0051954 23 3 3 0.0448183

4 1 4 0.0062219 24 3 4 0.022109

5 1 5 0.0065846 25 3 5 0.1292313

6 1 6 0.0124363 26 3 6 0.0147602

7 1 7 0.0134679 27 3 7 0.0120352

8 1 8 0.0005345 28 3 8 0.0233389

9 1 9 0.0491404 29 3 9 0.0002813

10 1 10 0.0000906 30 3 10 0.0000347

11 2 1 0.0003455 31 4 1 0.0009225

12 2 2 0.003801 32 4 2 0.0517879

13 2 3 0.043674 33 4 3 0.0048107

14 2 4 0.3823402 34 4 4 0.1526988

15 2 5 0.1122303 35 4 5 0.0111566

16 2 6 0.0063657 36 4 6 0.0080566

17 2 7 0.0145407 37 4 7 0.0110611

18 2 8 0.0818239 38 4 8 0.0121348

19 2 9 0.034714 39 4 9 0.1530533

20 2 10 0.0000742 40 4 10 0.0001498

The new statistic is then applied to identify the group of observations that are influential. It 
was found that observation numbers 14 and 39 are likely to be influential jointly. Cook statistic 
is applied for multiple outlier detection and it was found that these two observations are really 
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influential (Value of Cook-statistic is 0.4521055). The interesting point to note here is that 
though the observation number 14 was detected as outlier yet observation number 39 was not. 
It's effect was masked by the observation number 14. It is an interesting example of masking.

The data was reanalyzed after deleting these two observations. The result is presented in 
table 10.11. The dramatic effect to note here is that the treatment effects are now significant at 
5% level of significance. Removal of any other pair of observations does not have any effect on 
the analysis.

Table 10.11: ANOVA (with 2 data points deleted)

Source DF SS MS F Value Prob > F

Replication 3 1.20704269      0.40234756      11.58    <0.0001

Treatment 9 0.70698849      0.07855428       2.26    0.0519

Error 25 0.86835040 0.03473402

Total 37 2.78238158

10.5	 Remedial measures
What to do with the outlier is the next question that needs to be answered once an outlier 

has been detected. The outlier can be deleted if it does not affect the connectedness property of 
the design, i.e., if it does not affect the estimation of all the elementary treatment contrasts. On 
the other hand, if there are too many outliers and removal of these observations affects severely 
the design properties, one may adopt a robust method of analysis. In robust method of analysis, 
analytical procedure is modified in such a way that the effect of outliers is minimized on the 
final results of the analysis. Here, we show both types of remedial measures.

10.5.1  Removal of observations
It is well known that a randomized block design remains connected after losing one 

observation. In example 10.2, we detected a single observation as outlier. We, therefore, carry 
out the analysis of this experiment again after removing this observation. The data is now 
treated as non-orthogonal and analysis is carried out using PROC GLM in SAS. The results 
of this analysis are presented in Table 10.12. The dramatic effects of removing this observation 
are worth noticing. The treatment effects now become significantly different at 5% level of 
significance. Removal of any other observation does not affect the analysis.  

Table 10.12: ANOVA (after removing observation No. 8)

Source DF SS MS F Value Prob > F
Replication 2 0.04919076     0.02459538     19.95   <.0001

Treatment 11 0.08356098     0.00759645      6.16   0.0002

Error 21 0.02588826     0.00123277

Total 34 0.15864000
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10.5.2   Robust analysis
When the observations in the linear regression model are normally distributed, the method 

of least squares is a good parameter estimation procedure in the sense that it produces estimator 
of the parameters that has good statistical properties. However, there are many situations where 
we have evidence that the distribution of the response variable is considerable non-normal, and 
/ or there are outliers that affect the regression model.

To deal with such type of situations, robust regression is an alternative. A robust regression 
procedure is one that dampens the effect of observations that would be highly influential if 
least squares were used. That is, a robust procedure tends to leave the residuals associated with 
outliers large, thereby making the identification of influential points much easy. In addition 
to insensitivity to outliers, a robust estimation procedure should produce essentially the same 
results as least squares when the underlying distribution is normal and there are no outliers.  A 
widely used robust estimator is M-estimator. Another useful method is LMS estimator. These 
two methods in designed experiments are illustrated with some real experimental data sets.

10.5.3   M-estimator
The motivation for much of the work in robust estimation was due to Huber (1964). 

Subsequently, there are several type of robust estimators proposed. One of the most popular 
robust methods is M-estimation. In this method, the objective function to be minimized 
to get the parameter estimates is weighted according to the residual of each observation. 
Literature on robust regression particularly on M-estimation is now vast. A good number 
of objective functions to be minimized are proposed. Most of these functions are non-linear 
in nature and therefore, normal equations for solving the parameter estimates are also non-
linear in parameters. Iteratively Re-weighted Least Squares methods are employed to solve 
these equations. One example where Huber’s t-function has been applied to experimental data 
obtained from “Agricultural Field Experiments Information System (AFEIS)” is considered 
here. For illustration, consider the following example.

Example 10.4 {AFEIS Reference No. 1987(239)} An experiment with 6 treatments was 
carried out in the randomized complete block (RCB) design  with 4 replications at Mahatma 
Phule Agricultural University, Rahuri, Maharashtra in 1987 with a view to test the validity of 
fertilizer adjustment equation in Groundnut (Net plot size: 3.00m × 3.75m). The treatments of 
the experiments are as follows.

T0 = Control (No Fertilizer)

T1 =  25Kg/Ha N + 50Kg/Ha P2O5

T2 = As Per Soil Test (38Kg/Ha N + 50Kg/Ha P2O5)

T3 =  15 Qt/Ha Target (11Kg/Ha N + 16Kg/Ha K2O)

T4 =  20 Qt/Ha Target (32Kg/Ha N + 51Kg/Ha P2O5 +31Kg/Ha K2O)

T5 = 25 Qt/Ha Target (52Kg/Ha N + 10Kg/Ha P2O5 +56Kg/Ha K2O)

The data on yield per plot in quintals for different treatments is given in Table 10.13. 
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Table 10.13 Yield of sugarcane in kg/plot

Replication
Treatments

1 2 3 4 5 6

1 3.70 4.50 4.63 4.08 4.15 4.06

2 3.43 3.90 3.77 3.80 3.79 4.00

3 2.60 3.67 2.53 4.35 3.27 3.13

4 3.37 3.62 3.37 3.43 3.47 3.38

Analysis of this data is presented in Table 10.14. It is observed that the treatment effects 
are not significantly different at 5% level of significance. To begin with the Huber’s t-function 
is applied. M-estimation procedure is then applied to the data. The result is presented in Table 
10.15. The dramatic effect to note here is that the treatment effects are now significant at 5% 
level of significance.

Table 10.14:  ANOVA with original data

Source DF SS MS F Value Prob > F

Replication 3 3.01043333    1.00347778     7.62  0.0025

Treatment 5 1.15808333    0.23161667     1.76  0.1823

Error 15 1.97661667    0.13177444

Total 23 6.14513333

Table 10.15:  ANOVA (M-estimation)

 Source DF SS MS F Value Prob > F

Replication 3 3.0003420    1.0001473 10.51 .00056

Treatment 5 1.585680 0.31713 3.3339427 0.03187

Error 15 1.4268512 0.0951234

Total 23 4.37683636

The Cook-statistic is also applied to identify outlying observations, if any. It is found that 
observation numbers 15 and 16 are influential (Value of Cook-statistic is 0.5757).  

The data is reanalyzed after deleting these two observations. The results are presented in 
Table 10.16. Once again the dramatic effect to note is that the treatment effects are now significant 
at 5% level of significance. The result is similar to that obtained through M-estimation.

Table 10.16:  ANOVA (with 2 data points deleted)

Source DF SS MS F Value Prob > F

Replication 3 2.99734470    0.99911490    27.42 <.0001

Treatment 5 0.90585278    0.18117056     4.97 0.0092

Error 13 0.47363889    0.03643376

Total 21 4.37683636
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10.5.4   LMS-estimator
It is well known that least squares (LS) model can be distorted even by a single outlying 

observation. The fitted line or surface might be tipped so that it no longer passes through the 
bulk of the data. A complete name for the LS method would perhaps be least sum of squares, but 
apparently few people have objected to the deletion of the word “sum” – as if the only sensible 
thing to do with n positive numbers would be to add them. Perhaps as a consequence of its 
historical name, several people have tried to make this estimator robust by replacing the square 
by something else, not touching the summation sign (M-estimator belongs to this group). Why 
not, however, replace the sum by a median, which is very robust? This yields the least median of 
squares (LMS) estimator, given by 

		   	 (10.2) 

where  is the parameter vector and ri is the ith  residual. This estimator was proposed by 
Rousseeuw (1984). It turns out that this estimator is very robust with respect to outliers. 

Though LMS estimator has some good properties, yet this method did not get much 
popularity in designed experiments. LMS method gives parameter estimates based on clean 
observations only and thus, outliers or distributional extreme observations cannot create any 
problem in parameter estimation or rather they do not have any impact on parameter estimation. 
One of the possible reasons why LMS method is not being used in designed experiments 
might be its computational difficulties. There is no exact formula for computing this estimator 
explicitly in linear regression models. Rousseeuw (1984) provided an algorithm for computing 
this estimator in linear regression models. As mentioned earlier, by this algorithm all possible 
subsets of size p, where p is the number of parameters in the model, are fitted separately. Residuals 
from each of these fitted models are calculated. The median of the squared residuals for each 
set is calculated. The subset that gives minimum median is chosen as the final set and analysis 
is carried out on this subset. Application of this algorithm to designed experiments possesses 
some problems. The main problem is the problem of connectedness of the design. If we choose 
the size of subset as p, the design may become disconnected for some subsets or all subsets. 
Connectedness property is a very important property for designed experiments. Secondly, in 
case of design of experiments, we are mainly interested in estimation of some functions of 
treatment effects. This will also be severely affected if we choose a very small subset of data for 
estimating the treatment effects. Combating all these problems, we propose an appropriate LMS 
procedure for application to designed experiments.

As mentioned earlier, since the connectedness is the main problem in designed experiments, 
LMS method as such cannot be applied. Therefore, this is appropriately modified and then 
applied to experimental data taken from AFEIS. The LMS method is primarily designed to 
tackle the problem of outliers. In case of designed experiments, generally one or two outlying 
observations are present in a particular data set. We, therefore, proposed LMS method in the 
following manner:
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i)	 Consider the size of the subset as n – 1 or n – 2. Here, we assume that the design remains 
connected after losing one or two observations.

ii)	 Obtain least squares residuals for each subset. There will be in total  or  subsets of 
data.

iii)	 Square the residuals and obtain the median for each subset.

iv)	 Retain that subset which yields minimum median among all subsets.

v)	 Carry out usual analysis on the chosen subset

It is well known that all randomized complete block designs are robust against the loss of 
any two observations, i.e., these designs remain connected even after losing two observations. 
Therefore, there is no problem to apply LMS technique to RCB design, by taking the size of the 
subset as n – 2. There are also many block designs that are robust against the loss of one or two 
observations. However, this size of subset can be increased for those designs that are robust 
against the loss of more than two observations. We illustrate this method with the following 
example.

Example 10.5: {AFEIS Reference No. 1993(049)} An experiment with 10 weeding 
treatments was carried out in randomized complete block design with 3 replications at G.K.V.K., 
Bangalore, Karnataka with a view to study the integrated weed management in cowpea (Net 
plot size: 3.60m × 2.80m). The treatments of the experiment are as follows:

T0 = Weedy check

T1 = Weed free

T2 = Sowing at 30 cm row spacing

T3 = 0.75

T4 = 1.00

T5 = 1.25 Kg a.i/ha of pendimethalin

T6 = Hand weeding at 3 weeks after sowing (w.a.s.)

T7 = Interculturing at 3 w.a.s

T8 = T3+ Hand weeding at 3 w.a.s

T9 = T3+ Interculturing at 3 w.a.s

The data on grain yield per plot in quintals for different treatments is given in Table 10.17.
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Table 10.17:  Yield of cowpea in quintal/plot

 Treatments Replication
1 2 3

1 0.36 0.68 1.52
2 1.35 1.50 1.35
3 1.15 1.31 0.48
4 0.97 1.10 0.59
5 1.15 1.40 1.05
6 0.75 1.25 0.80
7 0.88 1.30 0.67
8 0.80 1.15 0.6
9 1.10 1.45 1.41

10 0.95 1.72 0.98

The usual analysis of the data is first carried out. The analysis of variance table is given in 
Table 10.18. From the table it is observed that the treatment effects are not significant at 5% level 
of significance, whereas block effects are significant at 5% level of significance.

Table 10.18:  ANOVA with the original data

Source of variation DF SS MS F Prob > F

Treatment 9 1.136 0.126 1.50 0.223

Block 2 0.772 0.386 4.58 0.024

Error 18 1.5195 0.084

Total 29 3.428

The LMS technique is then applied to this data set. Size of the subset is chosen as n – 1. The 
analysis of variance is done on the chosen subset. The result is presented in Table 10.19.

Table 10.19:  ANOVA through LMS

Source DF SS MS F Pr.>F

Treatment 9 1.784 0.198 6.690 0.0004

Block 2 0.920 0.460 15.529 0.0001

Error 17 0.503 0.029

Total 28   3.208

It is observed from the table that the treatment effects are now significantly different 
and block effects have now become highly significant. The Cook statistic is then applied to 
check whether any outlier is present or not. It is found that this data set contains one outlier. 
Incidentally in the chosen subset, this outlying observation was deleted.

As the analysis is quite involved and requires long SAS / R Codes, these codes are not 
presented here. However, the interested reader may get in touch with authors to  know more 
about these codes. For more details on outliers in designed experiments, one may refer to Bhar 
et al. (2008).
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11.1	 Introduction
The focus of discussion so far has been on experiments where only one response variable 

from one experimental unit is recorded for observations. But there do occur many experimental 
situations where more than one response variable is recorded for observations from each 
experimental unit. Industrial experiments are generally designed to record observations on 
more than one response variable. Similarly, agricultural research more often than not involves 
design of experiments where observations on more than one response variable are recorded. 
Even when more than one response variable is recorded for observations, every response 
variable is analyzed individually assuming that all the response variables are independent. 
Another very common approach adopted for analysis of data from several response variables 
is that many response variables are converted into a single response variable by taking some 
suitable function of all the response variables, thus converting multi-response (multivariate) 
experiment to a single response (univariate) experiment. If all the response variables are 
measured in terms of yield, then one possible function could be the monetary value of the total 
produce from the entire response variables. Other function could be the total calorie value of the 
produce. Yet another function could be the energy value of the total produce, the energy value 
being computed through calorie value. Once some index or a function of the entire response 
variables is developed, the data are analyzed in the usual way for a single response variable. All 
the inferences made are then applicable to the new response variable generated as a function of 
the original response variables.

Consider an agricultural experiment where the two response variables recorded for 
observations are the grain yield and the straw yield. The other response variables on which the 
data are generally recorded are the plant height, number of green leaves, germination count, 
etc. Generally, the analysis is carried out only on the grain yield in conformity with the design 
adopted. The best treatment is identified on the basis of grain yield alone. The straw yield is 
generally not taken into consideration during the analysis. However, although the grain yield 
is important for feeding the human population, the straw yield is also important either for the 
cattle feed or for mulching or manuring, etc. Therefore, while analyzing the data, the straw yield 
should also be taken into consideration. Similarly, in varietal trials, the data are collected on 
several plant characteristics and quality parameters. In these experimental situations the data 
is generally analyzed separately for each of the characters. The best treatment or genotype is 
identified separately for each of the characters. The problems starts when different treatments 
are identified for different response variables. 

11
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When several response variables are recorded and the data are analyzed separately for each 
response variable as if they are independent or if the data are analyzed by converting several 
response variables into a single response variable by a suitable function, then the advantage 
of correlations present among several response variables is lost. In order to derive advantage 
from the correlations among several response variables, it would be appropriate to analyze all 
the response variables simultaneously. Such experiments in which several response variables 
are recorded for observations and analyzed simultaneously are known as multi-response 
experiments. In these situations, multivariate analysis of variance (MANOVA) can be helpful 
and advantageous. A general procedure of performing MANOVA on the data generated from 
RCB design is described and then illustrated with the help of an example. The procedure of 
SAS used for MANOVA is exactly the same for any general block design and similarly can be 
extended to any experimental design setting.

11.2	 Multivariate analysis of variance
Consider an experiment conducted to compare v treatments using a randomized complete 

block (RCB) design with b blocks (or replications) and the observations (or data) are collected 
on p response variables. We shall assume throughout that observations on all the p variables 
are recorded on each experimental unit. In other words, there is neither any missing response 
on any of the p variables on any experimental unit nor all the p responses are missing on one 
or more experimental units. Let  denote the observed value of the kth response variable 
for the ith treatment in the jth block, . The total number of 
observations is actually vb, with each observation being a p-component vector corresponding 
to p response variables. But if one unrolls the p-variate observations, then the total number of 
observations would be vbp.  Alternatively, therefore, we can write the vb observation vectors as 

 , where   is a p-component vector of responses on all the p response variables pertaining to 
ith treatment in jth block.  In fact . For performing the MANOVA, 
the data from the experimental set up can be rearranged as in Table 11.1.	

Table 11.1: Data layout for MANOVA

Treatments Blocks

1 2 j b Treatment Mean 

1 y11 y12 y1j y1b  

2 y21 y22 y2j y2b

      

i yi1 yi2 yij yib

      

v yv1 yv2 yvj yvb  

Block Mean
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We shall let  denotes the mean of the ith treatment pertaining to the kth 

response variable and  denotes the mean of the jth block pertaining to the kth 

response variable. We shall also let  denote a p-component vector of 

ith treatment means,  and denote a p-component vector 

of jth block means, . The treatment mean and block mean vectors can alternatively 

be written as ;  , Further, let  denote the grand mean of the kth 

response variable,  denote the vector of overall 

means of the p response variables. The vector of overall means can alternatively be written as 

.

For the sake of completeness, the procedure of analysis is described in the sequel. The 
experimenters may like to skip this portion and proceed straight to Section 11.4. The observations 
can be represented by a two-way classified multivariate model Ω

 i = 1, 2, …, v; j = 1, 2, …, b

where yij are the p-variate vector of observed values from the experimental unit receiving the 
treatment i in block  j. This indicates that unlike in the univariate case where the experimenter 
observes only one response from the treatment i in block j, in multi-response experiment, 
the experimenter observes a vector of p components as a response from the treatment 
i in block j. Let µk denote the general mean corresponding to the kth response variable,  
and μ = be the  vector of general means. Similarly, let τik  denote the 
effect of the ith treatment corresponding to the kth response variable, and 
be the p-component vector of the ith treatment effect. Further, let βjk  denote the effect of the 
jth block corresponding to the kth response variable, and  be 
the p-component vector of jth block effect.  is a p-component 
random vector associated with yij  and assumed to be having a p-variate normal distribution 

. Here 0 is a vector of all zeros indicating that the mean of all the components of eij 
is zero.  It may be worthwhile mentioning here that the variance covariance matrix  has 
the elements as ,  and . We want to test the equality 
of treatment effects i.e.,   =  (say)  

, i.e.,  against the alternative  at least two of the treatment 
effects are unequal. Under the null hypothesis, the model reduces to  where 

and   .
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An outline of MANOVA Table for testing the equality of treatment effects and block effects 
is given in Table 11.2.

Table 11.2: MANOVA table

Source DF SSCPM (Sum of Squares and Cross Product Matrix)

Treatment v – 1 = h H =  

Block b – 1 = t B =  

Residual (v – 1)(b – 1) = s R =  

Total vb – 1 T = = H + B + R

Here H, B, R and T are the sum of squares and sum of cross products matrices of treatments, 
blocks, errors (residuals) and totals respectively. The residual sum of squares and cross products 
matrix for the reduced model  is denoted by  and is given by

We reject the null hypothesis of equality of treatment mean vectors if the ratio of generalized 

variance (Wilk's lambda statistic) is too small. Here  denotes the determinant of 

the matrix U. Assuming multivariate normal distribution, Rao (1973) showed that under null 
hypothesis  is distributed as the product of independent beta variables. A better but more 
complicated approximation of the distribution of  is 

	   ~ F (ph, ab – c)	

where  , ,   

For some particular values of h and p, it reduces to exact Snedecor’s F-distribution. The 
special cases are given below:

For h = 1 and any p, the distribution of   reduces to  

 	  ~ F (p, s – p + 1).	

For h = 2 and any p, the distribution of reduces to 

 	  ~ F{2p, 2(s – p + 1)}.	

For p = 2 and any h, the distribution of reduces to 

 	   ~ F (2h, 2(s – 1)).

For p = 1, the statistic reduces to the usual variance ratio statistics or usual Snedecor’s F.

The hypothesis regarding the equality of block effects can be tested by replacing by 
and h by t in what has been described above.
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Several other criteria viz. Pillai's Trace, Hotelling-Lawley Trace or Roy's Greatest Root are 
available in literature for testing the null hypothesis in MANOVA. Wilks' Lamda is, however, 
the commonly used criterion. In this Chapter, however, we shall restrict to the use of Wilks' 
Lamda criterion. For further details on MANOVA, a reference may be made to Seber (1983) 
and Johnson and Wichern (1988). Some more examples of MANOVA may be seen from Parsad 
et al. (2004).

Remark 11.1 One complication of multivariate analysis that does not arise in the univariate 
case is due to the ranks of the matrices. The rank of R should not be smaller than p or in other 
words error degrees of freedom s should be greater than or equal to p (s ≥ p).

11.3	 Multivariate treatment contrast analysis
If the treatments are found to be significantly different through MANOVA, then the next 

question is “which treatments are significantly different?” This question can be answered 
through multivariate treatment contrast analysis. In the literature, the multivariate treatment 
contrast analysis is generally carried out using the -statistic. The -statistic is based on the 
assumption that the error variance-covariance matrix is known. The error variance-covariance 
matrix is, however, generally unknown. Therefore, the estimated error variance-covariance 
matrix is used in place of variance-covariance matrix. The error variance-covariance matrix is 
estimated by sum of squares and cross products (SSCP) matrix for error divided by the error 
degrees of freedom. As a consequence, the test based on  -statistic is an approximate solution. 
A multivariate treatment contrast analysis using the Wilk’s Lambda criterion is described in 
the sequel. For the sake of completeness, the procedure based on -statistic is also described. 
Suppose we want to test H0:   against H1: . The above hypothesis can be rewritten as 

H0: =  = 0 against H1: =  ≠ 0, 	         			 

where = . Here denotes the effect of treatment 
i for the dependent variable k. The best linear unbiased estimate of is 

  

where is the mean of treatment i for variable k.

11.3.1   test
The test statistic based on  -statistic, requires covariance matrix of the contrast of interest. 

The covariance matrix, in case of a RCB design for elementary treatment contrasts is obtained 
by dividing the SSCP matrix for errors obtained in MANOVA by half of the product of error 
degrees of freedom and the number of replications. Let this variance-covariance matrix be 
denoted by . Under null hypothesis, xi =  follows p-variate normal distribution with 
mean vector 0 and variance-covariance matrix . Applying the Aitken's transformation, it 
can be shown that follows a p-variate normal distribution with mean vector 0 and 
variance-covariance matrix Ig, where Ig, denotes the identity matrix of order g. Then using the 
results of quadratic forms, it can easily be seen that   follows a distribution with 
 p degrees of freedom.
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11.3.2   Wilk’s Lambda criterion
For testing the null hypothesis H0: =  = 0 against H1: =  ≠ 0, we obtain a 

sum of squares and products matrix for the above elementary treatment contrast. Let the SSCP 
matrix for above elementary treatment contrast be .  The diagonal elements of G are then 
obtained by

	

and the off-diagonal elements are obtained by

	 .

We reject the null hypothesis if the value of Wilk's Lambda  is small, where R is 

the SSCP matrix due to residuals as obtained through MANOVA. The hypothesis is then tested 
using the following Snedecor’s F-test statistics based on Wilk's Lambda for h = 1

  ~F(p, s – p + 1)

where edf denote error degrees of freedom.

