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Abstract
Complex traits like water use efficiency (WUE) and nitrogen use efficiency (NUE) are directly associated with crop yield 
and their stress-tolerant capacity. For developing climate-smart crops, it is crucial to identify new targets for capitalizing the 
benefits of WUE and NUE. However, understanding the molecular mechanism of WUE and NUE and their coordination with 
stress mitigation/signalling pathways are complicated. A multi-stress responsive transcription factor, Dehydration-Responsive 
Element Binding Protein 1C (DREB1C) has recently been recognized as a key component of nitrogen use efficiency (NUE) 
and yield in rice. Our data mining bioinformatic analysis suggest that DREB1C may be involved in signaling pathways of 
different hormones such as abscisic acid (ABA), ethylene, gibberellin (GA), and methyl jasmonate (MeJA). Our investiga-
tion also indicates that DREB1C is involved in various stress mitigation and signaling pathways, including drought, salt, 
cold, anaerobic environments, phosphorous starvation, and response to the rice blast fungus. Furthermore, repository data 
suggests that DREB1C may also be involved in morpho-physiological processes by controlling genes such as small subunits 
of ribulose-bisphosphate carboxylase, chlorophyll A/B binding protein, and protochlorophyllide reductase. Taken together, 
we emphasize the role of DREB1C in responding to climate-driven episodes of combined stress, with particular emphasis on 
to two broad-spectrum traits: WUE and NUE. In this short synthetic review, we make an effort to highlight the underlying 
connections of DREB1C with plants’ responses to drought and limited nitrogen conditions and emphasize its potential for 
future climate-smart breeding programs.
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Abbreviations
DREB  Dehydration-Responsive Element Binding 

Protein
NUE  Nitrogen-use efficiency
WUE  Water-use efficiency
N  Nitrogen
C  Carbon

AP2  APETALA2
ERF  Ethylene Response Factor

Introduction: Effect of Climate Change 
on WUE and NUE

Water and nitrogen (N) are two absolutely essential com-
ponents of plant life systems and play crucial roles in 
the growth and development. Optimum soil moisture, along 
with the coordination of N uptake and transport, is essential 
for plant survival. Water use efficiency (WUE) and nitrogen 
use efficiency (NUE) in plants are highly relevant to climate 
resilience, yet their molecular mechanisms remain to be fully 
understood (Rivero et al., 2022; Mondal et al. 2023).

Global warming and climate change are impacting the 
frequency, dynamics, and intensity of various abiotic and 
biotic stresses, including drought, temperature fluctuations, 
salinity, and pathogens, leading to yield losses worldwide 
(Rivero et al., 2022). Agriculture is the largest consumer 
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of water globally, accounting for 70% of freshwater usage 
(Connor et al., 2017). Gupta et al. (2020) reported that 
drought-related crop yield losses amounted to $30 bil-
lion over the last decade, and climate change is expected 
to reduce freshwater availability by approximately 50% by 
2050.

WUE plays a crucial role in determining crop perfor-
mance under water-limited conditions and breeding for high 
WUE will facilitate sustainable water use in agriculture. On 
the other hand, in many agricultural regions worldwide, N is 
considered the most limiting factor for cultivation (Fageria 
and Baligar, 2005). The excessive application of N  fertiliz-
ers and subsequent reductions of N uptake efficiency also 
affect flowering times and crop yields (Anas et al., 2020). In 
the current climatic context, developing breeding strategies 
to produce crops with high NUE has become a prime focus, 
as a mere 1% increase in NUE could annually save $1.1 bil-
lion (Kant et al., 2011). Therefore, identifying the molecular 
basis of WUE and NUE is crucial for pinpointing candidate 
genes for climate-smart breeding programs.

