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ORIGINAL ARTICLE

1. Introduction
In case of random effects models for balanced

designs, the analysis is simple and no problem is
encountered in testing the variance components since
the sums of squares are independent, sums of squares
are chi-square variates, ratio of variance components
follow standard F-distribution and hence exact testing
is possible. When a random effects model is considered
in unbalanced designs, analysis of variance technique
rarely produce exact tests for testing the hypothesis.
Under the conventional normality assumptions, except
for the error component, the analysis of variance fails
to decompose the total sums of squares into
independently distributed sums of squares. Also, sums
of squares are neither chi-square variates nor multiple
of chi-square variate. The sums of squares are not
independent either. Another standardized measure that
quantifies the difference between means and
relationship between independent and the dependent
variable is effect-size measure. Two generally used
statistics for computing effect-size are eta and omega

squared statistics. But, these statistics do not yield
correct estimate of effect-size that are comparable
across different designs [Bakeman (2005)]. In that
scenario, generalized eta and omega statistics given by
Olejnik and Algina (2003) can be used. There was a
conversation on two-way factorial ANOVA with mixed
effects and interactions [Nelder (1977, 1982, 1994,
2008)]. The major assessments about the two-way
factorial ANOVA model is no substantial rationale for
the imposed constraints on random interactions and a
lack of clear interpretation of its variance components,
especially for the main random effects in respect of
the response [Nelder (1977), Wolfinger and Stroup
(2000), Lencina et al. (2007)]. As a result, the usual
model is more widely used nowadays. The unbalanced
mixed ANOVA models are often analyzed under the
linear mixed models (LMM) framework using the
restricted maximum likelihood (REML) or generalized
least squares approaches [Littell (2002), Stroup (2013),
Jiang (2017)].  Kaur and Garg (2020) attempted for
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The expected values of the sums of squares are
calculated as follows
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The between sums of squares is distributed as chi-
square with p (= g – 1) degrees of freedom and error
sums of squares are distributed as chi-square with
q(= N – g) degrees of freedom, under the null
hypothesis H0.

The test statistic for testing whether or not the null
hypothesis H0 is true is defined as

F = MSB/WMS (5)
where, MSB(= SSB/p) and WMS (= WSS/q) are

mean squares of the main class and error component,
respectively.

The F-ratio in (5) is distributed as standard F with
p and q degrees of freedom, under the null hypothesis
H0.

As a result, the testing of the variance component
in a one-way random effect models may be done
precisely in both balanced and unbalanced
circumstances.

The null hypothesis is rejected if calculated F 
F(, p, q), where F(, p, q) is  upper tail point of F
distribution with degrees of freedom (p, q).

Table 1 shows the analysis of variance of one way
unbalanced nested design.
3. Two Way Unbalanced Nested Model

The model for two-way nested unbalanced design
is

yijk = m + ai + bij + eijk

designs. Gupta and Sharma (2020) constructed a set
of balanced incomplete block designs (BIBD) against
the loss of two blocks where loss of some observations
lie in between at most two common treatments. Gupta
(2021) worked on nested partially balanced incomplete
block designs and its analysis. Singh et al. (2021
presented mixture designs generated using orthogonal
arrays.

In this study, the one way random effects model
for unbalanced nested design in which we have given
the model, hypothesis to be tested, sums of squares
and testing procedure for the hypothesis along with
analysis of variance table.  In the next section, we have
explained model, hypothesis testing, sums of squares,
hypothesis testing procedure and analysis of variance
table for two way unbalanced nested design. Since in
two way unbalanced case the means squares are
generally not independent and are not distributed as
chi-square variates, exact testing is not available for
the main class variance component. We have obtained
the expected size of approximate tests and the actual
size for both conventional and approximate tests. Then
with the help of a simulated data we found out the
numerical for actual size of the conventional test and
the actual and expected size of the approximate tests
for some assumed values of the variance components.
2. One-way Nested Design

The linear model for one way unbalanced nested
design can be expressed as

yij = m + ai + eij, (j = 1, 2, ..., ni; i = 1, 2, ..., g;
i ni = N) (1)

where, yij represents the jth observation in the ith
group, m is the overall mean, ai represents the random
effect owing to ith group, eij is the error component. It
is assumed that the variables {ai} and {ii j} are
independently distributed as normal variates with zero

mean and variances as 2
  and ,2

  respectively. The

variances 2
  and 2

  are known as group and error
variance components, respectively, in the model

The null hypothesis to be tested is

Table 1: ANOVA for One Way Nested Unbalanced Design.

