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Abstract
Genome editing technology comprises site-directed mutagenesis of genomes, involving alterations of few bases to precise 
replacement of a fragment or an entire gene sequence. Among multiple types of genome editing technologies developed, 
CRISPR-Cas9 and its latest variants have been revolutionizing the field of genetic engineering and plant biotechnology. 
Despite several advantages the CRISPR-Cas9 technology offers, it often suffers from low efficiency in creating desirable 
mutants in several crop plant species. In this review, we discuss various emerging strategies to improve genome editing effi-
ciency in crop plants. The strategies include increased expression of genome editing components using high efficiency viral 
vectors, employment of inhibitors of chromatin modifiers, and using plant DNA viruses as donor DNA carriers. Additionally, 
we also discuss strategies to obtain transgene-free genome edited crops.
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Introduction

Genome editing is a targeted nuclease-based method for 
introducing site-specific changes in the genome of an 
organism. The two most critical steps of genome editing 
are, DNA recognition, which is performed by either pro-
teins or small RNA, and double-strand break (DSB) in 
DNA that is performed by nucleases (Gaj et al. 2016). 
Based on the first step, the genome editing tools have been 
categorized into two major groups. The first group includes 
meganucleases, transcription activator-like effector nucle-
ases (TALENs), and zinc-finger nucleases (ZFNs), where 
DNA recognition is performed by specifically-designed 
protein molecules. Meganucleases or homing endonucle-
ases are characterized by long recognition sites comprising 
14–40 bp. These enzymes perform both DNA recognition 
and DSB generation (Silva et al. 2011). Limited number 
of naturally occurring recognition sites in genomes restrict 
the usage of meganuclease-based genome editing tools for 
mutating desired sites. Although protein engineering was 
successfully attempted in a few cases to alter the DNA rec-
ognition site specificity, overlapping of the DNA recogni-
tion domains with the nuclease domains in these enzymes 
often resulted in a loss of nuclease activity.

TALENs are produced by fusion of transcription 
activator-like effector (TALE) proteins and FokI nucle-
ase from Flavobacterium okeanokoites. TALE proteins 
having specific DNA recognition ability are secreted by 
Xanthomonos bacteria (Joung and Sander 2013). On the 
other hand, ZFNs are created by fusing zinc fingers, the 
well-known DNA binding proteins, and FokI nuclease 
(Urnov et al. 2010; Zhang et al. 2010). Although TAL-
ENs and ZFNs were considered promising genome editing 
tools, their requirement of protein-based DNA recogni-
tion hampered the flexibility of these tools for editing the 
nucleotides of choice. Moreover, specific arrangement of 
zinc fingers or TALE proteins for recognition of precise 
nucleotides entails the expertise of protein engineering, 
further restricting their usage. The second and most recent 
group of genome editing tools includes clustered regularly 
interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein (Cas). Here, the DNA recognition is 
performed by a small RNA molecule of 19–23 nucleotides 
known as guide RNA (gRNA), and the nuclease function is 
performed by Cas proteins (Jinek et al. 2012). The gRNAs 
recognize specific nucleotides based on the sequence 
homology, and they can be chemically synthesized as 
oligomers. Straightforward gRNA/construct design and 
assembly as one of the major advantages, CRISPR/Cas-
based genome editing lends enormous flexibility for intro-
ducing site-specific changes in any part of a gene or a 
genome (Aglawe et al. 2018; Biswal et al. 2019).

