

कृषि में डटेा साइंस प्रषिक्षण कार्यक्रम

(4 षसतबंर - 15 षसतबंर, 2023)

Data Science in Agriculture

(September 04 – 15, 2023)

2023

प्रशिक्षण मैनुअल

Training Manual

Compiled and Edited by
Rajender Parsad, Alka Arora, Chandan Deb, Sapna Nigam, Upendra Kumar

Pradhan & Mrinmoy Ray

CONTENTS

S.

No.

Title Author Page No.

1 Linear Regression, Multiple Linear

Regression, Model Selection Criteria,

Regularized Linear Modeling

Ramasubramanian

V.

1-14

2 An Overview of Multivariate Statistical

Analysis Techniques

Rahul Banerjee 15-37

3 Linear and Integer programming: concept and

its application in agriculture

HarishKumar H V,

Bishal Gurung, and

Achal Lama

38-51

4 Python Madhu 52-88

5 Data Handling and Visualization using

NumPy, Pandas, Matplotlib and Seaborn

Sanchita Naha 89-108

6 Support Vector Machine: A Non-Linear

Machine Learning Technique

Amit Saha, K. N.

Singh, Mrinmoy

Ray and Santosha

Rathod

109-115

7 Foundations of Neural Networks Basics and

Artificial Neural Networks Concepts

Anshu Bharadwaj 116-136

8 Functions, Module, File Handling in Python Akshay Dheeraj 137-160

9 Deep Learning and Convolutional Neural

Networks Architectures

Sapna Nigam 161-171

10 Deep Learning using Python Software Upendra Kumar

Pradhan and

Ritwika Das

172-186

11 AI-DISC (Artificial Intelligence Based

Disease Identification for Crops): A case

study in Data Science

Chandan Kumar

Deb

187-191

12 Case study in Data Science (Machine

Learning)

Pankaj Das

192-196

13 Case study in Data Science (Statistical

modelling)

Pankaj Das

197-203

14 Hands on Image Classification using

Convolutional Neural Networks

Md. Ashraful

Haque

204-211

1

Linear Regression, Multiple Linear Regression, Model Selection Criteria,

Regularized Linear Modeling

Ramasubramanian V.

ICAR-National Academy of Agricultural Research Management, Hyderabad

r.subramanian@icar.gov.in

1. Introduction

Regression analysis is one of the most widely used techniques for studying relationships involving

multiple variables for analysing data by expressing a relationship between a variable of interest

(the response) and a set of related predictor variables. The regression models include both linear

and non-linear approaches assuming appropriate functional forms. A good account on regression

analysis and related topics can be found in Draper and Smith (1998), Montgomery et al. (2001),

Chatterjee and Hadi (2006) etc.

Regression analysis is a statistical methodology that utilizes the relation between two or more

quantitative variables so that one variable can be predicted from the other, or others. This

methodology is widely used in business, the social and behavioral sciences, the biological sciences

including agriculture and fishery research. For example, fish weight at harvest can be predicted by

utilizing the relationship between fish weights and other growth affecting factors like water

temperature, dissolved oxygen, free carbon dioxide etc.

Regression analysis serves three major purposes: (1) description (2) control and (3) prediction. We

frequent use equations to summarize or describe a set of data. Regression analysis is helpful in

developing such equations. For example, we may collect a considerable amount of fish growth

data and data on a number of biotic and abiotic factors, and a regression model would probably be

a much more convenient and useful summary of those data than a table or even a graph. Besides

prediction, regression models may be used for control purposes. A cause and effect relationship

may not be necessary if the equation is to be used only for prediction. In this case, it is only

necessary that the relationships that existed in the original data used to build the regression

equation are still valid.

A functional relation between two variables is expressed by a mathematical formula. If X denotes

the independent variable and Y the dependent variable, a functional relation is of the form

Y = f(X). Given a particular value of X, the function f indicates the corresponding value of Y. A

statistical relation, unlike a function is not a perfect one. In general, the observations for a statistical

relation do not fall directly on the curve of relationship. Depending on the nature of the

relationships between X and Y, regression approach may be classified into two broad categories

viz., linear regression models and nonlinear regression models. The response variable is generally

related to other causal variables through some parameters. The models that are linear in these

parameters are known as linear models, whereas in nonlinear models parameters are appear

nonlinearly. Linear models are generally satisfactory approximations for most regression

applications. There are occasions, however, when an empirically indicated or a theoretically

 2

justified nonlinear model is more appropriate. In the present lecture we shall consider fitting of

linear models only.

In this write-up, regression model fitting, some of the detection techniques which are useful in

detecting the problem of multicollinearity between the so-called ‘independent variables’ and also

outlier detection in data are discussed. Linear regression with qualitative regressor variables is also

discussed. Moreover, variable selection procedures, goodness of fit measures for model adequacy

and validation are also discussed. In addition, the concept and purpose of regularization in linear

modelling is also outlined.

2. Multiple linear regression modelling

Let the response variable (variable of interest) be denoted by Y and the set of predictor variables,

by X1 , X2 , …, Xp, where p denotes the number of predictor variables. The true relationship

between Y and (X1, X2 ,…,Xp) can be approximated by a multiple linear regression model given

by Y=β0 +β1 X1 +β2 X2 +…. +βp Xp + ε. Here ß0 and ßi (i=1,2,…,p) are parameters to be estimated

and ε is random error. Some assumptions are made about this model like the relationship of the

response Y to the predictors X1, X2,…, Xp is linear in the regression parameters β0, β1,…, βp , the

errors are assumed to be independently and identically distributed (iid) normal random variables

with mean zero and a common variance σ , the errors are independent of each other (their pair-

wise covariances are zero) and that the predictor variables X1, X2,…, Xp are non-random and

measured without error.

Francis Galton (in 1880’s) coined the term ‘regression’ to refer to tall parents tending to beget

offsprings which were not taller than their parents (also it was noted that parents who were not so

taller in height got children who were somewhat taller than their shorter parents). Thus it was

observed that mean filial regression towards mediocrity was directly proportional to the parental

deviation from it. The cases in point were size of seedlings, Parents height (X) & Child’s height

(Y) etc. In today’s model fitting situations, no “regression” in original sense but the same term

prevailed. Thus regression analysis meant the average relationship between variables studied.

We consider a basic linear model where there is only one predictor variable and the regression

function is linear. Model with more than one predictor variable is straight forward. The model can

be stated as follows: ii10i εββ  XY , where Yi is the value of the response variable in the ith

trial; 0 and 1 are parameters, Xi is a known constant, namely, the value of the predictor variable

in the ith trial, i is a random error term with mean zero and variance 2 and i and j are uncorrelated

so that their covariance is zero. The above regression model is said to be simple, linear in the

parameters, and linear in the predictor variable. It is “simple” in that there has only one predictor

variable, “linear in the parameters” because no parameters appears as an exponent or its multiplied

or divided by another parameter, and “linear in predictor variable” because this variable appears

only in the first power. The parameters 0 and 1 in regression model are called regression

coefficients, 1 is the slope of the regression line. It indicates the change in the mean of the

probability distribution of Y per unit increase in X. The parameter 0 in Y intercept of the regression

line. When the scope of the model includes X = 0, 0 gives the mean of the probability distribution

of Y at X = 0. When the scope of the model does not cover X = 0, 0 does not have any particular

meaning as a separate term in the regression model.

3

To find “good” estimates of the regression parameters 0 and 1, we employ the method of least

squares. For each observation (Xi, Yi), for each case, the method of least squares considers the

deviation of Y from its expected value. In particular, the method of least squares requires that we

consider the sum of such n squared deviations. According to the method of least squares, the

estimators of 0 and 1 are those values b0 and b1, respectively, that minimize this criterion for the

given observations.

Using the analytical approach, it can be shown for regression model (1) that the values of b0 and

b1 that minimizes this Error function for any particular set of sample data are given by the

following simultaneous equations:




n

i
i

n

i
i XbnbY

1
10

1




n

i
i

n

i
i

n

i
ii XbXbYX

1

2
1

1
0

1

.

These two equations are called normal equations and can be solved for b0 and b1:

 

 






n

i
i

n

i
ii

XX

YYXX

b

1

2

1
1

)(

))((

  


n

i
i

n

i
i XbYXbY

n
b

1
1

1
10)(

1
,

where X and Y are the means of the Xi and the Yi observations, respectively.

Once the parameters estimates are obtained, the fitted line would be

ii XbbY 10
ˆ 

The ith residual is the difference between the observed value Yi and the corresponding fitted value

iŶ , i.e., iii YYe ˆ .

The estimated regression line fitted by the method of least squares has a number of properties

worth noting.

1. The sum of the residuals is zero, 0
1




n

i
ie .

2. Sum of the squared residuals, 


n

i
ie

1

2 , is a minimum.

3. Sum of the observed values Yi equals the sum of the fitted values iŶ , 


n

i
i

n

i
i YY

11

ˆ .

4. Sum of the weighted residuals is zero, weighted by the level of the predictor variable in the

ith trial: 0
1




n

i
iieX .

 4

5. Sum of the weighted residuals is zero, weighted by the fitted value of the response variable

in the ith trial: 0ˆ

1




n

i
iieY .

6. The regression line always goes through the points (YX ,).

The variance
2 of the error terms i in regression model needs to be estimated to obtain an

indication of the variability of the probability distribution of Y. In addition, a variety of inferences

concerning the regression function and the prediction of Y require an estimate of
2 . Denote by

SSE =  


n

i
i

n

i
ii eYY

1

2

1

2)ˆ(, is the error sum of squares or residual sum of squares. Then an

estimate of
2 is given by

pn

SSE


2ˆ , where p is the total number of parameters involved in the

model. We also denote this quantity by MSE.

Frequently, we are interested in drawing inferences about 1 , the slope of the regression line. At

times, tests concerning 1 are of interest, particularly one of the form:

 010 H

 011 H

The reason for interest in testing whether or not 01  is that, when 01  , there is no linear

association between Y and X. For normal error regression model, the condition 01  implies even

more than no linear association between Y and X. 01  for the normal error regression model

implies not only that there is no linear association between Y and X but also that there is no relation

of any kind between Y and X, since the probability distribution of Y are then identical at all levels

of X.

An explicit test of the alternatives is based on the test statistic:

)(1

1

bs

b
t  ,

where is the standard error of b1 and calculated as)(1bs =

 


n

i
i XX

MSE

1

2)(

.

The decision rule with this test statistic when controlling level of significance at  is

 if),;2/1(pntt  conclude H0,

 if),;2/1(pntt  conclude H1.

Similarly testing for other parameters can be carried out.

2.1 Adequacy and validation of regression models

As mentioned previously, many assumptions have to hold good in regression analysis such as the

relationship between y and x’s is linear., the errors have zero mean and constant variance, the

5

errors are uncorrelated, the errors are normally distributed etc. For checking whether these

assumptions are adequately satisfied by any fitted regression model, residual analysis is resorted

to. Residuals are nothing but differences between the observations and the corresponding fitted

values. Residuals have zero mean and approximate average variance as “Error Mean Sum of

Squares” from the regression ANOVA. Sometimes the standardised residuals are used. Residual

plots are useful for detecting validity of assumptions on errors and model adequacy. Some

important residual plots for detecting model inadequacies are stated in brief. Plot of residuals

against fitted values - if this plot indicates that the residuals can be contained in a horizontal band,

then there are no obvious model defects. If not so, transformations on the regressors and/or the

response variable may be required. Plot of standardised residuals against independent variable with

no apparent trend can also be taken as evidence of correct model specification.

Lack of normality and non-constant error variance frequently go hand in hand. Fortunately, it is

often the case that the same transformation that helps stabilize the variance is also helpful in

approximately normalizing the error terms. It is therefore, desirable that the transformation for

stabilizing the error variance be utilized first, and then the residuals studied to see if serious

departures from normality are still present.

We shall consider following six important types of departures from linear regression model with

normal errors:

(i) Nonlinearity of Regression Model

Whether a linear regression function is appropriate for the data being analyzed can be studied from

a residual plot against the predictor variable or equivalently from a residual plot against the fitted

values. Figure 1(a) shows a prototype situation of the residual plot against X when a linear

regression model is appropriate. The residuals then fall within a horizontal band centred around 0,

displaying no systematic tendencies to be positive and negative.

Figure 1(b) shows a prototype situation of a departure from the linear regression model that

indicates the need for a curvilinear regression function. Here the residuals tend to vary in a

systematic fashion between being positive and negative.

Fig. 1(a) Fig. 1(b)

 6

(ii) Non-constancy of Error Variance

Plots of residuals against the predictor variable or against the fitted values are not only helpful to

study whether a linear regression function is appropriate but also to examine whether the variance

of the error terms is constant. The prototype plot in Figure 1(a) exemplifies residual plots when

error term variance is constant. Figure 1(c) shows a prototype picture of residual plot when the

error variance increases with X. In many biological science applications, departures from

constancy of the error variance tend to be of the “meghaphone” type.

(iii) Presence of Outliers

Outliers are extreme observations. Residual outliers can be identified from residual plots against

X or Ŷ . Outliers can create great difficulty. When we encounter one, our first suspicion is that the

observation resulted from a mistake or other extraneous effect. On the other hand, outliers may

convey significant information, as when an outlier occurs because of an interaction with another

predictor omitted from the model. A safe rule frequently suggested is to discard an outlier only if

there is direct evidence that it represents in error in recording, a miscalculation, a malfunctioning

of equipment, or a similar type of circumstances.

When outlying observations are present, use of the least squares and maximum likelihood

estimates for regression model may lead to serious distortions in the estimated regression function.

To test whether outlying observations are present, many measures such as elements of ‘Hat

Matrix’, weighted sum of squared deviations, Cook’s distance, ‘DFFITS’, ‘DFBETAS’,

‘COVRATIO’ etc. are employed. When the outlying observations do not represent recording

errors and should not be discarded, it may be desirable to use an estimation procedure that places

less emphasis on such outlying observations. Robust Regression falls under such methods.

Some tests for outlying observations are given below:

(a) Elements of Hat Matrix : The Hat matrix is defined as XXXXH  1)(, X is the matrix for

explanatory variables. The larger values reflect data points are outliers.

(b) WSSDi: WSSDi is an important statistic to locate points that are remote in x-space. WSSDi

measures the weighted sum of squared distance of the ith point from the center of the data.

Generally if the WSSDi values progress smoothly from small to large, there are probably no

extremely remote points. However, if there is a sudden jump in the magnitude of WSSDi, this

often indicates that one or more extreme points are present.

(c) Cook's Di: Cook's Di is designed to measure the shift in ŷ when ith obsevation is not used in

the estimation of parameters. iD follows approximately  1pn,pF  (1-). Lower 10% point

Fig. 1(c) Fig. 1(d)

7

of this distribution is taken as a reasonable cut off (more conservative users suggest the 50%

point). The cut off for iD can be taken as
n

4
.

(d) DFFITSi : DFFIT is used to measure difference in ith component of   iŷŷ  . It is suggested

that
2

1

i
n

1p
2DFFITS 







 
 may be used to flag off influential observations.

(e))(ijDFBETAS : Cook's iD reveals the impact of ith observation on the entire vector of the

estimated regression coefficients. The influential observations for individual regression

coefficient are identified by 1p,...,2,1j,DFBETAS)i(j  , where each)i(jDFBETAS is the

standardized change in jb when the ith observation is deleted.

(f) iCOVRATIO :The impact of the ith observation on variance-covariance matrix of the

estimated regression coefficients is measured by the ratio of the determinants of the two

variance-covariance matrices. Thus, COVRATIO reflects the impact of the ith observation on

the precision of the estimates of the regression coefficients. Values near 1 indicate that the ith

observation has little effect on the precision of the estimates. A value of COVRATIO greater

than 1 indicates that the deletion of the ith observation decreases the precision of the estimates;

a ratio less than 1 indicates that the deletion of the observation increases the precision of the

estimates. Influential points are indicated by
 

n

1p3
1COVRATIOi


 .

(g) iFVARATIO : The statistic detects change in variance of iŷ when an observation is deleted.

A value near 1 indicates that the ith observation has negligible effect on variance of iy . A

value greater than 1 indicates that deletion of the ith observation decreases the precision of the

estimates, a value less than one increases the precision of the estimates.

(iv) Non-independence of Error Terms

Whenever data are obtained in a time sequence or some other type of sequence, such as for adjacent

geographical areas, it is good idea to prepare a sequence plot of the residuals. The purpose of

plotting the residuals against time or some other type of sequence is to see if there is any correlation

between error terms that are near each other in the sequence. A prototype residual plot showing a

time related trend effect is presented in Figure 1(d), which portrays a linear time related trend

effect. When the error terms are independent, we expect the residuals in a sequence plot to fluctuate

in a more or less random pattern around the base line 0.

(v) Non-normality of Error Terms

Small departures from normality do not create any serious problems. Major departures, on the

other hand, should be of concern. The normality of the error terms can be studied informally by

examining the residuals in a variety of graphic ways.

 8

Comparison of frequencies: when the number of cases is reasonably large is to compare actual

frequencies of the residuals against expected frequencies under normality. For example, one can

determine whether, say, about 90% of the residuals fall between  1.645 MSE .

Normal probability plot: Still another possibility is to prepare a normal probability plot of the

residuals. Here each residual is plotted against its expected value under normality. A plot that is

nearly linear suggests agreement with normality, whereas a plot that departs substantially from

linearity suggests that the error distribution is not normal.

(vi) Omission of Important Predictor Variables

Residuals should also be plotted against variables omitted from the model that might have

important effects on the response. The purpose of this additional analysis is to determine whether

there are any key variables that could provide important additional descriptive and predictive

power to the model. The residuals are plotted against the additional predictor variable to see

whether or not the residuals tend to vary systematically with the level of the additional predictor

variable.

Thus, if the simple regression model is not appropriate for a data set, employ some transformation

on the data so that regression model is appropriate for the transformed data. When the regression

function is not linear, a direct approach is to modify regression model by altering the nature of the

regression function. For instance, a quadratic regression function might be used:

iiii XXY  2
210

or an exponential regression function: i
X

i
iY  10 . When the nature of the regression function

is not known, exploratory analysis that does not require specifying a particular type of function is

often useful.

When the error variance is not constant but varies in a systematic fashion, a direct approach is to

modify the method to allow for this and use the method of weighted least squares to obtain the

estimates of the parameters.

Transformations is another way in stabilizing the variance. We first consider transformation for

linearizing a nonlinear regression relation when the distribution of the error terms is reasonably

close to a normal distribution and the error terms have approximately constant variance. In this

situation, transformation on X should be attempted. The reason why transformation on Y may not

be desirable here is that a transformation on Y, such as YY  , may materially change the shape

of the distribution and may lead to substantially differing error term variance.

Following transformations are generally applied for stabilizing variance.

(1) when the error variance is rapidly increasing YY 10log or YY 

(2) when the error variance is slowly increasing,
2YY  or)(YExpY 

(3) when the error variance is decreasing, YY /1 or)(YExpY  .

9

It is difficult to determine, which transformation of Y is most appropriate for correcting skewness

of the distributions of error terms, unequal error variance, and nonlinearity of the regression

function. The Box-Cox transformation automatically identifies a transformation from the family

of power transformations on Y. The family of power transformations is of the form:
YY  ,

where is a parameter to be determined from the data. Using standard computer programme, it can

be determined easily.

2.2 Detection of violations of assumptions in regression model, particularly multicollinearity

Regression models are fitted using ordinary least squares (OLS) technique for estimating

parameters. The optimality parameters of these parameter estimates are described in an ideal

setting which are not often realized in practice. The use and interpretation of a multiple regression

model depends implicitly on the assumption that the explanatory variables are not strongly

interrelated. In most regression applications the explanatory variables are not orthogonal. Usually

the lack of orthogonality is not serious enough to affect the analysis. However, in some situations

the explanatory variables are so strongly interrelated that the regression results are ambiguous.

Typically, it is impossible to estimate the unique effects of individual variables in the regression

equation. The estimated values of the coefficients are very sensitive to slight changes in the data

and to the addition or deletion of variables in the equation. The regression coefficients have large

sampling errors which affect both inference and forecasting that is based on the regression model.

The condition of severe non-orthogonality is also referred to as the problem of multicollinearity.

It has been observed that regressions based on different subsets of data produce very different

results, raising questions of model stability. Frequently, we do not have good data in the sense that

errors are nonnormal or the variance is nonhomogeneous. When there are near linear

dependencies among regressors, then the problem of multicollinearity is said to exist. The variable

pool may not contain the right variables in the proper functional forms and we may have included

variables with a high degree of multicollinearity, which may cause problems in estimation,

prediction and interpretation. Strong multicollinearity between independent variables results in

large variances and co-variances for the least squares estimators of the regression coefficients.

Multicollinearity also tends to produce least squares estimates of regression coefficients that are too

large in absolute value.

Detection of Multicollinearity can be done by certain ways. Let  ijrR  and  ij1 rR 
 denote

simple correlation matrix and its inverse. Let  11ppip,...,2,1i,    denote the eigen

values of R. The following are common indicators of relationships among independent variables.

1. Simple pair-wise correlations

1rij 

2. The squared multiple correlation coefficients

9.0
r

1
1R

ii

2
i  , where

2
iR denote the squared multiple correlation coefficients for the

regression of xI on the remaining x variables.

3. The variance inflation factors, 10rVIF ii
i  and

 10

4. eigen values, 0i  .

The first of these indicators, the simple correlation coefficients between pairs of independent

variables ijr , may detect a simple relationship between ix and jx . Thus 1rij  implies that the

ith and jth variables are nearly proportional.

The second set of indicators,
2
iR , the squared multiple correlation coefficient for the regression of

ix on the remaining x variables indicates the degree to which ix is explained by a linear

combination of all of the other input variables.

The third set of indicators, the diagonal elements of the inverse matrix, which have been labelled

as the Variance Inflation Factors, iVIF . The term arises by noting that with standardized data (mean

zero and unit sum of squares), the variance of the least squares estimate of the ith coefficient is

proportional to
iir , 10VIFi  is probably based on the simple relation between iR and iVIF . That

is 10VIFi  corresponds to 9.0R2
i  .

The remedial measures for presence of multicollinearity are given subsequently:

i) Collection of additional data: Collecting additional data has been suggested as one of the

methods of combating multicollinearity. The additional data should be collected in a manner

designed to break up the multicollinearity in the existing data.

ii) Model respecification: Multicollinearity is often caused by the choice of model, such as

when two highly correlated regressors are used in the regression equation. In these situations, some

respecification of the regression equation may lessen the impact of multicollinearity. One approach

to respecification is to redefine the regressors. For example, if x1, x2 and x3 are nearly linearly

dependent it may be possible to find some function such as x = (x1+x2)/x3 or x = x1x2x3 that

preserves the information content in the original regressors but reduces the multicollinearity.

iii) Ridge Regression: When method of least squares is used, parameter estimates are unbiased.

A number of procedures have been developed for obtaining biased estimators of regression

coefficients to tackle the problem of multicollinearity. One of these procedures is ridge regression.

The ridge estimators are found by solving a slightly modified version of the normal equations.

Each of the diagonal elements of XX matrix are added a small quantity.

In order to pinpoint which variables contribute for the greater effect of multicollinearity, ‘Belsley’s

procedure’ is also employed. Estimation methods such as ridge regression and principal components

regression in place of ordinary least squares regression are specifically resorted to combat the

problems induced by multicollinearity. However, these procedures yield biased estimators of

regression coefficients.

2.3 Variable selection

11

Variable selection is the process of determining the appropriate subset of that should be used in

the model given a pool of candidate regressors that are the possible influential factors. For variable

selection, either resort to subset regression models (all possible regressions) or use one of the three

stepwise regression methods. viz. stepwise selection, forward selection, backward selection.

2.4 Multiple linear regression when some regressors are qualitative

In case the regressor variables are qualitative, dummy or indicator variables are employed. It there

are ‘s’ levels of a qualitative regressor variable, then (s-1) dummy variables need to be used with one

of the levels to be mentioned as base or reference category. For e.g., if a qualitative regressor variable

has four levels, the following dummy variables D1, D2 and D3 are used taking values for the

corresponding levels as follows (here, Level 1 has been taken as base):

 D1 D2 D3

Level1 0 0 0

Level2 1 0 0

Level3 0 1 0

Level4 0 0 1

3. Model selection criteria

The criteria for evaluating subset regression models and hence the adequacy of a regression model

are the coefficient of multiple determination R2, adjusted R2, Residual Mean Square, Mallow’s Cp

statistic and the PRediction Error Sum of Squares (PRESS). While comparing models (read model

selection), these criteria can be used.

The coefficient of multiple determination R2 is discussed in detail subsequently. Denote by SSTO

=  


n

i
i YY

1

2)(, total sum of squares which measures the variation in the observation Yi , or the

uncertainty in predicting Y, when no account of the predictor variable X is taken. Thus SSTO is a

measure of uncertainty in predicting Y when X is not considered. Similarly, SSE measures the

variation in the Yi when a regression model utilizing the predictor variable X is employed. A natural

measure of the effect of X in reducing the variation in Y, i.e., in reducing the uncertaintity in

predicting Y, is to express the reduction in variation (SSTO-SSE=SSR) as a proportion of the total

variation:
SSTO

SSE

SSTO

SSR
R  12 . The measure

2R is called coefficient of determination,

10 2  R . In practice
2R is not likely to be 0 or 1 but somewhere between these limits. The

closer it is to 1, the greater is said to be the degree of linear association between X and Y.

4. Regularized Linear Modeling

When training a model (be it the usual multiple linear regression model or the machine learning

model), the model can easily become either over-fitted or under-fitted. To circumvent this,

regularization is employed to properly fit the model on the data set under consideration aiming to

build an optimal model. To fit a best linear regression model, usually the method of least squares

(often called as Ordinary Least Squares or OLS) is used. The process of arriving at a ‘line of best

 12

fit’ is to understand the relationship between set of independent variables and the main or study or

dependent variable. The fitted model is a best one, when the underlying pattern in the data is well

represented covering most of the points on it by means of minimizing the ‘error sum of squares’,

in case of OLS.

If one allows the model to look at the data too many times (repetition of same information again

and again, if more of the same or similar kind of information is contained in the dataset), it will

learn well on the given dataset and fit it very well but it may not be able to make predictions on

other data sets in the same manner. That is, if new data is provided, the fitted model may not be

able to understand the pattern in the new data, and in turn the model may not predict very well.

Such a phenomenon is called ‘over-fitting’. Conversely, in the scenario where the model has not

been allowed to look at the data adequately, the model will not be able to find the underlying

pattern in data set used for fitting. It may not fit the data set properly and may not certainly be able

to work on any new data either. A scenario where a model can neither learn the relationship

between variables in the test data nor predict or classify a new data point is called under-fitting.

Regularization refers to techniques used to calibrate statistical or machine learning models to

minimize the adjusted loss (error) function and avoid over-fitting or under-fitting (Choudhary,

2022). According to Pandian (2022), regularization technique is an important step to improve the

model prediction and reduce errors. This technique uses certain Shrinkage methods such as ridge

regression to accomplish the task. For this, a penalty term is added to the Error Function (which

needs to be minimised) to control the complex model to avoid overfitting by reducing the variance.

4.1 Ridge regularization

Also known as ridge regression, ridge regularization it adjusts models with overfitting or underfitting

by adding a penalty equivalent to the sum of the squares of the magnitudes of the coefficients. This

means that the mathematical function representing the linear regression model is minimized and the

coefficients are calculated. Ridge Regression performs regularization by reducing the coefficients

present (also known as shrinkage estimation).

In this regularization, the sum of squared errors added with sum of the squared coefficients (β) will

be minimized. Usually, the coefficients (βi’s) with a large magnitude will generate the peaks in graph

and also troughs which are deeper, hence to get a smooth plot covering most of the data points, a

Penalty Factor named lambda (λ) is used. This is called “L2 regularization”, since its adding a penalty

equivalent to the Square-of-the magnitude of coefficients.

4.2 LASSO regularization

LASSO (Least Absolute Shrinkage and Selection Operator) regularization modifies overfitted or

under-fitted models by adding a penalty equivalent to the sum of the absolute values of the

coefficients. According to Kumar (2023), the primary goal of LASSO regression is to find a balance

between model simplicity and accuracy. It achieves this by adding a penalty term to the traditional

linear regression model, which encourages sparse solutions where some coefficients are forced to be

exactly zero. This feature makes LASSO particularly useful for feature selection, as it can

automatically identify and discard irrelevant or redundant variables. Lasso regression also performs

coefficient minimization, but instead of squaring the magnitudes of the coefficients, it takes the

13

actual values of the coefficients. This means that the sum of the coefficients can also be 0 because

there are negative coefficients. This regularization is very similar to ridge regularization, with little

difference in Penalty Factor that coefficients considered is absolute value (magnitude) instead of

squared terms. This is called “L1 regularization”, because of adding the absolute value as penalty

equivalent to the magnitude of coefficients. The following screenshot is taken from Pandian (2022),

noting that in the Equation (1), instead of βnxn at the end, it is βpxp, as there are p number of regressors

(while n usually represents number of observations):

4.3 Elastic Net

Elastic Net combines both Ridge and LASSO regularizations.

References

Chatterjee, S. and Hadi, A. S. (2006). Regression analysis by example, 4th Edition, John Wiley and

Sons, New Jersey.

Choudhary, A.S. (2022). Regularization in Machine Learning,

https://www.analyticsvidhya.com/blog/2022/08/regularization-in-machine-learning/, available

for access on August 31, 2023.

Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, 3rd edition. New York: Wiley.

Kumar, D. (2023). A complete understanding of LASSO regression,

https://www.mygreatlearning.com/blog/understanding-of-lasso-

regression/#:~:text=Lasso%20regression%20is%20a%20regularization,i.e.%20models%20with

%20fewer%20parameters), available for access on August 31, 2023.

 14

Montgomery, D.C., Peck, E.A. and Vining, G.G. (2001). Introduction to Linear Regression

Analysis. 3rd edition, John Wiley and Sons, New Delhi.

Pandian, S. (2022). Study of regularization techniques of linear models and its roles,

https://www.analyticsvidhya.com/blog/2021/11/study-of-regularization-techniques-of-linear-

model-and-its-roles/, available for access on August 31, 2023.

An Overview of Multivariate Statistical Analysis Techniques

Rahul Banerjee

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110 012
rahul.banerjee@icar.gov.in

Introduction:

Multivariate analysis is a statistical technique used in data analysis to understand the

relationships among multiple variables simultaneously. It is employed when you have a dataset

with two or more variables, and you want to examine how these variables interact with each

other or how they collectively influence an outcome or dependent variable. Multivariate

analysis encompasses various statistical methods and techniques, including:

 Multivariate Regression Analysis: This includes techniques like Multiple Linear

Regression and Multivariate Analysis of Variance (MANOVA), which deal with

multiple predictor variables and one or more dependent variables.

 Principal Component Analysis (PCA): PCA is used to reduce the dimensionality of

data by transforming variables into a smaller set of uncorrelated variables called

principal components. It is often used for data reduction and visualization.

 Factor Analysis: Factor analysis is used to identify underlying factors or latent

variables that explain patterns in observed data. It's often used in fields like psychology

to understand the structure of survey responses.

 Cluster Analysis: Cluster analysis groups similar data points or observations together

into clusters or segments based on their similarities. It's often used for customer

segmentation and pattern recognition.

 Discriminant Analysis: Discriminant analysis is used to distinguish between two or

more groups based on their characteristics. It's commonly used in fields like marketing

to identify factors that differentiate customer groups.

 Canonical Correlation Analysis (CCA): CCA explores the relationships between two

sets of variables and finds linear combinations of variables in each set that are

maximally correlated with each other.

 Multivariate Analysis of Covariance (MANCOVA): MANCOVA extends

ANCOVA by allowing for the analysis of multiple dependent variables while

controlling for one or more covariates.

 Structural Equation Modeling (SEM): SEM is used to test and estimate complex

relationships between observed and latent variables. It's often used in social sciences

and psychology.

 Multidimensional Scaling (MDS): MDS is a technique used to visualize the similarity

or dissimilarity between data points in a lower-dimensional space, making it easier to

interpret relationships.

 Multivariate Time Series Analysis: This involves analyzing multiple time series data

simultaneously, which is common in fields like finance and economics.

The choice of which multivariate analysis technique to use depends on the nature of your data

and research objectives. Multivariate analysis allows researchers and analysts to uncover

mailto:rahul.banerjee@icar.gov.in

16

patterns, associations, and insights that may not be apparent when considering variables

individually, making it a valuable tool in various fields, including social sciences, business,

biology, and more.

1. Testing of mean vector - One Sample Case

This is useful for the situations where the data on the different variables are collected and it is

required to test whether the sample mean vectors is equal to a specified mean vector. To be

specific: Let n xxx ,,, 21  be a random sample of size n is drawn from the population with p-

dimensional mean vector 0μ and based on this sample we want to test 0μμ :0H against

0μμ :1H .

If variance covariance matrix  is known or the sample is large, 2 test is used.

   0μxn2 -1  0μx 

with p degrees of freedom where 



n

j
j

n 1

1
xx is the sample mean calculated from the sample,

p is number of variable in the study.

If  is not known and sample size is small. Hotelling 2T is used.

   00 μxsμx 


 12 nT

where   








n

j

n

j
j

nn 11 1

1
,

1
xxxxsxx jj .

pnpFT
pn

pn





,

2

)1(

)(
.

Example 1: {Example 5.2 in Johnson and Wichern, 2002}. Perspiration from 20 healthy

females was analyzed. Three components, 1X = sweat rate, 2X = sodium content and 3X =

potassium content were measured and the results are presented in table 1.

Table 1: Sweat Data

Individual 1X (sweat rate) 2X (sodium content) 3X (potassium content)

1 3.7 48.5 9.3

2 5.7 65.1 8.0

3 3.8 47.2 10.9

4 3.2 53.2 12.0

5 3.1 55.5 9.7

6 4.6 36.1 7.9

7 2.4 24.8 14.0

8 7.2 33.1 7.6

9 6.7 47.4 8.5

10 5.4 54.1 11.3

11 3.9 36.9 12.7

12 4.5 58.8 12.3

13 3.5 27.8 9.8

17

14 4.5 40.2 8.4

15 1.5 13.5 10.1

16 8.5 56.4 7.1

17 4.5 71.6 8.2

18 6.5 52.8 10.9

19 4.1 44.1 11.2

20 5.5 40.9 9.4

Test the hypothesis, 0μμ :0H given 0μ  10504 against 01 :  H . From Table 1,

we can calculate

  














































 
 627658.364.580905.1

64.57884.19901.10

80905.101.10879368.2

1

1
,

965.9

400.45

640.4
1

11

n

j

n

j
j

nn
xxxxsXx jj

and the observed T2 value is

   

 

  738774.9

158308.0

04199.0

467705.0

035.0600.4640.020

10965.9

50400.45

4640.4

627658.364.580905.1

64.57884.19901.10

80905.101.10879368.2

10965.950400.454640.420

μμ

1

1











































































00 xsxn

Comparing the observed
2T =9.738774 with the critical value

 
    73.1020.3353.3

1
, 




 pnpF

pn

pn
 we see that

2T = 9.74 < 10.73, and consequently

we accept 0H .

2. Testing of mean vectors - Two Sample Case

Consider that we have two independent random samples of sizes 1n and 2n with mean vectors

1x and 2x and sample dispersion matrices 1s and 2s respectively and want to test the

hypothesis

 21H μμ :0 against 21H μμ :1

1μ and 2μ are mean vectors of populations from which samples are drawn. If population

dispersion matrices are unknown but same, we use

   21
1

21
2

xxsxx 


 
pooled

21

21

nn

nn
T

where
   

2nn

nn

21

21
pooled 


 21 11 ss

s .

T2 is distributed as
 
  1,

21

21
211

2





pnnpF

pnn

pnn

18

Example 2: {Example 6.4 in Johnson and Wichern, 2002}. Samples of sizes 451 n and

552 n were taken of homeowners with and without air conditioning respectively. Two

measurements of electrical usage (is kilowatt-hours) were considered. The first is a measure of

total on-peak consumption (1x) during July and the second is a measure of total off-peak

consumption during July. Test weather there is a difference in electrical consumption between

those with air conditioning and those without.

The summary statistics given are

55,45

5.559647.19616

7.196160.8632
,

4.731074.23823

4.238233.13825

0.355

0.130
,

6.556

4.204

21

21

21









































nn

ss

xx

Here the null hypothesis is 21 μμ :0H and alternate hypothesis is 21 μμ :1H . To test the

difference, first we calculate

   

.
3.636615.21505

5.215057.10963

11 21
















2nn

nn

21

21
pooled

ss
s

Now
   

22066.16

21
1

21
2









 
xxsxx pooled

21

21

nn

nn
T

Comparing the observed 2T with the critical value

 
 

26.6
97

)2(98

1

2
)05.0(97.2)(1,

21

21
21





 FF

pnn

pnn
pnnp  .

We see that the observed 26.622066.162 T , we reject the null hypothesis and conclude

that there is a difference in electrical consumption between those with air conditioning and

those without.