Source df SS E0(MS) Test -Statistic Reference distribution

Between Groups g – 1 SSB 2
a  gNgF  ,1

Error N – g WSS 2
e
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(i = 1, 2, ..., a; j = 1, 2, ..., ci; k = 1, 2, ..., nij) (6)
where, yijk is the kth observation in the jth sub class

within the ith main class, m is the overall mean, ai is the
random effect due to ith main class, bij is the effect
due to jth subclass within the ith main class and eijk is
the error variable associated with yijk. It is assumed
that the variables {ai}, {bij} and {eijk} are independently
distributed as normal variates with zero mean and

variances 22 , ba   and ,2
e  respectively. The variances,

22 , ba   and ,2
e  are known as variance components in

the model.
The null hypotheses to be tested for the main class

and subclass are

0: 2
01 aH  and 0: 2

02 bH (7)

The sums of squares under model (6) are defined
as
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and y  are the usual mean values.

The expected values of sums of squares are
obtained as
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The sums of squares, SSA, SSAB and SSE are
independently distributed as some multiple of chi-square
in the complete balanced case, that is, nij = n and ci

 = c.
The error sum of squares SSE is distributed as a multiple
of chi-square in the unbalanced case, whereas the sums

of squares SSA and SSAB are neither independent nor
have a distribution that is a multiple of chi-square. Even
the null distribution of SSA is not a multiple of chi-square
except, when .02 b  The null distribution of SSAB is,
however, some multiple of chi-square. These derived
expressions cannot be used for practical applications
due to involvement of parameters. We, here use
approximate distributions of SSA and SSB.
3.1 Testing Procedure

The main class, subclass within main class and error
mean squares are defined as

   abSSABMSABaSSAMSA  ,1  and

 bNSSEMSE  (10)

Exact testing is available for both variance

components 2
a  and 2

b  under the balanced case. The

null hypothesis, 0: 2
01 aH  is tested by using the

variance ratio
F10 = MSA/MSAB (11)

with reference distribution as F on degrees of freedom
(a-1, b-a). Similarly, the null hypothesis 0: 2

02 bH  is
tested by using the variance ratio

FB = MSAB/MSE (12)
with reference distribution as F on degrees of

freedom (b-a, N-b).
Under unbalanced case the exact testing is

available for 0: 2
02 bH  by using (12), but it is not

available for 0: 2
01 aH  particularly when .02 b  The

exact testing for null hypothesis 0: 2
01 aH  is,

however, available under the last stage uniformity, that
is when, nij = n, i and j. The mean squares MSA and
MSAB under H01 are independently distributed as some
multiple of chi-square when the last stage uniformity is
assumed, for example, when the number of progeny
per dam is considered to be equal. For testing

0: 2
01 aH , the test statistic and reference distribution

are the same as in (11).

when ,02 b  the testing for 02 a  can be carried
out by using the following variance ratio in the general
unbalanced situation

,
0MSE

MSAFA 
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where,    aNSSESSAMSE 0 (13)

With reference distribution as F on degrees of
freedom (a – 1, N – a).

When, 2
b  is non-zero, the mean squares are no

longer independent and do not exhibit a constant times
chi-square distribution. Tietjen and Moore (1968)
established a technique say F1 for testing the main class
variance component by producing a denominator with
the same expected value as the numerator under the
null hypothesis. In a simulation study by Tietjen (1974)
discovered that when mean squares are negatively
engaged in the generated denominator, the F1 test does
not perform well. For such scenarios, Cummings and
Gaylor (1974) devised another approximate test say F2
and discovered that the perturbations in the expected
size of the test are minor. Tan and Cheng (1984)
suggested a new approximate test say F3 by building
both the numerator and denominator as a linear
combination of mean squares with the same expected
values under the null hypothesis and demonstrating that
their statistic produces better results. They also
discovered that power of testing of these approximate
tests are similar.

The reported size () in these research was
approximated by the size of the test using the expected
mean square, which is not the actual size but the
expected size. From the null distributions of test statistics
generated from simulated normal samples under the
model for some apriori parametric values, we have
obtained the expected size of approximate tests (F1, F2
and F3), as well as the actual size for both conventional
(F10) and approximate tests (F1, F2 and F3). For these
approximate tests, the effects of unbalancedness on
the actual and expected size have been investigated.

The conventional test statistic for testing

0: 2
0 aH  is F10 is defined in (11). The test statistic

proposed by Tietjen and Moore (1968) is defined as

  MSABrMSErMSAF 111 1  (14)

with reference distribution as F on degrees of freedom
(a-1) and f1, where

          bNMSEErMSABrMSErEf  2
1

2
111 11
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1  and r1 = k2/k3.

The test statistic proposed by Cummings and Gaylor

(1974) is defined as

   MSABMSErMSArF 222 1 (15)

with assumed distribution as F on degrees of freedom
f2 and (b-a), where

          bNMSEErMSArMSErEf  2
2

2
2202 11

    12
02  aMSAEr  and r2 = k3/k2.

