Produced under : Technology Mission on Cotton Mini Mission I (3.1) Funded by Ministry of Agriculture Government of India Project on: IPM Implementation at Village Level for Production of Good Quality Cotton | | | DOs | | Insect pests | DON'Ts | | |---|---|---|---|--|---|---| | What to do | When to do | Why to do | How to do | suppressed | What not to do | Why not to do | | 1. Post harves | st and pre | planting operati | ons | | | | | 1.1. Early crop
termination and
adherence to closed
season | and between | To prevent the continuous food supply and shelter for multiplication and carry over of insect pests | Removal of the cotton
crop immediate to the
last picking from the
fields and maintenance
of host free period | Jassids
Aphids
Whiteflies
Thrips
Mirids
Stainers and
Pink bollworm | Allowing the cotton
crop to continue to
stand in the field or
growing ratoon
crop of cotton | Depletes the
nutrients of the soil
and offer food and
shelter for insects
to develop
continuously in to
the next season | | 1.2. Timely disposal
of seed cotton | Within two
months of
cotton harvest | To prevent diapausing pink
bollworm larvae in double
seeds or on lint as sources
for carry over into the next
season | Disposal of seed cotton
in markets at proper time
during the procurement
season | Pink bollworm | Storing of cotton
longer time or for
sale during next
season | Stored cotton is
reservoir for pink
bollworm and
source of
infestation during
next season | | 1.3. Allowing cattle
grazing | | Standing cotton crop
continues to grow with
squares, flowers and bolls
after final picking, that
become source of food and
carry over | Allowing animal grazing
(cow, buffalo, sheep,
goat etc.,) immediate to
final picking | Pink bollworm | Allowing the cotton
crop to continue to
stand in the field | Standing crop
serves as habitat
for continuos
existence of the
insects | | 1.4. Destruction of cotton stalks | cotton is over | Destruction of cotton stalks
following harvest reduces
the shelter and food supply
to pink bollworm and
curtails the carry over to
next season | The dry cotton stalks should be pulled out of the fields or shredded and incorporated into the fields or burnt off in situ before ploughing the field | Pink bollworm | Stacking of cotton
stalks in or near to
the fields | Diapausing larval
population of pink
bollworm is
harbored and
passed on to the
next season | Timely disposal Cattle grazing Soil health maintenance through organic manuring Crop rotation with cereals ### 1. Post harvest and pre planting operations To reduce the diapausing Pink bollworm 1.5. Destruction of After removal The unpicked, partially Cotton stalks Storage of cotton crop residues of cotton stalks larval population in the opened and unopened should not be stored stalks without and before their partial or unopened bolls bolls should be separated near to fields and removal of storage for fuel that serve as starter for by beating the plants on should not be unpicked bolls not the next season infestation to the soil surface and transported from only aid in purpose then transported to the seasonal carry over place to place place of storage for without removal of but also help in unopened dry bolls spreading to the further use as fuel. The areas of less or no heaps of the separated bolls should be burnt pink bollworm off in the field itself 1.6. Summer During off-To expose the resting Deep ploughing once in Spotted. Leaving the lands There occurs soil fallow with weeds ploughing season in stages of insects esp. 2-3 years is American and compaction summer bollworms to the heat as recommended to loosen Pink bollwoms besides the weeds well as predatory birds the subsoil. act as intermediary 2-3 summer ploughings hosts for insect are a must for removal pests of weeds as well as for destruction of insect stages 1.7. Field sanitation Clean up of Field sanitation is a must Pink bollworm Allowing weeds Weed and alternate Clean up of the fields field borders/ as sucking pests of cotton free of weeds and and sucking and alternate host hosts surrounding bunds during often build up on the alternate host plants pests such as cultivable lands crops flowering plants including vegetable crops jassids, mirids serve as reservoirs off season surrounding cultivable and stainers for carry over of pests to the next lands season 1.8. Field selection Pre