Dehydration‑Responsive Element Binding 
1(DREB1), a Unique Family of Transcription Factor 
in Angiosperm

Transcription factors (TFs) are considered as  deter-
mining factors of the first level of gene regulation. The 
APETALA2/Ethylene Response Factor (AP2/ERF) super-
family is one of the largest TF families, and its members 
are involved in the regulation of growth and development, 
as well as in responses to a range of biotic and abiotic stress 
responses in plants (Li et al., 2020). Based on the amino 
acid sequence of their DNA binding domain, the ERF fam-
ily can be further divided into two subfamilies: Group A, 
which includes Dehydration-Responsive Element Bind-
ing Protein (DREB1)/C-repeat-binding factor (CBF), and 
Group B, which constitutes the ERF subfamily. Phylogenetic 
analysis indicates that DREB1/CBF family genes predomi-
nantly evolved in Angiosperms, and the monocot-specific 
abundance of clades I and II may have specific functions 
in monocots (Li et al., 2020). DREB1 proteins bind to the 
CRT/DRE sequence (G/ACC GAC ) within the promoters of 
downstream stress-inducible genes, conferring tolerance to 
multiple stresses in different crops (Sarker et al., 2019).

DREB1 is AVital Family of TF for Multi‑Stress 
Adaptation

To understand plant adaptation, the identification and char-
acterization of transcription factors (TFs) have been con-
sidered as one of the most suitable approaches for decades, 
as TFs modulate metabolic processes, growth, development, 
and stress adaptation by regulating target genes. Song et al. 

(2021) identified a total of 146 Arabidopsis genes that are 
distinct targets of CBF/DREB1, and these targeted genes 
are involved in abiotic stress responses, hormones, and 
environmental signaling. Overexpression of AtDREB1A, 
AtDREB1B, and AtDREB1C conferred improved toler-
ance to freezing, salt, and drought in Arabidopsis (Liu et al. 
1998; Kasuga et al. 1999; Gilmour et al. 2004; Zhang et al. 
2023). Similarly, AtDREB1F overexpression in Arabidop-
sis enhanced tolerance to freezing, drought, and heat (Kang 
et al. 2011), while overexpression of AtDREB1D enhanced 
drought tolerance in soybean (Guttikonda et  al. 2014). 
Experimental evidence also indicates that the OsDREB1 
play a decisive role in response to cold, high salt, and/or 
drought conditions in rice (Dubouzet et al. 2003a, b). Trans-
genic rice overexpressing AtDREB1A exhibited significantly 
increased tolerance to dehydration, whereas overexpression 
of OsDREB1B was found to be more efficient for salt toler-
ance (Datta et al. 2012). Overexpression of DREB1 genes 
from cotton, soybean, and zoysia grass have been shown to 
enhance tolerance to chilling, drought, heat, and salt (Gao 
et al. 2005; Shan et al. 2007; Kidokoro et al. 2015). A recent 
study showed that OsDREB1C/E/G genes are involved in 
heat, drought, and salt stress tolerance in rice (Wang et al. 
2022). Novillo et al. (2004) demonstrated that the ability of 
DREB1C to negatively control the expression of DREB1B 
and DREB1A is crucial for stress endurance in Arabidopsis. 
Hence, functional analysis implies there is a coherent link 
between DREB1 and multi-stress adaptation in both mono-
cot and dicot systems. These findings expand our knowl-
edge of the roles of DREB1 proteins in plants, enhance our 
mechanistic understanding of abiotic stress tolerance, and 
will facilitate the generation of stress-tolerant crop plants.

DREB1C‑Mediated Drought/Dehydration Adaptation 
Through Enhancing WUE and Osmotic Adjustment

An advanced understanding of the relationship between 
crop yield, drought tolerance, and WUE is a prerequisite 
for designing climate-smart crop varieties, specifically for 
adaptability in drought in combination with other abiotic 
stress. Stomata represent a critical target for enhancing 
WUE since they are crucial in controlling plant water use 
and carbon gain. Recently, there has been a lot of interest 
in understanding stomatal kinetics, although a little mecha-
nistic insight has been gained. Stomatal kinetics may differ 
depending on the abiotic stress conditions (Rizhsky et al. 
2004). For example, under water-limited conditions, the clo-
sure of stomata prevents excess water loss; however, stomata 
remain open to cool leaves via transpiration in response to 
heat stress. Moreover, recent literature suggests that sto-
mata closure during combined stress conditions is directly 
or indirectly linked to a decrease in WUE (Rivero et al., 
2022). Although AtDREB1a-expressing rice lines exhibited 
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enhanced stomatal closure upon drought stress (Datta et al. 
2012), the direct linkage between DREB1C and stomatal 
kinetics has not been illustrated so far. Therefore, unrave-
ling how and to what extent DREB1C is associated with 
drought/dehydration adaptation could assist in developing 
strategies for sustainable crop production under changing 
climate conditions.