The test statistic proposed by Tan and Cheng (1984)
is given by

   MSEMSABrMSErMSAF  113 (16)

with reference distribution as F on degrees of
freedom as f3 and f4, where

Here, E0 indicates the expectation under H01.
4. Numerical Results

The size of a test with test statistic F1 is defined as

   ,0iiri cFPF   i = 1, 2, 3 (17)

Under the assumed distribution of test statistic Fi,
c0i is the critical point with upper tail probability . For
some apriori values of variance components and design
parameters, the sampling distribution of test statistic Fi
is constructed from 1000 normal samples simulated
under the model (1). The estimated degrees of freedom
were calculated using the mean squares (MSA and
MSAB) corresponding to the 50th value of Fi sorted in
descending order. The predicted degrees of freedom
were calculated using the expected mean squares for
the same apriori variance component and design
parameter values as in the simulation. The upper  critical
points (c0i) for estimated and expected degrees of
freedom were separately noted from the standard F
distribution table. The number of Fi values greater or
equal to c0i corresponding to expected and estimated
degrees of freedom in the simulated distributions were
taken as actual and expected size of approximate Fi
tests, respectively, for assigned values of variance
components and design parameters. The numerical
values for actual size of conventional test and the actual
and expected size of approximate tests are presented
in Tables 3, 4 and 5, respectively, for the following apriori
values of variance components and design parameters

=0.05,   222 ,0 eba r  0, 0.5, 1.0, 5.0, 15.0

I. a = 3, c1 = c2 = 2, c3 = 5
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Table 2: ANOVA for Two Way Nested Unbalanced Design.

Source df SS E0(MS) Test -Statistic Reference distribution

Main class a-1 SSA 2
1

2
2

2
abe kk  F1 or F2

Sub  class b-a SSAB 2
3

2
be k  FB   bNabF  ,

Error N-b SSE 2
e

Table 3: Actual size of the conventional test for stated size 0.05.

Design a r1  = 0.0 0.5 1.0 5.0 15.0
D1 3 0.70 0.052 0.036 0.029 0.032 0.030
D2 3 0.72 0.049 0.037 0.032 0.025 0.023
D3 3 0.83 0.047 0.048 0.042 0.032 0.024
D4 3 1.57 0.047 0.078 0.082 0.090 0.088
D5 3 1.69 0.046 0.082 0.091 0.092 0.093
D6 3 2.69 0.051 0.137 0.152 0.172 0.180
D7 5 0.88 0.053 0.045 0.040 0.040 0.040
D8 5 0.92 0.052 0.044 0.046 0.044 0.040
D9 5 0.93 0.040 0.039 0.040 0.047 0.042
D10 5 1.57 0.051 0.092 0.105 0.120 0.121
D11 5 1.56 0.043 0.096 0.107 0.122 0.122
D12 5 2.69 0.040 0.201 0.237 0.288 0.316

Table 4: Expected size of approximate tests for stated size 0.05.

Design a r 1 Test  = 0.0 0.5 1.0 5.0 15.0

D1 3 0.7 F l 0.041 0.045 0.051 0.054 0.057

F3 0.032 0.041 0.048 0.051 0.052

D2 3 0.72 F1 0.047 0.044 0.043 0.044 0.053

F3 0.047 0.039 0.038 0.038 0.049

D3 3 0.83 F1 0.038 0.055 0.053 0.041 0.044

F3 0.041 0.050 0.049 0.038 0.041

D4 3 1.57 F2 0.052 0.034 0.044 0.038 0.042

F3 0.030 0.036 0.039 0.038 0.041

D5 3 1.69 F2 0.046 0.043 0.040 0.043 0.041

F3 0.033 0.029 0.035 0.047 0.041

D6 3 2.69 F2 0.047 0.030 0.027 0.025 0.024

F3 0.021 0.026 0.025 0.025 0.021

D7 5 0.88 F1 0.050 0.055 0.051 0.058 0.055

F3 0.045 0.054 0.056 0.057 0.053

D8 5 0.92 F1 0.053 0.049 0.053 0.051 0.053

F3 0.039 0.050 0.050 0.047 0.050

D9 5 0.93 F1 0.039 0.041 0.049 0.052 0.050

F3 0.034 0.038 0.050 0.053 0.048
D10 5 1.57 F2 0.048 0.041 0.032 0.032 0.033

Table 4 continued...
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D1 = {n11 = n12 = 3; n21 = n22 = 2; n31 = n32 = 4; n33
= 7, n34 = n35 = 5}

D2 = {nil = ni2 = 3; i = 1, 2, 3; n33 = 11, n34 = n35 =
5}

D3 = {ni1 = ni2 = 3; i = 1, 2, 3; n33 = 9, n34 = n35 =
5}
II. a = 3, c1 = c2 = c3 = 3

D4 = {ni1 = ni2 = 3; ni3 = 9; i = 1, 2, 3}

Table 5: Actual size of approximate tests for stated size 0.05.

