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Abstract

RNA-binding proteins (RBPs) are essential for post-transcriptional gene regulation in eukaryotes, including splicing control, mRNA trans-
port and decay. Thus, accurate identification of RBPs is important to understand gene expression and regulation of cell state. In order
to detect RBPs, a number of computational models have been developed. These methods made use of datasets from several eukaryotic
species, specifically from mice and humans. Although some models have been tested on Arabidopsis, these techniques fall short of
correctly identifying RBPs for other plant species. Therefore, the development of a powerful computational model for identifying plant-
specific RBPs is needed. In this study, we presented a novel computational model for locating RBPs in plants. Five deep learning models
and ten shallow learning algorithms were utilized for prediction with 20 sequence-derived and 20 evolutionary feature sets. The highest
repeated five-fold cross-validation accuracy, 91.24% AU-ROC and 91.91% AU-PRC, was achieved by light gradient boosting machine.
While evaluated using an independent dataset, the developed approach achieved 94.00% AU-ROC and 94.50% AU-PRC. The proposed
model achieved significantly higher accuracy for predicting plant-specific RBPs as compared to the currently available state-of-art RBP
prediction models. Despite the fact that certain models have already been trained and assessed on the model organism Arabidopsis,
this is the first comprehensive computer model for the discovery of plant-specific RBPs. The web server RBPLight was also developed,
which is publicly accessible at https://iasri-sg.icar.gov.in/rbplight/, for the convenience of researchers to identify RBPs in plants.
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Introduction
RNA-protein interactions are involved in a wide range of biological
activities connected to the gene regulation. Proteins that interact
with RNAs are referred to as RNA-binding proteins (RBPs), a

diverse class of proteins that contain one or more RNA binding
domains in addition to other catalytic or functional domains.
In plants, more than 1800 potential RBPs have been discovered,
with over 800 of those being enriched in Arabidopsis [1, 2]. RBPs
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play important roles for the growth and development of
plants, including genome organisation, stress response, immune
response, mRNA processing and post-transcriptional gene regula-
tion [2–7].

The RNA-protein interaction has primarily been analysed in
wet lab experiments. In particular, RNA-protein interactions in
plants were discovered using in vitro techniques like gel shift
assay, mutant and knockout screening, nucleic acid-binding assay
and other traditional genetics and cell biological methods [8–10].
However, the wet-experiment methods are time-consuming and
costly. In other words, RBP experimental studies can be guided
by developing computational methods for high-throughput pre-
diction of RBPs. Thus, development of computational techniques
that can precisely detect RBPs in plants is the need of the hour.

Several attempts have been made to develop effective com-
putational models for predicting RBPs in eukaryotes. The two
main categories of these techniques are machine learning- and
template-based techniques. A query protein’s similarity to a tem-
plate RBP or RNA-binding domain (RBD) is measured using the
template-based approaches to identify RBPs. Methods in this cat-
egory include SPalign [11], SPOT-stru [12], SPOT-seq [12], SPOT-
Seq-RNA [13] and APRICOT [14]. However, the predefined RBDs
cannot be found in almost half of the experimentally identified
RBPs [15–16]. Also, proteins with the presence of the RBDs may
not always match to RBPs [17]. Therefore, in these two situations,
the template-based methods might not work. On the other hand,
machine learning-based methods train models using annotated
training datasets that contain both RBPs and non-RBPs. Machine
learning approaches have been more common in recent years
due to their advantage in handling high-dimensional features
generated from sequences or structures.