planting Compulsory crop Crop rotation with cereals Pink Growing cotton Deteriorates soil (sorghum) or pulses period diversification in farm bollworm year after year health as well as to holdings with mandatory (soybean) or green facilitates the carry adoption of crop rotation manure crops (sun hemp over of cotton pest in cotton based cropping or daincha) at least once population in two to three years systems Crop rotation with pulses Selection of jassid tolerant cultivar Optimum time of sowing Maintenance of plant stand Intercrop with green gram Strip cropping with late variety of red gram | | | DOs | | Insect pests | DC |)N'Ts | |--|--|---|---|--|--|--| | What to do | When to do | Why to do | How to do | suppressed | What not to do | Why not to do | | I. Post harves | t and pre | planting operati | ons | | | | | 1.9. Varietal selection 1.9.1. Selection of cultivars with tolerance resistance to jassids and with high yield cotential | Before planting and procurement of | Jassid tolerant cultivars
obviate the need to use
insecticides early in the
season, thus allowing
native natural enemies to
multiply | Selection of sucking pest tolerant cotton cultivars (even in transgenic hybrids) suited to climate and soil and of rapid fruiting cultivars that make up for damage due to bollworms in conventional cotton | Sucking
pests and,
Spotted,
American
and Pink
bollworms | Varietal selection
with no prior
knowledge of their
susceptibility to
jassids and of their
adaptability to the
region and the soil | Susceptible culti-
vars grown lead to
reduced plant stan
and vigor besides
yield reduction
even with insecti-
cidal applications | | 1.9.2. Growing Bt cotton | seed material | To minimize the yield and quality loss due to bollworms | Growing transgenic
Bt hybrids suited to
climate and soil in
areas of endemic
bollworm infestations | Spotted,
American
and Pink
bollworms | Growing Bt cotton in resource poor soils | The economic ret-
urns would not jus-
tify the investment
made on Bt cotton | | I.10.Delinting of seeds
and treatment of seed
stock with any one
neonicotinoid group
of chemicals | Prior to sowing/
dibbling in the
field | Offers protection against sucking pests including jassids for 45-50 days of crop growth in case of jassid susceptible cultivars | Delinting should be done with commercial sulphuric acid @ 100 ml/kg of seed. Repeated washings with water and neutralization of acid with lime @ 2.0 g/l of water should be done. Mix the Imidacloprid @ 5-7g or Thiamethoxam @ 3 g per Kg of seed and shade dry before sowing. | Pink
bollworm
and sucking
pests | Insecticidal seed
treatment to the
jassid tolerant
cultivars | Unnecessary
treatments lead to
predisposal of
plants for higher
bollworm attack | Marigold as refuge crop field sanitation Proper dosage of fertilizer use Monitoring bollwoms using pheromone traps Monitoring insect pests, their damage & crop growth #### 2. Planting to first flower 2.1.Optimum sowing Keeping the fields Late planted crop Immediate to Finer adjustments in the Early sowing Delaying the dates receipt of dates of sowing just ready for sowing after provides planting succumbs to monsoon after the receipt of the receipt of first rains. escape from beyond the severity of pink and taking up dry optimal/ sufficient (2") first rains severity of bollworm augment the yield of sowing iassids and normal and there is rainfed cotton by the late delayed crop sowing minimizing pest attack maturity, leading season pests. dates such as pink to reduced vields bollworm and and poor fibre stainers quality through early crop maturity 2.2. Use of inter/trap/ indicator/ strip crops 2.2.1. Growing soybean Provides risk aversion Adjust the plant spacing Sucking pests or black gram or cowpea and compatible with between two rows to and Spotted as intercrop cotton pest management accommodate one row bollworm through enhancement of The narrow Along with of pulses Monocropping native predators and of cotton over plantingof genetic diversity cotton parasitoids large areas leads to 2.2.2. Use of late Growing one or two American of insect pests outbreaks variety red gram as rows of red gram for bollworm over time strip or border crop every 8 rows of cotton 2.2.3. Planting of few Serves as an indicator Sowing castor seeds at Leaf field borders worm castor plants cum trap crop 2.3. Gap filling of