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Abstract
With the establishment of human civilization, wild plant species were domesticated and cultivated at their centres of origin 
and further disseminated in different parts of the world. While being grown in the wild and on farms, innumerable mutations 
occurred over years creating new variations in their genome. Today’s improved crop plants are the result of years of artificial 
selection for a few of those mutations, many times coupled with deliberate selection for desirable recombinants that origi-
nated in nature or developed through targeted breeding. Artificial phenotypic selection leaves footprints in the genome of 
crop species. Over the last three decades, researchers have identified numerous genes and causal mutations associated with 
domestication events, leading to a better understanding of how our forefathers and foremothers tinkered with plant develop-
ment to meet their food and fodder needs. Our ability to script complex genetic information through efficient genome editing 
tools has enabled us to take a great leap forward to accelerate crop domestication. In this review, we have discussed how 
genome editing tools facilitate the domestication of wild and semi-domesticated species, the prerequisites for performing 
editing in wild genomes, and the potential future target loci for installing domestication syndrome rapidly in wild plant spe-
cies. Genome editing technologies could help us bring wild and partially domesticated crop plants to mainstream agriculture 
to sustainably meet our current and future needs.

Keywords  De novo domestication · CRISPR-Cas · Artificial selection · Domestication genes · Wild species · Crop wild 
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Abbreviations
CRISPR	� Clustered Regularly Interspaced Short Palin-

dromic Repeats
Cas	� CRISPR-associated protein
DSB	� Double-strand break
HDR	� Homology-directed repair
CBEs	� Cytosine base editors

ABEs	� Adenine base editors
CGBEs	� C-to-G base editors
sgRNA	� Single guide RNA
PE	� Prime editing
SNPs	� Single nucleotide polymorphisms

Introduction

Our ancestors started a true revolution around 12,000 years 
ago through a societal transformation from being hunter-
gatherers to farmers. They transformed many wild plant 
species into domesticated crop plants to best fit their needs. 
The first evidence of human-aided domestication of a large 
number of species was recorded in the ‘fertile crescent’ 
(present-day Iraq, Syria, Lebanon, Palestine, Israel, Jordan, 
Egypt, and a portion of Iran and Turkey) approximately 
10,000–12,000 years ago. Several traits that are accumulated 
in domesticated crop plants are widely known as ‘domesti-
cation syndrome’. This syndrome can clearly distinguish a 
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modern crop from its wild progenitor (Hammer 1984). For 
example, food crop plants accrued characteristics like larger 
sink or grains, more determinate growth, increased apical 
dominance, loss of seed-dormancy and -shattering, more 
synchronized flowering, and modified photoperiod sensi-
tivity compared to their progenitor (Doebley et al. 2006).

These predominantly productivity-oriented domestica-
tion efforts resulted in a severe loss of genetic diversity for 
other traits. Compared to neutral genes (i.e., genes that do 
not contribute to desirable phenotype), genes that influence 
favoured phenotype have undergone a more drastic loss of 
diversity since plant species harbouring desired alleles were 
only selected to raise the next generation. As a result, other 
alleles were lost from the population (Doebley et al. 2006). 
This allele loss has increased the vulnerability of our modern 
crop plants to abiotic and biotic stresses. Further, these mod-
ern high-yielding crop plants require more irrigation and 
fertilizers for desirable harvest, and agrochemicals for con-
trolling diseases and pests. It has been estimated that about 
30,000 plant species are edible and modern human cultivates 
only 150 species. Surprisingly, 70% of human calorie needs 
are fulfilled by only 15 crop plants, and 95% of the world’s 
calories come from only 30 species (Fernie and Yan 2019). 
Hence, the lion’s share of the edible species are left from uti-
lization and can be brought into mainstream agriculture  by 
modifying them for desirable characteristics. For example, 
Ammophila arenaria, commonly known as European beach-
grass, can tolerate a high level of drought, cold, and salinity. 
However, A. arenaria has slender seeds;upon modification, 
it could be used as a cereal crop (Zhang et al. 2020).

The evidence discussed above shows that crop domes-
tication has been crucial to the flourishing human popula-
tion. However, it has also caused a massive loss of plant 
genetic diversity. In the wake of climate change and rising 
food demand, harnessing those lost diversities could play a 
significant role in global food security and sustainable agri-
culture. Furthermore, many wild and semi-domesticated 
plant species possess important traits desirable in a chang-
ing climate. Therefore, understanding the genetics of crop 
domestication and speeding up the process of domestication 
could help solve many problems in modern agriculture.

The natural process of domestication of wild species takes 
an extremely long time. For example, the domestication of 
modern-day maize from its wild ancestor, teosinte, took 
almost 9000 years. Genes that are identified to be associated 
with initial domestication are known as domestication genes, 
while genes that are associated with the subsequent spread 
and adaptation of domesticated/semi-domesticated crop 
plants to different local environments are called diversifica-
tion genes (Meyer and Purugganan 2013). Many domestica-
tion traits have been reported to have arisen by disruption of 
gene function. Therefore, the availability of genome editing 
technologies gives us great hope to accelerate domestication. 