In the existing RBP prediction methodologies, both sequence-
derived features and features derived from the protein’s 3D struc-
ture have been used. The models such as BindUp [18], Nucle-
icNet [19] and NAbind [20] have used 3D structural features
to improve the prediction accuracy. However, the majority of
the algorithms currently in use have been trained using fea-
tures extracted from sequence data, as it is simpler to obtain
sequence data than 3D structure data. In order to discriminate
between RBPs and non-RBPs, Kumar et al. (2011) developed a
method called RNApred in which binding residues and position-
specific scoring matrix (PSSM) profiles were incorporated into
the support vector machine (SVM) prediction algorithm [21]. Two
distinct approaches based on the Random Forest model have been
proposed by Ma et al. [22–23], where the two approaches differ
in terms of features. In the first approach [22], physicochemical
features, evolutionary features and amino acid compositional
features were used, whereas in the second approach [23], conjoint
triad, binding propensity, non-binding propensity and physico-
chemical attributes were used. Zhang and Liu (2017) developed
RBPPred, a novel sequence-based approach that predicts RBPs
using SVM and incorporates physiochemical and evolutionary
features derived from PSSM profiles [24]. In another study, Wang
et al. [25] presented a hierarchical ensemble learning model to
integrate three levels of information and suggested a computa-
tional predictor called iDRBP-EL to discover DNA-binding proteins
(DBPs) and RNA-binding proteins [25]. In another study, Wang et al.
[26] further suggested a novel feature representation approach
for representing protein sequences known as PSSM and Position-
Specific Frequency Matrix (PSFM) Cross Transformation (PPCT).
Based on the PPCT features and Random Forest method, the
authors presented a new computational predictor named IDRBP-
PPCT to identify DBPs, RBPs and DRBPs (both DBPs and RBPs).

Along with shallow machine learning models like SVM and
Random Forest, deep learning models have also been utilized
for the prediction of RBPs. A method called Deep-RBPPred was
developed by Zheng et al. [27] by employing the protein feature
of RBPPred and convolutional neural network (CNN). Zhang et al.
[28] developed a multi-label learning model known as iDRBP_MMC
based on the motif-based CNN to address the cross-prediction
issue and enhance the predictive performance of DBPs and RBPs.
In addition, Zhang et al. [29] also developed the DeepDRBP-2L, a
two-level predictor for predicting RBPs by fusing CNN with Long
Short-Term Memory (LSTM). In another study, Zhang et al. [30]
proposed the PreRBP-TL model to detect species-specific RBPs
based on transfer learning. In this model, weights were initially
set up using pre-training on a sizable RBP dataset, and were then
improved using transfer learning on a smaller RBP dataset that
was specialised to a single species. In a similar vein, Peng et al. [31]
proposed the RBP-TSTL technique, which integrates the learning
from the annotated pre-training RBPs dataset with the feature
embedding produced by a self-supervised pre-trained model.

The majority of the machine learning-based models mentioned
above have been developed using RBP sequence data from a wide
range of eukaryotic species, yielding models that are generalized
in nature. However, RBPs are specific to distinct species as well as
to lineage-specific families [1, 32]. Thus, it may not be possible to
predict plant-specific RBPs with higher accuracy using the current
generic models. Even though some of the models have been tested
on model plants, these methods predict the RBPs with a poor
degree of accuracy for other plant species. Despite significant
advancements in RBP prediction, plant-based model development
is mostly ignored. Thus, there is a need to develop computational
method for prediction of plant-specific RBPs. In the present study,
we proposed a novel computational tool called RBPLight to predict
plant-specific RBPs. The devised method took use of machine
learning algorithms for prediction purpose, where ensemble of
evolutionary features was utilized as input in machine learning
algorithms.