Remark 11.2 The above procedure is for the situations when the experiment is conducted 
using a RCB design. There, however, exist situations, where the use of RCB design may not 
be possible and one has to use incomplete block design. It seems that a stepwise procedure of 
analysis of multi-response data from incomplete block designs is not available. Keeping this 
in view, Nandi (2007) developed a stepwise procedure of the analysis of data generated from 
complete multi-response experiments conducted in block designs. The general procedure is 
beyond the scope of this book and the readers interested in detail may refer to Nandi (2007). 

11.4   Example
The purpose of this section is to give the results obtained from bivariate analysis of variance 

of the data generated from the experiments conducted under the aegis of Project Directorate 
of Cropping Systems Research (PDCSR) now known as of  Indian Institute of Farming Systems 
Research (IIFSR), Modipuram, where the data on grain yield and straw yield were observed in 
the multi-response experiment.

An experiment entitled Studies on the experimentation on conservation of organic carbon in 
the soil to improve soil condition was conducted at Bhubaneshwar on rice crop. The experiment 
was initiated in the year 1997. The data on grain and straw yield used for the illustration pertains 
to the Rabi season of 2000. Ten treatments were tried in the experiment. The details of the 
treatments are given below:

T1 - Recommended N 100%

T2 - Recommended N 100% out of which 10 Kg at first ploughing
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T3 - Recommended N 100% out of which 20 Kg at first ploughing

T4 - Recommended N 100% and add 10 Kg N/ha at first ploughing

T5 - Recommended N 100% and add 20 Kg N/ha at first ploughing

T6 - Recommended N + 10 Kg N/ha 

 T7 - Recommended N + 20 Kg N/ha

T8 - Recommended N + cellulose decomposing enzyme (FYM)

T9 - Recommended N + FYM 5 t/ha during Kharif

T10 - Recommended N + FYM 5 t/ha during Rabi.

The data in q/ha is given in Table 11.3.

Table 11.3: Grain and straw yield data

Treatment Grain Yield in q/ha Straw Yield in q/ha

Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4

1 36.10 26.60 32.20 23.85 40.40 30.00 36.25 26.75

2 32.00 44.20 33.20 37.70 37.10 51.25 38.50 43.70

3 32.00 40.00 47.15 41.90 45.50 47.25 56.00 49.00

4 46.80 38.25 44.65 52.60 55.25 45.00 52.50 62.10

5 49.50 41.75 53.55 51.85 59.25 50.25 64.25 62.20

6 49.75 53.50 49.40 58.50 60.30 64.70 59.75 70.75

7 57.25 57.00 44.00 53.75 69.75 70.00 53.50 65.50

8 59.50 52.00 47.00 57.50 69.00 60.75 54.50 61.00

9 51.60 57.25 50.25 51.75 61.40 68.10 59.75 59.50

10 62.50 59.00 43.00 45.75 74.50 70.10 51.25 51.25

Let us perform separate analysis for each of the two characters and multivariate analysis of 
variance taking both the characters into consideration simultaneously.

11.4.1   Analysis of Data
In what follows are given the SAS commands and the data structure for the analysis of 

bivariate data. 

DATA multi_response_experiment;
INPUT rep trt  gyld syld;
CARDS;
1	 1	 36.10	 40.4
1	 2	 32.00	 37.1
1	 3	 32.00	 45.5
1	 4	 46.80	 55.25
1	 5	 49.50	 59.25
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1	 6	 49.75	 60.30
1	 7	 57.25	 69.75
1	 8	 59.50	 69.00
1	 9	 51.60	 61.40
1	 10	 62.50	 74.50
2	 1	 26.60	 30.00
2	 2	 44.20	 51.25
2	 3	 40.00	 47.25
2	 4	 38.25	 45.00
2	 5	 41.75	 50.25
2	 6	 53.50	 64.70
2	 7	 57.00	 70.00
2	 8	 52.00	 60.75
2	 9	 57.25	 68.10
2	 10	 59.00	 70.10
3	 1	 32.20	 36.25
3	 2	 33.20	 38.50
3	 3	 47.15	 56.00
3	 4	 44.65	 52.50
3	 5	 53.55	 64.25
3	 6	 49.40	 59.75
3	 7	 44.00	 53.50
3	 8	 47.00	 54.50
3	 9	 50.25	 59.75
3	 10	 43.00	 51.25
4	 1	 23.85	 26.75
4	 2	 37.70	 43.70
4	 3	 41.90	 49.00
4	 4	 52.60	 62.10
4	 5	 51.85	 62.20
4	 6	 58.50	 70.75
4	 7	 53.75	 65.50
4	 8	 57.50	 61.00
4	 9	 51.75	 59.50
4	 10	 45.75	 51.25
;
PROC GLM data = multi_response_experiment;
CLASS rep trt;
MODEL gyld syld = rep trt / ss3; 
MEANS trt/LSD;
CONTRAST	 '1 vs 2'	    trt  1  -1  0  0  0  0  0  0  0  0;
CONTRAST	 '1 vs 3'	    trt  1  0  -1  0  0  0  0  0  0  0;
CONTRAST	 '1 vs 4'	    trt  1  0  0  -1  0  0  0  0  0  0;
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CONTRAST	 '1 vs 5'	    trt  1  0  0  0  -1  0  0  0  0  0;
CONTRAST	 '1 vs 6'	    trt  1  0  0  0  0  -1  0  0  0  0;
CONTRAST	 '1 vs 7'	    trt  1  0  0  0  0  0  -1  0  0  0;
CONTRAST	 '1 vs 8'	    trt  1  0  0  0  0  0  0  -1  0  0;
CONTRAST	 '1 vs 9'	    trt  1  0  0  0  0  0  0  0  -1  0;
CONTRAST	 '1 vs 10'    trt  1  0  0  0  0  0  0  0  0  -1 ;
CONTRAST	 '2 vs 3'	    trt  0  1 -1  0  0  0  0  0  0  0;
CONTRAST	 '2 vs 4'	    trt  0	 1  0  -1 0  0  0  0  0  0;
CONTRAST	 '2 vs 5'	    trt  0 1  0  0  -1  0  0  0  0  0;
CONTRAST	 '2 vs 6'	    trt  0 1  0  0  0  -1  0  0  0  0;
CONTRAST	 '2 vs 7'	    trt  0 1  0  0  0  0  -1  0  0  0;
CONTRAST	 '2 vs 8'	    trt  0 1  0  0  0  0  0  -1  0  0;
CONTRAST	 '2 vs 9'	    trt  0 1  0  0  0  0  0  0  -1  0;
CONTRAST	 '2 vs 10'    trt  0 1  0  0  0  0  0  0  -1 0;
CONTRAST	 '3 vs 4'	    trt  0  0  1 -1 0  0  0  0  0  0;
CONTRAST	 '3 vs 5'	    trt  0  0  1  0  -1 0  0  0  0  0;
CONTRAST	 '3 vs 6'	    trt  0  0  1  0  0  -1  0  0 0  0;
CONTRAST	 '3 vs 7'	    trt   0  0 1  0  0  0  -1  0  0  0;
CONTRAST	 '3 vs 8'	    trt   0  0  1  0  0  0  0  -1  0  0;
CONTRAST	 '3 vs 9'	    trt   0  0  1  0  0  0  0  0  -1  0;
CONTRAST	 '3 vs 10'    trt   0  0  1  0  0  0  0  0  0  -1;
CONTRAST	 '4 VS 5'    trt   0  0  0  1  -1  0  0  0  0 0;
CONTRAST	 '4 vs 6'	    trt   0  0  0  1  0  -1  0  0  0  0;
CONTRAST	 '4 vs 7'	    trt   0  0  0  1  0  0  -1  0  0  0;
CONTRAST	 '4 vs 8'	    trt   0  0  0  1  0  0  0  -1  0  0;
CONTRAST	 '4 vs 9'	    trt   0  0  0  1  0  0  0  0  -1 0;
CONTRAST	 '4 vs 10'    trt   0  0  0  1  0  0  0  0  0  -1;
CONTRAST	 '5 vs 6'	    trt   0  0  0  0  1  -1  0  0  0  0;
CONTRAST	 '5 vs 7'	    trt   0  0  0  0  1  0  -1  0  0  0;
CONTRAST	 '5 vs 8'	    trt   0  0  0  0  1  0  0  -1  0  0;
CONTRAST	 '5 vs 9'	    trt   0  0  0  0  1  0  0  0  -1  0;
CONTRAST	 '5 vs 10'    trt   0  0  0  0  1  0  0  0  0  -1;
CONTRAST	 '6 vs 7'	    trt   0  0  0  0  0  1  -1  0  0  0;
CONTRAST	 '6 vs 8'	    trt   0  0  0  0  0  1  0  -1  0  0;
CONTRAST	 '6 vs 9'	    trt   0  0  0  0  0  1  0  0  -1 0;
CONTRAST	 '6 vs 10'    trt   0  0  0  0  0  1  0  0  0  -1;
CONTRAST	 '7 vs 8'	    trt   0  0  0  0  0  0  1  -1  0  0;
CONTRAST	 '7 vs 9'	    trt   0  0  0  0  0  0  1  0  -1  0;
CONTRAST	 '7 vs 10'    trt   0  0  0  0  0  0  1  0  0  -1;
CONTRAST	 '8 vs 9'	    trt   0  0  0  0  0  0  0  1  -1  0;
CONTRAST	 '8 vs 10'   trt   0  0  0  0  0  0  0  1  0  -1;
CONTRAST	 '9 vs 10'   trt   0  0  0  0  0  0  0  0  1  -1;
MANOVA h = rep trt;
RUN;
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Remark 11.3 It may be worthwhile mentioning here that the MODEL Statement along 
with MANOVA statement will provide univariate as well as multivariate analysis. If univariate 
analysis is not required, then one may use option NOUNI in MODEL statement. For instance, 
in this example, the statements would be

MODEL gyld syld = rep trt / ss3;
MANOVA h = rep trt;
/*The two SAS commands provide univariate analysis and multivariate analysis, i.e., the two 
statements will provide the analysis for every individual response variable separately and also 
for all the response variables taken together*/
or
MODEL gyld syld = rep trt / ss3 NOUNI;
MANOVA h = rep trt;
/*The two SAS commands provide multivariate analysis only, i.e., the two statements will 
provide the analysis for all the response variables taken together. It will not provide the analysis 
for every individual response variable separately*/

The results obtained are given in Table 11.4. First the results for each of the two characters 
are presented separately.

Table 11.4: Univariate analysis output using SAS commands

ANOVA: Grain Yield (GYLD)

Source DF SS MS F-Value Prob > F

Model 12 2617.2218 218.1018 5.94 <.0001

Error 27 991.5130 36.7227

Corrected Total 39 3608.7348

R-Square CV Root MSE gyld Mean

0.725 12.990 6.060 46.653

Source DF SS MS F-Value Prob > F

Block 3 68.2782 22.7594 0.62 0.6083

Treatment 9 2548.9435 283.2159 7.71 <0.0001

Error 27 991.5130 36.7227

Corrected Total 39 3608.7348

ANOVA: Straw Yield (SYLD)

Source DF SS MS F-Value Prob > F

Model 12 4029.807 335.817 6.88 <0.0001

Error 27 1317.860 48.810

Corrected Total 39 5347.667
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R-Square Coeff Var Root MSE syld Mean
0.754 12.657 6.986 55.196

Source DF SS MS F- Value Prob > F

Block 3 111.048 37.016 0.76 0.5273

Treatment 9 3918.759 435.418 8.92 <0.0001

Error 27 1317.860 48.810

Corrected Total 39 5347.667

It can be seen that for both the attributes (grain yield and straw yield), the model with 
treatment and block effects has been able to explain about 73 and 75 per cent variability in the 
data, respectively. For both the attributes, the block (or replication) effects are not significantly 
different whereas the treatment effects are significantly different (p-value < 0.0001). Therefore, 
for making all the possible pair wise treatment comparisons, the least significant difference 
procedure of multiple comparisons was used. The results are given in Table 11.5.

Table 11.5: Multiple comparison of treatments using LSD

t Tests (LSD) for Grain yield

Alpha 0.05

Error Degrees of Freedom 27

Error Mean Square 36.7227

Critical Value of t 2.0518

Least Significant Difference 8.7921

Treatments with same alphabet are not significantly different

t Grouping Mean N Treatment

A 54.000 4 8

A 53.000 4 7

A 52.788 4 6

A 52.713 4 9

A 52.563 4 10

A 49.163 4 5

B A 45.575 4 4

B C 40.263 4 3

D C 36.775 4 2

D 29.688 4 1
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t Tests (LSD) for Straw yield

Alpha 0.05

Error Degrees of Freedom 27

Error Mean Square 48.8096

Critical Value of t 2.05183

Least Significant Difference 10.136

Treatments with same alphabet are not significantly different

t Grouping Mean N Treatment

A 54.000 4 8

A 53.000 4 7

A 52.788 4 6

A 52.713 4 9

A 52.563 4 10

A 49.163 4 5

B A 45.575 4 4

B C 40.263 4 3

D C 36.775 4 2

D 29.688 4 1

t Tests (LSD) for Straw yield

Alpha 0.05

Error Degrees of Freedom 27

Error Mean Square 48.8096

Critical Value of t 2.05183

Least Significant Difference 10.136

Treatments with same alphabet are not significantly different

t Grouping Mean N Treatment

A 64.688 4 7

A 63.875 4 6

B A 62.188 4 9

B A 61.775 4 10

B A 61.313 4 8

B A C 58.988 4 5

B C 53.713 4 4

D C 49.438 4 3

E D 42.638 4 2
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It can be concluded that the treatment T8 (recommended N + cellulose decomposing 
enzyme) is highest yielding for grain yield but the treatment T7 (recommended N + 20 kg /
ha) is the highest yielding for straw yield, although the two treatments are statistically at par 
with each other both for the grain yield and the straw yield. Treatment T1 (Recommended N) 
is the lowest yielding for grain yield but treatment T2 (Recommended N 100% out of which 
10 Kg at first ploughing) is the lowest yielding for straw yield. Similarly, treatments T5 and 
T3 are significantly different for grain yield but are not significantly different for straw yield. 
Similarly variations can be seen for other pairs of treatments. In this example, it is easier to infer 
as for both the response variables, best performing treatments are statistically at par. However, 
as mentioned earlier, this may not hold true in general and the best treatment for different 
response variables may be different. Therefore, to rank the treatments collectively for both the 
characters, the multivariate analysis of variance is to be carried out. The results obtained are 
given in Table 11.6.

Table 11.6: Multivariate analysis of variance of grain yield and straw yield data

H = Type III SSCP Matrix for treatment

Grain Yield Straw yield

Grain yield 2548.9435 3129.0410

Straw yield 3129.0410 3918.7588

E = Error SSCP Matrix

gyld syld

gyld 991.513 1115.0758

syld 1115.078 1317.8599

MANOVA test criteria and Snedecor's F approximations for the Hypothesis 
 of no overall treatment effect

Statistic Value F-Value Numerator DF Denominator DF Prob > F

Wilks' Lambda 0.1200 5.45 18 52 <0.0001

Pillai's Trace 1.2550 5.05 18 54 <0.0001

Hotelling-Lawley Trace 4.2100 5.91 18 39.714 <0.0001

Roy's Greatest Root 3.2475 9.74 9 27 <0.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound

NOTE: F Statistic for Wilks' Lambda is exact

From Table 11.6, it can be concluded that the treatment effects are significantly different 
(p-value <0.0001).

The null hypothesis about the equality of treatment effects has been tested. The null 
hypothesis has been rejected. The next question is to make pair wise treatment comparisons 
for ranking the treatments and selecting the best treatment in terms of both the grain yield and 
straw yield. It has been seen while analyzing each attribute separately that treatment T8 is best 
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for grain yield and treatment T7 is best for straw yield. But the next question is to make the pair 
wise treatment comparisons for ranking the treatments and picking up the best treatment by 
considering both the grain yield and the straw yield. This question can be answered  through 
multivariate contrast analysis. The results of multivariate treatment contrast analysis for making 
all possible pair wise comparisons of the treatments are given in Table 11.7.

Table 11.7: Probabilities of significance of all possible paired treatment  
comparisons using Wilks' Lambda criterion

Treatment 1 2 3 4 5 6

1 . 0.1525 0.0006 0.0010 <0.0001 <0.0001

2 0.1525 . 0.0388 0.0938 0.0055 0.0004

3 0.0006 0.0388 . 0.1673 0.1352 0.0270

4 0.0010 0.0938 0.1673 . 0.3945 0.0631

5 <0.0001 0.0055 0.1352 0.3945 .

6 <0.0001 0.0004 0.0270 0.0631 0.5497 .

7 <0.0001 0.0001 0.0194 0.3271 0.3271 0.8742

8 <0.0001 0.0020 0.0006 0.0531 0.0200 0.0058

9 <0.0001 0.0023 0.0181 0.2604 0.5636 0.3653

10 <0.0001 0.0030 0.0159 0.2904 0.4866 0.2667

Treatment 7 8 9 10

1 <0.0001 <0.0001 <0.0001 <0.0001

2 0.0001 0.0020 0.0023 0.0030

3 0.0194 0.0006 0.0181 0.0159

4 0.3271 0.0531 0.2604 0.2904

5 0.3271 0.0200 0.5636 0.4866

6 0.8742 0.0058 0.3653 0.2667

7 . 0.0017 0.1651 0.1113

8 0.0017 . 0.1264 0.1828

9 0.1651 0.1264 . 0.9755

10 0.1113 0.1828 0.9755 .

*bold face type shows the treatment pairs that are significantly different

From the above results we can see that treatments T7 and T8 are significantly different 
where as they were not found to be significantly different when analyzed for individual 
characters. The ranking of the treatments is not possible using the multi-characters. If the ranks 
of the treatments change with different attributes, then possibly biplot can help in identifying 
the subset of treatments which are good for a given subset of attributes. For this the matrix of 
means/adjusted means of treatment versus attributes may be used. This type of analysis has 
been done in Chapter 13.  
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The experimenters seldom use MANOVA and carry out the univariate contrast analysis 
on the combined average values of all the dependent variables. For this purpose, the data is 
converted into univariate by defining an index. The index may be net returns, total calories, total 
energy, etc. or some weighted average of all the response variables, the weights being the relative 
importance of the response variables, decided in consultation with the subject matter specialist. 
Sometimes, to avoid the bias due to subject matter experts, the first principal component score 
is taken as an index. The analysis obtained using principal component analysis is given below:

To account for the correlation structure between the two variables, the principal component 
analysis was carried out using the following code:

PROC PRINCOMP data=mult cov;
VAR gyld syld;
RUN;

The results obtained are summarized in Table 11.8.

Table 11.8: Eigen values and eigen vectors of the covariance matrixEigen values 

Eigenvalue Difference Proportion Cumulative

1 227.914864 226.178402 0.9924 0.9924

2 1.736462 0.0076 1.0000

Eigenvectors

Principal Component 1 Principal Component 2

Grain yield 0.633586 0.773672

Straw yield 0.773672 -.633586

It can be seen that the first principal component explains 99.24% of the variance. Therefore, 
the principal component scores of the observations for the first principal component are 
obtained and the univariate analysis of variance is carried out. The results obtained are shown 
in Table 11.9.

Table 11.9: ANOVA of first principal component scores

Source DF SS MS F-Value Prob > F

Model 12 6608.630 550.719 6.52 <0.0001

Error 27 2280.047 84.446

Corrected Total 39 8888.676

R-Square CV Root MSE Principal Component 1 Score Mean

0.744 12.717 9.1895 72.2622
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Source DF SS MS F-Value Prob > F

Block 3 172.124 57.375 0.68 0.5723

Treatment 9 6436.506 715.167 8.47 <0.0001

Error 27 2280.047 84.446

Corrected Total 39 8888.676

It can be seen that the treatment effects are highly significant (p-value <0.0001). Therefore, 
multiple comparisons using the least significant difference procedure was used.

Table 11.10: Multiple comparison of treatments using LSD 
t Tests (LSD) for prinscore1

Alpha 0.05

Error Degrees of Freedom 27

Error Mean Square 84.4462

Critical Value of t 2.0518

Least Significant Difference 13.333

Treatments with same alphabet are not significantly different

t Grouping Mean N Treatment

A 83.627 4 7

A 82.864 4 6

A 81.649 4 8

A 81.511 4 9

A 81.096 4 10

B A 76.786 4 5

B A 70.432 4 4

B C 63.758 4 3

D C 56.288 4 2

D 44.612 4 1

The treatment T7 (recommended N + 20 kg /ha) gets the first rank and is not significantly 
different from T8 (recommended N + cellulose decomposing enzyme). The treatments T4 and 
T2 are significantly different among themselves. This procedure answers the questions to some 
extent. But a multivariate contrast analysis is the best answer for this situation. 

11.4.2   Analysis using R
In the sequel is given the R code for multivariate analysis of variance.

d28=read.table("mult.txt",header=TRUE)
attach(d28)
names(d28)
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lm1=lm(gyld~factor(rep)+factor(trt),data=d28)
anova(lm1)
library(agricolae)
LSD.test(lm1,"factor(trt)",console=TRUE)
lm2=lm(syld~factor(rep)+factor(trt),data=d28)
anova(lm2)
LSD.test(lm2,"factor(trt)",console=TRUE)
#manova
lm3=manova(cbind(gyld,syld)~factor(rep)+factor(trt),data=d28)
#For pairwise comparison among treatments after manova, install RVAideMemoire
library(RVAideMemoire)
pairwise.manova(cbind(gyld,syld), factor(trt), p.method = "none")
#principal component analysis
pc.out=princomp(~gyld+syld,data=d28)
summary(pc.out)
pc.out$loadings
pc1=(d28$gyld)*pc.out$loadings[1]+(d28$syld)*pc.out$loadings[2]
lm4=lm(pc1~factor(rep)+factor(trt),data=d28)
anova(lm4)
LSD.test(lm4,"factor(trt)",console=TRUE)
detach(d28)

Remark 11.4 The MANOVA described in Sections 11.2 and 11.3 can be employed usefully 
in the experimental situations where the experiment is continued for several years / seasons 
with same treatments and same randomized layout. For a detailed discussion on this one may 
refer to Parsad et al. (2004).
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A Typical Experimental Situation

12.1 	 Introduction
It is a well-established fact that designing an experiment is an inevitable part of every research 

endeavor, particularly the agricultural research. In the National Agricultural Research and 
Education System, the scientists conduct a large number of experiments by using some design 
or the other. More often than not, these experiments are designed without the involvement of 
statisticians at the planning stage. The involvement of statistician(s) is required, if at all, during 
the analysis of data. This may often lead to difficulties in analyzing the data generated to answer 
the questions for which the experiment was designed. At that stage, a statistician at best would be 
able to do a post mortem study by doing some analysis that can closely answer the questions for 
the purpose of which the experiment was designed. The most common problems encountered 
in the designed experiments conducted by the experimenters without the involvement of 
statistician are (a) improper choice of treatments in the experiment, and (b) not properly 
accounting for the variability in the experimental material by way of local control (forming 
blocks or nested structures or more than one system of blocks, etc.) and / or if accounted for, not 
doing it properly and running the experiment using some convenient design. At times, there are 
problems of designing the experiment properly because of the practical difficulties. In this case, 
even the statistician would find it hard to suggest a proper design for experimentation and one 
may have to use a naïve design keeping in mind the practical considerations. 

The purpose of this Chapter is to highlight and illustrate through a typical example that 
running an experiment without the involvement of a statistician at the time of planning an 
experiment may lead to problems difficult to handle. 

In the sequel we describe a typical experimental setting.

12.2 	 An interesting experimental situation
We now illustrate through an Example the importance of the choice of treatments in an 

experiment.  Although this part of the book is restricted to single factor experiments, yet it 
would not be out of place to describe the importance of choice of treatments particularly with 
respect to factorial experiments run as a block design. In cropping systems research, a sequence 
of two crops is grown: one in kharif season followed by another in rabi season. More than two 
crops may also be grown in a crop sequence experiment, but we focus our attention to only 
two crops grown in the sequence. In these experiments, two different sets of treatments are 
applied in succession: one set applied in kharif crop and the other set applied in rabi crop. The 
observations are recorded in both the crop seasons. In two-crop sequence experiments, the 

12



298

Statistical Analysis of Agricultural Experiments

interest of the experimenter is in direct effects of treatments applied in kharif and rabi season 
and residual effects of kharif treatments. The interaction between the residual effect of kharif 
crop treatments and the direct effect of rabi crop treatments may or may not be of interest to the 
experimenter. These experiments may be run in a block design to account for the variability in 
the experimental material. 