The remarkable recent advancement in genome editing tech-
nologies, especially CRISPR (Clustered Regularly Inter-
spaced Short Palindromic Repeats)-Cas (CRISPR-associated 
protein), enables precise genome manipulation. CRISPR-
Cas is a powerful genome editing technology that gave rise 
to diverse molecular tools to precisely modify targeted DNA 
sequences and regulate the expression of genes (Molla et al. 
2020a). Overall, these tools, briefly described below, have 
tremendous potential in facilitating a rapid understanding 
of the genetics of crop domestication and eventually assist-
ing the neo-domestication of wild and semi-domesticated 
species.

Inducing genetic variation by using 
CRISPR‑Cas tools

Faster domestication by genome editing can be achieved 
with CRISPR-Cas tools. Conventional CRISPR-Cas tools 
can perform targeted gene knock-out with high precision. 
This system comprises two components, a single guide 
RNA (sgRNA) and a Cas9 nuclease protein. A sgRNA is 
designed to harbour a complementary sequence to the tar-
get DNA. The sgRNA guides Cas9 to make a double-strand 
break (DSB) at the target locus. During DSB repair, cellular 
machinery introduces small indels (insertions or deletions) 
at the breaking point, which frequently cause frameshift 
mutation, resulting in disruption of gene function. These 
tools are also suitable for knocking out multiple genes at 
once by simply constructing multiple sgRNAs. The tech-
nology has rapidly progressed beyond knocking out a gene 
through targeted DSB. For more precise sequence change, 
cytosine- and adenine-base editors (CBEs and ABEs) have 
been developed to perform targeted C-to-T and A-to-G con-
version, respectively in the genome (Komor et al. 2016; 
Nishida et al. 2016; Gaudelli et al. 2018). More information 
on base editing technology and its applications is given in 
a comprehensive review (Molla and Yang 2019). The base 
editing toolbox has been recently enriched with C-to-G base 
editors (CGBEs) (reviewed by (Molla et al. 2020b).

Another breakthrough in precise genome editing is the 
development of prime editing (PE) tools (Anzalone et al. 
2019). PE can generate all kinds of base substitutions, 
small insertions and deletions, and the combination of 
those edits in the genome. Since the efficiency of PE 
is low in the plant system (Molla et al. 2021), signifi-
cant improvement of PE tools and strategies is required 
before its routine use in domestication and other crop 
improvement program. Cas-mediated DSB and additional 
donor template supply could achieve targeted insertion 
of partial or entire gene and/or regulatory sequences in 
plant genome through homology-directed repair (HDR). 
Although HDR has the potential to install any simple to 
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complex edits in the genome, it suffers from extremely 
low efficiency of success in higher plant species (Molla 
et al. 2022). Nevertheless, these genome editing tools 
could be deployed for functional validation of any 
putative genes responsible for crop domestication. On 
the other hand, domestication alleles could be rapidly 
installed in wild relatives using those genome editing 
tools.

Imitating crop domestication

Many wild relatives of crop plants and semi-domesticated 
or orphan crop plants have better adaptability to harsh 
climates, greater resistance to pathogens, and superior 
nutritional quality than modern cultivars. However, farm-
ers prefer to avoid cultivating them as they are beset with 
many undesirable characteristics. Crop domestication pro-
cess has gone through artificial selection as per human 
food and fodder needs, purposeful cultivation, fixation 
of favourable alleles, geographic expansion, and decisive 
breeding (Gaut et al. 2018). It took thousands of years to 
domesticate a crop through repeated selections to avoid 
the inheritance of undesirable traits of the wild progenitor.

Negative epistatic interaction of favourable genes may 
lead to unsuitable phenotypic effects (Soyk et al. 2017). 
The introgression of a desired gene can bring in unwanted 
genes through linkage drags. Refining the best alleles 
from the allelic variation in wild relatives and new muta-
tions are vital for domestication of some traits (Doebley 
et al. 2006). Next-generation high-throughput sequenc-
ing technology along with multi-omics strategies could 
help identify desirable genes/alleles in wild ancestors 
of crop plants. Identifying the mutation and searching 
orthologs of domestication genes contributing to a trait 
could help imitate crop domestication (Østerberg et al. 
2017). Through modern molecular biology and genetics 
studies, our knowledge of domestication genes is enrich-
ing day by day (Table 1). The knowledge could guide 
genome-editing-mediated modification of homologous 
genes in wild species to turn them into suitable crops. 
Most of the domestication genes identified with charac-
terized modifications could be targeted with the help of 
the latest genome editing tools. Since many domestication 
traits were identified as monogenic and involve loss-of-
function mutation (Meyer and Purugganan 2013), genome 
editing is an attractive way to generate mutants for those 
genes rapidly. Genome editing tools can aid in developing 
looked-for traits in traditional orphan crop plants and help 
solve food security issues in a short span of time (Fig. 1). 
CRISPR-Cas engineered domestication could aid greater 

nutritional benefits and better adaptation to climate change 
and various biotic stresses at an accelerated pace.