In rice, a total of ten DREB1 genes were identified to 
be involved in the signaling events of a range of abiotic 
stresses (Wang et al. 2022). Previous reports showed that 
DREB1 is involved in drought tolerance in rice using over-
expression lines (Ito et al. 2006; Datta et al. 2012; Huang 
et al. 2018; Muthurajan et al. 2021). Recently, Wang et al. 
(2022) suggested that loss-of-function (LOF) of OsDREB1C 
are more susceptible to chilling compared to the wild type 
(WT), and the gene is also involved in scavenging reactive 
oxygen species (ROS) as well as regulating cell death. The 
OsDREB1C gene positively regulates heat, drought and salt 
tolerance (Wang et al. 2022). Furthermore, many research-
ers have sugested that DREB1C is a promising target for 
cold and dehydration tolerance in various plants (Liu et al. 
1998; Dubouzet et al. 2003a, b; Nakashima et al., 2006; 
Zeng et al. 2022). The promoter of AtDREB1C (CFB2) bind 
with calmodulin binding transcription activator (CAMTA3), 
indicating a calcium-signal-driven gene expression (Doherty 
et al. 2009; Pandey et al. 2013); however, further research 
is required for a deeper understanding and establishment of 
the molecular mechanism.

Liu et al. (1998) reported that genes involved in cold/
dehydration tolerance can also be potential targets of 
drought tolerance, since, under both stress conditions, induc-
tion of abscisic acid (ABA) biosynthesis is common and 
shares similar types of mechanisms. Cellular dehydration 
is a common effect of stresses such as cold and drought; 
which in turn, activates common signaling pathways and 
changes metabolic profile (Guo et al., 2021). The produc-
tion of osmoprotectants like raffinose, trehalose, fructose, 
proline, and glycine betaine under drought or cold stress 
to stabilize proteins, as well as cellular structures, is well 
understood in a wide range of plant species (Krasensky and 
Jonak 2012; Guo et al., 2021). AtDREB1C-overexpressed 
rice lines exhibited improved growth under moderate 
drought/osmotic stress through dehydration tolerance as 
well as by avoiding dehydration, notably by reducing water 
demand together with a reduction in growth time, which 
may be a consequence of osmotic adjustment (Ishizaki et al. 
2013). Moreover, the study showed that improved survival, 
along with higher growth and yield under drought, was due 
to reduced water use. Despite inadequate molecular infor-
mation, insights gained here suggest a strong correlation 
between DREB1C expression, osmotic adjustment, drought 
tolerance, and enhanced WUE, which provides a platform 

for enriching further understanding of WUE and climate-
smart crop production.

DREB1C is a Novel Target to Enhance NUE and Yield

The amount of grains produced per unit of readily available 
soil N is the numerator of nitrogen use efficiency (NUE). 
Excessive nitrogen is applied in modern agriculture, which 
often delays flowering and ripening in major crops, includ-
ing rice (Ye et al.; 2019; Zhang et al. 2021). Excessive N fer-
tilizer use also leads to water contamination, reduced soil 
fertility, deteriorated soil health, and increased greenhouse 
gas emissions. Despite decades of research, the genetic 
architecture of NUE remains poorly understood because of 
an inadequate understanding of the coordination of nuclear 
and organelle protein expression, complex compartmental-
ized metabolic networks, and the intricacies of eukaryotic 
multilevel gene regulation (Mondal et al. 2021).

