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Recent progress in the field of quantitative genetics for 
both animals and plants has done an immense contribution 
to increasing the production and productivity of animals 
and plants. Quantitative genetics is a model-based study 
that deals with the genetics of complex traits or characters 
in which genes, as well as non-genetic factors, influence 
the trait of interest. The origin of quantitative genetics 
started with the development of the basic statistical tools 
which measure the targeted traits which are influenced by 
both genotypes and by the environment. It finds a way to 
improve animal populations by inferring the breeding value 
from the phenotypic value to maximize the probability of 
selecting better parents.

As stated by Dairy and Milk Processing Market in 
India (2018-2023), as of 2018, India leads in the milk 
production in the world, accounting for ~19% of the global 
market share. According to Basic Animal Husbandry 
Statistics, DAHD&F, GoI, the Milk production and per 
capita availability of milk in India for the year 2018-
19 has increased to 187.70 Million tonnes and 394 gms/
day.  The report published in ‘Food Outlook, 2018’ by the 
United Nations Food and Agriculture Organization, milk 
production for the world scenario has increased from 800.2 
MMT in 2016 to 811.9 MMT in 2017 with a growth rate 
of 1.46%.

Statistical methods using a linear mixed model (LMM) 
are diverse and applied in various fields (Brown and Prescott 
1999, Demidenko 2004). Estimation of heritability and 
breeding values (BV) therefore received much attention in 
the quantitative genetic literature (Sorensen and Gianola 
2007). Among the class of linear mixed model (LMM), the 
animal model becomes one of the popular methods which 
has been used for many decades in the field of animal 
breeding (Henderson 1975, Wang et al. 1993). It combines 
phenotypic records of an individual with pedigree and/
or genetic marker information to draw inferences about 
the parameters of interest. Animal model uses pedigree /

genetic marker information as a form of an additive genetic 
matrix (Ahlinder et al. 2013). Recently, estimation of 
genetic parameters using the Bayesian model gained much 
more reputation (Sorensen and Gianola 2007, Hadfield 
2010) and Gianola et al. (1990) pointed out the framework 
of Bayesian methodology for the estimation of breeding 
values when variances are not known. 

Let σ be the unknown variance components of a mixed 
model, the marginal posterior density i.e. f(σ/y) is given 
by- f(σ/y) = ∫bf(,σ/y) ; where the joint posterior density and 
f(,σ/y) ∞ f(y/,σ)*f(,σ); where f(y/,σ) and f(,σ) corresponds 
to the likelihood and the joint prior density of  and σ 
respectively. In Bayesian Structure, the specification of 
prior distributions is not straightforward. Gianola and 
Fernando (1986) also stated that the prior distribution 
depends on many factors such as information contained in 
past data, theoretical considerations, and personal beliefs 
which affect Posterior inference.  Bayesian inference also 
required a complex computation procedure via Markov 
chain Monte Carlo (MCMC) (Gilks et al. 1995). The two 
commonly used MCMC methods are the Gibbs sampler 
and the Metropolis-Hastings (M–H) algorithm. Wang et al. 
(1993) applied MCMC methods in the standard additive 
polygenic model. Breslow and Clayton (1993) helped to 
popularize GLMMs and emphasized likelihood-based 
inference via penalized quasi-likelihood (PQL). Ahlinder 
et al. (2013) proposed an analytic Bayesian implementation 
of the mixed linear model for estimation of heritability in 
animal models without convergence problems. The breeding 
values and residual variance component are analytically 
integrated out from the model and utilized Gibbs sampling 
distribution. Meyer Karin (2007) developed Wombat, 
a software package for quantitative genetic analyses of 
continuous traits using linear mixed model. The developed 
package accommodate a variety of models for numerous 
traits, multiple fixed and random effects, selected genetic 
covariance structures, random regression models etc. 
Holand et al. (2013) studied mixed model approach using 
integrated nested Laplace approximations (INLA) in 
Bayesian paradigm using pedigree structure. Singh et al. 
(2016) applied single trait linear mixed random regression 
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model for analyzing the first lactation monthly test-day 
milk yield records in Karan Fries cattle. Singh et al. (2020) 
estimated genetic parameters of first lactation 305-day milk 
yield and energy traits in karan fries cattle.