De novo domestication of wild species using 
genome editing

Traditional domestication took thousands of years, but with 
the advent of genome editing tools like CRISPR-Cas, domes-
tication of wild species can be achieved in a few generations. 
Two pioneering studies reported using CRISPR-Cas tools 
for  the domestication of the wild tomato, Solanum pimpinel-
lifolium (Li et al. 2018; Zsögön et al. 2018). This wild tomato 
is well known for its stress tolerance ability but is poor in fruit 
production and yield. These studies showed targeted disruption 
of known tomato domestication genes by multiplex CRISPR-
Cas editing. The genes: SELF-PRUNING (for determinate 
growth habit), FASCIATED, CLAVATA3, WUSCHEL and 
FRUIT WEIGHT 2.2 (for fruit size), SELF-PRUNING 5G 
(for floral induction), OVATE (for fruit shape), MULTIFLORA 
(for fruit number), LYCOPENE BETA CYCLASE (for lyco-
pene content), and GDP-L-GALACTOSE PHOSPHORYLASE 
(for vitamin C content) were edited in S. pimpinellifolium to 
accelerate the accumulation of traits suitable for cultivation (Li 
et al. 2018; Zsögön et al. 2018). Remarkably, the edited plants 
exhibited domesticated traits like compact plant architecture, 
increased fruit size and number, and improved lycopene and 
vitamin C content in fruits compared to the wild parents. Inter-
estingly, the CRISPR-Cas-assisted domesticated tomato plants 
retained the stress tolerance characteristics. Similarly, another 
group of scientists performed the improvement of domestica-
tion traits in groundcherry (Physalis pruinosa) by disrupting 
three genes (Lemmon et al. 2018). Oryza alta is an allotetra-
ploid wild rice with a CCDD genome, which possesses better 
biotic and abiotic stress resistance and higher biomass than 
the diploid rice, Oryza sativa (Wing et al. 2018). Polyploids 
have several advantages, like increased genome buffering, 
environmental fitness, and higher vigour. To domesticate O. 
alta, two genes OaqSH1 and OaAN-1 governing seed shatter-
ing and awn length characters were targeted with CRISPR-
Cas. As a result, edited plants showed reduced seed shattering 
and decreased awn length. Similarly, editing was achieved in 
genes for heading date (OaDTH7 and OaGhd7), plant height 
(OaSD1), and seed size (OaGS3) (Yu et al. 2021). Recent stud-
ies have used CRISPR-Cas technology to edit genes in the wild 
tetraploid Solanum peruvianum genome (Lin et al. 2022) and 
wild sea barley grass (Kuang et al. 2022). Figure 2 summarizes 
studies conducted to edit genomes of wild species.
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Table 1   An updated list of domestication genes in crop plants

Crop plants Domestication genes Traits Molecular function/
Types of protein

References

Rice
(Oryza sativa L.)

Hd3a Transition to flower-
ing under short-day 
conditions

Rice ortholog of Arabi-
dopsis FT (mobile 
flowering signal)

Yamamoto et al. (1998, 
Komiya et al. (2008)

Hd6 Delay of flowering under 
long-day conditions

CK2 alpha protein kinase 
subunit

Yamamoto et al. (2000)

LAX Lax panicle Transcription factor 
(bHLH)

Komatsu et al. (2003)
SPA
SD1 Controls plant height Gibberellin biosynthetic 

enzyme
Hedden( 2003),Asano 

et al. (2011)
Rc Seed colour Transcriptional regulator 

(bHLH)
Sweeney et al. (2006)

qSH1 Shattering, abscission 
layer formation

Transcriptional regulator 
(homeodomain)

Konishi et al. (2006)

Sh4/Sha1 Shattering, abscission 
layer formation

Transcriptional regulator 
(Myb3)

Li et al. (2006)

LAZY1(LA1) Tiller angle (Spreading) Polar auxin transport Li et al. (2007, Yoshihara 
and Iino (2007)

qSW5 Seed size and weight – Shomura et al. (2008)
GIF1 Grain filling Cell-wall invertase Wang et al. (2008)
PROG1/RPAD Plant/inflorescence archi-

tecture
Transcription factor Jin et al. (2008), Tan et al. 

(2008), Wu et al. (2018)
Ghd7 Heading date/Yield Transcription factor Xue et al. (2008)
HD1 Heading date Florigen Takahashi et al. (2009), 

Huang et al. (2012)
BADH2 Fragrant grains Enzyme that catalyzes the 

oxidation of 2-acetyl-1-
pyrroline(2AP)

Kovach et al. (2009), Shao 
et al. (2013)

GBSSI Waxy grains Starch biosynthetic 
enzyme

Jeon et al. (2010)

GS3 Grain size Protein with plant-specific 
organ size regulation 
(OSR) domain

Mao et al. (2010), Lacchini 
et al. (2020)

Sdr4 Seed dormancy Zinc finger protein Sugimoto et al. (2010)
AMT1;1 Ammonium transport Cis-regulatory element Ding et al. (2011)
Bh4 Seed colour Amino acid transporter Zhu et al. (2011), Vigueira 

et al. (2013)
Sh1 Seed shattering, abscission 

layer formation
Transcription factor
(YABBY-like)

