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ABSTRACT 

 The treatment combinations of the ordinary full factorial need not be the best for fitting the relationship. Therefore, it is 

necessary to search for a suitable set of treatment combinations by using which a stipulated relation can be fitted. The special 

class of designed experiments for fitting the response surfaces is called response surface design. Response surface designs 

have wide applications in agricultural, biological and industrial experiments. Similar to factorial experiments, experimental 

units in response surface design may exhibit trend over space or time. Among response surface designs, Box-Behnken 

design has been studied and linear trend-free design has been obtained. The developed algorithm helps the experimenters 

who are conducting quantitative factors using response surface designs. There may be a trend in the experimental material 

and hence we need trend-free design. It provides a complete solution in the sense that it is capable of generating the trend 

free Box-Behnken design. Trend-free designs are quite useful for such experimental situations. But the construction for such 

design is not easily available. It is, therefore, required to give easy method of construction, possibly computer aided for the 

construction of these designs. Thus algorithms have been developed to generate complete factorial experiments each at two 

levels with any number of factors k ( ≥ 4) that are linear trend-free for main effects using the criterion of component-wise 

product. 

Key Words: Response surface designs, linear trend-free designs, orthogonal polynomials, run orders, systematic designs 

 

1. Introduction 
 

Data from experiments with levels or level 

combinations of one or more factors as treatments are 

normally investigated to compare level effects of the 

factors and their interactions. Though such 

investigations are useful to have objective assessment 

of the effect of levels tried in the experiment, this 

seems to have inadequate in nature. The analysis as 

such does not give any information regarding the 

possible effects of the intervening levels of the 

factors or their combinations, i.e. one is not able to 

interpolate the responses at the treatment 

combinations not tried in the experiment. In such 

cases, it is more realistic and informative to carry out 

investigations to determine and quantify the 

relationship between the values of one or more 

measurable response variable (s) and the setting of a 

group of experimental factors presumed to affect the 

response (s) and to find the settings of the 

experimental factors that produce the best value or 

the best set of values of the response(s). Thus if all 

the factors are quantitative in nature, it is proper to 

think the response as a function of the factor levels 

and data from quantitative factorial experiments can 

be used to fit the response surfaces over the region of 

interest. Response surfaces besides inferring about 

the twin purposes can provide information about the 

rate of change of a response variable. They can also 

indicate the interactions among the quantitative 

treatment factors. The special class of designed 

experiments for fitting the response surfaces is called 

response surface design. Response surface designs 

have wide applications in agricultural, biological and 

industrial experiments. Similar to factorial 

experiments, experimental units in response surface 

 

design may exhibit trend over space or time. Neyman 

(1929) was the first to realize this problem, Cox 

(1951, 1952) also illustrated and discussed about this. 

More recently, these ideas were pursued by Bradley 

and Yeh (1980) for block designs and Cheng and 

Jacroux (1988) for factorial experiments. 

Hinkelmann and Jo (1998) first studied linear trend-

free response surface designs. They gave a procedure 

to construct the linear trend free response surface 

designs by using the solutions of some of the 

equations. A class of three-level incomplete factorial 

designs for the estimation of the parameters in second 

order model was developed by Box and Behnken 

(1960). By definition, a three-level incomplete 

factorial design is a subset of the factorial 

combinations from a 
k3  factorial design. The Box-

Behnken designs are formed by combining two-level 

factorial designs with balanced incomplete block 

(BIB) designs or partially balanced incomplete block 

(PBIB) designs in a particular manner. From the last 

three decades computer aided 

search/generation/construction has emerged as a 

powerful tool to obtain designs for various 

experimental settings. Some of the studies on 

computer aided designs are available in the literature. 