Crop sequence experiments run in block designs can be viewed as block designs with 
factorial structure of treatments. For example if p treatments are applied in kharif crop and 
q treatments are applied in rabi crop, then a maximum of pq treatment combinations may 
appear and the treatment structure is factorial in nature. These experiments are classified into 
two broad categories. Category I experiments are those in which all the possible pq treatment 
combinations applied in both the crops are taken for experimentation; in other words, one has 
a complete factorial experiment run in a block design. In these experiments, the interaction 
between the residual effect of kharif crop treatments and the direct effect of rabi crop treatments 
are also of interest to the experimenter. Category II experiments are similar to the category I 
experiments with the difference that after the application of q treatments in the second crop, 
all the pq treatment combinations do not appear. In other words, it is a fractional factorial 
plan rather than a complete factorial experiment run in a block design. Further, the interaction 
between residual effect of kharif treatments and direct effect of rabi treatments is not of interest 
to the experimenter. We restrict here to category II experiments.

12.2.1   Category II experiments
Some experiments are conducted to develop suitable integrated nutrient supply system of a 

crop sequence or crop rotation. One set of treatments is applied to the kharif crop and another 
set of treatments is applied to the rabi crop. In these experiments, the treatment combinations 
are smaller than pq (fractional factorial) and the estimation of interactions between the residual 
effects of kharif treatments and the direct effects of rabi treatments is not of interest to the 
experimenter. Another experimental situation, in which the treatment combinations are smaller 
than pq is dryland farming where the kharif is generally left as fallow and experiments on crop 
rotations are conducted: one crop for the 1st year (rabi season) and another rabi crop for the 
second year. Due to fallow kharif season, it is expected that direct effect of treatments applied 
in second crop year do not interact with the residual effect of treatments applied in first year.

12.2.2   An example 
An experiment was conducted on oilseeds (safflower) with an objective to find out the 

better method of phosphorus (P) management in safflower based cropping system to increase 
P-use efficiency. This is a crop rotation experiment with one crop for each year in rabi season. 
The rotation is chickpea - safflower (Series-I) and safflower – chickpea (Series-II). Since it takes 
two years to complete one cycle, the experiment was conducted in two series so that at the 
end of two years, we have 2 cycles of data. RCB design was used with 12 treatments and 2 
replications (See Table 12.1). 
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Table 12.1: Treatment details for safflower-chickpea experiment

Treatment Chickpea (Safflower) Safflower (Chickpea)

1 No Phosphorus No Phosphorus

2 100% Recommended P 100% Recommended P

3 50% Recommended P 100% Recommended P

4 50% Recommended P 50% Recommended P

5 50% Recommended P+PSB 50% Recommended P+PSB

6 No Phosphorus 100% Recommended P

7 5 ton FYM/ha 100% Recommended P

8 PSB + 5 ton FYM/ha 100% Recommended P

9 100% Recommended P 50% Recommended P

10 100% Recommended P No Phosphorus

11 100% Recommended P 5 ton FYM/ha

12 100% Recommended P PSB + 5 ton FYM/ha

Note: PSB ~ Phosphate solubilizing bacteria; FYM ~ Farm Yard Manure

The data generated on the crop sequences is bivariate. The bivariate data is transformed into 
a univariate data by converting the returns into an economic index (gross returns, net returns), 
energy equivalent or protein equivalent, etc. Converted data is analyzed as per RCB design 
procedure. This will give the cumulative effect of the treatments applied in two seasons.

The experimenter, however, is interested to compare the direct effects of treatments applied 
to first and second crops, respectively and residual effect of the treatments applied to first crop 
using the data from second crop. This is not answered by converting the bivariate data into an 
economic index and analyzing it as RCB design.

From the structure of the treatment combinations in the sequence, it is seen that there are 
six distinct treatments applied in each of the two crops. But instead of 36 possible treatment 
combinations, only 12 distinct treatment combinations have been used in the crop sequence. 
It may be noted that a treatment combination is formed of the treatments applied to both the 
crops in the crop sequence. The 6 distinct treatments for individual crops are given in Table 
12.2.

Table 12.2: Treatment details

Phosphorus Distinct Treatments Replication in kharif crop Replication in rabi crop

No Phosphorus T1 2 2

50% Recommended P T2 2 2

100% Recommended P T3 5 5

50 % Recommended P+ PSB T4 1 1

5 ton FYM/ha T5 1 1

PSB + 5 ton FYM/ha T6 1 1
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For comparing the direct effects of treatments applied to chickpea, the data obtained for this 
crop may be analyzed by general block design ANOVA for 6 treatments run in 2 replications 
(blocks) of size 12 each such that the rij treatment is replicated rij times in the jth block, with rij 
as  given in the Table 12.2. 

To test the residual effects of phosphorus treatments of chickpea on safflower in Series-I and 
phosphorus treatments of safflower on chickpea in Series-II, and the direct effects of phosphorus 
treatments applied to safflower in Series-I and phosphorus treatments applied to chickpea in 
Series-II, a connection is developed between structurally complete/incomplete row-column 
designs (with single or multiple observations per cell) and designs with treatments applied in 
sequence. The treatments can be divided into two sets viz.,

First Set Second Set

Series-I Chickpea Safflower

Series-II Safflower Chickpea

Consider a row-column design with the replications of the original design as rows and the 
treatments applied to the chickpea crop (first set of treatments) as the columns. The cells of 
the array have the treatments applied to the safflower (second set of treatments). According to 
this structure, we get Table 12.3 from the Table 12.1 describing treatment combinations in the 
sequence.

Table 12.3: Treatment combinations

Series-I First Set →

1 2 3 4 5 6

Replication - I 1, 3 3, 2 3, 2, 1, 5, 6 4 3 3

Replication - II 1, 3 3, 2 3, 2, 1, 5, 6 4 3 3

Series-II Second Set →

1 2 3 4 5 6

Replication - I 1, 3 2, 3 3, 2, 1, 5, 6 4 3 3

Replication - II 1, 3 2, 3 3, 2, 1, 5, 6 4 3 3

The columns are the six distinct treatments in the first set (or first crop in the sequence). 
The numbers listed in the cells are the second set of treatments. The replication of treatment 
‘No Phosphorous’ in the first set is two. Treatment 1 of the first set appears with treatments ‘No 
Phosphorous’ and 100% ‘Recommended Phosphorous’ of the second set. These treatments are 
Treatments 1 and 3. So the first entry in first replication is 1, 3. The replication of treatment 3 
‘100% Recommended Phosphorous’ is five in the first set. Treatment 3 of the first set appears 
with treatments ‘No Phosphorous,’ ‘50% Recommended Phosphorous,’ ‘100% Recommended 
Phosphorous,’ ‘5 ton FYM/ha’ and ‘PSB + 5 ton FYM/ha’ of the second set. These treatments 
are Treatments 1, 2, 3, 5 and 6. So the third entry in first replication is 1, 2, 3, 5 and 6. Similarly 
all other entries are obtained. Since the replications 1 and 2 have the same 12 treatments, 
the entries for replication 1 and replication 2 are same. The direct effects of the phosphorous 
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treatments applied to the first crop are the effects of first set of treatments (6 distinct treatments 
with unequal replications of the first set of treatments) and are analyzed using the data from the 
first crop. Similarly, the direct effects of phosphorus treatments applied to second crop are the 
effects of second set of treatments (6 distinct treatments with unequal replications of the second 
set of treatments) and are analyzed using the data from the second crop. The residual effects of 
first set of treatments are on the second crop and are analyzed using the data from the second 
crop and using all the 12 treatment combinations.

The above hypothesis can be tested using the model:

Response = General Mean + Replication effect + effect of First Set of Treatments + effect of Second 
Set of Treatments + Error.

The coefficient matrix of reduced normal equations for first set of treatments (Cf) and the 
coefficient matrix of reduced normal equations for second set of treatments (CS) are obtained as:

It may be noted that the fourth row (or the fourth column) of the matrix Cf (CS) has all 
elements zero. This implies that the design adopted is disconnected in first set of treatments and 
also in second set of treatments. Treatment 4 (50% Recommended P + PSB) is disconnected 
with rest of the treatments. A similar phenomenon is observed for Series-II. Therefore, it 
is not possible to estimate all the possible pair wise comparisons of first set and second set 
of treatments. This implies that the treatment structure (the fractional factorial) chosen for 
experimentation is not proper. So for answering the questions for which the experiment was 
conducted, the choice of fraction is not proper. 

In the above set up of 12 treatment combinations, however, if the combination of 50% P + 
PSB and 50% P + PSB is removed from both the replications and instead 50% P + PSB and 5 
ton FYM/ha is given in replication I and 5 ton FYM/ha and 50% P + PSB is given in replication 
II, then the design becomes treatment connected and it would be possible to estimate all the 
effects. The new treatment combinations for the two replications are given in Table 12.4.
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Table 12.4: Treatment combinations

Replication I

Treatment Chickpea (Safflower) Safflower (Chickpea)

1 No Phosphorus No Phosphorus

2 100% Recommended P 100% Recommended P

3 50% Recommended P 100% Recommended P

4 50% Recommended P 50% Recommended P

5 50% Recommended P+PSB 5 ton FYM/ha

6 No Phosphorus 100% Recommended P

7 5 ton FYM/ha 100% Recommended P

8 PSB + 5 ton FYM/ha 100% Recommended P

9 100% Recommended P 50% Recommended P

10 100% Recommended P No Phosphorus

11 100% Recommended P 5 ton FYM/ha

12 100% Recommended P PSB + 5 ton FYM/ha

Replication II

Treatment Chickpea (Safflower) Safflower (Chickpea)

1 No Phosphorus No Phosphorus

2 100% Recommended P 100% Recommended P

3 50% Recommended P 100% Recommended P

4 50% Recommended P 50% Recommended P

5 5 ton FYM/ha 50% Recommended P+PSB

6 No Phosphorus 100% Recommended P

7 5 ton FYM/ha 100% Recommended P

8 PSB + 5 ton FYM/ha 100% Recommended P

9 100% Recommended P 50% Recommended P

10 100% Recommended P No Phosphorus

11 100% Recommended P 5 ton FYM/ha

12 100% Recommended P PSB + 5 ton FYM/ha

From the structure of the treatment combinations in the sequence, it is seen that in 
replication I, five distinct treatments are applied to the first crop and six distinct treatments to 
the second crop, while in replication II, six distinct treatments are applied to both the crops.  
But instead of 36 possible treatment combinations, only 13 distinct treatment combinations 
have been used in the crop sequence. The distinct treatments for individual crops are given in 
Table 12.5.
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Table 12.5: Treatment combinations for individual crops

Replication I

Phosphorus Distinct Treatments Replication in Kharif crop Replication in Rabi crop

No Phosphorus T1 2 2

50% Recommended P T2 2 2

100% Recommended P T3 5 5

50 % Recommended P+ PSB T4 1 1

5 ton FYM/ha T5 1 1

PSB + 5 ton FYM/ha T6 1 1

Replication II

Phosphorus Distinct Treatments Replication in Kharif crop Replication in Rabi crop

No Phosphorus T1 2 2

50% Recommended P T2 2 2

100% Recommended P T3 5 5

50 % Recommended P+ PSB T4 0 1

5 ton FYM/ha T5 2 1

PSB + 5 ton FYM/ha T6 1 1

It may be noted that now the new design in two replications is not in 12 but in 13 treatment 
combinations and is, therefore, not a RCBD but an incomplete block design. The total number 
of observations generated from the design, and, therefore, the total number of experimental 
units remains the same. For the resulting design, we get Table 12.6 from Table 12.1 of treatment 
combinations in the sequence.

Table 12.6: Treatment combinations

Series-I First Set

1 2 3 4 5 6

Replication - I 1, 3 3, 2 3, 2, 1, 5, 6 5 3 3

Replication - II 1, 3 3, 2 3, 2, 1, 5, 6 - 4, 3 3

Series II Second Set

1 2 3 4 5 6

Replication - I 1, 3 2, 3 3, 2, 1, 5, 6 - 4, 3 3

Replication - II 1, 3 2, 3 3, 2, 1, 5, 6 5 3 3

It can easily be seen that the design is connected for first set of treatments as well as for 
second set of treatments.

The alternative suggested ensures that the total number of observations (or the block 
sizes) of the original design does not change although the number of treatments (treatment 
combinations) have increased from 12 to 13. So recourse was made to an incomplete block 
design with block size 12 only.
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In practice, however, if one wishes to go for a complete block design in two replications and 
the experimenter has resources to get additional observations, then yet an alternative way of 
running the experiment so that design is connected, is the following: 

Add in both the blocks (or replications) the treatment combination 50% of Recommended 
phosphorus + PSB and 5 ton FYM/ha along with the already existing 12 treatment combinations 
making it a total of 13 treatment combinations. This is once again a RCBD in 13 treatments and 
2 blocks. The treatments combinations now are shown in Table 12.7.

Table 12.7: Treatment combinations for two crops

Treatment Chickpea (Safflower) Safflower (Chickpea)

1 No Phosphorus No Phosphorus

2 100% Recommended P 100% Recommended P

3 50% Recommended P 100% Recommended P

4 50% Recommended P 50% Recommended P

5 50% Recommended P+PSB 50% Recommended P+PSB

6 No Phosphorus 100% Recommended P

7 5 ton FYM/ha 100% Recommended P

8 PSB + 5 ton FYM/ha 100% Recommended P

9 100% Recommended P 50% Recommended P

10 100% Recommended P No Phosphorus

11 100% Recommended P 5 ton FYM/ha

12 100% Recommended P PSB + 5 ton FYM/ha

13 50% Recommended P+PSB 5 ton FYM/ha 

From the structure of the treatment combinations in the sequence, it is seen that there are 
six distinct treatments applied in each of the two crops. But instead of 36 possible treatment 
combinations, only 13 distinct treatment combinations have been used in the crop sequence. 

The 6 distinct treatments for individual crops are as in Table 12.8.

Table 12.8: Treatment combinations for individual crops

Phosphorus Distinct Treatments Replication in kharif crop Replication in rabi crop

No Phosphorus T1 2 2

50% Recommended P T2 2 2

100% Recommended P T3 5 5

50 % Recommended P+ PSB T4 2 1

5 ton FYM/ha T5 1 2

PSB + 5 ton FYM/ha T6 1 1

According to this structure of treatment combinations, we get Table 12.9.
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Table 12.9: Structure of treatment combinations

Series-I First Set →

1 2 3 4 5 6

Replication - I 1, 3 3, 2 3, 2, 1, 5, 6 4, 5 3 3

Replication - II 1, 3 3, 2 3, 2, 1, 5, 6 4, 5 3 3

Series-II Second Set →

1 2 3 4 5 6

Replication - I 1, 3 2, 3 3, 2, 1, 5, 6 4 3, 4 3

Replication - II 1, 3 2, 3 3, 2, 1, 5, 6 4 3, 4 3

The resulting design is a treatment connected design.

For category II experiments, the choice of a proper fraction is very important. As seen 
an improper choice of fraction would lead to a disconnected design and all the questions of 
the experimenter cannot be answered. There is a connection between row-column designs and 
block designs with two sets of treatments applied in succession. This connection in fact unifies 
the research efforts made in the literature in two different directions viz. row-column designs 
and block designs for two sets of treatments applied in succession. Now with the help of a simple 
mapping one can easily obtain a block design for two sets of treatments applied in succession 
from a row column design and vice versa ( see e.g. Parsad et al., 2003). 
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I.1   Introduction
SAS (once stood for Statistical Analysis System) software is comprehensive software which 

deals with many problems related to Statistical analysis, Spreadsheet, Data Creation, Graphics, 
etc. SAS was initially developed in the early 1970 at North Carolina State University with the 
objective of management and analysis of agricultural field experiments. Nowadays SAS is widely 
used in many disciplines such as medical sciences, biological sciences and social sciences because 
of its versatility for various kinds of data management, analysis and data analytics. Latest version 
of SAS is 9.4. If not SAS 9.4, SAS 9.3 is available in most of the Institutes of National Agricultural 
Research and Education System in India. SAS comes with a number of products namely Base 
SAS, SAS/STAT and SAS/GRAPH to name a few. Out of these Base SAS is the base product of 
SAS which supports data management and a number of basic data analysis procedures. The 
SAS/STAT product has provision for most of the standard and advanced statistical analysis 
and the SAS/GRAPH is designed to produce quality graphics. There are specialized products 
for operation research (SAS/OR), econometrics and time series analysis (SAS/ETS) and so on.

I.2   The SAS windows
One can start SAS, by clicking Start → Programs → SAS. After opening the SAS, it can be 

seen that there are four windows, viz., (a) the explorer window on the left hand side, (b) the 
output window, (c) the log window, and (d) the program editor on the right hand side. The 
Windows of SAS are shown in Figure I.1. 

The program editor window is used to type the SAS commands. The editor supports text 
editing features like select, copy, cut, paste, moving the cursor, etc. The enhanced program editor 
gives color-coded procedures, statements, and options that help to find errors in the code before 
even running it. Once the code is written in the editor window or the enhanced editor window, 
the code is run clicking run symbol on the menu bar. The log window is very important and 
the errors, if any, in the SAS commands can be found in the log window after the code has 
been run. Therefore, it is always a good practice to check the log window to see if the SAS 
program contains any errors or not. As the name suggests, the output window is the place where 
the output after running SAS commands appears. Unlike previous versions of SAS, version 9.3 
output by default uses HTML. One can change this option to text output. The explorer window 
can be used to open/view data that is read into SAS. The explorer window contains libraries 
which includes the work folder containing any datasets that has been read or created in SAS in 
that session. Generally all the datasets created in the work folder are temporary, which means 
once the current SAS session is closed, all temporary datasets created are deleted automatically.

Annexure-I



308

Statistical Analysis of Agricultural Experiments

From the above it is clear that three windows are very important in SAS: the program editor 
window, the log window and the output window. After writing a code in SAS and getting the 
output, it is a good practice to save the codes and the outputs from the analysis. To save the 
program written in the program editor window, the cursor should be placed in the program 
editor window so that this window becomes active and then program can be saved with File ® 
save command from menu. Similarly, to save the outputs, go to the output window and select 
File → Save. One can also save the log window contents if desired, in the same way.

I.3   Rules for SAS programs 
SAS programs like any other programming language has some rules. These rules are called 

syntax. Some basic syntax that must be followed are given in the sequence.

i	 SAS is not case sensitive.
ii	 Every line must end with a semi-colon (;).
iii	 Variable names must be 32 characters or less and may be combination of letters, numbers 

and underscore character but should begin with an alphabet or an underscore.

Figure I.1: Windows of SAS software
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iv	 Words should be separated by at least one space.
v	 One block of code should end with a run statement.
vi	 Lines starting with /* are treated as comments and are not processed. Comments are 

closed by */.
vii	 Data steps start with the word DATA and procedures start with the word PROC.
viii	 Cards sections can be invoked with word CARDS or DATALINES

Note that the words DATA, PROC, CARDS and DATALINES have been written in Capital 
letters. Though SAS is not case sensitive but capital letters will be used to differentiate between 
usual texts and SAS syntax throughout this Annexure. But this distinction has also been made 
in the main Chapters of the book.

A semi-colon at the end of line tells SAS that the current statement is finished, and invokes 
SAS to read the next line. Data statement is used to specify a name of a data set. This name 
of the data set can be used later in the program to refer to it. The names of SAS datasets and 
variables are not case sensitive and hence a data set called mydata, MyData, MYDATA are all 
equivalent. Similarly, a variable name AGE, age, Age all refer to a same variable. After a block 
of code is written, then that block of code should end with a run statement; otherwise SAS may 
not process the code. Once the block of code with a run at end is written, the user needs to click 
on   icon in the toolbar at the top of the screen to process the codes (or press F8 to submit 
the code)  and get the outputs in the output window.

I.4   Basic structure of SAS programs
A SAS program is mainly composed of two parts: a data step and a procedure step. The data 

step deals with reading, manipulating, formatting and cleaning data. For example, data step 
can be used to extract some of the variables or some subset of the observations of an existing 
data set for further analysis. It may be used to convert a dataset from a different format to SAS 
compatible format. Data step can also be used to manipulate data in a number of ways so that 
resultant data can be used for further analysis. For example, data may need to be transformed 
into appropriate format for a subsequent analysis. To summarize, the data step is used to prepare 
data for use by one of the procedures.
An example of data step used to create a data set is given below: 
DATA mydata;  
INPUT var1 var2 var3; 
CARDS; 
10 12 15
15 25 14
35 25 16
12 24 24
;
RUN; 
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The details of this program will be clearer in the next Section. 

The procedure step performs statistical analyses and/or produce graphical results. Generally, 
a SAS program is composed of one or more (statistical) procedures. Each procedure is a unit, 
although some are needed to run others. When a procedure is submitted to run in SAS, the 
results will go to the output window unless the output is not suppressed in the code itself.  An 
example of a procedure step which obtain basic summary statistics is given below 

PROC MEANS DATA = mydata;

RUN; 

I.5   Reading data into SAS
First we need to know how data set is defined in SAS. A data set in SAS consists of two 

components: variables and observations. These terms are defined below.

Variable:  A variable refers to an entity or characteristic that can take a set of values, e.g. 
leaf area. Here, leaf area denotes a variable and if there are 100 leaves available then we have 
100 values of leaf area. When defining a variable name in a SAS data set, some rules need to 
be followed. A variable name can have up to a maximum of 32 characters and must begin with 
a letter or underscore. Note that no special characters except underscore can appear in a SAS 
variable name. Blank spaces are also not allowed in SAS names. So a valid variable name for leaf 
area variable in SAS can be leafarea or leaf_area or la or var1 or x or y. Now, in SAS, variables 
can mainly be of two types:

i)	 Character Variable: A character variable can take values which are combination of 
alphabets, numbers and special characters or symbols. For example, a variable country 
can take values “India”, “Australia”, “US”, “Germany”, “Netherland”, “UK”, so the variable 
country is a character variable.

ii)	 Numeric Variable: A numeric variable can take values only as numbers which may be 
with or without decimal points and with + or ‒ signs. For example, a variable weight can 
take values 40, 60, 55, 45, 76, 60, etc. So this variable is a numeric variable.

Observation:  The set of values taken by different variables on an individual object or subject 
or unit is the observation on that object or subject or unit. For example, if there are five variables 
namely name, address, age, weight and height, then an observation on an individual may be 
“Samir”, “Mumbai”, 35, 68, 145; another observation on another individual may be “Dipak”, 
“Bangalore”, 40, 64, 142. 

Datasets can be read in SAS by at least three basic ways.

i)    Using INFILE statement
The INFILE statement can be used to read data from external files located in a drive (e.g., 

D:, C:, F:) and make them available for the entire SAS session.

Reading data from an external text file  
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To read data from a text file located in drive D, the following command can be used:

DATA d1; 

INFILE ‘D:\mydata.txt’;

INPUT x1 x2 x3;

RUN;

Here d1 denotes the name of the dataset that is created in SAS. The input statement is used to 
specify names of the variables in the SAS dataset. In the current example, the names of variables 
are x1, x2 and x3.  Here, it must be mentioned that the data in the external file mydata.txt should 
be in the following format:

10  20  30 

24  25  . 

65  64  35 

25   .    25 

30  25  36

Here note that since we are reading three variables, the external file should have three columns 
with first column referring to the values of x1 variable, second column to values of x2 variable 
and third column to values of x3 variable. Two values in a row should be separated by at least 
one space. Any missing values for numeric variables should be denoted as and missing character 
values should be a blank space; otherwise there may be error in reading the data set. Each row 
of the data represents one observation for the data set.

Reading data from an external ASCII file  

Data can be read from an external (ASCII) file as shown below:

DATA ex2;

INFILE ‘d:\mydata’;

INPUT group $ x y z; 

RUN;

or

DATA ex2a;

FILENAME abc ‘d:\mydata’;

INFILE abc;

INPUT group $ x y z; 

RUN;
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Reading data from an external *.csv file  

One can easily read data from an external comma separated value (.csv) file using infile 
statement as shown in the following example:

DATA ex4;

INFILE ‘C:\mydata.csv’  DLM=’,’ ;  

INPUT snloc $ year	season $ crop $ rep  trt  gyield syield  return kcal; 

RUN;

ii)   Using the import wizard:
To import the data from a drive, one can go to “File”, then “Import data”. An Import wizard 

window will pop up with the option to select the format of the file to import. After the file type 
(i.e. Excel, Access, text, etc.) has been selected, it asks for the location of the file. Then the file to 
be imported is to be selected. Thereafter a proper SAS name is to be specified to the data set to 
be created in SAS.  It may be mentioned here that SAS 9.2 can only read Excel files saved under 
Excel 2003 or earlier version, (i.e. with .xls extension). To read an .xlsx file with 9.2, the file 
should be saved as .xls version before reading it into SAS. However, SAS 9.3 supports importing 
.xlsx files as well. 