Lin et al. (2012), Ishikawa 
et al. (2022)

LG1 Panicle shape: closed 
panicle

SBP-domain transcription 
factor

Ishii et al. (2013), Zhu et al. 
(2013)

An1 Awn morphology Basic helix-loop-helix 
protein

Luo et al. (2013)

Ehd4 Photoperiodic control of 
flowering

CCCH-type zinc finger 
protein

Gao et al. (2013)

LABA1/An2 Awn morphology: short, 
barbless awns

Cytokinin-activating 
Enzyme

Gu et al. (2015, Hua et al. 
(2015)

RAE2/GAD1 Awn morphology EPF/EPFL family Bessho-Uehara et al. (2016), 
Jin et al. (2016)

G Seed dormancy Protease Wang et al. (2018)
FZP More secondary branches 

per panicle
ERF transcription factor Huang et al. (2018)

GLA Grain length and awn EFPL protein Zhang et al. (2019b)
qSH3 Seed shattering, abscission 

layer formation
Transcription factor Ishikawa et al. (2022)
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Table 1   (continued)

Crop plants Domestication genes Traits Molecular function/
Types of protein

References

SPR3 Panicle shape: closed 
panicle

Cis-regulatory element Ishikawa et al. (2022)

EPFL2 Awn Development EFPL protein Xiong et al. (2022)
KRN2 Grain number WD40 proteins Chen et al. (2022)

Wheat
(Triticum aestivum L.)

Rht-1 Controls plant height Transcriptional regulator 
(SH2)

Peng et al. (1999)

Vrn1 Flowering (Vernalisation) Transcriptional regulator 
(MADS)

Yan et al. (2003)

Vrn2 Flowering (Vernalisation) Transcriptional regulator 
(ZCCT)

Yan et al. (2004)

WAP2(Q) Plant/inflorescence archi-
tecture

Transcriptional regulator 
(AP2)

Simons et al. (2006)

Btr1-A Shattering – Zhao et al. (2019)
LAX1 Grain threshes ability Basic helix loop helix tran-

scription factor
He et al. (2021)

Tomato
(Solanum lycopersicum L.)

FW2.2 Fruit size and weight Like human RAS Frary et al. (2000)
Style2.1 Style length Transcription factor Chen et al. (2007)
SUN Fruit size and weight – Xiao et al. (2008)
Fasciated Fruit size and weight Transcription factor

(YABBY like)
Cong et al. (2008)

LC Locule number Transcription factor Rodríguez et al. (2011)
OVATE Fruit neck morphology Transcription factor
G Seed dormancy Protease Wang et al. (2018)

Maize
(Zea mays L.)

Sos1 Inflorescence architecture Cis-regulatory element Doebley et al.( 1995)
Tb1 Apical dominance Transcriptional regulator 

(TCP)
Doebley et al. (1997), Clark 

et al. (2004)
BA1 Prevents axillary meristem 

development
Transcriptional regulator 

(bHLH)
Gallavotti et al. (2004)

Tga1 Seed casing Transcriptional regulator 
(SBP)

Wang et al. (2005), Guan 
et al. (2022)

Zagl1 Increase in female ear 
length

Transcription factor Weber et al. (2008)

PSY1 Yellow endosperm Cis-regulatory element Fu et al. (2010)
Ra1 Plant/inflorescence archi-

tecture
Transcriptional regulator 

(MYB)
Sigmon and Vollbrecht 

(2010)
Sh1-5.1-Sh1-5.2
Sh1-1

Shattering Transcription factor
(YABBY)

Lin et al. (2012)

MADS19(Tu) Ectopic expression in 
inflorescences, leads 
to kernels covered by 
glumes

Transcription factor Wingen et al. (2012)

PBF Altered prolamin protein 
levels in seeds

Transcription factor Lang et al. (2014)

SWEET4c Grain filling Hexose transporter Sosso et al. (2015)
CCT​ Earlier flowering Transcription factor

(CCT domain-containing)
Xu et al. (2017)

KRN2 Grain number WD40 proteins Chen et al. (2022)
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Table 1   (continued)

Crop plants Domestication genes Traits Molecular function/
Types of protein

References

Soybean
(Glycine max L.)

PhyA3 Early flowering Phytochrome protein Watanabe et al. (2009), 
Tsubokura et al. (2014)

Dt1 Growth habit Signalling protein Tian et al. (2010)
TFL1b Inflorescence architecture Transcription cofactor, 

PEN binding
Tian et al. (2010)

Dt2 Growth habit MADS-domain factor gene Ping et al. (2014)
qPDH1 Shattering Dirigent (DIR)-like protein Funatsuki et al. (2014)
SHAT1-5 Shattering NAC (NAM, ATAF1/2 

and CUC2) domain 
transcription factor

Dong et al. (2014)

Hs1-1 Hard seeds PhoD-like phosphatase Sun et al. (2015)
FT2a Early flowering PEBP family proteins Zhao et al. (2016)
J Early flowering LUX-like proteins Lu et al. (2017)
WRKY15a Seed size Transcription factor Gu et al. (2017)
B1 Seed coat shininess Transmembrane trans-

porter like protein
Zhang et al. (2018)

G Seed dormancy Protease Wang et al. (2018)
PRR3A and PRR3B Early flowering Transcription factors

(TPL-related)
Li et al. (2019), Wang et al. 