Materials and methods
Retrieval and processing of sequence data
The plant RBP sequences were collected from CISBP-RNA [33] and
UniProtKB (accessed on 16/07/2022) [34] databases. The CISBP-
RNA database includes experimentally validated RBP sequences.
The UniProtKB database consists of two sections: reviewed and
unreviewed. The reviewed section comprises manually annotated
protein sequences with information extracted from literature,
whereas the unreviewed section comprises protein sequences
associated with computationally generated annotation (https://
www.uniprot.org/help/uniprotkb). For the current investigation,
we retrieved the RBP and non-RBP sequences from the reviewed
section of the UniProtKB, based on gene ontology (GO) terms. More
clearly, the RBP sequences were defined as the protein sequences
annotated with the GO term ‘RNA-binding’ (GO: 0003723),
whereas non-RBP sequences were defined as proteins without
the annotation. Similar approach has also been adopted in earlier
studies [21, 24–31] for retrieving RBP and non-RBP sequences from
UniProtKB database. A total of 16,453 RBP sequences, including
13,162 sequences from CISBP-RNA and 3,291 sequences from
UniProtKB, were obtained for 36 distinct plant species. On the
other side, a total of 19,251 non-RBP sequences were retrieved
from the UniProtKB database. Protein sequences with non-
standard residues (B, J, O, U, X and Z) and less than 50 amino acids
in length were removed. To eliminate the homologous bias in the
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prediction accuracy that may arise from including redundant or
highly similar sequences, homology reduction was applied to both
RBP and non-RBP datasets. Homology reduction in protein dataset
refers to the process of reducing the redundancy by removing
highly similar protein sequences while retaining the diversity
of the dataset. The CD-HIT [35] approach was used to remove
sequences from each data set that shared >40% of their sequence
identity with any other sequences. The CD-HIT command is
provided in the supplementary file. After removing redundancy,
6,921 non-RBP sequences and 2,696 RBP sequences were obtained.
Out of the 2,696 RBPs, 200 sequences were kept aside in order to
be utilised as an independent positive test set, and the remaining
2,496 RBPs were used as the positive training set. To prevent
prediction bias toward the non-RBP class that had a larger number
of observations, a balanced dataset of 2,496 RBP and 2,496 non-
RBP sequences was considered. The 2,496 non-RBP sequences
were selected randomly from the 6,921 non-RBP sequences. To
generate the positive independent test set, we once more retrieved
the plant RBP sequences from the UniProtKB database (accessed
on 9 October 22). A total of 575 RBP sequences were found for
35 distinct plant species. After removing the protein sequences
with irregular residues and length of less than 50 amino acids,
a non-redundant dataset of 343 RBP sequences was obtained.
Therefore, a total of 543 RBP sequences (343 + 200) were used
for the positive independent test dataset. In order to have a fair
prediction, 543 randomly selected non-RBP sequences were taken
into consideration from the remaining 4,425 non-RBP sequences
(after using 2,496 out of 6,921 non-RBP sequences for the training
set). To put it simply, the independent dataset was created by
combining 543 non-RBP sequences with 543 RBP sequences.

Generation of numeric features from sequence
data
The development of sequence-based RBP prediction requires
numerical representation of the RBP sequence, as machine
learning algorithms cannot accept the sequence data directly.
The numerical representation has a significant impact on
credibility of the prediction model in terms of prediction
accuracy. Both sequence-based features and PSSM-based evo-
lutionary features were used in the current study. Specifi-
cally, we considered 20 different sequence-based feature sets
(Supplementary Table S1) and 20 feature sets obtained from
PSSM profile (Supplementary Table S2). The protr R-package [36],
ftrCOOL R-Package [37], Peptides R-packages [38] and iFeature
Python module [39] were used to generate the sequence-based
features, whereas the PSSMCOOL R-package [40] and POSSUM
standalone toolkit [41] were utilized to implement all functional-
ities for PSSM-based feature descriptors. In Supplementary Data,
a concise description of each sequence and PSSM-based feature
set is provided with the required citations.

Prediction algorithms
The existing research on RBP prediction have used both shallow
learning and deep learning algorithms. In the present study,
we evaluated the accuracy of ten different shallow learning
techniques, including SVM [42], extreme gradient boosting
(XGBoost) [43], Random Forests (RFs) [44], light gradient boosting
machine (LightGBM) [45], multi-layer perceptrons (MLP) [46],
Bagging [47], adaptive boosting (AdaBoost) [48], stochastic
gradient descent (SGD) [49], NaiveBayes [50] and gradient tree
boosting (GBDT) [51], using both sequence-derived and PSSM-
derived features. In addition, five deep learning models were also
used, including one-dimensional convolutional neural networks