Note:

(i) For this testing, Mahalnobis
2D can also be used which is a linear function of

2T

   

2

21
1

21
2

T
nn

nn

D

21

21

pooled




 
xxsxx

(ii) If 21 ΣΣ  , the above test cannot be used. For large sample size or dispersion matrices

known,
2 test can be used. However, test for small sample sizes and dispersion

matrices not known to be equal is beyond the scope of discussion. Readers may go

through the references given at the end.

19

Steps to carry out the Analysis: Testing Mean Vector (s) (Using MS-EXCEL)

We to use the inbuilt Functions of MS-EXCEL like Average: Mean; VAR: Variance and

COVAR*n/(n-1): Covariance. Correlation can be obtained using the function CORREL.

Matrix Inverse

Mark the area for the resultant matrix  Formula bar  =minverse (mark range of original

matrix)  press control + shift + enter

Matrix multiplication

Mark the area for the resultant matrix  Formula bar  =mmult (mark range of first matrix,

mark range of second matrix)  press control + shift + enter

Using the matrix multiplication and matrix inversion one can easily calculate Hotelling's T2.

3. Multivariate Analysis of Variance (MANOVA)

One way Classified Data

Consider that the random samples from each of g (say) populations using are arranged as

Population 1:
111211 ,,, n xxx 

Population 2:
222221 ,,, n xxx 

 :

 :

 :

Population g:
ggngg xxx ,,, 21 

Multivariate analysis of variance is used first to investigate whether the populations mean

vectors are the same and, if not, which mean components differ significantly. MANOVA is

carried out under the following two assumptions: 1. Dispersion matrices of various populations

are same. 2. Each population is multivariate normal. One-way Classified MANOVA Table for

testing the equality of g-population mean Vectors is given below:

Source of variation Degrees of freedom SSP matrix

Population or treatment g-1
  






g

i
iiin

1

xxxxT

Residual (error)





g

1i
i gn   

 




g

i

n

j
iijiij

i

1 1

xxxxR

Total





g

1i
i 1n   

 




g

i

n

j
ijij

i

1 1

xxxxRT

We reject the null hypothesis of equal mean vectors if the ratio of generalized variance (Wilk's

lambda statistic)
RT

R


* is too small. The distribution of * in different cases are as

below.

  



 







 















gng

i
i

F
g

gn
gp ,1~

*

*1

1
21

20

  



 












 















12),1(2~

*

*1

1

1
22 gng

i
i

F
g

gn
gp

  



 







 







 



1,~

*

*11
21 pnp

i
i

F
p

pn
gp

  



 












 







 



22,2~

*

*12
31 pnp

i
i

F
p

pn
gp

and for other cases
 








 


2
1

gp
n In   2

)1(~* gp (approximate).

Example 3: {Example 6.8 in Johnson and Wichern, 2002}. Consider the following

independent samples:

 R1 R2 R3 Total

Population 1










3

9
 









2

6
 









7

9
 









12

24

Population 2










4

0
 









0

2










4

2

Population 3









8

3
 









9

1
 









7

2
 









24

6

Grand Total









40

32

Due to variable 1

Sum of squares (Population) = 78
8

38

3

6

2

2

3

24 2222



Sum of squares (Total) = 88
8

38
2...69

2
222 

Sum of squares (Residual) = 107888  (by subtraction)

Due to variable 2

Sum of squares (Population) = 48
8

40

3

24

2

4

3

12 2222



Sum of squares (Total) = 72
8

40
7...23

2
222 

Sum of squares (Residual) = 244872  (by subtraction)

21

Due to variable 1 and 2

Sum of cross products (Population) = 12
8

4032

3

246

2

42

3

1224













Sum of cross products (Total) = 11
8

4032
72...2639 




Sum of cross products (Residual) = 1)12(11 

MANOVA

Source of

Variation

Degrees of

freedom

SSP matrix

Population

213  













4812

1278

Residual (error)

53323  









241

110

Total

71323  













7211

1188

To test the hypothesis 3210 :  H . We use Wilk's lambda statistic

0385.0
6215

239

)11()72(88

)1()24(10

7211

1188

241

110

*
2

2

































RT

R


Since 2p (variables) and 3g (populations), we use the following

19.8
0385.0

0385.01

13

138

*

*12














 


























 







 




p

pni with a percentage point of an F-

distribution having 8&4 21  nn d.f. Since 01.7)01.0(19.8 8,4  F , we reject the null

hypothesis at 1% level of significance and conclude that there exists treatment differences. The

pairwise comparisons can be done using the contrast analysis.

Remark: One complication of multivariate analysis that does not arise in the univariate case

is due to the ranks of the matrices. The rank of R should not be smaller than p or in other words

error degrees of freedom s should be greater than or equal to p (s  p).

For performing MANOVA using SAS, the following procedures/statements may be used.

PROC ANOVA and PROC GLM can be used to perform analysis of variance even for more

than one dependent variables. PROC ANOVA performs the analysis of variance for balanced

data whereas PROC GLM can analyze both balanced and unbalanced data. As ANOVA takes

into account the special features of a balanced data, it is faster and uses less storage than PROC

GLM for balanced data. The basic syntax of the ANOVA procedure is as given

 PROC ANOVA <options>;

 CLASS Variables;

 MODEL dependents = independent variables (or effects)/ options;

 MEANS effects / options,

22

 ABSORB Variables;

 FREQ Variable;

 TEST H=effects E= effect M = equations/options;

 REPEATED factor - name levels / options;

 BY variables;

 RUN;

The PROC ANOVA, CLASS and MODEL statements are must. The other statements are

optional. The class statement defines the variables for classification (numeric or character

variables - maximum characters = 16).

PROC GLM for analysis of variance is similar to PROC ANOVA. The statements listed for

PROC ANOVA are also used for PROC GLM. The following more statements can be used

with PROC GLM;

CONTRAST ‘label’ effect name < effect coefficients > / < options>;

ESTIMATE ‘label’ effect name < ... effect coefficients / <options>;

ID variables;

LSMEANS effects </options>;

OUTPUT <OUT = SAS-data-set > keyword = names< ... keyword=names;

RANDOM effects/ < options > ;

WEIGHT;

However, if the MODEL statement includes more than one dependent variable, additional

multivariate statistics can be requested with the MANOVA statement.

When a MANOVA statement appears before the first RUN statement, GLM or ANOVA enters

a multivariate mode with respect to the handling of missing values; observations with missing

independent or dependent variables are excluded from the analysis. If you want to use this

mode of handling missing values and do not need any multivariate analysis, specify the

MANOVA option in the PROC GLM statement.

If both the CONTRAST and MANOVA statements are to be used, the MANOVA statement

must appear after the CONTRAST statement. The basic syntax of MANOVA statement is

 MANOVA;

 MANOVA < H=effects  INTERCEPT _ALL_ ><E=effect></options>;

 MANOVA < H=effects  INTERCEPT _ALL_><E=effect>

 <M=equation,...,equation (row-or-matrix,...,row-or-matrix)>

 <MNAMES=names><PREFIX=name></options>;

The terms given in the MANOVA statement are specified as follows:

H=effects  INTERCEPT _ALL_ : specifies effects in the preceding model to use as

hypothesis matrices. For each H matrix (the SSCP matrix associated with that effects), the

H=specification prints the characteristic roots and vectors of E-1H (where E is the matrix

associated with the error effects), Hotelling-Lawley trace, Pillai’s trace, Wilks’ criterion, and

Roy’s maximum root criterion with approximate F statistic. Use the keyword INTERCEPT to

print tests for the intercept. To print tests for all effects listed in the MODEL statement, use

the keyword _ALL_ in place of a list of effects.

E=effect : specifies the error effect. If we omit the E=specification, GLM uses the error SSCP

(residual) matrix from the analysis.

23

<M=equation, ..., equation (row-or-matrix,...,row-or-matrix)> : specifies a

transformation matrix for the dependent variables listed in the MODEL statement. The

equations in the M=specification are of the form

 C1
*dependent-variableC2

*dependent-variable Cn
*dependent-variable

where the Ci values are coefficients for the various dependent-variables. If the value of a given

Ci is 1, it may be omitted; in other words, 1*Y is the same as Y. Equations should involve two

or more dependent variables. Alternatively, we can input the transformation matrix directly by

entering the elements of the matrix with commas separating the rows, and parentheses

surrounding the matrix. When this alternate form of input is used, the number of elements in

each row must equal the number of dependent variables. Although these combinations actually

represent the columns of the M matrix, they are printed by rows.

When we include an M=specification, the analysis requested in the MANOVA statement is

carried out for the variables defined by the equations in the specification, not the original

dependent variables. If M=is omitted, the analysis is performed for the original dependent

variables in the MODEL statement.

If an M=specification is included without either the MNAMES= or PREFIX=option, the

variables are labelled by default as MVAR1, MVAR2, and so on.

MNAMES= names: provides names for the variables defined by the equations in the

M=specification. Names in the list correspond to the M=equations or the rows of the M matrix

(as it is entered).

PREFIX = name : is an alternative means of identifying the transformed variables defined by

the M=specification. For example, if you specify PREFIX = DIFF, the transformed variables

are labelled DIFF1, DIFF2, and so on.

The following options can be used in the MANOVA statement

CANONICAL : Prints a canonical analysis of the H and E matrices (transformed by the M

matrix, if specified) instead of the default printout of characteristic roots and vectors.

ETYPE=n : specifies the type(1,2,3, or 4) of the E matrix. By default, the procedure uses an

ETYPE=value corresponding to the highest type (largest n) used in the analysis.

HTYPE =n : specifies the type (1,2,3, or 4) of the H matrix.

ORTH : requests that the transformation matrix in the M=specification of the MANOVA

statement be orthonormalized by rows before the analysis.

PRINTE : prints the E matrix. If the E matrix is the error SSCP (residual) matrix from the

analysis, the partial correlations of the dependent variables given the independent variables are

also printed. For example, the statement

manova / printe;

prints the error SSCP matrix and the partial correlation matrix computed from the error SSCP

matrix.

PRINTH : prints the H matrix (the SSCP matrix) associated with each effect specified by the

H=specification.

SUMMARY: produces analysis-of-variance tables for each dependent variable. When no M

matrix is specified, a table is printed for each original dependent variable from the MODEL

statement; with an M matrix other than the identity, a table is printed for each transformed

variable defined by the M matrix.

24

Various ways of using a MANOVA statement are given as follows:

proc glm;

 class a b;

 model y1-y5=a b(a);

 manova h=a e=b(a) / printh printe htype=1 etype=1;

 manova h=b(a) / printe;

 manova h=a e=b(a) m=y1-y2, y2-y3, y3-y4, y4-y5 prefix=diff;

 manova h=a e=b(a) m=(1 -1 0 0 0,

 0 1 -1 0 0,

 0 0 1 -1 0,

 0 0 0 1 -1) prefix=diff;

run;

Since this MODEL statement requests no options for type of sums of squares, GLM uses Type

I and Type III. The first MANOVA statement specifies A as the hypothesis effect and B(A) as

the error effect. As a result of PRINTH, the procedure prints the H matrix associated with the

A effect; and, as a result of PRINTE, the procedure prints the E matrix associated with the

B(A) effect. HTYPE=1 specifies a Type I H matrix, and ETYPE =1 specifies a Type I E matrix.

The second MANOVA statement specifies B(A) as the hypothesis effect. Since no error effect

is specified, GLM uses the error SSCP matrix from the analysis as the E matrix. The PRINTE

option prints this E matrix. Since the E matrix is the error SSCP matrix from the analysis, the

partial correlation matrix computed from this matrix is also printed.

The third MANOVA statement requests the same analysis as the first MANOVA statement,

but the analysis is carried out for variables transformed to be successive differences between

the original dependent variables. PREFIX=DIFF labels the transformed variables as DIFF1,

DIFF2, DIFF3, and DIFF4.

Finally, the fourth MANOVA statement has the identical effect as the third, but it uses an

alternative form of the M=specification. Instead of specifying a set of equations, the fourth

MANOVA statement specifies rows of a matrix of coefficients for the five dependent variables.

SPSS: To obtain MANOVA, from the menus choose Analyze  General Linear Models…

 Multivariate… Select at least two dependent variables Optionally, one can specify

Fixed Factor(s), Covariate(s), and WLS Weight.

4. Principal Component Analysis

Principal component analysis (PCA) is one among techniques for taking high dimensional data,

and using the dependencies between the variables to represent it in a more tractable, lower-

dimensional form, without losing too much information. It was invented by Pearson (1901) and

Hotelling (1933) and first applied in ecology by Goodall (1954) under the name “Factor

Analysis”. During 1970 PCA was considered as the ordination method of choice for

community data. Further, simulation studies made by Swan (1970), Austin and Noy-Meir

(1971) demonstrated the horseshoe effect and showed that the linear assumption of PCA was

not compatible with the non-linear structure of community data. Recently, it has stimulated the

search for more appropriate ordination method and is most widely used as well as well-known

of the “standard” multivariate methods. The purpose of principal component analysis is to

derive a small number of linear combinations (principal components) of a set of variables that

retain as much information in the original variables as possible. Often a small number of

principal components can be used in place of the original variables for plotting, regression,

25

clustering and so on. Principal component analysis can also be viewed as a technique to remove

multicollinearity in the data. PCA is a way of identifying patterns in the data; data is expressed

in such a way that the similarities and differences are highlighted. Once the patterns are found

in the data, it can be compressed (reduce the number of dimensions) without losing much

information.

PCA is one of the simplest and most robust ways of dimensionality reduction. It is also one of

the oldest methods, and has been rediscovered many times in many fields, so it is also known

as the Karhunen-Loève transformation, the Hotelling transformation, the method of empirical

orthogonal functions, and singular value decomposition. PCA is concerned with explaining the

variance covariance structure of a set of variables through a few linear combinations of these

variables. Mathematically it is orthogonal linear transformation of data to a new coordinate

system such that the greatest variance by some projection of the data comes to lie on the first

coordinate (called the first principal component (PC)), the second greatest variance on the

second coordinate, and so on. PCA is an intermediate step for further treatment of data that

includes regression analysis, indexing, assigning weights, etc.

In this technique, we transform the original set of variables to a new set of uncorrelated random

variables. These new variables are linear combinations of the originals variables and are

derived in decreasing order of importance so that the first principal component accounts for as

much as possible of the variation in the original data.

PCA basically tries to explain the total data variability with the help of a fewer number of linear

combinations of the original data called the Principal Components. The broad objective of PCA

is the reduction in the data dimensions.

“The information content of the new variables is as much as the information content of the

original variables.”

Let pxxxx ,...,,, 321 are variables under study, then first principal component may be defined

as

 ppxaxaxaz 12121111 ...

such that variance of 1z is as large as possible subject to the condition that

1... 2
1

2
12

2
11  paaa

This constraint is introduced because if this is not done, then  1zVar can be increased simply

by multiplying any sa j '1 by a constant factor. The second principal component is defined as

 ppxaxaxaz 22221212 ...

such that  2zVar is as large as possible next to  1zVar subject to the constraint that

 1... 2
2

2
22

2
21  paaa and   0, 21 zzCov and so on.

It is quite likely that first few principal components account for most of the variability in the

original data. If so, these few principal components can then replace the initial p variables in

subsequent analysis, thus reducing the effective dimensionality of the problem. An analysis of

principal components often reveals relationships that were not previously suspected and

thereby allows interpretation that would not ordinarily result. However, Principal Components

Analysis is more of a mean to an end rather than end in itself because this frequently serves as

intermediate steps in much larger investigations by reducing the dimensionality of the problem

26

and providing easier interpretation. It is a mathematical technique, which does not require user

to specify the statistical model or assumption about distribution of original variates. It may also

be mentioned that principal components are artificial variables and often it is not possible to

assign physical meaning to them. Further, since Principal Components Analysis transforms

original set of variables to new set of uncorrelated variables. It is worth stressing that if the

original variables are uncorrelated, then there is no point in carrying out the Principal

Components Analysis. It is important to note here that the principal components depend on the

scale of measurement. Conventional way of getting rid of this problem is to use the

standardized variables with unit variances.

Example 4: Let us consider the following data on average minimum temperature  1x , average

relative humidity at 8 hrs.  2x , average relative humidity at 14 hrs.  3x and total rainfall in

cm.  4x pertaining to Raipur district from 1970 to 1986 for kharif season from 21st May to 7th

Oct.

 x1 x2 x3 x4

25.0 86 66 186.49

24.9 84 66 124.34

25.4 77 55 98.79

24.4 82 62 118.88

22.9 79 53 71.88

7.7 86 60 111.96

25.1 82 58 99.74

24.9 83 63 115.20

24.9 82 63 100.16

24.9 78 56 62.38

24.3 85 67 154.40

24.6 79 61 112.71

24.3 81 58 79.63

24.6 81 61 125.59

24.1 85 64 99.87

24.5 84 63 143.56

24.0 81 61 114.97

Mean 23.56 82.06 61.00 112.97

S.D. 4.13 2.75 3.97 30.06

with the variance co-variance matrix.

 
















 



87.903

95.9275.15

82.5450.856.7

14.554.112.402.17

Find the eigenvalues and eigenvectors of the above matrix. Arrange the eigenvalues in

decreasing order. Let the eigenvalues in decreasing order and corresponding eigenvectors are

 993.0,103.0,061.0,006.0902.9161  1a

 012.0,011.0,296.0,955.0375.182  2a

 119.0,855.0,485.0,141.087.73  3a

27

 001.0,509.0,820.0,260.0056.14  4a

The principal components for this data will be

43214

43213

43212

43211

001.0509.082.026.0

119.0855.0485.0141.0

012.0011.0296.0955.0

993.0103.0061.0006.0

xxxxz

xxxxz

xxxxz

xxxxz









The variance of principal components will be eigenvalues i.e.

        056.1,87.7,375.18,902.916 4321  zVarzVarzVarzVar

The total variation explained by principal components is

20.944056.187.7375.18902.9164321  

As such, it can be seen that the total variation explained by principal components is same as

that explained by original variables. It could also be proved mathematically as well as

empirically that the principal components are uncorrelated.

The proportion of total variation accounted for by the principal components is

97.0
203.944

902.916

4321

1 
 



Continuing, the first two components account for a proportion

99.0
203.944

277.935

4321

21 







of the total variance.

Hence, in further analysis, the first or first two principal components 1z and 2z could replace

four variables by sacrificing negligible information about the total variation in the system. The

scores of principal components can be obtained by substituting the values of ix 's in the

equations of iz 's. For above data, the first two principal components for first observation i.e.

for year 1970 can be worked out as

383.149.186012.066011.086296.00.25955.0

380.19749.186993.066103.086061.00.25006.0

2

1





z

z

Similarly for the year 1971

134.134.124012.066011.084296.09.24955.0

54.13534.124993.066103.084061.09.24006.0

2

1





z

z

Thus the whole data with four variables can be converted to a new data set with two principal

components.

Example 5: Consider the same data as given in Example 1. The variance-covariance matrix

was given as

























627658.364.580905.1

64.57884.19901.10

80905.101.10879368.2

Σ

28

Now find the eigenvalues and eigenvectors of the above matrix. Arrange the eigenvalues in

decreasing order. Let the eigenvalues in decreasing order and corresponding eigenvectors are

 0291.0,9983.0,0508.0462.2001  1a

 8173.0,0530.0,5737.0532.42  2a

 5754.0,0249.0,8175.0301.13  3a

The principal components for this data are

3213

3212

3211

5754.00249.08175.0

8173.00530.05737.0

0291.09983.00508.0

xxxz

xxxz

xxxz







The variance of principal components will be eigenvalues i.e.

      301.1,532.4,462.200 321  zVarzVarzVar

The total variation explained by principal components is

295.206301.1532.4462.200321  

As such, it can be seen that the total variation explained by principal components is same as

that explained by original variables. It could also be proved mathematically as well as

empirically that the principal components are uncorrelated.

The proportion of total variation accounted for by the principal components is

9717.0
295.206

462.200

321

1 
 


of the total variance.

Continuing, the first two components account for a proportion

9937.0
295.206

994.204

321

21 







of the total variance.

Hence, in further analysis, the first or first two principal components 1z and 2z could replace

four variables by sacrificing negligible information about the total variation in the system. The

scores of principal components can be obtained by substituting the values of ix 's in the

equations of iz 's. For above data, the first two principal components for first observation i.e.

for first individual is

3.98173.05.480530.07.35737.0

3.90291.05.489983.07.30508.0

2

1





z

z

Similarly principal component scores for other individuals can be obtained. Thus the whole

data with three variables can be converted to a new data set with two principal components.

Following steps of SAS may be used for performing the principal component analysis.

The PROC PRINCOMP can be used for performing principal component analysis. Raw data,

a correlation matrix, a covariance matrix or a sum of squares and cross products (SSCP) matrix

can be used as input data. The data sets containing eigenvalues, eigenvectors, and standardized

or unstandardized principal component scores can be created as output. The basic syntax of

PROC PRINCOMP is as follows:

29

PROC PRINCOMP Cov <options>;

BY variables;

FREQ Variable;

PARTIAL Variables;

VAR Variables;

WEIGHT Variable;

RUN;

The PROC PRINCOMP and RUN are must. However, the VAR statement listing the numeric

variables to be analysed is usually used alongwith PROC PRINCOMP statement. If the

DATA= data set is TYPE=SSCP, the default set of variables does not include intercept.

Therefore, INTERCEPT may also be included in the VAR statement. The following options

are available in PROC PRINCOMP.

A. DATA SETS SPECIFICATION

1. DATA= SAS-data-set : names the SAS data set to be analysed. This data set can be

ordinary data set or a TYPE = CORR, COV, FACTOR, UCORR or UCOV data set.

2. OUT = SAS-data-set : creates an output data set containing original data alongwith

principal component scores.

3. OUTSTAT-SAS-data-set : creates an output data set containing means, standard

deviations, number of observations, correlations or covariances, eigenvalues and

eigenvectors.

B. ANALYTICAL DETAILS SPECIFICATION

1. COV: computes the principal components from the covariance matrix. The default option

is computation of principal components using a correlation matrix.

2. N=: the non-negative integer equal to the number of principal components to be computed.

3. NOINT : omits the intercept from the model

4. PREFIX= name: specifies a prefix for naming the principal components. The default

option is PRIN1, PRIN2,

5. STANDARD (STD): standardizes the principal component scores to unit variance from the

variance equal to corresponding eigenvalue.

6. VARDEF=DFNWDFWEIGHT: specifies the divisor (error degree of

freedomnumber of observationssun of weightssum of weights-1) in calculating

variances and standard deviations. The default option is DF.

Besides these options NOPRINT option suppresses the output. The other statements in PROC

PRINCOMP are:

By variables: obtains the separate analysis on observations in groups defined by variables.

FREQ statement: It names a variable that provides frequencies of each observation in the data

set. Specifically, if n is the value of the FREQ variable for a given observation, then that

observation is used ‘n’ times.

PARTIAL Statement: used to analyze for a partial correlation or covariance matrix.

VAR statement: Lists the numeric variables to be analysed.

WEIGHT Statement: If we want to use relative weights for each observation in the input data

set, place the weights in a variable in the data set and specify the name in a weight statement.

30

This is often done when the variance associated with each observation is different and the

values of the weight variable are proportional to reciprocals of the variances. The observation

is used in the analysis only if the value of the WEIGHT statement variable is non-missing and

greater than zero.

The other closely related procedures with PROC PRINCOMP are

PROC PRINQUAL: It performs a principal component analysis of a qualitative data.

PROC CORRESP: performs correspondence analysis, which is a weighted principal

component analysis of contingency tables.

For detailed steps for performing principal component analysis using SAS and SPSS, a

reference may be made to link “Analysis of Data” at Design Resources Server. SAS and SPSS

codes can be obtained from

http://www.iasri.res.in/design/Analysis of data/principal_component.html

5. Canonical Correlation Analysis

Canonical correlation is a technique for analyzing the relationship between two sets of

variables. Each set can contain several variables. Simple and multiple correlation are special

cases of canonical correlation in which one or both sets contain a single variable. This analysis

actually focuses on the correlation between a linear combination of the variables in one set and

a linear combination of the variables in the second set. The idea is first to determine the pair

of linear combinations having the largest correlation. Next we determine the pair of linear

combinations having the largest correlation among all pairs uncorrelated with the initially

selected pair. This process continues until the number of pairs of canonical variables equals

the number of variables in the smaller group. The pairs of linear combinations are called the

canonical variables and their correlations are called canonical correlations. The canonical

correlations measure the strength of association between the two sets of variables. The

maximization aspect of the technique represents an attempt to concentrate a high-dimensional

relationship between two sets of variables into a few pair of canonical variables.

The PROC CANCORR procedure tests a series of hypotheses that each canonical correlation

and all smaller correlations are zero in population using an F-approximation. At least one of

the two sets of the variables should have an approximate multivariate normal distribution.

PROC CANCORR can also perform partial canonical correlation, a multivariate generalization

of ordinary partial correlation. Most commonly used parametric statistical methods, ranging

from t-tests to multivariate analysis of covariance are special cases of partial canonical

correlations.

6. Discriminant Analysis

The term discriminant analysis refers to several types of analysis viz. classificatory

discriminant analysis (used to classify observations into two or more known groups on the basis

of one or more quantitative variables), Canonical discriminant analysis (a dimension reduction

technique related to principal components and canonical correlation), Stepwise discriminant

analysis (a variable selection technique i.e. to try to find a subset of quantitative variables that

best reveals differences among the classes).

For classificatory discriminant analysis, Fisher's Discriminant function is generally used. It is

described in the sequel.

Fisher's idea was to transform the multivariate observations x to univariate observations y such

the y's derived from the populations 1 and 2 were separated as much as possible. Fisher's

http://www.iasri.res.in/design/Analysis

31

approach assumes that the populations are normal and also assumes the population covariance

matrices are equal because a pooled estimate of common covariance matrix is used.

A fixed linear combination of the x's takes the values
111211 ,....,, nyyy for the observations from

the first population and the values
222221 ,....,, nyyy for the observations from the second

population. The separation of these two sets of univariate y's is assessed in terms of the

differences between 1y and 2y expressed in standard deviation units. That is,

ys

yy 21
nseparartio


 , where

   

221

1

2
22

1

2
11

2

21










nn

yyyy

s

n

j
j

n

j
j

y

is the pooled estimate of the variance. The objective is to select the linear combination of the

x to achieve maximum separation of the sample means 1y and 2y .

Result: The linear combination   xSxxxl
1

21
ˆ 

 pooledy maximizes the ratio

 
 yofvarianceSample

yofmeansamplebetweendistanceSquared  
2

2
21

ys

yy 


 

Il

xlxl

ˆˆ

ˆˆ 2
21

pooledS




 

ll

dl






ˆˆ

ˆ 2

pooledS

over all possible coefficient vectors lˆ where  21 xxd  . The maximum of the above ratio

is    21
1

21
2

xxSxxD 


 
pooled , the Mahalanobis distance.

Fisher's solution to the separation problem can also be used to classify new observations. An

allocation rule is as follows.

Allocate 0x to 1 if      21
1

210
1

210
2

1
ˆ xxSxxmxSxx 





 

pooledpooledy

and to 2 if m̂0 y

If we assume the populations 1 and 2 are multivariate normal with a common covariance

matrix, the a test of 210 :  H versus 211 :  H is accomplished by referring

 
 

2

21

21

21

21

2

1
D














nn

nn

pnn

pnn

to an F-distribution with p1  and 1pnn 212  degrees of freedom. If 0H is

rejected, we can conclude the separation between the two populations is significant.

Following procedure statements of SAS that can be used for above discriminant analyses.

PROC DISCRIM : Classificatory discriminant analysis

32

PROC CANDISC : Cannonical discriminant analysis

PROC STEPDISC : Stepwise discriminant analysis.

SPSS: To Obtain a Discriminant Analysis, from the menus choose: Analyze  Classify

Discriminant...  Select an integer-valued grouping variable and click Define Range to

specify the categories of interest  Select the independent, or predictor, variables. (If the

grouping variable does not have integer values, Automatic Recode on the Transform menu will

create one that does.

Example 6: {Example 11.3 in Johnson and Wichern, 2002}. To construct a procedure for

detecting potential hemophilia 'A' carriers, blood samples were analyzed for two groups of

women and measurements on two variables,)(log101 activityAHFx  and

)(log102 antigenslikeAHFx  recorded. The first group of 301 n women were selected

from a population who do not carry hemophilia gene (normal group). The second group of

222 n women were selected from known hemophilia 'A' carriers (obligatory group). The

mean vectors and sample covariance matrix are given as















0390.0

0065.0
1x , 










0262.0

2483.0
2x and 














147.108423.90

423.90158.1311
pooledS

Now the linear discriminant function is

 

 

21

2

1

0
1

2100

92.2861.37

147.108423.90

423.90158.131
0652.02418.0

ˆ

xx

x

x

y pooled


























 

xSxxxl

Moreover

  88.0
0390.0

0065.0
92.2861.37ˆ

11 











 xly

  10.10
0262.0

2483.0
92.2861.37ˆ

22 











 xly

and the mid-point between these means is

      61.4
2

1

2

1
ˆ 2121

1
21 


  yypooled xxSxxm

Now to classify a women who may be a hemophilia 'A' carrier with 210.01 x and

044.02 x .

We calculate: 62.692.2861.37ˆ
2100  xxy xl . Since m̂0 y we classify the women

in 2 population, i.e., to obligatory carrier group.

7. Factor Analysis

33

Factor analysis is a statistical method used to describe variability among observed,

correlated variables in terms of a potentially lower number of unobserved variables

called factors.

For example, it is possible that variations in six observed variables mainly reflect the variations

in two unobserved (underlying) variables. Factor analysis searches for such joint variations in

response to unobserved latent variables. The observed variables are modelled as linear

combinations of the potential factors, plus "error" terms. The factors typically are viewed as

broad concepts or ideas that may describe an observed phenomenon. For example, a basic

desire of obtaining a certain social level might explain most consumption behaviour. These

unobserved factors are more interesting to the social scientist than the observed quantitative

measurements.

Factor analysis is generally an exploratory/descriptive method that requires many subjective

judgments. It is a widely used tool and often controversial because the models, methods, and

subjectivity are so flexible that debates about interpretations can occur. The method is similar

to principal components although, as the textbook points out, factor analysis is more elaborate.

In one sense, factor analysis is an inversion of principal components. In factor analysis we

model the observed variables as linear functions of the “factors.” In principal components, we

create new variables that are linear combinations of the observed variables. In both PCA and

FA, the dimension of the data is reduced. Examples of fields where factor analysis is involved

include physiology, health, intelligence, sociology, and sometimes ecology among others.

A common rationale behind factor analytic methods is that the information gained about the

interdependencies between observed variables can be used later to reduce the set of variables

in a dataset. It may help to deal with data sets where there are large numbers of observed

variables that are thought to reflect a smaller number of underlying/latent variables. It is one of

the most commonly used inter-dependency techniques and is used when the relevant set of

variables shows a systematic inter-dependence and the objective is to find out the latent factors

that create a commonality.

The PROC FACTOR can be used for several types of common factor and component analysis.

Both orthogonal and oblique rotations are available. We can compute scoring coefficients by

the regression method. All major statistics computed by PROC FACTOR can also be saved in

an output DATA SET. The PROC FACTOR can be invoked by the following statements:

PROC FACTOR <options>;

VAR variables;

PRIORS Communalities;

PARTIAL Variables;

FREQ Variable;

WEIGHT Variable;

BY variables;

RUN;

Usually only the VAR statement is needed in addition to the PROC FACTOR statement. The

some of the important options available with PROC FACTOR are:

METHOD=NAME : specifies the method of extracting factors. The default option is

METHOD = PRINCIPAL, which yields principal component analysis if no PRIORS is used

or if PRIORS = ONE is specified; if a PRIORS = value other than one is specified, a principal

factor anlaysis is performed.

METHOD= PRINT : yields iterated principal factor analysis.

34

METHOD=ML : performs maximum- likelihood factor analysis.

METHOD = ALPHA : produced alpha factor analysis.

METHOD =ULS: produced unweighted least squares factor analysis.

NFACTORS=nNFACT=nN=n specifies the maximum number of factors to be extracted.

PRIORS =name: (ASMCINPUTMAXONERANDOMSMC) : specifies a method for

computing prior communality estimates

ROTATE=name: gives the rotation method. The default is ROTATE=NONE. FACTOR

performs the following orthogonal rotation methods:

 EQUAMAX

 ORTHOMAX

 QUARTIMAX

 PARSIMAX

 VARIMAX

After the initial factor extraction, the common factors are uncorrelated with each other. If the

factors are rotated by an orthogonal transformation, the rotated factors are uncorrelated. If the

factors are rotated by an oblique transformation, the rotated factors become correlated. Oblique

rotations often produce more useful patterns than do orthogonal rotations. However, a

consequence of correlated factors is that there is no single unambiguous measure of the

importance of a factor in explaining a variable. Thus, for oblique rotations, the pattern matrix

doesn’t provide all the necessary information for interpreting the factors.

SPSS: To Perform Factor Analysis. From the menus choose: Analyze  Data Reduction 

Factor...  Select the variables for the factor analysis.

To understand the role of Factor Analysis, consider the following examples

Example 7: What underlying attitudes lead people to respond to the questions on a political

survey as they do? Examining the correlations among the survey items reveals that there is

significant overlap among various subgroups of items--questions about taxes tend to correlate

with each other, questions about military issues correlate with each other, and so on. With

factor analysis, you can investigate the number of underlying factors and, in many cases, you

can identify what the factors represent conceptually. Additionally, you can compute factor

scores for each respondent, which can then be used in subsequent analyses. For example, you

might build a logistic regression model to predict voting behavior based on factor scores.

Example 8: A manufacturer of fabricating parts is interested in identifying the determinants of

a successful salesperson. The manufacturer has on file the information shown in the following

table. He is wondering whether he could reduce these seven variables to two or three factors,

for a meaningful appreciation of the problem.

Data Matrix for Factor Analysis of seven variables (14 sales people)

Sales

Person

Height

 1x

Weight

 2x

Education

 3x

Age

 4x

No. of

Children

 5x

Size of

Household

 6x

IQ

 7x

1 67 155 12 27 0 2 102

2 69 175 11 35 3 6 92

3 71 170 14 32 1 3 111

35

4 70 160 16 25 0 1 115

5 72 180 12 30 2 4 108

6 69 170 11 41 3 5 90

7 74 195 13 36 1 2 114

8 68 160 16 32 1 3 118

9 70 175 12 45 4 6 121

10 71 180 13 24 0 2 92

11 66 145 10 39 2 4 100

12 75 210 16 26 0 1 109

13 70 160 12 31 0 3 102

14 71 175 13 43 3 5 112

Can we now collapse the seven variables into three factors? Intuition might suggest the

presence of three primary factors: maturity revealed in age/children/size of household, physical

size as shown by height and weight, and intelligence or training as revealed by education and

IQ.

The sales people data have been analyzed by the SAS program. This program accepts data in

the original units, automatically transforming them into standard scores. The three factors

derived from the sales people data by principal component analysis (SAS program) are

presented below:

Three-factor results with seven variables

Variable

Sales People Characteristics

Communality Factor I Factor II Factor III

Height 0.59038 0.72170 -0.30331 0.96140 (sumsq I,II and

III)

Weight 0.45256 0.75932 -0.44273 0.97738

Education 0.80252 0.18513 0.42631 0.86006

Age -0.86689 0.41116 0.18733 0.95564

No. of Children -0.84930 0.49247 0.05883 0.96730

Size of Household -0.92582 0.30007 -0.01953 0.94756

IQ 0.28761 0.46696 0.80524 0.94918

Sum of squares 3.61007 1.85136 1.15709

Variance

summarized

0.51572 0.26448 0.16530 Average=0.94550

Factor Loadings

The coefficients in the factor equations are called "factor loadings". They appear above in each

factor column, corresponding to each variable. The equations are:

76543211 28761.092582.084930.086689.080252.045256.059038.0 xxxxxxx F

76543212 46696.030007.049247.041116.018513.075932.072170.0 xxxxxxx F

76543213 80524.001953.058830.018733.080252.044273.030331.0 xxxxxxx F

36

The factor loadings depict the relative importance of each variable with respect to a particular

factor. In all the three equations, education  3x and IQ  7x have got positive loading factor

indicating that they are variables of importance in determining the success of sales person.

Variance summarized

Factor analysis employs the criterion of maximum reduction of variance - variance found in

the initial set of variables. Each factor contributes to reduction. In our example Factor I

accounts for 51.6% of the total variance. Factor II for 26.4% and Factor III for 16.5%. Together

the three factors "explain" almost 95% of the variance.

Communality

In the ideal solution the factors derived will explain 100% of the variance in each of the original

variables, "Communality" measures the percentage of the variance in the original variables that

is captured by the combinations of factors in the solution. Thus communality is computed for

each of the original variables. Each variables communality might be thought of as showing the

extent to which it is revealed by the system of factors. In our example the communality is over

85% for every variable. Thus the three factors seem to capture the underlying dimensions

involved in these variables.