One can also use proc import statement to read data from excel files using following 
commands:

PROC IMPORT DATAFILE = ‘C:\descriptive_stats.xls’

OUT = descriptive_stats REPLACE;

RUN;

In the PROC IMPORT statement above, one needs to specify the name of the excel file with 
its location and a name of the SAS data set to be created. 

iii)   Using the CARDS or DATALINES statement:
Another easy way of reading data into SAS is using CARDS or DATALINES statement. This 

is useful when the dataset is small. An example to read a data set using CARDS statement is:
DATA d2;
INPUT x1 x2;
CARDS;
3 5.1  
5 10
4 14.7
2 3.3
;
RUN;



313

Introduction to SAS

Similarly DATALINES statement can be used.

DATA d3;

INPUT x1 x2;

DATALINES;

3  5.11 

5  10

4  14.7

2  3.3

;

RUN;

Reading data in various formats
We have seen that data can be read in SAS using INFILE statement, CARDS or DATALINES 

statement and through import wizard. While using the INFILE and CARDS or DATALINES 
statements, note that both use INPUT statement. The INPUT statements are part of data 
section.  This statement provides the SAS system the name of the variables with the format, if it 
is formatted. The examples given above show what is called list directed input. 

List directed input:

In list directed input

•	 Data are read in the order of variables given in INPUT statement.

•	 Data values are separated by one or more spaces.

•	 Missing values of numeric variables are represented by period (.). 

•	 Missing values of character variables are represented by blank and 

•	 Character variables are followed by $ (dollar sign).

Often the data may be read where the data values are not separated by space. In this case 
INPUT statement should specify the starting and ending column numbers that is occupied by 
values of a variable. For example, the following example tells SAS that variable ID is available in 
columns 1 to 3, sex in column 4, height in columns 5-6 and weight in columns 7-11.

DATA mydata;
INPUT ID 1-3 sex $ 4 height 5-6 weight 7-11;
CARDS;
001M68155.5
2F6199
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3M5333.5
; 
RUN;
Alternatively, starting column of the variable can be indicated along with its length as
DATA mydata;
INPUT @1 ID 3.
@4 sex $ 1.@5height 2. @7weight5. ;
CARDS;
001M68155.5
2F6199
3M5333.5
; 
RUN;

Reading more than one line per observation for one record of input variables

It is possible to read more than one line per observation. The following example shows that 
the variables ID, age and height are to be read from line one and the variables sbp and dbp are 
to be read from line two from each block of two lines in the data.

DATA mydata;

INPUT # 1 ID 1-3 age 5-6 height 10-11

# 2 sbp5-7 dbp8-10;

CARDS;

001 56   72

14080

;

RUN;

Reading the variable more than once

It is possible to read one variable more than once. For example, if a variable Id which is 
of length 6 contains information about state code, which is the last two columns of Id variable, 
then both Id and state can be read as shown below:

DATA mydata;

INPUT @ 1 Id 6. @ 5 state 2.;

CARDS;
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123401

124102

254103

;

RUN;

Or

DATA mydata;

INPUT ID 1-6 state 5-6; 

CARDS;

123401

124102

254103

;

RUN;

Formatted lists

The data can also be read by groups of variables with the starting column for the first 
variable in the group and the number of columns occupied by each variable in the groups. As an 
example, the following commands read two groups of variables namely x1, x2 and y1, y2 where 
the first variable in the first group starts at column one and each of the variables in the first 
group occupies one column, the first group starts from column four and each of the variables in 
second group occupies three columns. 

DATA B;

INPUT ID @1(x1-x2)(1.)

@4(y1-y2)(3.);

CARDS;

11 563789

22 567987

;

RUN;
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Data can also be read using @ in the INPUT statement. With this, SAS can read values of 
variables only once from each observation in the data part after the cards section and leaves 
the other values unread. The following example reads four observations for three variables in 
one line. Note that observations are read alternatively variable wise, i.e., first value goes to first 
variable, second value to second variable, third value to third variable, then rest of 9 observations 
remains unread.

DATA C;

INPUT x y z @;

CARDS;

1 1 1 2 2 2 5 5 5 6 6 6 

1 2 3 4 5 6 3 3 3 4 4 4

;

RUN;

Data can similarly be read using @@ in the INPUT statement. With this, SAS can read 
more than one observations per line in the data part after the CARDS section. The following 
example reads four observations for three variables in one line. Note that observations are read 
alternatively variable wise, i.e., first value goes to first variable, second value to second variable, 
third value to third variable, then fourth value to first variable, and so on.

DATA D;

INPUT x y z @@;

CARDS;

1 1 1 2 2 2 5 5 5 6 6 6 

1 2 3 4 5 6 3 3 3 4 4 4

;

RUN;

Creating a permanent SAS data set 

All the methods discussed above create data sets which are temporary in the sense that 
the data sets are removed once the user closes the current session of SAS. Often one may be 
interested to create a dataset which is permanent and is not removed after the current session of 
SAS is closed. This is done using LIBNAME statement as shown below:

LIBNAME xyz ‘c:\SASDATA’;  /* these  statements create a file named example in library named 
xyz /*

DATA xyz.example; 
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INPUT group x y z;

CARDS;

1 10 20 30

1 15 25 32

2 24 25 26

2 21 25 26

;

RUN;

The above program reads data following the CARDS statement and creates a permanent 
SAS data set in a subdirectory named \SASDATA on the C: drive.         

The following example illustrates how to use a permanent SAS data set:

LIBNAME xyz ‘c:\SASDATA’;

PROC MEANS DATA=xyz.EXAMPLE;

RUN;  

I.6   Basic data manipulation using the DATA step
As we have seen that the data step deals with reading, manipulating, formatting and cleaning 

data. Some examples of data manipulation in SAS using data step are provided in the sequel. For 
this purpose, consider the following sample data set:

DATA d1;

INPUT name $ age gender $ height weight;

CARDS;

sam 15 M 140 45

john 18 M 135 42

madhu 21 F 128 48

kanika 24 F 135 46

peter 30 M 140 49

soumi 29 F 128 51

;

RUN;

Note that we have used $ symbol after the variables name and gender. The $ symbol is used 
to specify that those two variables are character variables. Suppose we want to get a subset of 
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data with males only. The following SAS code can be used to create a new data set called d1m 
with gender as males only.

DATA d1m;

SET d1;

IF gender = ‘M’;

RUN;

The SET d1 statement after the DATA d1m statement tells SAS to make a copy of the dataset 
d1 and save it as d1m. The IF statement tells to take only those observations where gender is 
equal to M. The same subset of data can be alternatively created as

DATA d1m;

SET d1;

IF gender = ‘F’ then delete;

RUN;

Further subsetting of data can be done based on numerical values. For example, to create a 
subset of data with persons at least 18 years old, the following code can be used:

DATA d18;

SET d1;

IF age > 18;

RUN;

Variables to be included in a subset of data can be selected using DROP or KEEP statement. 
For example, to drop the name variable the following code can be used: 

DATA d1wn;

SET d1;

DROP name;

RUN;

The same subset of data can be created with KEEP statement as follows:

DATA d1wn;

SET d1;

KEEP age gender height weight;

RUN;
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I.7   The procedure step
The procedure step performs statistical analyses and/or produce graphical results. When a 

procedure is submitted to run in SAS, the results will go to the output window unless the output 
is not suppressed in the code itself. Some frequently used procedures for statistical analysis are 
explained in detail below:

PROC PRINT procedure can be used to print a dataset in the output window after a dataset 
is created in a DATA step. For example, to print the dataset d1, the SAS commands are

PROC PRINT data=d1;

RUN;

To print only some of the variables, a VAR statement can be included. For example, to print 
only age, gender, height and weight variables of the dataset d1, the following code can be used:

PROC PRINT data=d1; /*here d1 denotes the data name*/

VAR age gender height weight;

RUN;

PROC UNIVARIATE is a procedure which is used for elementary statistical analysis. This 
procedure computes the basic statistics of one or more variables in a dataset and has optional 
statements to generate some plots like histograms and qqplots. For example, the following 
code can be used to get univariate statistics of variables height and weight and to produce their 
histograms:

PROC UNIVARIATE data=d1;

VAR height weight;

HISTOGRAM; 

RUN;

If VAR statement is not used, the procedure will compute univariate statistics for all numeric 
variables in the dataset.

A number of plots can be produced in the PROC univariate procedure. Following statements 
can be used in the PROC univariate procedure to get the plots mentioned below:

Plot type Statement Example

histogram, 
normal density plot

histogram/kernel normal PROC UNIVARIATE DATA=d1;
VAR x;
HISTOGRAM/KERNEL NORMAL;
RUN;

probabilty plot probplot PROC UNIVARIATE DATA=d1;
VAR x;
PROBLPLOT;
RUN;
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Plot type Statement Example

quantile quantile plot qqplot PROC UNIVARIATE DATA=d1;
VAR x;
QQPLOT x/NORMAL SQUARE;
RUN;

cumulative density plot cdfplot PROC UNIVARIATE DATA=d1;
VAR x;
CDFPLOT x/NORMAL; 
RUN;

PROC SORT can be used to sort the observations in a dataset by some variables in either 
ascending or descending order. For example to sort the data set d1 by age, the following code 
can be used:

PROC SORT DATA=d1 OUT=d2;

BY age;

RUN;

The observations of dataset d1 are sorted in ascending order, by default, of the variable age, 
and the sorted data is saved in a dataset named d2. Without the OUT=d2 option, the unsorted 
dataset named d1 will be replaced by the sorted dataset. The observations can be sorted in 
descending order by specifying the descending option in the BY statement, e.g., BY descending 
age. To sort the data by more than one variable, the variable names should be listed in the BY 
statement. For example, to sort the data set d1 by age and height, the following code can be used:

PROC SORT DATA=d1 OUT=d2;

BY age height;

RUN;

PROC MEANS procedure is used to produce simple univariate descriptive statistics for 
numeric variables. It also calculates confidence limits for the mean and identifies extreme values 
and quartiles. For example, the following commands can be used to produce mean, median, 
minimum, maximum and number of observations of a data set.

PROC MEANS data=d1 mean median min max n;

RUN;

The mean, median, minimal value, maximal value and sample size will be computed for all 
the numerical variables in the data set d1. To compute these statistics for some of the variables 
in the dataset, VAR statement can be used. For example, the following code computes mean and 
median for two variables height and weight:

PROC MEANS DATA=d1 MEAN MEDIAN;

VAR height weight;
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RUN; 

Often data sets can have grouping variables. One may be interested in getting these statistics 
for each group of the data set created by these grouping variables. For example, in the data set 
d1, gender is a grouping variable and one may be interested to know mean and median height 
and weight for both males and females. This can be done by using following code:

PROC SORT DATA=d1 OUT=d2;

BY gender;

RUN;

PROC MEANS data=d2 MEAN MEDIAN;

VAR height weight;

BY gender;

RUN; 

One word of caution is in order here. Before using BY statement in any procedure, the data 
needs to be sorted by the variables which appear in the BY statement. Otherwise the statement 
will not run.  Alternatively, one can use the statement CLASS gender; between PROC and VAR 
statement in place of BY statement.

PROC SUMMARY computes descriptive statistics on numeric variables in a SAS dataset 
and outputs the results to a new SAS dataset. For example, the descriptive statistics of height 
and weight variables for males and females in the data set d2 can be saved as a dataset d3 using 
the following code:

PROC SUMMARY data=d2 PRINT;

VAR height weight; 

BY gender;

OUTPUT OUT=d3; 

RUN;

Alternatively one may use

PROC SUMMARY data=d2 PRINT;

CLASS gender;

VAR height weight; 

OUTPUT OUT=d3; 

RUN;
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A PRINT option or the output statement must be specified in the PROC SUMMARY, 
otherwise it may not run properly. 

PROC FREQ procedure produces frequency tables and contingency tables. To illustrate the 
use consider the following data:

DATA mydata;

INPUT gender $ income class $;

CARDS;   

M 5000 small

F 3900 small

M 6000 medium

M 5400 medium

F 4000 small

M 12000 big

M 15000 big

F 10000 big
;

RUN;

To create a two-way frequency table by variables gender and class, you can use the following 
SAS commands:

PROC FREQ DATA=mydata;

TABLES gender*class/MISSING CHISQ;

RUN;

PROC CORR calculates the correlation coefficients between quantitative variables along 
with their simple summary statistics. For example, to compute the correlation coefficient 
between height and weight variables, one can use the following commands:

PROC CORR DATA=d1; 

VAR height weight; 

RUN;

This will produce a correlation coefficient matrix along with probability level of significance. 

The PROC TTEST has many applications in testing of hypothesis. Some of them are 
described in the sequel. PROC TTEST procedure is used for testing that the population mean 
is equal to some specified value.  For example, the following code tests the null hypothesis that 
average weight of population of leaves is 2 gm.
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PROC TTEST h0=2;

VAR leafwt;

RUN;

This PROC can also be used for comparing the means of two populations based on independent 
samples drawn from the two populations. An example of comparing the average weights of 
populations of male and female fish is given below.

PROC TTEST;

CLASS sex;

VAR fishwt;

RUN;

The CLASS statement specifies that the variable sex is used to classify the values of fishwt 
variable into two samples, i.e., PROC TTEST divides the observations into the two groups for 
the t test using the levels of this variable. One can use either a numeric or a character variable 
in the CLASS statement. 

PROC TTEST computes the group comparison t statistic based on the assumption that the 
variances of the two groups (or populations) are equal. It also computes an approximate t based 
on the assumption that the variances are unequal (the Behrens-Fisher problem). One can use 
COCHRAN option for this situation, e.g.,

PROC TTEST COCHRAN;

CLASS sex;

VAR fishwt;
RUN;

The COCHRAN option uses the Cochran and Cox approximation of the probability level 
of the approximate t statistic for the unequal variances situation.

To perform a paired two-sample t-test, PROC TTEST can be used with the PAIRED 
statement. For example, the following commands test whether the average weight of fish 
population before and after an experiment are same or not.

PROC TTEST;

PAIRED wtbefore*wtafter;

RUN;

The PAIRED statement identifies the variables to be compared in paired comparisons. In 
the above example the variables are wtbefore and wtafter. One or more paired variables can be 
used in the PAIRED statement. Variables or lists of variables are separated by an asterisk (*) or 
a colon (:). Examples of the use of the asterisk and the colon are shown in the following table:
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The PAIRED Statements Comparisons made

PAIRED a*b; a-b

PAIRED a*b c*d; a-b and c-d

PAIRED (a b)*(c b); a-c, a-b and b-c

PAIRED (a1-a2)*(b1-b2); a1-b1, a1-b2, a2-b1 and a2-b2

PAIRED (a1-a2):(b1-b2); a1-b1 and a2-b2

PROC ANOVA is used to perform analysis of variance (ANOVA), multivariate analysis 
of variance and repeated measures analysis of variance in case of balanced data.  In the case 
of ANOVA, a CLASS statement needs to be used for categorical variables before the model 
statement. The PROC ANOVA procedure should be used when the data is balanced with 
respect to the variables listed in the CLASS statement. For example, to study the effect of gender 
on height of persons, it may be noted that the dataset d1 is balanced and hence the following 
code can be used to perform ANOVA.

PROC ANOVA data=d1;

CLASS gender;

MODEL height=gender;

RUN;

It tests whether the height is the same for females and males.

Since PROC ANOVA is one of the procedures that is used in analyzing data from designed 
experiments, a detailed syntax of PROC ANOVA is given in Annexure-1 of this Chapter.

PROC GLM procedure performs general linear model fitting which includes simple 
and multiple regression, analysis of variance (ANOVA), analysis of covariance (ANCOVA), 
multivariate analysis of variance, and repeated measures analysis of variance. As an example, 
the following code fits a linear model for weight on age and height.

PROC GLM DATA=d1;

MODEL weight=age height;

OUTPUT OUT=d4 p=pred r=resid;

RUN;

Here the MODEL statement is used to specify the dependent and independent variables 
and the dependent and independent variables are separated by ‘ =’ sign. In this example weight 
is dependent variable and age and height are independent variables. The OUTPUT statement is 
used to save the analyzed results in a new data set. In the current example the name of the output 
data set is d4 and the predicted values are stored as variable named pred and residuals are stored 
as variable named as resid. Since PROC GLM is one of the procedures that is used in analyzing 
data from designed experiments, a detailed syntax of PROC GLM is given in Appendix-2 of 
this Chapter.
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As in case of PROC ANOVA, a CLASS statement needs to be used for categorical variables 
before the MODEL statement. For example, to study the effect of gender on height of persons, 
the following code can be used. Other options of PROC ANOVA or PROC GLM are given in 
the Appendix-1 and Appendix-2.

PROC GLM DATA=d1;

CLASS gender;

MODEL height=gender;

RUN;

PROC REG is used to fit linear regression models. It allows multiple MODEL statements in 
one procedure, can do model selection, and even plot summary statistics and normal qq-plots.

PROC OPTEX is used to search for optimal design in mixture experiments with linear 
models. To generate a design, PROC OPTEX and MODEL statements are used. Other statements 
are used as needed. A CLASS statement naming classification variables must precede the 
MODEL statement that uses those variables. As the OPTEX procedure is interactive, all other 
statements (except the PROC OPTEX statement) can be used after the first RUN statement.

There is option for several PLOT statements for each MODEL statement. For example, the 
following commands fit a regression model for weight on age and height and plot the predicted 
values and residuals against age and height variables.

PROC REG DATA=d1; 

MODEL weight=age height; 

PLOT weight*age

PLOT weight*height;

PLOT PREDICTED.*age;

PLOT RESIDUAL.*age; 

PLOT PREDICTED.*height;

PLOT RESIDUAL.*height;

RUN;

As in PROC GLM, PROC REG also has a MODEL statement and usage of MODEL 
statement is similar to that of PROC GLM. Note that in the above code predicted. and residual. 
refer to predicted values and residuals respectively. 

The PROC RSREG procedure uses the method of least squares to fit the full quadratic or 
second order response surface regression models. Response surface models are a kind of general 
linear model in which attention focuses on characteristics of the fitted response function and in 
particular, where optimum estimated response values occur. The following example fits a three 
factor response surface model with the independent variables x1, x2 and x3.
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PROC RSREG;

MODEL y=x1 x2 x3;

RUN;

In addition to fitting a quadratic function, one can use the RSREG procedure to test for lack 
of fit, to test for the significance of individual factors, to analyze the canonical structure of the 
estimated response surface, to compute the ridge of optimum response and predict new values 
of the response. The detailed syntax of PROC RSREG is given in Appendix-3 of this Chapter.

I.8   Options in the procedures and statements
We have seen that various procedures perform various kinds of analysis. All these 

procedures by default produce some standard output. However, a number of additional analyses 
can be performed by specifying some options in these procedures. For example, by default, SAS 
produces 95% confidence intervals. If someone is interested to get 99% confidence interval, one 
can use the following code:

PROC GLM DATA = d1 ALPHA=.01;

CLASS gender;

MODEL height=gender;

RUN;

Here, the ALPHA =.01 option is used to get 99% confidence interval. It also performs hypothesis 
tests at 1% significance level.

Another example of options in procedure statement is the PLOT option in PROC 
UNIVARIATE procedure. A number of plots can be produced with PROC UNIVARIATE 
procedure. For example, you can get a stem and leaf plot, box plot and normal probability plots 
using PLOT option.

PROC UNIVARIATE DATA=test NORMAL PLOT;

RUN;

All the SAS Procedures have a number of different statements to perform various kinds 
of specific analysis. These statements are to be specified when using a procedure to perform 
a required analysis. All these statements have provision for some further analysis by way of 
specifying Options. Unless options are specified, these optional analysis results are not produced 
by SAS. Some commonly used statements are described below.

i)	 The VAR statement: The VAR statement is used to specify which variables out of all 
the available variables in a dataset should be used in a procedure. For example, to get 
univariate statistics for only height and weight variables in data set d1, the following 
command uses VAR statement.

	 PROC UNIVARIATE DATA=d1;
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	 VAR height weight;
	 RUN;
ii)	 The BY statement: The PROC SORT procedure uses the BY statement to sort a data set 

using the variables specified in the BY statement. Once a dataset has been sorted by some 
variables, then the BY statement can further be used in another procedure to perform 
analysis for each combination of values of the variables specified in the BY statement. It 
is important to note here that the variables specified in the BY statement in a procedure 
must be from those variables by which the data was sorted. For example, data d1 is first 
sorted by gender and name.

	 PROC SORT DATA=d1;
	 BY gender name;
	 RUN;
	 Now suppose we want to get the summary statistics for height and weight for each  

gender separately, then the following commands can be used:
	 PROC UNIVARIATE DATA=d1;
	 VAR weight height;
	 BY gender;
	 RUN;
iii)	 The CLASS statement: The CLASS statement in a procedure is used to denote that some 

variables are categorical.  For example, if in an experiment 5 treatments are applied to 
15 experimental units in 3 blocks and each block has 5 experimental units, where each 
of the unit receives one distinct treatment, then here treatment and block are categorical 
variables. The CLASS statement is particularly used for performing analysis of variance 
using PROC ANOVA or PROC GLM. The code for analysis of such data is given below 
assuming that the variable names in the data are treatment, block and observation and 
the SAS data set name is experiment.

	 PROC ANOVA data=experiment; 
	 CLASS treatment block;
	 MODEL observation = treatment block;
	 RUN;
iv)	 The MODEL statement: The MODEL statement is used whenever some model fitting is 

done in SAS. For example, PROC REG, PROC GLM, PROC ANOVA etc. use MODEL 
statement. The MODEL statement is used to specify which variables are to be used in 
the MODEL and which are dependent and independent variables. Dependent variable 
appears on the left of ‘=’ sign and independent variables appear on the right of ‘=’ sign 
in a MODEL statement. The example described just above has observation as dependent 
variable and treatment and block as independent variables. When there are multiple 
dependent variables specified in a MODEL statement then one model is fitted for each of 
the dependent variable separately unless a MANOVA statement is used in the procedure. 
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	 Some illustrations are given for various types of model statements that PROC ANOVA 
and PROC GLM can handle. Here it is assumed that A, B, C are CLASS variables and X1, 
X2, X3 are quantitative, regression variables. 

Simple linear regression MODEL Y = X1;

Multiple regression MODEL Y = X1 X2 X3;

Polynomial regression MODEL Y = X1 X1*X1 X1*X1*X1;

One way anova MODEL Y = A;

Two-way, main effects only MODEL Y = A B;

Two-factor factorial with interaction MODEL Y = A B A*B;

Two-factor factorial with interaction using “|” notation MODEL Y = A | B;

Three-factor complete factorial MODEL Y = A B C A*B A*C B*C A*B*C;

Three-factor complete factorial using “|” notation MODEL Y = A | B | C;

A number of options are available in the MODEL statement in PROC GLM. For example, 
in the PROC GLM, MODEL statement, one can get different types of sums of squares using 
SS1, SS2, SS3, SS4 options and confidence intervals using CLI and CLM options. Detail 
of different sum of squares in PROC GLM are provided at the end of Annexure-2. One 
can also specify desired confidence interval level using ALPHA option. As an example, 
following commands produces type III sum of squares in the analysis of variance table.