Next, the site-specific DNA breakage is followed by the 
activation of cellular DNA repair pathways, which largely 
include the non-homologous end joining (NHEJ) and the 
homology-directed repair (HDR) (Mao et al. 2019). The 
NHEJ does not require any donor template to repair the 
broken ends of DNA and often results in insertions/dele-
tions (indels) and/or base substitutions at specific sites 
in the genome. The NHEJ is commonly utilized to create 
knockout mutants for a gene. The HDR is a DNA repair 
pathway that requires a donor template homologous to the 
targeted genomic region (Molla et al. 2022). It is commonly 
used for correction of bases or integration of whole genes 
or gene segments. Based on the DNA repair pathways uti-
lized for nucleotide alteration, the genome editing has been 
classified into three categories namely, SDN1 (Site-Directed 
Nuclease1), SDN2, and SDN3 (Podevin et al. 2013) (Fig. 1). 
SDN1 employs NHEJ for creating mutations (indels or 
point mutations) while SDN2 employs HDR for replacing 
a shorter stretch of target nucleotides. Like SDN2, SDN3 
also employs HDR but it is used to replace or introduce long 
stretches of DNA, often involving entire gene sequences. 
Several countries, including India have allowed SDN1 and 
SDN2 genome edited crop plants for commercial release 
with minimum biosafety regulations. However, the final 
product must be free from the exogenous DNA used for 
genome editing (e.g., CRISPR-Cas containing sequences) 
(Menz et al. 2020).

Strategies to improve genome editing 
efficiency

Increasing expression of Cas9 and sgRNA

In CRISPR-Cas-based genome editing, the expression lev-
els of the recombinant Cas protein and the sgRNA deter-
mine the genome editing efficiency. The Agrobacterium 
tumefaciens-based transient delivery systems that utilize 
constitutive promoters, is constrained by limited expression 
of sgRNA that lacks 5′ and 3′ overhangs (Cong et al. 2013; 
Nekrasov et al. 2013). Interestingly, a recent study has shown 
that employing native U3/U6 and Ubiquitin promoters to 
drive expression of sgRNA and Cas9 could result in higher 
genome editing efficiency in white lupin (Lupinus alba 
L.). Over the decades, viral vectors have served as useful 
biotechnological tools owing to their potential to replicate 
independently and produce recombinant proteins in a variety 
of hosts (Scholthof et al. 1996, 2002). DNA (Baltes et al. 
2014; Yin et al. 2015) and RNA (Ali et al. 2015) viral-based 
vectors have been experimented for delivering CRISPR/Cas 
components. Initially, transient gene editing by viral vec-
tors had displayed relatively low efficiency (Ali et al. 2015; 
Yin et al. 2015), justifying a need to explore more efficient 
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vector systems. A study involving transient expression in N. 
benthamiana demonstrated utility of Tobacco Mosaic Virus 
RNA-based overexpression (TRBO), a breakthrough tech-
nology vector system (Lindbo 2007), in improving genome 
editing efficiency through enhanced expression of sgRNA 
(Cody et al. 2017). TRBO vector is an optimized Ti plasmid 
with a modified T-DNA region containing a coat protein 
(CP) deletion mutant of the Tobacco mosaic virus (TMV) 
U1 strain, which was originally created for the production of 
recombinant protein-coding sequences in host cells through 
agroinfiltration method (Lindbo 2007). The absence of the 
CP prevents the expressed recombinant proteins from sys-
temically spreading throughout the plant, still permitting the 
cell-to-cell movement with the aid of the movement protein 
(MP). Moreover, CP seems to be a inducer of RNA silencing 
and therefore, it is hypothesized that its removal could let 
TRBO vector escape RNA silencing, resulting in very high 
levels of gene expression. (Lindbo 2007) has shown exorbi-
tantly high levels of overexpressed recombinant protein (3 
to 5 mg/g fresh weight of plant tissue) using TRBO vectors 