(2020a)
OLEO1 Seed oil content Putative OB protein Zhang et al. (2019a)
SWEET39/
SWEET10a

Seed oil content Sugar efflux transporter for
intercellular exchange

Miao et al. (2020), Wang 
et al. (2020b)

Tof12 Flowering Two-component response
regulator-like APRR3

Lu et al. (2020)

PDAT Seed oil content Acyl-lipid metabolism Liu et al. 2020)
Barley
(Hordeum vulgare L.)

Ppd-H1 Delayed flowering time Cis-regulatory element Turner et al. (2005)
Vrs1 Plant/inflorescence archi-

tecture
Transcription factor Komatsuda et al. (2007)

Nud1 Naked Grain Transcription factor
(ERF family)

Taketa et al. (2008)

GA20ox-2 Controls plant height Metabolic enzyme Jia et al. (2009)
INT-C (HvTB1) Plant/inflorescence archi-

tecture,
apical dominance

Transcription factor Ramsay et al. (2011)

Thresh-1 Free threshing – Schmalenbach et al. (2011)
Rrs2 Leaf scald resistance Cis-regulatory element Fu (2012)
APETALA2 Plant height Transcription factor 

(MADS-box)
Houston et al. (2013), Shoe-

smith et al. (2021)
Btr1
Btr2

Non-britle rachis – Pourkheirandish et al. 
(2015), Pourkheirandish 
and Komatsuda (2022)

Dep1 Plant height Heterotrimeric G protein 
γ-subunits

Wendt et al.( 2016)

ELF3 Earlier flowering time Transcription factor Prusty et al. (2021)
Sunflower
(Helianthus annus L.)

FT1 Flowering Transcription factor Blackman et al.( 2010)
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Table 1   (continued)

Crop plants Domestication genes Traits Molecular function/
Types of protein

References

Sorghum
(Sorghum bicolor L.)

Sh1 Shattering Transcription factor Lin et al. (2012)
GBSSI Glutinous seeds Starch biosynthetic 

enzyme
Kawahigashi et al. (2013)

qDor7 Seed dormancy Probable L-ascorbate 
peroxidase 4

Li et al.( 2016)

Awn1 Awn development Transcription factor with 
the ALOG domain

(Zhou et al. (2021)

GC1 Naked grain formation G protein γ subunit-like 
domain

Xie et al. (2022)

Foxtail millet
(Setaria italica L.)

GBSSI Glutinous grains Starch biosynthetic 
enzyme

Kawase et al. (2005)

Sh1 Seed shattering Transcription factor
(YABBY-like)

Liu et al. (2022)

Pearl millet
(Pennisetum glaucum L.)

Tb1 Plant/inflorescence archi-
tecture, apical Domi-
nance

Transcription factor Remigereau et al. (2011)

MADS11, Hd3a and GI Earlier flowering time Transcription factor Clotault et al. (2012), Mar-
iac et al. (2011)

Foxtail amaranth (Amaran-
thus caudatus L.)

GBSSI Waxy grains Starch biosynthetic 
enzyme

Park et al. (2012b)

Red Amaranth
(Amaranthus cruentus L.)

GBSSI Waxy grains Starch biosynthetic 
enzyme

Park et al. (2011)

Prince’s-feather (Amaran-
thus hypochondriacus L.)

GBSSI Waxy grains Starch biosynthetic 
enzyme

Park et al. (2012a)

Adlay millet (Coix 
lacryma-jobi L.)

GBSSI Waxy grains Starch biosynthetic 
enzyme

(Hachiken et al. (2012)

Turnip rape (Brassica 
rapa L.)

FLC1 Flowering time Transcription factor 
(MADS-box)

Yuan et al. (2009)

TT8 Seed coat colour Transcriptional regulator 
(bHLH)

Lou et al. (2020)

Common bean
(Phaseolus vulgaris L.)

TFL1y Determinate shoots with a 
terminal inflorescence,

Transcription cofactor, 
PEN binding

Kwak et al. (2012)

Rapeseed
(Brassica napus L.)

FLC.A10 Flowering time Cis-regulatory element Hou et al. (2012)
FLC.A3b Flowering time Cis-regulatory element Zou et al. (2012)

Wild cabbage
(Brassica oleracea L.)

CAL Inflorescence architecture Transcription factor Purugganan et al. (2000)
FLCs Variation in flowering time Transcription factor 

(MADS-box)
Okazaki et al. (2007)

Strawberry
(Fragaria sp.)

PINS Fruit flavour Functionally characterised 
enzymes

Aharoni et al. (2004)
NES1

Woodland strawberry
(Fragaria vesca L.)