PROC ANOVA DATA=experiment;

CLASS treatment block;

MODEL observation=treatment block /SS3;

RUN;

v)	 The MEANS and LSMEANS statements: The MEANS and LSMEANS statements are very 
important and they are commonly used in PROC ANOVA and PROC GLM to get means 
or least square means of the dependent variables for each class of categorical variables 
which are listed in the CLASS statement in these procedures. The MEANS statement 
is generally used when the data are balanced and there are no missing values and no 
covariates. If the data are not balanced or the data contain missing values or the data 
have covariates, then the LSMEANS statement should be used. Moreover, the MEANS 
statement has options for multiple comparisons among the main effects whereas the 
LSMEANS statement has options for multiple comparisons among the main effects and 
the interactions. As an example, the following code performs Tukey’s test and Duncan’s 
multiple range test for the treatment means:
PROC GLM DATA= experiment;
CLASS treatment block;
MODEL observation =treatment block;
MEANS treatment / TUKEY DUNCAN;
RUN;
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	 The MEANS statement will perform means comparisons for all five treatment groups. The 
options TUKEY and DUNCAN will produce multiple comparisons among the treatment 
means. There are a number of multiple comparison tests available in the MEANS 
statement e.g., Bonferroni (BON), Dunnet (DUNNET), least significant difference (LSD), 
Scheffe (SCHEFFE), Student-Newman-Kuels (SNK) to name a few. 

	 To specify options for multiple comparisons in the LSMEANS statement, the name of the 
test should be specified after ADJUST= .  For example, one can use the following code for 
performing Bonferroni test. The default option is Fisher’ LSD.

	 PROC GLM data = experiment;
	 CLASS treatment block;
	 MODEL observation = treatment block;
	 LSMEANS treatment / ADJUST=BON STDERR;
	 RUN;
	 The STDERR option above will produce the standard errors of least square means.
	 Other options available with this statement are:
	 PDIFF: Prints the p - values for the tests of equality of all pairs of class means.
	 singular: tunes the estimability checking. 
	 LINES: gives the letters for the treatments in same or significantly different groups
vi)	 The CONTRAST statement:  The CONTRAST statement can be used to test pre-planned 

hypothesis. The basic form of the CONTRAST statement is given below.
	 CONTRAST ‘label’ effect name< ... effect coefficients ></options>;

Here label is a character string used for labeling output, effect name is CLASS variable 
(which is independent) and effect coefficients is a list of numbers that specifies the linear 
combination of parameters in the null hypothesis. The contrast is a linear function such 
that sum of the elements of the coefficient vector sum is equal to zero for each effect. 
While using the CONTRAST statements, one should keep the following points in mind. 
If there are more levels of that effect in the data than the number of coefficients specified 
in the CONTRAST statement, the PROC GLM adds trailing zeros. Suppose there are 
5 treatments in a completely randomized design denoted as τ1, τ2, τ3, τ4, τ5 and null 
hypothesis to be tested is

Ho: τ2+ τ3 = 2τ1 or −2τ1+ τ2+ τ3 = 0 

Suppose in the data, treatments are classified using trt as CLASS variable, then a valid 
CONTRAST statement is

CONTRAST ‘τ1 vs τ2 and τ3’ trt −2  1  1  0  0;.    

Suppose last 2 zeros are not given, the trailing zeros can be added automatically.  The use 
of this statement gives sum of squares with 1 degree of freedom and F-value against error 
as residual mean squares until specified. The name or label of the contrast must be 20 
characters or less. 
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The available contrast statement options are 

E		      prints the entire vector of coefficients in the linear function, i.e., contrast.

E = effect	      specifies an effect in the model that can be used as an error term

ETYPE = n   specifies the types (1, 2, 3 or 4) of the E effect.

Multiple degrees of freedom contrasts can be specified by repeating the effect name and 
coefficients as needed separated by commas. Thus the statement for the above example

CONTRAST ‘all’ trt−2 1 1 0 0, trt 0 1 -1 0 0;

This statement produces sum of squares due to both the contrasts with two degrees of 
freedom. One can use this feature to obtain partial sums of squares for effects through the 
reduction principle, using sums of squares from multiple degrees of freedom contrasts 
that include and exclude the desired contrasts. Although only t - 1 linearly independent 
contrasts exist for t classes, any number of contrasts can be specified.

vi)	 The ESTIMATE statement: This statement is specific to PROC GLM. It can be used 
to estimate linear functions of parameters that may or may not be obtained by using 
CONTRAST or LSMEANS statement.  For the specification of the statement only word 
CONTRAST is to be replaced by ESTIMATE in CONTRAST statement.  

vii)	 The TEST statement: This statement is used in PROC GLM. In general F-tests of hypotheses 
in ANOVA use the residual mean squares as the error term. The TEST statement is used to 
test the significance of effects where the residual mean square is not the appropriate term, 
for example, testing the significance of main-plot effects in split-plot experiment. PROC 
GLM provides the TEST statement which is identical to the TEST statement available in 
PROC ANOVA. The PROC GLM also allows specification of appropriate error terms in 
MEANS, LSMEANS and CONTRAST statements. For illustration, consider a split plot 
experiment involving the yield of different irrigation (irrigat) treatments applied to main 
plots and cultivars (cultvar) applied to subplots. The data so obtained can be analyzed 
using the statements given below.

	 DATA splitplot;
	 INPUT rep irrigat cultvar yield;
	 CARDS;
	 . . .
	 . . .
	 . . .
	  ;
	 RUN;
	 PROC GLM;
	 CLASS rep irrigat cultvar;
	 MODEL YIELD = rep irrigat rep*irrigat cultvar irrigat* cult;
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	 TEST h = irrigat e = rep*irrigat;
	 CONTRAST ‘IRRIGATI vs IRRIGAT2’ irrigat 1 -1 / e = rep* irrigat;
	 RUN;
	 Here, the irrigation effects are tested using error (A) which is sum of squares due to 

rep*irrigat, as taken in TEST statement and CONTRAST statement respectively.
	 In TEST statement h = numerator source of variation and
	 e = denominator source of variation
	 Note here that the PROC GLM can also be used to perform analysis of covariance.  For 

analysis of covariance, the covariate should be defined in the model without specifying 
under CLASS statement.

viii)	 The OUTPUT statement: The OUTPUT statement is available in a number of procedures, 
for example, in PROC GLM, PROC REG. This statement is used to create a new dataset 
which contains outputs of a procedure. The output can contain some variables, by default, 
depending on the procedure being used and some optional variables which can be 
specified using options in the OUTPUT statement. For example, the following statements 
create an output data set called new which contains all the original variables in the data 
set experiment and a variable resid containing residuals from the fitted models. 

	 PROC GLM DATA = experiment;
	 CLASS treatment block;
	 MODEL observation = treatment block;
	 MEANS treatment;
	 OUTPUT OUT = new r = RESID;
	 RUN;  

I.9   Exporting data from SAS to other formats
Exporting a data set to another program is the reverse of the import process. For exporting 

a data, go to “File” and then select “Export Data”. An export wizard window will pop up. Then 
just follow the wizard through the following steps.

Step 1: Choose a data set from the WORK library (where the SAS datasets are stored 
automatically by SAS) and click ‘Next’ button.

Step 2: Choose the file type you want to export to. Available types include Excel, Access, 
dBase, delimited file, and many others. Then click next.

Step 3: Type in the directory path where you want to save your data file. If you are not 
sure of the path, click on the browse button and find the location. Then click OK. If exporting 
to Excel, the wizard will ask you to assign a name to the exported table. This name will appear 
as the Sheet name tab at the bottom of the Excel workbook. At this time, you may click on the 
FINISH button. 
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I.10   Titles, footnotes and labels

Titles
One can enter up to 10 titles at the top of output using TITLE statement in your procedure.

PROC PRINT;

TITLE ‘height-dia study’;

TITLE3 ‘1999 statistics’;

RUN;

Footnotes
One can enter up to 10 footnotes at the bottom of your output.

PROC PRINT DATA=diaht;

FOOTNOTE ‘1999’;

FOOTNOTE5 ‘study results’;

RUN;

For obtaining output as RTF file, use the following statements:

ODS RTF FILE=‘xyz.rtf ’ STYLE =JOURNAL;

ODS RTF CLOSE;

For obtaining output as CSV/PDF/HTML file, replace rtf with csv or pdf or html in the above 
statements.

If we want to get the output in continuous format, then we may use

ODS RTF FILE=‘xyz.RTF’ STYLE =JOURNAL bodytitle startpage=no;

Labelling the variables
DATA dose;

TITLE ‘yield with factors N P K’;

INPUT N P K Yield;

LABEL N = “Nitrogen”;

LABEL P = “Phosphorus”;

LABEL K = “Potassium”;

CARDS;
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...

...

...

;

PROC PRINT;

RUN;

We can define the line size in the output using statement options.  For example, if we wish that 
the output should have the line size (number of columns in a line) as 72, use Options LINESIZE 
=72; in the beginning.

I.11   Getting help
SAS comes with an excellent documentation for each and every procedure and statement 
available in SAS. Under SAS Help and Documentation, one can go to the Index tab or Search 
tab and can search for the topic. One can get help on a topic in SAS website and there are many 
other sources for help online. 
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Appendix-1: Syntax of PROC ANOVA

PROC ANOVA <options> ; 

CLASS variables </ option> ;

MODEL dependents=effects </ options> ;

ABSORB variables ;

BY variables ;

FREQ variable ;

MANOVA <test-options></ detail-options> ;

MEANS EFFECTS </ options> ;

REPEATED factor-specification </ options> ;

TEST <H=effects>E=effect ;

To perform analysis of variance using PROC ANOVA, one muse use CLASS and MODEL 
statements, and they must appear before the first RUN statement. The CLASS statement must 
appear before the MODEL statement. If the ABSORB, FREQ, or BY statements are used, they 
must appear before the first RUN statement. The MANOVA, MEANS, REPEATED, and TEST 
statements must be placed after the MODEL statement, and they can be specified in any order. 
These four statements can also appear after the first RUN statement. 

Table A I.1 summarizes the function of each statement (other than the PROC statement) 
in the ANOVA procedure. 

Table AI.1: Statements in the ANOVA procedure

Statement Description

ABSORB To absorb classification effects in a model 

BY Separate analysis is done by the levels of the variables specified 

CLASS Used to declare classification or grouping variables 

FREQ To declare frequency variables 

MANOVA To perform multivariate analysis of variance, useful when MANOVA needs to be performed

MEANS For computing and comparing means based on different multiple comparison procedures

MODEL To define the dependent and independent variables/factors in the model to be fitted

REPEATED For performing multivariate and univariate repeated measures analysis of variance 

TEST For performing tests that use the sums of squares for effects and the error terms specified
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Appendix-2: Syntax of PROC GLM

PROC GLM  <options> ; 

CLASS variables </ option> ;

MODEL dependents=independents </ options> ;

ABSORB variables ;

BY variables ;

FREQ variable ;

ID variables ;

WEIGHT variable ;

CONTRAST ’label’ effect values <...effect values></ options> ;

ESTIMATE ’label’ effect values <...effect values></ options> ;

LSMEANS effects </ options> ;

MANOVA <test-options></ detail-options> ;

MEANS EFFECTS </ options> ;

OUTPUT <OUT=SAS-data-set> keyword=names <...keyword=names></ option> ;

RANDOM effects </ options> ;

REPEATED FACTOR-SPECIFICATION </ options> ;

TEST <H=effects>E=effect </ options> ;

There are a number of statements and options available in PROC GLM. However, only few 
of them are mostly required. To use PROC GLM, the PROC GLM and MODEL statements are 
required. At least one MODEL statement must be specified. If the model contains classification 
effects, CLASS statement must have the classification variables, and the CLASS statement must 
be placed before the MODEL statement. In addition, if a CONTRAST statement is used in 
combination with a MANOVA, RANDOM, REPEATED, or TEST statement, the CONTRAST 
statement must be entered first in order for the contrast to be included in the MANOVA, 
RANDOM, REPEATED, or TEST analysis. A number of statements in PROC GLM statement 
must appear before or after some specific statements. For example, the statements ABSORB, 
BY, FREQ, ID, WEIGHT must appear before first RUN statement, the CLASS statement 
must appear before the MODEL statement, the CONTRAST statement must appear before 
MANOVA, REPEATED or RANDOM statement, the MODEL statement must appear before 
the CONTREAST, LSMEANS, MEANS, ESTIMATE statements, the TEST statement must 
appear before MANOVA or REPEATED statement. Similarly, the statements CONTRAST, 
ESTIMATE, LSMEANS, MEANS, MANOVA, OUTPUT, RANDOM, TEST must appear after 
the MODEL statement.
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Table A I.2 summarizes the function of each statement in the GLM procedure. 

Table A I.2: Statements in the GLM procedure

Statement Description

ABSORB To absorb classification effects in a model 

BY For specifying variables by whose levels analysis is to be done

CLASS Useful in declaring classification or grouping variables

CONTRAST Helpful in performing tests of linear functions of the parameters

ESTIMATE For estimating linear functions of the parameters 

FREQ To specify frequency variables

ID To identify observations on output 

LSMEANS For computing least squares (marginal) means, these are adjusted means  

MANOVA For performing multivariate analysis of variance

MEANS For computing and optionally comparing arithmetic means using different multiple 
comparison procedures 

MODEL For defining the dependent and independent variables/factors in the model to be fitted 

OUTPUT To create an output data set containing diagnostics for each observation 

RANDOM To declare effects which are to be treated as random and computes expected mean squares 

REPEATED For performing multivariate and univariate repeated measures analysis of variance 

TEST To perform tests that use the sums of squares for effects and the error term specified by user 

WEIGHT To specify a variable to give weight to the observations 

Different sum of squares in PROC GLM
PROC GLM can provide four types of sums of squares namely Type I, Type II, Type III 

and Type IV sum of squares while performing ANOVA.  For illustration, consider a model 
with two factors A and B and hence, there are two main effects A, B and an interaction AB. The 
sum of squares due to full model is represented as SS(A,B,AB). Therefore, the notation SS(A,B) 
represents sum of squares due to A and B and no interaction, SS(A,AB) represents sum of 
squares due to A and AB.  

The Type I sums of squares are the sequential sums of squares obtained by adding the terms 
to the model one by one in some sequence. The sum of squares for an effect is adjusted for 
only those effects which appear before it in the model. Thus, the sums of squares and their 
expectations depends on the order of terms in the model. For example, SS(A) compute sum 
of square for the main effect of factor A, SS(B | A) compute sum of square for the main effect 
of factor B after the main effect of A and SS(AB | B, A) compute the sum of square for the 
interaction effect AB after both the main effects of A and B. 

The Type II, III and IV are ‘partial sums of squares’ and each of the sum of squares is adjusted 
for all other classes of the effects in the model. However the adjustment is done in each sum 
of squares according to different rules. All the three types of sum of squares follow one general 
rule: the estimable functions that generate the sums of squares for one class of effects will not 
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involve any other classes of effects except those that “contain” the class of effects in question. For 
example, the estimable functions that generate SS (AC) in a three-factor factorial will have zero 
coefficients on main effects A and B and the (A × B) and (B × C) interaction effects. They will 
contain non-zero coefficient for the (A × B × C) interaction effects, because the interaction A × 
C  is contained in the A × B × C interaction.

Type II sum of squares for a given effect is adjusted for all effects that do not contain the 
given effect. For example, sum of squares due to main effects A and B will both be adjusted 
for each other because none of them contains the other, but will not be adjusted for AB since 
it contains both A and B.  Sum of squares due to effect AB will be adjusted for both the main 
effects A and B. Type II sum of squares is most powerful when there is no interaction and hence, 
should not be used in factorial designs.

Type III sum of squares due to a term is the sum of squares that would be obtained for each 
variable if the term were entered last into the model. In other words,  Type III sum of squares 
due to a variable is evaluated after all other factors have been accounted for. Type III sum of 
squares should not be used when there are missing cells in the design.

Type IV sum of squares, a variation of Type III sum of squares is specifically developed for 
designed to deal with missing cells.

If there are no empty cells (no nij = 0), Type III and Type IV sums of squares are equal. 
The hypothesis being tested is the same as when the data are balanced. When there are empty 
cells, the hypotheses being tested by the Type III and Type IV sums of squares may be different. 
The Type III criterion of orthogonality reproduces the same hypotheses one obtains if sum of 
the add to zero.  When there are empty cells this is modified to “the effects that are present are 
assumed to be zero”. The Type IV hypotheses make use of balanced subsets of non-empty cells 
and may not be unique. Consider a 2×3 factorial  where the terms to the model are added in the 
order A, B, AB. Then various types of sums of squares can be explained as follows:

Effect Type I Type II Type III Type IV

General Mean R(m) R(m)

A R(A/ m) R(A/ m,B) R(A/m,B,AB)

B R(B/m,A) R(B/m,A) R(B/m,A,AB)

A*B R(A*B/ m,A,B) R(A*B/m,A,B) R(AB/m,A,B)

R (A/m) is sum of squares adjusted for m, and so on.

The four types of sums of squares and four types of data structures (balanced and orthogonal, 
unbalanced and orthogonal, unbalanced and non-orthogonal (all cells filled), unbalanced and 
non-orthogonal (empty cells)) are related to each other. To see this, let nIJ denote the number 
of observations in level I of factor A and level J of factor B. Then, the following table gives the 
relationship between different types of sums of squares in a two-way classified data.
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Data Structure Type
1 2 3 4

Effect Equal nIJ Proportionate nIJ                         Disproportionate non-zero nIJ Empty Cell

A I=II=III=IV I=II, III=IV III=IV

B I=II=III=IV I=II, III=IV I=II, III=IV I=II

A*B I=II=III=IV I=II=III=IV I=II=III=IV I=II=III=IV

In general,
I=II=III=IV		  (balanced data);      II=III=IV		  (no interaction models)
I=II, III=IV		  (orthogonal data);   III=IV		  (all cells filled data).

Appendix-3: Syntax of PROC RSREG

PROC RSREG <options>; 
MODEL RESPONSES = independents </ options> ;
RIDGE <options> ;
WEIGHT variable ;
ID variables ;
BY variables ;

The PROC RSREG and MODEL statements are required. The BY, ID, MODEL, RIDGE and 
WEIGHT statements are optional and they can appear in any order. 

The important options available with the MODEL statement are: 

Option Purpose
NOCODE To analyse the original data without any coding.
ACTUAL To specify the actual values from the input data set.
COVAR= n To declare that the first n variables on the independent side of the model are simple linear 

regression (covariates) rather than factors in the quadratic response surface.
LACKFIT To perform lack of fit test.  For this the repeated observations must appear together. Therefore, 

if repeated observations do not appear together, then SORTING is must before using LACKFIT
NOANOVA To suppress the printing of the analysis of variance and parameter estimates from the model fit.
NOOPTIMAL 
(noopt)

To suppress the printing of canonical analysis for quadratic response surface.

NOPRINT To suppress both anova and the canonical analysis.
PREDICT To specify the values predicted by the model.
RESIDUAL To specify the residuals.
RIDGE To compute the ridge of the optimum response.  Following important options available with 

ridge statement :
max: To compute the ridge of maximum response.
min: To compute the ridge of the minimum response.
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II.1   Introduction
R is a powerful programming language for statistical analysis. This software is an 

implementation of S programming language which was designed by John Chambers at Bell 
Labs. R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New 
Zealand. It is currently developed by R Development Core Team. The name ‘R’ is from the first 
names of first two authors and partly due to its inheritance from ‘S’.  Recently R has become one 
of world’s popular statistical analysis software, because of the following reasons:

i)	 R is free, open source and capable of almost any statistical analysis including the most 
recently developed statistical methodologies. 

ii)	 R provides very good graphical facilities.
iii)	 R is easily extensible through new contributions from statisticians and researchers around 

the globe, which also makes R quite different from other popular statistical analysis 
software. In fact, R community is highly active in terms of new contributions in the form 
of packages to R.

II.2   Getting and installing R
To be able to use R, it needs to be installed in computer. R is available for free download 

from any one of the mirror sites of Comprehensive R Archive Network (CRAN) in http://cran.r-
project.org/. For downloading, it is better to select a mirror located nearer to you. R is available 
for installation in Windows/Macintosh/Unix platforms. To install R in a given  machine, first 
double-click the downloaded file R.exe, then select language as ‘English’. R setup wizard window 
will appear. Select on ‘Next’ and accept most of the default settings during the installation. 
Latest version as on 10.12.2015 available is 3.2.3.

II.3   Using R

II.3.1   Starting R
To start R, click on start menu → all programs → R → R 3.2.3 and a screen as shown in 

Figure 1 appears. The white blank screen is called R Console and this is the place where all R 
codes are written and outputs appear, unless outputs are directed to some external files.

Introduction to R

Annexure-II
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There will be a toolbar at the top of the Console and a few menus in the R window. To 
know what the buttons on the toolbar does, hold your mouse on the button for some time, a 
description of the button will appear.  There is an R editor which can be used to write and edit R 
codes. R editor window is just like a text editor with facilities for select, cut, copy, paste, typing 
text, deleting text etc. This window opens by clicking on File → New Script in the menu bar. The 
codes written in R editor window needs to be passed to the R console for execution by clicking 
on ‘Run line or selection button’  on the toolbar in the R editor window

II.3.2   R commands
There is a ‘>’ symbol in the Console. The commands are typed after this symbol and then 

the Enter button needs to be pressed. When a command is written in the Console and the Enter 
button is pressed, R reads the commands and returns some results or some error message on the 
Console. For example, if you type

> 2+8
[1] 10
In this case R added 2 and 8 and returned the result 10. Now, type 
> 2+*5
Error: unexpected ‘*’ in “2+*”

This time R has returned an error message, because ‘+*’ is not a defined operator in R. 

Figure II.1: R window
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Therefore, one should know what to type in the Console, otherwise, it will always give an error 
message. So R works interactively by returning results to the commands one by one, like in the 
following example:

> x=2
> x*5
[1] 10

R is mainly an expression language and comes with a syntax. Some common rules of R 
commands are

i)	 R commands are case sensitive, so AB, Ab, aB and ab are different objects. 
ii)	 All alphanumeric characters, ‘.’ and ‘_’ are allowed as symbols. In some countries accented 

letters are also allowed. 

iii)	 An R name must start with ‘.’ or a letter, and if it starts with ‘.’ the second character must 
not be a digit. Names are unlimited in length. 

iv)	 Elementary commands consist of either expressions or assignments. An expression 
is evaluated, printed (unless specifically made invisible), and the value is lost. An 
assignment also evaluates an expression and passes the value to a variable but the result is 
not automatically printed. 

v)	 Commands are separated either by a semi-colon (‘;’), or by a newline. 

vi)	 Braces (‘{’ and ‘}’) are used to create a block of codes. 
vii)	 Any line starting with a # till the end of the line is a comment and are not evaluated. 

Comments can be placed anywhere.
viii)	 If a command is not complete at the end of a line, R will give a different prompt, by default  

‘+’ on second and subsequent lines and continue to read input until the command is 
syntactically complete. This prompt may be changed by the user. 

ix)	 Length of a command at the Console is limited to about 4095 bytes (not characters). 

II.3.3   Working directory
The working directory refers to the directory or folder where R is currently working. By 

default the working directory is “My documents” or ‘Documents”. You can get the working 
directory by using code

> getwd()
[1] “C:/Users/User/Documents” 

R can read and open files from working directory directly without specifying any path. 
Similarly, it can save files and write to files in the working directory directly. One can reset the 
working directory to a different folder using the code below.
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> setwd(“C:/Users/User/Documents/DOE handbook/”)
In the beginning of an R session, it is better to set the working directory to a folder where 

most of the data files and codes are located. 

II.3.4   Data types in R
R is an object oriented language and therefore, all data types in R are some kind of object. 

Objects may be variables, vectors, matrices, arrays, character strings, functions, or more general 
structures built from such components. 

During an R session, objects are created and stored by name. One can use the command 

> objects()

to display the names of the objects which are currently stored within R. The collection of objects 
currently stored is called the workspace. One can remove objects using the function rm(). For 
example, the following code removes objects x and y form workspace.

> rm(x, y)

An object created during an R session can be saved in a file for use in future R sessions. The 
entire workspace of an R session and the history of all the commands used during the session 
can also be saved. Some commonly encountered objects are discussed below.

a) Vectors: Simplest object in R is a vector. A vector is a collection of elements. For 
example, 

> x = c(10, 15, 20, 25, 26)

creates a vector of 5 numbers. Here the object x contains those numbers and the function 
c() is used to assign those numbers to the object x. Vectors can be of three types i) numeric 
ii) character and iii) logical. A numeric vector contains numbers, a character vector contains 
characters and a logical vector can contain values TRUE, FALSE or NA.

b) Matrices:  A matrix object also is a collection of elements but it has two dimensions. 
They can also be numeric, character or logical in nature. Following is an example of creating a 
matrix.