via transient agroinfiltration method in N. benthamiana. For 
its known ability to highly express the transgene, it was used 
to enhance the levels of the sgRNAs in N. benthamiana by 
(Cody et al. 2017). The study also demonstrates the poten-
tial of the TRBO vector for multiplexed sgRNA delivery, 
indicating its flexibility for gene expression and editing. 
Further, the study also reveals that removal of the 5′ and 3′ 
overhangs of sgRNA is not necessary for in vivo cleavage 
of the target genomic DNA by Cas9 although removal of 5′ 
overhangs is necessary for in vitro Cas9-mediated cleavage 
of target DNA. These results highlighted the flexibility of 
sgRNA under in vivo conditions. Similarly, another study 
showed that the presence of unrelated sequence in sgRNA as 
5′ and 3′ overhangs does not impact Cas9 cleavage efficiency 
in vivo (Molla et al. 2022). Moreover, (Cody et al. 2017) 
also designed a new Cas9 construct called pHcoCas9, which 
resulted in higher rates of Cas9 protein expression than a 
previously used expression vector (pFGC-pcoCas9). The 
salient features of the pHcoCas9 construct include a human 
codon-optimized Cas9 nuclease gene, a 35S promoter, a 35S 

Fig. 1   Types of site-directed nucleases-based genome editing tech-
nologies. SDN1: DSB followed by NHEJ leading to insertion or dele-
tion (indel) or base substitution, resulting in gene disruption; SDN2: 
DSB followed by HDR with the donor template (ssDNA/dsDNA/
RNA) provided, resulting in small-scale mutations (modification 
of a few base pairs); SDN3: DSB followed by HDR with the donor 
DNA template with homologous ends containing the desired gene 
sequence resulting in targeted gene replacement and/or insertion of 
the sequence of interest. CRISPR: Clustered regularly interspaced 

short palindromic repeats; DSB: Double strand break; HDR: Homol-
ogy-directed repair; NHEJ: Non-homologous end joining; SDN: Site-
Directed Nuclease; sgRNA: Single guide RNA; TALENs: Transcrip-
tion activator-like effector nucleases; ZNFs: Zinc-finger nucleases. 
Target: The targeted DNA sequence for editing; Donor DNA (green): 
The DNA provided as a template for the HDR; Red strokes: represent 
the newly inserted nucleotide(s); ‘X’: A mark denoting the place of 
recombination during HDR (color figure online)
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terminator, 5′ TEV UTR and 3′ TEV UTR for increased 
translation efficiency (Cody et al. 2017). TRBO vector can 
also be explored for increased expression of Cas9. However, 
too much of Cas9 protein could potentially cause embryo 
lethality or higher frequencies of off-target mutations. There-
fore, each vector type used for Cas9 overexpression should 
be carefully evaluated by measuring their genome editing 
efficiency vis-à-vis the frequency of off-target mutations.

Similar modifications have also been made to Tobacco 
rattle virus (TRV)-based viral vector systems, which 
enhanced CRISPR-Cas9-mediated gene editing efficiency 
in N. benthamiana (Ali et al. 2015). However, unlike TRBO 
vector system, multiplexed delivery of the gRNAs (indi-
vidual agrobacterium cultures with a separate gRNA con-
struct) through the modified TRV vector system lowered 
the efficiencies of genome editing compared to the deliv-
ery of single sgRNA (Ali et al. 2015). Interestingly, some 
recent studies have employed an engineered TRV-based 
vector for in planta delivery of sgRNAs fused to tRNA iso-
leucine (tRNAIleu) sequence to induce efficient multiplex 
somatic and biallelic heritable editing in a single genera-
tion in SpCas9-expressing transgenic Arabidopsis and N. 
benthamiana (Ellison et al. 2020; Nagalakshmi et al. 2022). 
It has been shown that tRNAs and other RNAs that promote 
cell-to-cell movement can increase virus-mediated mutagen-
esis when fused to sgRNAs (Ellison et al. 2020; Kujur et al. 
2021; Lei et al. 2021; Nagalakshmi et al. 2022). Therefore, 
sgRNAs were fused to tRNAIleu to facilitate efficient TRV 
movement in Arabidopsis and N. benthamiana (Ellison et al. 
2020; Nagalakshmi et al. 2022). These TRV-based methods 
have also been successfully used for heritable base-editing 
in Arabidopsis (D. Liu et al. 2022a). Similarly, one more 
RNA virus (Barley stripe mosaic virus)-based vector has 
been used for efficient multiplexed heritable genome editing 
in wheat also bypasses tissue culture (Li et al. 2021).