Nguyen (1983) developed algorithms for construction 

of D-optimal fractional factorial plans and MS-

optimal incomplete block designs. Studies on 

development of computer aided search/ construction 

of optimal block designs and minimal connected D-

optimal designs, optimal/ nearly optimal balanced 

treatment incomplete block designs, designs for 

making treatment-treatment and treatment-control 

comparisons and designs for dependent observations, 

correlated error structure for nested block designs are 

available in literature (Dwivedi (1997), Rathore  
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(2004), Rathore et al. (2004), Satpati (2006), Satpati 

et al. (2006)).  No work seems to be available on 

computer aided generation on trend-free factorial 

experiments. In this study attempt has been made to 

develop the algorithm to generate computer aided 

complete factorial experiments and that of 

confounded factorial experiments that are linear 

trend-free for main effects and identification of two 

and three factor interactions that are linear trend-free/ 

nearly linear trend-free in the obtained designs. The 

working of the algorithms has been illustrated by 

suitable examples.  
 

A binary incomplete block design with v treatments, b 

blocks, r replications and k units per block.  

Let )( ijn=N  (i = 1, 2, …, v ; j = 1, 2, ..., b) denotes 

the incidence matrix of the BIB or PBIB design. 

Then we prepare a 
k2  factorial (where k is the same 

as the block size for the given incomplete block 

design). The levels of k factors are denoted by -1 and 

+1, representing the low and high level respectively. 

We write the factorial experiment in standard 

(lexicographic order). We then write k column 

vectors iA  (i = 1, 2, …, k) of length 
k2  with 

elements ±1 such that the elements of iA  add to zero 

and iA ’s are orthogonal to each other.  

Box and Behnken (1960) took the iA  to be the 

columns of the 
k2 factorial treatment combinations; 

other choices are also possible, such as the coefficient 

vector for the main effects or interactions for the 
k2 factorial. Finally, we substitute in each row of 

N′  the first 1 by 1A , the second 1 by 2A  and so 

on the k
th

 1 by kA  and all 0’s by 0 column vectors of 

size 
k2 . Same procedure will be repeated in all rows 

of the transpose of incidence matrix i.e. N′ . So there 

are total b
k2  rows, represents a run for the v input 

variables each taking the values -1, 0, +1. To this 

obtained design we add 0n  central runs (0, 0, …, 0) 

to obtain a final design, 0n  should be odd in 

numbers. The obtained design is Box-Behnken 

designs with n = b
k2 + 0n  runs. 

 

2. Linear trend-free response surface designs  

The treatments combinations obtained in above 

section are applied randomly to the n experimental 

units. If it is, however, known or assumed that the 

experimental units or the experimental material 

applied to the experimental units exhibit a linear 

trend over time or space, then it will be more 

advantageous to choose a systematic arrangement of  
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For the second order response surface design we 

consider the model  

eT��X�X�X1y 2211 +++++β=
330

    (1) 
 

where,  y is 1×n  vector of observations, X
1
 is 

vn ×  matrix of linear effects, X
2
 is vn ×  matrix of 

quadratic effects, X
3
 is 2/)1( −× vvn  matrix of 

cross products. 0�  is the  vector of a constant, 1� is 

the vector of linear  coefficients, 2� is the vector of 

quadratic coefficients, 3�  is the vector of cross 

product second order coefficient, T is the vector of 

coefficients of the first-degree orthogonal polynomial 

of order n, � is a regression coefficient, and e is a n × 

1 vector of independently and identically (normally) 

distributed errors. Based on a more general definition 

of linear trend-free, the design under model (1) is 

linear trend free if the conditions 0TX i = ( i = 1, 2, 

3) are satisfied.  
 

We have a Box-Behnken design with n = 

b
k2 + 0n runs, n0 should be odd in numbers. We can 

write T as 

�
	



�
�

 −
−

−
−−+

−
−

−
−=′

2

1n
1,

2

1n
,2,1,0,1,2,,1,

2

1n
,

2

1n
��T    (2)    

T is anti-symmetric. 

3. Algorithm to generate the linear trend-free 

Box- Behnken design 

For k � 4, the construction 
I.1 Take a binary incomplete block (BIB) design 

with v treatments, b blocks, r replications and k 

units per block. This is stored in a kb × array. 