> x=matrix(c(“a”, “b”, “c”, “d”),nrow=2)

> x

[,1] [,2]

[1,] “a”  “c” 

[2,] “b”  “d”

c) Arrays: Arrays are multi-dimensional generalization of vectors and matrices. A two-
dimensional array is a matrix. Arrays can have more than two dimensions.
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d) Factors: Factor objects are used to specify categorical or classificatory or grouping 
variables. For example, males and females are two levels of a variable gender. Then gender can 
be thought of a factor object.

> gender=c(“M”, “F”, “M”)

> gender=as.factor(gender)

> levels(gender)

[1] “F” “M”

Factor variables are particularly useful in analysis of variance and in linear model with 
grouping variables.

 e) Lists: A list is a collection of objects where each object can be of different type. For 
example, a list can have first object as a vector, second object as a matrix and third object as a 
data frame.

> mylist=list(x=c(10,20,30),y=matrix(1:6,nrow=3))

> mylist

$x

[1] 10 20 30

$y

     [,1] [,2]

[1,]    1    4

[2,]    2    5

[3,]    3    6

> mylist[[1]]

[1] 10 20 30

f) Data frames: A data frame is a two dimensional object. But unlike matrices, different 
columns of data frame can be different types, for example some columns can be numeric, some 
columns can be character, some columns can be factors. Here a column generally refers to a 
variable.

> age=c(20,25,28,30,26)

> weight=c(50,53,54,55,51)

> mydata=data.frame(age,weight)

> mydata

  age weight
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1  20     50

2  25     53

3  28     54

4  30     55

5  26     51

The data.frame() function is used to create a data frame.

g) Functions: Functions in R are a kind of objects which takes one or more inputs and 
produces some result(s) as output. R has a number of in-built functions. R also provides facility 
to create new functions by users. R has huge number of in-built functions. As a simple example, 
to obtain the mean and variance of a set of numbers 10, 13, 21, 34, 51, 32, 45, 32, 17, 29, 41, 52, 
the following code can be used.

> x=c(10,13,21,34,51,32,45,32,17,29,41,52)

> mean(x)

[1] 31.41667

> var(x)

[1] 200.9924

Here, c(), mean() and var() are in-built functions of R. The function c() assigns those 
numbers to the object x. The commands mean(x) and var(x) computes the mean and variance 
of an object x. Here, x is the input, also called argument, to the function mean() and var(). 

A complete list of in-built functions is available in the document R reference manual. The 
R reference manual opens by clicking on Help → Manuals (in  PDF) → R reference. It opens 
the full reference manual. It contains a complete list of all the functions and objects in base R. 
Apart from in-built functions, a large number external functions are available in contributed 
packages. Contributed packages are nothing but a collection of functions written by the authors 
of the packages to perform specific analysis. The manual of a package contains the details of the 
functions provided in that package. 

To know what are the argument(s) of a function and how to use it, you can always type 
help(functionname) where functionname is the name of the function. This opens an html page 
in browser containing the details of the function. For example, help(lm) gives the details of the 
usage of the function lm().

II.4   R packages
Though most of the standard statistical analysis are available in base R, but sometimes 

some contributed R packages are needed to do some specific analysis. An R package is a bundle 
of functions and codes for performing some statistical or mathematical analysis which are 
generally not covered in base R. This facility of R packages extends the usefulness of R greatly. A 
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large number of packages, as of 09 February 2016 around 7,800 packages are available on CRAN 
for a variety of analysis and the number is increasing day by day.

II.4.1   Downloading and installing a package
To use an R package, download the package from CRAN and then install and load it in 

an R session. A package can be downloaded from within R or from outside R. On a Windows 
machine which is connected to internet, a package can be installed by clicking on Packages 
→ Install packages(s) from the menu bar. This will open a list of mirrors. Select a mirror and 
then, from the available list of packages in the website, select the desired packages. They will be 
installed into R. 

To keep a copy of the downloaded package, you can visit any CRAN mirror web page and 
download the package. You can then install it by clicking on ‘Packages’ and then clicking on 
‘Install package(s) from local zip files...’ and then select the zip file containing the package.

After you have installed a package, you need to load it to R. For this click on ‘Packages’ 
and then click on ‘Load package...’. Alternatively, you can type library (packagename) in the 
console to load a package where packagename is the name of the package. For example, to load 
a package agricolae, you need to type

> library(agricolae)

A package is to be installed just once, but to use it for analysis, it needs to be loaded every 
time R is started. To use a package, you should download the manual of the package. The package 
manual contains documentation on functions which are available in that package. Sometimes 
more than one package may be needed for analysis. It is always better to load only the required 
packages. There is no need to load packages which are not required in a session, because loading 
a number of packages slows down R. 

When some analysis are not available directly in base R software, then only we need to 
use some R package. Sometimes more than one R package may be available for similar kind 
of analysis and the user should see which of the packages does exactly what and then use the 
suitable package for the analysis. Another important point to consider while installing an R 
package is to check the compatibility of the package with the R version being used. It can be 
seen from the package manual what version of R is required for using the package. Generally, 
most of the packages installed on a given date will run on most recent version of R software on 
that date.

II.5   Reading data in R
i)  Loading data in R directly

Data with few variables and few observations can be read in R by typing in the Console R 
as shown in the following example. 

> month<-c(‘Jan’,‘Feb’,‘Mar’,‘Apr’,‘May’,‘Jun’,‘Jul’, ‘Aug’,‘Sep’,‘Oct’,‘Nov’,‘Dec’)

> rainfall<-c(5,4,8,7,9,20,30,35,24,15,10,8)
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> mydata=data.frame(month,rainfall)

> mydata

   month rainfall

1    Jan        5

2    Feb        4

3    Mar        8

4    Apr        7

5    May        9

6    Jun       20

7    Jul       30

8    Aug       35

9    Sep       24

10   Oct       15

11   Nov       10

12   Dec        8

Note that data.frame() function combines the vectors month and rainfall into a data frame 
called mydata. Note that a dataset in R is always in the form of a two-dimensional array with 
columns representing variables and rows representing individual observations. Sometimes one 
may be interested to know the names of variables in a data set loaded in R. For example, to know 
the names of the variables in data set mydata one can use following command:

> names(mydata)

[1] “month”    “rainfall”

The scan() function can also be used to read data directly typed in R console. For example,

> y<-scan()

1: 393 55 32 40

5: 2 1 3 5

9: 

Read 8 items

> y

[1] 393  55  32  40   2   1   3   5
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When entering data from keyboard using scan() function, one has to hit enter button when 
one does not want to type any more data. Then R stops scanning and loads the data into the 
object. The function scan() is also able to read data from external file. 

ii) Loading data in R from an external file

Most often the data may not be just a few observations. There may be quite many variables 
and observations. In that case, the data may be in a spreadsheet or some other external file, or 
from some other statistical software or from some web page. R provides facilities for loading 
data from each of them. 

Reading data from text file

Data in text file should be kept such that the individual observations are separated with a 
delimiter. Some commonly used delimiters are ‘,’,‘:’,‘t’,‘ ‘ i.e., blank space, ‘\~’,  ‘@’, ‘\&’, ‘*’ etc. But 
be sure that none of the observations or variables in the data set have any of those characters, 
otherwise data will be loaded improperly and there may be error in loading of data. Consider a 
text file with following observations with comma(‘,’)  as a delimiter.

Jan,5

Feb,4

Mar,8

Apr,7

May,9

Jun,20

Jul,30

Aug,35

Sep,24

Oct,15

Nov,10

Dec,8

Let the file name is “rainfall.txt” and is kept in the working directory. This data can be 
loaded in R by using the function read.table() as follows:

> mydata2=read.table(“rainfall.txt”,header=TRUE,sep=”,”)

> mydata2

   month rainfall

1    Jan        5

2    Feb        4
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3    Mar        8

4    Apr        7

5    May        9

6    Jun       20

7    Jul       30

8    Aug       35

9    Sep       24

10   Oct       15

11   Nov       10

12   Dec        8

First argument of read.table() refers to the external file. The second argument header=TRUE 
tells R that there is header in the rainfall.txt file, and those are used as variable names for the 
data. If there is no header in a text file, then header=FALSE should be used. Third argument 
sep=“ , ” tells R that observations are separated by a ‘ , ’. There are other arguments to read.
table() function, but these three are essential. The details of the usage of the function read.
table() is available with help(read.table) in the Console. 

There are some other functions to read files with specific delimiters. The function read.csv() 
function loads comma separated value (csv) files, i.e., files with comma delimited observations, 
read.csv2() function loads data from semicolon (‘;’) delimited files, read.delim() and read.
delim2() functions load data from tab delimited files. 

Reading data from a webpage

Suppose some data is available on a webpage. To read a dataset from a web page the function 
read.table() can be used with the complete address of the page. For example, 

> webdata=read.table(“http://data.princeton.edu/wws509/datasets/effort.dat”)

> webdata

	 setting	 effort	 change

Bolivia	 46	 0	 1

Brazil	 74	 0	 10

Chile	 89	 16	 29

Colombia	 77	 16	 25

CostaRica	 84	 21	 29

Cuba	 89	 15	 40

DominicanRep	 68	 14	 21
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Ecuador	 70	 6	 0

ElSalvador	 60	 13	 13

Guatemala	 55	 9	 4

Haiti 	 35	 3	 0

Honduras	 51	 7	 7

Jamaica	 87	 23	 21

Mexico	 83	 4	 9

Nicaragua	 68	 0	 7

Panama	 84	 19	 22

Paraguay	 74	 3	 6

Peru 	 73	 0	 2

TrinidadTobago	  84	 15	 29

Venezuela	 91	 7	 11

Loading data from a spreadsheet

To load data from an excel file to R, the relevant worksheet may be saved into a tab delimited 
text file or into a csv file and then the text file or .csv may be loaded using read.table() or read.
csv() function. However, if to read the data from excel directly into R, a package called RODBC 
is needed. An example of loading data from excel is shown below.

> library(RODBC)

> connection = odbcConnectExcel(“myfile.xlsx”) 

> sqlTables(connection)$TABLE_NAME # show the worksheets

> df = sqlFetch(connection, “Sheet1”) #Read worksheet 1 

# Alternative way

> df = sqlQuery(connection, “select * from [Sheet1 $]” ) 

> close(connection) #close the connection to the file

There is also an xlsx package which offers reading and writing excel files. For example,

> library(xlsx)

> read.xlsx(“myfile.xlsx”, sheetName = “Sheet1”)

II.6   Some statistical analysis examples
In this Section, some examples of statistical analysis using R is given. For this purpose, we 

use the PlantGrowth data set available in R.
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> data(PlantGrowth)

> PlantGrowth

   weight group

1    4.17  ctrl

2    5.58  ctrl

3    5.18  ctrl

4    6.11  ctrl

5    4.50  ctrl

6    4.61  ctrl

7    5.17  ctrl

8    4.53  ctrl

9    5.33  ctrl

10   5.14  ctrl

11   4.81  trt1

12   4.17  trt1

13   4.41  trt1

14   3.59  trt1

15   5.87  trt1

16   3.83  trt1

17   6.03  trt1

18   4.89  trt1

19   4.32  trt1

20   4.69  trt1

21   6.31  trt2

22   5.12  trt2

23   5.54  trt2

24   5.50  trt2

25   5.37  trt2

26   5.29  trt2

27   4.92  trt2



351

Introduction to R

28   6.15  trt2

29   5.80  trt2

30   5.26  trt2

Basic summary of the dataset can be found using summary() function.

> summary(PlantGrowth)

		  weight		  group   

 Min.      :	 3.590		  ctrl:10  

 1st Qu.  :	 4.550		  trt1:10  

 Median :	 5.155		  trt2:10  

 Mean    :	 5.073            

 3rd Qu.:	 5.530            

 Max.     :	 6.310  

Note the summary() function has returned mean, median, 1st and 3rd quartiles and minimum 
and maximum of the weight variable. Since the group variable is factor object, so it has returned 
number of observations for each level of the group variable.

To get the variance of weight variable, the var() function can be used.

> var(PlantGrowth$weight)

[1] 0.49167

To have an idea of distribution of weight for each group in the data, boxplots can be obtained 
using boxplot() function as shown below.

> boxplot(weight~group,data=PlantGrowth)

This produces the plot as shown in Figure II.2 in R Graphics Device window.

Figure A II.2: Box plot of weight for each group
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To get the mean and standard deviation of weight for each group, the aggregate() function 
can be used as shown below.

> aggregate(weight~group,data=PlantGrowth,mean)

  group weight

1  ctrl  5.032

2  trt1  4.661

3  trt2  5.526

> aggregate(weight~group,data=PlantGrowth,sd)

  group    weight

1  ctrl 0.5830914

2  trt1 0.7936757

3  trt2 0.4425733

R has function for performing t-tests. The function t.test() is available for this purpose. For 
example, to test the hypothesis that the population mean of weight variable is 5, the following 
command can be used.

> t.test(PlantGrowth$weight,mu=5)

One Sample t-test

data:  PlantGrowth$weight

t = 0.5702, df = 29, p-value = 0.5729

alternative hypothesis: true mean is not equal to 5

95 percent confidence interval:

 4.811171 5.334829

sample estimates:

mean of x 

5.073

Two-independent sample t-test can also be performed using t.test() function. For example, 
the following example tests the hypothesis whether the population mean of weights of trt1 
group is equal to the population mean of weights of trt2 group.

> t.test(weight~group,data=PlantGrowth,subset=group!=“ctrl”,

var.equal=TRUE)

Two Sample t-test

data:  weight by group
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t = -3.0101, df = 18, p-value = 0.007518

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -1.4687336 -0.2612664

sample estimates:

mean in group trt1 mean in group trt2 

4.661              5.526

A paired t-test can be performed with an additional argument paired=TRUE in the above 
function. However that should be done only when the sample observations for the two groups 
are matched or paired.

Since the above data is from an experiment and the objective was to see whether the average 
weight of three groups differ significantly or not, an analysis of variance (ANOVA) can be 
performed. R provides aov() function for performing ANOVA for balanced data. If the data is 
not balanced with respect to the grouping variables, then it is better to use the lm() function 
which fits linear model. The following commands show the uses of both the functions.

> aov1=aov(weight~group,data=PlantGrowth)

> summary(aov1)

            Df Sum Sq Mean Sq F value Pr(>F)  

group        2  3.766  1.8832   4.846 0.0159 *

Residuals   27 10.492  0.3886                 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> lm1=lm(weight~group,data=PlantGrowth)

> anova(lm1)

Analysis of Variance Table

Response: weight

          Df  Sum Sq Mean Sq F value  Pr(>F)  

group      2  3.7663  1.8832  4.8461 0.01591 *

Residuals 27 10.4921  0.3886                  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Note that the function anova() has been used on the fitted lm1 object to get ANOVA table. 
The ANOVA tables are similar from both aov1 and lm1 objects. Both these objects contain a 
number of other terms such as fitted values, residuals, coefficients, degrees of freedoms etc.

Since the ANOVA suggests that the groups differ significantly at 5% level with respect 
to weight, a post hoc test (Tukey’s Honest significant difference test) can be performed using 
TukeyHSD() function to compare the groups pairwise.

> TukeyHSD(aov1)

  Tukey multiple comparisons of means

    95% family-wise confidence level

Fit: aov(formula = weight ~ group, data = PlantGrowth)

$group

            diff        lwr       upr     p adj

trt1-ctrl -0.371 -1.0622161 0.3202161 0.3908711

trt2-ctrl  0.494 -0.1972161 1.1852161 0.1979960

trt2-trt1  0.865  0.1737839 1.5562161 0.0120064

The result suggest treatment 1 and treatment 2 groups are significantly different from each 
other. Note that the TukeyHSD() function takes an object of class “aov” as argument. It will not 
work on an object of class “lm”.

To get least significant difference (LSD) or to perform other post hoc tests such as Duncan’s 
multiple range test, additional packages need to be used. Some important packages with respect 
to this book are agricolae, car and lsmeans.

LSD can be computed after installing and loading the package in R. 

> library(agricolae)

> LSD.test(aov1,“group”,console=TRUE)

> # Or alternatively

> LSD.test(lm1,“group”,console=TRUE)

Study: aov1 ~ “group”

LSD t Test for weight 

Mean Square Error:  0.3885959 

group,  means and individual ( 95 %) CI
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	 weight	 std		  r	 LCL		  UCL  		  Min 	 Max

ctrl  	 5.032 	 0.5830914 	 10 	 4.627526 	 5.436474 	 4.17 	 6.11

trt1  	 4.661 	 0.7936757 	 10 	 4.256526 	 5.065474 	 3.59 	 6.03

trt2  	 5.526 	 0.4425733 	 10 	 5.121526 	 5.930474 	 4.92 	 6.31

alpha: 0.05 ; Df Error: 27

Critical Value of t: 2.051831 

Least Significant Difference 0.5720126

Means with the same letter are not significantly different.

Groups, Treatments and means

a        trt2    5.526 

ab       ctrl    5.032 

b        trt1    4.661

 The package lsmeans is useful for computing least square means as is done in SAS. For 
example

> library(lsmeans)

> lsmeans(aov1,“group”)

> #or alternatively

> lsmeans(lm1,“group”)

 group lsmean        	 SE 	 df lower.	 CL 	 upper.		  CL

 ctrl   		  5.032 	 0.1971284 	 27 	 4.627526 	 5.436474

 trt1   		  4.661 	 0.1971284 	 27 	 4.256526 	 5.065474

 trt2   		  5.526 	 0.1971284 	 27 	 5.121526 	 5.930474

Confidence level used: 0.95

Pairwise comparisons of treatments is possible using pairs() function in lsmeans pacakge.

> lsm=lsmeans(aov1,“group”)

> pairs(lsm)

contrast    	 estimate	 SE		  df 	 t.ratio 		  p.value

 ctrl - trt1    	0.371 		  0.2787816   	 27   	 1.331   		  0.3909

 ctrl - trt2 	 -0.494 		  0.2787816   	 27  	 -1.772   		 0.1980

 trt1 - trt2 	 -0.865 		  0.2787816   	 27  	 -3.103   		 0.0120
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P value adjustment: tukey method for a family of 3 means 

Often we are interested in compact letter display of the treatments. Under compact letter 
display, treatments with same letters are not significantly different. This display is particularly 
useful if number of treatments is more. For the above data, one can have compact letter display 
using following code.

> cld(lsm, Letters=“ABCDE”)

 group	 lsmean		  SE		  df 	 lower.CL	 upper.CL	 group

 trt1    	 4.661     	 0.1971284  	 27 	 4.256526  	 5.065474  	 A    

 ctrl    	 5.032     	 0.1971284  	 27 	 4.627526  	 5.436474  	 AB   

 trt2    	 5.526    		 0.1971284  	 27 	 5.121526  	 5.930474   	 B   

Confidence level used: 0.95 

P value adjustment: tukey method for a family of 3 means 

significance level used: alpha = 0.05 

Often type III sum of squares are desired. The package car is useful for such situations. 

> library(car)

> Anova(aov1,type=“III”)

> # or alternatively

> Anova(lm1,type=“III”)

Anova Table (Type III tests)

Response: weight

             Sum Sq Df  F value  Pr(>F)    

(Intercept) 253.210  1 651.6029 < 2e-16 ***

group         3.766  2   4.8461 0.01591 *  

Residuals    10.492 27                     

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Testing the significance of contrasts is often required. Both the packages lsmeans and car are 
useful for this. For example, to test the significance of the contrast 2*ctrl – trt1 – trt2, one can 
use the following commands.

> lsm=lsmeans(lm1,“group”)
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> con1=contrast(lsm, list(con1 = c(2,-1,-1)))

> con1

 contrast estimate        SE df t.ratio p.value

 con1       -0.123 0.4828639 27  -0.255  0.8009

> lht(lm1,con1@linfct)

Linear hypothesis test

Hypothesis:

- grouptrt1 - grouptrt2 = 0

Model 1: restricted model

Model 2: weight ~ group

Res.Df    RSS Df Sum of Sq      F Pr(>F)

1     28 10.517                           

2     27 10.492  1  0.025215 0.0649 0.8009

The function lht() is for linear hypothesis test and is available in car package. All these 
packages have many other functions. To get details about the available functions in these 
packages, please refer to the manuals of these packages. The reader is referred to the E-manual 
on R-Scripts For Statistical Analyses using R-Studio by Parsad et al (2015) available at  http://
www.iasri.res.in/sscnars/content_rmanual.htm

II.7   RStudio
RStudio is an integrated development environment (IDE) for doing statistical analysis and 

other tasks using computing power of R software. RStudio is available in two editions: RStudio 
Desktop, where the program is run locally as a regular desktop application; and RStudio Server, 
which allows accessing RStudio using a web browser while it is running on a remote Linux 
server. RStudio Desktop is available for Microsoft Windows, Mac OS X, and Linux.

RStudio is available in open source and commercial editions and runs on the desktop 
(Windows, Mac, and Linux) or in a browser connected to RStudio Server or RStudio Server Pro 
(Debian/Ubuntu, RedHat/CentOS, and SUSE Linux). The free edition of RStudio desktop can 
be downloaded from https://www.rstudio.com/. 

RStudio provides more user friendly interface to use R. For using RStudio in machine, base 
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R must be installed in that machine. The interface of RStudio is given in Figure II.3.

The top left window in Figure II.3 has the editor for writing R codes. Bottom left window 

is similar to R console where R codes get executed. Top right window of RStudio has two tabs: 
Environments and History, respectively. In the Environment tab, we can see which objects 
are currently loaded in R. The History tab gives the history of commands already executed. 
Bottom right window of RStudio has several tabs namely Files, Plots, Packages, Help and 
Viewer. The Files tab can be used to explore different files, Plots tab is used to view plots 
produced from R codes, Packages tab shows the packages already installed and also allows 
easy installation and loading of packages in a session. Help tab can be used to see the help on  
R functions and Viewer tab can be used to see local web content. 

Figure II.3: RStudio interface



Multiple Comparison Procedures

III.1   Introduction
In the usual analysis of variance the key test statistic used is Snedecor’s F. This statistic is 

used for testing the null hypothesis that the population means of all the treatment effects are 
same against the alternative that there is at least one inequality between two treatment effects. 
In other words, the null hypothesis is H0:  and the alternate hypothesis is H1:  

 for at least one pair (i, l; i ≠ l = 1, 2, . . . , v), where ’s denote the population means of 
treatment effects and v is the total number of treatments. The F test actually determines whether 
there exists a significant difference among treatments or not. When the null hypothesis that 
there is no difference among treatment effects is not rejected, it implies that the factor levels 
do not influence the response.  In that case there is nothing which the researcher can learn and 
the analysis ends there. When the null hypothesis of equality of treatment effects is rejected, 
the researcher knows that there is no equality amongst the treatment effects. The implication 
of this is that there is a relation between the factor levels and the response. But the researcher 
does not get any knowledge about the form of the inequality of the alternate hypothesis. In that 
case the researcher needs to thoroughly investigate the nature of the factor levels relation with 
the response. 

The objective of an experiment is never so narrow as to determine whether or not all the 
treatments have similar effects in terms of similar response. The purpose of an experiment has 
to be much broad and may demand getting answers to some more probing questions given 
below:

(a)	 Does the effect of treatment 1 differ from that of treatment 2 (H0: ), or does the 
effect of treatment 5 differ from that of treatment 8 (H0:  ),  or does the effect of 
treatment i differ from that of treatment l (H0:  ); i ≠ l = 1, 2, . . . , v?

(b)	 Does the average effect of treatments 1 and 2 differ from the average effect of treatments 3 
and 4 (H0:  ), or does the average effect of treatments 1, 2, 3, and 4 differ 
from the effect of treatment 9 (H0:  )? Or does the average effect of 
a subset of treatments differ from the average effect of another subset of treatments (H0: 

?
(c)	 Which of the treatments differ from a standard or control treatment or from each other 

(comparisons of interest  given that  is the control treatment)?
(d) 	 Which is the best treatment? (Best may be with highest (adjusted) mean or lowest 

adjusted (mean) depending on the attribute under study). For yield, etc. the treatment 
with highest mean is best, whereas for disease intensity in a plant protection trial, the 

Multiple Comparison Procedures

Annexure-III
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treatment with lowest mean is the best. Further, the treatments which are statistically 
at par with the best treatment need to be identified. The recommendation may be given 
based on the feasibility/availability/returns over the variable cost among the treatments 
which are statistically at par with the best performing treatment.