Of late, several new virus-based tools spanning a wide 
host range have been developed to deliver CRISPR/Cas9 
constructs to plants (Ariga et al. 2020; Kujur et al. 2021; 
Varanda et al. 2021; Zhang et al. 2019). Using these viral-
based tools for genome editing is called virus-induced 
genome editing (VIGE) (Gentzel et al. 2022). The strate-
gies to increase expression of Cas9 and sgRNA, as discussed 
above, are summarized in Fig. 2A.

DNA viruses as template carriers for SDN2 and SDN3 
genome editing

Compared to SDN1, SDN2 and SDN3 types of genome edit-
ing are more challenging because they require additional 
component of a template DNA carrier for gene repair or 
gene replacement via the HR approach (Jang and Joung 
2019). One of the commonly used approaches to provide a 
template DNA has been T-DNA-mediated integration of the 

donor DNA into the recipient’s nuclear genome (Hiei et al. 
1994; Kimura and Sinha 2008; Koncz et al. 1989). However, 
this approach suffers from low genome editing efficiency 
because only a limited copy number of donor DNA can be 
delivered using Agrobacterium-mediated transformation. 
Plant DNA viruses serve as ideal and more efficient alter-
native donor DNA carriers. Among the plant DNA viruses, 
geminiviruses have been explored both as carriers of donor 
DNA and as targets in CRISPR-Cas-based genome editing.

Geminiviruses constitute a large family of plant viruses 
with single-stranded circular DNA genomes of ∼ 2.5 to 
3.0  kb (Gutierrez 1999; Hanley-Bowdoin et  al. 2000; 
King et al. 2011; Pilartz and Jeske 1992). They are either 
monopartite (entire genome exists as a single circular DNA) 
or bipartite (entire genome exists as two circular DNA) 
(Bisaro 1996; Jeske 2009). For example, Beet Curly Top 
Virus (BCTV) has a monopartite genome with a genome 
size of ~ 3 kb (Zerbini et  al. 2017). On the other hand, 
Tomato Golden Mosaic Virus (TGMV) is a bipartite virus 
with two circular genomes (genome A: 2.58 kb and genome 
B: 2.52 kb) (Hamilton et al. 1984; MacDowell et al. 1986). 
These viruses serve as ideal donor DNA carriers because 
they replicate inside the nucleus and their genomes exist in 
hundreds to thousands of copies per cell. Therefore, gemin-
ivirus-based replicons are explored for transient expression 
of sequence-specific nucleases and to deliver donor DNA 
templates (Baltes et al. 2014). Moreover, replicons based 
on the Bean yellow dwarf virus (BYDV) have been found to 
increase gene targeting frequencies in tobacco (Nicotiana 
tabacum) by one to two orders of magnitude over traditional 
Agrobacterium-mediated transformation (Baltes et al. 2014). 
In the same study, nuclease-mediated DNA double-strand 
breaks, replication of the donor DNA template, and the 
pleiotropic activity of the geminivirus replication initiator 
proteins were found to aid the gene targeting. This study 
opened up new avenues to use geminivirus replicons (GVR) 
for generating plants with a desired DNA sequence modifi-
cation under six weeks.