After the To serve as source of While maize seeds can Aphids, lassids, Leaving the gaps Maintenance of cotton fields with seedling floral nectar and be used for gap filling. thrips and without gap poor plant stand emergence and alternative prev (aphids). seedlings of marigold bollworms esp. filling either with with gaps in the maize or marigold within first 20 shelter, mating and should be raised in H. amigera cotton or with fields lead to days of crop age oviposition sites for native nursery at sowing time and E. vittella other crops reduced vields predators like coccine llids of cotton. Seedlings of and chrysopids. Marigold marigold can also be serves as a trap crop for obtained from the H. armigera commercial nurseries and used for gap filling Damage of leaf minor Erecting bird perch Thrips | | L | DOs | | Insect pests | DO | N'Ts | |--|--|--|--|--|---|---| | What to do | When to do | Why to do | How to do | suppressed | What not to do | Why not to do | | 2. Planting to | first flower | | | | | | | 2.4. Site and field
specific management
of cotton crop,
alternate and weed
hosts | During the
vegetative phase
of the crop
growth | To minimize insect pest population and their carry over | Depending upon the field location, nutrient status the cultural operations such as interculture and fertilizer application should be taken up. Field sanitation by removal of weed hosts of insect pests should form a part of crop management | All insect pests | Excess
nitrogenous
fertilizer at time
of grand growth
period should be
avoided | Excess nitrogen
leads to high
vegative growth
of the crop and
offers
attractiveness to
many insects and
their faster
multiplication and
hence higher
damage | | 2.5. Monitoring of sucking pests and natural enemies | Weekly prior to
the square stage
(5 to 6 true
leaves) | To know the type and status of insect pests and their injury besides for the occurrence of natural enemies | Random sampling of
20 plants per acre with
observations on the
symptoms of damage
due to various sucking
pests and for presence
of natural enemies | Sucking pests | Ignoring to keep
a regular watch
on crop growth
and development
of insect
population
besides their
natural enemies | Failure of regular
watch on the crop
leads to the loss
of crop stand and
unnecessary
applications of
insecticides | | 2.6. Accounting native natural enemies | When native
predators occur
along with the
occurrence of
jassids, aphids
and thrips | Natural enemies such as
aphidophagous
coccinellids and syrphids,
besides generalist
chrysopids offer
significant control of early
season sucking pests | At a predator (coccinellids
& chrysopids) to prey
(aphids and jassid
nymphs) ratio greater than
0.5, there occurs
substantial natural control
and decide not to spray | Jassids
Aphids
Thrips
and
Whiteflies | Use of insectici-
des at times of
abundance of
natural enemies | Leads to depletion
of beneficials of
the ecosystem
and pest
management
becomes an
"insecticide
treadmill" | Sooty mould on leaf due Whiteflies to honey dew deposition Mirid bug damaged boll Mealy bug ### 2. Planting to first flower Amount of spray fluid To reduce the yield loss 2.7. Determine action Yellowing and Jassids and type of the sprayer thresholds for chemical curling along caused due to the lassids used should be depending insecticide application the leaf margins against management of occur due to upon the crop growth. sucking pests. iassids seen in Given as separate table in Spray any one insecticide 25% of plants. the Annexure. II. If more listed below than one insecticidal Neonicotiniods When cupping To reduce the vield loss Aphids application is warranted Imidacloprid 200 SL of leaves on the caused due to aphids the chemicals should be @ 100 ml/ha or top one third alternated with different Thiamethoxam 25 WG portion of the groups @ 100 g/ha or plant and aphids Unnecessary Spraying of Acetamiprid 20 SP all over the insecticides when insecticidal sprays @ 200 ml/ha lead to loss of plant are seen in not necessary. Organophosphorus 25% of plants. spraying based friendly on insect counts compounds entomofauna that Methyl demeton 25 EC and spraying of regulate the @1200 ml/ha, Shiny oily To reduce the yield loss Care should be taken to Thrips the same chemiinsect pest Dimethoate 30EC patches on the caused due to the thrips provide good coverage