There is yet another analysis called varimax rotation, after we get the initial results. This could

be employed if needed by the analyst. We do not intend to dwell on this and those who want

to go into this aspect can use SAS program for varimax rotation.

8. Cluster Analysis

The basic aim of the cluster analysis is to find “natural” or “real” groupings, if any, of a set of

individuals (or objects or points or units or whatever). This set of individuals may form a

complete population or be a sample from a larger population. More formally, cluster analysis

aims to allocate a set of individuals to a set of mutually exclusive, exhaustive groups such that

individuals within a group are similar to one another while individuals in different groups are

dissimilar. This set of groups is called partition or dissection. Cluster analysis can also be used

for summarizing the data rather than finding natural or real groupings. Grouping or clustering

is distinct from the classification methods in the sense that the classification pertains to a known

number of groups, and the operational objective is to assign new observations to one of these

groups. Cluster analysis is a more primitive technique in that no assumptions are made

concerning the number of groups or the group structure. Grouping is done on the basis of

similarities or distances (dissimilarities). Some of these distance criteria are:

Euclidean distance: This is probably the most commonly chosen type of distance. It is the

geometric distance in the multidimensional space and is computed as:

)()()(),(

2/1

1

2
yxyxyx 












 



p

i
ii yxd

where yx, are the p-dimensional vectors of observations.

Note that Euclidean (and squared Euclidean) distances are usually computed from raw data,

and not from standardized data. This method has certain advantages (e.g., the distance between

any two objects is not affected by the addition of new objects to the analysis, which may be

outliers). However, the distances can be greatly affected by differences in scale among the

dimensions from which the distances are computed. For example, if one of the dimensions

denotes a measured length in centimeters, and you then convert it to millimeters (by

37

multiplying the values by 10), the resulting Euclidean or squared Euclidean distances

(computed from multiple dimensions) can be greatly affected (i.e., biased by those dimensions

which have a larger scale), and consequently, the results of cluster analyses may be very

different. Generally, it is good practice to transform the dimensions so they have similar scales.

Squared Euclidean distance: This measure is used in order to place progressively greater

weight on objects that are further apart. This distance is square of the Euclidean distance.

Statistical distance: The statistical distance between the two p-dimensional vectors yx and

is)()()(1
yxsyxyx,  d , where s is the sample variance-covariance matrix.

Many more distance measures are available in literature. For details, a reference may be made

to Romesburg (1984).

Several types of clusters are possible using various PROC statements:

 Disjoint cluster place each object in one and only one cluster. (PROC FASTCLUS, PROC

VARCLUS).

 Hierarchical clusters are organised so that one cluster may be entirely contained within

another cluster, but no other kind of overlap between clusters is allowed. (PROC

CLUSTER, PROC VARCLUS).

 Overlapping clusters can be constrained to limit the number of objects that belongs

simultaneously to two clusters. (PROC OVERCLUS)

 Fuzzy clusters are defined by a probabilities or grade of membership of each object in each

cluster. Fuzzy clusters can be disjoint, hierarchical or overlapping.

SPSS: To Obtain a Hierarchical Cluster Analysis, from the menus choose: Analyze 

Classify  Hierarchical Cluster...  For clustering cases, select at least one numeric variable,

For clustering variables, select at least three numeric variables  Optionally, one can select an

identification variable to label cases.

References

Bryant, F. B., & Yarnold, P. R. (1995). Principal components analysis and exploratory and

confirmatory factor analysis. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and

understanding multivariate analysis. Washington, DC: American Psychological

Association

Joseph, F.H. and Anderson, R.E. (1995). Multivariate data analysis: with readings. 4th Edition,

Prentice-Hall, Inc.

Johnson, R.A. and Wichern, D.W. (2002). Applied Multivariate Statistical Analysis. 5th

Edition, Pearson Education Inc., New Delhi.

Romesburg, H.C. (1984). Cluster Analysis for Researchers. Lifetime Learning Publications,

California.

Some E-learning Resources

kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf -

en.wikipedia.org/wiki/Principal_components_analysis

Linear and Integer programming: concept and its application in agriculture

HarishKumar H V, Bishal Gurung, and Achal Lama

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012

I. Introduction

 Linear programming (LP) is a mathematical modeling technique designed to optimize

(maximize or minimize) the usage of limited resources. To define “LP is a mathematical

technique of studying wherein we consider maximization (or minimization) of a linear

expression (called the objective function) subjected to a number of linear equalities and

inequalities (called linear restrictions)”.

II. History and application of LP

In 1939, during World War II, a Soviet economist Leonid Kantorovich used LP to plan

expenditures and returns in order to reduce costs of the army and to increase losses incurred to

the enemy.

LP has wide applications in various fields like military, industry, agriculture,

transportation, health system, economics and behavioral sciences etc., and is also utilized for

some engineering problems. Transportation, energy, telecommunications, and manufacturing are

the major industries that use linear programming models. LP has proven useful in modeling

diverse types of problems in planning, routing, scheduling, assignment, and design.

III. Assumptions of linear programming

1. The LP models are “deterministic” in nature: Assumes everything is certain and equation

is mathematical in nature.

2. The LP models are “proportional” in nature: This condition follows directly from

linearity assumptions for objective function and constraints. This means that the objective

function and constraints expand and contract proportionately to the level of each activity.

This condition represents constant returns to scale rather than economies or diseconomies

of scale.

3. The LP models are “additive” in nature: That is the Left Hand Side (LHS) should be

equal to Right Hand Side (RHS). The assumption of proportionality guarantees linearity

if and only if the joint effects or interactions are non-existent. That means the total

contribution of all activities is identical to sum of the constraints per each activity

individually.

4. The decision variables are “divisible”: That is the fractional levels for decision variables

are permissible, the objective function and constraints are continuous function.

5. Non-negativity: The value of variables must be zero or positive but not negative.

39

So LP is a special case of mathematical programming to achieve the best outcome (such

as maximum profit or minimum cost) in a mathematical model whose requirements are

represented by linear relationships.

Here is a simple example.

Reddy Mikks (R-M) company produce both interior and exterior paints from two raw materials

M1 and M2. The following table provides the basic data of the problem

Table 1: Basic data of problem

Particulars Tonnes of raw material required per

tonne of

Maximum availability with R-M

(tones)

Exterior paint Interior paint

Raw material M1 6 4 24

Raw material M2 1 2 6

Profit per tonne

($ 000’s)
5 4 -

 The market survey restricts maximum daily demand of interior paints to 2 tonnes.

 Additionally the daily demand for interior paint cannot exceed that of exterior paint more

than 1 tonne.

 The R-M company wants to determine the optimum product mix of interior and exterior

paints that maximizes total daily profit.

Let us formulate the problem

LP model includes three basic elements

1) Decision variables that we seek to determine

X1=Production of exterior paints (in tonnes)

X2=Production of interior paints (in tonnes)

2) Objective function that we aim to optimize

Main objective is to maximize total daily profit

Let Z represents total daily profit (in $ 000’s)

Max Z = 5X1+4X2

3) The constraints that we need to satisfy

a) Restriction on raw material usage: The usage of raw material for production of both

paints should not exceed raw material availability.

 Usage of raw material M1: 6X1+4X2 ≤ 24

 Usage of raw material M2: X1+2X2 ≤ 6

b) Demand restrictions

 Maximum daily demand of interior paint is limited to 2 tonnes: X2 ≤ 2

40

 Excess of daily production (daily demand for interior paint cannot exceed

that of exterior paint more than 1 tonne): X2 – X1 ≤ 1

So the LP model for above optimization problem looks like below

Max Z = 5X1+4X2

Subject to;

6X1+4X2 ≤ 24

 X1+2X2 ≤ 6

 X2 ≤ 2

 X2 – X1 ≤ 1

 X1 & X2  0

IV. Standard form of LP model

To solve LP problem manually it must be put in a common form which we call as standard form.

Properties of standard form are

 All the constraints should be expressed as equations by adding slack or surplus and

or artificial variables.

A constraint of the type ≤ (≥) can be converted to an equation by adding slack variable to

(subtracting surplus variable from) the left side of the constraint.

Ex 1: 3X1+2X2 ≤ 6

 3X1+2X2 +S1=6, where S1 is a slack variable represents the unused amount of resources

Ex 2: 2X1+X2≥ 6

 2X1+X2 –S2=6, where S2 is a surplus variable represents the excess amount of resources

Note: The introduction of slack and surplus variables alters neither the nature of the constraint

nor the objective function. Accordingly such variables are incorporated into objective function

with zero co-efficient.

 The right hand side of each constraint should be made non-negative (if not).

The RHS of the equation can always be made non-negative by multiplying both the sides

by -1.

Ex: 2X1+3X2-7X3=-5 can be written as -2X1-3X2+7X3=5

 2X1-X2≤ -5 can be written as -2X1+X2 ≥ 5 (the direction of inequality is reversed

when both sides are multiplied by -1)

 The objective function must be maximization type

Solving of maximization problem is easier than solving of minimization problem.

So we can convert minimization form to maximization form for easy calculation and later

41

we can interpret it as minimization solution. The maximization of a function is equivalent

to minimization of a negative of the same function and vice-versa.

For a given set of constraints,

Max Z=5X1+2X2+3X3 is mathematically equivalent to Min (-Z) = -5X1-2X2-3X3.

Equivalence means that for the same set of constraints the optimal values of X1,

X2 and X3 are the same in both cases. The only difference is that the values of the

objective function, although equal numerically, will appear with opposite signs.

Table 2: General and standard form of LP model involving only less than or equal

constraints (≤)

General form Standard form

Max Z = 5X1+4X2

subject to;

6X1+4X2 ≤ 24

 X1+2X2 ≤ 6

 X2 ≤ 2

 X2 – X1 ≤ 1

 X1 & X2 ≥ 0

Max Z = 5X1+4X2+0S1+0S2+0S3+0S4

subject to;

6X1+4X2 +S1 =24

 X1+2X2 + S2 =6

 X2 +S3=2

 X2 – X1 + S4=1

 X1 , X2, S1, S2, S3 & S4≥ 0

V. Artificial variable (AV):

In case of problems with infeasible solution artificially we introduce a variable into

objective function to obtain feasible solution. We use AV only to start solution and subsequently

force them to be zero in the solution otherwise the resulting solution will be infeasible. To

guarantee such assignments in the optimal solution, AVs are incorporated into objective function

with very large positive co-efficient in minimization problem or very large negative co-efficient

in maximization problem.

AVs do change the nature of constraint since they are added only to one side of

inequality. That is if the original constraint is an equation (=) or of the type greater than or equal

to (≥), then we have no longer basic starting feasible solution.

Table 3: General and standard form of LP model involving all kind of constraints (≤, =, ≥)

General form Standard form

Max Z = 5X1+2X2

subject to;

6X1+X2 ≤ 6

 4X1+3X2 ≥12

 X1+X2 =1

 X1 & X2 ≥ 0

Max Z = 5X1+2X2+0S1+0S2-MA1-MA2

subject to;

6X1+X2 +S1 =6

 4X1+3X2 - S2+A1 =12

 X1+X2 +A2=2

 X1 , X2, S1, S2, A1 & A2≥ 0

VI. Solution to LP problem:

There are two approaches for solving LP problems.

42

1) Graphical approach and

2) Simplex technique

1) Graphical approach: LP problems which involve only two decision variables can be solved

graphically. Since it is not possible to display the set of feasible solution for more than two

variables in a graph for locating best optimal solution. There are two graphical solution methods

namely, extreme point solution method and iso-profit (Cost) function line method. Of these,

extreme point solution method is most commonly used method for solving LP problem involving

two decision variables.

Extreme point solution method: Extreme point refers to corner of the feasible region i.e. the

point lies at the intersection of two constraint equations. In this method, the co-ordinates of all

corner or extreme points of the feasible region are determined and then value of the objective

function at each of these points is computed and compared. The co-ordinates of an extreme point

where the optimal (maximum or minimum) value of the objective function is found represent

the solution of the given LP problem.

Example:

 Max Z = 5X1 +7X2

 Subjected to:

 X1< 6

 2X1+3X2 < 19

 X1+X2 < 8

 X1, X2 > 0

Solution:

Here we are not going to add any slack or surplus variable but we are just putting it into

equation.

X1=6

 2X1 + 3X2 =19

 X1 + X2 =8

X1 + X2 =8

Extreme points:
a) X1=0 X2 =8, Co-ordinates:(0,8)

b) X2=0 X1 =8, Co-ordinates:(8,0)

2X1 + 3X2 =19

Extreme points:
a) X1 =0 X2 =6.33, Co-ordinates: (0,6.33)

b) X2=0 X1 =9.5, Co-ordinates: (9.5,0)

X1=6

Extreme points:
a) X1=6, X2=0, (6,0)

43

Figure 1: Combined-Constraint Graph Showing Feasible Region

The shaded zone is called feasible area where all the constraints holds good or this region

satisfies all constraints so it is called feasible region.

 The corners or vertices of the feasible region are referred to as the extreme points.

 An optimal solution to an LP Maximization problem can be found at an extreme point of

the feasible region.

 When looking for the optimal solution, you do not have to evaluate all feasible solution

points.

 Consider only the extreme points of the feasible region.

Table 4: Value of objective function at extreme points of feasible region

Extreme Point Co-Ordinates Z value (Z=5X1+7X2)

O (0,0) 0

A (6,0) 30

B (6,2) 44

C (5,3) 46

D (0,6.33) 44.31

At point C all constraints are satisfied and the Z value is highest hence it is optimal point.

Solution: At X1=5 and X2=3, Max Z=46

2) Simplex method:

It is an algorithm adopted to solve LP problem which employs an iterative procedure that

starts at a feasible corner point, normally the origin and systematically moves from one feasible

point to another point until it reaches optimum point. Dantzig introduced this method in 1947.

Unique solution resulting from setting n-m variables equal to zero is called basic solution and the

44

basic solution which satisfies the non-negativity restriction is basic feasible solution. Simplex

method deals with basic feasible solution and each basic feasible solution is associated with an

iteration.

Computational details of Simplex method

Step 1: Using the standard form determine a starting basic feasible solution by setting n-m

appropriate (non-basic) variables at zero level

Step 2: Select an entering variable from current non-basic variable which can improve the value

of objective function.

If none exists then current solution is optimal otherwise go to step 3.

Step 3: Select a leaving variable from among the current basic variables that must be set to zero

(becomes non-basic) when the entering variable becomes basic.

Step 4: Determine the new basic solution by making the entering variable basic and leaving

variable as non-basic.

Go to step 2 to get optimum

To call a table as optimum table, the criteria is as below

a) Maximization: All values in Zj-Cj are positive

b) Minimization: All values in Zj-Cj are negative

Criteria for identification of entering variable

a) Maximization: Non basic variable with most negative coefficient in Zj-Cj index row

b) Minimization: Non basic variable with most positive coefficient in Zj-Cj index row

Criteria for identification of Leaving variable:

Current leaving variable associated with minimum ratio in both maximization and minimization

cases

Number in the intersection of entering and leaving variable is called pivot element.

New basic solution in each iteration is obtained by applying Gauss-Jordon method which effects

change by using 2 types of computations.

Type 1: New Pivot Equation (NPE)

NPE=(Old pivot equation/ Pivot element)

Type 2: All other equations

New equation= {Old equation-[(its entering column coefficient)*(NPE)}

Linear programming solvers are now part of many spreadsheet packages, such as Microsoft

Excel. The leading commercial package is “LINDO”. We can solve LP problems in packages

like “R” and “SAS” also.

VII. Special cases in simplex method of application

1. Degeneracy:

In case of model consisting of at least one redundant (No longer needed or not useful)

constraint then the optimum value won’t improve upon iterations instead same solution is

generated over the iterations.

Example:

45

 Max Z = 3X1+9X2

 Subject to;

 X1+4X2 ≤ 8

 X1+2X2≤4

 X1 & X2 > 0

In above case the first constraint is a redundant constraint.

2. Alternative optima:

Alternative optima exists when objective function running parallel to one of the

constraints. Then the objective function will assume same optimal value at more than one

solution point.

Example:

 Max Z = 2X1+4X2

 Subject to;

 X1+2X2 ≤ 5

 X1+X2≤ 4

 X1 & X2 > 0

In above case the objective function runs parallel to first constraint.

3. Unbounded solutions

The solution to a maximization LP problem is unbounded if the value of the solution may be

made indefinitely large without violating any of the constraints. Sometimes feasible solution for

the given LP problem exists and this has infinite values for the objective function. For real

problems, this is the result of improper formulation.

4. Infeasible or non-existent solutions

No unique solution to the LP problem satisfies all the constraints, including the non-negativity

conditions. Graphically, this means a feasible region does not exist. Causes includes formulation

error, too high expectations by management or too many restrictions have been placed on the

problem (i.e. the problem is over-constrained).

VIII. Integer programming:

In case of linear programming, the decision variables considered are supposed to take any

real value. However in practical situations it makes no sense in assigning a real value to a

variable where it has meaning only when it takes only integer values. To be clear let us consider

a practical problem like optimum size of herd in a dairy project, it makes no sense if our optimal

value from LP solution is 5.8.

46

In such situations, we naturally tend to round-off the optimal value to the nearest integer

value say “6” in above example. However, the round-off may have following fundamental

problems,

a) The round-off solution may not be feasible.

b) The objective function value given by the rounded-off solutions (even if some are

feasible) may not be the optimal one.

c) Even if some of the rounded-off solutions are optimal, checking all the rounded-off

solutions is computationally expensive.

So integer programming deals with the solution of mathematical programming problems

in which some or all the variables can assume non-negative integer values only.

Types of integer programming problems

1) Pure integer programming problem: An integer programming problem in which all

variables are required to be integers.

2) Mixed integer programming problem: If some variables are restricted to be integer and

some are not restricted i.e. can be continuous or fractional.

3) Binary integer programming problem/ 0-1 programming problems: If some or all

variables are restricted to be either “0” or “1”. It can be pure or mixed.

The general form of integer programme is as below

Max Z = 7X1+9X2

subject to;

-X1+3X2 ≤ 6

 7X1+X2 ≤35

 X1 & X2 are non-negative integers.

IX. Applications of Linear Programming in agriculture

Case-1: Naidu Dairy farm uses at least 800 Kg’s of Special feed daily. The Special feed is a

mixture of corn silage and soybean meal with the following composition,

Table 5: Constituents of special feed

Feed stuff In terms of Kg per every Kg of feed stuff

Protein Fiber Cost (Rs./Kg)

Corn silage 0.09 0.02 20

Soybean meal 0.60 0.06 62

The dietary requirements of Special feed must have at least 30 per cent protein and at most 5 per

cent fiber. Now the Naidu Dairy farm wishes to determine the daily minimum cost of feed mix?

47

Solution:

Decision variables:

X1= Quantity of corn silage to be used in feed mix (Kg’s)

X2=Quantity of soybean meal to be used in feed mix (Kg’s)

Objective function

Min Z=20X1+62X2

Constraints

Demand constraint (Daily requirement): X1+X2>800

Protein constraint: 0.09X1 +0.60X2 > 0.30(X1+X2) on simplification -0.21 X1+0.30 X2>0

Fiber constraint: 0.02X1 +0.06X2 ≤ 0.05 (X1+X2) on simplification -0.03 X1+0.01 X2≤ 0

Overall the LP model looks like

Min Z=20X1+62X2

Subjected to,

 X1+X2>800

 -0.21 X1+0.30 X2>0

 -0.03 X1+0.01 X2≤ 0

 X1&X2>0

R code for the above LP problem

library(lpSolve)

obj=c(20,62)

mat=matrix(c(1,1,-0.21,0.3,-0.03,0.01), nrow=3, byrow=TRUE)

rhs=c(800,0,0)

dir=c(">=",">=","<=")

prod.sol= lp("min", obj, mat, dir, rhs, compute.sens = TRUE)

prod.sol$status

prod.sol$objval

prod.sol$solution

prod.sol$duals

prod.sol$duals.from

prod.sol$duals.to

prod.sol$sens.coef.from

prod.sol$sens.coef.to

48

A) Optimal solution

Z 29835.29

X1 470.58

X2 329.41

The daily minimum cost of feed mix by using 470.58 Kg of corn silage and 329.41 Kg of

soybean meal is Rs. 29835.29.

B) Sensitivity analysis

a) Maximum change in resource availability (RHS of binding constraints)

Binding Constraint Shadow price RHS Sensitivity (Range)

Special feed 37.29 800 0 to 1*1030

Protein 82.35 0 -168 to 138

b) Maximum change in marginal cost (Co-efficients of DV’s in objective function)

Variable Value of DV’s Unit price Sensitivity (Range)

Corn silage (X1) 470.58 20 -43.40 to 62.00

Soybean meal (X2) 329.41 62 20 to 1*1030

Case 2: Venkatesh, a Crop+Dairy farming system based farmer wishes to maximize the total

revenue with the available resources. The below table provides the information on the resource

availability and the information on resource requirement for the enterprises from his past

experience. Ragi being the regular diet of Venkatesh’s family he needs minimum 1 acre of his

land to be under the same which also serves the fodder security of his dairy. Since the dairy is

earning him the regular income for family maintenance he insists at least one cross breed (CB)

cow in his farming system.

Resources Availability Per unit requirement

Tomato Cabbage Ragi CB Cow

Land (Acres) 4 - - - -

Labour (Man days) 350 180 65 32 38

Capital (Rs.) 250000 125000 65000 12500 33000

Water (acre inches) 100 24.5 17.8 9.4 0.5

Returns (Rs.) - 280000 135000 19000 65000

49

Solution:

Decision variables:

X1= Area under Tomato crop to be taken (Acres)

X2= Area under Cabbage crop to be taken (Acres)

X3= Area under Ragi crop to be taken (Acres)

X4= Number of cross breed cows to be considered in his farming system

Objective function

Max Z=280000X1+135000X2+19000 X3+65000 X4

Constraints

Land constraint (Overall): X1+X2+ X3≤4

Labour constraint: 180X1+65X2+ 32X3+ 38X4 ≤ 350

Capital constraint: 125000X1+65000X2+ 12500X3+ 33000X4 ≤ 250000

Water constraint: 24.5X1+17.8X2+ 9.4X3+ 0.5X4 ≤ 100

Constraint for Ragi mandate: X3>1

Constraint for Dairy mandate: X4>1

Overall the LP model looks like

Max Z=280000X1+135000X2+19000 X3+65000 X4

Subjected to,

 X1+X2+ X3≤4

 180X1+65X2+ 32X3+ 38X4 ≤ 350

 125000X1+65000X2+ 12500X3+ 33000X4 ≤ 250000

 24.5X1+17.8X2+ 9.4X3+ 0.5X4 ≤ 100

 X3>1

 X4>1

 X1+X2+ X3>0 & X4 is a non-negative integer

R code for the above LP problem

library(lpSolve)

obj=c(280000,135000,19000,65000)

mat=matrix(c(1,1,1,0,180,65,32,38,125000,65000,12500,33000,24.5,17.8,9.4,0.5,0,0,1,0,0,0,0,1)

, nrow=6, byrow=TRUE)

rhs=c(4,350,250000,100,1,1)

dir=c("<=","<=","<=","<=",">=",">=")

50

prod.sol= lp("max", obj, mat, dir, rhs, int.vec=4, compute.sens = TRUE)

prod.sol$status

prod.sol$objval

prod.sol$solution

prod.sol$duals

prod.sol$duals.from

prod.sol$duals.to

prod.sol$sens.coef.from

prod.sol$sens.coef.to

A) Optimal solution

Z 536713.28

X1 1.37

X2 0.50

X3 1

X4 1

The maximum total revenue that the farmer can achieve is Rs. 5,36,713.3/- by cultivating

Tomato, Cabbage and Ragi in 1.37, 0.50 and 1 acre respectively, along with 1 CB cow.

B) Sensitivity analysis

a) Maximum change in resource availability (RHS of binding constraints)

Binding Constraint Shadow price RHS Sensitivity (Range)

Labour 370.62 350 283.20 to 364.48

Capital 1.70 250000 239944.4 to 284847.8

Ragi -14188.81 1 0 to 1.98

CB cow -5391.60 1 0 to 2.52

b) Maximum change in marginal profit (Co-efficients of DV’s in objective function)

Variable Value of DV’s Unit price Sensitivity (Range)

Tomato (X1) 1.37 280000 259615.4 to 373846.15

Cabbage (X2) 0.50 135000 118802.5 to 145600

Ragi (X3) 1 19000 -1*1030 to 33188.81

CB cow (X4) 1 65000 -1*1030 to 70391.61

X. References

Dorfman, R. 1996. Linear Programming & Economic Annalysis. McGraw-Hill. New York.

Hadley, G. 1997. Linear programming. Narosa publishing house. New Delhi.

51

Rao, S.S. 2007. Engineering Optimization: Theory and Practice. New Age International

Publishers. New Delhi.

Taha, H.A. 2007. Operation Research: In Introduction. Seventh edition. Prentice Hall India. New

Delhi.

https://nptel.ac.in/courses/105108127/

Python

Madhu
HarishKumar H V, Bishal Gurung, and Achal Lama

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012

Python is a very popular general-purpose interpreted, interactive, object-oriented, and high-

level programming language. Python is dynamically-typed and garbage-collected

programming language. It was created by Guido van Rossum during 1985- 1990. Like Perl,

Python source code is also available under the GNU General Public License (GPL).

Characteristics of Python

Following are important characteristics of Python Programming −

 It supports functional and structured programming methods as well as OOP.

 It can be used as a scripting language or can be compiled to byte-code for building large

applications.

 It provides very high-level dynamic data types and supports dynamic type checking.

 It supports automatic garbage collection.

It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Python Syntax

print('India is my country.')

Variables

x=2

y="India"

print(x)

print(y)

Type Casting

x=str(5)

y=int(5.0)

z=float(5)

print(x)

print(y)

print(z)

print(type(x))

print(type(y))

Single & Double Quotes

53

x="india"

y='india'

print(x)

print(y)

Multiline Strings

a = """hello,

good morning,

h r u,

all."""

print(a)

a = '''hello,

good morning,

h r u

all.'''

print(a)

Python Data Types

Data types are the classification or categorization of data items. It represents the kind of value

that tells what operations can be performed on a particular data. Since everything is an object

in Python programming, data types are actually classes and variables are instance (object) of

these classes.

Following are the standard or built-in data type of Python:

 Numeric

 Sequence Type

 Boolean

 Set

 Dictionary

https://www.geeksforgeeks.org/python-data-types/#numeric
https://www.geeksforgeeks.org/python-data-types/#Sequence
https://www.geeksforgeeks.org/python-data-types/#boolean
https://www.geeksforgeeks.org/python-data-types/#set
https://www.geeksforgeeks.org/python-data-types/#dictionary

54

Numeric

In Python, numeric data type represent the data which has numeric value. Numeric value can

be integer, floating number or even complex numbers. These values are defined

as int, float and complex class in Python.

 Integers – This value is represented by int class. It contains positive or negative whole

numbers (without fraction or decimal). In Python there is no limit to how long an integer

value can be.

 Float – This value is represented by float class. It is a real number with floating point

representation. It is specified by a decimal point. Optionally, the character e or E followed

by a positive or negative integer may be appended to specify scientific notation.

 Complex Numbers – Complex number is represented by complex class. It is specified

as (real part) + (imaginary part)j. For example – 2+3j

Note – type() function is used to determine the type of data type.

Float

x = 1.10

y = 1.0

z = -35.59

print(type(x))

print(type(y))

print(type(z))

int

x = 1

y = 3565

z = -3255522

print(type(x))

print(type(y))

print(type(z))

complex

x = 3+5j

y = 5j

z = -5j

print(type(x))

print(type(y))

print(type(z))

55

Sequence Type

In Python, sequence is the ordered collection of similar or different data types. Sequences

allows to store multiple values in an organized and efficient fashion. There are several sequence

types in Python –

 String

 List

 Tuple

1) String

In Python, Strings are arrays of bytes representing Unicode characters. A string is a collection

of one or more characters put in a single quote, double-quote or triple quote. In python there is

no character data type, a character is a string of length one. It is represented by str class.

Creating String

Strings in Python can be created using single quotes or double quotes or even triple quotes.

Accessing elements of String

In Python, individual characters of a String can be accessed by using the method of Indexing.

Indexing allows negative address references to access characters from the back of the String,

e.g. -1 refers to the last character, -2 refers to the second last character and so on.

print("Hello")

print('Hello')

a = "Hello"

print(a)

Strings are Arrays

a = "Hello, World!" # 0....n

print(a[1])

print(a[2])

print(a[7])

https://www.geeksforgeeks.org/python-data-types/#string
https://www.geeksforgeeks.org/python-data-types/#list
https://www.geeksforgeeks.org/python-data-types/#tuple
https://www.geeksforgeeks.org/python-strings/

56

Looping Through a String

for x in "banana":

 print(x)

String Slicing

b = "Hello, World!"

print(b[2:5])

b = "Hello, World!"

print(b[:5])

b = "Hello, World!"

print(b[2:])

b = "Hello, World!"

print(b[-5:-2])

print(b[-1])

Strings Functions

a = "hello, World!"

print(a.upper()) #Converts a string into upper case

print(a.capitalize()) #Converts the first character to upper case

print(a.casefold()) #Converts string into lower case

print(a.split()) #Splits the string at the specified separator, and returns a list

print(a.lower()) #Converts a string into lower case

print(a.strip()) # Returns a trimmed version of the string

 #returns "Hello, World!"

print(a.replace("h", "J")) #Returns a string where a specified value is replaced with a

specified value

print(a.isdigit()) #Returns True if all characters in the string are digits

print(a.isupper()) #Returns True if all characters in the string are upper case

print(len(a)) #len() function returns the length of a string

String Concatenation

a = "Hello"

b = "World"

c = a + b

print(c)

a = "Hello"

b = "World"

c = a + " " + b

print(c)

"""we cannot combine strings and numbers"""

57

age = 36

txt = "My name is John, I am " + age

print(txt)

we can combine strings and numbers by using the format() method!

The format() method takes the passed arguments, formats them, and places them in the string

where the placeholders {}

age = 36

txt = "My name is John, and I am {}"

print(txt.format(age))

The format() method takes unlimited number of arguments, and are placed into the respective

placeholders:

You can use index numbers {0} to be sure the arguments are placed in the correct

placeholders.

quantity = 3

itemno = 567

price = 49.95

myorder = "I want {} pieces of item {} for {} dollars."

print(myorder.format(quantity, itemno, price))

quantity = 3

itemno = 567

price = 49.95

myorder = "I want to pay {2} dollars for {0} pieces of item {1}."

print(myorder.format(quantity, itemno, price))

LIST [] O,C,DUPLICATE

TUPLES () O, NOT CHANGE,D

DICTIONARY KEY:VALUE

SET {} O,C,NOT DUPLICATE

2) List

Lists are just like the arrays, declared in other languages which is a ordered collection of data.

It is very flexible as the items in a list do not need to be of the same type.

Creating List

Lists in Python can be created by just placing the sequence inside the square brackets[].

https://www.geeksforgeeks.org/python-list/

58

Accessing elements of List

In order to access the list items refer to the index number. Use the index operator [] to access

an item in a list. In Python, negative sequence indexes represent positions from the end of the

array. Instead of having to compute the offset as in List[len(List)-3], it is enough to just

write List[-3]. Negative indexing means beginning from the end, -1 refers to the last item, -2

refers to the second-last item, etc

Lists are used to store multiple items in a single variable.

List items are ordered, changeable, and allow duplicate values. Lists are created using square

brackets.

Ordered

When we say that lists are ordered, it means that the items have a defined order, and that

order will not change.

If you add new items to a list, the new items will be placed at the end of the list.

Changeable

The list is changeable, meaning that we can change, add, and remove items in a list after it

has been created.

Allow Duplicates

Since lists are indexed, lists can have items with the same value

thislist = ["apple", "banana", "cherry"]

print(thislist)

print(type(thislist))

thislist = ["apple", "banana", "cherry", "apple", "cherry"]

print(thislist) # Allow Duplicates

Length of a List

thislist = ["apple", "banana", "cherry"]

print(len(thislist)) #len function for finding the number of values in a tuple

list1 = ["apple", "banana", "cherry"] #List items can be of any data type

list2 = [1, 5, 7, 9, 3]

list3 = [True, False, False]

print(type(list2))

print(type(list1))

list1 = ["abc", 34, True, 40, "male"] #A list can contain different data types

print(type(list1))

Indexes of List items

59

thislist = ["apple", "banana", "cherry"]

print(thislist[1])

thislist = ["apple", "banana", "cherry"]

print(thislist[-1])

print(thislist[-2])

print(thislist[-3])

print(thislist[0])

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

print(thislist[2:5])

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

print(thislist[:4])

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

print(thislist[-4:-1])

thislist = ["apple", "banana", "cherry"]

if "apple" in thislist: # true

 print("Yes, 'apple' is in the fruits list")

thislist = ["apple", "banana", "cherry"]

if "orange" in thislist: #false

 print("no, 'orange' is not in the fruits list") #not executed

Change Item Value

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "mango"]

thislist[1:3] = ["blackcurrant", "watermelon"] #Change the values "banana"

and "cherry" with the values "blackcurrant" and "watermelon

print(thislist)

thislist = ["apple", "banana", "cherry"]

thislist[1:3] = ["watermelon"]

print(thislist)

Insert Items

To insert a new list item, without replacing any of the existing values, we can use the insert()

method.

thislist = ["apple", "banana", "cherry"]

thislist.insert(2, "watermelon") # insert() method inserts an item at the specified index

thislist = ["apple", "banana", "cherry"]

thislist.append("orange") #append() method add an item to the

end of the list

60

print(thislist)

thislist = ["apple", "banana", "cherry"]

tropical = ["mango", "pineapple", "papaya"]

print(thislist+tropical)

thislist = ["apple", "banana", "cherry"]

thistuple = ("kiwi", "orange")

thislist.extend(thistuple) #extend() method does not have to append lists only, you can

add any iterable object (tuples, sets, dictionaries etc.).

print(thislist)

print(type(thistuple))

thislist = ["apple", "banana", "cherry"]

thislist.remove("banana") #remove() method removes the specified item

print(thislist)

thislist = ["apple", "banana", "cherry"]

thislist.pop(-1) #pop() method removes the specified index

print(thislist)

thislist = ["apple", "banana", "cherry"]

thislist.pop() #do not specify the index, the pop() method removes the last item

print(thislist)

thislist = ["apple", "banana", "cherry"]

del thislist[0] #del keyword also removes the specified index

print(thislist)

thislist = ["apple", "banana", "cherry"]

del thislist

print(thislist) #Delete the entire list

thislist = ["apple", "banana", "cherry"]

thislist.clear() #list still remains, but it has no content

print(thislist)

thislist = ["apple", "banana", "cherry"]

for x in thislist:

 print(x)

thislist = ["apple", "banana", "cherry"]

for i in range(len(thislist)):

 print(thislist[i])

thislist = ["apple", "banana", "cherry"]

i = 0

while i < len(thislist): #until true

 print(thislist[i])

61

 i = i + 1

Sorting List

thislist = ["orange", "mango", "apricot", "apple", "banana"]

thislist.sort() #sort() method that will sort the list alphanumerically, ascending, by

default

print(thislist)

thislist = [100, 50, 50, 82, 23]

thislist.sort()

print(thislist)

thislist = [100, 50, 65, 82, 23]

thislist.sort(reverse = False) #To sort descending, use the keyword argument reverse =

True

print(thislist)

Copy a List

thislist = ["apple", "banana", "cherry"]

mylist = thislist.copy() #to make a copy, one way is to use the built-in List method copy()

print(mylist)

thislist = ["apple", "banana", "cherry"]

mylist = list(thislist) #make a copy is to use the built-in method list()

print(mylist)

Join Two Lists

list1 = ["a", "b", "c"]

list2 = [1, 2, 3]

list3 = list1 + list2 #by using the + operator

print(list3)

list1 = ["a", "b" , "c"]

list2 = [1, 2, 3]

for x in list2:

 list1.append(x) #Another way to join two lists is by appending all the items from list2

into list1, one by one

print(list1)

3) Tuple

62

Just like list, tuple is also an ordered collection of Python objects. The only difference between

tuple and list is that tuples are immutable i.e. tuples cannot be modified after it is created. It is

represented by tuple class.

Creating Tuple

In Python, tuples are created by placing a sequence of values separated by ‘comma’ with or

without the use of parentheses for grouping of the data sequence. Tuples can contain any

number of elements and of any datatype (like strings, integers, list, etc.).

Tuples are used to store multiple items in a single variable.

A tuple is a collection which is ordered and unchangeable.

Tuples are written with round brackets. ()

Ordered

When we say that tuples are ordered, it means that the items have a defined order, and that

order will not change.

Unchangeable

Tuples are unchangeable, meaning that we cannot change, add or remove items after the tuple

has been created.