In this paper, we have used Bayesian Linear mixed 
model for estimation of heritability using pedigree data. 
Linear mixed models provide a flexible framework for 
modeling a wide range of pedigree data but in some 
practical situations, response variables do not follow 
normality assumptions. Hence for non-Gaussian response 
variables, a generalized linear mixed model solves the 
complex architecture. Generalized Linear Mixed Models 
using MCMC (Hadfield 2009) is applied and MCMC 
algorithm is used to approximate the posterior distribution 
of the parameter of interest. Diagnostic test of the MCMC 
was done graphically as well as by the Heidelberg 
stationarity test. Estimation of Variance estimates of the 
random effects (VA) and residual variance estimation (VR) 
and Variance estimates location effects i.e. fixed effects 
were done by using the Bayesian procedure. Finally, the 
posterior estimate of heritability (h2) for first lactation 305 
days or less milk yield (FL305DMY) was estimated along 
with its Highest Posterior Density (HPD) intervals.

A general form of the linear mixed model is represented 
as follows:

y = 𝑋 β+ 𝑍u + e (1)
Where, y, vector of response variables of size nx1; β, 

vector of fixed effects with size p × 1; u, vector of random 
genetic effects with size n × 1. Here both X and Z are 
known incidence matrices relating phenotypic records to 
respective parameters included in (1), and e is a vector of 
errors that follow a multivariate normal distribution with 
zero mean vector, and covariance structure Iσ2

E, where I is 
the identity matrix of order n.

Let the responses vector be Y=[Y1, …, Yn]
T with 

corresponding means µ=[µ1, …, µn]T. For generalized 
linear models, the marginal mean µ of the response Y is 
related to a linear predictor through a link function g(µ). 
The observation vector Y is not necessarily Normal (e.g., 
Gamma, Inverse Gaussian, etc.) E(Y|U)= µ and g(µ)= 
Xβ+ZU, here g is assumed as link function.

Suppose  represents the probability distribution of ith 
observation with latent variable l. The linear model for the 
latent variable with known design matrices X and Z with 
parameter vectors  and  is given by:

l = 𝑋 β+ 𝑍u + 𝐸
Here it is assumed that the location effects ( β and u) and 

the residuals (e) follow a multivariate normal distribution-

Here β0 denotes the prior means of fixed effect and B, 
G and R denote the expected (co)variances of the fixed 
effect, random effects, and residuals respectively. Here it 
is also seen that fixed effects, random effects, and residuals 

are independent. Generally, they are unknown and must 
be estimated from the data, usually by assuming they are 
structured in a way that they can be parameterized by a few 
parameters.

Here, we have applied the Bayesian Animal model using 
the following information of Bayesian structure-

Prior distribution: Prior distributions for the fixed effects 
are assumed to follow Normal distribution. The random 
effects are assumed to be Inverse-Gamma distribution with 
parameters =1, =0.002, and finally, the prior distribution 
for the residual variance is also assumed to follow Inverse-
Gamma distribution with the same parameters. Inverse 
Gamma is parameterized differently using  α and β, where 
α =     and β =   . Hence, the actual value becomes an inverse-  
Gamma (0.001; 0.001).

The Bayesian paradigm requires other important 
parameters also, i.e. a total number of iterations=100000, 
burn-in period i.e. the number of iterations to drop at the 
beginning (convergence)=10000, and thin, i.e. the number 
of iterations stored in memory=10 are applied. Here, Lag 
10 states the values of autocorrelation for every 10 iteration 
values. Since our thinning parameter was 10, this refers 
actually to the correlation of every sampled value with 
the following one. Theoretically, it should be good to re-
run a longer MCMC to increase the effective sample size. 
The effective sample size of the mean (Intercept) is larger 
than the effective sample size for variance components, for 
which the autocorrelation is greater.

The records of first lactation data of production 
(305-day or less milk yield and daily milk yield) and 
reproduction traits (AFC, FSP) on 1481 Karan-Fries cows 
were collected over 26 years from 1984 to 2009 at Dairy 
Cattle Breeding Division (DCB), National Dairy Research 
Institute (NDRI), Karnal. FL305MY, i.e. First lactation 305 
days or less milk yield was collected and analyzed for the 
above-discussed procedure.