(CNN_1D) [52], attention-based convolutional neural networks
(ABCNN) [53], long short-term memory (LSTM) [54], bidirectional
LSTM (Bi-LSTM) [55] and AutoEncoder (AE) [56]. The AE was
not used for classification in this study. Rather, the feature
representation of the input data acquired through the usage of
the AE supervised learning model was employed as input in the
deep neural network (DNN) for classification. The DNN along
with AE features was denoted as AE_DNN in this study. The SVM,
RF, XGBoost, AdaBoost, NaiveBayes, LightGBM, MLP, Bagging, SGD
and GBDT algorithms, respectively, were implemented using the
R-packages e1071, randomForest, xgboost, adabag, fastNaiveBayes,
lightgbm, RSNNS, ipred, sgd and gbm. With the help of the PyTorch
and TensorFlow libraries of Python, deep learning models were
executed. Supplementary Table S3 provides information on
the software used to implement the learning models and the
parameter setup.

Cross-validation and performance metrics
A repeated five-fold cross-validation approach was used to assess
the performance of the classification models, and the experiment
was repeated 100 times. Each RBP and non-RBP dataset was
randomly separated into five subgroups of equal size in order
to perform the five-fold cross-validation [57]. In each fold of the
cross-validation, one randomly selected subset from the RBP and
non-RBP classes was used as a test set, and the remaining four
subsets from both classes were pooled to serve as a training set.
Distinct training and test sets were used five times during the five-
fold classification process. The performance metrics were calcu-
lated by taking average of the accuracy over all five test sets and
100 replications. Figure 1 shows the methodological flow diagram
outlining each phase of the proposed computational model. The
five-fold cross validation and different performance metrics used
to evaluate the effectiveness of the prediction models are shown
in Figure 2.

Result
Prediction analysis of shallow learning models
The accuracy of 10 shallow learning algorithms was examined
with 20 sequence-derived and 20 evolutionary feature sets using
50% of the observations of the entire dataset. When compared
to features obtained from sequences, evolutionary features were
shown to be more accurate. Among the 10 algorithms, LightGBM
and XGBoost had the highest accuracy for both kinds of feature
sets. Among the sequence-derived feature sets, the CKSAAP
feature set with the LightGBM approach had the highest AU-ROC
(85.50%) and AU-PRC (85.40%) values (Figure 3). In other words,
CKSAAP was found to be the only sequence-derived feature set
with >85% accuracy. The accuracy, on the other hand, was <85%
for the remaining algorithms and sequence-based feature set
combinations. Out of 20 PSSM-derived feature sets, only seven fea-
ture sets such as AADP_PSSM, AATP_PSSM, TPC_PSSM, DP_PSSM,
PSE_PSSM, Kbigram_PSSM and Trigram_PSSM showed ≥90%
AU-ROC and AU-PRC (Figure 3). Specifically, the Trigram_PSSM
feature set and LightGBM method achieved the highest AU-ROC
(91.9%) and AU-PRC (92.3%). Similar accuracies for LightGBM
were also obtained for other six PSSM-derived feature sets
(Figure 3).

Performance analysis of deep learning models
The performance of five cutting-edge deep learning models,
including CNN_1D, LSTM, Bi-LSTM, AE_DNN and ABCNN, was
then evaluated using the seven PSSM-derived feature and one
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Figure 1: Illustration of the brief outline of the proposed approach. The diagram depicts the overall design of the entire computational strategies
followed to develop the RBP prediction model. (A) Retrieval of RBP and non-RBP sequences from the Uniprot and CISBP-RNA database and processing
of sequence data; (B) sequence- and PSSM-derived feature generation and selection of most important features descriptor and MLA, based on AU-ROC
and AU-PRC; (C) model building using different machine learning techniques and assessment of cross-validation accuracy.