Allow Duplicates

Since tuples are indexed, they can have items with the same value:

thistuple = ("apple", "banana", "cherry")

print(thistuple)

thistuple = ("apple", "banana", "cherry", "apple", "cherry")

print(thistuple) #allow duplicates

thistuple = ("apple", "banana", "cherry")

print(len(thistuple)) #len function for finding the number of values in a tuple

thistuple = ("apple",) #use comma (,) if tuple having single value otherwise it is

considered as string

print(type(thistuple))

print(len(thistuple))

thistuple = ("apple") #NOT a tuple

print(type(thistuple))

https://www.geeksforgeeks.org/python-tuples/
https://www.geeksforgeeks.org/python-tuples/

63

tuple1 = ("apple", "banana", "cherry")

tuple2 = (1, 5, 7, 9, 3)

print(type(tuple1))

print(type(tuple2))

tuple1 = ("abc", 34, True, 40, "male")

print(type(tuple1))

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")

print(thistuple[2:5]) #access the elements of a tuple

Change Tuple Values

Once a tuple is created, you cannot change its values. Tuples are unchangeable, or

immutable.

You can convert the tuple into a list, change the list, and convert the list back into a tuple

x = ("apple", "banana", "cherry") #can not change the tuple

y = list(x) #convert tuple into list

y[1] = "kiwi" # change list

x = tuple(y) #convert list into tuple

print(x)

thistuple = ("apple", "banana", "cherry") #Since tuples are immutable, they do not

have a build-in append() method

y = list(thistuple)

y.append("orange") # list have append method

thistuple = tuple(y)

print(thistuple)

thistuple = ("apple", "banana", "cherry")

y = ("orange","mango")

thistuple += y # allowed to add tuples to tuples

print(thistuple)

thistuple = ("apple", "banana", "cherry") # they do not have a build-in remove() method

y = list(thistuple)

y.remove("apple") # list have remove method

thistuple = tuple(y)

print(thistuple)

thistuple = ("apple", "banana", "cherry")

del thistuple

64

print(thistuple) #this will raise an error because the tuple no longer exists

Packing & Unpacking Tuples

When we create a tuple, we normally assign values to it. This is called "packing" a tuple.

In Python, we are also allowed to extract the values back into variables. This is called

"unpacking".

a = ("Delhi", 5000, "Agriculture") #PACKS values into variable a

(City, student, type_ofcollege) = a #UNPACKS values of variable a

print(City,student,type_ofcollege)

If the number of variables is less than the number of values, you can add an * to the variable

name and the values will be assigned to the variable as a list.

fruits = ("apple", "banana", "cherry", "strawberry", "raspberry")

(green, yellow, *red) = fruits

print(green)

print(yellow)

print(red)

If the asterisk is added to another variable name than the last, Python will assign values to the

variable until the number of values left matches the number of variables left.

fruits = ("apple", "mango", "papaya", "pineapple", "cherry")

(green, *tropic, red) = fruits

print(green)

print(tropic)

print(red)

Join Tuples

tuple1 = ("a", "b" , "c")

tuple2 = (1, 2, 3)

tuple3 = tuple1 + tuple2

print(tuple3)

fruits = ("apple", "banana", "cherry")

65

mytuple = fruits * 2

print(mytuple)

Boolean

Data type with one of the two built-in values, True or False. Boolean objects that are equal to

True are truthy (true), and those equal to False are falsy (false). But non-Boolean objects can

be evaluated in Boolean context as well and determined to be true or false. It is denoted by

the class bool.

Note – True and False with capital ‘T’ and ‘F’ are valid booleans otherwise python will

throw an error.

Booleans represent one of two values: True or False.

print(10 > 9)

print(10 == 9)

print(10 < 9)

print(bool("Hello")) #Almost any value is evaluated to True if it has some sort of

content.

print(bool(15)) #Any string is True, except empty strings.

print(bool(0)) # Any number is True, except 0.

print(bool(""))

print(bool(()))

print(bool([]))

print(bool({})) # Any list, tuple, set, and dictionary are True, except empty ones.

print(bool(False))

print(bool(None))

Set

In Python, Set is an unordered collection of data type that is iterable, mutable and has no

duplicate elements. The order of elements in a set is undefined though it may consist of various

elements.

Creating Sets

Sets can be created by using the built-in set() function with an iterable object or a sequence by

placing the sequence inside curly braces, separated by ‘comma’. Type of elements in a set need

not be the same, various mixed-up data type values can also be passed to the set.

Accessing elements of Sets

https://www.geeksforgeeks.org/python-sets/

66

Set items cannot be accessed by referring to an index, since sets are unordered the items has

no index. But you can loop through the set items using a for loop, or ask if a specified value

is present in a set, by using the in keyword.

Sets are used to store multiple items in a single variable.

Set Items

Set items are unordered, unchangeable, and do not allow duplicate values.

Unordered

Unordered means that the items in a set do not have a defined order.

Set items can appear in a different order every time you use them, and cannot be referred to

by index or key.

Unchangeable

Set items are unchangeable, meaning that we cannot change the items after the set has been

created.

Duplicates Not Allowed

Sets cannot have two items with the same value.

Sets are written with curly brackets.

thisset = {"apple", "banana", "cherry"}

print(thisset)

thisset = {"apple", "banana", "cherry", "apple"}

print(thisset)

thisset = {"apple", "banana", "cherry"}

print(len(thisset)) # len() function used to find length

set1 = {"abc", 34, True, 40, "male"}

print(set1) # A set with strings, integers and boolean values

print(type(set1)) # type function return data type

thisset = {"apple", "banana", "cherry"}

for x in thisset:

 print(x)

thisset = {"apple", "banana", "cherry"}

67

print("banana" in thisset)

print("kiwi" in thisset)

Add an Item

thisset = {"apple", "banana", "cherry"}

thisset.add("orange") # to add one item to a set use the add() method.

print(thisset)

thisset = {"apple", "banana", "cherry"}

tropical = {"pineapple", "mango", "papaya"}

thisset.update(tropical) #To add items from another set into the current set,

use the update() method

print(thisset)

thisset = {"apple", "banana", "cherry"}

mylist = ["kiwi", "orange"]

thisset.update(mylist) #update() method does not have to be a set only, it can be any

iterable object (tuples, lists, dictionaries etc.)

print(thisset)

Remove Item

thisset = {"apple", "banana", "cherry"}

thisset.remove("apple")

thisset.remove("kiwi") #To remove an item in a set, use the remove(), or the

discard() method.

print(thisset) #If the item to remove does not exist, remove() will raise an

error

thisset = {"apple", "banana", "cherry"}

thisset.discard("kiwi") #If the item to remove does not exist, discard() will NOT

raise an error.

print(thisset)

thisset = {"apple", "banana", "cherry"}

x = thisset.pop() # pop() method to remove an item,but this method will remove

the last item

print(x) #Remember that sets are unordered, so you will not know what item

that gets removed.The return value of the pop() method is the removed item.

print(thisset)

thisset = {"apple", "banana", "cherry"}

thisset.clear() # clear() method empties the set

print(thisset)

68

thisset = {"apple", "banana", "cherry"}

del thisset # del keyword will delete the set completely

print(thisset)

Join Two Sets

set1 = {"a", "b" , "c"}

set2 = {1, 2, 3}

set3 = set1.union(set2) # union() method returns a new set with all items from both sets

print(set3)

set1 = {"a", "b" ,"b" ,"c"}

set2 = {1, 2, 3}

set1.update(set2) #update() method inserts the items of set2 into set1.

 #Both union() and update() will exclude any duplicate items

print(set1)

Both union() and update() will exclude any duplicate items.

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

x.intersection_update(y) #intersection_update() method will keep only the items that are

present in both sets.

print(x)

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

z = x.intersection(y) #intersection() method will return a new set, that only contains

 # the items that are present in both sets.

print(z)

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

x.symmetric_difference_update(y) #symmetric_difference_update() method will keep

only the elements that are

 #NOT present in both sets.

print(x)

69

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

z = x.symmetric_difference(y) # symmetric_difference() method will return a new set,

 # that contains only the elements that are NOT present in both sets.

print(z)

Dictionary

Dictionary in Python is an unordered collection of data values, used to store data values like a

map, which unlike other Data Types that hold only single value as an element, Dictionary

holds key:value pair. Key-value is provided in the dictionary to make it more optimized. Each

key-value pair in a Dictionary is separated by a colon :, whereas each key is separated by a

‘comma’.

Creating Dictionary

In Python, a Dictionary can be created by placing a sequence of elements within

curly {} braces, separated by ‘comma’. Values in a dictionary can be of any datatype and can

be duplicated, whereas keys can’t be repeated and must be immutable. Dictionary can also be

created by the built-in function dict(). An empty dictionary can be created by just placing it to

curly braces{}.

Note – Dictionary keys are case sensitive, same name but different cases of Key will be treated

distinctly.

Accessing elements of Dictionary

In order to access the items of a dictionary refer to its key name. Key can be used inside square

brackets. There is also a method called get() that will also help in accessing the element from

a dictionary.

Dictionaries are used to store data values in key:value pairs.

A dictionary is a collection which is ordered, changeable and do not allow duplicates.

Ordered

When we say that dictionaries are ordered, it means that the items have a defined order, and

that order will not change.

Changeable

Dictionaries are changeable, meaning that we can change, add or remove items after the

dictionary has been created.

Duplicates Not Allowed

Dictionaries cannot have two items with the same key.

https://www.geeksforgeeks.org/python-dictionary/

70

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(thisdict)

Dictionary items are presented in key:value pairs, and can be referred to by using the key

name.

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(thisdict["brand"])

print(len(thisdict)) # len () function returns length

print(type(thisdict)) # type() function show datatype

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964,

 "year": 2020 #Dictionaries cannot have two items with the same key.

 # Duplicate values will overwrite existing values

}

print(thisdict)

Accessing Items

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

x = thisdict["model"]

y = thisdict.get("model") #Get the value of the "model" key

z = thisdict.keys() #keys() method will return a list of all the keys in the dictionary

b = thisdict.values() #values() method will return a list of all the values in the dictionary

print(x)

print(y)

print(z)

print(b)

71

Change Dictionary Items

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict["year"] = 2018

print(thisdict)

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.update({"year": 2020}) #update() method will update the dictionary with the items

from the given argument.

print(thisdict)

Adding Items

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict["color"] = "red"

print(thisdict)

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.update({"color": "red"}) #update() method will update the dictionary with the

items from a given argument

print(thisdict)

Removing Items

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.pop("model") #pop() method removes the item with the specified key name

72

print(thisdict)

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.popitem() #popitem() method removes the last inserted item

print(thisdict)

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

del thisdict["model"] #del keyword removes the item with the specified key name

print(thisdict)

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

del thisdict #del keyword can also delete the dictionary completely

print(thisdict)

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.clear() #clear() method empties the dictionary

print(thisdict)

Loop Through a Dictionary

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

for x in thisdict: #Print all key names in the dictionary, one by one

 print(x)

for y in thisdict:

 print(thisdict[y]) #Print all values in the dictionary, one by one

for x in thisdict.values(): #values() method to return values of a dictionary

73

 print(x)

for x in thisdict.keys():

 print(x) #keys() method to return the keys of a dictionary

for x, y in thisdict.items(): #items methods to return values for both key and values

 print(x, y)

Copy a Dictionary

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

mydict = thisdict.copy() # Make a copy of a dictionary with the copy() method

print(mydict)

print(thisdict)

mydict = dict(thisdict) # to make a copy is to use the built-in function dict()

print(mydict)

Nested Dictionaries

A dictionary can contain dictionaries, this is called nested dictionaries.

myfamily = {

 "child1" : {

 "name" : "Emil",

 "year" : 2004

 },

 "child2" : {

 "name" : "Tobias",

 "year" : 2007

 },

 "child3" : {

 "name" : "Linus",

 "year" : 2011

 }

}

print(myfamily)

child1 = {

 "name" : "Emil",

 "year" : 2004

}

child2 = {

 "name" : "Tobias",

 "year" : 2007

74

}

child3 = {

 "name" : "Linus",

 "year" : 2011

}

myfamily = {

 "child1" : child1,

 "child2" : child2,

 "child3" : child3

}

print(myfamily)

Python Arrays

Array in Python can be created by importing array module. array(data_type, value_list) is

used to create an array with data type and value list specified in its arguments.

import array as arr

creating an array with integer type

a = arr.array('i', [1, 2, 3])

printing original array

print ("The new created array is : ", end =" ")

for i in range (0, 3):

 print (a[i], end =" ")

print()

Accessing Python Array Elements

import array as arr

a = arr.array('i', [2, 4, 6, 8])

print("First element:", a[0])

print("Second element:", a[1])

print("Last element:", a[-1])

Slicing Python Arrays

import array as arr

numbers_list = [2, 5, 62, 5, 42, 52, 48, 5]

numbers_array = arr.array('i', numbers_list)

75

print(numbers_array[2:5]) # 3rd to 5th

print(numbers_array[:-5]) # beginning to 4th

print(numbers_array[5:]) # 6th to end

print(numbers_array[:]) # beginning to end

Changing and Adding Elements

import array as arr

numbers = arr.array('i', [1, 2, 3, 5, 7, 10])

changing first element

numbers[0] = 0

print(numbers) # Output: array('i', [0, 2, 3, 5, 7, 10])

changing 3rd to 5th element

numbers[2:5] = arr.array('i', [4, 6, 8])

print(numbers) # Output: array('i', [0, 2, 4, 6, 8, 10])

import array as arr

numbers = arr.array('i', [1, 2, 3])

numbers.append(4)

print(numbers) # add one item to the array using the append() method

numbers.extend([5, 6, 7])

print(numbers) # add several items using the extend() method

import array as arr

odd = arr.array('i', [1, 3, 5])

even = arr.array('i', [2, 4, 6])

numbers = arr.array('i') # concatenate two arrays using + operator

numbers = odd + even

print(numbers)

import array as arr

number = arr.array('i', [1, 2, 3, 3, 4])

del number[2] # removing third element

print(number) # Output: array('i', [1, 2, 3, 4])

76

del number # deleting entire array

print(number) # Error: array is not defined

import array as arr

numbers = arr.array('i', [10, 11, 12, 12, 13])

numbers.remove(12) # remove() method to remove the given item

print(numbers)

print(numbers.pop(2)) # pop() method to remove an item at the given index

print(numbers)

Python Operators

Operators are special symbols in Python that carry out arithmetic or logical computation. The

value that the operator operates on is called the operand.

1) Arithmetic operators

Arithmetic operators are used to perform mathematical operations like addition, subtraction,

multiplication, etc.

+ Add two operands or unary plus x + y+ 2:

- Subtract right operand from the left or unary minus x - y- 2

* Multiply two operands x * y

/ Divide left operand by the right one (always results into float) x / y

% Modulus - remainder of the division of left operand by the right x % y (remainder of x/y)

// Floor division - division that results into whole number adjusted to the left in the number

line x // y

** Exponent - left operand raised to the power of right x**y (x to the power y)

"""

x = 3

y = 2

print('x + y =',x+y)

print('x - y =',x-y)

print('x * y =',x*y)

print('x / y =',x/y)

print('x // y =',x//y)

77

print('x ** y =',x**y)

2) Comparison operators

Comparison operators are used to compare values. It returns either True or False according to

the condition.

> Greater than - True if left operand is greater than the right x > y

< Less than - True if left operand is less than the right x < y

== Equal to - True if both operands are equal x == y

!= Not equal to - True if operands are not equal x != y

>= Greater than or equal to - True if left operand is greater than or equal to the right x

>= y

<= Less than or equal to - True if left operand is less than or equal to the right x <= y

"""

x = 5

y = 10

print('x > y is',x>y)

print('x < y is',x<y)

print('x == y is',x==y)

print('x != y is',x!=y)

print('x >= y is',x>=y)

print('x <= y is',x<=y)

3) Logical operators

Logical operators are the and, or, not operators.

and True if both the operands are true x and y

or True if either of the operands is true x or y

not True if operand is false (complements the operand) not x

"""

x = True

y = False

print('x and y is',x and y) #true true

78

print('x or y is',x or y) #either true

print('not x is',not x)

4) Assignment operators

Assignment operators are used in Python to assign values to variables.

a = 5 is a simple assignment operator that assigns the value 5 on the right to the variable a on

the left.

= x = 5 x = 5

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

*= x *= 5 x = x * 5

/= x /= 5 x = x / 5

a = 21

b = 10

c = 0

c = a + b

print ("Value of c is ", c)

c += a

print ("Value of c is ", c)

c *= a

print ("Value of c is ", c)

c /= a

print ("Value of c is ", c)

c = 2

c %= a

print ("Value of c is ", c)

c **= a

print ("Value of c is ", c)

79

c //= a

print ("Value of c is ", c)

5) Bitwise Operators

Bitwise operators are used to compare (binary) numbers:

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

 ^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

a = 10 #1010 0101

b = 4 #0100

Print bitwise AND operation

print("a & b =", a & b) #0000

Print bitwise OR operation

print("a | b =", a | b) #1110

Print bitwise NOT operation

print("~a =", ~a) # ~a = ~1010

 # = -(1010 + 1)

 # = -(1011)

 # = -11 (Decimal)

print bitwise XOR operation

print("a ^ b =", a ^ b) # Returns 1 if one of the bits is 1 and the other is 0 else returns

false.

6) Shift Operators

These operators are used to shift the bits of a number left or right thereby multiplying or

dividing the number by two respectively.

Bitwise right shift: Shifts the bits of the number to the right and fills 0 on voids left(fills 1 in

the case of a negative number) as a result.

Bitwise left shift: Shifts the bits of the number to the left and fills 0 on voids right as a result.

80

a = 10

b = -10

print bitwise right shift operator

print("a >> 1 =", a >> 1)

print("b >> 1 =", b >> 1)

a = 5

b = -10

print bitwise left shift operator

print("a << 1 =", a << 1)

print("b << 1 =", b << 1)

7) Identity operators

is and is not are the identity operators in Python. They are used to check if two values (or

variables) are located on the same part of the memory.

x1 = 5

y1 = 5

x2 = 'Hello'

y2 = 'Hello'

x3 = [1,2,3]

y3 = [1,2,3]

print(x1 is not y1) # Output: False

print(x2 is y2) # Output: True

print(x3 is y3) # Output: False

8) Membership operators

in and not in are the membership operators in Python. They are used to test whether a value

or variable is found in a sequence (string, list, tuple, set and dictionary).

x = 'Hello world'

y = {1:'a',2:'b'}

print('H' in x) # Output: True

print('hello' not in x) # Output: True

print(1 in y) # Output: True

81

print('a' in y) # Output: False

Control Flow Statements

The flow control statements are divided into three categories

1. Conditional statements

2. Iterative statements.

3. Transfer statements

Python If ... Else

a = 33

b = 200

if b > a:

 print("b is greater than a")

a = 33

b = 200

if b > a:

 print("b is greater than a")

Elif

82

a = 33

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

Else

a = 200

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

else:

 print("a is greater than b")

Short Hand If

if a > b: print("a is greater than b")

Short Hand If ... Else

a = 2

b = 330

print("A") if a > b else print("B")

Nested If

x = 41

if x > 10:

 print("Above ten,")

 if x > 20:

 print("and also above 20!")

 else:

 print("but not above 20.")

The pass Statement

a = 33

b = 200

if b > a:

 pass

83

while Loop

i = 1

while i < 6:

 print(i)

 i += 1

break Statement

i = 1

while i < 6:

 print(i)

 if i == 3:

 break

 i += 1

continue Statement

i = 0 #

while i < 6:

 i += 1

 if i == 3:

 continue

 print(i)

For Loop

A for loop is used for iterating over a sequence (that is either a list, a tuple, a dictionary, a set,

or a string).

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

Looping Through a String

for x in "banana":

 print(x)

range() Function

To loop through a set of code a specified number of times, we can use the range() function,

The range() function returns a sequence of numbers, starting from 0 by default, and

increments by 1 (by default), and ends at a specified number.

84

for x in range(6):

 print(x)

for x in range(2, 6):

 print(x) # not including 6

for x in range(2, 30, 3): #third parameter is the increment value

 print(x)

for x in range(6):

 print(x)

else: #else keyword in a for loop specifies a block of code to be executed when the

loop is finished

 print("Finally finished!")

for x in range(6):

 if x == 3: break #else block will NOT be executed if the loop is stopped by a

break statement

 print(x)

else:

 print("Finally finished!")

Nested Loops

adj = ["red", "big", "tasty"]

fruits = ["apple", "banana", "cherry"]

for x in adj:

 for y in fruits:

 print(x, y)

Functions

You use functions in programming to bundle a set of instructions that you want to use

repeatedly. That means that a function is a piece of code written to carry out a specified task.

There are three types of functions in Python:

• User-Defined Functions (UDFs), which are functions that users create to help them out.

• Anonymous functions, which are also called **lambda functions** because they are not

declared with the standard def keyword.

85

• Built-in functions, such as help() to ask for help, min() to get the minimum value, print()

to print an object to the terminal.

Creating a Function

def my_function():

 print("Hello from a function")

"""**Calling** **a** **Function** """

def my_function():

 print("Hello from a function")

my_function()

def my_function(fname): #A parameter is the variable listed inside the

parentheses in the function definition.

 print(fname + " Refsnes")

my_function("Emil") #An argument is the value that is sent to the function

when it is called.

my_function("Tobias")

my_function("Linus")

Number of Arguments

def my_function(fname, lname):

 print(fname + " " + lname)

my_function("Emil", "Refsnes")

def my_function(*kids): #do not know how many arguments that will be

passed into your function, add a * before the parameter name in the function definition

 print("The youngest child is " + kids[2])

my_function("Emil", "Tobias", "Linus")

def my_function(child3, child2, child1):

 print("The youngest child is " + child3)

my_function(child1 = "Emil", child2 = "Tobias", child3 = "Linus") #send arguments

with the key = value syntax

def my_function(**kid): #number of keyword arguments is unknown, add a

double ** before the parameter name

 print("His last name is " + kid["lname"])

86

my_function(fname = "Tobias", lname = "Refsnes")

Default Parameter Value

def my_function(country = "Norway"):

 print("I am from " + country)

my_function("Sweden")

my_function("India")

my_function() #If we call the function without argument, it uses the default value

my_function("Brazil")

Passing a List as an Argument

def my_function(food):

 for x in food:

 print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

Return Values

def my_function(x):

 return 5 * x

print(my_function(3))

print(my_function(5))

print(my_function(9))

Python Lambda

A lambda function is a small anonymous function.

A lambda function can take any number of arguments, but can only have one expression.

x = lambda a : a + 10

print(x(5))

Max = lambda a, b : a if(a > b) else b # Example of lambda function using if-else

print(Max(1, 2))

Difference Between Lambda functions and def defined function

87

def cube(y):

 return y*y*y

lambda_cube = lambda y: y*y*y

print(cube(5))

print(lambda_cube(5))

Python Built-In Functions

all()

The python all() function accepts an iterable object (such as list, dictionary, etc.). It returns

true if all items in passed iterable are true. Otherwise, it returns False. If the iterable object is

empty, the all() function returns True.

k = [1, 3, 4, 6] # all values true

 print(all(k))

 k = [0, False] # all values false

 print(all(k))

 k = [1, 3, 7, 0] # one false value

 print(all(k))

 k = [0, False, 5] ## one true value

 print(all(k))

 k = [] # empty iterable

print(all(k))

test1 = []

 print(test1,'is',bool(test1))

 test1 = [0]

 print(test1,'is',bool(test1))

 test1 = 0.0

 print(test1,'is',bool(test1))

 test1 = None

 print(test1,'is',bool(test1))

 test1 = True

 print(test1,'is',bool(test1))

 test1 = 'Easy string'

print(test1,'is',bool(test1))

88

x = 10

print('Absolute value of -40 is:', abs(x)) #abs() function is used to return the absolute value

of a number

floating = -20.83

print('Absolute value of -20.83 is:', abs(floating))

y = bin(x) #bin() function is used to return the binary representation of a specified integer.

print (y)

s = sum([1, 2,4]) #sum() function is used to get the sum of numbers of an iterable,

i.e., list.

print(s)

print(float(9)) # float() function change into float number

print(complex(9)) # complex() function change into complex number

89

Data Handling and Visualization using NumPy, Pandas, Matplotlib

and Seaborn

Sanchita Naha

ICAR-Indian Agricultural Statistics Research Institute, New Delhi - 110 012

sanchita.naha@icar.gov.in

Introduction:

Python offers many software packages for smooth data handling required for

deploying Machine Learning or Deep Learning projects. Most important and very

frequently used packages of them are NumPy and Pandas for data handling in array

or tabular format and Matplotlib for data visualization.

Let us start with the NumPy library first. NumPy stands for Numerical Python. It is a

library consisting of functions to handle multidimensional array objects and a

collection of routines for processing arrays. NumPy was created in 2005 by Travis

Oliphant. It is an open-source project, it can be used freely. NumPy array objects are

50x faster than traditional Python lists. Using NumPy, mathematical and logical

operations on arrays can be performed. This tutorial explains the code for declaration

and manipulation of multidimensional arrays and its contents using NumPy. To install

NumPy in local system use the following code in Python editor.

pip install numpy as np

After installation, run the following code:

import numpy as np

print(np. version)

Declare a one-dimensional array with the following code:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

print(type(arr))

Datatype of an array:

print(arr.dtype)

Create arrays of float and string type:

arr_float = np.array([10.2,23.0,68.5,98.7,5.0])

print(arr_float)

print(arr_float.dtype)

mailto:sanchita.naha@icar.gov.in

90

arr_string = np.array(['ramayanas','b','c','d','e'])

print(arr_string)

arr_string.dtype

Declare array of zeroes and ones:

arr = np.zeros(5)

arr = np.zeros([2,3]) arr

arr = np.ones(5) arr

Dimensions in Array:

0-D Arrays: 0-D arrays, or Scalars, are the elements in an array

import numpy as np

arr = np.array(42)

print(arr)

I-D Array: An array that has 0-D arrays as its elements is called uni-dimensional or

1-D array. These are the most common and basic arrays.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

2-D Arrays: An array that has 1-D arrays as its elements is called a 2-D array. These

are often used to represent matrix or 2nd order tensors.

arr = np.array([[1, 2, 3], [4, 5, 6]])

print(arr)

3-D arrays: An array that has 2-D arrays (matrices) as its elements is called 3-D

array. These are often used to represent a 3rd order tensor.

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])

print(arr)

NumPy Arrays provides the ndim attribute that returns an integer that tells us how

many dimensions the array have.

arr_0D = np.array(42)

arr_1D = np.array([1, 2, 3, 4, 5])

arr_2D = np.array([[1, 2, 3], [4, 5, 6]])

arr_3D = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])

print('Dimension of arr_oD is: ',arr_0D.ndim)

print('Dimension of arr_oD is: ',arr_1D.ndim)

print('Dimension of arr_oD is: ',arr_2D.ndim)

print('Dimension of arr_oD is: ',arr_3D.ndim)

91

Higher Dimensional Arrays An array can have any number of dimensions. When the

array is created, you can define the number of dimensions by using the ndmi

argument.

arr = np.array([1, 2, 3, 4], ndmin=5)

print(arr)

print('number of dimensions :', arr.ndim)

Indexing of an array:

Access Array Elements: Array indexing is the same as accessing an array element.

You can access an array element by referring to its index number. The indexes in

NumPy arrays start with 0, meaning that the first element has index 0, and the second

has index 1 etc.

arr = np.array([1, 2, 3, 4])

print(arr[0])

Get third and fourth elements from the following array and add them.

arr = np.array([1, 2, 3, 4])

print(arr[2] + arr[3])

Access 2-D Arrays: To access elements from 2-D arrays we can use comma separated

integers representing the dimension and the index of the element. Think of 2-D arrays

like a table with rows and columns, where the dimension represents the row and the

index represents the column.

Access the element on the first row, second column:

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])

print('2nd element on 1st row: ', arr[0, 1])

#Access the element on the 2nd row, 5th column:

print('5th element on 2nd row: ', arr[1, 4])

Access 3-D Arrays: To access elements from 3-D arrays we can use comma

separated integers representing the dimensions and the index of the element.

arr_3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

print(arr_3d.ndim)

print(arr_3d[0, 1, 2])

Printing size (total number of elements) of array

print("Size of array: ", arr.size)

92

The first number represents the first dimension, which contains two arrays: [[1, 2, 3],

[4, 5, 6]] and: [[7, 8, 9], [10, 11, 12]] Since we selected 0, we are left with the first

array: [[1, 2, 3], [4, 5, 6]]

The second number represents the second dimension, which also contains two arrays:

[1, 2, 3] and: [4, 5, 6] Since we selected 1, we are left with the second array: [4, 5, 6]

The third number represents the third dimension, which contains three values: 4 5 6

Since we selected 2, we end up with the third value: 6

Negative Indexing Use negative indexing to access an array from the end.

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])

print('Last element from 2nd dim: ', arr[1, -1])

NumPy Array Slicing: Slicing in python means taking elements from one given index

to another given index. We pass slice instead of index like this: [start:end].We can

also define the step, like this:[start:end:step]. If we don't pass start its considered 0 If

we don't pass end its considered length of array in that dimension. If we don't pass

step its considered 1 Note: The result includes the start index, but excludes the end

index.

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[1:5])

Negative Slicing: Use the minus operator to refer to an index from the end.

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[-3:-1])

STEP Use the step value to determine the step of the slicing:

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[1:5:2])

#Return every other element from the entire array:

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[::2])

Slicing 2-D Arrays From the second element, slice elements from index 1 to index 4

(not included):

arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])

print(arr[1, 1:4])

Checking the Data Type of an Array The NumPy array object has a property called

dtype that returns the data type of the array:

93

arr = np.array([1, 2, 3, 4])

print(arr.dtype)

arr1 = np.array(['apple', 'banana', 'cherry'])

print(arr1.dtype)

Creating Arrays With a Defined Data Type We use the array() function to create

arrays, this function can take an optional argument: dtype that allows us to define

the expected data type of the array elements:

arr = np.array([1, 2, 3, 4], dtype='S')

print(arr)

print(arr.dtype)

arr = np.array([1, 2, 3, 4], dtype='i4')

print(arr)

print(arr.dtype)

Converting Data Type on Existing Arrays The best way to change the data type of an

existing array, is to make a copy of the array with the astype() method. The astype()

function creates a copy of the array, and allows you to specify the data type as a

parameter. The data type can be specified using a string, like 'f' for float, 'i' for integer

etc. or you can use the data type directly like float for float and int for integer.

arr = np.array([1.1, 2.1, 3.1])

newarr = arr.astype('i')

print(newarr)

print(newarr.dtype)

arr = np.array([1, 0, 3])

newarr = arr.astype(bool)

print(newarr)

print(newarr.dtype)

Shape of an Array The shape of an array is the number of elements in each

dimension. Get the Shape of an Array NumPy arrays have an attribute called shape

that returns a tuple with each index having the number of corresponding elements.

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

print(arr.shape)

94

#Create an array with 5 dimensions using ndmin using a vector with val

ues 1,2,3,4 and verify that last dimension has value 4:

arr = np.array([1, 2, 3, 4], ndmin=5)

print(arr)

print('shape of array :', arr.shape)

Reshaping arrays Reshaping means changing the shape of an array. The shape of an

array is the number of elements in each dimension. By reshaping we can add or

remove dimensions or change number of elements in each dimension.

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

print(arr.shape)

newarr = arr.reshape(4, 3)

print(newarr)

Reshape From 1-D to 3-D:

#Convert the following 1-D array with 12 elements into a 3-D array.

#The outermost dimension will have 2 arrays that contains 3 arrays, ea

ch with 2 elements:

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

print(arr)

newarr = arr.reshape(2, 3, 2)

print(newarr)

newarr1 = arr.reshape(-1, 1, 2)

print(newarr1)

Can We Reshape Into any Shape? Yes, if the elements required for reshaping are equal

in both shapes. We can reshape an 8 elements 1D array into 4 elements in 2 rows 2D

array but we cannot reshape it into a 3-elements 3 rows 2D array as that would require

3x3 = 9 elements. Note: We cannot pass -1 to more than one dimension.

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

newarr = arr.reshape(2, 2, -1)

print(newarr)

Note: We can not pass -1 to more than one dimension.

95

arr = np.array([[1, 2, 3], [4, 5, 6]])

newarr = arr.reshape(-1)

print(newarr)

Array Iteration:

arr = np.array([[1, 2, 3], [4, 5, 6]])

for x in arr:

for y in x:

print(y)

Iterating on Each Scalar Element In basic for loops, iterating through each scalar of

an array we need to use n for loops which can be difficult to write for arrays with very

high dimensionality.

arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

for x in np.nditer(arr):

print(x)

Searching Arrays You can search an array for a certain value, and return the indexes

that get a match. To search an array, use the where() method.

arr = np.array([1, 2, 3, 4, 5, 4, 4])

x = np.where(arr == 4)

print(x)

Addition, Subtraction, Division of elements of Matrix:

import numpy

initializing matrices

x = numpy.array([[1, 2], [4, 5]])

y = numpy.array([[7, 8], [9, 10]])

print(x)

print(y)

using add() to add matrices

96

print ("The element wise addition of matrix is : ")

print (numpy.add(x,y))

using subtract() to subtract matrices

print ("The element wise subtraction of matrix is : ")

print (numpy.subtract(x,y))

using divide() to divide matrices

print ("The element wise division of matrix is : ")

print (numpy.divide(x,y))

Array Multiplication:

import numpy

initializing matrices

x = numpy.array([[1, 2], [4, 5]])

y = numpy.array([[7, 8], [9, 10]])

using multiply() to multiply matrices element wise

print ("The element wise multiplication of matrix is : ")

print (numpy.multiply(x,y))

using dot() to multiply matrices

print ("The product of matrices is : ")

print (numpy.dot(x,y))

Matrix transpose:

print ("The transpose of given matrix is : ")

print (x.T)

Matrix Multiplication:

97

creating two matrices

p = [[1, 2], [2, 3]]

q = [[4, 5], [6, 7]]

print("Matrix p :")

print(p)

print("Matrix q :")

print(q)

computing product

result = np.dot(p, q)

printing the result

print("The matrix multiplication is :")

print(result)

The numpy.linspace() function returns number spaces evenly at a specified interval.

Similar to numpy.arange() function but instead of step it uses sample number

np.linspace(start, stop, num=50, endpoint=True, retstep=False,

dtype=None, axis=0)

#start = starting value; stop = end value; endpoint = true means

include the last sample

retstep = true ; stepping between samples a =

np.linspace(1,10,10,retstep=True)

a = np.linspace(1,10,10,endpoint = False,retstep=True) a

#np.arange([start,]stop, [step,], dtype=None)

starting number, ending position (excluding this value), step =

spacing; by default it is set to 1

np.arange(1,100,9)

Generation of random numbers:

Random Number

random.randint(low, high=None, size=None, dtype=int)

Return random integers from low (inclusive) to high (exclusive)

np.random.seed(10)

98

print(np.random.randint(100)) print(np.random.randint(100,1000,6))

print(np.random.randint(10,30,[5,4]))

Pandas is an open-source high-performance, easy-to-use Python library for data

analysis. In this tutorial, working with Data Frame object has been illustrated. Install

pandas as the following:

pip install pandas

For demonstration of pandas we have used two freely available dataset e.g., Iris.csv

and titanic.csv.

#load Iris dataset

import pandas as pd

df = pd.read_csv('Iris.csv')

print(df.head())

#load titanic dataset

import pandas as pd

data = pd.read_csv('titanic.csv')

print(data.head())

Pandas is a Python library used for working with data sets. It has functions for

analyzing, cleaning, exploring, and manipulating data. The name "Pandas" has a

reference to both "Panel Data", and "Python Data Analysis", was created by Wes

McKinney in 2008. Pandas allows us to analyze big data and make conclusions based

on statistical theories. Pandas can clean messy data sets and make them readable and

relevant which is the most important requirement in data science. Pandas gives you

answers about the data. Like: Is there a correlation between two or more columns?

What is average value? Max value? Min value? Using Pandas, it is possible to delete

rows that are not relevant, or contains wrong values, like empty or NULL values. This

is called cleaning the data.

Create a dataframe with dictionary data structure:

import pandas as pd

mydataset = {

'cars': ["BMW", "Volvo", "Ford"],

'passings': [3, 7, 2]

}

99

myvar = pd.DataFrame(mydataset)

print(myvar)

Pandas as pd Pandas is usually imported under the pd alias. alias: In Python alias are

an alternate name for referring to the same thing.

print(pd. version)

Pandas Series What is a Series? A Pandas Series is like a column in a table. It is a

one-dimensional array holding data of any type.

#printing dataframe elements

a = [1, 7, 2]

myvar = pd.Series(a)

print(myvar)

print(myvar[0])

#printing dataframe elements

a = [1, 7, 2]

myvar = pd.Series(a, index = ["x", "y", "z"])

print(myvar)

print(myvar["y"])

#Note: The keys of the dictionary become the labels.

calories = {"day1": 420, "day2": 380, "day3": 390}

myvar = pd.Series(calories)

print(myvar)

calories = {"day1": 420, "day2": 380, "day3": 390}

myvar = pd.Series(calories, index = ["day1", "day2"])

print(myvar)

DataFrames Data sets in Pandas are usually multi-dimensional tables, called

DataFrames. Series is like a column, a DataFrame is the whole table.

