Pricing Fish：A Study of the Economic and Behavioural Factors

M．Krishnan ${ }^{1}$ ，P．S．Birthal ${ }^{2}$ and T．Ravisankar ${ }^{3}$
${ }^{\prime}$ Central Institute of Brackıshwater Aquaculture，Egmore，Chennai－ 000008
National Centre for Agricultural Economucs and Policy Research，Pusa，New Delht－110012 and ${ }^{3}$ Ocean Data Centre，Anna University，Chennai－ 600032

殔 Fish marketing and its pricing are subjects that have seldom been seriously discussed in Tadenthis is mainly because the species and $12 f$ grades that cater to the domestic and export markets are quite distinct．Fish production in India is from three sources－marine，inland fresh water bodies and coastal aquaculture．While the major portion of fish that finds its way to the market is from the marine sector，coastal aquaculture stocks are the backbone of the export sector．Fresh water fishes also command a good local and international market（Krishnan and Birthal，1997）．But the new trade regime Hunder the WTO has had a tremendous impact on the quantity and quality of seafood that is exported fiom the country．This paper examines the impacts from the angle of the availability of supply of fish for the domestic market，the ．quantity of fish that is exported as á proportion W0f fish that is landed，the prices of fish，the earnings from fishing as an avocation，the returns to investment in fishery and the estimated supply and demand projections as a tool to arrive at conclusions that would help determine the necessity of a price policy for fish．

Fish being a highly perishable commodity＇，price is not only a function of
supply and demand but also of preservation． Therefore a price policy for fish has to be analysed from the point of view of ：

1．stacks that are preserved and exported and those that are domestically sold in the domestic market．
2．the supply position．The stocks that are destined for the domestic market and those that are exported．The relationship of supply that is a vailable to the domestic market and the percentage of which is exported．
3．the wages that accrue to the fish workers
4．the cost benefit of marine／aquaculture operations．
5．the projections of supply and demand for the future．

Marine Products and the Domestic Market

Extensive work has been conducted to conclude that the ztocks that are exported are not at the expense of supplies to the domestic market（Krishnan and Sharma，1996）．Export of marine products does not affect domestic consumption．Of the total landings of shrimps， only 42 per cent is being exported leaving the major share of the produce for the domestic market（Table I）．

[^0]
Table I

Shrimp Landings and Export

Source: R.Jayaraman, 1994

The 42 per cent of the shrimps exported is mostly tiger prawn (P. Monodon) and the other 58 per cent of the harvested shrimps available in the domestic market are mostly of less valuable species and of the stock unfit for exports both in terms of size and quality.

Again only a fifth of the total landings of fish is being exported (Table II). The total quantity of marine fish exported was 13,148 tonnes in 1986-87 of the estimated fish production of 171.6 lakh tonnes. Exports increased to 49,333 tonnes out of 244 lakh tonnes in 1992-93.

Table II
Share of Marine Fish Exports in Marine Fish Production

S.No. Year	Quantity (t)	Export Value (Rs. Cr)	Estimated Fish Production (lakh t)	Percentage of Exports to Produc- tion
1.	1987	13,148	22.29	171.6
2.	1988	14,904	30.23	171.3
3.	1989	11,234	-	165.8
4.	1990	21,129	28.45	181.7
5.	1991	42,209	48.07	227.5
6.	1992	49,119	90.53	8.70
7.	1993	49,333	143.19	230.0

Table III gives the share of marine products exports in marine fish production. It can be observed that less than 8 per cent of marine fish production is being exported.

Therefore any change in the domestic prices of fish is not because of unavailability of fish in the local market.
be observed that change in price index for fish is not consistent and is affected by externalities.