KSN Continuous flowering Transcription factor Iwata et al. (2012)

Grapes
(Vitis vinifera L.)

MYBA1 Anthocyanin content vari-
ation

Transcription factor This et al. (2007), Carrasco 
et al. (2015)

MYBA2 Anthocyanin content vari-
ation

Transcription factor Carrasco et al. (2015)

Pea
(Pisum sativum L.)

TFL1c Variation in flowering time Signalling protein Foucher et al. (2003)
PPO Hilum pigmentation Biochemical enzyme Balarynová et al. (2022)

Pumpkin
(Cucurbita moschata)

YABBY1 Bushy habit and reduced 
stem length

Transcription factor Wang et al. (2022)
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Prerequisite for de novo domestication

Genome information

Selection is the key driving force of domestication and has 
resulted in molecular footprints in crop genomes (Meyer 
and Purugganan 2013). The availability of reliable infor-
mation on the identification and characterization of domes-
tication genes would enable us to choose genes that could 
be readily targeted with the available genome editing tools. 
Genome editing of wild species requires several resources, 
for instance, good quality genome information and func-
tional annotation of genes. The information is necessary 
to find proper orthologs of domestication genes that are to 
be targeted. For example, Yu et al. (2021) generated high 
quality genome assembly of allotetraploid wild rice (Oryza 
alta) prior to genome editing. Similarly, the genome of sea 
barley grass (Hordeum marinum), a wild Triticeae plant 
with a high level of waterlogging and salinity tolerance, 
was sequenced and annotated to carry out genome editing 
(Kuang et al. 2022). High-quality whole genome assemblies 

are available for eight wild Oryza species, Leersia perrieri 
(from Oryza Tribe), Solanum pennellii, Triticum turgidum, 
Prunus yedoensis, and Glycine soja (Bolger et al. 2014; Avni 
et al. 2017; Brozynska et al. 2017; Baek et al. 2018; Stein 
et al. 2018; Zhao et al. 2018; Xie et al. 2019; Shenton et al. 
2020), making them suitable candidates for de novo domes-
tication. With the rapid advancement and the availability of 
low-cost sequencing platforms, a platinum standard genome 
sequence for all ‘crop wild relatives’ would be available 
sooner or later (Mussurova et al. 2020).

Regeneration and transformation protocol

Another crucial factor is to have a well-established genetic 
transformation and regeneration system for the species 
that need to be modified. The major bottleneck to apply 
the rapid domestication approach is the unavailability of 
genetic transformation and regeneration systems for wild 
species. Most of them are recalcitrant to tissue culture and 
produce a small number of seeds. To standardize a genetic 
transformation system, the supply of an adequate number 

Fig. 1   Pipelines to utilize wild 
plant species and crop wild 
relatives for rapid domestication 
and crop improvement
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of seeds is also crucial. It is recommended to use a signifi-
cant number of lines as starting material in tissue culture 
because the responsiveness to tissue culture techniques can 
vary between different accessions of wild germplasm. In 
an earlier study, Yu et al. (2021) started with 28 tetraploid 
wild rice lines and selected one line for editing experiments 
based on the highest tissue culture responsiveness. Recently, 
three lines H508, H559, and H560 were taken for develop-
ing efficient Agrobacterium-mediated transformation method 
and genome editing system  in sea barley grass (Kuang 
et al. 2022). Since H559 showed the highest regeneration 

efficiency, it was selected for genetic transformation with 
CRISPR-Cas reagents.

Knowledge of gene regulatory elements

Once high-quality genome information and efficient 
regeneration and genetic transformation systems become 
available, it is straightforward to go for domestication 
using genome editing tools. However, it is also vital to 
have information on the level of functionality of gene 
regulatory elements (promoters and terminators) in the 

Fig. 2   Reported editing of 
targeted traits in wild species 
genomes for crop de novo 
domestication
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wild species. In order to achieve high efficiency and 
simultaneous editing at multiple genes in wild species, 
basic information on promoters that govern a high level 
of expression would be beneficial. Additionally, the char-
acterization of more and more genes that played crucial 
roles in the domestication process of a particular spe-
cies will further facilitate de novo domestication through 
genome editing.

Future targets: characterized genes 
responsible for domestication

The discovery of the domestication genes unlocked the 
doors for crop improvements. The maize tb1 is the first 
isolated domestication gene (Clark et al. 2004). The tb1 
mutation was due to a selective sweep of ~ 60–90 kb at the 
upstream to the tb1 coding sequence, causing an increase 
in apical dominance in domesticated maize when com-
pared with the wild ancestor teosinte (Clark et al. 2004). 
In teosinte, the kernels were protected by hardened casing; 
an alteration in the gene tga1 (teosinte glume architecture) 
produced naked kernels, making them suitable for con-
sumption (Wang et al. 2005). A recent study revealed that 
strigolactones interact with the domestication gene tga1 
to regulate maize domestication phenotypes (Guan et al. 
2022). After the tb1 gene identification, numerous genes 
have been identified as domestication and diversification 
genes in diverse crop species, although most of them are in 
cereal species (Table 1). While updating the compilation 
provided earlier (Meyer and Purugganan 2013), we have 
made a comprehensive list of domestication and diversifi-
cation genes provided in Table 1.