I.2 
Prepare a 

k2 factorial (where k is the same as 

the block size for the BIB design) in standard 

order as follows: 

I.3 Let we have k factors. 

I.4 The number of treatment combinations 

is
k

n 2= . Here n is an even number. 

I.5 Make an array of dimension kn × . 

I.6 The first column of the array of size n is made 

such that the entries are -1 and +1 alternatively. 

I.7 The second column of the array is made such 

that the entries are in combinations of two i.e. -

1, -1 and +1, +1 alternatively, and so on. 

I.8 The kth column is made such that the first n/2 

places are filled with -1 and last n/2 places with 

+1. 

I.9 In the obtained kn×  matrix, each column is 

the coefficient of contrast of main effects 

separately and thus k columns are coefficients 

of contrast of k factors. 

I.10 The n rows of kn×  matrix represent  

 
n )2( k=  treatment combinations in  
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lexicographic order. 

I.11 The levels of k factors are denoted by -1 and 

+1, representing the low and high level 

respectively 

I.12 From the above mentioned binary incomplete 

block (BIB) design in kb ×  array, prepare 

incidence matrix in bv ×  array, by reading 

the values block wise and putting the value 1 in 

the columns which are the treatment number. 

The obtained matrix is incidence matrix N of 

binary incomplete block (BIB) design.  

N = (nij) (i = 1, 2, . . ., v ; j = 1, 2, . . ., b). 

I.13 Take transpose of the incidence matrix N, i.e. 

N′ . The matrix N′  has as many ones in each 

row as number of columns in 
k2  factorial 

experiment. 

I.14 Let iA , i = 1, 2, …, k represent the coefficient 

of the contrasts of the k main effects. Perform 

component-wise product within each of b 

blocks separately. Similar to complete factorial 

experiment, there are two procedures of 

component-wise product. The procedure of 

component-wise product is as given below: 

For k is odd: When k is odd the new 

coefficient vectors for main effects will be 

obtained as: 

Let Ai be the new coefficient vectors for main 

effects for ith factor, ki ,,2,1 �=  

kiii AAAAAF �������� 1121 +−= ; 

)1,,2,1( −= ki �  

and   
kk AAAF ���� 21= ; )( ki =  

For k is even: When k is even the new 

coefficient vectors for main effects will be 

obtained as: 

kiii AAAAAF �������� 1121 +−=

; ),,2,1( ki �= . 

I.15 Replace each 1 in N′ by obtained iF , such 

that first 1 by first column )( 1F second 1 by 

second column )( 2F  and so on, 0’s by a 

columns of zero. 

I.16 This choice of iF  ensures that they are 

independent in the sense that no iF  is the 

generalized interaction of jF ’s. Also, since k � 

4 it follows that each iF  corresponds to at least 

a three factor interaction. 

I.17 
The treatment combinations of the 

k2  factorial 

in standard order and the result of Cheng and 

Jacroux(1988) this implies that each half is iF , 

U

iF  and 
L

iF for ( )ki ,,2,1 �=  orthogonal 

to a linear trend. Say this design is D* 

I.18 We can write D* as:  

( )′= b21 BBBD* ,,, � , Each iB   
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( )bi ,,2,1 �=  

contains KFFF ,,, 21 � exactly once, and v – 

k  0’s 

Partition of each Bi is done into an upper part 

and a lower part as: 

 

 

 

Arrange all 
U

iB in 1P and 
L

iB in 2P  and P0 

is the central runs (in odd number) partitioning 

the design matrix D*, we obtain a design matrix 

D as 

 

 

 

 

Where P1 represents the first b
12 −k

 runs, P2 

represents the last b
12 −k

 runs and P0 is the 

central runs (in odd number).  