A recent study by Wei et al. (2022) identified significant 
expression of the DREB family of transcription factors 
under low-nitrogen conditions in rice based on RNAseq 
analysis. Many crucial genes, such as the nitrate trans-
porters (NRT1.1B, NRT2.4), nitrate reductase (NR2), the 
flowering regulator (FTL3), and RuBisCO (RBCS3), are 
regulated by DREB1C through binding to their promoter 
regions. Overexpression of DREB1C in rice resulted in 
early seedling vigour, higher levels of photosynthetic pig-
ments, increased RuBisCO content, elevated rates of pho-
tosynthesis, enhanced N uptake, and improved NUE. The 
DREB1C-overexpressing plants displayed a higher harvest 
index, increased remobilization of N and C to sink organs, 
and a significant reduction in flowering time and crop dura-
tion. Interestingly, field trials results revealed that the rice 
lines overexpressing DREB1C showed increased yield of 
about 41–68%, early maturity, and improved NUE (Wei 
et al. 2022). Further, OsDREB1C overexpression increased 
17–22% yield in wheat and enhanced 14–35% biomass in 
Arabidopsis (Wei et al. 2022).

Our analysis of data from repository databases like Plant-
CARE (Lescot et al. 2002) and STRING (Franceschini et al. 
2012) suggests the possible regulation and dynamic func-
tion of DREB1C in rice (Fig. 1). Promoter structure analysis 
suggests that DREB1C might influence responses to light, 
wounds, anaerobic conditions, and various stress condi-
tions (Fig. 1A). Identified cis-regulatory elements (CREs) 
also indicate that DREB1C’s regulation is influenced by a 
range of plant hormones, including gibberellin (GA), eth-
ylene, abscisic acid (ABA), and methyl jasmonate (MeJA) 
(Fig. 1B).

Furthermore, information generated from the STRING 
database implies that DREB1C is likely involved in different 
cellular and physiological functions through interactions with 
a range of proteins, including MYB3R-2, Q0J525_ORYSJ 
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(Os08g0474000), Q5JK17_ORYSJ (Os03g0184500), kine-
sin-like protein KIN-1, SIZ1, NAC048, PHYA, bZIP 23, 
and CSLC10 (Fig. 1C). Functional annotation revealed that 
DREB1C is involved in abiotic stress responses (drought, 
salt, cold), biotic stress responses (rice blast fungus), and 
phosphorus starvation (Fig. 1C). DREB1C-interacting pro-
tein partners play essential roles in various cellular processes 
(e.g., male meiotic chromosomal dynamics, male game-
togenesis, and anther dehiscence) and morpho-physiological 

responses by regulating genes such as the small subunit of 
ribulose-bisphosphate carboxylase, chlorophyll A/B binding 
protein, and protochlorophyllide reductase. DREB1C may 
also regulate the expression of a wide spectrum of stress-
related genes in response to drought and salinity stresses 
through an ABA-dependent regulatory pathway mediated 
by DREB1C-bZIP interaction.
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DREB1C

MYB3R-2

Q0J525_ORYSJ

Q5JK17_ORYSJ

KIN1

SIZ1

OsJ_09687

NAC048

PHYA

BZIP23

CSLC10

Regulatory role in tolerance to salt, cold, and drought stresses

Regulatory role in tolerance to salt

Uncharacterized protein

Plays an essential role in male meiotic chromosomal dynamics, male 
gametogenesis and anther dehiscence.

Regulate Pi starvation responses

Inflorescence development 

Involved in drought and salt stress responses, and defense response to the rice 
blast fungus. 

Controls the expression of a number of nuclear genes including those encoding 
the small subunit of ribulose-bisphosphate carboxylase, chlorophyll A/B binding 
protein, protochlorophyllide reductas

Regulate the expression of a wide spectrum of stress-related genes in 
response to abiotic stresses through an ABA- dependent regulation pathway. 
Confers ABA-dependent drought and salinity tolerance. 