In a recent study, geminivirus replicons were used to 
induce high frequency, precise modification of the tomato 
genome through homologous recombination using TAL-
ENs and CRISPR-Cas9-based genome editing (Čermák 
et al. 2015). In this study, CaMV 35S promoter was inserted 
upstream of the endogenous anthocyanin mutant 1 (ANT1), 
resulting in overexpression and ectopic accumulation of pig-
ments in tomato tissues. In another study, GVR was used to 
deliver sequence-specific nucleases (SSNs) to reduce sensi-
tivity to herbicide Imazamox by targeting ACETOLACTATE 
SYNTHASE1 (ALS1) gene (Butler et al. 2016). In this study, 
GVR-mediated genome editing yielded a higher number 
of desired point mutations compared to T-DNA-mediated 
genome editing, which produced no detectable mutations 
in the target gene (Butler et al. 2016). A study involving 
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genome editing of Bean yellow dwarf virus (BeYDV) dem-
onstrates that CRISPR/Cas9 can efficiently access the gemi-
nivirus genome (Baltes et al. 2015). This feature provides an 
additional option of cleaving the donor DNA from a gemini-
virus replicon should one take such a modality for SDN2 or 
SDN3 type of genome editing. Although this study shows in 
principle that CRISPR-Cas9 technology can be successfully 
used to target geminiviruses or other DNA viruses, we are 
not highlighting it as an ideal anti-viral strategy. Because 
such a strategy may inadvertently lead to the development 
of more virulent strains of viruses due to random mutations 
caused by DNA repair subsequent to CRISPR-Cas9-medi-
ated cleavage. Rather, our purpose to cite this study is to 
highlight the fact that CRISPR/Cas9 components can effi-
ciently access the geminivirus chromatin.

Although geminiviruses could be useful as delivery 
agents, severe symptoms caused by geminivirus infections 
could pose a problem for plant survival. To circumvent 
this problem, mutated geminiviruses which cause reduced 
or no symptoms in secondary shoots but still replicate to 

reasonable levels can be used. For example, infections of N. 
benthamiana or Arabidopsis or sugarbeets with BCTV (wild-
type) or BCTV null mutants for L2 (BCTV L2-) proceed sim-
ilarly in primary infected tissue (Hormuzdi and Bisaro 1995; 
Raja et al. 2008). However, after removal of the primary 
infected shoots, secondary infected tissue (new growth) is 
symptomatic in wild-type BCTV-infected plants but exhibits 
recovery (no symptoms) in BCTV L2-mutant-infected plants 
(Hormuzdi and Bisaro 1995; Raja et al. 2008). Given the 
wide host range of GVRs, they can be used for SDN2- and 
SDN3-based plant genome editing in multiple crop plant 
species (Baltes et al. 2014). Lastly, GVRs offer one more 
advantage in being transgene-free compared to Agrobacte-
rium-mediated transformation (Čermák et al. 2015).

Epigenetic strategies to increase chromatin access 
by genome editing machinery

In CRISPR-Cas9 genome editing, the Cas9 enzyme activity 
depends on the relaxation of the target site in the chromatin 

Fig. 2   Strategies for increasing genome editing efficiency. a: 
Increased expression of Cas9 and sgRNA: ORI: origin of replica-
tion, RB: right border, LB: left border, MP: movement protein, TEV: 
Tobacco etch virus, R: resistance gene, cas9?: can cas9 protein be 
overexpressed?, NLS: nuclear localization signal, UTR: untranslated 
region, Term: terminator, sgRNA: single guide RNA; b: HDACi for 

increasing chromatin access by GE machinery: HDACs: histone dea-
cetylases, HATs: histone acetyltransferase; c: Conventional versus 
transgene-free GE: TECCDNA: transiently expressing CRISPR/Cas9 
DNA, TECCRNA: transiently expressing CRISPR/Cas9 RNA, RNP: 
ribonucleoprotein complexes, GE: genome editing
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to bind and nick the DNA strand. Chromatin relaxation is 
induced during various cellular processes like DNA replica-
tion, DNA repair, and transcription. Increased transcription 
and DNA replication rates have been shown to increase tar-
geted gene repair frequencies in mammalian cells (Brach-
man and Kmiec 2005; Hu et al. 2005). Similarly, DNA rep-
lication and increased transcriptional activity of the target 
gene has been demonstrated to increase the likelihood of 
oligonucleotide-directed gene editing efficiency in bacteria 
as well (Huen et al. 2006, 2007).