I.19 The resultant design is trend free Box-Behnken 

Design. Theses designs are linear trend-free for 

all effects: (a) linear effects are linear trend-free 

as shown in Section 2.4, hence, 0TX1 =′ . (b) 

iiF  and iiF ′  are symmetric, so 0TX =′
2  

and 0TX =′
3  implies that quadratic and 

cross product effects are also linear trend-free. 

the n run, such that the resulting design is a linear 

trend-free design. 

 

4. Working of algorithm 

      For k � 4 Let we have a BIB design with 

parameters (v  = 5, b = 5, r = 4, k = 4, � = 3). 
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Generate incidence matrix from step I.4 
 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

11110

11101

11011

10111

01111

N

 

 

generate its transpose matrix N 
 

Since block size is 4 hence 
42 factorial design in 

lexicographic order is generated using steps I.1 to II.8 

under Section 2.3 
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    Design – 1 

Treatment 

combinations aA  bA  cA  dA  

(1) -1 -1 -1 -1 

a 1 -1 -1 -1 

b -1 1 -1 -1 

ab 1 1 -1 -1 

c -1 -1 1 -1 

ac 1 -1 1 -1 

bc -1 1 1 -1 

abc 1 1 1 -1 

d -1 -1 -1 1 

ad 1 -1 -1 1 

bd -1 1 -1 1 

abd 1 1 -1 1 

cd -1 -1 1 1 

acd 1 -1 1 1 

bcd -1 1 1 1 

abcd 1 1 1 1 
 

Using computer program of algorithm-II of section 

II, perform the component-wise product of iA
 
and 

jA  by using step II.4. Here k (= 4) is even so A has 

been generated using component-wise product of 

cb AA , and 
dA as:  

cbba AAAA ��= . 

bA

 

cA

 

dA
 dcb AAA ��

 

 
aA

 

-1 -1 -1 -1*-1*-1 = -1 

-1 -1 -1 -1*-1*-1 = -1 

1 -1 -1 1*-1*-1 = 1 

1 -1 -1 1*-1*-1 = 1 

-1 1 -1 -1*1*-1 = 1 

-1 1 -1 -1*1*-1 = 1 

1 1 -1 1*1*-1 = -1 

1 1 -1 1*1*-1 = -1 

-1 -1 1 -1*-1*1 = 1 

-1 -1 1 -1*-1*1 = 1 

1 -1 1 1*-1*1 = -1 

1 -1 1 1*-1*1 = -1 

-1 1 1 -1*1*1 = -1 

-1 1 1 -1*1*1 = -1 

1 1 1 1*1*1 = 1 

1 1 1 1*1*1 = 1 

 

Further B, C and D are generated using the formula:    

kiii AAAAAF �������� 1121 +−= ; 

,,,( cbai = and d). Thus we get the Design-2 

 Design-2 
Treatment 

combinations 

A 

( aF ) 

B 

( bF ) 

C 

( cF ) 

D 

( dF ) 

(1) -1 -1 -1 -1 

bcd -1 1 1 1 

acd 1 -1 1 1 

ab 1 1 -1 -1 

abd 1 1 -1 1 

ac 1 -1 1 -1 

bc -1 1 1 -1 

d -1 -1 -1 1 
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abc 1 1 1 -1 

ad 1 -1 -1 1 

bd -1 1 -1 1 

c -1 -1 1 -1 

cd -1 -1 1 1 

b -1 1 -1 -1 

a 1 -1 -1 -1 

abcd 1 1 1 1 

 

Substituting each column of factorial experiment in 

transpose incidence matrix, we get the Box Behnken 

design in five factors each at three levels 
 

 