100

data = {

"calories": [420, 380, 390],

"duration": [50, 40, 45]

}

myvar = pd.DataFrame(data)

print(myvar)

A Pandas DataFrame is a 2-dimensional data structure, like a 2-dimensional array, or

a table with rows and columns. The DataFrame is like a table with rows and columns.

Pandas use the loc attribute to return one or more specified row(s)

Locate Row:

data = {

"calories": [420, 380, 390],

"duration": [50, 40, 45]

}

#load data into a DataFrame object:

df = pd.DataFrame(data)

print(df)

print(df.loc[0])

#Return row 0 and 1:

#use a list of indexes:

print(df.loc[[0, 1]])

Named Indexes: With the index argument, you can name your own indexes.

data = {

"calories": [420, 380, 390],

"duration": [50, 40, 45]

}

df = pd.DataFrame(data, index = ["day1", "day2", "day3"])

print(df)

101

Max_rows: The number of rows returned is defined in Pandas option settings. You

can check your system's maximum rows with the pd.options.display.max_rows

statement.

import pandas as pd

print(pd.options.display.max_rows)

Generally in local systems the number is set to be 60, which means that if the

DataFrame contains more than 60 rows, the print(df) statement will return only 60

rows. We can change the maximum number of rows number with the same statement.

pd.options.display.max_rows = 9999

df = pd.read_csv('Iris.csv')

print(df)

print (df.head())

Data Viewing: One of the most used method for getting a quick overview of the

DataFrame, is the head() method. The head() method returns the headers and a

specified number of rows, starting from the top.

#print top 7 rows of the data frame

df = pd.read_csv('Iris.csv')

print(df.head(7))

There is also a tail() method for viewing the last rows of the DataFrame. The tail()

method returns the headers and a specified number of rows, starting from the bottom.

print last 5 rows

print(df.tail())

Info About the Data: The DataFrame object has a method called info(), that gives

you more information about the data set.

import pandas as pd

df = pd.read_csv('Iris.csv')

print(df.info())

Null Values: The info() method shows how many Non-Null values are present in each

column, and in the data set. Empty values, or Null values, can be bad when analyzing

data, and such rows should be removed with empty values. This is called data

cleaning. Data Cleaning means fixing bad data in the data set. Bad data could be

Empty cells, Data in wrong format, Wrong data, Duplicates. Empty cells can

potentially give wrong result when you analyze data.

102

Removing Rows: One way to deal with empty cells is to remove rows that contain

empty cells.

import pandas as pd

df = pd.read_csv('Iris.csv')

new_df = df.dropna()

print(new_df.head())

Note: By default, the dropna() method returns a new DataFra

me, and will not change the original.

If you want to change the original DataFrame, use the inpla

ce = True argument:

df = pd.read_csv('data.csv')

df.dropna(inplace = True)

print(df)

Replace Empty Values: Another way of dealing with empty cells is to insert a new value

instead. This way no need to delete entire rows just because of some empty cells. The fillna()

method allows to replace empty cells with a value:

df = pd.read_csv('data.csv')

df.fillna(130, inplace = True)

Replace Only for Specified Columns: The example above replaces all empty cells in the

whole Data Frame. To only replace empty values for one column, specify the column name

for the DataFrame.

df = pd.read_csv('data.csv')

df["Calories"].fillna(130, inplace = True)

Matplotlib: Matplotlib is one of the most popular Python packages used for data

visualization.It is a cross-platform library for making 2D plots from data in arrays.

It provides an object- oriented API that helps in embedding plots in applications

using Python GUI toolkits such as PyQt, WxPythonotTkinter. It can be used in

Python and IPython shells, Jupyter notebook andweb application servers also.

Sample Codes:
import matplotlib.pyplot as plt

Line Plot

x = [1,2,3,4,5,6,7,8,9,10]

y = [1,4,9,16,25,36,49,64,81,100]

plt.figure(figsize=(8,4))

103

plt.title("Line Plot

Graph",fontsize=15,color='red',fontweight='bold') plt.xlabel("X

Axis",fontsize=12,color='blue',fontweight='bold') plt.ylabel("Y

Axis",fontsize=12,color='blue',fontweight='bold')

labels=[0,1,2,3,4,5,6,7,8,9,10]

##plt.xticks(labels,fontsize=15,color='green')

plt.xticks(fontsize=15,color='green')

plt.yticks(fontsize=15,color='green')

#plt.plot(x,y,'o-; o--;. ; --; --*; v; ^; o; -s; -*',label="Line

Plot",color="purple",lw=1)

plt.plot(x,y,'-o',label="Line Plot",color="purple",lw=1)

plt.legend(loc=2,fontsize=12)

plt.grid()

plt.show()

Output:

Figure 1: Line plot graph

Bar Plot

x = ["A","B","C","D","E"] y = [10,20,40,30,50]

plt.figure(figsize=(8,4))

plt.title("Bar Plot Graph",fontsize=15,color='brown',

fontweight='bold') plt.xlabel("X Axis",fontsize=12,color='blue')

plt.ylabel("Y Axis",fontsize=12,color='blue')

plt.xticks(fontsize=15,color=orange)

plt.yticks(fontsize=15,color='green')

plt.bar(x,y,label="Bar Plot",color=["orange","green"],width=0.5)

plt.legend(loc=2,fontsize=12)

plt.show()

Output:

104

Figure 2: Bar plot graph

Scatter Plot

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]

y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

plt.figure(figsize=(6,4))

plt.title("Scatter Plot Graph",fontsize=15,color='red')

plt.xlabel("X Axis",fontsize=12,color='blue') plt.ylabel("Y

Axis",fontsize=12,color='blue')

plt.xticks(fontsize=15,color='green')

plt.yticks(fontsize=15,color='green')

plt.scatter(x,y,label="Scatter Plot",color="purple",s=40,marker =

"o") plt.legend(loc=2,fontsize=12)

plt.show()

Output:

105

Figure 3: Scatter plot graph

Histogram

import numpy as np

np.random.seed(10)

data = np.random.randint(1,100,50) print(data)

plt.hist(data,rwidth=0.5,bins=5,color="pink") plt.show()

Output:

Figure 4: Histogram of a randomly generated set of numbers

simple pie chart

import numpy as np

import matplotlib.pyplot as plt

labels=['playing','sleeping','reading','eating'] sizes =

[25,25,25,25]

colors=['red','green','yellow','blue']

plt.pie(sizes, labels=labels, colors=colors,

autopct="%.2f%%",) plt.axis('equal')

plt.show()

Output:

106

Figure 5: Pie chart

Pie Chart

plt.figure(figsize=(6,6)) slices = [90,80,30,70,10,100]

activities =

["Playing","Eating","Sleeping","Reading","Gyming","Gaming"]

cols = ["red","green","orange","purple","pink","yellow"]

plt.pie(slices,labels=activities,colors=cols,autopct="%1.2f%%

", explode=[0,0,0.3,0,0.3,0])

plt.show()

Output:

Figure 6: Pie chart with explode feature

107

Line Plot with two lines

x = [1,2,3,4,5]

y1 = [10,20,40,30,50]

y2 = [5,15,25,35,45]

plt.figure(figsize=(8,4))

plt.title("Line Plot Graph",fontsize=15,color='red')

plt.xlabel("X Axis",fontsize=12,color='blue') plt.ylabel("Y

Axis",fontsize=12,color='blue')

plt.xticks(fontsize=15,color='green')

plt.yticks(fontsize=15,color='green')

plt.plot(x,y1,'--',label="Line Plot 1",color="purple",lw=1)

plt.plot(x,y2,'--',label="Line Plot 2",color="red",lw=1)

plt.legend(loc=2,fontsize=12)

plt.grid()

plt.show()

Output:

Figure 7: Line Plot with two lines in one diagram

Sub Plot

x = [1,2,3,4,5]

y1 = [10,20,40,30,50]

y2 = [5,15,25,35,45]

y3 = [54,154,254,354,445]

y4 = [25,215,225,325,425]

plt.figure(figsize=(10,8))

108

plt.subplot(2,2,1)

plt.plot(x,y1,label="Line Plot

1",color="purple",lw=1) plt.title("Line Plot

Graph 1",fontsize=15,color='red')

plt.subplot(2,2,2)

plt.plot(x,y2,label="Line Plot

2",color="purple",lw=1) plt.title("Line Plot

Graph 2",fontsize=15,color='blue')

plt.subplot(2,2,3)

plt.plot(x,y3,label="Line Plot

3",color="purple",lw=1) plt.title("Line Plot

Graph 3",fontsize=15,color='green')

plt.subplot(2,2,4)

plt.plot(x,y4,label="Line Plot

4",color="purple",lw=1) plt.title("Line Plot

Graph 4",fontsize=15,color='purple')

plt.savefig("graph.png")

plt.show()

Figure 8: Sub plot feature with four different Line Plot graph

109

Support Vector Machine: A Non-Linear Machine Learning Technique

Amit Saha1, K. N. Singh2, Mrinmoy Ray2 and Santosha Rathod3

1Central Silk Board, Ministry of Textiles, Government of India
2ICAR-IASRI, New Delhi
3ICAR-IIRR, Hyderabad

amits.csb@gov.in

1. Introduction:

Machine learning is a technique which allows the machine to learn by itself. Support Vector

Machine (SVM) is one of the eminent supervised machine learning technique which was

developed by Cortex and Vapnik (1995) for binary classification problems. In binary

classification, the goal of the SVM is to find out a hyperplane that best separates a dataset into two

classes. After two years of SVM’s invention, support vector regression (SVR) based on similar

principles as SVM classification was developed by Vapnik et al. (1997) to deal with the regression

problems. Being a non-parametric method, SVR does not depend on assumptions like linear

regression. Another benefit of using SVR is that it permits the construction of non-linear model.

So, SVM is not only popular for the classification but also for its modelling and prediction ability.

The performance of SVM is based upon proper selection of kernel. There are different types of

kernel which can be used for the classification and prediction purposes. Since the last decade, the

application of SVM has been extended to time series modelling and forecasting in various areas

such as power load forecasting (Niu et al., 2010), rainfall forecasting (Ortiz-Garcia et al., 2014),

wind power forecasting (De Giorgi et al., 2014) and agricultural forecasting (Kumar and

Prajneshu, 2015).

2. Support Vector Machine (SVM) in time series:

Application of SVM in time series is generally utilized when the series shows non stationarity and

non-linearity process. A tremendous advantage of SVM is that it is not model dependent as well

as independent of stationarity and linearity. However, it may be computationally expensive during

the training. The training of the data driven prediction process SVM is done by a function which

is estimated utilizing the observed data. Let, a time series 𝑦(𝑡) which takes the data at time 𝑡
{𝑡 = 0,1,2,3, … , 𝑁}.

Now, the prediction function for linear regression is defined as:

 𝑓(𝑦) = (𝑤. 𝑦) + 𝑐 (1)

Whereas, for non linear regression, it will be:

 𝑓(𝑦) = (𝑤. ∅(𝑦)) + 𝑐 (2)

Where, 𝑤 dentoes the weights, 𝑐 represents threshold value and ∅(𝑦) is known as kernel function.

If the observed data is linear, then equation (1) will be used. But, for non-linear data, the mapping

of 𝑦(𝑡) is done to the higher dimension feature space through some function which is denoted as

∅(𝑦) and eventually it is transformed into the linear process. Afer that, a linear regression will

carry out in that feature space.

mailto:amits.csb@gov.in

110

The first and foremost objective is to find out the value of 𝑤 and 𝑐 which will be optimal. In SVM,

there are two things viz., flatness of weights and error after the estimation which are to be

minimized. The flatness of the weights is denoted by ‖𝑤‖2 which is the eucledian norm. Firstly,

one has to concentrate on minimization the ‖𝑤‖2. Second important thing is the minimization of

the error. This is also called as empirical risk. However, the overall aim is to minimize the

regularized risk which is sum of empirical risk and the half of the product of the flatness of weight

and a constant term which is known as regularized constant. The regularized risk can be written

as-

 𝑅𝑟𝑒𝑔(𝑓) = 𝑅𝑒𝑚𝑝(𝑓) +
𝜏

2
‖𝑤‖2 (3)

Where, 𝑅𝑟𝑒𝑔(𝑓) is the regularized risk, 𝑅𝑒𝑚𝑝(𝑓) denotes the empirical risk, 𝜏 is as constant which

is called as regularized constant/capacity control term and ‖𝑤‖2 is the flatness of weights.

The regularization constant has a significant impact on a better fitting of the data and it can also

be useful for the minimization of bad generalization effects. In the other words, this constant deals

with the problem of over-fitting. The overfitting of the data can be redued by the proper selection

of this constant value. The empirical risk can be defined as:-

 𝑅𝑒𝑚𝑝(𝑓) =
1

𝑁
∑ 𝐿(𝑦(𝑖), 𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))𝑁−1

𝑖=0 (4)

Where, 𝛼(𝑖) denotes the truth data of predicted value, 𝐿(.) is known as loss function and 𝑖
represents the index to the time series.

There are various types of loss function in literature. But, two functions viz., vapnik loss function

and quadratic loss function are most popular and they are generally used. The quadratic

programming problem has been made to minimize the regularised risk which is-

 Minimize,
1

2
‖𝑤‖2 + 𝐷 ∑ 𝐿(𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))𝑛

𝑖=1 (5)

 Where,

𝐿(𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))=|𝛼(𝑖) − 𝑓(𝑦(𝑖), 𝑤)|−∈ if |𝛼(𝑖) − 𝑓(𝑦(𝑖), 𝑤)| ≥∈

= 0; otherwise.

Where, 𝐷 is a constant which equals to the summation normalization factor and ∈ represents the

size of the tube.

The computation of ∈ and 𝐷 is done empirically because they are user defined. On has to choose

proper value of 𝐷 and ∈. Now, dual optimization problem is formed using the lagrange multiplier

which can be written as:

Maximize, −
1

2
∑ (𝛽𝑖 − 𝛽𝑖

∗)𝑁
𝑖,𝑗=1 (𝛽𝑗 − 𝛽𝑗

∗)〈𝑦(𝑖), 𝑦(𝑗)〉−∈ ∑ (𝛽𝑖 − 𝛽𝑖
∗) + ∑ 𝛼(𝑖) (𝛽𝑖 − 𝛽𝑖

∗)𝑁
𝑖=1

𝑁
𝑖=1

 (6)

Subject to, ∑ (𝛽𝑖 − 𝛽𝑖
∗) = 0𝑁

𝑖−1 ; 𝛽𝑖 , 𝛽𝑖
∗ ∈ [0, 𝐷]

The function 𝑓(𝑥) is defined as;

 𝑓(𝑥) = ∑ (𝛽𝑖 − 𝛽𝑖
∗)𝑁

𝑖=1 〈𝑦, 𝑦(𝑖)〉 + 𝐶 (7)

111

KKT conditions are used to get the solution of the weights.

The significance of kernel function in non-linear support vector machine (NLSVR) is very much

imporatnt for mapping the data 𝑦(𝑖) into higher dimension feature space ∅(𝑦(𝑖)) in which the

data becomes linear. Generally notation for kernel function is given as;

 𝑘(𝑦, 𝑦′) = 〈∅(𝑦), ∅(𝑦′)〉; (8)

There are many methods in literature to solve the quadartic programming. However, the most used

method is sequential minimization optimization (SMO) algorithm.

3. Kernel function

SVM is a learning algorithm which is based on kernel. There are different types of kernel which

can be used for the classification and prediction purpose. However, there is no such rule to make

inference on which kernel should one use. All the kernels are used separately for the given datasets

and whichever gives the better result, one should choose that one. Various types Kernel are listed

below:

1. Non linear

2. Linear

3. Polynomial

4. Radial basis function: a) Gaussian Radial basis function b) Laplace Radial basis function.

5. Sigmoid kernel

6. Hyperbolic tangent kernel

7. Anova radial basis kernel

8. Multi-layer perceptron

9. Linear spline kernel.

Kernel function are used for the transformation of the given data into the required form. Kernel

function is actually a mathematical function. RBF is mostly used kernel function. Some kernel

functions are described in the following:

Polynomial kernel equation: Polynomial kernel is generally used in the image processing. It is

useful for nonlinear modelling. This kernel function is very simple yet efficient method.

 𝑘(𝑥, 𝑦) = (𝑥. 𝑦 + 1)𝑝 ; 𝑝= degree of polynomial (9)

Gaussian kernel function:

 𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝 (−
‖𝑥−𝑦‖2

2𝜎2) (10)

 Or 𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝛼‖𝑥 − 𝑦‖2), Where, shape of hyperplane is controlled by 𝜎.

Sigmoid kernel function:

Sigmoid function is used as the proxy of artificial neural network.

 𝑘(𝑥, 𝑦) = 𝑡𝑎𝑛ℎ(𝜃𝑥𝑇 . 𝑦 + 𝑎) (11)

Linear kernel function:

Sometimes, linear kernel gives better results as compared to complex and nonlinear kernels. Linear

112

classifier can be used to test the non-linearity of the datasets.

 𝑘(𝑥, 𝑦) = 𝑥. 𝑦 (12)

4. Advantages of SVM:

1. It gives global optimum.

2. Training of SVM is comparatively easier than other machine learning techniques.

3. Well scaling for data with high dimensionality.

4. It can give a good prediction.

5. It is based on statistical learning theory.

6. Work on structural risk minimization.

7. Risk of overfitting problem may overcome by SVM.

8. It has good generalization property.

9. It is useful when there is no prior information about the data.

10. It also work on unstructured data.

5. Illustration:

Data Description:

Time series data on Cotton Production (Million Bales) of India from 1950 to 2016 were taken from

the Ministry of Agriculture & Farmers Welfare, Government of India. The data from 1950-2011

have been utilized for model building purpose and the data from 2012 to 2016 were used to predict

the cotton production for the validation purpose.

Support Vector Machine:

The most important part in SVM technique is the selection of parameters and kernel which have

to be selected with utmost care to improve the performance of the model in order to get better

accuracy in forecasting. The best parameters and kernel have been selected using “e1701” package

(David, 2017) in R software.

The time series plot of cotton production is illustrated in Fig. 1. It can be seen from Table 1 that

the time series show a high value of coefficient variation which reprsents the presence of highly

heterogenous characteristic of the series.

Fig. 1: Time Series Plot of Cotton Production

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1940 1950 1960 1970 1980 1990 2000 2010 2020

C
o

tt
o

n
 P

ro
d

u
ct

io
n

 (
M

ill
io

n

B
al

e
s)

Year

113

Table 1: Summary Statistics of Cotton Production

Statistic Value Statistic Value

Minimum 3.04 Maximum 33.20

1st Quartile 5.54 Standard Deviation 6.81

Median 7.20 Skewness 2.05

Mean 9.60 Kurtosis 4.09

3rd Quartile 11.26 Coefficient of

Variation

70.93

Table 2 displays the estimated best parameters of SVR after sufficient tuning of SVR model and

these best parameters have been utilized to build the SVR model. It has been seen that the best

SVM-kernel function is Radial basis function for SVR.

Table 2: Parameter estimation of SVR

Sampling method 10-fold cross validation

Epsilon (Best Parameter) 0.1

Cost (Best Parameter) 4

Gamma (Best Parameter) 1

Number of Support Vectors 39

SVM-Type eps-regression

SVM-Kernel Radial Basis Function

Fig. 2 shows the graphical representation of the performance of the models for Cotton Production

series. Model performance in terms of MSE, MAE and MAPE has been shown in Table 3 and

Table 4 for training and testing dataset respectively. Here, ARIMA (2, 2, 1) model has been fitted

based on the lowest AIC values among various ARIMA models and the data of cotton production

show the non-linearity pattern which is tested by Brock, Dechert and Scheinkman (BDS) test.

Fig. 2: Graphical representation of the performance of ARIMA and SVM models

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67

Cotton Production Forecasting

Actual SVM ARIMA

114

Table 3: Model performance in training dataset using ARIMA and SVM

Model MSE MAE MAPE

ARIMA 6.70 1.83 21.28

SVM 3.08 1.14 12.73

Table 4: Model performance in testing dataset using ARIMA and SVM

Model MSE MAE MAPE

ARIMA 82.45 7.35 22.76

SVM 9.48 2.54 7.83

Table 5 displays the Out-of-Sample forecast values using ARIMA and SVM.

Table 5: Model performance in testing dataset using ARIMA and SVM

Year Actual ARIMA SVM

2012 34.22 34.98 33.85

2013 35.9 38.21 34.78

2014 34.81 41.79 32.67

2015 30.0 43.82 34.33

2016 33.09 45.99 28.32

It has been seen from the Fig. 2 that the fitted graph of the SVM model is more close to the graph

of original data as compare to ARIMA model both in training and forecasting. It is observed from

Table 3 and Table 4 that the SVM has a lower MSE, MAE and MAPE compared to the ARIMA

model in both training and testing dataset. It has also been seen from Table 5 that the forecasted

values of the SVM are closer to the observed values compared to ARIMA. From the above results

and discussion, it can be inferred that performance of the SVM model is better than the ARIMA

model in terms of forecasting accuracy.

6. Conclusion

In reality, most of the time series data are non-linear in nature. In this study, the data of cotton

production show non-stationary as well as non-linearity structure which were difficult to capture

for the ARIMA models. However, SVM has shown its’ tremendous performance due to the ability

of capturing the non-linear pattern. Being a non-linear machine learning technique, SVM has well

captured the heterogeneous trend of the given dataset. Based on the results, it can be inferred that

SVM outperformed the ARIMA model. Therefore, it can be used in modeling and forecasting of

time series to improve the forecasting accuracy in the presence of non-linear pattern.

7. Bibliography

Cortes, C. and Vapnik, V. (1995). Support-vector network. Machine Learning, 20, 1-25.

David, M. (2017). E1071: Misc Functions of the Department of Statistics. Probability Theory

 Group R package version, 1: 6–8.

De Giorgi, M.G., Campilongo, S., Ficarella, A. and Congedo, P.M. (2014). Comparison between

 wind power rediction models based on wavelet decomposition with least-squares support

 vector machine (LS-SVM) and artificial neural network (ANN). Energies,

 7:5251-5272.

115

Kumar, T.L.M. and Prajneshu (2015). Development of Hybrid Models for Forecasting Time-

 Series Data Using Nonlinear SVR Enhanced by PSO. Journal of Statistical Theory and

 Practice, 9(4), 699-711.

Niu, D., Wang, Y. and Wu, D.D. (2010). Power load forecasting using support vector machine and

 ant colony optimization. Expert Syst Appl, 37:2531–2539.

Ortiz-Garcia, E.G., Salcedo-Sanz, S. and Casanova-Mateom, C. (2014). Accurate precipitation

 prediction with support vector classifiers: A study including novel predictive variables and

 observational data. Atmos Res, 139:128–136.

Vapnik, V., Golowich, S., and Smola, A. (1997). Support vector method for function

 approximation, regression estimation, and signal processing, In Mozer, M., Jordan, M and

 Petsche, T. (Eds). Advances in Neural Information Processing Systems, 9:281-287,

 Cambridge, MA, MIT Press.

116

Foundations of Neural Networks Basics and Artificial Neural Networks

Concepts

Anshu Bharadwaj

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012

Introduction

The inspiration for artificial neural networks (ANN), or simply neural networks, resulted from

the admiration for how the human brain computes complex processes, which is entirely

different from the way conventional digital computers do this. The power of the human brain

is superior to many information-processing systems, since it can perform highly complex,

nonlinear, and parallel processing by organizing its structural constituents (neurons) to perform

such tasks as accurate predictions, pattern recognition, perception, motor control, etc. It is also

many times faster than the fastest digital computer in existence today. An example is the

sophisticated functioning of the information-processing task called human vision. This system

helps us to understand and capture the key components of the environment and supplies us with

the information we need to interact with the environment. That is, the brain very often performs

perceptual recognition tasks (e.g., voice recognition embedded in a complex scene) in around

100–200 ms, whereas less complex tasks many times take longer even on a powerful computer

(Haykin 2009).

In general, the functioning of the brains of humans and other animals is intriguing because they

are able to perform very complex tasks in a very short time and with high efficiency. For

example, signals from sensors in the body convey information related to sight, hearing, taste,

smell, touch, balance, temperature, pain, etc. Then the brain’s neurons, which are autonomous

units, transmit, process, and store this information so that we can respond successfully to

external and internal stimuli (Dougherty 2013). The neurons of many animals transmit spikes

of electrical activity through a long, thin strand called an axon. An axon is divided into

thousands of terminals or branches, where depending on the size of the signal they synapse to

dendrites of other neurons (Fig. 1). It is estimated that the brain is composed of around

1011 neurons that work in parallel, since the processing done by the neurons and the memory

captured by the synapses are distributed together over the network. The amount of information

processed and stored depends on the threshold firing levels and also on the weight given by

each neuron to each of its inputs (Dougherty 2013).

Figure 1: Graphical representation of Biological Neural Network

https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/figure/ch10.Fig1/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK583971/

117

Source: https://www.ncbi.nlm.nih.gov/books/NBK583971/

One of the characteristics of biological neurons, to which they owe their great capacity to

process and perform highly complex tasks, is that they are highly connected to other neurons

from which they receive stimuli from an event as it occurs, or hundreds of electrical signals

with the information learned. When it reaches the body of the neuron, this information affects

its behavior and can also affect a neighboring neuron or muscle (Francisco-Caicedo and López-

Sotelo 2009). Francisco-Caicedo and López-Sotelo (2009) also point out that the

communication between neurons goes through the so-called synapses. A synapse is a space

that is occupied by chemicals called neurotransmitters. These neurotransmitters are responsible

for blocking or passing on signals that come from other neurons. The neurons receive electrical

signals from other neurons with which they are in contact. These signals accumulate in the

body of the neuron and determine what to do. If the total electrical signal received by the neuron

is sufficiently large, the action potential can be overcome, which allows the neuron to be

activated or, on the contrary, to remain inactive. When a neuron is activated, it is able to

transmit an electrical impulse to the neurons with which it is in contact. This new impulse, for

example, acts as an input to other neurons or as a stimulus in some muscles (Francisco-Caicedo

and López-Sotelo 2009). The architecture of biological neural networks is still the subject of

active research, but some parts of the brain have been mapped, and it seems that neurons are

often organized in consecutive layers, as shown in Fig. 2.

Figure 2: Multiple layers in a Biological Neural Network in a Human Cortex

Source: https://www.ncbi.nlm.nih.gov/books/NBK583971/

ANN are machines designed to perform specific tasks by imitating how the human brain works,

and build a neural network made up of hundreds or even thousands of artificial neurons or

processing units. The artificial neural network is implemented by developing a computational

learning algorithm that does not need to program all the rules since it is able to build up its own

rules of behavior through what we usually refer to as “experience.” The practical

implementation of neural networks is possible due to the fact that they are massively parallel

computing systems made up of a huge number of basic processing units (neurons) that are

interconnected and learn from their environment, and the synaptic weights capture and store

the strengths of the interconnected neurons. The job of the learning algorithm consists of

modifying the synaptic weights of the network in a sequential and supervised way to reach a

specific objective (Haykin 2009). There is evidence that neurons working together are able to

learn complex linear and nonlinear input–output relationships by using sequential training

procedures. It is important to point out that even though the inspiration for these models was

quite different from what inspired statistical models, the building blocks of both types of

models are quite similar. Anderson et al. (1990) and Ripley (1993) pointed out that neural

networks are simply no more than generalized nonlinear statistical models. Anderson et al.

https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/figure/ch10.Fig2/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/

118

(1990) pointed out that “ANN are statistics for amateurs since most neural networks conceal

the statistics from the user.”

The Building Blocks of Artificial Neural Networks

To get a clear idea of the main elements used to construct ANN models, Fig.3 provides a

general artificial neural network model that contains the main components for this type of

models.

Figure 3: General Artificial Neural Network

Source: https://www.ncbi.nlm.nih.gov/books/NBK583971/

x1, …, xp represents the information (input) that the neuron receives from the external sensory

system or from other neurons with which it has a connection. w = (w1, …, wp) is the vector of

synaptic weights that modifies the received information emulating the synapse between the

biological neurons. These can be interpreted as gains that can attenuate or amplify the values

that they wish to propagate toward the neuron. Parameter bj is known as the bias (intercept or

threshold) of a neuron. Here in ANN, learning refers to the method of modifying the weights

of connections between the nodes (neurons) of a specified network.

The different values that the neuron receives are modified by the synaptic weights, which then

are added together to produce what is called the net input. In mathematical notation, that is

equal to

This net input (vj) is what determines whether the neuron is activated or not. The activation of

the neuron depends on what we call the activation function. The net input is evaluated in this

function and we obtain the output of the network as shown next:

https://www.ncbi.nlm.nih.gov/books/NBK583971/

119

where g is the activation function. For example, if we define this function as a unit step (also

called threshold), the output will be 1 if the net input is greater than zero; otherwise the output

will be 0. Although there is no biological behavior indicating the presence of something similar

to the neurons of the brain, the use of the activation function is an artifice that allows applying

ANN to a great diversity of real problems. According to what has been mentioned, output yj of

the neuron is generated when evaluating the net input (vj) in the activation function. We can

propagate the output of the neuron to other neurons or it can be the output of the network,

which, according to the application, will have an interpretation for the user. In general, the job

of an artificial neural network model is done by simple elements called neurons. The signals

are passed between neurons through connection links. Each connection link has an associated

weight, which, in a typical neuronal network, multiplies the transmitted signal. Each neuron

applies an activation function (usually nonlinear) to the network inputs (sum of the heavy input

signals) for determining its corresponding sign. Later in this chapter, we describe the many

options for activation functions and the context in which they can be used.

A unilayer ANN like that in Fig. 3 has a low processing capacity by itself and its level of

applicability is low; its true power lies in the interconnection of many ANNs, as happens in the

human brain. This has motivated different researchers to propose various topologies

(architectures) to connect neurons to each other in the context of ANN. Next, we provide two

definitions of ANN and one definition of deep learning:

Definition 1. An artificial neural network is a system composed of many simple elements of

processing which operate in parallel and whose function is determined by the structure of the

network and the weight of connections, where the processing is done in each of the nodes or

computing elements that has a low processing capacity (Francisco-Caicedo and López-

Sotelo 2009).

Definition 2. An artificial neural network is a structure containing simple elements that are

interconnected in many ways with hierarchical organization, which tries to interact with objects

in the real world in the same way as the biological nervous system does (Kohonen 2000).

Perceptron

The first application of the neuron replicated a logic gate, where there were one or two binary

inputs, and a boolean function that only gets activated given the right inputs and weights.

Figure 4: Example of the AND and OR logic gates

https://www.ncbi.nlm.nih.gov/books/NBK583971/figure/ch10.Fig3/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Boolean_function

120

However, this model had a problem. It couldn’t learn like the brain. The only way to get the

desired output was if the weights, working as catalyst in the model, were set beforehand.

It was only a decade later that Frank Rosenblatt extended this model, and created an algorithm

that could learn the weights in order to generate an output. Building onto McCulloch and Pitt’s

neuron, Rosenblatt developed the Perceptron.

Perceptron

Although today the Perceptron is widely recognized as an algorithm, it was initially intended

as an image recognition machine. It gets its name from performing the human-like function

of perception, seeing and recognizing images.

Rosenblatt’s perceptron machine relied on a basic unit of computation, the neuron. Just like in

previous models, each neuron has a cell that receives a series of pairs of inputs and weights. The

major difference in Rosenblatt’s model is that inputs are combined in a weighted sum and, if

the weighted sum exceeds a predefined threshold, the neuron fires and produces an output.

Figure 5: Perceptrons neuron model (left) and threshold logic (right).

Threshold T represents the activation function. If the weighted sum of the inputs is greater than

zero the neuron outputs the value 1, otherwise the output value is zero.

Perceptron for Binary Classification

With this discrete output, controlled by the activation function, the perceptron can be used as

a binary classification model, defining a linear decision boundary. It finds the

separating hyperplane that minimizes the distance between misclassified points and the decision

boundary.

https://en.wikipedia.org/wiki/Frank_Rosenblatt
https://en.wikipedia.org/wiki/Hyperplane

121

Figure 6: Perceptron’s loss function

To minimize this distance, Perceptron uses Stochastic Gradient Descent as the optimization

function. If the data is linearly separable, it is guaranteed that Stochastic Gradient Descent will

converge in a finite number of steps. The last piece that Perceptron needs is the activation

function, the function that determines if the neuron will fire or not. Initial Perceptron models

used sigmoid function, and just by looking at its shape, it makes a lot of sense!

The sigmoid function maps any real input to a value that is either 0 or 1, and encodes a non-

linear function. The neuron can receive negative numbers as input, and it will still be able to

produce an output that is either 0 or 1.

Figure 7: Sigmoid function

Putting it all together

The neuron receives inputs and picks an initial set of weights a random. These are combined in

weighted sum and then ReLU, the activation function, determines the value of the output.

Figure 8: Perceptrons neuron model (left) and activation function (right)

But we wonder, Doesn’t Perceptron actually learn the weights?

It does! Perceptron uses Stochastic Gradient Descent to find, or you might say learn, the set of

weight that minimizes the distance between the misclassified points and the decision boundary.

https://towardsdatascience.com/stochastic-gradient-descent-explained-in-real-life-predicting-your-pizzas-cooking-time-b7639d5e6a32
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Real_number

122

Once Stochastic Gradient Descent converges, the dataset is separated into two regions by a

linear hyperplane.

Although it was said the Perceptron could represent any circuit and logic, the biggest criticism

was that it couldn’t represent the XOR gate, exclusive OR, where the gate only returns 1 if the

inputs are different. This was proved almost a decade later by Minsky and Papert, in 1969[5]

and highlights the fact that Perceptron, with only one neuron, can’t be applied to non-linear data.

Backpropagation

Backpropagation is the learning mechanism that allows the Multilayer Perceptron to iteratively

adjust the weights in the network, with the goal of minimizing the cost function. There is one

hard requirement for backpropagation to work properly. The function that combines inputs and

weights in a neuron, for instance the weighted sum, and the threshold function, for instance

ReLU, must be differentiable. These functions must have a bounded derivative,

because Gradient Descent is typically the optimization function used in MultiLayer Perceptron.

Figure 9: Multilayer Perceptron, highlighting the Feedfoward and Backpropagation steps.

https://en.wikipedia.org/wiki/XOR_gate
https://towardsdatascience.com/stochastic-gradient-descent-explained-in-real-life-predicting-your-pizzas-cooking-time-b7639d5e6a32

123

In each iteration, after the weighted sums are forwarded through all layers, the gradient of

the Mean Squared Error is computed across all input and output pairs. Then, to propagate it

back, the weights of the first hidden layer are updated with the value of the gradient. That’s how

the weights are propagated back to the starting point of the neural network!

Figure 10: One iteration of Gradient Descent

This process keeps going until gradient for each input-output pair has converged, meaning the

newly computed gradient hasn’t changed more than a specified convergence threshold,

compared to the previous iteration.

Multilayer perceptron (MLP)

The Multilayer Perceptron was developed to tackle this limitation. It is a neural network

where the mapping between inputs and output is non-linear.

A Multilayer Perceptron has input and output layers, and one or more hidden layers with many

neurons stacked together. And while in the Perceptron the neuron must have an activation

function that imposes a threshold, like ReLU or sigmoid, neurons in a Multilayer Perceptron

can use any arbitrary activation function.

124

Figure 11: Multilayer Perceptron

Multilayer Perceptron falls under the category of feedforward algorithms, because inputs are

combined with the initial weights in a weighted sum and subjected to the activation function,

just like in the Perceptron. But the difference is that each linear combination is propagated to

the next layer. Each layer is feeding the next one with the result of their computation, their

internal representation of the data. This goes all the way through the hidden layers to the output

layer. But it has more to it.

If the algorithm only computed the weighted sums in each neuron, propagated results to the

output layer, and stopped there, it wouldn’t be able to learn the weights that minimize the cost

function. If the algorithm only computed one iteration, there would be no actual learning.

This is where Backpropagation comes into play.

Backpropagation

Backpropagation is the learning mechanism that allows the Multilayer Perceptron to iteratively

adjust the weights in the network, with the goal of minimizing the cost function.

There is one hard requirement for backpropagation to work properly. The function that

combines inputs and weights in a neuron, for instance the weighted sum, and the threshold

function, for instance ReLU, must be differentiable. These functions must have a bounded

derivative, because Gradient Descent is typically the optimization function used in MultiLayer

Perceptron.

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Backpropagation
https://towardsdatascience.com/stochastic-gradient-descent-explained-in-real-life-predicting-your-pizzas-cooking-time-b7639d5e6a32

125

Figure 12: Multilayer Perceptron, highlighting the Feedfoward and Backpropagation

steps.