Results and diagnostic of the MCMC output: Here 
MCMC algorithm was used to solve Bayesian linear 
mixed model.  MCMC algorithm (Markov Chain Monte 
Carlo) used in Bayesian model helps to approximate the 
posterior distribution of the parameters of interest. Here, 
the diagnostic of MCMC by graphically and Heidelberg 
stationarity test is shown below.

Diagnostic of the MCMC: The pattern of behaviour of 
the MCMC algorithm i.e. trace and the convergence and 
autocorrelation of our ‘chain’ of samples are graphically 
represented in Fig. 1 and 2. The posterior density function 
for each component (Intercept, animal, and units or 
residual) is graphically represented from the right side of 
Fig.1 and 2.

Results suggest the effective sample size of the mean 
(Intercept), variance components for animal and units 
were 8115.481, 920.306, and 1169.66 respectively.  
The diagnostic tests of convergence were done by the 
Heidelberg stationarity test. Table 1 shows that for both the 
cases i.e. Animal and Residual, the condition of stationarity 
is satisfied.

ν
2

ν
2

β
μ
e

β0

0
0

B	0	 0
0	 G	 0
0	 0	 R

~N

118



May 2022] 647HERITABILITY OF KARAN FRIES CATTLE

Table 1. Diagnostic tests of convergence  
(Heidelberg stationarity test)

Stationarity Start iteration  p-value
Animal Passed 1 0.773
Residual Passed 1 0.902

For model selection, DIC (Deviance Information 
Criterion) associated with the model is calculated, which 
is 13552.65. Variance component estimates of the random 
effects (VA), residual variance estimation (VR), and location 
effects i.e. fixed effects (the populations mean is called as 
Intercept) are given in Table 2.

Fig. 1. Trace of the mean  (or intercept).

Fig. 2. Trace of the variances. (Animal, VA ; units,VR).

Table 2. Variance estimates 

Random effects (VA) and Residual variance estimation (VR)
Posterior 

mean
Lower 95% 

CI
Upper 95% 

CI
Effective 

sample size
Animal 146819 78027 224891 920.3
Residual 277574 217266 339986 1170

Location effects i.e. fixed effects
Posterior 
mean

L-95% 
CI

U-95% 
CI

Effective 
sample size

pMCMC

Intercept 3217 3144 3292 8115 <1e-04 
***

Fig. 3. Trace (left) and posterior density (right) of the heritability.
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The value of pMCMC is the posterior probability 
associated with the event which is not a p-value but 
provides the same kind of information. Here, the pMCMC 
is very weak indicating that the population mean is very 
different from zero. Here the posterior estimate of the 
heritability was calculated along with its lower HPD 
interval and Upper HPD interval, which is presented in 
Table 3. The heritability of the trait is about 0.34 with 95% 
of probability to lie between 0.19 and 0.50. The plot of the 
trace and the density function is given in Fig. 3.

Table 3. Heritability estimates along with HPD interval

Mean Lower HPD 
interval

Upper HPD 
interval

Heritability 0.34 0.19 0.50

SUMMARY

In this study, Bayesian model was applied for analyzing 
the first lactation in Karan Fries cattle. First lactation data 
of production (305-day or less milk yield and daily milk 
yield) were collected from the history-cum pedigree sheet 
and daily milk yield registers of the division of Dairy 
Cattle Breeding (DCB), National Dairy Research Institute, 
Karnal. In the Bayesian paradigm, MCMC method was 
applied to solve complex mathematical problems to 
estimate a large number of unknown parameters. Assuming 
linear mixed model and using the different prior set up, 
diagnostic of MCMC (Markov Chain Monte Carlo) was 
carried out graphically as well as by Heidelberg stationarity 
test. Variance estimates of the random effects (VA) and 
residual variance estimation (VR) and Variance estimate 
location effects, i.e. fixed effects were calculated along 
with effective sample size. Finally, heritability (h2) estimate 
for First lactation 305 days or less milk yield (FL305DMY) 
was estimated along with its credible interval.
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