The implication of what has been just described is that when the F test rejects the null 
hypothesis, we usually want to undertake a thorough analysis of the nature of the factor-levels 
effects. Contrast analysis is a way to probe further the type of factor levels response relationship 
and has been dealt with in Chapter 3. This is a very powerful technique and has the capacity 
to answer almost all the questions for which the researcher needs an answer. Another useful 
and popular way to explore the cause of rejection of the null hypothesis or the type of relation 
between the factor levels and response is the multiple comparison procedure. In contrast to 
analysis of variance, which simply tests the null hypothesis that the population means of all 
treatment effects are equal, multiple comparisons procedures help one determine where the 
differences among the population means occur. These methods examine or compare more than 
one pair of treatment effects simultaneously. It may be noted that making pairwise comparisons 
of treatments effects over and over again does not work in general, because the significance level 
is not as specified for a single pair comparison. If c hypotheses are to be tested simultaneously, 
each at significance level α, then the probability that at least one hypothesis is incorrectly rejected 
is at most cα. Similarly, while obtaining c simultaneous confidence intervals, one for each of 
comparison of treatment effects with a 100(1 - α) % confidence coefficient, then the probability 
that the c confidence intervals will be simultaneously correct is at least 1 - cα. The probability 
cα is the overall significance level or experiment wise error rate. Several multiple comparison 
procedures are such that these can be used after examining the results. The comparisons need 
not be defined prior to conducting the experiment. 

Many methods exist to detect differences between population means of treatment effects. 
Some commonly used procedures for comparison of population means are (a) Fisher’s Protected 
Least Significant Difference, (b) Duncan’s Multiple Range Test (DMRT), (c) Bonferroni’s 
adjustment method, (d) Scheffe’s method, (e) Tukey’s Honest Significant Difference (HSD) 
method, (f) Dunnett’s method.

Multiple comparison tests have the same assumptions of ANOVA viz., normality and 
independence of errors and homogeneity of error variances. Though these tests are somewhat 
robust, nonparametric multiple comparison tests exist if the assumptions are seriously violated. 
All multiple comparison tests work best if sample sizes are equal.

It may be worthwhile mentioning here that in a broader sense, multiple comparison 
procedures can be applied for testing of differences in population parameters other than the 
mean. The logic remains much the same. Multiple comparison procedures rest on application of 
the same test to each pair of populations. Of course, the more tests (comparisons) a researcher 
does, the greater the chance that an apparently extreme difference appears just by chance. When 
several hypotheses are to be tested, the probability that at least one hypothesis is incorrectly 
rejected can be very high. 
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Hence, main problems here are

i.	 Establishing and maintaining an appropriate probability of family-wise type I error and
ii.	 Based on the family-wise type I error, calculating the probability of comparison-wise type 

I errors.

III.2   Methods of multiple comparisons
The purpose of this section is to describe various multiple comparisons methods for testing 

hypotheses after the analysis of variance has been done. We begin with the most popular Fisher’s 
Least Significant Difference. 

III.2.1   Fisher’s Least Significant Difference (LSD)
Fisher’s LSD (to be written as LSD, henceforth) is a technique used for making pairwise 

comparison between the population mean of one treatment effect with the population mean 
of the other treatment effect. This test is needed to explore and compare the effects of the 
treatments pairwise after the analysis of variance has rejected the null hypothesis that all the 
treatment effects are same or equal.  The LSD test is essentially a set of individual Student’s 
t tests, and unlike other multiple comparison methods, it does not make any correction for 
multiple comparisons. The only difference between a set of t tests and LSD is that t tests compute 
the pooled standard error from only the two treatments being compared, while the LSD test 
computes the pooled standard error from all the treatments (or groups).

The LSD test considers the square root of the error (residual) mean square from the 
analysis of variance as the pooled standard error. It then takes account of the sample sizes (or 
replications) of the two treatments (or groups) being compared and computes the estimated 
standard error of the estimated difference of the two treatment effects. Thereafter, it computes t 
statistic as ratio of estimated difference of two population means of two treatment effects to the 
estimated standard error of this difference. The LSD, however, does not account for the multiple 
comparisons. LSD, however, controls only individual error rate. Therefore, it should be used 
only when null hypothesis about equality of treatment effects through ANOVA is rejected. 

Consider a design with v treatments and replications (or sample sizes)  
r1,r2 , ... ri , ... rv ,  ri being the replication of the ith treatment. For the pair of treatments i and 

l , let the difference be denoted as . The estimated difference is  with estimated 

standard error as , where  is the error (or residual) mean square obtained 

from the analysis of variance. The t statistic is defined as . The statistic t follows Student’s t 

distribution with error degrees of freedom (= ζ, say). Let  denote the table value of Student’s 

t at ζ degrees of freedom and α level of significance. Then 
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LSD (τi, τl) =  × sed. 

If , then the differences are significant; otherwise the differences are not 
significant. LSD is also known as CD (Critical Difference).

If , then .

For designs with equal replications i.e. , the LSD will be same for each 
pair of treatments and will be given by 

.

The SAS code for pairwise comparison of treatments with LSD method is given below.

DATA mult_comp;

/*mult_comp is the name of the dataset; it could be any name*/

INPUT treatment yield;

CARDS;

. . . . .Enter Data Here . . . . . . .

;

PROC GLM;

CLASS treatment;

MODEL yield = treatment;

MEANS treatment / LSD LINES;
/*When the data are unbalanced or non-orthogonal, then use LSMEANS instead of MEANS. For 
balanced data both MEANS and LSMEANS are identical. So it is advisable that the researcher 
always use LSMEANS*/ 

LS MEANS treatment / PDIFF LINES;
/*MEANS statement performs multiple comparisons only for main-effects; however, in contrast 
LSMEANS statement performs multiple comparisons for main effects as well as interaction 
effects. In other words LSMEANS is powerful than MEANS statement*/

/*However, if data is balanced, one is required to give the value of minimum significant 
difference, and in that case one may opt for means statement*/

RUN;
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The R code for comparing treatments using LSD is as follows.

library(agricolae)

treatment=as.factor(treatment)

lm1=lm(yield~treatment)

anova(lm1)

LSD.test(lm1,“treatment”,group=FALSE,console=TRUE)

LSD.test(lm1,“treatment”,console=TRUE)

III.2.2   Duncan’s Multiple Range Test (DMRT)
This is another multiple comparison test based on Individual Error Rate. It was given by 

Duncan (1955).  Unlike a single value for all pairwise comparisons in case of LSD, DMRT 
involves computation of a series of values each corresponding to a specific set of pair comparisons 
depending on the difference in ranks of the treatment effects being compared.

The least significant Range  , where  is the desired significance 

level, edf is the error degrees of freedom and p = 2, …, v is one more than the distance in rank 

between the pairs of the treatment means/effects to be compared.  

If the two treatment means have consecutive rankings, then p = 2 and for the highest and 

lowest means, it is v. The values of   can be obtained from Duncan’s table of significant 

ranges.

III.2.3   Bonferroni method
The Bonferroni method is the simplest method that makes corrections for the multiple 

comparisons. It is important to note that this method does not have any pre-requisite that null 
hypothesis in the analysis of variance is rejected, i.e., the treatment effects are not homogeneous. 
This test is used to correct any number of p-values for multiple comparisons. To begin with a 
p-value is obtained for every pairwise comparison. These p-values are not adjusted for making 
multiple comparison while these computations are being made. The family wise significance 
threshold is defined and is set at generally 0.05 or 0.01 (5% or 1% level of significance). The 
significance threshold defined is divided by the total number of comparisons. If the significance 
threshold is α (0.05 or 0.01) and the total number of comparisons is c then the new threshold 
value is α /c (or 0.05/c or 0.01/c). For example, if significance threshold is 0.05 and the total 
number of comparisons is say c = 21, then the new threshold value is 0.05/21 = 0.0024. We 
shall then say that a comparison is significant if its p-value is smaller than or equal to α /c (or 
≤ 0.0024, say). Otherwise, the comparison is not significant.  This method has a limitation, 
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though, that c should be small. This method can also be extended straightway to obtaining 
multiple confidence intervals.

In the sequel is given SAS code for multiple comparisons with Bonferroni method. BON 
is the SAS code that performs multiple comparison tests between treatments using Bonferroni 
method and is used with LSMEANS statements as follows.

DATA mult_comp;
INPUT treatment yield;
CARDS;
. . . Enter Data Here. . .
;
PROC GLM;
CLASS treatment;
MODEL yield = treatment;
LSMEANS treatment/ PDIFF = ALL ADJUST = BON LINES;
RUN;

The R code for comparing treatments using Bonferroni method is given below.

library(agricolae)
treatment=as.factor(treatment)
lm1=lm(yield~treatment)
anova(lm1)
LSD.test(lm1,“treatment”,group=FALSE, p.adj=“bonferroni”,console=TRUE)
LSD.test(lm1,“treatment”, p.adj=“bonferroni”,console=TRUE)

Although this test avoids any false discovery, yet it is very conservative. Sometimes the 
difference between treatments is significantly different but may not be  detected through the 
use of this test.

III.2.4   Scheffe’s method
Scheffe’s method is applicable to the set of estimates of all possible contrasts among treatment 

effects and is not restricted to just pairwise comparisons of treatment effects.  Therefore, unlike 
Bonferroni method, this method is not restricted to small values of c. This method uses the 
fact that every possible treatment contrast can be written as linear combination of the v  – 1 
“treatments vs control” contrasts like .

Chapter 3 of the book has been devoted to contrast analysis, but to explain Scheffe’s method, 
it may not be out of place to define a contrast again here. An arbitrary contrast of treatment effects 

is defined as , where  . A contrast is not unique and there can be infinite 
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number of choices of set of numbers  such that . Thus, there can 

be infinite number of contrasts. The contrast B can be estimated as , where 

 is the sample mean of the ith treatment, i = 1,2 ..., v.   The estimated variance of the estimated 

contrast is  , where  is the error mean square in the analysis of variance and ri 

is the replication number of the ith treatment.  

After the data has been generated and the analysis of variance is done, confidence 
bounds can be obtained for every possible treatment contrast with simultaneous confidence 
coefficient exactly . The overall confidence level remains fixed. Thus, a set of overall 
simultaneous correct  confidence intervals for all possible treatment contrasts is 
given by 

 .

Here  is the value of Snedecor’s F distribution at (v ‒ 1), (n ‒ v) degrees of freedom 

and α  level of significance.

The SAS code for multiple comparisons with Scheffe’s method is given in the sequel. 
SCHEFFE is the SAS code that is used for multiple comparisons test by Scheffe’s method and is 
used with LSMEANS statements as follows:

DATA mult_comp;
INPUT treatment yield;
CARDS;
. . . Enter Data Here. . .
;
PROC GLM;
CLASS treatment;
MODEL yield = treatment;
LSMEANS treatment / PDIFF = ALL ADJUST = SCHEFFE LINES;
RUN;

The R code for comparing treatments using Scheffe’s method is given below.
library(agricolae)
treatment=as.factor(treatment)
lm1=lm(yield~treatment)
anova(lm1)
scheffe.test(lm1,“treatment”,group=FALSE, console=TRUE)
scheffe.test(lm1,“treatment”, console=TRUE)
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III.2.5   Tukey method  
Tukey’s test is performed for multiple comparisons and the test also reports the confidence 

intervals. Tukey’s multiple comparison test is also called as Tukey’s honest significant difference 
test or Tukey’s HSD. If the researcher wants to compare every treatment effect with every other 
treatment effect (all the possible pairwise treatment comparisons), then use the Tukey’s test. If 
the interest of the researcher is to compare every treatment effect with a control treatment effect, 
then use the Dunnett’s test. The Tukey’s method applies simultaneously to the set of all the 
pairwise treatment comparisons , .  This method is used for all pair-wise 
treatment contrasts and is based on distribution statistic , given by

The distribution of  is called Studentized range distribution. For CRD and the one way 
ANOVA, a set of overall simultaneous  confidence interval for all pairwise treatment 
contrasts ( ) is given by 

For equal replication ( ), the overall confidence level is exactly and 
for unequal replications ( ), the overall confidence level is at least .

The SAS code for multiple comparisons with Tukey’s method is given in the sequence. 
TUKEY is the SAS code that performs multiple comparison tests by Tukey’s method and it is 
used with LSMEANS statement as follows.

DATA mult_comp;
INPUT treatment yield;
CARDS;
. . . Enter Data Here. . .
;
PROC GLM;
CLASS treatment;
MODEL yield = treatment;
LSMEANS treatment/ PDIFF = ALL ADJUST = TUKEY LINES;
RUN;

The R code for comparing treatments using Tukey’s method is given below.

library(agricolae)
treatment=as.factor(treatment)
lm1=lm(yield~treatment)
anova(lm1)
HSD.test(lm1,“treatment”,group=FALSE, console=TRUE)
HSD.test(lm1,”treatment”, console=TRUE)
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III.2.6   Dunnett’s Method
Dunnett’s method is a kind of special method that provides a set of simultaneous 100(1 

- α)% confidence intervals for preplanned “treatments vs control” contrasts of the type 

 ,  , .. . ,  (in general  ), given that   is the effect of control 

treatment, such that the overall confidence levels is at least 100(1 - α)%. This test is used only for 

treatments vs control comparisons and not for all the possible pairwise treatment comparisons. 
This test provides confidence intervals shorter in length compared to the ones provided by the 
Bonferroni, Scheffe and Tukey methods. 

This test obtains the simultaneous confidence intervals by using the joint distribution of 
the estimators  of , where is the mean of the ith treatment. The 
joint distribution of   is a special case of multivariate t distribution. The general formula 
for Dunnett’s two-sided overall simultaneous confidence interval for “treatment vs 
control” contrast   is given by

	

where  is the Dunnett’s t at α level of significance.

The SAS code for multiple comparisons with Dunnett’s method is given in the sequence.  
DUNNETT is the SAS code that performs multiple comparisons test by Dunnett’s method and 
it is used with LSMEANS statement as follows.

DATA mult_comp;
INPUT treatment yield;
CARDS;
. . .Enter Data Here. . .
;
PROC GLM;
CLASS treatment;
MODEL yield = treatment;
MEANS treatment / DUNNETT(‘t’) CLDIFF;

/* Here in DUNNETT(‘t’), treatment t is control treatment against which all the comparisons 
are made. t could be 1, or 2, or, v*/

RUN;

The R code for comparing treatments using Dunnett’s test is given below.
library(multcomp)
treatment=as.factor(treatment)
lm1=lm(yield~treatment)
anova(lm1)
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test = glht(lm1,linfct=mcp(trt=“Dunnett”))
#Here the first treatment is by default the reference treatment
summary(test)

Remark III.1 Hsu’s method is used for multiple comparisons where each treatment is 
compared with the ‘best’ treatment. This is similar to the multiple comparisons of treatments 
with a control except that in this case the control treatment is not designated before the actual 
start of the experiment. The control treatment in this case is the best treatment. Hsu’s method 
makes comparison of a treatment effect with the best of the other v - 1 treatments, i.e., tests 

contrasts of the type  for all . Obviously, when the effect of   is 

the best treatment, then max (τj) is the effect of second best treatment in terms of response. 

Thus,  will be positive if the effect of τi is the best treatment, zero if the 

effect of τi is tied with max (τj), the effect of second best treatment in terms of response and 

negative if the effect of τi is worse than the best of max (τj).  Hsu’s method is, therefore, called 
as RSMCB (Ranking, Selection and Multiple Comparisons with the Best treatment). For equi-
replicate C.R.D., Hsu’s formula for overall simultaneous  confidence interval is given 

by
  

.

If the lower bound comes out to be positive, then it is set to zero and the ith treatment is selected 
as the best, and if the lower bound comes out to be negative, then it is set to zero and the 
ith treatment is declared worse treatment. On the other hand if lower responses are favoured 
instead of higher responses, then the criterion of selecting the best or the worse treatment is just 
the opposite of what has been mentioned for the high favoured response. 

III.3   Example  1
{Nigam, A.K. and Gupta V.K., 1979, Handbook on Analysis of Agricultural experiments, First 

Edition, I.A.S.R.I. Publication, New Delhi, pp16-20}

A feeding trial with 3 feeds namely (i) Pasture (control), (ii) Pasture and Concentrates and (iii) 
Pasture, Concentrates and Minerals was conducted at the Yellachihalli Sheep Farm, Mysore, to study 
their effect on wool yield of Sheep. For this purpose twenty five ewe lambs were allotted at random to 
each of the three treatments and the three treatments and the weight records of the total wool yield 
(in gms) of first two clipping were obtained. The data for two lambs for feed 1, three for feed 2 and 
one for feed 3 are missing. The details of the experiment are given in Table III.1.
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Table III.1: Wool yield (in gms)

Feed 1 Feed 2 Feed 3 Feed 1 Feed 2 Feed 3

850.50 510.30 992.25 1020.60 623.70 1077.30

453.60 963.90 850.50 708.75 538.65 850.50

878.85 652.05 1474.20 652.05 737.10 680.40

623.70 1020.60 510.30 623.70 453.60 737.10

510.30 878.85 850.50 396.90 481.95 737.10

765.45 567.00 793.80 822.15 368.55 708.75

680.40 680.40 453.60 680.40 567.00 708.75

595.35 538.65 935.55 652.05 595.35 652.05

538.65 567.00 1190.70 538.65 567.00 567.00

850.50 510.30 481.95 850.50 595.35 453.60

850.50 425.25 623.70 680.40 652.05

793.80 567.00 878.85 567.00

The purpose of the experiment is to know if the three feeds differ statistically so far as the 
wool yield is concerned. The purpose of experimentation is also to identify the best feed, i.e. the 
treatment giving the highest yield.

III.3.1   Analysis of data
In the sequel are given the commands of SAS for analysis of data.
DATA crd;
INPUT trt woolyield;
CARDS;
1	 850.50
1	 453.60
1	 878.85
1	 623.70
1	 510.30
1	 765.45
1	 680.40
1	 595.35
1	 538.65
1	 850.50
1	 850.50
1	 793.80
1	 1020.60
1	 708.75
1	 652.05



370

Statistical Analysis of Agricultural Experiments

1	 623.70
1	 396.90
1	 822.15
1	 680.40
1	 652.05
1	 538.65
1	 850.50
1	 680.40
2	 510.30
2	 963.90
2	 652.05
2	 1020.60
2	 878.85
2	 567.00
2	 680.40
2	 538.65
2	 567.00
2	 510.30
2	 425.25
2	 567.00
2	 623.70
2	 538.65
2	 737.10
2	 453.60
2	 481.95
2	 368.55
2	 567.00
2	 595.35
2	 567.00
2	 595.35
3	 992.25
3	 850.50
3	 1474.20	
3	 510.30
3	 850.50
3	 793.80
3	 453.60
3	 935.55
3	 1190.70
3	 481.95
3	 623.70
3	 878.85
3	 1077.30
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3	 850.50
3	 680.40
3	 737.10
3	 737.10
3	 708.75
3	 708.75
3	 652.05
3	 567.00
3	 453.60
3	 652.05
3	 567.00
;
PROC GLM;
CLASS trt;
MODEL woolyield = trt;
MEANS trt / LSD Lines ; /*Lines is optional and only helpful in group letters to treatments, 
however, the Standrad error of difference beteen treatment means is obtained with harmonic 
mean of replications of treatments*/
LSMEANS trt / pdiff lines;
LSMEANS trt / PDIFF ADJUST = BON LINES;
LSMEANS trt / PDIFF ADJUST = SCHEFFE LINES;
LSMEANS trt / PDIFF ADJUST = TUKEY LINES;
MEANS trt / DUNNET (‘1’) CLDIFF;
/*DUNNET (‘1’) will make comparisons of feed 2 and feed 3 with feed 1, given that feed 1 is a 
control treatment*/
RUN;

III.3.2   Output of analysis
It is seen from the analysis that the model used is able to explain only about 11 per cent of 

the total variability on the data. The CV is also very high (27.84). The treatment differences are 
significant though (p-value = 0.0258).

Table III.2: Analysis results using SAS commands

ANOVA

Source DF SS MS F- Value Prob > F

Model 2 288208.648 144104.324 3.87 0.0258

Error 66 2460243.443 37276.416

Corrected Total 68 2748452.091

R-Square CV Root MSE woolyield Mean

0.105 27.839 193.071 693.519
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The pairwise treatment comparisons are made using different methods. These are given in 
the sequence. 

Fisher’s LSD 

The pairwise treatment comparisons are made using the Fisher’s Least Significant 
Difference. This method is the most popular for making the pairwise treatment comparisons. 
The confidence intervals are also obtained for all the pairwise differences between two treatment 

effects,  . The 95 percent confidence coefficient lengths of the confidence 

intervals are 229.92, 224.96 and 227.56 gms for the difference of the treatment effects of the 
pairs of treatments (1, 2), (1, 3) and (2, 3), respectively.

Table III.3: Pairwise comparison using LSD

Alpha 0.05

Error Degrees of Freedom 66

Error Mean Square 37276.42

Critical Value of t 1.997

Comparisons significant at the 0.05 level are indicated by ***

Treatment Comparison Difference Between Means 95% Confidence Limits Significance

3 - 1 71.39 -41.09 183.87

3 - 2 158.38 44.60 272.16 ***

1 - 3 -71.39 -183.87 41.09

1 - 2 86.99 -27.97 201.95

2 - 3 -158.38 -272.16 -44.60 ***

2 - 1 -86.99 -201.95 27.97
 

The above output is without using the option Lines in Means Statement. If we make use of 
Lines statement, the output would be as given in Table III.4.

Note: This test controls the Type I comparison wise error rate, not the experiment wise 
error rate

Table III.4: Analysis results of multiple comparison using LSD with LINES statement

Alpha 0.05

Error Degrees of Freedom 66

Error Mean Square 37275.5

Critical Value of t 1.997

Least Significant Difference 113.74

Harmonic Mean of Cell Sizes 22.971
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Note: Cell sizes are not equal.

Means with the same letter are not significantly different

t Grouping Mean N Treatment

A 767.81 24 3

B A 696.42 23 1

B 609.53 22 2

It may also be seen that only treatments 2 and 3 are significantly different. Treatments 1 and 
2 and treatments 1 and 3 are not significantly different. The output using LSMEANS statement 
with default option of LSD is given in Table III.5.

Table III.5: Analysis results of multiple comparison using LSD with LSMEANS 
STATEMENT

Least squares means for treatment effects  
Pr > |t| for H0: LSMean(i) = LSMean(j)

i/j 1 2 3

1 0.1356 0.2096

2 0.1356 0.0071

3 0.2096 0.0071

t Comparison Lines for Least Squares Means of Treatment Effects

LS-means with the same letter are not significantly different

woolyield LSMEAN Treatment LSMEAN 
Number

A 767.813 3 3

B A 696.424 1 1

B 609.434 2 2

Bonferroni method

Bonferroni method produces similar results as obtained using LSD. Treatments 2 and 3 are 
significantly different while treatments 1 and 2 and 1 and 3 are not significantly different. The 
probability levels are higher than those obtained using LSD. This is so because the significance 
levels have been adjusted for multiple comparisons. 

Table III.6: Analysis results of multiple comparison using Bonferroni method

Least squares means for treatment effects 
Pr > |t| for H0: LSMean(i) = LSMean(j)

i/j 1 2 3

1 0.4068 0.6287

2 0.4068 0.0213

3 0.6287 0.0213
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Bonferroni Comparison Lines for Least Squares Means of treatment effects

LS-means with the same letter are not significantly different

woolyield LSMEAN Treatment LSMEAN Number

A 767.813 3 3

B A 696.424 1 1

B 609.434 2 2

Least Squares Means for treatment effects 

i j Difference Between Means Simultaneous 95% Confidence Limits for 
LSMean(i) - LSMean(j)

1 2 86.99 ‒54.45 228.43

1 3 ‒71.39 ‒209.78 67.01

2 3 ‒158.38 ‒298.37 ‒18.39

Scheffe’s method

Scheffe’s method produces similar results as obtained using LSD and Bonferroni method. 
Treatments 2 and 3 are significantly different while treatments 1 and 2 and 1 and 3 are not 
significantly different. The probability levels are higher than those obtained using LSD but are 
almost similar to those obtained using Bonferroni method. 