The accessibility of the target DNA in the chromatin by 
DNA repair agents and genome-editing enzymes is substan-
tially influenced by the open or closed state of the chromatin, 
impacting the genome editing efficiency (Chen et al. 2017; 
Isaac et al. 2016; Li et al. 2020; Liu et al. 2020; Verkuijl 
and Rots 2019; Yarrington et al. 2018). The regulation of 
gene expression relies largely on histone acetylation and dea-
cetylation at lysine residues on the amino-terminal tails of 
histone proteins. Acetylation neutralizes the positive charge 
of the histone tails and weaken their affinity for DNA (Hong 
et al. 1993). Hyperacetylation of histones relaxes the chro-
matin structure, leading to transcriptional activation, while 
deacetylation of histones leads to chromatin condensation 
and gene repression. Histone acetyltransferases (HATs) 
and histone deacetylases (HDACs) catalyze chromatin his-
tone acetylation and deacetylation reactions, respectively 
(Liu et al. 2016). HDAC inhibitors (HDACi) are frequently 
employed to understand the functions of these enzymes in 
chromatin remodeling and transcriptional reprogramming 
both in plant and animal model systems (Delcuve et al. 
2012). These inhibitors lead to hyperacetylation of histones, 
resulting in chromatin loosening. Several classes of HDACi 
have been identified or designed, some of which were ini-
tially characterized for therapeutic cancer treatments. Few 
examples include sodium butyrate (NaBt, specific to HDAc 
Class I and IIa), Nicotinamide (NA, Class III), Trichostatin 
(TSA, Class I and II), MGCD-0103 (Class I and IV) and pan 
inhibitors like Vorinostat and Resminostat (Bond et al. 2009; 
Earley et al. 2007; Tandon et al. 2016).

A study in which maize cells were pretreated with HDACi 
sodium butyrate (5–10 mM) and nicotinamide (1–5 mM) 
for induction of relaxed chromatin, showed improved effi-
ciency of oligonucleotide-directed mutagenesis (ODM) 
(Tiricz et al. 2018). In this study, maize cells expressing a 
non-functional GFP gene (bearing a premature stop codon 
TAG) was bombarded with the correcting oligonucleotides 
to restore GFP expression, either in the presence or absence 
of HDACi. Moreover, using the DNase I sensitivity assay, 
the authors (Tiricz et al. 2018) demonstrated the presence 
of a more relaxed chromatin in HDACi-pretreated maize 
cells compared to controls. Also, sodium butyrate and nico-
tinamide did not drastically reduce viability of maize cells 
(Tiricz et al. 2018).

In another study, treating animal cells with HDACi (TSA 
and PCI-24781) resulted in an increased efficacy of alter-
native end joining (alt-EJ) and homology-directed repair 
(HDR) upon CRISPR/Cas9-mediated DNA cleavage (Li 
et al. 2020). Similarly, the effects of HDAC inhibitor TSA 
on genome editing efficiency of Cas9 protein-gRNA ribo-
nucleoprotein (RNP) in plant protoplasts were studied (Choi 
et al. 2021). In this study, a significant increase in the levels 
of histone H3 and H4 acetylation resulted in higher indel 
frequencies (3.3–3.8 times higher) compared to the DMSO 
control (Choi et al. 2021).