The prices prevailing in the domestic market are a function of local availability and demand. Kurup et al (1995) have conducted an extensive survey of species available in the Ernakulam market, Kerala, for one year

Table III
Share of Marine Products Exports in Marine Fish Production

S.No. Year	Marine Fish Production (MFP)	Marine Products Exports	Exports as \% of Indian MFP	Net Domestic Availability	
1. 1960	281.7	16.3	5.79	265.4	
2.	1965	507.1	15.5	3.06	491.6
3. 1970	670.5	37.2	5.55	633.3	
4. 1975	783.6	53.4	6.81	730.2	
5. 1980	999.2	74.5	7.45	924.7	
6. 1985	$1,090.1$	80.6	7.30	$1,009.5$	
7.	1990	$2,202.3$	133.7	6.07	$2,068.6$
8. 1991	$2,386.8$	162.9	6.83	$2,223.9$	
9. 1992	$2,603.9$	191.3	6.83	$2,412.6$	
10. 1993		239.9	-	-	

Source: R. Jayaraman, 1994

Domestic Market Price Behaviour

An examination of the price index for fish 1992-1996 (1981-82 = 100) reveals that the changes in the index are marginal and are influenced mainly by the bounty of nature rather than consistent excessive demand or any substantial increase in prices of inputs that go into marketing fish.

Table IV gives the wholesale price index for the month of December 1992 to 1996. It can

Table IV
Wholesale Price Index of Fish (Month of December 1992-1996)

S.No.	Months	\% Change (ratio)
1.	Dec 92/Dec 91	47.40
2.	$\operatorname{Dec} 93 / \operatorname{Dec} 92$	12.50
3.	$\operatorname{Dec} 94 / \operatorname{Dec} 93$	28.10
4.	$\operatorname{Dec} 95 / \operatorname{Dec} 94$	-1.50
5.	$\operatorname{Dec} 96 / \operatorname{Dec} 95$	-14.52
6.	$\operatorname{Dec} 97 / \operatorname{Dec} 96$	27.50
Source: CMIE Monthly Reviews		

Table V
Market Prices of Important Species of Fishes, Prawn, Crab and Mollusc from June 1988 to May 1989 and Domestic Prices July 1998 for Popular Specles'

Species	Price/ Kg in Rupees				July 1998	
	Min	Max	Ave		Min	Max
Fishes						
Mugil cephalus (Flat head grey mullet)	21	32	27		40	80
Liza parsia (Gold spot mullet)	18	28	22		25	40
Liza macrolepis (Borneo mullet)	18	28	22		35	45
Daysciaena albida	21	25	23			
Etroplus suratensis (Pearl spot)	24	29	26		100	150
Tachysurus subrostratus	07	14	10			
Tachysurus maculatus	08	14	11			
Megalops cyprinnoides (Indo pacific tarpon)	16	22	17			
Hyporhamphus limbatus (Strong nose half beak)	08	12	09			
Hyporhamphus xanthopterus (Red tipped half bk.)	11	15	13			
Lates calcarifer (Sea bass)	08	35	21		80	120
Chanos chanos (Milk fish)	10	32	21		30	50
Ehirava fluviatilis	06	10	07			
Scatophagus argus (Shads)	08	27	15			
Gerres filamentosus (Silver biddies)	09	16	13			
Caranx ignobilis	18	12	16			
Leiognathus brevirostris (Silver bellies)	06	08	07			
Sillago sihama (Sand whiting)	18	24	20			
Mystus gulio (Catfish)	08	12	16			
Glossogobius giuris (Gobids)	10	16	14			
Ambassis dayi	05	13	08			
Ambassis gymnocephalus (Naked head glassy perchlet)	03	08	06			
Amblypharyngodan mola	03	14	07			
Puntius filamentosus	06	11	08			
Puntius sarana	07	13	09			
Wallago attu (Freshwater shark)	13	22	18			
Penaeid Prawns						
Metapenaeus dobsoni	06	11	08			
Metapenaeus monoceros (Jumbo tiger shrimp)	10	22	18			
Penacus monodon (Indian white shrimp)	15	113	46		er kg	30 cts .
Penacus indicus	20	34	28		er kg/	60 cts .
Palaemonid Prawns						
Macrobrachium rosenbergii (Giant freshwater prawn)	16	90	70			
Macrobrachium idella (Slender river prawn)	08	25	12			
Crab						
Scylla scrrata (Mud crab)	08	13	10	15	25	
Molluse Villorita cyprinoides (Black clam meat)	03	08	05	10	20	