cal repeatedly or population. under surface @ 500 ml/ha. of the crop canopy using improper Improper sprays including the underside lead to sub lethal of leaves above dosage and mid canopy and of leaves spray volume. dosages and the activity of provide selection pressure for thrips on the terminal leaves development of of 25% plants resistance by the pests for those More than 25% Care should be taken to Whiteflies chemicals Spray any one insecticide To reduce the yield loss Spraying during listed below of leaf coverge caused due to the provide good coverage periods of by whitefly of the crop canopy rainfall Neonicotiniods whiteflies including the underside Imidacloprid 200 SL pupae on the @ 100 ml/ha or underside of of leaves Thiamethoxam 25 WG leaves of middle @ 100g/ha or plant canopy Acetamiorid 20 SP and flight of @ 200 ml/ha whitish adults visible with a single stroke of plant terminals Terminal bunching due Square feeding by Earias to mealy bug feeding Flower feeding by Earias Green boll feeding by Earlas Square damage by H. armigera Flower damage by H. armigera | | | DOs | <u> </u> | Insect pests | DO | N'Ts | |--|---|---|--|----------------------|---|---| | What to do | Whento do | Why to do | How to do | suppressed | What not to do | Why not to do | | 3. First flower | to first ope | en boll | | | 04 0 | | | 3.1. Monitoring of
boll worms
3.1.1. Monitoring the
activity of adults of
boll worms | Twice weekly at
intervals of 3 to
4 days from
square initiation
to first flower | To know the initiation and degree of population development in the fields of cotton | Pheromones in traps are used for monitoring adults of bollworms viz., Helicoverpa, Earias and Pectinophora. Trap height for pink and spotted bollworms should be 60 cm above ground level in the early season and 15 cm above crop canopy in the late season. For Helicoverpa the trap height should be one metre above ground level in early season and one metre above crop canopy during late season | | Deciding to spray
insecticides
without monitoring
the type of pests
and their level of
infestation | Leads to indiscriminate use of insecticides, high plant protection cost, resistance development in insect pests, destruction of natural enemies and environmental pollution | | 3.1.2. Monitoring the activity of damage due to bollworms | When the
damage to the
de veloping
fruiting structu-
res occur | To assess the damage levels and to take action to reduce their population | Bollworm damage is assessed through visual observations of the damaged out of the total fruiting structures (squares, flowers and bolls) from among the 20 randomly selected plants per acre | All the
bollworms | Non a sse ssment
of damage caused
by bollworms | Leads to loss in yields | | 3.2. Selection of non insecticidal bollworm management strategies | With the visible
symptoms of
collapse of
terminal shoots
of growing
plants | Reduces damage due to
Spotted bollworm | Removal of wilting
shoots and destruction
of tip boring larvae | Spotted bollworm | Spray of insecticides | Insecticidal sprays
are ineffective on
larvae inside
tunnels of the
stems | Green boll damage by H. armigera Flared up squares due to bollworms Flower damage by P. gossypiella Green boll damage by P. gossypiella Damage in open boll by P. gossypiella | 3. First flower | to first ope | en boll | 521 | | . Lig | şp. | |---|--|--|--|----------------------|---|---| | 3.2.1. Mechanical collection | During
epidemics of
H. amigera | Control failures occur
during outbreak years and
insecticides are ineffective | Hand picking of visible
larvae and their
destruction or their
utilisation for NPV
production | American
bollworm | Repeated sprays of insecticides | Insecticidal sprays
are ineffective
and the damage
to fruiting
structures occur
before the suppre-
ssion of larvae | | 3.2.2. Augmentative biological control | When there is
heavy egg laying
by H. armigera | | Application of
trichocards @ 5/ha (one
lakh parasitoids/ha) to | All bollwoms | Not to release in
the absence of
egg load on the | As they are stage
specific improper
time of applica- | | 3.2.2.1.Use of egg
parasitoid
Trichogramma chilonis | (more than two
per plant) | and bolls | coincide with peak oviposition periods | | crop and not
within a week of
insecticidal spray
if done. Not to be
used on Bt cotton | tion become cost
ineffective.