Rice (Oryza sativa L.) is one of the extensively stud-
ied cereal crop plants. The Oryza genus is composed of 
26 authenticated species, containing 11 different types 
of genomes and four species complexes (Brar and Khush 
2018; Dalai et al. 2021). Along with other wild species, 
two domesticated species, O. sativa and O. glaberrima 
fall under the O. sativa complex. Species from O. sativa 
complex are inter-crossable, although with low cross-fer-
tility and low F1 seed germinability. Genotypes from other 
species complexes are highly cross-incompatible with the 
cultivated species, making it extremely difficult to harness 
the wild rice gene pool’s beneficial traits. Wild rice spe-
cies have been identified to harbour many important traits. 
For example, Oryza logistaminata for perenniality, high 
outcrossing ability, and bacterial blight resistance (Song 
et al. 1995)O. meyeriana (Molla et al. 2018a) for bacterial 
blight resistance, O. coarctata for salt tolerance (Mon-
dal et al. 2018), O. neocaledonica for drought tolerance 
(Molla et al. 2018b), and O. australiensis for heat toler-
ance (Atwell et al. 2014). Thus, keeping these valuable 

traits intact, the wild species are attractive to be subjected 
to rapid domestication by CRISPR-Cas.

Mussurova et al. (2020) recently reviewed ten well-
studied rice genes that are responsible for domestication 
traits such as seed shattering, daylight sensitivity, erect 
growth, high yield, flowering time, panicle shape, seed 
hull color, and awn morphology. During cereal domes-
tication, the loss of seed shattering was a crucial step. 
Seed shattering results from forming an abscission layer 
between the seed and the pedicel. The genes responsible 
for seed shattering are responsible for the regulation of the 
abscission layer and disruption of the cell wall during seed 
shattering. In rice, genes like qSH1, qSH3, Sh4/Sha1, and 
OsSh1 are responsible for seed shattering (Konishi et al. 
2006; Li et al. 2006; Lin et al. 2012; Ishikawa et al. 2022). 
Low lignification induces seed shattering. Plant laccases 
are considered to play a role in lignin biosynthesis (Wang 
et al. 2015). A recent study revealed that loss of miRNA-
mediated laccase silencing is responsible for domestica-
tion phenotype in Indica rice (Swetha et al. 2018).

Similarly, the seed shattering genes like Btr1-A in 
wheat (Zhao et al. 2019), qPDH1 and SHAT1-5 in soy-
bean (Dong et al. 2014; Funatsuki et al. 2014), and Sh1 
in sorghum (Lin et al. 2012) have been reported. A recent 
study reported that transposons and the associated gene 
Sh1 played a major role during the evolution of seed 
shattering in foxtail millet (Liu et al. 2022). The easy 
detachment of seed from sticky glumes is important for 
threshing. In wheat, soft glume (Sog) and tenacious glume 
(Tg) loci are involved in the toughness of glumes and act 
as major threshability genes (Sood et al. 2009). GC1 is 
responsible for the production of naked grains in sorghum 
as it negatively regulates the sorghum glume coverage 
(Xie et al. 2022).

Certain traits that humans have selected during crop 
domestication, such as yield, have been found to have con-
vergently evolved in different crops. For example, KRN2/
OsKRN2, which encodes a WD40 protein, has been identi-
fied as a convergently selected gene in both maize and rice. 
Knockout lines of these genes have been shown to increase 
grain yield by 10% in maize and 8% in rice (Chen et al. 
2022). Other genes that have played significant roles in rice 
domestication include RAE2/GAD1 (awn length) and GLA 
(grain length and awn development) (Jin et al. 2016; Zhang 
et al. 2019b). Xiong et al. 2022 reported that out of 11 genes 
encoding EPF and EPFL type proteins in rice, OsEPFL2 is 
highly expressed in young panicles and is responsible for 
awn development. Generally, red pericarp appears in wild 
rice varieties, and genes like Rc and Rd are responsible for 
the colouration (Sweeney et al. 2006; Furukawa et al. 2007). 
White pericarp arises from a 14 bp deletion in Rc gene. In 
rice varieties with white pericarp, restoration of open read-
ing frame  in Rc gene can give red colouration (Zhu et al. 
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2019). In tomatoes, a new approach to target a switch 
between homobaric and heterobaric leaves was possible by 
targeting AUXIN RESPONSE FACTOR 4 (ARF4) (Moreira 
et al. 2022). Recent studies suggest that the improvement 
of photosynthesis is associated with increases in CO2 dif-
fusional capacities during the process of domestication. The 
variation of cell wall thickness drives the increase of meso-
phyll conductance per mass (Huang et al. 2022). In the case 
of cucurbits, long trailing vines represents wild characters 
and compact plant architecture can increase yield and save 
labour cost. Recently, a natural allele of a transcription fac-
tor gene YABBY1 with 76 bp deletion in the 5′ untranslated 
region (UTR) responsible for bushy habit has been identi-
fied in pumpkin (Cucurbita moschata) (Wang et al. 2022). 
The allele has been mimicked by CRISPR-Cas in Cucumber, 
watermelon and pumpkin for reducing stem length (Wang 
et al. 2022). The agricultural production efficiency of cucur-
bits, especially in a controlled environment, could be greatly 
enhanced through this approach.