Table III.7: Analysis results of multiple comparison using Scheffe’s method 

Least Squares Means for treatment effects  Pr > |t| for H0: LSMean(i) = LSMean(j)

i/j 1 2 3

1 0.3256 0.4524

2 0.3256 0.0259

3 0.4524 0.0259

Scheffe Comparison Lines for Least Squares Means of treatment effects

LS-means with the same letter are not significantly different

woolyield LSMEAN Treatment LSMEAN Number

A 767.813 3 3

B A 696.424 1 1

B 609.434 2 2

Least squares means for treatment effect 

i j Difference Between Means Simultaneous 95% Confidence Limits for LSMean(i)-LSMean(j)

1 2 86.90 ‒57.20 231.18

1 3 ‒71.39 ‒212.48 69.70

2 3 ‒158.38 ‒301.10 ‒15.66
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Tukey - Kramer method

Tukey-Kramer method, commonly known as Tukey’s method is the most popular method 
for making multiple comparisons. Tukey’s method produces similar results as obtained using 
LSD and Bonferroni methods. Treatments 2 and 3 are significantly different while treatments 
1 and 2 and 1 and 3 are not significantly different. The probability levels are higher than those 
obtained using LSD but are almost similar to those obtained using Bonferroni method. 

Table III.8: Analysis results of multiple comparison using Tukey-Kramer method

Least squares means for treatment effects  
Pr > |t| for H0: LSMean(i) = LSMean(j)

i/j 1 2 3

1 0.2925 0.4186

2 0.2925 0.0192

3 0.4186 0.0192

Tukey-Kramer Comparison Lines for Least Squares Means of treatment effects

LS-means with the same letter are not significantly different

woolyield LSMEAN Treatment LSMEAN Number

A 767.813 3 3

B A 696.424 1 1

B 609.434 2 2

Least squares means for effect trt

i j Difference Between Means Simultaneous 95% Confidence Limits for LSMean(i)-LSMean(j)

1 2 86.99 ‒51.06 225.04

1 3 ‒71.39 ‒206.46 63.69

2 3 ‒158.38 ‒295.01 ‒21.74

Dunnett’s test

Dunnett’s test has been used for obtaining a set of simultaneous confidence intervals for a 
preplanned “treatments vs control” comparisons of the type  and   (in general   

, given that  is the effect of control treatment). The length of the confidence 
intervals are 254.69 and 260.90, respectively for the comparisons of the type  and 

. However, the corresponding length of the confidence intervals obtained using LSD 
(Student’s t) are 224.96 and 229.92, respectively. The major difference arises because the critical 
value of t in case of LSD method is 1.997 while the critical value of Dunnett’s t is 2.260.
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Table III.9: Analysis results of multiple comparison using Dunnett’s test

Alpha 0.05

Error Degrees of Freedom 66

Error Mean Square 37276.42

Critical Value of Dunnett’s t 2.26038

Comparisons significant at the 0.05 level are indicated by ***

Treatment 
Comparison

Difference 
Between Means Simultaneous 95% Confidence Limits Significance 

3 - 1 71.39 ‒55.96 198.73 - 

2 - 1 ‒86.99 ‒217.14 43.16 - 
 

The comparison of the length of the confidence intervals is also made with those obtained 
by other methods. The lengths of the confidence intervals of various contrasts are given in Table 
III.10.

Table III.10: Length of confidence intervals by different multiple procedure methods

Comparison LSD Bonferroni Scheffe Tukey Dunnett

|1, 2| 229.92 282.88 288.38 276.10 260.30

|1, 3| 224.96 276.79 282.18 270.15 254.69

|2, 3| 227.56 279.98 285.44 273.27 -

Table III.10 reveals that LSD produces smallest length confidence intervals for the difference 
of treatment effects, because it has same significance level for each comparison. This method 
does not adjust the significance levels for multiple comparisons. Among the other methods, 
Dunnett’s method produces the smallest length simultaneous confidence intervals. But this 
method is restricted to making only treatment vs control comparisons, while other methods 
are applicable to all the pairwise treatment comparisons. In fact these can be applied to any 
other set of contrasts. If there are v treatments, then the Dunnett’s method makes only v – 
1 comparisons (treatment vs control), whereas the other methods make v(v – 1)/2 pairwise 
treatment comparisons. Thus, if the problem is not of making treatment vs control comparisons, 
then Tukey’s method is most popular to be used.

Alternatively, one can also represent the pairwise comparisons of treatments without 
arranging them in ascending or descending order. Table III.11 gives the pairwise comparison 
of treatment effects. Any two treatments with at least one letter common are not statistically 
significant using Tukey’s Honest Significant Difference. This Table once again reveals that 
treatments 2 and 3 are significantly different while treatments 1 and 2 and treatments 1 and 3 
are not significantly different.
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Table III.11: Treatment comparison using Tukey’s method

Treatment Treatment Mean of ‘woolyield’ Rank of Treatment

1 696.42A,B                2

2 609.43B                 3

3 767.81A                 1

General Mean 693.52 .

p-Value .

CV(%) 27.84 .

SE(d) 56.969 .

Tukey HSD at 5% 136.59 .

In the sequel we shall present an example, wherein null hypothesis regarding equality of 
treatment effects through ANOVA is not rejected and if one use the multiple comparison tests 
based on individual error rate (such as LSD or Duncan’s Multiple Comparison test), one may be 
able to see that some treatment pairs are significantly different, which should not be interpreted 
so, as this leads to false discovery. However, if one makes use of multiple comparison procedure 
that controls family error rate (such as Bonferroni correction or Tukey’s HSD), the treatment 
pairs would be found to be statistically at par.

III.3.3  Analysis using R code
The analysis of data in Example 1 can be performed in R using the code given below. 

d36=read.table(“woolyield.txt”,header=TRUE)
attach(d36)
names(d36)
trt=as.factor(trt)
lm1=lm(woolyield~trt)
anova(lm1)
LSD.test(lm1,“trt”,group=FALSE,console=TRUE)
#Bonferroni method
LSD.test(lm1,“trt”,group=FALSE,p.adj=“bonferroni”,console=TRUE)
#Scheffe method
scheffe.test(lm1,“trt”,group=FALSE,console=TRUE)
#Tukey’s method
HSD.test(lm1,“trt”,group=FALSE,console=TRUE)
#Dunnett’s test
library(multcomp)
test <- glht(lm1,linfct=mcp(trt=“Dunnett”))
summary(test)
detach(d36)
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III.4   Example 2
An experiment was conducted during 2004 at IARI, New Delhi to study the bio-efficacy 

of controlled release formulations of Carbofuran against the rice-leaf-folder  (Cnaphalocrocis 
medinalis) on rice cultivar ‘Pusa Sugandh 3’ susceptible to leaf folder. The experiment was 
conducted using a randomized complete block designs in 3 replications for comparing the 11 
treatments which are: Carbofuran 3G (10g); Sodium Carboxy Methyl Cellulose- Kaolinite-3 
(10g); Sodium Carboxy Methyl Cellulose- Kaolinite-3 (5g); Sodium Carboxy Methyl Cellulose- 
Kaolinite-3 (2.5g);  Sodium Carboxy Methyl Cellulose-3 (10g); Sodium Carboxy Methyl 
Cellulose- 3 (5g); Sodium Carboxy Methyl Cellulose-3 (2g); Polyvinyl Chloride-3 (10g); 
Polyvinyl Chloride- 3(5g); Polyvinyl Chloride-3 (2.5g); Control. The plot size was 2m × 2m. 
The rows and plants were spaced 20cm and 15cm apart, respectively. All the formulations 
were broadcast in standing crop 20 days after transplanting. Percent leaf folder damage, 27 
days after treatment, was recorded by counting the number of damaged leaves per hill, before 
and after treatment, from 10 randomly selected hills in each plot. Observations were similarly 
recoded at 42, 57 and 72 days after treatment. The leaf folder damage (%) was calculated as 
ratio of damaged leaves per hill to total leaves per hill and is given as Leaf folder damage (%)  

 . The data obtained on leaf folder damage (%) before pre-treatment 

is given in Table III.12.

Table III.12: Leaf folder damage (%) 

Treatment block Pre-treatment Treatment block Pre-treatment

T1 1 0 T7 2 0.4

T2 1 0 T8 2 0

T3 1 0 T9 2 0

T4 1 0 T10 2 0.23

T5 1 0 T11 2 0.83

T6 1 0 T1 3 0

T7 1 0 T2 3 0

T8 1 0 T3 3 0

T9 1 0.9 T4 3 0

T10 1 0 T5 3 2.9

T11 1 0.83 T6 3 0

T1 2 0 T7 3 0.8

T2 2 0.21 T8 3 0.93

T3 2 0 T9 3 0.43

T4 2 0 T10 3 0.49

T5 2 0.4 T11 3 0.68

T6 2 0
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The objective of the experiment is to analyse leaf folder damage (%) before pre-treatment. 
Eventually, the objective is to identify the best treatment that gives minimum leaf folder damage 
or maximum grain yield using appropriate multiple comparison procedure. 

III.4.1   Analysis of data
Since the data is in percentages based on numbers, an angular transformation was performed 

on the data and SAS steps are given in the sequel.

DATA leaf;
INPUT trt $ rep st;
x2=ARSIN(SQRT(st/100))*180*7/22;
x3=100-1/400;
IF st=0 THEN x2=ARSIN(SQRT(1/400))*180*7/22;
IF st=100 THEN x2= ARSIN(SQRT(x3/100))*180*7/22;
CARDS;
T1	 1	 0
T2	 1	 0
T3	 1	 0
T4	 1	 0
T5	 1	 0
T6	 1	 0
T7	 1	 0
T8	 1	 0
T9	 1	 0.9
T10	 1	 0
T11	 1	 0.83
T1	 2	 0
T2	 2	 0.21
T3	 2	 0
T4	 2	 0
T5	 2	 0.4
T6	 2	 0
T7	 2	 0.4
T8	 2	 0
T9	 2	 0
T10	 2	 0.23
T11	 2	 0.83
T1	 3	 0
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T2	 3	 0
T3	 3	 0
T4	 3	 0
T5	 3	 2.9
T6	 3	 0
T7	 3	 0.8
T8	 3	 0.93
T9	 3	 0.43
T10	 3	 0.49
T11	 3	 0.68
;
PROC GLM;
CLASS rep trt;
MODEL x2  = rep trt;
MEANS trt/LSD;
MEANS trt/DUNCAN;
MEANS trt/BON;
MEANS trt/TUKEY;
RUN;

Table III.13: Analysis results using SAS commands

Source DF SS MS F Value Prob > F

Model 12 34.369 2.864 1.75 0.1302

Error 20 32.782 1.639

Corrected Total 32 67.150

R-Square CV Root MSE x2 Mean

0.512 35.571 1.280 3.599

Source DF Type III SS MS F Value Prob > F

Replication 2 8.165 4.082 2.49 0.1082

Treatment 10 26.204 2.620 1.60 0.1783

From Table III.13, one can easily see that the p-value for testing the hypothesis for equality 
of treatment effects is 0.1783 and at 5% level of significance null hypothesis regarding equality 
of treatment effects is not rejected. The results from different multiple comparison procedures 
are given in the sequel.
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Fisher’s Least Significant Difference
Table III.14: Analysis results of multiple comparison using LSD

Note: This test controls the Type I comparison wise error rate, not the experiment wise error 
rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 1.639

Critical Value of t 2.086

Least Significant Difference 2.181

Means with the same letter are not significantly different.

t Grouping Mean N Treatment

A 5.430 3 T5

B A 5.059 3 T11

B A C 4.022 3 T9

B A C 3.873 3 T7

B A C 3.754 3 T8

B C 3.208 3 T10

C 2.865 3 T6

C 2.865 3 T4

C 2.865 3 T3

C 2.865 3 T1

C 2.785 3 T2

Duncan’s Multiple Comparison Test
Table III.15: Analysis results of multiple comparison using DMRT

Note: This test controls the Type I comparison wise error rate, not the experiment wise error 
rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 1.639

p (difference between 
ranks of treatments+1) 2 3 4 5 6 7 8 9 10 11

Critical Range 2.181 2.289 2.358 2.406 2.441 2.468 2.489 2.506 2.520 2.530



382

Statistical Analysis of Agricultural Experiments

Means with the same letter are not significantly different

Duncan Grouping Mean N Treatment

A 5.430 3 T5

B A 5.059 3 T11

B A 4.022 3 T9

B A 3.873 3 T7

B A 3.754 3 T8

B A 3.208 3 T10

B 2.865 3 T6

B 2.865 3 T4

B 2.865 3 T3

B 2.865 3 T1

B 2.785 3 T2

Bonferroni Method
Table III.16: Analysis results of multiple comparison using Bonferroni method

Note: This test controls the Type I experiment wise error rate, but it generally has a higher Type 
II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 1.639

Critical Value of t 3.890

Minimum Significant Difference 4.067

Means with the same letter are not significantly different

Bon Grouping Mean N Treatment

A 5.430 3 T5

A 5.059 3 T11

A 4.022 3 T9

A 3.873 3 T7

A 3.754 3 T8

A 3.208 3 T10

A 2.865 3 T6

A 2.865 3 T4

A 2.865 3 T3

A 2.865 3 T1

A 2.785 3 T2
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Tukey’s HSD
Table III.17: Analysis results of multiple comparison using Tukey’s method

Note: This test controls the Type I experiment wise error rate, but it generally has a higher Type 
II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 1.639

Critical Value of Studentized Range 5.108

Minimum Significant Difference 3.776

Means with the same letter are not significantly different

Tukey Grouping Mean N trt

A 5.430 3 T5

A 5.059 3 T11

A 4.022 3 T9

A 3.873 3 T7

A 3.754 3 T8

A 3.208 3 T10

A 2.865 3 T6

A 2.865 3 T4

A 2.865 3 T3

A 2.865 3 T1

A 2.785 3 T2

III.4.2   Analysis using R 
The data in Example 2 can be analysed using R code given below.  We do not produce the 

output for the sake of duplication.

d37=read.table(“leaf.txt”,header=TRUE)
attach(d37)
names(d37)
x2=asin(sqrt(st/100))*180*7/22
x3=100-1/400
for (i in 1:length(st)) 
{
if(st[i]==0) x2[i]=asin(sqrt(1/400))*180*7/22
if(st[i]==100) x2[i]=asin(sqrt(x3[i]/100))*180*7/22
}  
trt=factor(trt)
rep=factor(rep)
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lm1=lm(x2~rep+trt)
library(agricole)
anova(lm1)
LSD.test(lm1,“trt”,console=TRUE)
#Duncan test
duncan.test(lm1,“trt”,console=TRUE)
#Bonferroni method
LSD.test(lm1,“trt”,p.adj=“bonferroni”,console=TRUE)
#Scheffe method
scheffe.test(lm1,“trt”,console=TRUE)
#Tukey’s method
HSD.test(lm1,“trt”,console=TRUE)
#Dunnett’s test
library(multcomp)
test <- glht(lm1,linfct=mcp(trt=“Dunnett”))
summary(test)
detach(d37)

III.5   Conclusions
The purpose of this Appendix has been to describe various methods of treatment 

comparisons particularly when the researcher has to make multiple comparisons. In this case, 
there is a need to adjust the significance level. One can easily see that all the tests for multiple 
comparisons involve a minimum significant difference which is product of a table value (chosen 
based on level of significance and test statistic used) and the estimated standard error of the 
estimated difference of treatment effects. Contrast analysis is an easy way of making any type 
of comparison. The researcher should be able to convert the problem of treatment comparison 
to that of a contrast analysis and then the analysis could be done easily. LS MEANS and PDIFF 
make all the possible pairwise treatment comparisons using Student’s t statistic by default. 
Other methods of multiple comparisons described in this Appendix can also be used. One may 
also do the analysis online by visiting Design Resources Server at www.iasri.res.in/sscnars/ and 
then using IP Authenticated Indian NARS Statistical Computing portal (for Indian National 
Agricultural Research System users). It is user friendly and menu driven. It uses 5 per cent and 
1 percent level of significance. Various methods of treatment comparisons are listed and the 
researcher can use one depending upon the requirement. It is suggested that if null hypothesis 
regarding equality of treatment effects through ANOVA is not rejected then one should not 
make use of multiple comparisons tests based on individual error rate. In those cases, it is better 
to make use of multiple comparisons procedures based on family error rate. Generally, Tukey’s 
HSD method is the most popular method. 
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Annexure-IV

IV.1   Introduction
Design Resources Server is a web resource which has been created as an International 

Public Good to disseminate research in Design of Experiments among the scientists of NARES 
in particular and researchers all over the globe in general. The web resource is hosted at home 
page of IASRI so as to make available design theory and actual randomized layout of the 
designs through web. The URL of the resource is www.iasri.res.in/design. This web resource 
is open to everyone all over the globe and anyone can join the resource and add information 
to the site to strengthen it further with the permission of the developers. The goal of this web 
resource is to help experimenters in agricultural, biological and social sciences, industry, etc. 
in planning and designing their experiments and then analyzing the data generated. It also 
targets at spreading advances in theoretical, analytical and application of design of experiments 
among mathematicians and statisticians both in academia and also involved in advisory and 
consultancy services. This is also a very useful resource for faculty and students to disseminate 
and learn theory and application of design of experiments. 

The server is matter-of-factly mobile library on Design of Experiments. It is dynamic in 
nature and new additions are posted on it from time to time. Ultimate objective of this server 
is to provide E-advisory services and become an E-learning platform. The contents of the 
server are divided into four broad categories viz. (a) Useful for Experimenters, (b) Useful for 
Statisticians, (c) Other Useful Links, (d) Site Information. We discuss the resources available in 
the subsequent sections.

IV.2   Resources for experimenters
The design resources server contains electronic Books and online generation facility 

of a number of designs, analysis steps using SAS, SPSS and Excel and a section on statistical 
genomics. 

IV.2.1   Electronic books
There are two electronic books namely “Design and Analysis of Agricultural Experiments” 

and “Advances in Data Analytical Techniques”, which are available on the server and they act as 
basic learning material for understanding the fundamental concepts of design and analysis of 
experiments. The electronic book “Design and Analysis of Agricultural Experiments” has five 
modules namely computer usage, designs for one- and two- way elimination of heterogeneity, 
block designs with nested factors, factorial experiments and other important considerations. 
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The electronic book “Advances in Data Analytical Techniques” has six modules, which deal with 
computer usage and statistical software packages, basic statistical techniques, diagnostics and 
remedial measures, application of multivariate techniques, modeling and forecasting techniques 
in agriculture and other useful techniques.

IV.2.2   Online design generation-I (facilities for experimenters)
The server provides facilities for online generation of a number of designs which include 

randomized layout of designs including completely randomized designs, randomized complete 
block designs both for single and multi-factor experiments, Latin Square designs for single 
factor experiments, augmented designs, alpha designs and square lattice designs.

IV.2.3   Online analysis of data
Under online analysis of data, the server provides analysis of data from augmented designs. 

There is step by step detailed guidance on analysis of data which includes descriptive statistics, 
test of significance, correlation, regression and data analysis from designed experiments using 
statistical software SAS and SPSS. An important feature of this link is that all the data used are 
from real experiments and can be downloaded.  

IV.2.4   Statistical genomics
The server has a small section on statistical genomics which contains designs for microarray 

experiments and useful material on QTL mapping. It provides a facility for online generation 
of row-column designs for microarray experiments and for generation of block designs with 
baseline parameterization. 

IV.3   Resources for statisticians
The server contains literature on a number of topics of experimental design and catalogues 

of a number of designs which may be very useful for statisticians engaged in research in the 
design of experiments. The various classes of designs which are available are described below.

IV.3.1   Block designs
 Three broad classes of designs are covered in the server, viz., (i) binary balanced block 

designs, (ii) block designs for test vs control comparisons, and (iii) efficient incomplete block 
designs. The server contains a catalogue for binary balanced designs, balanced incomplete block 
designs,  efficient incomplete block designs and balanced treatment incomplete block designs. 
Layouts of the designs are given for parametric combinations of v (number of treatments), b 
(number of blocks) and k (block size).

IV.3.2   Designs for bioassays
The server contains a very useful resource for conducting bioassays. Both the two types 

of bioassays, namely parallel line assays and slope ratio assays, are covered and currently there 
is a catalogue on parallel line assays are available. The catalogue gives a number of designs for 
various parametric combinations.
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IV.3.3   Designs for factorial experiments
Factorial experiments are very common in various scientific disciplines including agricultural 

sciences. Out of the various classes of designs used for factorial experiments, the server provides 
a catalogue of orthogonal arrays, their online generation along with a detailed bibliography 
on such arrays. A very useful class of designs called block designs with factorial structures are 
discussed in detailed including their method of construction, a catalogue of such designs and 
bibliography. A class of designs supersaturated designs have recently received a lot of attention 
because of their economical run size for screening experiments. The server contains catalogue 
of two-level, multi-level, balanced and unbalanced mixed-level, extended two-level, extended 
multi-level, k-circulant multi-level and k-circulant mixed-level supersaturated designs. It also 
has a bibliography on supersaturated designs.  Another useful content is row-column designs 
for factorial experiments based on orthogonal parameterization in two rows. 

IV.3.4   Response surface designs
Response surface designs are particularly useful in process and product experimentations. 

On response surface designs, the Design Resources Server has a very elaborate content which 
includes response surface methodology, response surface designs, robustness against one missing 
observation, response surface designs for quantitative and qualitative factors, a catalogue of 
designs along with design layout. It also contains references and extensive bibilography. 

IV.3.5   Mixture experiments
Mixture experiments are often used in a number of experiments. Some real life situations 

have been described where experiment with mixtures methodology is applicable. The server 
has facilities for online generation of simplex centroid designs and simplex lattice designs for 
mixture experiments and also provides a bibliography on experiments with mixtures.   

IV.3.6   Online design generation-II (facility for statisticians)
It is well known that Hadamard matrices, mutually orthogonal Latin squares and orthogonal 

arrays are very useful combinatorial structures for constructing a number of other classes of 
designs. The server provides facilities for online generation of each of these combinatorial 
structures. Resolvable mixed orthogonal arrays provide fractional factorials with blocking for 
asymmetrical factorial experiments. These plans allow orthogonal estimation of all the main 
effects and the general mean. Recently, balanced incomplete Latin square designs are introduced 
in literature. The server is also has provision for generation of such designs.

IV.4   Other useful links
The server has some other useful links which include a discussion board, ask a question 

facility, an archive of questions, a collection of who-is-where in the field of design of experiments, 
some important links and a list of books on design of experiments. 

“Ask a Question” is an important feature of the server through which any user can ask a 
question on design and / or analysis of data or seek any other clarification. E-mails automatically 
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go to developers of the site who in turn answer the query. On an average two questions are asked 
every week. The server also provides an archive of questions asked and answers given for the 
benefit of stakeholders. The “Discussion Board” is for sharing any useful piece of research or 
idea with any other scientist over the globe. Under who-is-where, the server provides a list 
of experts in design of experiments all over the globe. The list includes 84 experts from USA, 
UK, Mexico, Syria, Canada, China, Australia, Japan, New Zealand, Oman, Taiwan, India and 
Vietnam. 

One can also provide feedback and suggestion to the developers using the “Feedback” link 
available on the server. Important links provide users a platform to connect to some very useful 
resources for the stake holders. Some important ones are Design resources, GENDEX, free 
encyclopedia on design of experiments, access to some journals, some software, etc. Books on 
design of experiments is a useful link for faculty and students.

IV.5   Concluding remarks
Design Resources Server is a virtual library on Design of Experiments in particular and 

Statistics in general. The server is dynamic in nature and new links on various topics are added 
to it regularly.  It is very useful for the agricultural researchers and statisticians across NARES 
for e-learning and e-advisory.  The server is a copyright of IASRI (ICAR): L46452/2013.  This 
web resource has become very popular with scientists of NARES and is also being used in the 6 
continents throughout the globe. 

The server is updated on a regular basis with addition of new contents on design of 
experiments. The developers also wish to add contents on field book of all the designs generated, 
labels generation for preparing seed packets, online analysis of data, steps for analyzing data 
using GENSTAT, R, SYSTAT, etc.

Several other web resources on designed experiments developed and hosted at www.iasri.
res.in are (i) web generation of experimental designs balanced for indirect effects of treatments, 
(ii) web based generation and analysis of partial diallel crosses, (iii) general block design 
analysis, (iv) analysis of row column designs,  besides several other resources.
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