Prime editing and base editing, two of the latest vari-
ants of genome editing technologies, can introduce precise 
changes into the target genome at a single-base resolution 
(Molla et al. 2021). In a recent study in mammalian cells, 
HDACi have been employed to improve prime editing and 
base editing (N. Liu et al. 2022, b). In this study, HDACi 
enhanced cytosine base editing (CBE) and adenine base edit-
ing (ABE). Moreover, HDACi were also found to increase 
the purity of cytosine base editor products, accompanied by 
an enhanced acetylation of uracil DNA glycosylase (UNG) 
and UNG inhibitor (UGI) (N. Liu et al. 2022a, b). Similarly, 
HDACi can also be used in plants to increase prime edit-
ing and base editing efficiencies. However, we suggest that 
thorough phenotypic analysis of the genome edited plants 
should be carried out when HDACi are used to increase 
genome editing efficiency. Because HDACi may introduce 
some heritable epigenetic changes inadvertently even though 
the tissues for genome editing are exposed to HDACi only 
for a brief period of time. Other than using HADCi, a novel 
epigenetic strategy has recently been tested in human cells 
(Chen et al. 2022). It involves fusing Cas9 to PRDM9, a 
chromatin remodeling factor that deposits histone methyla-
tions H3K36me3 and H3K4me3 to mediate homologous 
recombination in human cells (Chen et  al. 2022). This 
strategy resulted in enhanced genome editing compared 
to one that does not use any chromatin remodeling factor. 
Some strategies being used to induce chromatin opening for 
increased access of the target genomic region are summa-
rized in Fig. 2B.

Transgene‑free genome editing

Typically, introduction of genes into a plant nuclear genome 
either through agrobacterium-mediated transformation 
or any other method involve random integration of vector 
sequences into the target genome. This kind of gene inte-
gration results in generation of transgenic plants, which has 
two disadvantages. First, integration of gene sequences can 
occasionally happen in a gene sequence, potentially resulting 
in disruption of a gene function (also called insertional inac-
tivation) (Lawrenson et al. 2015). Second, transgenic plants 
require regulatory clearance before they can be approved for 
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human consumption. Currently many countries including 
India have regulatory restrictions for commercial cultiva-
tion of transgenic crop plants. Given such restrictions, the 
development of transgene-free genome editing tools will be 
highly desirable. Through sexual segregation, transgene-free 
mutants could be obtained in sexually propagating plants 
(Molla et al. 2020), not in asexually propagated plants. In 
an effort to develop transgene-free genome editing tools 
for both sexually and asexually propagated plants, (Woo 
et al. 2015) delivered pre-assembled CRISPR-Cas9 ribo-
nucleoproteins into protoplasts of lettuce and successfully 
generated transgene-free mutant plants. Since RNP do not 
integrate into the genome, RNP-mediated genome editing 
can generate transgene-free mutants with ease. Though this 
technology could be highly useful, it is either not feasible 
or highly challenging to isolate and culture protoplasts from 
all plant species, especially in most monocots that consti-
tute the majority of cereal crop plants. Later, (Zhang et al. 
2016) published a similar yet improved strategy to gener-
ate transgene-free genome-edited plants in T0 generation. 
In this method, the CRISPR/Cas9 constructs as DNA or 
RNA transcripts were transiently expressed in callus cells 
of wheat using particle bombardment, followed by regen-
eration of plants in selection free media. Selection-free 
media allow the regeneration of calli lacking integrated 
CRISPR-Cas9 DNA cassettes. The study reports 43.8–61.9% 
of T0 mutants free from CRISPR-Cas9 integration. In the 
same study, when in vitro-transcribed Cas9 mRNA and 
guide RNA were bombarded, editing efficiency of 1.1% 
was observed. Using this method, the authors were able 
to develop sufficient number of transgene-free gene-edited 
plants in the T0 generation itself, substantially reducing the 
time and resource consumption compared to genome edit-
ing approaches that result in the generation of stable trans-
genic plants (Zhang et al. 2016). The same group reported 
another transgene-free strategy in wheat where in CRISPR/
Cas9 ribonucleoproteins (RNPs) comprising the purified 
Cas9 protein and an in vitro-transcribed sgRNA were deliv-
ered into protoplasts or embryos using particle bombardment 
or polyethylene glycol (PEG)-mediated transfection (Liang 
et al. 2017). This method also yielded homozygous mutants 
in the T0 generation itself with either no off-targets (when 
wheat embryos were used) or significantly reduced off-target 
mutations (fivefold lower) compared to plasmid-mediated 
expression of CRISPR-Cas9 components (Liang et al. 2017). 
Similar reduction in off-target mutations was also observed 
in human cells when CRISPR/Cas9 RNPs were delivered 
(Kim et al. 2014). One of the reasons for reduced off-targets 
in this method is that CRISPR/Cas9 RNP complex degrade 
quickly in vivo. Alternatively, modified Cas proteins such 
as Dead cas9 (dcas9) (Mali et al. 2013), SpCas9n (Cas9n) 
(Cong et al. 2013), and FokI Cas9 (fCas9) (Guilinger et al. 
2014) have also been used to reduce the off-target mutations.