Despite being locally important in providing nutrition, 
many orphan crops suffer from undesirable characteristics 
that prevent them from becoming popular in wider region. 
CRISPR tools have a high potential to remove those unde-
sirable characteristics and facilitate wider domestication 
of orphan crops. All our major cereal crops (rice, maize, 
and wheat) are annual and developing perennial version of 
them is an attractive strategy to save money, labour cost, 
and reduce environmental footprint. For example, a recent 
attempt to turn rice into a perennial crop has been successful 
by hybridizing annual Oryza sativa with perennial Oryza 
longistaminata (Zhang et al. 2022). However, since wide 
hybridization is difficult, a similar approach has been unsuc-
cessful for making a perennial wheat (Cui et al. 2018). Alter-
natively, genome editing could assist direct domestication 
of perennial wild grasses by targeting known homologous 
domestication genes of cereals (Zhang et al. 2020).

Given the information available on domestication 
genes, obtaining targeted mutants with the CRISPR-Cas 
approach is easier. Hence, domestication syndrome can be 
mimicked in wild species of interest with multiplex genome 
editing in a relatively much shorter time.

Concluding remarks and future perspectives

CRISPR-Cas system and its variants provide ample oppor-
tunities for accelerating de novo domestication of wild spe-
cies of major crop plants of agricultural importance. For 
addressing the challenge of sustainably feeding the projected 
10 billion people by 2050 (United Nations 2017), the crop 
wild relatives represent attractive genetic resources as they 
possess traits related to climate resilience, disease resist-
ance, and better nutritional quality, in addition to high yield 

potential. Our efforts must be directed to generate desired 
quality genome informations of selected crop wild species, 
identify domestication genes and genetic elements, and 
develop reliable genotype-independent transformation sys-
tems for undertaking genome editing of target traits. Edit-
ing horticultural crops are more strenuous since they are 
primarily polyploid. Methodologies are to be developed for 
a high expression level of editing reagents to achieve robust 
genome editing in polyploids.

Pre-breeding could also be accelerated by generating 
advantageous knock-out alleles or decoupling unwanted 
traits from the desired trait through genome editing. On the 
other hand, if a novel wild allele governing an economically 
important trait is characterized to have a small sequence var-
iation (SNPs, small insertion, deletion, or combination of 
those) with the cultivated allele, we can recreate a wild allele 
in a cultivated genomic background by applying advance 
tools like base editing, prime editing, and HDR. Sometimes, 
the favourable allele of a gene is present in a few landraces 
or wild species, but that corresponding gene remains absent 
in the significant cultivated genotypes. For example, Xa7 or 
Sub1A genes are absent in many cultivated rice (Xu et al. 
2006; Wang et al. 2021). In many cases, favourable allele 
for such a useful gene is present in wild species only and a 
few cultivated accessions carry unfavourable alleles. In such 
scenario, the cultivated accessions can be edited to mimic 
favourable wild alleles and then transferred to elite culti-
vated genotypes through backcrossing. This can help avoid 
the difficulties of wide hybridization and linkage drags. 
Even the problem of lack of availability of a wild species or 
even a cultivated germplasm in a country due to restricted 
germplasm exchange can be overcome through the genome 
editing strategies.

Although a great deal of knowledge is available on 
domestications genes and alleles, we must keep in mind that 
domestication is complex and needs to be understood com-
pletely. Domestication involves complex changes in plant 
architecture and biology as well as human culture. Indig-
enous knowledge and communities could provide crucial 
inputs in de novo domestication programs (Bartlett et al. 
2023). Hence, fair and equitable sharing of benefits should 
also be taken into consideration.

Genome editing tools need to be applied to exploit the 
rich genetic diversity of crop wild relatives, through the 
process of rapid domestication. Only 0.4−0.57% of plant 
species have been subjected to some form of domestication 
from ~ 300,000 vascular plant species available in the wild 
(Milla et al. 2018; Marks et al. 2021; Royal Botanic Gar-
dens 2021). These untapped wild genetic resources could be 
utilized to address future food and nutritional security chal-
lenges. Once successfully adopted for rapid domestication of 
as many wild species as possible, the CRISPR-Cas-assisted 
system could facilitate the development of high-yielding, 
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climate-smart, and nutrient-rich crop plants leading to global 
food security and environmental sustainability. The need of 
the hour is to identify more and more useful genes or alleles 
from the wild. This would be possible only through devel-
oping more backcross inbred lines or structured segmental 
substitution lines from wild species, precise phenotyping, 
mapping, cloning, and validation using the available editing 
tools. At every stage, the complementary role of genetics, 
breeding, and editing tools can comprehensively enhance the 
speed of neo-domestication, resulting in an accelerated and 
multiplicative genetic gain.
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