(Table V). The approximation of prices of the same species for the current year has been given in the same table for July 1998. Only prices of popular and commercially important species were updated. It is apparent that there has been an escalation of around 2 to 4 times in the prices of the various species in ten years. This may primarily be attributed to the increased demand for fish and also due to the decline in landings. Adjusting for inflation the increase in prices for fish is justifiable.
of high wages (Table VI). Unlike commonly held belief, it is seen that extremely low wages and extremely high wages are not season determined. Both tend to concentrate in the same time segment (Annamalai and Kandoran, 1995).

Profitability Behaviour

The extent of mechanisation of crafts in the fisheries sector and the proliferation of number of crafts indicate that the sector has its potential for generating income to ensure

Table VI
Wage Realisation from Fisheries

| Fishing
 craft | No. of
 Fishing | Wages Reallsed by Individual
 Total | Fishermen of the Crew (Rs.)
 Ave | Highest |
| :--- | ---: | ---: | ---: | ---: | ---: |\quad| Lowest |
| :---: |

Source: Annamalai and Kandoran, 1995

Wage Behaviour

Wages also clearly indicate any abnormal change in quality of life of the fishers. An examination of studies on wages to fish workers indicated that the average wage at Rs. 60 per trip of 8 to 10 hours duration is comparable to wages in other less organised primary sectors of agriculture related activities. The distribution of the wages over periods shows that there are long spells of low wages and very short spells
encouraging profitability. In a recent study, Senthilathiban et al. (1997) have estimated the fixed cost and variable cost per trip in Tamil Nadu to be Rs. 320.24 and Rs. $4,016.20$ respectively. The mean gross returns was Rs. $6,738.57$ and the mean net profit came to Rs. 2,402 (Table VII).

In another recent study (Annamalai and Kandoran, 1996), conducted in Kerala, based on the landing data for a period of sixty months

Source: Senthilathiban et al, 1997
this study estimated the pattern and the extent of swings in the annual cycles of revenues earned in fisheries (Table VIII) the peak and trough in terms of their relative temporal length and the margin of difference in revenue. The short period trend shows a 69% rise in revenue during the five year period.
period the average catch reached 1.75 mt with a CV 16.6%. This increase in catch is due to many factors like increased demand, increased effort, improved technology and so on. Similarly, for penacid prawn, landings have also increased over years. From a catch of 66,910 t in 1956 it has increased to $186,330 \mathrm{t}$ in 1991

Table VIII
Values of Average Revenue after Adjusting for Seasonal Variations

Years Months	1988	1989	1990	1991	1992
Jan	514	919	374	403	676
Feb	309	457	322	485	867
Mat	251	322	359	565	627
Apr	245	308	401	500	655
May	164	593	256	574	542
June	359	323	399	512	1,270
July	272	288	450	564	595
Aug	371	421	304	682	715
Sept	470	461	321	474	957
Oct	665	410	313	566	828
Nov	509	392	420	422	850
Dec	444	408	476	346	733

Source: Annamalai and Kandoran, 1996

Trovin

Supply and Demand Behaviour

1. There is an increasing trend in total fanding of marine fish from 1950 onwards. From a catch of mere 580,022 tonnes in 1950 it has increased to a maximum of 2.23 million tonnes in 1989. The average catch in 1950-60 period was 0.6566 million tonnes with a CV of 18.8%, in 1961-70 period the average catch rose to 0.8331 million tonnes with a CV 15.6%, in 1971-80 period it again increased to 1.27 million tonnes with a CV of 10.1% and in 1981-91
which is about three times. The average landings in the period 1961-70 was $57,884 \mathrm{t}$ with CV 27.4% that in the period $1971-80$ was $110,965 \mathrm{t}$ with CV 19.6% and the average landings during 1981-91 was 137,115 with CV 19.7%. The increase in landings may be due to increased effort targeted to this species which has very high export value. Sathianandan and Srinath (1995) have concluded that production prospects of marine fish are bright to meet the future demand.