Figure 2: Illustration of the five-fold cross validation approach and different performance metrics used for evaluating the performance of learning
algorithms.

sequence-derived feature sets in which higher accuracy was
discovered using shallow learning algorithms. The performance
of the deep learning models was also compared with LightGBM
and XGBoost, as these two algorithms were found to be the top
two performers among shallow learning algorithms. For all the
feature sets, the LightGBM and XGBoost achieved higher accuracy
as compared to the five deep learning models. In comparison to
other deep learning models, CNN_1D achieved greater accuracy
for four PSSM-derived feature sets, including PSE_PSSM (AU-
ROC: 90.04%, AU-PRC: 89.94%), AATP_PSSM (AU-ROC: 87.16%,
AU-PRC: 87.14%), AADP_PSSM (AU-ROC: 85.07%, AU-PRC: 86.38%)
and Kbigram_PSSM (AU-ROC: 87.07%, AU-PRC: 87.36%) (Figure 4).
Similar to how AE_DNN obtained higher accuracy for the
DP_PSSM feature set, LSTM did so for the TPC_PSSM (AU-
ROC: 87.15%, AU-PRC: 87.08%) and Trigram_PSSM (AU-ROC:
89.13%, AU-PRC: 87.75%) feature sets, respectively (Figure 4). The
LightGBM and XGBoost with PSSM-based features outperformed
other plausible combinations of learning algorithms and feature
sets (Figure 4). Consequently, LightGBM and XGBoost along with
the PSSM-based features were taken into consideration for
subsequent analysis.

Prediction analysis with feature combination
To reduce computational complexity, the Trigram_PSSM feature
set was ignored because it includes 8,000 features, which was
far more than other PSSM-based feature sets. AATP_PSSM
was chosen over AADP_PSSM because, it had a marginally
higher accuracy despite having the same number of features
(420). Similarly, TPC_PSSM was chosen over Kibigram_PSSM
due to the same number of features (400), but slightly higher
accuracy. In total, four feature sets such as AATP_PSSM, DP_PSSM,
PSE_PSSM and TPC_PSSM were taken into account for further
analysis. The four feature sets were combined in different
conceivable ways for the prediction analysis (Table 1). Similar
accuracy was obtained across feature combinations by XGBoost
and LightGBM. For both learning algorithms, AU-ROC and
AU-PRC, respectively, were obtained >90% and > 91% for all
feature combinations. The AATP_PSSM+DP_PSSM+PSE_PSSM and
AATP_PSSM+DP_PSSM+PSE_PSSM+TPC_PSSM feature sets per-
formed slightly better than other feature combinations (Table 1).
LightGBM achieved AU-ROC of 91.24 ± 0.212 and AU-PRC of
91.91 ± 0.210 for the feature combination AATP_PSSM+DP_PSSM
+PSE_PSSM, which was slightly higher than that of XGBoost
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Figure 3: Heat maps of the AU-ROC and AU-PRC for predicting plant-specific RBPs employing 10 shallow learning algorithms coupled with 20
sequence-derived feature sets and 20 PSSM-derived feature sets.

(AU-ROC: 91.07 ± 0.151, AU-PRC: 91.84 ± 0.153). Also, the estimates
of AU-ROC (91.21 ± 0.165) and AU-PRC (91.92 ± 0.167) of LightGBM
were marginally higher than those of XGBoost (91.10 ± 0.163,
91.86 ± 0.141) for the feature set AATP_PSSM+DP_PSSM+PSE_
PSSM+TPC_PSSM. When both feature sets were compared, nearly
the same accuracy was found. As a result, the feature set with
400 less features, AATP_PSSM+DP_PSSM+PSE_PSSM, was chosen
to develop the final prediction model.

Prediction with independent test set
The performance of the developed model was further evaluated
using an independent dataset consisting of 543 RBP and 543 non-
RBP sequences. Using the LightGBM learning technique, the pre-
diction model was trained with the AATP_PSSM+DP_PSSM+PSE_
PSSM features derived from the training dataset of 2,496 RBP and
2,496 non-RBP sequences. For the test dataset, AU-PRC of 94.00%

and AU-ROC of 94.50% were achieved (Figure 5). This suggests
the robustness and effectiveness of the developed model for
predicting the plant-specific RBPs with higher accuracy.