In each iteration, after the weighted sums are forwarded through all layers, the gradient of

the Mean Squared Error is computed across all input and output pairs. Then, to propagate it

back, the weights of the first hidden layer are updated with the value of the gradient. That’s

how the weights are propagated back to the starting point of the neural network!

To better understand the elements of the model depicted in Fig. 12, it is important to distinguish

between the types of layers and the types of neurons; for this reason, next we will explain the

type of layers and then the type of neurons in more detail.

(a) Input layer: It is the set of neurons that directly receives the information coming from the

external sources of the network.

(b) Hidden layers: Consist of a set of internal neurons of the network that do not have direct

contact with the outside. The number of hidden layers can be 0, 1, or more. In general, the

neurons of each hidden layer share the same type of information; for this reason, they are

called hidden layers. The neurons of the hidden layers can be interconnected in different

ways; this determines, together with their number, the different topologies of ANN. The

learned information extracted from the training data is stored and captured by the weight

values of the connections between the layers of the artificial neural network.

(c) Output layer: It is a set of neurons that transfers the information that the network has

processed to the outside (Francisco-Caicedo and López-Sotelo 2009). In Fig. 10.4 the output

neurons correspond to the output variables y1, y2, y3, and y4. This means that the output

layer gives the answer or prediction of the artificial neural network model based on the input

from the input layer. The final output can be continuous, binary, ordinal, or count depending

on the setup of the ANN which is controlled by the activation (or inverse link in the statistical

https://www.ncbi.nlm.nih.gov/books/NBK583971/figure/ch10.Fig4/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/figure/ch10.Fig4/?report=objectonly

126

domain) function we specified on the neurons in the output layer (Patterson and

Gibson 2017).

Next, we define the types of neurons: (1) input neuron. A neuron that receives external inputs

from outside the network; (2) output neuron. A neuron that produces some of the outputs of

the network; and (3) hidden neuron. A neuron that has no direct interaction with the “outside

world” but only with other neurons within the network.

Activation Functions

The mapping between inputs and a hidden layer in ANN and DNN is determined by activation

functions. Activation functions propagate the output of one layer’s nodes forward to the next

layer (up to and including the output layer). Activation functions are scalar-to-scalar functions

that provide a specific output of the neuron. Activation functions allow nonlinearities to be

introduced into the network’s modeling capabilities (Wiley 2016). The activation function of a

neuron (node) defines the functional form for how a neuron gets activated. For example, if we

define a linear activation function as g(z) = z, in this case the value of the neuron would be the

raw input, x, times the learned weight, that is, a linear model. Next, we describe the most

popular activation functions.

Linear

Figure 13 shows a linear activation function that is basically the identity function. It is defined

as g(z) = Wz, where the dependent variable has a direct, proportional relationship with the

independent variable. In practical terms, it means the function passes the signal through

unchanged. The problem with making activation functions linear is that this does not permit

any nonlinear functional forms to be learned (Patterson and Gibson 2017).

Figure 13: Linear Activation Function

Source: https://www.ncbi.nlm.nih.gov/books/NBK583971/

Rectifier Linear Unit (ReLU)

The rectifier linear unit (ReLU) activation function is one of the most popular. The ReLU

activation function is flat below some threshold (usually the threshold is zero) and then linear.

https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/

127

The ReLU activates a node only if the input is above a certain quantity. When the input is

below zero, the output is zero, but when the input rises above a certain threshold, it has a linear

relationship with the dependent variable g(z) = max (0, z), as demonstrated in Fig. 14. Despite

its simplicity, the ReLU activation function provides nonlinear transformation, and enough

linear rectifiers can be used to approximate arbitrary nonlinear functions, unlike when only

linear activation functions are used (Patterson and Gibson 2017). ReLUs are the current state

of the art because they have proven to work in many different situations. Because the gradient

of a ReLU is either zero or a constant, it is not easy to control the vanishing exploding gradient

issue, also known as the “dying ReLU” issue. ReLU activation functions have been shown to

train better in practice than sigmoid activation functions. This activation function is the most

used in hidden layers and in output layers when the response variable is continuous and larger

than zero.

Figure 14: ReLU Activation Function

Source: https://www.ncbi.nlm.nih.gov/books/NBK583971/

Sigmoid

A sigmoid activation function is a machine that converts independent variables of near infinite

range into simple probabilities between 0 and 1, and most of its output will be very close to 0

or 1. Like all logistic transformations, sigmoids can reduce extreme values or outliers in data

without removing them. This activation function resembles an S (Wiley 2016; Patterson and

Gibson 2017) and is defined as g(z) = (1 + e−z)−1. This activation function is one of the most

common types of activation functions used to construct ANNs and DNNs, where the outcome

is a probability or binary outcome. This activation function is a strictly increasing function that

exhibits a graceful balance between linear and nonlinear behavior but has the propensity to get

“stuck,” i.e., the output values would be very close to 1 or 0 when the input values are strongly

positive or negative (Fig. 15). By getting “stuck” we mean that the learning process is not

improving due to the large or small values of the output values of this activation function.

Figure 15: Sigmoid Activation Function

https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/

128

Source: https://www.ncbi.nlm.nih.gov/books/NBK583971/

Softmax

Softmax is a generalization of the sigmoid activation function that handles multinomial

labeling systems, that is, it is appropriate for categorical outcomes. Softmax is the function you

will often find in the output layer of a classifier with more than two categories. The softmax

activation function returns the probability distribution over mutually exclusive output classes.

To further illustrate the idea of the softmax output layer and how to use it, let’s consider two

types of uses. If we have a multiclass modeling problem we only care about the best score

across these classes, we’d use a softmax output layer with an argmax() function to get the

highest score across all classes. For example, let us assume that our categorical response has

ten classes; with this activation function we calculate a probability for each category (the sum

of the ten categories is one) and we classify a particular individual in the class with the largest

probability. It is important to recall that if we want to get binary classifications per output (e.g.,

“diseased and not diseased”), we do not want softmax as an output layer. Instead, we will use

the sigmoid activation function explained before. The softmax function is defined as

This activation function is a generalization of the sigmoid activation function that squeezes

(force) a C dimensional vector of arbitrary real values to a C dimensional vector of real values

in the range [0,1] that adds up to 1. A strong prediction would have a single entry in the vector

close to 1, while the remaining entries would be close to 0. A weak prediction would have

multiple possible categories (labels) that are more or less equally likely. The sigmoid and

softmax activation functions are suitable for probabilistic interpretation because the output is a

probabilistic distribution of the classes. This activation function is mostly recommended for

output layers when the response variable is categorical.

Tanh

The hyperbolic tangent (Tanh) activation function is defined

as tanh(z)=sinh(z)/cosh(z)=exp(z)−exp(−z)exp(z)+exp(−z). The hyperbolic tangent works well

in some cases and, like the sigmoid activation function, has a sigmoidal (“S” shaped) output,

with the advantage that it is less likely to get “stuck” than the sigmoid activation function since

its output values are between −1 and 1, as shown in Fig. 16. For this reason, for hidden layers

should be preferred the Tanh activation function. Large negative inputs to the tanh function

will give negative outputs, while large positive inputs will give positive outputs (Patterson and

Gibson 2017). The advantage of tanh is that it can deal more easily with negative numbers.

https://www.ncbi.nlm.nih.gov/books/NBK583971/

129

Figure 16: Tanh Activation Function

Source: https://www.ncbi.nlm.nih.gov/books/NBK583971/

Artificial Neural Network Topologies

In this subsection, we describe the most popular network topologies. An artificial neural

network topology represents the way in which neurons are connected to form a network. In

other words, the neural network topology can be seen as the relationship between the neurons

by means of their connections. The topology of a neural network plays a fundamental role in

its functionality and performance, as illustrated throughout this chapter. The generic

terms structure and architecture are used as synonyms for network topology.

the topology of a neural network consists of its frame or framework of neurons, together with

its interconnection structure or connectivity:

Artificial Neural Framework

Most neural networks, including many biological ones, have a layered topology. There are a

few exceptions where the network is not explicitly layered, but those can usually be interpreted

as having a layered topology, for example, in some associative memory networks, which can

be seen as one-layer neural networks where all neurons function both as input and output units.

At the framework level, neurons are considered abstract entities, therefore possible differences

between them are not considered. The framework of an artificial neural network can therefore

be described by the number of neurons, number of layers (denoted by L), and the size of the

layer, which consists of the number of neurons in each of the layers.

Interconnection structure

The interconnection structure of an artificial neural network determines the way in which the

neurons are linked. Based on a layered structure, several different kinds of connections can be

distinguished (see Fig. 10.11): (a) Interlayer connection: This connects neurons in adjacent

layers whose layer indices differ by one; (b) Intralayer connection: This is a connection

between neurons in the same layer; (c) Self-connection: This is a special kind of intralayer

connection that connects a neuron to itself; (d) Supralayer connection: This is a connection

between neurons that are in distinct nonadjacent layers; in other words, these connections

“cross” or “jump” at least one hidden layers.

Artificial Neural
Network Topology

1. Artificial Neural
Framework

2. Interconnection
Structure

https://www.ncbi.nlm.nih.gov/books/NBK583971/figure/ch10.Fig11/?report=objectonly

130

Figure 17: Network topology with two layers. (i) denotes the six interlayer connections, (s)

denotes the four supralayered connections, and (a) denotes four intralayer connections of

which two are self-connections

Source: https://www.ncbi.nlm.nih.gov/books/NBK583971/

With each connection (interconnection), a weight (strength) is associated which is a weighting

factor that reflects its importance. This weight is a scalar value (a number), which can be

positive (excitatory) or negative (inhibitory). If a connection has zero weight, it is considered

to be nonexistent at that point in time.

Note that the basic concept of layeredness is based on the presence of interlayer connections.

In other words, every layered neural network has at least one interlayer connection between

adjacent layers. If interlayer connections are absent between any two adjacent clusters in the

network, a spatial reordering can be applied to the topology, after which certain connections

become the interlayer connections of the transformed, layered network.

Now that we have described the two key components of an artificial neural network topology,

we will present two of the most commonly used topologies.

Feedforward network

In this type of artificial neural network, the information flows in a single direction from the

input neurons to the processing layer or layers (only interlayer connections) for monolayer and

multilayer networks, respectively, until reaching the output layer of the neural network. This

means that there are no connections between neurons in the same layer (no intralayer), and

there are no connections that transmit data from a higher layer to a lower layer, that is, no

supralayer connections (Fig. 19). This type of network is simple to analyze, but is not restricted

to only one hidden layer.

131

Figure 19: A simple two layered feed forward artificial neural network

Source: https://www.ncbi.nlm.nih.gov/books/NBK583971/

Recurrent Networks

In this type of neural network, information does not always flow in one direction, since it can

feed back into previous layers through synaptic connections. This type of neural network can

be monolayer or multilayer. In this network, all the neurons have (1) incoming connections

emanating from all the neurons in the previous layer, (2) ongoing connections leading to all the

neurons in the subsequent layer, and (3) recurrent connections that propagate information

between neurons of the same layer. Recurrent neural networks (RNNs) are different from a

feedforward neural network in that they have at least one feedback loop since the signals travel

in both directions. This type of network is frequently used in time series prediction since short-

term memory, or delay, increases the power of recurrent networks immensely. In this case, we

present an example of a recurrent two-layer neural network. The output of each neuron is

passed through a delay unit and then taken to all the neurons, except itself. It is seen that only

one input variable is presented to the input units, the feedforward flow is computed, and the

outputs are fed back as auxiliary inputs. This leads to a different set of hidden unit activations,

new output activations, and so on. Ultimately, the activations stabilize, and the final output

values are used for predictions.

132

Figure 20: A simple two-layer recurrent artificial neural network with univariate output

Source: https://www.ncbi.nlm.nih.gov/books/NBK583971/

133

Figure 21: A two-layer recurrent artificial neural network with multivariate outputs

Source: https://www.ncbi.nlm.nih.gov/books/NBK583971/

However, it is important to point out out that despite the just mentioned virtues of recurrent

artificial neural networks, they are still largely theoretical and produce mixed results (good and

bad) in real applications. On the other hand, the feedforward networks are the most popular

since they are successfully implemented in all areas of domain; the multilayer perceptron

(MLP; that is, onother name give to feedforward networks) is the de facto standard artificial

neural network topology (Lantz 2015).

Successful Applications of ANN and DL

The success of ANN and DL is due to remarkable results on perceptual problems such as seeing

and hearing—problems involving skills that seem natural and intuitive to humans but have long

been elusive for machines. Some of these successful applications:

(a) Near-human-level image classification, speech recognition, handwriting transcription,

autonomous driving (Chollet and Allaire 2017)

(b) Automatic translation of text and images (LeCun et al. 2015)

(c) Improved text-to-speech conversion (Chollet and Allaire 2017)

(d) Digital assistants such as Google Now and Amazon Alexa

(e) Improved ad targeting, as used by Google, Baidu, and Bing

(f) Improved search results on the Web (Chollet and Allaire 2017)

(g)Ability to answer natural language questions (Goldberg 2016)

(h)In games like chess, Jeopardy, GO, and poker (Makridakis et al. 2018)

(i)Self-driving cars (Liu et al. 2017),

(j)Voice search and voice-activated intelligent assistants (LeCun et al. 2015)

https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/

134

(k)Automatically adding sound to silent movies (Chollet and Allaire 2017)

(l)Energy market price forecasting (Weron 2014)

(m)Image recognition (LeCun et al. 2015)

(n)Prediction of time series (Dingli and Fournier 2017)

(o)Predicting breast, brain (Cole et al. 2017), or skin cancer

(p)Automatic image captioning (Chollet and Allaire 2017)

(q)Predicting earthquakes (Rouet-Leduc et al. 2017)

(r)Genomic prediction (Montesinos-López et al. 2018a, b)

https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/
https://www.ncbi.nlm.nih.gov/books/NBK583971/

135

References

 Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting the sequence

specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol

33:831–838.

 Anderson J, Pellionisz A, Rosenfeld E (1990) Neurocomputing 2: directions for

research. MIT, Cambridge.

 Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep learning for computational

biology. Mol Syst Biol 12(878):1–16.

 Chollet F, Allaire JJ (2017) Deep learning with R. Manning Publications, Manning

Early Access Program (MEA), 1st edn.

 Cole JH, Rudra PK, Poudel DT, Matthan WA, Caan CS, Tim D, Spector GM (2017)

Predicting brain age with deep learning from raw imaging data results in a reliable and

heritable biomarker. NeuroImage 163(1):115–124. https://doi.org/10.1016/j

.neuroimage.2017.07.059.

 Cybenko G (1989) Approximations by superpositions of sigmoidal functions. Math

Control Signal Syst 2:303–314.

 Dingli A, Fournier KS (2017) Financial time series forecasting—a deep learning

approach. Int J Mach Learn Comput 7(5):118–122.

 Dougherty G (2013) Pattern recognition and classification-an introduction. Springer

Science + Business Media, New York.

 Efron B, Hastie T (2016) Computer age statistical inference. Algorithms, evidence, and

data science. Cambridge University Press, New York.

 Francisco-Caicedo EF, López-Sotelo JA (2009) Una approximación práctica a las redes

neuronales artificiales. Universidad del Valle, Cali.

 Goldberg Y (2016) A primer on neural network models for natural language processing.

J Artif Intell Res 57(345):420.

 Haykin S (2009) Neural networks and learning machines, 3rd edn. Pearson Prentice

Hall, New York.

 Hornik K (1991) Approximation capabilities of multilayer feedforward networks.

Neural Netw 4:251–257. [CrossRef]

 James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning

with applications in R. Springer, New York.

 Kohonen T (2000) Self-organizing maps. Springer, Berlin.

 Lantz B (2015) Machine learning with R, 2nd edn. Packt Publishing Ltd, Birmingham.

 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444.

 Lewis ND (2016) Deep learning made easy with R. A gentle introduction for data

science. CreateSpace Independent Publishing Platform.

 Liu S, Tang J, Zhang Z, Gaudiot JL (2017) CAAD: computer architecture for

autonomous driving. ariv preprint ariv:1702.01894.

 Ma W, Qiu Z, Song J, Cheng Q, Ma C (2017) DeepGS: predicting phenotypes from

genotypes using Deep Learning. bioRxiv 241414. https://doi.org/10.1101/241414.

 Makridakis S, Spiliotis E, Assimakopoulos V (2018) Statistical and Machine Learning

forecasting methods: concerns and ways forward. PLoS One

13(3):e0194889. https://doi.org/10.1371/journal.pone.0194889. [PMC free article]

 McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous

activity. Bull Math Biophys 5:115–133.

http://dx.crossref.org/10.1016/j.neuroimage.2017.07.059
http://dx.crossref.org/10.1016/j.neuroimage.2017.07.059
http://dx.crossref.org/10.1016/0893-6080(91)90009-T
http://dx.crossref.org/10.1101/241414
http://dx.crossref.org/10.1371/journal.pone.0194889
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870978/

136

 McDowell R, Grant D (2016) Genomic selection with deep neural networks. Graduate

Theses and Dissertations, p 15973. https://lib.dr.iastate.edu/etd/15973.

 Menden MP, Iorio F, Garnett M, McDermott U, Benes CH et al (2013) Machine

learning prediction of cancer cell sensitivity to drugs based on genomic and chemical

properties. PLoS One 8:e61318. [PMC free article]

 Montesinos-López A, Montesinos-López OA, Gianola D, Crossa J, Hernández-Suárez

CM (2018a) Multi-environment genomic prediction of plant traits using deep learners

with a dense architecture. G3: Genes, Genomes, Genetics 8(12):3813–3828. https://doi

.org/10.1534/g3.118.200740. [PMC free article]

 Montesinos-López OA, Montesinos-López A, Crossa J, Gianola D, Hernández-Suárez

CM et al (2018b) Multi-trait, multi-environment deep learning modeling for genomic-

enabled prediction of plant traits. G3: Genes, Genomes, Genetics 8(12):3829–

3840. https://doi.org/10.1534/g3.118.200728. [PMC free article]

 Montesinos-López OA, Vallejo M, Crossa J, Gianola D, Hernández-Suárez CM,

Montesinos-López A, Juliana P, Singh R (2019a) A benchmarking between deep

learning, support vector machine and bayesian threshold best linear unbiased prediction

for predicting ordinal traits in plant breeding. G3: Genes, Genomes, Genetics 9(2):601–

618. [PMC free article]

 Montesinos-López OA, Martín-Vallejo J, Crossa J, Gianola D, Hernández-Suárez CM,

Montesinos-López A, Juliana P, Singh R (2019b) New deep learning genomic

prediction model for multi-traits with mixed binary, ordinal, and continuous

phenotypes. G3: Genes, Genomes, Genetics 9(5):1545–1556. [PMC free article]

 Montesinos-López OA, Montesinos-López A, Pérez-Rodríguez P, Barrón-López JA,

Martini JWR, Fajardo-Flores SB, Gaytan-Lugo LS, Santana-Mancilla PC, Crossa J

(2021) A review of deep learning applications for genomic selection. BMC Genomics

22:19. [PMC free article]

 Patterson J, Gibson A (2017) Deep learning: a practitioner’s approach. O’Reilly Media.

 Ripley B (1993) Statistical aspects of neural networks. In: Bornndorff-Nielsen U,

Jensen J, Kendal W (eds) Networks and chaos—statistical and probabilistic aspects.

Chapman and Hall, London, pp 40–123.

 Rouet-Leduc B, Hulbert C, Lubbers N, Barros K, Humphreys CJ et al (2017) Machine

learning predicts laboratory earthquakes. Geophys Res Lett 44(28):9276–9282.

[CrossRef]

 Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by

backpropagating errors. Nature 323:533–536.

 Shalev-Shwartz, Ben-David (2014) Understanding machine learning: from theory to

algorithms. Cambridge University Press, New York.

 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout:

a simple way to prevent neural networks from overfitting. J Mach Learn Res

15(6):1929–1958.

 Tavanaei A, Anandanadarajah N, Maida AS, Loganantharaj R (2017) A deep learning

model for predicting tumor suppressor genes and oncogenes from PDB structure.

bioRiv 177378. https://doi.org/10.1101/177378.

 Weron R (2014) Electricity price forecasting: a review of the state-of-the-art with a

look into the future. Int J Forecast 30(4):1030–1081.

 Wiley JF (2016) R deep learning essentials: build automatic classification and

prediction models using unsupervised learning. Packt Publishing, Birmingham,

Mumbai.

https://lib.dr.iastate.edu/etd/15973
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640019/
http://dx.crossref.org/10.1534/g3.118.200740
http://dx.crossref.org/10.1534/g3.118.200740
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288841/
http://dx.crossref.org/10.1534/g3.118.200728
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288830/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385991/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505163/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789712/
http://dx.crossref.org/10.1002/2017GL074677
http://dx.crossref.org/10.1101/177378

137

Functions, Module, File Handling in Python

Functions

In Python, the function is a block of code defined with a name. We use functions whenever

we need to perform the same task multiple times without writing the same code again. It can

take arguments and returns the value.

Python has a DRY principle like other programming languages. DRY stands for Don’t Repeat

Yourself. Consider a scenario where we need to do some action/task many times. We can define

that action only once using a function and call that function whenever required to do the same

activity.

Function improves efficiency and reduces errors because of the reusability of a code. Once we

create a function, we can call it anywhere and anytime. The benefit of using a function is

reusability and modularity.

Types of Functions

Python support two types of functions

1. Built-in function

2. User-defined function

Built-in function

The functions which are come along with Python itself are called a built-in

function or predefined function. Some of them are listed below.

range(), type(), input(), eval() etc.

Example: Python range() function generates the immutable sequence of numbers starting from

the given start integer to the stop integer.

for i in range(1, 10):

 print(i, end=' ')

Output 1 2 3 4 5 6 7 8 9

User-defined function

Functions which are created by programmer explicitly according to the requirement are called

a user-defined function.

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

138

Creating a Function

Use the following steps to define a function in Python.

 Use the def keyword with the function name to define a function.

 Next, pass the number of parameters as per your requirement. (Optional).

 Next, define the function body with a block of code. This block of code is nothing but

the action you want to perform.

In Python, no need to specify curly braces for the function body. The only indentation is

essential to separate code blocks. Otherwise, you will get an error.

Syntax of creating a function

def function_name(parameter1, parameter2):

 # function body

 # write some action

return value

Here,

 function_name: Function name is the name of the function. We can give any name to

function.

 parameter: Parameter is the value passed to the function. We can pass any number of

parameters. Function body uses the parameter’s value to perform an action

 function_body: The function body is a block of code that performs some task. This

block of code is nothing but the action you wanted to accomplish.

 return value: Return value is the output of the function.

Note: While defining a function, we use two keywords, def (mandatory) and return (optional).

Creating a function without any parameters

function

def message():

 print("Welcome participants to ICAR-IASRI")

call function using its name

message()

139

Creating a function with parameters

Let’s create a function that takes two parameters and displays their values.

In this example, we are creating function with two parameters ‘ name’ and ‘age’.

function

def training_func(name, training_name):

 print("Hello", name, "Welcome to ICAR-IASRI")

 print("Your training title is", training_name)

call function

training_func ('XYZ', 'Python')

Creating a function with parameters and return value

Functions can return a value. The return value is the output of the function. Use the return

keyword to return value from a function.

function

def calculator(a, b):

 add = a + b

 # return the addition

 return add

call function

take return value in variable

res = calculator(20, 5)

print("Addition :", res)

Output Addition : 25

Calling a function

Once we defined a function or finalized structure, we can call that function by using its name.

We can also call that function from another function or program by importing it.

To call a function, use the name of the function with the parenthesis, and if the function accepts

parameters, then pass those parameters in the parenthesis.

function

def even_odd(n):

 # check number is even or odd

 if n % 2 == 0:

140

 print('Even number')

 else:

 print('Odd Number')

calling function by its name

even_odd(19)

Output Odd Number

Calling a function of a module

You can take advantage of the built-in module and use the functions defined in it. For example,

Python has a random module that is used for generating random numbers and data. It has

various functions to create different types of random data.

Let’s see how to use functions defined in any module.

 First, we need to use the import statement to import a specific function from a module.

 Next, we can call that function by its name.

import randint function

from random import randint

call randint function to get random number

print(randint(10, 20))

Output 14

Docstrings

In Python, the documentation string is also called a docstring. It is a descriptive text (like a

comment) written by a programmer to let others know what block of code does.

We write docstring in source code and define it immediately after module, class, function, or

method definition

It is being declared using triple single quotes (''' ''') or triple-double quote(""" """).

We can access docstring using doc attribute (__doc__) for any object like list, tuple, dict, and

user-defined function, etc.

Single-Line Docstring

The single-line docstring is a docstring that fits in one line. We can use the triple single or

triple-double quotes to define it. The Opening and closing quotes need to be the same. By

convention, we should use to use the triple-double quotes to define docstring.

141

def factorial(x):

 """This function returns the factorial of a given number."""

 return x

access doc string

print(factorial.__doc__)

When you use the help function to get the information of any function, it returns the docstring.

pass function name to help() function

print(help(factorial))

Help on function factorial in module main:

factorial(x)

 This function returns the factorial of a given number.

None

Multi-Line Docstring

A multi-line Docstrings is the same single-line Docstrings, but it is followed by a single blank

line with the descriptive text.

The general format of writing a multi-line Docstring is as follows:

Example

def any_fun(parameter1):

"""

 Description of function

 Arguments:

 parameter1(int):Description of parameter1

 Returns:

 int value

"""

print(any_fun.__doc__)

Output

Description of function

Arguments

parameter1(int):Description of parameter1

Returns:

int value

142

Return Value From a Function

In Python, to return value from the function, a return statement is used. It returns the value of

the expression following the returns keyword.

Syntax of return statement

def fun():

 statement-1

 statement-2

 statement-3

 .

 .

 return [expression]

The return value is nothing but a outcome of function.

 The return statement ends the function execution.

 For a function, it is not mandatory to return a value.

 If a return statement is used without any expression, then the None is returned.

 The return statement should be inside of the function block.

def is_even(list1):

 even_num = []

 for n in list1:

 if n % 2 == 0:

 even_num.append(n)

 # return a list

 return even_num

Pass list to the function

even_num = is_even([2, 3, 42, 51, 62, 70, 5, 9])

print("Even numbers are:", even_num)

Output

Even numbers are: [2, 42, 62, 70]

Return Multiple Values

You can also return multiple values from a function. Use the return statement by separating

each expression by a comma.

143

Example: –

In this example, we are returning three values from a function. We will also see how to process

or read multiple return values in our code.

def arithmetic(num1, num2):

 add = num1 + num2

 sub = num1 - num2

 multiply = num1 * num2

 division = num1 / num2

 # return four values

 return add, sub, multiply, division

read four return values in four variables

a, b, c, d = arithmetic(10, 2)

print("Addition: ", a)

print("Subtraction: ", b)

print("Multiplication: ", c)

print("Division: ", d)

Scope and Lifetime of Variables

When we define a function with variables, then those variables’ scope is limited to that

function. In Python, the scope of a variable is an area where a variable is declared. It is called

the variable’s local scope.

We cannot access the local variables from outside of the function. Because the scope is local,

those variables are not visible from the outside of the function.

Note: The inner function does have access to the outer function’s local scope.

When we are executing a function, the life of the variables is up to running time. Once we

return from the function, those variables get destroyed. So function does no need to remember

the value of a variable from its previous call.

The following code shows the scope of a variable inside a function.

Example

global_lang = 'DataScience'

def var_scope_test():

 local_lang = 'Python'

 print(local_lang)

144

var_scope_test()

Output 'Python'

outside of function

print(global_lang)

Output 'DataScience'

NameError: name 'local_lang' is not defined

print(local_lang)

In the above example, we print the local and global variable values from outside of the function.

The global variable is accessible with its name global_lang.

But when we try to access the local variable with its name local_lang, we got a NameError,

because the local variable is not accessible from outside of the function.

Example

def function1():

 # local variable

 loc_var = 888

 print("Value is :", loc_var)

def function2():

 print("Value is :", loc_var)

function1()

function2()

Output

Value is : 888

print("Value is :", loc_var) # gives error,

NameError: name 'loc_var' is not defined

Global Variable in function

A Global variable is a variable that is declared outside of the function. The scope of a global

variable is broad. It is accessible in all functions of the same module.

Example

global_var = 999

def function1():

145

 print("Value in 1nd function :", global_var)

def function2():

 print("Value in 2nd function :", global_var)

function1()

function2()

Output

Value in 1nd function : 999

Value in 2nd function : 999

Global Keyword in Function

In Python, global is the keyword used to access the actual global variable from outside the

function. we use the global keyword for two purposes:

1. To declare a global variable inside the function.

2. Declaring a variable as global, which makes it available to function to perform the

modification.

Let’s see what happens when we don’t use global keyword to access the global variable in the

function

Global variable

global_var = 5

def function1():

 print("Value in 1st function :", global_var)

def function2():

 # Modify global variable

 # function will treat it as a local variable

 global_var = 555

 print("Value in 2nd function :", global_var)

def function3():

 print("Value in 3rd function :", global_var)

function1()

function2()

function3()

Output

146

Value in 1st function : 5

Value in 2nd function : 555

Value in 3rd function : 5

As you can see, function2() treated global_var as a new variable (local variable). To solve such

issues or access/modify global variables inside a function, we use the global keyword.

Global variable

x = 5

defining 1st function

def function1():

 print("Value in 1st function :", x)

defining 2nd function

def function2():

 # Modify global variable using global keyword

 global x

 x = 555

 print("Value in 2nd function :", x)

defining 3rd function

def function3():

 print("Value in 3rd function :", x)

function1()

function2()

function3()

Output

Value in 1st function : 5

Value in 2nd function : 555

Value in 3rd function : 555

Python Function Arguments

The argument is a value, a variable, or an object that we pass to a function or method call. In

Python, there are four types of arguments allowed.

1. Positional arguments

2. keyword arguments

3. Default arguments

4. Variable-length arguments

147

Positional Arguments

Positional arguments are arguments that are pass to function in proper positional order. That

is, the 1st positional argument needs to be 1st when the function is called. The 2nd positional

argument needs to be 2nd when the function is called, etc. See the following example for more

understanding.

Example

def add(a, b):

 print(a - b)

add(50, 10)

Output 40

add(10, 50)

Output -40

Keyword Arguments

A keyword argument is an argument value, passed to function preceded by the variable name

and an equals sign.

Example

def message(name, surname):

 print("Hello", name, surname)

message(name="A", surname="B")

message(surname="C", name="D")

Output

Hello A B

Hello C D

In keyword arguments order of argument is not matter, but the number of arguments must

match. Otherwise, we will get an error.

While using keyword and positional argument simultaneously, we need to pass 1st arguments

as positional arguments and then keyword arguments. Otherwise, we will get SyntaxError. See

the following example.

Example

def message(first_nm, last_nm):

 print("Hello..!", first_nm, last_nm)

148

correct use

message("A", "B")

message("A", last_nm="B")

Error

SyntaxError: positional argument follows keyword argument

message(first_nm="A", "B")

Default Arguments

Default arguments take the default value during the function call if we do not pass them. We

can assign a default value to an argument in function definition using the = assignment

operator.

Example

function with default argument

def message(name="Guest"):

 print("Hello", name)

calling function with argument

message("John")

calling function without argument

message()

Output

Hello John

Hello Guest

Variable-length Arguments

In Python, sometimes, there is a situation where we need to pass multiple numbers of arguments

to the function. Such types of arguments are called variable-length arguments. We can

declare a variable-length argument with the * (asterisk) symbol.

def fun(*var):

 function body

We can pass any number of arguments to this function. Internally all these values are

represented in the form of a tuple.

Example

149

def addition(*numbers):

 total = 0

 for no in numbers:

 total = total + no

 print("Sum is:", total)

0 arguments

addition()

5 arguments

addition(10, 5, 2, 5, 4)

3 arguments

addition(78, 7, 2.5)

Output

Sum is: 0

Sum is: 26

Sum is: 87.5

Recursive Function

A recursive function is a function that calls itself, again and again.

Consider, calculating the factorial of a number is a repetitive activity, in that case, we can call

a function again and again, which calculates factorial.

def factorial(no):

 if no == 0:

 return 1

 else:

 return no * factorial(no - 1)

print("factorial of a number is:", factorial(8))

Output

factorial of a number is: 40320

The advantages of the recursive function are:

1. By using recursive, we can reduce the length of the code.

2. The readability of code improves due to code reduction.

3. Useful for solving a complex problem

150

The disadvantage of the recursive function:

1. The recursive function takes more memory and time for execution.

2. Debugging is not easy for the recursive function.

Python Anonymous/Lambda Function

Sometimes we need to declare a function without any name. The nameless property function

is called an anonymous function or lambda function.

The reason behind the using anonymous function is for instant use, that is, one-time usage.

Normal function is declared using the def function. Whereas the anonymous function is

declared using the lambda keyword.

A Python lambda function is a single expression. But, in a lambda body, we can expand with

expressions over multiple lines using parentheses or a multiline string.

ex : lambda n:n+n

Syntax of lambda function:

lambda: argument_list:expression

When we define a function using the lambda keyword, the code is very concise so that there is

more readability in the code. A lambda function can have any number of arguments but return

only one value after expression evaluation.

Let’s see an example to print even numbers without a lambda function and with

a lambda function. See the difference in line of code as well as readability of code.

Example 1: Program for even numbers without lambda function

def even_numbers(nums):

 even_list = []

 for n in nums:

 if n % 2 == 0:

 even_list.append(n)

 return even_list

num_list = [10, 5, 12, 78, 6, 1, 7, 9]

ans = even_numbers(num_list)

print("Even numbers are:", ans)

Output

Even numbers are: [10, 12, 78, 6]

151

Example 2: Program for even number with a lambda function

l = [10, 5, 12, 78, 6, 1, 7, 9]

even_nos = list(filter(lambda x: x % 2 == 0, l))

print("Even numbers are: ", even_nos)

Output

Even numbers are: [10, 12, 78, 6]

We are not required to write explicitly return statements in the lambda function because the

lambda internally returns expression value.

Lambda functions are more useful when we pass a function as an argument to another function.

We can also use the lambda function with built-in functions such as filter, map, reduce because

this function requires another function as an argument.

filter() function in Python

In Python, the filter() function is used to return the filtered value. We use this function to filter

values based on some conditions.

Syntax of filter() function:

filter(funtion, sequence)

where,

 function – Function argument is responsible for performing condition checking.

 sequence – Sequence argument can be anything like list, tuple, string

Example: lambda function with filter()

l = [-10, 5, 12, -78, 6, -1, -7, 9]

positive_nos = list(filter(lambda x: x > 0, l))

print("Positive numbers are: ", positive_nos)

Output

Positive numbers are: [5, 12, 6, 9]

Python Modules

In Python, modules refer to the Python file, which contains Python code like Python statements,

classes, functions, variables, etc. A file with Python code is defined with extension.py

For example: In Test.py, where the test is the module name.

In Python, large code is divided into small modules. The benefit of modules is, it provides a

way to share reusable functions.

152

Types of modules

In Python, there are two types of modules.

1. Built-in Modules

2. User-defined Modules

Built-in modules

Built-in modules come with default Python installation. One of Python’s most significant

advantages is its rich library support that contains lots of built-in modules. Hence, it provides

a lot of reusable code.

Some commonly used Python built-in modules are datetime, os, math, sys, random, etc.

User-defined modules

The modules which the user defines or create are called a user-defined module. We can create

our own module, which contains classes, functions, variables, etc., as per our requirements.

How to import modules?

In Python, the import statement is used to import the whole module. Also, we can import

specific classes and functions from a module.

import module name.

When the interpreter finds an import statement, it imports the module presented in a search

path. The module is loaded only once, even we import multiple times.

To import modules in Python, we use the Python import keyword. With the help of

the import keyword, both the built-in and user-defined modules are imported. Let’s see an

example of importing a math module.

import math

use math module functions

print(math.sqrt(5))

Output 2.23606797749979

Import multiple modules

If we want to use more than one module, then we can import multiple modules. This is the

simplest form of import statement that we already used in the above example.

Syntax of import statement:

import module1,module2,.. moduleN

Example

Import two modules

import math, random

153

print(math.factorial(5))

print(random.randint(10, 20))

Output

120

18

Import only specific classes or functions from a module

To import particular classes or functions, we can use the from...import statement. It is an

alternate way to import. Using this way, we can import individual attributes and methods

directly into the program.

In this way, we are not required to use the module name. See the following example.

Syntax of from...import statement:

from <module_name> import <name(s)>

Example

import only factorial function from math module

from math import factorial

print(factorial(5))

Output

120

Import with renaming a module

If we want to use the module with a different name, we can use from..import…as statement.

It is also possible to import a particular method and use that method with a different name. It

is called aliasing. Afterward, we can use that name in the entire program.

Syntax of from..import ..as keyword:

from <module_name> import <name> as <alternative_name>

Example 1: Import a module by renaming it

import random as rand

print(rand.randrange(10, 20, 2))

Output

16

Example 2: Import a method by renaming it

rename randint as random_number

from random import randint as random_number

154

Gives any random number from range(10, 50)

print(random_number(10, 50))

Output

32

Import all names

If we need to import all functions and attributes of a specific module, then instead of writing

all function names and attribute names, we can import all using an asterisk *.