To meet the increasing demand of the fish consuming pepulation, efforts should be taken to double the production by hetter farming practices. 56 pereent of the population consume fish and the per capita availability of fish was be 9.85 Kgs . A production of five million tonnes would be required to sustain this by the year 2020. The growth rate of aqua farming in the country was 9.4 per cent per annum and out of the four varicties of fish consumed, one was from aqua farming. Inland fishing production had also gone up to 6 per cent per annum. World consumption of fish had fallen from 10.8 Kgs in 1984-8.5 to 10.7 Kgs . in 1994-95.

Fisheries had registered a growth of 5.64 per cent with a national catch of 2.28 million tonnes in 1996-97. The contribution of fisheries in the country to GDP was 1.28 per cent and to NDP was 1.29 per cent.

Thus projections of marine fish production appear to be in a position to meet demand projections.

Conclusions

India has proven comparative advantage in the production of fish. With its long coastline and its polential for developing aquaculture, the opportunties for increasing fish production is governed by only sensible policy development and implementation. Marine fish production potential is an extremely volatile phenomenon.

Long periods of poor landings may be followed by bountiful catches. Several natural phenomenon including national and international weather conditions and ocean temperatures and currents influence catches: The above analysis which has included the major factors both cconomic and behavioural for considering a domestic price policy for fish in India needs to be supplemented by several other data inputs including geography, oceanography, remote sensing etc. Further work in this arca should also assess the future market, domestic market behaviour to value added products, packaging and presentation. The factors that have been considered for the formulation of the price policy from the economic point of view also indicate that the present status quo need not be presently disturbed. The National Fisheries Policy should aim at conservation, consolidation and enhancement of marine stock positions and aquaculture production for increased landings of fish and a firm price structure.

Notes

Export stock of fish is required to be frozen and packed at the earliest and 6 hours at the latest. Factory ships with on board freezing and processing facilities and the development of cold storage facilities at the harbours and landing centres will help improve the quality of the fish that is exported.

References

Annamalai V. and M.K. Kandoran. (1995). The Work-Wage Relationship in the Traditional King Scine Pisheries of Kerala, Fishery Technology, 32 (2): 131-135
Annamalai V. and M.K. Kandoran, (1996), Trends and Cycles in Fishery Returns from Motorised Traditional Fishing Crafts, Fishery Technology, $33(1): 46-50$
Centre for Monitoring Indian Economy, Monthly Reviews, Several Issues
Jayaraman R. (1994), "Export of Marine Products does not affect Domestic Consumption" Seafood Export Joumal, XXV (16): 23-29, June.
Krishnan M. and B.M. Sharma, (1996), "Structure, Conduct and Performance of Marine Products Exports from India" in G.S. Kainth (Ed.), Export Potential of Agriculture Commodities in India, Regent Publications, New Delhi - 110008.
Krishnan M. and Pratap Singh Birthal,(1997), "Technological Upgradation, Geographical Distribution and Product Composition of Seafood Exports from India", Indian Journal of Agricultural Marketing, 11 (1822):4142. ab.

Kurup B. Madhusoodhana, M.J. Sebastian, T.M. Sankaran and P. Rabindranath (1995), Exploited Fishery Resources of the Vembanad Lake - Estimates of Marketable Surplus of Production" Journal of Marine Biological Association of India, $37(182): 1-10$, June and December.
Sathianandan T.V. and M. Srinath (1995), Timo Serics Analysis of Marine Pish Landings In India, Journal of Marine Biological Association of India, 37 (1\&2): 171-178, June and December.
Senthilathiban R., K. Venkatramanujam, P. Selvaraj and G. Sanjeeviraj (1997), "Costs and Earnings of Trawlers

[^0]: This work was conducted as a part of the inter－institutional AP Cess Fund Project on＂An Economic Evaluation of Brackishwater Aquacultural Systems in India＂．The financial support of the ICAR under this scheme is gratefully acknowledged．