A B C D E 

-1  -1  -1  -1   0 

-1   1   1   1   0 

1  -1   1   1   0 

1   1  -1  -1   0 

1   1  -1   1   0 

1  -1   1  -1   0 

-1   1   1  -1   0 

-1  -1  -1   1   0 

1   1   1  -1   0 

1  -1  -1   1   0 

-1   1  -1   1   0 

-1  -1   1  -1   0 

-1  -1   1   1   0 

-1   1  -1  -1   0 

1  -1  -1  -1   0 

1   1   1   1   0 

-1  -1  -1   0  -1 

-1   1   1   0   1 

1  -1   1   0   1 

1   1  -1   0  -1 

1   1  -1   0   1 

1  -1   1   0  -1 

-1   1   1   0  -1 

-1  -1  -1   0   1 

1   1   1   0  -1 

1  -1  -1   0   1 

-1   1  -1   0   1 

-1  -1   1   0  -1 

-1  -1   1   0   1 

-1   1  -1   0  -1 

1  -1  -1   0  -1 

1   1   1   0   1 

-1  -1   0  -1  -1 

-1   1   0   1   1 

1  -1   0   1   1 

A B C D E 

1   1   0   1  -1 

1  -1   0  -1   1 

-1   1   0  -1   1 

-1  -1   0   1  -1 

-1  -1   0   1   1 

-1   1   0  -1  -1 

1  -1   0  -1  -1 

1   1   0   1   1 

-1   0  -1  -1  -1 

-1   0   1   1   1 

1   0  -1   1   1 

1   0   1  -1  -1 

1   0   1  -1   1 

1   0  -1   1  -1 

-1   0   1   1  -1 

-1   0  -1  -1   1 

1   0   1   1  -1 

1   0  -1  -1   1 

-1   0   1  -1   1 

-1   0  -1   1  -1 

-1   0  -1   1   1 

-1   0   1  -1  -1 

1   0  -1  -1  -1 

1   0   1   1   1 

0  -1  -1  -1  -1 

0  -1   1   1   1 

0   1  -1   1   1 

0   1   1  -1  -1 

0   1   1  -1   1 

0   1  -1   1  -1 

0  -1   1   1  -1 

0  -1  -1  -1   1 

0   1   1   1  -1 

0   1  -1  -1   1 

0  -1   1  -1   1 
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1   1   0  -1  -1 

1   1   0  -1   1 

1  -1   0   1  -1 

-1   1   0   1  -1 

-1  -1   0  -1   1 
 

 

 

    

0  -1  -1   1  -1 

0  -1  -1   1   1 

0  -1   1  -1  -1 

0   1  -1  -1  -1 

0   1   1   1   1 
 

We can write D* as:  

 

 

Each iB ( )edcbai ,,,,=  contains 

dba FFF ,, � exactly once, and one column of 

zero. 

 

Now partition of each Bi is done into an upper part 

and a lower part as: 

 

 

 

Rearranging and partitioning the design matrix D*, 

we obtain a design matrix D as 

 

 

 

 

where P1 represents the first 40 runs, P2 represents the 

last 40 runs and P0 has one central runs. Thus the 

obtained Box-Behnken design is linear trend-free for 

all linear effects, quadratic effects and cross products. 
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A B C D E 

1 -1 -1 -1 0 

-1 1 1 1 0 

1 -1 1 1 0 

1 1 -1 -1 0 

1 1 -1 1 0 

1 -1 1 -1 0 

-1 1 1 -1 0 

-1 -1 -1 1 0 

-1 -1 -1 0 -1 

-1 1 1 0 1 

1 -1 1 0 1 

1 1 -1 0 -1 

1 1 -1 0 1 

1 -1 1 0 -1 

-1 1 1 0 -1 

-1 -1 -1 0 1 

-1 -1 0 -1 -1 

-1 1 0 1 1 

1 -1 0 1 1 

1 1 0 -1 -1 

1 1 0 -1 1 
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1 -1 0 -1 -1 

1 1 0 1 1 

1 1 1 0 -1 
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-1 1 -1 0 -1 

1 -1 -1 0 -1 

1 1 1 0 1 

1 1 1 -1 0 

1 -1 -1 1 0 

-1 1 -1 1 0 

-1 -1 1 -1 0 

-1 -1 1 1 0 

-1 1 -1 -1 0 

1 -1 -1 -1 0 

1 1 1 1 0 
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