Syntax of import * statement:

import *

Example

from math import *

print(pow(4,2))

print(factorial(5))

print(pi*3)

print(sqrt(100))

Output

16.0

120

9.42477796076938

10.0

Create Module

In Python, to create a module, write Python code in the file, and save that file with

the.py extension. Here our module is created.

Example

def my_func():

 print("Welcome to ICAR-IASRI")

Output

Welcome to ICAR-IASRI

Variables in Module

In Python, the module contains Python code like classes, functions, methods, but it also has

variables. A variable can list, tuple, dict, etc.

Let’s see this with an example:

155

First, create a Python module with the name test_module.py and write the below code in that

file.

Example

cities_list = ['Mumbai', 'Delhi', 'Bangalore', 'Karnataka', 'Hyderabad']

Now, create a Python file with the name test_file.py, write the below code and import the above

module test_module.py in that file. See the following code.

import test_module

access first city

city = test_module.cities_list[1]

print("Accessing 1st city:", city)

Get all cities

cities = test_module.cities_list

print("Accessing All cities :", cities)

When we execute this test_file.py, the variable of test_module.py is accessible using the

dot(.)operator.

Output

Accessing 1st city: Delhi

Accessing All cities : ['Mumbai', 'Delhi', 'Bangalore', 'Karnataka', 'Hyderabad']

File Handling in Python

File handling is an important part of any web application. Python too supports file handling

and allows users to handle files i.e., to read and write files, along with many other file handling

options, to operate on files. Python treats files differently as text or binary and this is important.

Each line of code includes a sequence of characters and they form a text file. Each line of a file

is terminated with a special character, called the EOL or End of Line characters like comma

{,} or newline character. It ends the current line and tells the interpreter a new one has begun.

Types of File

 Binary File: The binary files are used to store binary data such as images, video files,

audio files, etc.

 Text File: Text file usually we use to store character data. For example, test.txt

Binary files in Python

Most of the files that we see in our computer system are called binary files.

156

Example:

1. Document files: .pdf, .doc, .xls etc.

2. Image files: .png, .jpg, .gif, .bmp etc.

3. Video files: .mp4, .3gp, .mkv, .avi etc.

4. Audio files: .mp3, .wav, .mka, .aac etc.

5. Database files: .mdb, .accde, .frm, .sqlite etc.

6. Archive files: .zip, .rar, .iso, .7z etc.

7. Executable files: .exe, .dll, .class etc.

Text files in Python

Text files don’t have any specific encoding and it can be opened in normal text editor itself.

Example:

 Web standards: html, XML, CSS, JSON etc.

 Source code: c, app, js, py, java etc.

 Documents: txt, tex, RTF etc.

 Tabular data: csv, tsv etc.

 Configuration: ini, cfg, reg etc.

Python File Handling Operations

Most importantly there are 4 types of operations that can be handled by Python on files:

 Open

 Read

 Write

 Close

Other operations include:

 Rename

 Delete

Python Create and Open a File

Python has an in-built function called open() to open a file. It takes a minimum of one argument

as mentioned in the below syntax. The open method returns a file object which is used to access

the write, read and other in-built methods.

157

Here, file_name is the name of the file or the location of the file that you want to open, and

file_name should have the file extension included as well. Which means in test.txt – the term

test is the name of the file and .txt is the extension of the file.

The mode in the open function syntax will tell Python as what operation you want to do on a

file.

 ‘r’ – Read Mode: Read mode is used only to read data from the file.

 ‘w’ – Write Mode: This mode is used when you want to write data into the file or

modify it. Remember write mode overwrites the data present in the file.

 ‘a’ – Append Mode: Append mode is used to append data to the file. Remember data

will be appended at the end of the file pointer.

 ‘r+’ – Read or Write Mode: This mode is used when we want to write or read the data

from the same file.

 ‘a+’ – Append or Read Mode: This mode is used when we want to read data from the

file or append the data into the same file.

Note: The above-mentioned modes are for opening, reading or writing text files only.

While using binary files, we have to use the same modes with the letter ‘b’ at the end. So that

Python can understand that we are interacting with binary files.

 ‘wb’ – Open a file for write only mode in the binary format.

 ‘rb’ – Open a file for the read-only mode in the binary format.

 ‘ab’ – Open a file for appending only mode in the binary format.

 ‘rb+’ – Open a file for read and write only mode in the binary format.

 ‘ab+’ – Open a file for appending and read-only mode in the binary format.

Example 1:

fo=open("/Users/akshaydheeraj/Desktop/Python_Practice/test.txt","r+")

In the above example, we are opening the file named ‘test.txt’ present at the location

‘C:/Documents/Python/’ and we are opening the same file in a read-write mode which gives us

more flexibility.

Let’s create the file named test.txt with the sample text as

Hello everyone! Welcome to ICAR-IASRI

Good morning.

How are you?

Python Read From File

158

In order to read a file in python, we must open the file in read mode.

There are three ways in which we can read the files in python.

 read([n])

 readline([n])

 readlines()

Here, n is the number of bytes to be read.

Here we are opening the file test.txt in a read-only mode and are reading only the first 5

characters of the file using the fo.read(5) method.

print(fo.read(5))

Output:

Hello

Here we have not provided any argument inside the read() function. Hence it will read all the

content present inside the file.

print(fo.read())

Output:

Hello everyone! Welcome to ICAR-IASRI

Good morning.

How are you?

The readline() method reads the lines of the file from the beginning, i.e., if we use the

readline() method two times, then we can get the first two lines of the file.

print(fo.readline())

Output:

Hello everyone! Welcome to ICAR-IASRI

Python provides also the readlines() method which is used for the reading lines. It returns the

list of the lines till the end of file(EOF) is reached.

print(fo.readlines())

Output:

['Hello everyone! Welcome to ICAR-IASRI\n', 'Good morning.\n', 'How are you?\n', '\n']

Python Write to File

159

In order to write data into a file, we must open the file in write mode.

We need to be very careful while writing data into the file as it overwrites the content present

inside the file that you are writing, and all the previous data will be erased.

We have two methods for writing data into a file as shown below.

 write(string)

 writelines(list)

Example 1:

my_file = open(“C:/Documents/Python/test.txt”, “w”)

my_file.write(“Hello World”)

The above code writes the String ‘Hello World’ into the ‘test.txt’ file.

Example 2:

my_file = open(“C:/Documents/Python/test.txt”, “w”)

my_file.write(“Hello World\n”)

my_file.write(“Hello Python”)

The first line will be ‘Hello World’ and as we have mentioned \n character, the cursor will

move to the next line of the file and then write ‘Hello Python’.

Remember if we don’t mention \n character, then the data will be written continuously in the

text file like ‘Hello WorldHelloPython’

fruits = [“Apple\n”, “Orange\n”, “Grapes\n”, “Watermelon”]

my_file = open(“C:/Documents/Python/test.txt”, “w”)

my_file.writelines(fruits)

Python Append to File

To append data into a file we must open the file in ‘a+’ mode so that we will have access to

both the append as well as write modes.

Example 1:

my_file = open(“C:/Documents/Python/test.txt”, “a+”)

my_file.write (“Strawberry”)

The above code appends the string ‘Apple’ at the end of the ‘test.txt’ file.

Python Close File

In order to close a file, we must first open the file. In python, we have an in-built method called

close() to close the file which is opened.

160

Whenever you open a file, it is important to close it, especially, with write method. Because if

we don’t call the close function after the write method then whatever data we have written to a

file will not be saved into the file.

Example 1:

my_file = open(“C:/Documents/Python/test.txt”, “r”)

print(my_file.read())

my_file.close()

Python Rename or Delete File

Python provides us with an “os” module which has some in-built methods that would help us

in performing the file operations such as renaming and deleting the file.

In order to use this module, first of all, we need to import the “os” module in our program and

then call the related methods.

rename() method:

This rename() method accepts two arguments i.e. the current file name and the new file name.

Syntax:

os.rename(current_file_name, new_file_name)

Example 1:

import os

os.rename(“test.txt”, “test1.txt”)

Here ‘test.txt’ is the current file name and ‘test1.txt’ is the new file name.

You can specify the location as well as shown in the below example.

Example 2:

import os

os.rename(“C:/Documents/Python/test.txt”, “C:/Documents/Python/test1.txt”)

Deep Learning and Convolutional Neural Networks Architectures

Dr Sapna Nigam

ICAR – IASRI, New Delhi – 110012

1. Artificial intelligence

Artificial intelligence was born in the 1950s when a handful of pioneers from the nascent field

of computer science started asking whether computers could be made to “think”. A concise

definition of the field would be as follows: the effort to automate intellectual tasks normally

performed by humans. As such, AI is a general field that encompasses machine learning and

deep learning, but that also includes many more approaches that don’t involve any learning.

Early chess programs, for instance, only involved hardcoded rules crafted by programmers and

didn’t qualify as machine learning. For a fairly long time, many experts believed that human-

level artificial intelligence could be achieved by having programmers handcraft a sufficiently

large set of explicit rules for manipulating knowledge. This approach is known as symbolic AI,

and it was the dominant paradigm in AI from the 1950s to the late 1980s. It reached its peak

popularity during the expert systems boom of the 1980s. Although symbolic AI proved suitable

to solve well-defined, logical problems, such as playing chess, it turned out to be intractable to

figure out explicit rules for solving more complex, fuzzy problems, such as image

classification, speech recognition, and language translation. A new approach arose to take

symbolic AI’s place that is machine learning.

2. Machine learning

Machine learning arises from this question: could a computer go beyond “what we

know how to order it to perform” and learn on its own how to perform a specified task?

Could a computer surprise us? Rather than programmers crafting data-processing rules by

hand, could a computer automatically learn these rules by looking at data?

This question opens the door to a new programming paradigm. In classical programming, the

paradigm of symbolic AI, humans input rules (a program) and data to

be processed according to these rules, and outcome answers (Figure 1). With

machine learning, humans input data as well as the answers expected from the data,

and outcome of the rules. These rules can then be applied to new data to produce original

answers.

Figure 1: Machine learning new paradigm

A machine-learning system is trained rather than explicitly programmed. It’s presented

with many examples relevant to a task, and it finds statistical structure in these examples that

162

eventually allows the system to come up with rules for automating the task. Although machine

learning only started to flourish in the 1990s, it has quickly become the most popular and most

successful subfield of AI, a trend driven by the availability of faster hardware and larger

datasets. Machine learning is tightly related to mathematical statistics, but it differs from

statistics in several important ways. Unlike statistics, machine learning tends to deal with large,

complex datasets (such as a dataset of millions of images, each consisting of tens of thousands

of pixels) for which classical statistical analysis such as Bayesian analysis would be

impractical. As a result, machine learning, and especially deep learning, exhibits comparatively

little mathematical theory—maybe too little—and is engineering-oriented. It’s a hands-on

discipline in which ideas are proven empirically more often than theoretically.

3. Learning representations from data

Machine learning discovers rules to execute a data-processing task, giving examples of what’s

expected. So, to do machine learning, the following things are required:

 Input data points —For instance, if the task is speech recognition, these data points

could be sound files of people speaking. If the task is image tagging, they could be

pictures.

 Examples of the expected output —In a speech-recognition task, these could be human-

generated transcripts of sound files. In an image task, expected outputs could be tags

such as “dog,” “cat,” and so on.

 A way to measure whether the algorithm is doing a good job —This is necessary in

order to determine the distance between the algorithm’s current output and its expected

output. The measurement is used as a feedback signal to adjust the way the algorithm

works. This adjustment step is what we call learning.

A machine-learning model transforms its input data into meaningful outputs, a process that is

“learned” from exposure to known examples of inputs and outputs. Therefore, the central

problem in machine learning and deep learning is to meaningfully transform data : in other

words, to learn useful representations of the input data at hand—representations that get us

closer to the expected output.

4. The “deep” in deep learning

Deep learning is a specific subfield of machine learning: a new take on learning representations

from data that puts an emphasis on learning successive layers of increasingly

meaningful representations. The deep in deep learning isn’t a reference to any kind of

deeper understanding achieved by the approach; rather, it stands for this idea of successive

layers of representations. How many layers contribute to a model of the data is

called the depth of the model. Other appropriate names for the field could have been

layered representations learning and hierarchical representations learning. Modern deep

learning often involves tens or even hundreds of successive layers of representations—

and they’re all learned automatically from exposure to training data. Meanwhile,

other approaches to machine learning tend to focus on learning only one or two layers of

representations of the data; hence, they’re sometimes called shallow learning.

In deep learning, these layered representations are (almost always) learned via

models called neural networks, structured in literal layers stacked on top of each other.

The term neural network is a reference to neurobiology, but although some of the central

163

concepts in deep learning were developed in part by drawing inspiration from our

understanding of the brain, deep-learning models are not models of the brain.

There’s no evidence that the brain implements anything like the learning mechanisms used in

modern deep-learning models.

What do the representations learned by a deep-learning algorithm look like? Let’s

examine how a network several layers deep (Figure 2) transforms an image of a

digit in order to recognize what digit it is.

Figure 2: Digit Classification example

As you can see in Figure, the network transforms the digit image into representations that are

increasingly different from the original image and increasingly informative about the final

result. You can think of a deep network as a multistage information-distillation operation,

where information goes through successive filters and comes out increasingly purified (that is,

useful with regard to some task).

Figure 3: Deep representations learned by a digit classification model

So that’s what deep learning is, technically: a multistage way to learn data representations. It’s

a simple idea—but, as it turns out, very simple mechanisms, sufficiently scaled, can end up

looking like magic.

164

5. Understanding how deep learning works

The specification of what a layer does to its input data is stored in the layer’s weights, which

in essence are a bunch of numbers. Weights are also sometimes called the parameters of a layer.

In this context, learning means finding a set of values for the weights of all layers in a network,

such that the network will correctly map example inputs to their associated targets. But here’s

the thing: a deep neural network can contain tens of millions of parameters. Finding the correct

value for all of them may seem like a daunting task, especially given that modifying the value

of one parameter will affect the behaviour of all the others!

Figure 4: A neural network is parameterized by its weights

The loss function takes the prediction s of the network and the true target (what you wanted

the network to output) and computes a distance score, capturing how well the network has done

on this specific example (figure 5).

Figure 5: A loss function measures the quality of the network’s output

The fundamental trick in deep learning is to use this score as a feedback signal to adjust the

value of the weights a little, in a direction that will lower the loss score for the current example

This adjustment is the job of the optimizer, which implements what’s called the

165

Backpropagation algorithm: the central algorithm in deep learning. The next chapter explains

in more detail how backpropagation works.

Figure 6: The loss score is used as a feedback signal to adjust the weights

Initially, the weights of the network are assigned random values, so the network merely

implements a series of random transformations. Naturally, its output is far from what it should

ideally be, and the lo ss score is accordingly very high. But with every example the network

processes, the weights are adjusted a little in the correct direction, and the loss score decreases.

This is the training loop, which, repeated a sufficient number of times (typically tens of

iterations over thousands of examples), yields weight values that minimize the loss function.

A network with a minimal loss is one for which the outputs are as close as they can be to the

targets: a trained network. Once again, it’s a simple mechanism that, once scaled, ends up

looking like magic.

6. What deep learning has achieved so far

In particular, deep learning has achieved the following breakthroughs, all in historically

difficult areas of machine learning:

Near-human-level image classification

Near-human-level speech recognition

Near-human-level handwriting transcription

Improved machine translation

Improved text-to-speech conversion

Digital assistants such as Google Now and Amazon Alexa

Near-human-level autonomous driving

Improved ad targeting, as used by Google, Baidu, and Bing

Improved search results on the web

Ability to answer natural-language questions

Superhuman Go playing

7. What makes deep learning different

166

Deep learning, on the other hand, completely automates this step: with deep learning, you learn

all features in one pass rather than having to engineer them yourself. This has greatly simplified

machine-learning workflows, often replacing sophisticated multistage pipelines with a single,

simple, end-to-end deep-learning model.

In practice, there are fast-diminishing returns to successive applications of shallow-learning

methods, because the optimal first representation layer in a three-layer model isn’t the optimal

first layer in a one-layer or two-layer model. What is transformative about deep learning is that

it allows a model to learn all layers of representation jointly, at the same time, rather than in

succession (greedily, as it’s called). With joint feature learning, whenever the model adjusts

one of its internal features, all other features that depend on it automatically adapt to the change,

without requiring human intervention. Everything is supervised by a single feedback signal:

every change in the model serves the end goal. This is much more powerful than greedily

stacking shallow models because it allows for complex, abstract representations to be learned

by breaking them down into long series of intermediate spaces (layers); each space is only a

simple transformation away from the previous one.

These are the two essential characteristics of how deep learning learns from data:

the incremental, layer-by-layer way in which increasingly complex representations are

developed, and the fact that these intermediate incremental representations are learned jointly,

each layer being updated to follow both the representational needs of the layer above and the

needs of the layer below. Together, these two properties have made deep learning

vastly more successful than previous approaches to machine learning.

8. The limitations of deep learning

The space of applications that can be implemented with deep learning is nearly

infinite. And yet, many applications are completely out of reach for current deep--

learning techniques—even given vast amounts of human-annotated data. Say, for

instance, that you could assemble a data set of hundreds of thousands—even mil-

lions—of English-language descriptions of the features of a software product, written

by a product manager, as well as the corresponding source code developed by a team

of engineers to meet these requirements. Even with this data, you could not train a

deep-learning model to read a product description and generate the appropriate

codebase. That’s just one example among many. In general, anything that requires

reasoning—like programming or applying the scientific method—long-term planning, and

algorithmic data manipulation is out of reach for deep-learning models, no

matter how much data you throw at them. Even learning a sorting algorithm with a deep neural

network is tremendously difficult.

9. Convolutional Neural Networks Architectures

ImageNet is an image database organized according to the WordNet hierarchy (currently

only the nouns), in which each node of the hierarchy is depicted by hundreds and thousands

of images. The data is available for free to researchers for non-commercial use. The

ImageNet dataset contains 14,197,122 annotated images according to the WordNet

hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), a benchmark in image classification and object detection. The

ImageNet Large Scale Visual Recognition Challenge or ILSVRC for short is an annual

competition helped between 2010 and 2017 in which challenge tasks use subsets of the

http://www.image-net.org/challenges/LSVRC/

167

ImageNet dataset. The goal of the challenge was to both promote the development of better

computer vision techniques and to benchmark the state of the art. The annual challenge

focuses on multiple tasks for “image classification” which includes both assigning a class

label to an image based on the main object in the photograph and “object detection” which

involves localizing objects within the photograph. State-of-the-art accuracy has improved

significantly from ILSVRC2010 to ILSVRC2014, showcasing the massive progress that

has been made in large-scale object recognition over the past five years.

A Convolutional Neural Network (CNN, or ConvNet) are a special kind of multi-layer

neural networks, designed to recognize visual patterns directly from pixel images with

minimal pre-processing. It consist of following architectures:

a. LeNet-5 (1998)
LeNet is the first CNN architecture. It was developed in 1998 by Yann LeCun, Corinna Cortes,

and Christopher Burges for handwritten digit recognition problems. The model has five

convolution layers followed by two fully connected layers. LeNet was the beginning of CNNs

in deep learning for computer vision problems. However, LeNet could not train well due to the

vanishing gradients problem. To solve this issue, a shortcut connection layer known as max-

pooling is used between convolutional layers to reduce the spatial size of images which helps

prevent overfitting and allows CNNs to train more effectively. The ability to process higher

resolution images requires larger and more convolutional layers, so this technique is

constrained by the availability of computing resources. Convolutional layers use a subset of

the previous layer's channels for each filter to reduce computation and force a break of

symmetry in the network. The subsampling layers use a form of average pooling.

Figure 7: LeNet Architecture

168

b. AlexNet (2012)

AlexNet was designed by the SuperVision group in 2012 , consisting of Alex Krizhevsky,

Geoffrey Hinton, and Ilya Sutskever to compete in the ImageNet competition. The general

architecture is quite similar to LeNet-5, although this model is considerably larger. In

2012, AlexNet significantly outperformed all the prior competitors and won the challenge

by reducing the top-5 error from 26% to 15.3%. The Alexnet model has eight CNN layers

and three fully-connected layers. It was the first CNN model to have over 100 million

parameters with a 60MB training set, which is considered large for deep learning models

at that time. The network had a very similar architecture as LeNet by Yann LeCun et al but

was deeper, with more filters per layer, and with stacked convolutional layers. It consisted

11x11, 5x5,3x3, convolutions, max pooling, dropout, data augmentation, ReLU

activations, SGD with momentum. It attached ReLU activations after every convolutional

and fully-connected layer.

Figure 8: AlexNet Architecture

c. VGGNet (2014)

VGGNet is the CNN architecture that was developed by Karen Simonyan, Andrew

Zisserman et al. at Oxford University. VGGNet is a 16-layer CNN with up to 95 million

parameters and trained on over one billion images (1000 classes). It can take large input

images of 224 x 224-pixel size for which it has 4096 convolutional features. CNNs with

such large filters are expensive to train and require a lot of data, which is the main reason

why CNN architectures like GoogLeNet (AlexNet architecture) work better than VGGNet

for most image classification tasks where input images have a size between 100 x 100-pixel

and 350 x 350 pixels. Real-world applications / examples of VGGNet CNN architecture

include the ILSVRC 2014 classification task, which was also won by GoogleNet CNN

architecture. The VGG CNN model is computationally efficient and serves as a strong

baseline for many applications in computer vision due to its applicability on numerous tasks

including object detection. The runner-up at the ILSVRC 2014 competition is dubbed

VGGNet by the community and was developed by Simonyan and Zisserman. Its deep

feature representations are used across multiple neural network architectures like YOLO,

SSD etc. VGGNet consists of 16 convolutional layers and is very appealing because of its

very uniform architecture. Similar to AlexNet, only 3x3 convolutions, but lots of filters. It

is currently the most preferred choice in the community for extracting features from images.

169

The weight configuration of the VGGNet is publicly available and has been used in many

other applications and challenges as a baseline feature extractor.

Figure 9: VGGNet Architecture

d. GoogLeNet/Inception(2014)

The winner of the ILSVRC 2014 competition was GoogLeNet(a.k.a. Inception V1) from

Google. It achieved a top-5 error rate of 6.67%! This was very close to human level

performance which the organisers of the challenge were now forced to evaluate.The

network used a CNN inspired by LeNet but implemented a novel element which is dubbed

an inception module. Their architecture consisted of a 22 layer deep CNN but reduced the

number of parameters from 60 million (AlexNet) to 4 million. GoogLeNet is the CNN

architecture used by Google to win ILSVRC 2014 classification task. It was developed by

Jeff Dean, Christian Szegedy, Alexandro Szegedy et al.. It achieves deeper architecture by

employing a number of distinct techniques, including 1×1 convolution and global average

pooling. GoogleNet CNN architecture is computationally expensive. To reduce the

parameters that must be learned, it uses heavy unpooling layers on top of CNNs to remove

spatial redundancy during training and also features shortcut connections between the first

two convolutional layers before adding new filters in later CNN layers. Real-world

applications / examples of GoogLeNet CNN architecture include Street View House

Number (SVHN) digit recognition task, which is often used as a proxy for roadside object

detection.

Figure 10: GoogleNet Architecture

170

e. ResNet(2015)

ResNet is the CNN architecture that was developed by Kaiming He et al. to win the

ILSVRC 2015 classification task with a top-five error of only 15.43%.The network has 152

layers and over one million parameters, which is considered deep even for CNNs because

it would have taken more than 40 days on 32 GPUs to train the network on the ILSVRC

2015 dataset. CNNs are mostly used for image classification tasks with 1000 classes, but

ResNet proves that CNNs can also be used successfully to solve natural language

processing problems like sentence completion or machine comprehension. Real-life

applications / examples of ResNet CNN architecture include Microsoft’s machine

comprehension system, which has used CNNs to generate the answers for more than 100k

questions in over 20 categories. The CNN architecture ResNet is computationally efficient

and can be scaled up or down to match computational power of GPUs. In the residual

module, the identity mapping allows to reuse the activations of the previous layer until the

adjacent layers learns the weights. This identity mapping solves the problem of vanishing

gradient while training a very deep CNN network

Figure 11: ResNet Architecture

Transfer Learning

Transfer Learning is a machine learning method where we reuse a pre-trained model as the

starting point for a model on a new task. To put it simply—a model trained on one task is

repurposed on a second, related task as an optimization that allows rapid progress when

modeling the second task. By applying transfer learning to a new task, one can achieve

significantly higher performance than training with only a small amount of data. ImageNet,

AlexNet, and Inception are typical examples of models that have the basis of Transfer learning.

Two common approaches are as follows:

• Develop Model Approach

• Pre-trained Model Approach

Develop Model Approach

171

• Select Source Task. You must select a related predictive modelling problem with an

abundance of data where there is some relationship in the input data, output data, and/or

concepts learned during the mapping from input to output data.

• Develop Source Model. Next, you must develop a skilful model for this first task. The

model must be better than a naive model to ensure that some feature learning has been

performed.

• Reuse Model. The model fit on the source task can then be used as the starting point for

a model on the second task of interest. This may involve using all or parts of the model,

depending on the modelling technique used.

• Tune Model. Optionally, the model may need to be adapted or refined on the input-

output pair data available for the task of interest.

Pre-trained Model Approach

• Select Source Model. A pre-trained source model is chosen from available models.

Many research institutions release models on large and challenging datasets that may

be included in the pool of candidate models from which to choose from.

• Reuse Model. The model pre-trained model can then be used as the starting point for a

model on the second task of interest. This may involve using all or parts of the model,

depending on the modelling technique used.

• Tune Model. Optionally, the model may need to be adapted or refined on the input-

output pair data available for the task of interest.

References:

Chollet, F. (2021). Deep learning with Python. Simon and Schuster.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Gulli, A., & Pal, S. (2017). Deep learning with Keras. Packt Publishing Ltd.

Deep Learning using Python Software

Upendra Kumar Pradhan1 and Ritwika Das1

ICAR – IASRI, New Delhi – 110012

Email: upendra.pradhan@icar.gov.in

 Artificial Intelligence (AI)

The term Artificial Intelligence (AI) denotes the theory and development of computer

systems able to perform tasks normally requiring human intelligence, such as visual

perception, speech recognition, decision-making, and translation between languages.

Need for AI:

 To create expert systems which exhibit intelligent behaviour with the capability to

learn, demonstrate, explain and advice its users.

 To help machines in finding solutions to complex problems like humans do and

applying them as algorithms in a computer-friendly manner.

 Deep Learning (DL)

Now-a-days, Machine Learning (ML) is being applied in various sectors like, medical image

analysis, root zone soil moisture estimation, estimation of soil organic matter variability

with environmental factors, forecasting of commodity prices, rainfall, automated video

surveillance, online customer support, bioinformatics etc.

Machine Learning is a scientific discipline concerned with the design and development of

algorithms that allow computers to evolve behaviours based on empirical data. It is a subset

of AI which allows a machine to automatically learn from past data without programming

explicitly.

Deep Learning (DL) is a subfield of machine learning (Figure 1) which imitates the activities

of the human brain in data processing and creating patterns for use in decision making. Deep

learning model architectures are derived for ANNs where large number of hidden layers are

introduced each of them performing some specific functionalities.

 Advantages of Deep Learning Algorithms

 High volume data processing (Big data)

 Parallel computing

 High computation speed

 No need for feature selection separately

mailto:Ritwika.Das@icar.gov.in

173

Figure 1: AI vs ML vs DL

 Types of Deep Learning

Depending on the types of hidden layers and learning methods, various deep learning

models have been introduced (Figure 2). Some significant DL models are:

 Convolutional Neural Network (CNN)

 Recurrent Neural Network (RNN)

 Deep Belief Network (DBN)

 Autoencoder

 Generative Adversarial Network (GAN) etc.

Figure 2: Types of deep learning algorithms

In this lecture, CNN and RNN variant LSTM networks are demonstrated with an example

feature set AADP_PSSM derived from RNA binding protein sequences for classifying the

dataset into RNA binding and non-binding proteins.

174

 Python Programming Language

Python combines the power of general-purpose programming languages as well as the user-

friendliness of domain-specific scripting languages like MATLAB or R. It has numerous

modules for data loading, visualization, statistical analysis, natural language processing,

image processing etc. Advantages of Python programming languages are:

 Ability to interact directly with the code, using a terminal or other tools like the Jupyter

Notebook

 Open source, scalable

 Quick iteration and easy interaction

 Availability of an extensive range of machine learning libraries, such as Scikit-Learn,

TensorFlow, Keras, PyTorch etc.

 Easy to create complex graphical user interfaces (GUIs) and web applications

 Easy to integrate into existing software.

 Installation of Python

Python can be installed in two ways:

1. Install Python individually: Download Python source codes from the site

https://www.python.org/downloads/ based on the particular operation system

2. Install pre-packaged Python distribution: Anaconda (https://www.anaconda.com/

download/)

 Jupyter Notebook

It provides an interactive computational environment for developing Python based data

science applications. It facilitates the arrangement of codes in various blocks so that changes

in codes can be done easily and analysis results, viz., images, text, output etc. can be viewed

in a step-by-step manner.

 Installation of Jupyter Notebook

C:\>pip install notebook

 Running Jupyter Notebook

C:\>jupyter notebook

(A)

https://www.python.org/downloads/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/

175

(B)

Figure 3: (A) Running Jupyter Notebook in the local browser, (B) Starting a new

Python3 kernel

 Python libraries used for Deep Learning:

For developing machine learning models, following Python libraries are needed to be

installed:

 NumPy: It facilitates the data representation in the form of one-dimensional NumPy

arrays and also contains functionality for multidimensional arrays, high-level

mathematical functions such as linear algebra operations, Fourier transform,

pseudorandom number generators etc.

 Pandas: It represents the tabular data as DataFrame similar to R Dataframe and Excel

spreadsheet. The input data file of various formats like SQL, CSV, Excel etc. can be

loaded to the Python programme using Pandas. It also facilitates easy data manipulation,

SQL like queries and joins of tables.

 Keras: It is a high-level neural networks API written in Python. It includes functions

required for developing deep learning models such as fully connected (dense) layers,

convolutional layers, recurrent layers, normalization layers, etc. Keras uses different deep

learning frameworks as backend engines, such as TensorFlow, Theano, and Microsoft

Cognitive Toolkit (CNTK).

 Tensorflow: TensorFlow is a widely used Python package for deep learning and machine

learning tasks. It provides a framework to efficiently build, train, and deploy neural

network models. With its powerful tools and libraries, TensorFlow simplifies the

development of complex neural architectures while offering GPU acceleration for faster

computations.

 Scikit-Learn: Most important Python library for data science and machine learning. It

contains a wide range of machine learning algorithms like data preprocessing,

classification, clustering, regression, dimensionality reduction, model selection, model

evaluation etc.

 Matplotlib: This library is useful for making publication-quality visualizations such as

line charts, histograms, scatter plots, and so on.

176

Installation of these Python libraries can be done using the following code:

C:\>pip install <library_name>

 Dataset

Briefly write about AADP_PSSM feature set

1. Convolutional Neural Network (CNN)

Convolutional neural network is a deep learning algorithm whose function is similar to the

visual cortex of the human brain. CNN consists of an input layer, multiple hidden layers and

an output layer. The major architectural difference between CNN and ANN is that the former

consists of 4 different types of hidden layers (Figure 4) performing specific functions like

feature extraction, dimension reduction etc. before the final classification or prediction task.

The first hidden layer of CNN is convolution layer which contains various convolution

kernels or filters made up of matrices having sets of learnable parameters. CNN processes

the data in the hierarchical pattern by segregating the large input matrix into smaller

receptive fields by passing the convolution kernels in a sliding window approach. Dot

products are performed between the kernel and the corresponding receptive field to generate

the output feature map. Due to the selection of a specific kernel size, the chance of losing

border information gets increased which is mitigated by introducing zero padding.

Therefore, the dimension of the convolved feature map depends on the kernel size, stride

length (i.e., number of steps the sliding window takes at a time) as well as the type of

padding applied and it is calculated as,

 𝑤𝑜𝑢𝑡 =
𝑤 −𝑚 + 2𝑝

𝑠
+ 1 (1)

Where, 𝑤𝑜𝑢𝑡 × 𝑤𝑜𝑢𝑡 × 𝑛 = size of the convolved feature map, 𝑤 × 𝑤 × 1 = size of input

feature matrix, 𝑤 = length and width of input feature matrix, 𝑤𝑜𝑢𝑡 = length and width of the

output feature map, 𝑚 = convolution kernel size, 𝑝 = degree of padding, 𝑠 = stride length

and 𝑛 = number of convolution kernels.

Convolution operation helps to extract high level, informative features by successfully

capturing the special and temporal dependencies among the initial input features. After

convolution operation, an activation function is applied on the convolved features to

introduce non-linearity in the output feature map. Some widely used activation functions

include sigmoid, hyperbolic tangent, Rectified Linear Unit (ReLU) etc. among which ReLU

is highly preferred as it facilitates the training of the model without a significant reduction

in classification accuracy. Features are further passed on to the pooling layer which

facilitates the down-sampling of the feature matrix by aggregating the outputs from a set of

neurons into a single neuron and thereby retaining significantly useful information. There

are two most commonly used methods of pooling, viz., max pooling and average pooling.

Apart from dimension reduction, pooling layer also helps to reduce complexity, increase the

model efficiency and decrease the risk of overfitting. The final hidden layer of CNN is the

fully connected dense layer which is similar to the hidden layer of a feed forward neural

network where, neurons are fully connected with all the neurons of the preceding layer and

177

the succeeding output layer. The feature map generated from previous layers are flattened

before sending to this layer and the classification task is performed. Depending on the type

of task, i.e., regression or classification, specific loss functions such as mean absolute error

(MAE), mean square error (MSE), binary cross entropy, categorical cross-entropy etc. are

used and simultaneously optimizers like Root-mean-square prop (RMSprop), adaptive

moment estimation (Adam) etc. are introduced in the model for optimizing the network

parameters while minimizing the loss function in a short period of time. CNNs are

considered as the regularized version of traditional multilayer perceptron. It can perform

regularization in various ways such as penalization of parameters by weight decay during

model training, skipping inter-node connectivity by setting higher dropout rates etc. and

thereby can prevent the problem of model overfitting to some extent.

(A)

(B)

(C)

(D)

Figure 4: Hidden layers of CNN: (A) Convolution layer, (B) ReLU activation layer, (C)

Max Pooling layer and (D) Fully connected dense layer

For classification tasks, various CNN-based classification models have been developed

including LeNet-5, AlexNet, VGGNet, GoogLeNet, ResNet, MobileNet, EfficientNet etc.

which are highly efficient in processing pixel data, image recognition, image segmentation,

face and video recognition, natural language processing etc.

Steps of developing a CNN classifier for AADP_PSSM dataset are given below:

178

Step1: Load required libraries

Step 2: Load the data and save the features and labels in different variables

179

Step 3: Compute the number of distinct classes and features

Step 4: Define the CNN model architecture

Step 5: Define the model training-validation validation procedure and set

hyperparameters

180

Step 6: Train the model using training dataset and evaluate using validation set based

on 5 fold cross-validation

181

Step 7: Saving 5 fold evaluation results

Step 8: PR and ROC curve for a particular fold

182

Step 9: Save the trained model

183

2. Long Short Term Memory (LSTM)

Recurrent Neural Network (RNN) is a type of DL network used to capture temporal

dependency present in the sequencial data such as speech, text, time series, weather etc.

RNN is a class of artificial neural networks where connections between nodes form a

directed graph along a temporal sequence.

Figure 5: Architecture of RNN

In RNN, a sequence of input vectors x is processed by applying a recurrence formula at every

time step:

Figure 6: Input and output from RNN at time point t

LSTM is a variant of recurrent neural network (RNN) which is widely used for processing

sequential information and has high potential in handing long-range dependencies among

the input data. The traditional RNN model stores the information learnt from the previous

outputs in the memory and gives prediction for the new input data. However, it is not capable

of storing past information for a longer period of time to accurately predict the future

instance. Similarly, RNN does not possess a clearly defined control mechanism about the

amount of past information to be carried forward in the future. It is known as the “Vanishing-

Gradient” problem and LSTM model is primarily designed to handle this major drawback

by retaining and updating the important information over a long period of time. A LSTM

unit consists of a cell known as “cell state” which functions as a conveyor belt and carries

the information through the entire network. Apart from the cell, LSTM consists of three

184

gates (Figure 7), viz., input gate, forget gate and output gate, which regulates the flow of

information by deciding which information would be passed into the cell and which part

will be removed.