Performance of existing tools on plant dataset
Since the plant dataset have been used in the training model of
the existing tools, the performance of the developed approach
(trained with 2,496 RBPs and 2,496 non-RBPs) and the existing
tools were computed and compared based on the accuracy of
an independent dataset that comprises 543 RBPs and 543 non-
RBPs of plants. The performance of 10 state-of-art existing mod-
els and the proposed approach is shown in Table 2. Among the
existing tools, RBPPred had the best accuracy (79.10%), whereas
Deep-RBPPred and iDRBP-ECHF were shown to have the highest
sensitivity (85.08%) and specificity (79.56%), respectively. The first
model developed for the prediction of RBPs, RNApred, had the
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Table 1. Performance of XGBoost and LightGBM with different combination of PSSM-derived features

Feature combination XGBoost LightGBM

AU-ROC±SE AU-PRC ± SE AU-ROC±SE AU-PRC ± SE

F1 + F2 91.08 ± 0.214 91.84 ± 0.209 91.23 ± 0.166 91.91 ± 0.186
F1 + F3 90.55 ± 0.185 91.30 ± 0.194 90.55 ± 0.196 91.24 ± 0.192
F1 + F4 90.35 ± 0.172 91.13 ± 0.180 90.42 ± 0.183 91.08 ± 0.195
F2 + F3 90.61 ± 0.183 91.28 ± 0.187 90.57 ± 0.193 91.21 ± 0.221
F2 + F4 91.03 ± 0.161 91.78 ± 0.183 91.18 ± 0.170 91.89 ± 0.169
F3 + F4 90.54 ± 0.192 91.29 ± 0.184 90.54 ± 0.202 91.24 ± 0.195
F1 + F2 + F3 91.07 ± 0.151 91.84 ± 0.153 91.24 ± 0.212 91.92 ± 0.210
F1 + F2 + F4 91.06 ± 0.198 91.82 ± 0.178 91.23 ± 0.166 91.91 ± 0.186
F1 + F3 + F4 90.50 ± 0.189 91.27 ± 0.170 90.55 ± 0.196 91.24 ± 0.192
F2 + F3 + F4 91.11 ± 0.177 91.83 ± 0.144 91.23 ± 0.211 91.91 ± 0.212
F1 + F2 + F3 + F4 91.10 ± 0.163 91.86 ± 0.141 91.24 ± 0.165 91.92 ± 0.167

F1: AATP_PSSM, F2: DP_PSSM, F3: PSE_PSSM, F4: TPC_PSSM

Table 2. Performance of existing RBP prediction tools on plant dataset

Method Sensitivity Specificity Precision Accuracy F1 Score MCC

RNApred 79.74 15.29 48.49 47.51 64.82 15.14
RBPPred 84.16 74.03 76.42 79.10 80.11 58.50
Deep-RBPPred 85.08 42.73 59.77 63.90 70.21 30.70
iDRBP_MMC 36.10 76.61 60.68 56.35 45.27 13.90
DeepDRBP-2L 74.95 74.59 74.68 74.77 74.82 49.54
iDRBP-EL 55.06 70.17 64.86 62.62 59.56 25.52
iDRBP-ECHF 25.97 79.56 55.95 52.76 35.47 6.54
IDRBP-PPCT 63.54 69.24 67.38 66.39 65.40 32.83
PreRBP-TLa 77.16 76.61 76.74 76.89 76.95 53.78
RBP-TSTLa 83.43 54.51 64.71 68.97 72.44 39.22
Our approach 86.74 86.74 86.74 86.74 86.74 73.48

aA. thaliana model; bold font denotes a higher value. MCC, Matthews correlation coefficient

lowest accuracy (47.51%). With the same dataset, the accuracy
of the proposed model was determined to be 86.74%, which was
∼7% higher than the top-performing model (RBPPred) from the
pool of existing models. Additionally, it was observed that the
MCC and F1-score of the proposed model were, respectively, 19%
and 7% higher than that of RBPPred. The AU-ROC and the AU-
PRC of the proposed approach was also found to be much higher
than that of best performing two existing models, i.e. RBPPred and
PreRBP-TL (Figure 5). To further assess the accuracy of the top two
existing models and the proposed approach on the most recent
RBP dataset, 871 RBP sequences were retrieved from the UniProtKB
on 21/02/2023. It was made sure that these sequences weren’t
present in the positive sets of the training and independent test
sets. After eliminating non-standard amino acids and sequences
with more than 40% sequence similarity to other sequences, the
remaining 360 sequences were used for prediction analysis. It was
observed that 91.38, 64.17 and 68.33 percentage of the sequences
were correctly predicted by RBPLight, RBPPred and PreRBP-TL,
respectively.