Design a r1 Test  = 0.0 0.5 1.0 5.0 15.0

D1 3 0.7 F l 0.059 0.073 0.07 0.082 0.072

F3 0.05 0.06 0.099 0.09 0.087

D2 3 0.72 F1 0.058 0.055 0.061 0.062 0.073

F3 0.058 0.066 0.09 0.099 0.089

D3 3 0.83 F1 0.052 0.079 0.071 0.075 0.066

F3 0.027 0.064 0.103 0.1 0.084

D4 3 1.57 F2 0.054 0.053 0.056 0.051 0.053

F3 0.104 0.076 0.07 0.083 0.07

D5 3 1.69 F2 0.049 0.054 0.051 0.058 0.054

F3 0.045 0.085 0.069 0.066 0.072

D6 3 2.69 F2 0.044 0.034 0.033 0.038 0.041

F3 0.13 0.057 0.057 0.064 0.069

D7 5 0.88 F1 0.057 0.064 0.064 0.065 0.065

F3 0.046 0.058 0.08 0.086 0.091

D8 5 0.92 F1 0.056 0.058 0.062 0.06 0.062

F3 0.046 0.077 0.069 0.07 0.073

D9 5 0.93 F1 0.056 0.043 0.057 0.061 0.059

F3 0.039 0.046 0.084 0.069 0.082

D10 5 1.57 F2 0.049 0.042 0.033 0.033 0.034

F3 0.033 0.037 0.029 0.028 0.031

D11 5 1.56 F2 0.054 0.041 0.041 0.045 0.042

F3 0.071 0.054 0.065 0.075 0.049

D12 5 2.69 F2    0.047 0.034 0.033 0.028 0.028

F3 0.086 0.087 0.062 0.039 0.035

F3 0.032 0.036 0.028 0.027 0.030

D11 5 1.56 F2 0.043 0.037 0.031 0.030 0.032

F3 0.033 0.030 0.028 0.029 0.030

D12 5 1.56 F2 0.039 0.030 0.025 0.023 0.018

F3

Table 4 continued...

D5 = {n11 = n12 = 3; n13 = 9; n21 = n22 = 2; n23 = 11;
n31 = n32 = 4, n33 = 7}

D6 = {nil = ni2 = 2; ni3 = 11; i = 1, 2, 3}
III. a = 5, c1 = c2 = c3 = c4 = c5 = 5

D7 = {n11 = n12 = 3; n21 = n22 = 2; n31 = n32 = 4; n41
= 2, n42 = 4, n43 = 9, n44 = n45 = 5, n51 = 3, n52 = 5, n53
= 7, n54 = n55 = 5

D8 = {ni1 = ni2 = 3; i = 1, 2, 3, 4, 5; n43 = n53 = 9;
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n44 = n45 = n54 = n55 = 5}
D9 = {ni1 = ni2 = 2; i = 1, 2, 3, 4, 5; n43 = n53 = 11;

n14 = n45 = n54 = n55 = 5}
IV. a = 5, c1 = c2 = c3 = c4 = c5 = 3
D10 = {ni1 = ni2 = 3; ni3 = 9; i = 1, 2, 3, 4, 5}
D11 = {n11 = n12 = 3; n13 = 9; n21 = n22 = 2; n23 =

11; n31 = n32 = 4, n33 = 7, n41 = 2, n42 = 4, n43 = 9; n51
= 3, n52 = 5, n53 = 7}
4. Conclusion

The numerical results reveal that when  > 0 the
actual size of conventional test (F10) over estimated
the stated size for unbalanced situations having r1 > 1
and under estimated for unbalanced situations having
r1 < 1 and this over and under estimation increase with
increase in the value of , the ratio of subclass to error
variance components. The disturbance in expected size
with respect to the stated size (0.05) is small for all
approximate tests preferably for a = 5. The disturbance
in the actual size is not small with respect to the stated
size particularly for approximate test F3. These results
imply that the approximate test  F2 for situations with r1
> 1 and the approximate test  F1 for other situations
may be used for analysis of data from nested designs
under model (1) for practical situations. The analysis
of variance is presented in Table 2.

The null hypothesis H02 is tested by comparing FB
with upper % tabulated value of F distribution on [b
– a, N – b] degrees of freedom. If H02 is not rejected
then H01 is tested by comparing FA with upper %
tabulated value of  distribution on [a–1, N – a] degrees
of freedom. If H02 is rejected then H01 is tested by
comparing F2 or F1 with upper % tabulated value of
F distribution on    12 ,1or,1 fafa   degrees of
freedom.
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