Figure 7: Gates of a LSTM unit

Input gate controls the inclusion of new information from the present input to the cell. It

takes both current input and output from the previous hidden state, multiplies them and

applies a sigmoid activation function to generate an output value between 0 and 1 which

indicates the amount of information to be passed on. The forget gate performs similar

functions as the input gate. However, it determines which information from the previous

cell state will be removed. The output gate regulates the output from the LSTM cell. At first,

it generates an activation value between 0 and 1 by employing a sigmoid activation function

over the multiplication between the current input and the output from the previous hidden

state. After that, the activation value is multiplied with the updates cell value to produce the

final output from the LSTM model, thus effectively capturing the long-range dependencies

of the periodical/ sequential data.

Due to the ability of handing sequential information, LSTM is highly efficient for speech

recognition, text translation, sentiment analysis, language modelling, time series data

analysis etc. LSTM models are also being widely used in various omics areas such as gene

expression analysis, protein structure prediction, epigenetics, metagenomics, metabolomics

etc.

Steps of developing a LSTM classifier for AADP_PSSM dataset are given below:

185

Step1: Load required libraries

Step 2: Load the data and save the features and labels in different variables

(Same as CNN)

Step 2: Load the data and save the features and labels in different variables

(Same as CNN)

Step 4: Define the LSTM model architecture

Step 5: Define the model training-validation validation procedure and set

hyperparameters

186

Step 6: Train the model using training dataset and evaluate using validation set based

on 5 fold cross-validation

(Same as CNN)

Some minor changes are needed in the respective code block.

Step 7: Saving 5 fold evaluation results

(Same as CNN)

Step 8: PR and ROC curve for a particular fold

(Same as CNN)

Step 9: Save the trained model

187

AI-DISC (Artificial Intelligence Based Disease Identification for

Crops): A case study in Data Science

Chandan Kumar Deb

ICAR-Indian Agricultural Statistics Research Institute, New Delhi - 110 012

chandan.deb@icar.gov.in

Introduction

Artificial Intelligence based Disease Identification System for Crops (AI-DISC) is a

compressive mobile application developed by Division of Computer Application,

ICAR-IASRI, New Delhi under NAHEP Component 2 project “Investment in ICAR

Leadership for Agriculture Higher Education under National Agricultural Higher

Education Project Component 2” and NASF Project “Artificial intelligence based

mobile app for identification and advisory of maize diseases and insect pests” in

collaboration of State Agricultural Universities for collecting, validating, annotating

the images and identification of disease and pest of different crops. AI-DISC app uses

National Image Base for Plant Protection (NIBPP) as its knowledge and image base

and is hosted on Krishi Megh cloud infrastructure. It has different modules and types

of users such as administrator, validator, domain experts and farmers. The AI-DISC

mobile application facilitates the image-based automated plant disease and pest

identification using artificial intelligence techniques. The AI-DISC mobile

application is aimed to provide real-time crop protection solutions to the farmers on

their fingertips.

Fig 1: Development journey of AI-DISC

188

Fig. 2: Software development lifecycle of AI-DISC

Modules in AI-DISC:

 Disease and Pest Identification Module (DPIM)

Disease and Pest Identification Module (DPIM) is the main module of AI-DISC

consisting of two manifestations: one for the farmers and another for the subject matter

specialists. The farmers can use this module for uploading disease or pest infected images

from the fields and easily diagnose the respective diseases or pests with the proper

management practices. On the other hand, subject matter specialists can use this module to

validate the developed models in the field conditions.

Fig 3. Disease Identification Module

 User Management Module (UMM)

User Management Module (UMM) has been created for providing access of the AI-

DISC mobile application to the different types and levels of users. There are six types of the

accounts: Farmer’s account, Administrator account, Validator account, Data Entry Operator

Account, Tester account and Domain Expert account. Each level and type of the users have a

distinct responsibility.

Simple Steps to Identify Crop Diseases

189

Download AI-DISC android mobile app

(https://play.google.com/store/apps/details?id=com.ai.ai_disc)

Upload images with visible symptoms

Get the disease and advisory automatically

Fig 4. Login module of AI-DISC

 Expert Forum for Farmers Module (EFFM)

Expert forum for Farmers Module (EFFM) has been developed for the real-time

communications between farmers and the domain experts. This module provides a discussion

forum to the farmers for discussing crop protection related issues with the image uploading

facility. It also has a video consultation interface with the domain experts for solutions.

 Dashboard

The Dashboard is being integrated with all types of account for visualizing the different

activities and data status in a holistic manner. The module is very useful for the managers and

policy maker.

https://play.google.com/store/apps/details?id=com.ai.ai_disc

190

Fig. 5: Reporting module of disease occurrence

User types in AI-DISC

Type 1: Farmer’s account

 Farmers can create their account by registering themselves in a fast and easy

way in the application. After registration, they can identify the diseases and pests by clicking

and uploading the image of infected crop. The AI-DISC app will provide the management

practices, cure and preventive measures for the identified disease/pest. In case, the app is not

able to automatically identify the disease/pest, the query will be routed to the domain experts

already registered in the app. The AI-DISC app also provide video consultation interface

through Expert Forum for Farmers that allows the farmers to interact with the domain experts

and to get the solutions regarding crop protection related issues faced by them.

Type 2: Administrator Account

The administrator account in AI-DISC is a top-level account consisting of master

privileges. New information regarding crops, diseases, pests can be incorporated through this

account. Other type of accounts can be created in AI-DISC through this admin account. A

dashboard facility is available in this account from which status of uploaded data can be

viewed.

Type 3: Validator Account:

Validator account is one of the most important account of AI-DISC application. This

account acts as a supervisor that can create the data entry operator account and can also

approve or disapprove the images uploaded in the mobile application.

Type 5: Tester Account

Tester account has been created for the subject matter specialists for validating the

developed models in the field conditions.

Type 6: Domain Expert Account

Domain Expert account has been created for the crop specific experts across the

country as the part of the Expert Forum for resolving farmers crop protection related issues

in the AI-DISC application.

191

Key Features of AI-DISC Mobile application

 Automatic image-based disease and pest identification module using deep learning

models

 Advisory for crop protection related issues from domain experts via Expert Forum.

 Uploading facility of diseases and pests infected images along with the accurate

metadata

 Annotation of the disease lesions and pests in the uploaded images

 Validation of the uploaded images by domain experts

 Efficient user management

Utility

 Automated image-based disease and pest identification in farmer’s field

 National level repository of disease and pest infected images of crops

 Advisory for crop protection related issues from domain experts via Expert Forum.

 Location wise hotspot mapping for the diseases and pests and other policy-making

tasks.

Case study in Data Science (Machine Learning)

Pankaj Das

Division of Sample Surveys

ICAR-Indian Agricultural Statistics Research Institute

Library avenue, Pusa, New Delhi-110012

Introduction:

Machine learning (ML) has found extensive applications across various industries, revolutionizing the

way organizations make decisions and optimize processes. This case study focuses on the

implementation of machine learning in the context of predictive maintenance, showcasing its impact on

efficiency, cost savings, and overall operational effectiveness.

Objective:

The primary objective of this case study is to demonstrate how machine learning algorithms can be

employed to predict equipment failures and schedule maintenance activities proactively.

Case study:

The study shows how ML models are applied to predict crop yield using their morphological characters.

The resin yield data were used for the demonstration of the study. Artificial neural network (ANN)

model was taken as a prediction model in the study. Height, canopy, tree girth, FD, FDI and CD were

the morphological characters that used as explanatory variables used for ANN model building. R code

was written to apply ANN model.

R Code:

Data should be incorporated in the R environment. There are many methods for uploading in R. here

one of the most common method i.e. file upload in .csv format was used. The syntax for this

#Dataset upload

Data =read.csv(file.choose())

#to see the variables

colnames(Data)

One of the crucial steps once the dataset has been uploaded is to check it. It is essential to determine

whether the dataset has any discrepancies. A visual method was employed to examine the dataset.

Descriptive statistics may also be employed in addition to this.

To plot data in boxplot

boxplot(Data)

#To see Descriptive statistics

Summary(Data)

193

Data splitting is used in the construction of machine learning models to generate prediction models and

assess the accuracy of the created models. Data are typically divided into training (80% of data) and

testing sets (20% data). Random splitting is used to remove any type of bias.

Random sampling for data splitting

samplesize = 0.80 * nrow(Data)

set.seed(100)

index = sample(seq_len (nrow (Data)), size = samplesize)

Creation of training and test set

datatrain = Data [index,]

datatest = Data [-index,]

Normalization in machine learning is essential to ensure that all input features are on a similar scale,

preventing algorithms from being influenced by the magnitude of individual features. It facilitates

efficient convergence in optimization algorithms, enhances model interpretability, and addresses issues

related to sensitivity, distance calculations, and numerical stability. Minimax normalization is used for

the study.

#Scale data for neural network (minimax normalization)

max = apply(Data, 2 , max)

min = apply(Data, 2 , min)

scaled = as.data.frame(scale(Data, center = min, scale = max - min))

An Artificial Neural Network (ANN) is a computational model inspired by the structure and functioning

of the human brain. Comprising interconnected nodes organized into layers, ANNs are designed for

machine learning tasks, learning patterns and relationships within data through iterative training

processes. Input nodes receive data, hidden layers process it through weighted connections, and output

nodes produce predictions or classifications. The network adjusts its weights during training, optimizing

its ability to generalize to new, unseen data. ANNs find extensive applications in tasks such as image

recognition, natural language processing, and predictive analytics. The neuralnet R package is used to

fit ANN models.

Fit neural network

#installation of R package

install.packages(“neuralnet”)

load library

library(neuralnet)

creating training and test set

trainNN = scaled[index ,]

testNN = scaled[-index ,]

194

In artificial neural network (ANN) model fitting, the process involves adjusting the weights and biases

of the network to minimize the difference between predicted and actual outputs. This optimization,

often achieved through techniques like backpropagation and gradient descent, aims to ensure the neural

network learns to accurately represent the underlying patterns in the training data. In present study, one

hidden layer with 3 hidden neurons is used for yield prediction. The resilient backpropagation is used

as training algorithm.

Model building of ANN

set.seed(100)

Model_NN = neuralnet(RESIN.Y ~ TREE.D+ HT + BH + NOB + AGE, trainNN, hidden =3,

linear.output = T)

plot neural network

plot(Model_NN)

To evaluate the effectiveness of the model, the weights between the inputs, hidden layers, and outputs

are generated once the neural network model's errors have been fitted.

#Generate the error of the neural network model, along with the weights between the inputs, hidden

layers, and outputs:

Model_NN $result.matrix[1,]

#Test the resulting output

temp_test <- subset(testNN, select = c("TREE.D","HT", "BH", "NOB", "AGE"))

head(temp_test)

nn.results <- compute(Model_NN, temp_test)

results <- data.frame(actual = testNN$RESIN.Y, prediction = nn.results$net.result)

#plot of results

plot(results)

cor(results)

#confussion matrix

roundedresults<-sapply(results,round, digits=0)

roundedresultsdf=data.frame(roundedresults)

attach(roundedresultsdf)

#prediction table

table(actual,prediction)

Checking in-sample performance evaluates how well a model fits the training data, assessing its ability

to capture patterns within the dataset. However, this alone does not indicate the model's ability to

generalize to new, unseen data. Out-sample performance, evaluated on a separate dataset, provides a

realistic measure of a model's generalization capability and helps detect issues such as overfitting. Both

195

in-sample and out-sample evaluations are essential for tuning hyperparameters during model

development and selecting the final model based on its real-world performance. The process ensures

that a model not only fits the training data effectively but also has the capacity to make accurate

predictions on novel instances. Ultimately, assessing both in-sample and out-sample performance is

fundamental for creating reliable and generalizable machine learning models. Root Mean Square Error

(RMSE), Mean absolute deviation (MAD), Mean absolute percent error (MAPE), Maximum error

(ME), Coefficient of determination (R square) and accuracy are computed both training and testing

dataset as performance measure.

Insample performance check

predict_trainNN = compute(Model_NN, trainNN[,c(1:5)])

predict_trainNN2 = (predict_trainNN$net.result * (max(Data$RESIN.Y) - min(Data$RESIN.Y))) +

min(data_sl$RESIN.Y)

#Accuracy measure in traindata

actual_train=datatrain$RESIN.Y

comparison2=data.frame(predict_trainNN2 ,actual_train)

deviation2=((actual_train-predict_trainNN2)/actual_train)

comparison2=data.frame(predict_trainNN2 ,actual_train,deviation2)

accuracy_train=1-abs(mean(deviation2))

accuracy_train

#Calculate Root Mean Square Error (RMSE)

RMSE.NN_Tr = (sum((datatrain$RESIN.Y - predict_trainNN2)^2) / nrow(datatrain)) ^ 0.5

Calculate Mean absolute deviation (MAD)

MAD_Tr=(sum(abs(datatrain$RESIN.Y-predict_trainNN2))/nrow(datatrain))

Calculate Mean absolute percent error (MAPE)

d3_tr=sum((abs(datatrain$RESIN.Y-predict_trainNN2))/datatrain$RESIN.Y)

MAPE_Tr=d3_tr/nrow(datatrain)

Calculate maximum error

ME_tr=max(abs(datatrain$RESIN.Y-predict_trainNN2))

Calculate coefficient of determintaion

RSquare.NTr=(cor(datatrain$RESIN.Y,predict_trainNN2))^2

#Print of the computed performance measures

print(paste(RMSE.NN_Tr,MAD_Tr,MAPE_Tr,ME_tr,RSquare.NTr,accuracy_train,NN3$result.matri

x[1,]))

196

Accuracy measure in test data

Prediction using neural network

predict_testNN3 = compute(Model_NN, testNN[,c(1:5)])

#Rescaling of output

predict_testNN3 = (predict_testNN3$net.result * (max(data_sl$RESIN.Y) - min(data_sl$RESIN.Y)))

+ min(data_sl$RESIN.Y)

#Accuracy calculation

actual1=datatest$RESIN.Y

comparison=data.frame(predict_testNN3,actual1)

deviation=((actual1-predict_testNN3)/actual1)

comparison2=data.frame(predict_testNN3,actual1,deviation)

accuracy=1-abs(mean(deviation))

#Plot the model

plot(Model_NN)

#Plot predict vs actual value of testing dataset

plot(datatest$RESIN.Y, predict_testNN3, col='blue', pch=16, ylab = "Predicted value of ANN model",

xlab = "real value of yield")

abline(0,1)

Calculate Root Mean Square Error (RMSE)

RMSE.NN3 = (sum((datatest$RESIN.Y - predict_testNN3)^2) / nrow(datatest)) ^ 0.5

#Mean absolute deviation (MAD)

MAD3=(sum(abs(datatest$RESIN.Y-predict_testNN3))/nrow(datatest))

#Mean absolute percent error (MAPE)

d3=sum((abs(datatest$RESIN.Y-predict_testNN3))/datatest$RESIN.Y)

MAPE3=d3/nrow(datatest)

#maximum error

ME3=max(abs(datatest$RESIN.Y-predict_testNN3))

#R square calculation

RSquare.N=(cor(datatest$RESIN.Y,predict_testNN3))^2

#Printing all calculated measures

print(paste(RMSE.NN3,MAD3,MAPE3,ME3,RSquare.N,accuracy,NN3$result.matrix[1,]))

Case study in Data Science (Statistical modelling)

Pankaj Das

Division of Sample Surveys

ICAR-Indian Agricultural Statistics Research Institute

Library avenue, Pusa, New Delhi-110012

Introduction:

Modeling in time series analysis involves applying mathematical and statistical techniques to

understand, represent, and forecast patterns in sequential data points over time. Here is a concise

overview of the key steps in time series modeling:

Data Collection:

 - Gather time-stamped data, where each observation is associated with a specific time or temporal

sequence. This can include financial data, stock prices, temperature readings, or any other information

that varies over time.

Exploratory Data Analysis (EDA):

 Conduct EDA to understand the underlying patterns, trends, and seasonality in the time series.

Visualization tools such as line plots, histograms, and autocorrelation functions can be used to gain

insights.

Data Preprocessing:

 Clean the data by handling missing values, outliers, and inconsistencies. Normalize or scale the data if

necessary. Create lag features or rolling averages to capture temporal dependencies and make the series

stationary if needed.

Model Selection:

 Choose an appropriate time series model based on the characteristics of the data. Common models

include:

 - Autoregressive Integrated Moving Average (ARIMA):Suitable for stationary time series data.

 - Seasonal Decomposition of Time Series (STL): Useful for decomposing time series into trend,

seasonal, and residual components.

 - Machine Learning Models (e.g., LSTM): Effective for capturing long-term dependencies in

sequential data.

Besides this, ARCH (Autoregressive Conditional Heteroskedasticity) and GARCH (Generalized

Autoregressive Conditional Heteroskedasticity) models are statistical models used to analyze and model

time series data with changing volatility over time. These models are particularly prevalent in financial

econometrics for modeling the volatility of financial returns.

 - ARCH Model (Autoregressive Conditional Heteroskedasticity): ARCH models are designed to

capture the changing variance (heteroskedasticity) in a time series.

198

 - GARCH Model (Generalized Autoregressive Conditional Heteroskedasticity): GARCH models

extend ARCH models by introducing lagged conditional variances in addition to lagged squared errors.

Training and Validation:

 - Split the dataset into training and validation sets. Train the selected model on the training set and

validate its performance on the validation set. Adjust model hyperparameters to optimize forecasting

accuracy.

Model Evaluation:

 - Assess the model's performance using metrics such as Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE), or others, depending on the specific characteristics and goals of the analysis.

Forecasting/Prediction:

 - Deploy the trained model to make future predictions. Forecasting can be done for a short-term

horizon or extended to longer-term predictions, depending on the objectives.

Interpretability and Insights:

 - Interpret the model's outputs to gain insights into the factors influencing the time series. Understand

how external factors, seasonality, or trends contribute to the forecasted values.

Challenges and Limitations:

 - Address challenges encountered during the modeling process, such as data quality issues,

unforeseen events, or limitations in long-term forecasting accuracy.

 Inshort the time series modeling process, emphasizing the success of the model in capturing and

forecasting patterns in the sequential data. Discuss the practical applications and potential avenues for

further improvement.

In the present case ARIMA and GARCH model was fitted in a time series data.

ARIMA model fitting:

Fitting an ARIMA (AutoRegressive Integrated Moving Average) model involves selecting appropriate

model parameters and estimating coefficients to capture the temporal patterns and dynamics of a time

series. Here are the key steps in ARIMA model fitting:

1. Stationarity Assessment:

 - Check if the time series is stationary. Stationarity is a key assumption for ARIMA models. If the

series is non-stationary, perform differencing until stationarity is achieved. The number of differences

needed is denoted as \(d\).

2. Identification of Model Order (p, d, q):

 - Autoregressive Order (p): Determine the number of autoregressive terms by examining the

autocorrelation function (ACF) plot. Significant lags suggest potential autoregressive terms.

 - Integrated Order (d): The differencing order determined in step 1.

 - Moving Average Order (q): Determine the number of moving average terms by examining the partial

autocorrelation function (PACF) plot. Significant lags suggest potential moving average terms.

199

3. Model Specification:

 - Define the ARIMA model based on the identified order (p, d, q). The notation is ARIMA(p, d, q).

4. Parameter Estimation:

 - Use methods like maximum likelihood estimation (MLE) to estimate the model parameters. This

involves finding the values for the autoregressive (AR) coefficients, differencing term, and moving

average (MA) coefficients that maximize the likelihood of observing the given data.

5. Model Diagnostic Checking:

 - Conduct diagnostic tests to assess the adequacy of the model. Common checks include examining

residuals for randomness, performing Ljung-Box tests for autocorrelation in residuals, and ensuring that

residuals are normally distributed.

6. Model Refinement:

 - If diagnostic checks reveal issues, consider refining the model. This may involve adjusting the model

order, incorporating exogenous variables, or exploring alternative models.

7. Forecasting:

 - Once the ARIMA model is fitted and validated, use it for forecasting future values. Forecast intervals

can be generated to indicate the uncertainty associated with predictions.

8. Model Evaluation:

 - Evaluate the performance of the ARIMA model using appropriate metrics such as Mean Absolute

Error (MAE), Root Mean Squared Error (RMSE), or others depending on the specific goals of the

analysis.

9. Iterative Process:

 - ARIMA model fitting can be an iterative process. If initial model results are not satisfactory, refine

the model based on diagnostic checks and re-estimate parameters.

10. Deployment and Monitoring:

 - Deploy the final ARIMA model for real-time forecasting if applicable. Implement monitoring to

track its performance over time and update the model as needed.

Fitting an ARIMA model requires a balance between capturing the temporal dynamics of the time series

and avoiding overfitting. Regular diagnostic checks and model refinement contribute to building a

robust and reliable ARIMA model for time series analysis and forecasting.

200

R code for ARIMA model

#Data generation

set.seed(250)

timeseries=arima.sim(list(order = c(1,1,2), ma=c(0.32,0.47), ar=0.8), n = 50)+20

plot(timeseries)

#Model Specification

acf(timeseries, lag.max=100)

pacf(timeseries, lag.max=100)

#Differencing of data to remove nonstationary behaviour

diff(timeseries)

plot(diff(timeseries),type="b")

#ARMA(0,2)

#ARMA(1,0)

#ARMA(1,2)

#That is, for the original time series, we propose three ARIMA models, ARIMA(0,1,2)

ARIMA(1,1,0) and ARMA(1,1,2)

#Model building and diagnostic

Partition into train and test

#The retain last 10 observaitons for forecasting and use first 40 observations to fit the models

train_series=timeseries[1:40]

test_series=timeseries[41:50]

make ARIMA models

arimaModel_1=arima(train_series, order=c(0,1,2))

arimaModel_2=arima(train_series, order=c(1,1,0))

arimaModel_3=arima(train_series, order=c(1,1,2))

look at the parameters

print(arimaModel_1);print(arimaModel_2);print(arimaModel_3)

#third is best based on likelihood and aic.

#Prediction

Predict1=predict(arimaModel_1, 10)

201

Preidict2=predict(arimaModel_2, 10)

predict3=predict(arimaModel_3, 10)

#For Forecasting

forecast1=forecast(arimaModel_1, 10)

forecast2=forecast(arimaModel_2, 10)

forecast3=forecast(arimaModel_3, 10)

#Plot of forecasted value

plot(forecast1, main = "Graph with forecasting",

 col.main = "darkgreen")

#Auto ARIMA model fitting

library(forecast)

fit3 = auto.arima(timeseries)

tsdiag(fit3)

GARCH model fitting

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model fitting involves preparing

time series data, identifying the model order, estimating parameters through techniques like maximum

likelihood estimation, and performing diagnostic checks. The model is then used for forecasting future

volatility, with evaluation metrics assessing its performance. Refinement may be needed based on

diagnostics, and the final GARCH model can be deployed for real-time forecasting, monitored, and

updated as necessary. GARCH models are especially valuable for capturing the changing nature of

volatility, commonly applied in financial time series analysis. The process of GARCH model fitting is

similar to ARIMA model.

Data Preparation:

Collect time series data, typically financial returns, where volatility varies over time.

Model Identification:

Examine the time series to identify the order of the GARCH model (p, q), where p is the order of

autoregressive conditional heteroskedasticity, and q is the order of moving average conditional

heteroskedasticity.

Parameter Estimation:

Use maximum likelihood estimation (MLE) or other optimization techniques to estimate the model

parameters, including the ARCH and GARCH coefficients.

Model Checking:

Perform diagnostic tests, such as the Ljung-Box test, to ensure that the model adequately captures

volatility patterns. Examine residuals for autocorrelation and heteroskedasticity.

202

Forecasting:

Utilize the fitted GARCH model for forecasting future volatility. Forecast intervals can be generated to

quantify the uncertainty associated with volatility predictions.

Model Evaluation:

Assess the performance of the GARCH model using appropriate metrics, such as Mean Absolute Error

(MAE) or Root Mean Squared Error (RMSE), to evaluate how well the model captures volatility

dynamics.

Refinement and Iteration:

If model diagnostics reveal issues, refine the model by adjusting the order or exploring alternative

specifications. Iteratively re-estimate parameters and check model adequacy.

Deployment and Monitoring:

Deploy the final GARCH model for real-time volatility forecasting if applicable. Implement monitoring

to track its performance over time and update the model as needed.

R Code for GARCH model fitting

###installing and loading multiple packages

list.packages<-c("fGarch", "PerformanceAnalytics","rugarch","tseries","xts","FinTS")

new.packages <- list.packages[!(list.packages %in% installed.packages()[,"Package"])]

if(length(new.packages)) install.packages(new.packages)

#Loading Packages

invisible(lapply(list.packages, require, character.only = TRUE))

library(quantmod)

library (rugarch)

library (xts)

library(PerformanceAnalytics)

library(tidyverse)

library (dplyr)

library (tseries)

#Data upload

df <- getSymbols("TSLA", from="2010-01-01", to="2020-12-31")

chartSeries(TSLA)

head(TSLA)

#for specific period

chartSeries(TSLA["2020-12"])

203

#the calculation of the daily return of the price and display it. For the return calculation we use the

function CalculateReturns().

return=CalculateReturns(TSLA$TSLA.Adjusted)

#remove first row as it doesnot contain any value

return=return[-c(1),]

#plot the result

plot(return)

chart.Histogram(return, methods = c('add.density','add.normal'),colorset = c('blue','red','black'))

legend("topright",legend = c("return","kernel","normal dist"),fill=c('blue','red','black'))

#volatility

sd(return)

sqrt(252)*sd(return["2020"])

chart.RollingPerformance(R=return["2010::2020"],width=22,FUN="sd.annualized",scale=252,main=

"TESLA's monthly volatility")

#Garch model fitting arma varaince (0,0)

garch_spec = ugarchspec(variance.model=list(model="sGARCH", garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)))

#fit model

fit_garch <- ugarchfit(data=return, spec = garch_spec, out.sample = 20)

fit_garch

204

Hands on Image Classification using Convolutional Neural Networks

Md. Ashraful Haque

Scientist, ICAR-IASRI

TensorFlow and tf.keras

import tensorflow as tf

Helper libraries

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.keras import utils

from sklearn.metrics import classification_report, confusion_matrix

This practical uses the Fashion MNIST dataset which contains 70,000 grayscale images in 10

categories. The images show individual articles of clothing at low resolution (28 by 28 pixels),

as seen here:

Fashion MNIST is intended as a drop-in replacement for the classic MNIST dataset—often

used as the "Hello, World" of machine learning programs for computer vision. The MNIST

dataset contains images of handwritten digits (0, 1, 2, etc.) in a format identical to that of the

articles of clothing you'll use here.

https://colab.research.google.com/corgiredirector?site=http%3A%2F%2Fyann.lecun.com%2Fexdb%2Fmnist%2F
https://colab.research.google.com/corgiredirector?site=http%3A%2F%2Fyann.lecun.com%2Fexdb%2Fmnist%2F
https://github.com/zalandoresearch/fashion-mnist

205

This practical uses Fashion MNIST for variety, and because it's a slightly more challenging

problem than regular MNIST. Both datasets are relatively small and are used to verify that an

algorithm works as expected. They're good starting points to test and debug code.

Here, 60,000 images are used to train the network and 10,000 images to evaluate how

accurately the network learned to classify images. You can access the Fashion MNIST directly

from TensorFlow. Import and load the Fashion MNIST data directly from TensorFlow:

Loading the data

fashion_mnist = tf.keras.datasets.fashion_mnist

traning and testing dataset

(train_images, train_labels),(test_images, test_labels) =

fashion_mnist.load_data()

Explore the dataset

print(train_images.shape)

print(test_images.shape)

print(len(train_labels))

print(len(test_labels))

(60000, 28, 28)

(10000, 28, 28)

60000

10000

Loading the dataset returns four NumPy arrays:

 The train_images and train_labels arrays are the training set—the data the model

uses to learn.

 The model is tested against the test set, the test_images , and test_labels arrays.

The images are 28x28 NumPy arrays, with pixel values ranging from 0 to 255. The labels are

an array of integers, ranging from 0 to 9. These correspond to the class of clothing the image

represents:

Label Class

0 T-shirt/top

1 Trouser

2 Pullover

3 Dress

4 Coat

5 Sandal

6 Shirt

7 Sneaker

8 Bag

9 Ankle boot

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fwww.tensorflow.org%2Fapi_docs%2Fpython%2Ftf%2Fkeras%2Fdatasets%2Ffashion_mnist%2Fload_data
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fwww.tensorflow.org%2Fapi_docs%2Fpython%2Ftf%2Fkeras%2Fdatasets%2Ffashion_mnist%2Fload_data

206

Each image is mapped to a single label. Since the class names are not included with the

dataset, store them here to use later when we evaluate the model.

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',

'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

Preprocess the data:

The data must be pre-processed before training the network. If you inspect the first image in

the training set, you will see that the pixel values fall in the range of 0 to 255:

plotting single image

plt.figure()

plt.imshow(train_images[89])

plt.colorbar()

plt.grid(False)

plt.show()

To verify that the data is in the correct format and that you're ready to build and train the

network, let's display the first 25 images from the training set and display the class name below

each image.

plotting images along with respective classes

plt.figure(figsize=(10,10))

for i in range(25):

 plt.subplot(5,5,i+1)

 plt.xticks([])

 plt.yticks([])

 plt.grid(False)

 plt.imshow(train_images[i], cmap=plt.cm.binary)

 plt.xlabel(class_names[train_labels[i]])

 plt.show()

207

train_images.shape

(60000, 28, 28)

type(train_images)

numpy.ndarray

reshaping training and testing images

train_images =train_images.reshape((train_images.shape[0], 28, 28, 1))

test_images = test_images.reshape((test_images.shape[0], 28, 28, 1))

train_images = train_images.astype('float32')

test_images = test_images.astype('float32')

Explore the dataset

print(train_images.shape)

print(test_images.shape)

(60000, 28, 28, 1)

(10000, 28, 28, 1)

reshaping training and testing lables

208

n_classes=10 train_labels = utils.to_categorical(train_labels, n_classes)

test_labels = utils.to_categorical(test_labels, n_classes)

print(len(train_labels)) print(len(test_labels))

60000
10000

Scale these values to a range of 0 to 1 before feeding them to the Convolutional neural network

model. To do so, divide the values by 255. It's important that the training set and the testing

set be preprocessed in the same way:

rescaling

train_images = train_images / 255.0

test_images = test_images / 255.0

Build the model:

Building the neural network requires configuring the layers of the model, then compiling the

model.

Set up the layers:

The basic building block of a neural network is the layer. Layers extract representations

from the data fed into them. Hopefully, these representations are meaningful for the problem

at hand.

Most of deep learning consists of chaining together simple layers. Most layers, such as

tf.keras.layers.Dense , have parameters that are learned during training.

define Model

model = tf.keras.Sequential()

add layers

model.add(tf.keras.layers.Conv2D(32, kernel_size=(3,3),strides=(1, 1),padding='valid',

activation='relu', input_shape=(28,28, 1)))

model.add(tf.keras.layers.MaxPool2D(pool_size=(1,1)))

model.add(tf.keras.layers.Conv2D(64, kernel_size=(3,3),strides=(1, 1),padding='valid',

activation='relu')) model.add(tf.keras.layers.MaxPool2D(pool_size=(1,1)))

model.add(tf.keras.layers.Conv2D(64, kernel_size=(3,3),strides=(1,

1),padding='valid', activation='relu'))

model.add(tf.keras.layers.MaxPool2D(pool_size=(2,2)))

model.add(tf.keras.layers.Conv2D(128, kernel_size=(3,3),strides=(1,

1),padding='valid', activation='relu')) #

model.add(tf.keras.layers.MaxPool2D(pool_size=(1,1)))

model.add(tf.keras.layers.Flatten())

model.add(tf.keras.layers.Dense(100, activation='relu'))

model.add(tf.keras.layers.Dropout(0.4))

model.add(tf.keras.layers.Dense(128, activation='relu'))

model.add(tf.keras.layers.Dropout(0.4))

model.add(tf.keras.layers.Dense(10,

activation='softmax'))

Compile the model model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fwww.tensorflow.org%2Fapi_docs%2Fpython%2Ftf%2Fkeras%2Flayers

209

check model Summary model.summary()

__

__
 Layer (type) Output Shape Param #

===

=== conv2d_3 (Conv2D) (None, 26, 26, 32) 320

max_pooling2d_3(MaxPooling2D) (None, 26, 26, 32) 0

conv2d_4 (Conv2D) (None, 24, 24, 64) 18496

max_pooling2d_4 (MaxPoolin (None, 24, 24, 64) 0

flatten_2 (Flatten) (None, 36864) 0

dense_4 (Dense) (None, 100) 3686500

dropout_1 (Dropout) (None, 100) 0

dense_5 (Dense) (None, 10) 1010

===

==
Total params: 37,06,326 (14.14 MB)

Trainable params: 37,06,326 (14.14 MB)

Non-trainable params: 0 (0.00 Byte)

fit the model and start training

history = model.fit(train_images,

 train_labels,

 epochs=5,

 validation_data = (test_images, test_labels))

Epoch 1/5

1875/1875 [==============================] - 12s 6ms/step - loss: 0.4366 -

accuracy: 0.8461 - val_loss: 0.3080 - val_accuracy: 0.88

Epoch 2/5

1875/1875 [==============================] - 10s 6ms/step - loss: 0.2876 -

accuracy: 0.8950 - val_loss: 0.2633 - val_accuracy: 0.90

Epoch 3/5

1875/1875 [==============================] - 10s 5ms/step - loss: 0.2308 -

accuracy: 0.9151 - val_loss: 0.2392 - val_accuracy: 0.91

Epoch 4/5

1875/1875 [==============================] - 11s 6ms/step - loss: 0.1881 -

accuracy: 0.9295 - val_loss: 0.2344 - val_accuracy: 0.91

Epoch 5/5

1875/1875 [==============================] - 10s 5ms/step - loss: 0.1572 -

accuracy: 0.9414 - val_loss: 0.2396 - val_accuracy: 0.92

history variables

train_acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

train_loss = history.history['loss']

val_loss = history.history['val_loss']

EPOCHS = range(1,len(train_acc)+1

ploting graphs for viewing the training and testing performance

accuracies

plt.figure()

210

plt.plot(EPOCHS, train_acc, 'b', color= 'green', label ='training

Accuracy')

plt.plot(EPOCHS, val_acc, 'b', color ='red', label ='validation Accuracy')

plt.title('training and validation accuracy')

plt.legend()

plt.show()

loss

plt.figure()

plt.plot(EPOCHS, train_loss, 'b', color= 'green', label ='training Loss')

plt.plot(EPOCHS, val_loss, 'b', color ='red', label ='validation Loss')

plt.title('training and validation loss')

plt.legend()

plt.show()

211

model evaluation

test_loss, test_acc = model.evaluate(test_images, test_labels)

print('\nTest accuracy:', test_acc)

print('\nTest loss:', test_loss)

313/313 [==============================] - 2s 6ms/step - loss: 0.4466 -

accuracy: 0.8663

Test accuracy: 0.8662999868392944

Test loss: 0.44664257764816284

measuring the model performace

test_pred = model.predict(test_images)

test_labels = np.argmax(test_labels, axis=1)

test_pred = np.argmax(test_pred, axis=1)

confusion matrix

print(confusion_matrix(test_labels, test_pred))

313/313 [==============================] - 1s 3ms/step

[[886 3 12 18 2 2 67 0 10 0]

 [7 963 1 20 2 0 5 0 2 0]

 [25 1 857 7 48 0 62 0 0 0]

 [58 5 10 852 27 0 41 2 3 2]

 [6 3 213 36 660 0 81 0 1 0]

 [0 0 0 0 0 944 0 24 0 32]

 [195 2 99 23 52 1 608 0 20 0]

 [0 0 0 0 0 13 0 949 0 38]

 [7 1 1 4 2 1 10 6 966 2]

 [0 0 0 0 0 0 0 22 0 978]]

classification report

print('Classification Report')

print(classification_report(test_labels, test_pred,

target_names=class_names))

Classification Report

 precision recall f1-score support

 T-shirt/top 0.75 0.89 0.81 1000

 Trouser 0.98 0.96 0.97 1000

 Pullover 0.72 0.86 0.78 1000

 Dress 0.89 0.85 0.87 1000

 Coat 0.83 0.66 0.74 1000

 Sandal 0.98 0.94 0.96 1000

 Shirt 0.70 0.61 0.65 1000

 Sneaker 0.95 0.95 0.95 1000

 Bag 0.96 0.97 0.97 1000

 Ankle boot 0.93 0.98 0.95 1000

 accuracy 0.87 10000

 macro avg 0.87 0.87 0.86 10000

weighted avg 0.87 0.87 0.86 10000

	coverpage.pdf
	1_Linear Reg
	2_Multivariate
	3_Linear programming
	4_Madhu_python_final
	5_Python Libraries _lecture_note
	6_SVM (Lecture Note)
	7_Anshu Mam_Artificial Neural Network Fundamentals
	8_ Lecture note on function,module, file handling
	9_Deep_Learning lecture notes
	10_Deep Learning using Python
	11_Lecture_note_Case Study_(AI-DISC)
	12_Case study in data science (ML)
	13_Case study in data science (Statistical Modelling)
	14_Image Classification using CNN-word