Species-specific RBP prediction
For Arabidopsis, rice, tomato, soybean and sorghum, respectively,
198, 198, 29, 24 and 18 experimentally validated RBPs were
collected from the UniProtKB on 12 October 2022 in order
to further verify the effectiveness of the developed model.
Additionally, it was made sure that these sequences weren’t
in the training positive set. The proposed model was used to
predict these sequences, and it was found that for Arabidopsis,
rice, tomato, soybean and sorghum, respectively, 87.37, 89.39,

89.65, 91.66 and 100 percentage of the sequences were correctly
predicted.

Prediction server RBPLight
An online prediction tool called RBPLight (https://iasri-sg.icar.gov.
in/rbplight/) was developed based on the proposed model for the
prediction of RBPs in plants. The user has to supply the protein
sequences in FASTA format, excluding non-standard residues.
The probability with which each sequence was predicted as RBP
or non-RBP by LightGBM learning algorithms are displayed in a
tabular manner. For making prediction using a larger size dataset,
the link to download the source code is available at the server site.

Discussion
RBPs are necessary for several biological processes related to
gene regulation in plants. Consequently, the discovery of RBPs
has significant theoretical and practical implications for plant
proteomics and genomics research [7, 58–59]. Identification of
RBPs within proteomes is a difficult process because of the variety
of RNA properties and the existence of inherently disordered
regions [17]. A number of computational methods have been
developed for the purpose of identifying RBPs, the majority of
which focus on human data while a few models have been
evaluated on Arabidopsis thaliana. On their own test datasets,
every existing model was said to have performed well. However,
in our evaluation using the most recent RBP collection, which
includes experimentally validated plant RBPs, the existing models
performed poorly. Despite tremendous progress in this domain, no
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Figure 4: Bar diagrams of the AU-ROC and AU-PRC for prediction of RBPs
using five deep learning and two shallow learning models with seven
selected PSSM-derived feature sets and one sequence-derived
feature set.

method for identifying RBP specific to plants have been developed.
In this paper, we introduced a novel computational model called
RBPLight that makes use of evolutionary feature information as
input to predict plant-specific RBPs from protein sequences using
light gradient boosting machine (LightGBM).

Figure 5: ROC and PR curves for predicting independent dataset of
plant RBPs.

Both sequence-derived features and PSSM-based evolutionary
features were utilized in the current study due to their successful
implementation in earlier RBP prediction models [21, 24, 27]. In
contrast to previous studies that included only a few sequence-
derived and evolutionary features, we conducted a thorough
assessment which included 20 different types of both sequence-
derived and PSSM-derived feature sets. It was found that evolu-
tionary features based on PSSM had higher prediction accuracy
than features obtained from sequence. Earlier RBP prediction
models have also used PSSM-derived features including PSSM-400
[21, 24, 27, 60, 61], BLOSUM62 [25–26, 28–30] and PSSM-TPC [62].
However, past research has not examined the feature sets used in
the current work, such as AATP_PSSM, DP_PSSM and PSE_PSSM.
Furthermore, the top three feature sets (420 for AATP _PSSM, 240
for DP_PSSM and 40 for PSE_PSSM), which were used for the final
prediction, were combined to yield a total of 700 features. Since
the number of observations (2496 RBPs and 2496 non-RBPs) was
substantially more than the number of features (700) employed,
there is a very less chance that the model will be poorly trained.
Thus, no feature selection strategy was employed in the present
study.