Persistence of
insecticides cause
mortality of
parasitoids.
incompatible with
mode of action
of Bt cotton | | 3.2.2.2. Use of nuclear
polyhedrosis virus | When the initial population of
H. amigera is
moderate and
further build up
is anticipated
or predicted
with rainy
periods ahead | Negates the use of insecticides. Conserves the native parasitoids and predators. Virus perpetuates in the system through rain splashes to inflict infection to the next generation | Ha NPV spray @ 250
larval equivalents (LE)
(1LE = 2 x 10° polyhedral
inclusion bodies)
coinciding with early
instars of American
bollworm larvae | American
bollworm | Late instar larvae should not be the targets. Should not be mixed with extract (NSKE). Not to be used on Bt cotton. | Late larval instars are immune to virus. Deterrent action of neem seed kernal NSKE reduces the intake of virus by larvae. Does not fit into incompatible with Bt cotton | Leaf roller Semi-looper Tobacco caterpillar Hairy caterpillars Red cotton bugs Tunneling by stem borer | | | DOs | 2 St. | Insect pests | DO | N'Ts | |---|---|--|--|--|---|---| | What to do | Whento do | Why to do | How to do | suppressed | What not to do | Why not to do | | 3. First flower t | o first ope | en boll | | | | | | 3.2.3.Deploying
gossyplure baited traps
traps for mass
@ 20 per hectare | From the peak
would be
crop harvest | Towards mass trapping of
flowering till
that would disrupt mating
and population build up
of pink bollworm | Trap height for pink male moths in the fields ground level in the early season and 15 cm above crop canopy in the late season. Lures in septa should be changed once in 30-45 days. | Pink bollworm
should be 60 cm | Deployment of above trapping purpose in only few fields | Mass trapping successful only when large areas are covered as the dispersal of males from neighbouring fields would make management option cost ineffective | | 3.3. Bollworm management using insecticides 3.3.1. The insecticides that are recommended with their dosages for bollworm management are in Annexure II 3.3.2. Selection of chemical groups should be in rotation 3.3.3. Costly chemicals should be chosen only when the control efficacy anticipated in terms of yield saving is more than the cost of the chemical | In the event of excessive damage by any one or combination of bollwoms from the start of first flower on the crop | Results in yield loss | Strategy of crop protection should focus on the developing bolls against Helicoverpa, Earias as well as from pink bollworms. Damage to bolls in conjunction with the presence of damaging larvae on the crop should be considered for insecticidal spray. Monitor the moth activity of pink bollworm using pheromone traps and take spray decisions when there is catch of eight moths/trap for three consecutive days | Spotted,
American and
Pink bollworms | Avoidance of insecticidal application against bollworms occurring on first flush when more than 90% of fruiting structures are squares Decision to spray based on the advice of pesticide dealers Improper attention during the boll maturation phase | Insecticidal sprays do not justify the yield saving Advice of dealers is based on the products they handle and profit motivated. Often times result in unnecessary sprays. | Syrphid maggot Chrysopid grub Zanchius sp. Spider | 3. First flower | to first ope | en boll | | | | | |--|--|---|---|---------------------------|--|---| | 3.3.4.Pyrethroids are to
be used only during
November- December
assessed
months against pink
bollworm | During boll
maturation
phase | Since the damage by pink
bollworm is not visible it
is necessary to monitor
through pheromone traps | | Pink bollworm | | Pink bollworm
larvae and
damage cannot be
through scouting
and damage is
obvious only after
bolls are open | | 3.3.5. Spray fluid varies with crop age, size of canopy and type of sprayer Given as separate table in the Annexure. I | During all the insecticidal applications | Proper selection of
insecticide at correct
dosage and time with
uniform crop coverage
results in better control of
bollworms | Required dosage of insecticide for area and crop stage should be mixed with water in larger drums and used for filling spray tanks of sprayer | All bollworms | Tank mixing of insecticides should be avoided | Results in inadeq-
uate and improper
sprays and lead
to sub lethal
dosages of
insecticides and
resistance
development in
target insects | | 4. Open boll to | final harv | est | | | | | | 4.1. Assessment of pink bollworm damage should be based on destructive sampling (boll cracking method) when pheromone traps are not used | squares and
flowers on the
plant or the crop | Since no visible damage
occurs till the boll opens,
pink bollworm infested
bolls result in heavy yield
losses | Collect twenty randomly
the developing bolls of
20-25 days old per acre
and examine for pink
bollworm infestation | Pink bollworm | To assume that once the green bolls are on the plant they would develop to maturity without damage | Such an
assumption lead to
yield loss and
reduction in fibre
quality | | 4.2. Management of stainers | When majority
of bolls are yet
to open | To reduce the population build up of stainers and to harvest good quality cotton | Dislodging the gregarious population of the stainers on the bolls in to a vessel containing water with a thin film of kerosene | Red and dusky cotton bugs | Ignoring their
population build
up | Pest status of
stainers would
severely affect the
lint quality | | 4.3. Management of
sucking pests esp.