Involved in the synthesis of the xyloglucan backbone

Predicted Partners Predicted Function of partnersResponsive TFs Transcription & 
translation

29%

6%

31%

3%

3%

3%

3%

23%

ABA responsiveness
Anaerobic induction
Development related
Ethylene responsive element
Gibberellin responsive element
Light responsive element
MeJA-responsiveness
Stress responsive element 

A B

C

Anaerobic induction

Light responsive element

Gibberellin responsive element

Ethylene responsive element

Stress responsive element 

ABA responsiveness

MeJA-responsiveness

Wound responsive element

Development related

OsDREB1CPromoter

ABRE1C

0 100 200 300 400 500 600 700 800 900 1000

5' 3'

1 kb

Fig. 1  In silico promoter structure analysis, identification of cis-
regulatory elements, and prediction of protein–protein interaction to 
understand molecular regulation and probable function of DREB1C 
in Rice. A Promoter structure analysis and distribution of cis-regu-
latory elements (CRE) across the length (1  kb) of the promoter of 
OsDREB1C. B Percentage (%) of distribution of identified cis-regula-
tory elements (CREs) such as ABA responsiveness, anaerobic induc-

tion, development-related, ethylene-responsive element, gibberellin 
responsive element, light responsive element, MeJA-responsiveness, 
stress-responsive element. C Predicted model representing the fac-
tors (light, wound, anaerobic, stress, and hormones) that modulate the 
expression of DREB1C and probable role in different molecular and 
physiological processes through interacting with other proteins. ABA 
abscisic acid, GA gibberelline, MeJA methyl jasmonate
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Conclusion

Due to climate change, multiple stressors, including drought, 
heatwaves, nutrient scarcity, flooding, and salinity, may con-
currently or sequentially affect various regions of the world. 
The adverse consequences of climate change are already 
evident, leading to detrimental effects on various pathways 
related to plant responses and stress adaptation, all orches-
trated by distinct transcription factors (TFs). Recent inves-
tigation revealed the involvement of DREB1C in seedling 
vigour, elevating photosynthetic pigments accumulation, 
increasing RuBisCO content, and enhancing photosynthesis, 
increasing N uptake and NUE, as well as in multiple stress 

tolerance. Our bioinformatic analysis suggests that DREB1C 
has immense potential as a candidate gene and is involved in 
a range of stress mitigation/signaling pathways. Modification 
of Cis-elements in the promoter of OsDREB1C with various 
genome editing tools could unravel many novel functions 
(Karmakar et al. 2022).

Collectively, we have emphasized the role of DREB1C in 
responding to climate-induced combinations of stresses, 
with particular emphasis on two versatile traits, Water Use 
Efficiency (WUE) and Nitrogen Use Efficiency (NUE), 
as key attributes for developing climate-resilient crops. It 
is intriguing to note that a single transcription factor can 
enhance yield to a great extent and significantly influence 
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Fig. 2  Dynamic role of DREB1C in NUE and WUE in Rice. A Under 
drought and low-N conditions OsDREB1C directly binds to the pro-
moter and up-regulates the transcripts of OsRBCS3, OsNRT1.1B, 
OsNRT2.4, OsNR2, OsFTL1, and different stress-responsive genes 
including drought, cold/dehydration, salt, and osmotic. In turn, 
enhanced the rates of photosynthesis, NUE, and WUE by reducing 
the flowering time as well as crop duration in rice. B OsDREB1C is 
an integrator of potential below- and above-ground traits like NUE, 
WUE, photosynthesis, and early flowering in response to climate 

change-induced stress conditions such as high temperatures, light, 
limited water, and N conditions. Hence, DREB1C is poised to be a 
climate-smart TF. DREB1C Dehydration-Responsive Element Bind-
ing Protein 1C, FTL3 flowering locus T (FT)-Like homolog, NR2 
nitrate reductase, NRT1.1B/NTR2 nitrate transporters, NUE nitrogen-
use efficiency, Os Oryza sativa, RBCS3 Ribulose-1,5-bisphosphate 
carboxylase/oxygenase, TF transcription factor, WUE water use effi-
ciency, N soil nitrogen, H2O soil water, C photosynthetic carbon
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both NUE and WUE in rice, as illustrated in Fig. 2. Fur-
thermore, our discussion implies that OsDREB1C stands 
as a promising candidate for a climate-smart transcription 
factor, worthy of consideration in climate-smart breeding 
initiatives.
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