Structure-based features have been shown to improve RBP
prediction accuracy. However, we have used only the sequence-
derived feature in this investigation. This is because the num-
ber of experimentally solved protein structures is less, whereas
sequence-based models have access to much more data that
can help improve accuracy by training the model with a larger
dataset. Besides, predicting a protein’s structure is a more com-
putationally difficult task than extracting sequence-derived fea-
tures, and hence sequence-based models are much easier to train
and deploy than structure-based models.

Five deep learning models and ten shallow learning models
were assessed for prediction in the current study. With very
few exceptions, it was observed that shallow learning models
outperformed deep learning methods across feature sets. In par-
ticular, XGBoost and LightGBM outperformed the other learning
algorithms in terms of accuracy. When comparing the accuracy
of these two algorithms, LightGBM came out slightly ahead of
XGBoost. The key distinction between the two algorithms is that
trees grow leaf-wise in LightGBM whereas trees develop depth-
wise in XGBoost [63]. One of the likely causes of LightGBM’s higher
accuracy in comparison to XGBoost is that it follows a leaf wise
split strategy rather than a level-wise split approach. Although
the LightGBM model has been used for prediction in other areas
of computational biology, such as protein–protein interactions
[64], protein-ATP binding residues [65] and DNA-binding residue
prediction [66], RBP prediction has not yet been explored using
this learning algorithm.
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To further assess the reliability of the developed model, we
compared the performance of RBPLight with ten other state-of-
the-art methods using an independent test dataset. The proposed
method was found to outperform the compared methods in terms
of accuracy. To put it another way, the existing methods were
less accurate at predicting RBPs specific to plants than they are
for other eukaryotic species like human and mouse. RBPs are
well known to be highly tissue- and species-lineage-specific [1,
32], in contrast to the existing models, which were developed
based on protein sequences from a range of eukaryotic species
and are therefore less accurate for plant-specific RBPs. Despite
having been trained on the model organism Arabidopsis, models
like PreRBP-TL [30] and RBP-TSTL [31] show poor accuracy when
predicting the RBPs of other plant species. This suggests that
building an effective RBP prediction model for plants may not be
possible by focusing exclusively on the model organism of the
plant. Hence, we included RBPs from over 36 plant species in the
current study.

The performance of the proposed computational model was
also evaluated using an independent test dataset in addition to
cross-validation analysis, in order to demonstrate its robustness
and generalization ability. It was found that the overall accuracy
using the independent dataset was comparable with the accuracy
obtained using cross-validation. This shows that the accuracy of
the model was not overestimated or underestimated. In addition
to independent validation, the effectiveness of the developed
model was evaluated for predicting experimentally validated RBPs
for five distinct species, including Arabidopsis, rice, tomato, soy-
bean and sorghum. The higher accuracy for species-specific pre-
diction endorses up the dependability and generalizability of the
proposed model in respect of predicting RBPs for different plant
species.

Conclusion
The proposed method RBPLight offers a substantially improve-
ment in the prediction accuracy for plant-specific RBPs when
compared with the existing approaches. Due to encouraging
results, the RBPLight can be effectively used for large-scale
annotation of plant-specific proteins by utilising only sequence
information. For predicting plant-specific RBPs, we have devel-
oped an online prediction tool RBPLight (https://iasri-sg.icar.gov.
in/rbplight/). It is anticipated that the proposed approach will
supplement the existing models and experimental techniques for
identifying plant-specific RBPs.

Key Points

• Proposed a novel computational method, RBPLight for
identifying plant-specific RNA-binding proteins (RBPs).

• The RBPLight achieved high accuracy and outperformed
several existing tools for RBP identification in different
plant species.

• Species-specific RBP identification using experimentally
validated RBP sequences confirmed the reliability and
generalized predictive ability of RBPLight.

• RBPLight is also available in the form of an online pre-
diction tool which is freely accessible at https://iasri-sg.
icar.gov.in/rbplight/.

• The proposed approach is expected to supplant the
existing tools and methodologies for recognizing plant-
specific RBPs.

Supplementary data
Supplementary data mentioned in the text are available to sub-
scribers in Briefings in Functional Genomics online.
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