resurging aphids and
whiteflies | During outbreak
of aphids when
more than 50%
bolls are yet to
open | To prevent lint contamination and harvest quality produce | Use any one organo-
phosphorous insecticidal
compound (refer
Annexure I) | Aphids | To spray just
before harvest | To avoid toxic
residues of
insecticides in the
seed cotton and
lint. | Bird Preying mantid # Annexure I. Spray volumes for field use at different crop growth stages for insecticidal application | Stage of the crop growth
(Number of nodes above
cotyledonary nodes)* | Required
volume of
sprayfluid
(l/ha) | Type of sprayer | |--|---|--------------------------------| | < Four nodes | 100-125 | Hand operated knapsack sprayer | | > four nodes to ≤ eight nodes | 150-200 | Hand operated knapsack sprayer | | > 8 nodes to ≤ sixteen nodes | 200-250 | Power sprayer | | > 16 nodes | 250-300 | Power sprayer | ^{*:} Cotyledonary nodes are the first pair of nodes exactly opposite to each other on the main stem Apenteles adult Rogas aligarhensis Palexorista laxa Bracon greenii Aphilinus sp. Campoletis chlorideae ## Annexure II. Insecticides for use against bollworms | Name of chemical group and insecticide | Formulation | Dosage
(g a. i./ha) | Quantity of
chemical (ml/ha) | |--|-------------|------------------------|---------------------------------| | Cyclodiene | | | | | Endosulfan | 35 EC | 875 | 2500 | | Carbamates | | | | | Carbaryl | 50 WP | 1000 | 2000 | | Methomyl | 25 EC | 500 | 2000 | | Thiodicarb | 75 WP | 1500 | 2000 | | Organophosphorus compounds | | | | | Acephate | 75 WP | 584 | 780 | | Chlorpyriphos | 20 EC | 250 | 1250 | | Ethion | 50 EC | 500 | 1000 | | Profenophos | 50 EC | 750-1000 | 1500-2000 | | Quinolphos | 25 EC | 500 | 2000 | | Triazophos | 40 EC | 600-800 | 1500-2000 | | Synthetic pyrethroids | | | | | Cypermethrin | 10 EC | 50 | 500 | | Cypermethrin | 25 EC | 50 | 200 | | Decamethrin | 2.8 EC | 12.5 | 450 | | Fenvalerate | 20 EC | 100 | 500 | | Lambda-cyhalothrin | 5 EC | 15 | 300 | | Bifenthrin | 10 EC | 80 | 800 | | β Cyfluthrin | 25 EC | 18 | 75 | | Insect growth regulators | | | | | Novuluron | 10 EC | 100 | 1000 | | Lufenuron | 5 EC | 60 | 1200 | | Diafenthiuron | 50 WP | 300 | 600 | | Oxidiazine | | | | | Indoxacarb | 15 EC | 75 | 500 | | Spinosyn | | | | | Spinosad | 48 EC | 50-75 | 100-150 | | Avermectin | | | | | Emamectin benzoate | 5 EC | 10 | 200 | | | | | | ### Authors Dr. S. Vennila Dr. V. K. Biradar Division of Crop Protection Central Institute for Cotton Research Nagpur Mr. M. Sabesh Central Institute for Cotton Research (R. S.) Coimbatore Dr. O. M. Bambawale National Centre for Integrated Pest Management New Delhi Published by Dr. B. M. Khadi Director Central Institute for Cotton Research Post Bag No. 2, Shankar Nagar P. O. Nagpur 440 010, Maharashtra ## Acknowledgement Mrs. M. Chakrabarty Scientist I/c, TMC-MM I Cell Central Institute for Cotton Research Nagpur Printing Mudrashilpa Offset Printers Nagpur. Ph. 2231716 March 2007