A recent study has demonstrated another transgene-free 
gene delivery method, which employs high aspect ratio 
nanomaterials (e.g., carbon nanotubes) to deliver genetic 
material into mature plants belonging to various species 
(Demirer et al. 2019). Of these, three (Nicotiana benthami-
ana, Eruca sativa, and Gossypium hirsutum) are dicots and 
one (Triticum aestivum) is a monocot. Nanomaterials used 
in this passive genetic material delivery method not only 
facilitated biomolecule transport into plant cells but also 
protected polynucleotides from nuclease degradation. This 
method can similarly be used to deliver genetic material for 
genome editing. The transgene-free genome editing strate-
gies that we discussed above are summarized in Fig. 2C.

Induction of abiotic stress to improve genome 
editing efficiency

Temperature affects various biological processes, includ-
ing enzyme kinetics, chromatin structure, and DNA repair 
pathways (Daniel et al. 2001; Oei et al. 2015; Pecinka et al. 
2010). Therefore, it was hypothesized that modulating tem-
perature at which plants are grown can potentially impact 
the efficiency of CRISPR/Cas9-medated in genome editing. 
In support of this hypothesis, (LeBlanc et al. 2018) dem-
onstrated enhanced CRISPR-induced mutations in Arabi-
dopsis by growing them at 37 °C instead of the standard 
temperature (22 °C). In their study, targeted mutagenesis 
was increased by ~ fivefold in somatic tissues and ~ 100-
fold in the germline upon heat treatment. They also showed 
a ~ three-fold increase in sgRNA levels, which could enhance 
mutation rates if sgRNA levels are limiting in plants grown 
at 22 °C. As the optimal growth temperature for Streptococ-
cus pyogenes, the source of SpCas9 used for the genome 
editing, is 40 °C, the authors speculated that the in vivo 
SpCas9 activity in plants could be higher at 37 °C, than 
22 °C. The authors also found a similar increase in muta-
tion rates in Citrus plants due to high temperature (LeBlanc 
et al. 2018).

In another study, a simplified heat-stress assay was used 
in Tobacco and Arabidopsis to increase frequencies of indels 
and base editing efficiency but not HDR (Blomme et al. 
2022). Interestingly, similar enhanced rates of CRISPR-
Cas9-mediated mutagenesis has also been observed in 
human cell lines, accompanied by increased sgRNA levels 
and higher Cas9 activity (Xiang et al. 2017). However, an 
increase in off-target mutation rates has also been observed 
with higher temperatures both in plants and human cell ines 
(LeBlanc et al. 2018; Xiang et al. 2017).

Although the underlying cause of increased mutagenesis 
with CRISPR nucleases at higher temperatures has mainly 
been explained by an increase in nuclease and sgRNA activ-
ity, the precise underlying mechanisms still remain to be 
understood.
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Recently, other abiotic stresses such as salinity and 
osmotic stress have been explored to enhance genome edit-
ing efficiency. In one such study, (Ye et al. 2023) trans-
formed GFP as a marker and edited it in the presence of 
sodium chloride and mannitol, which were used as abiotic 
stressors. The study found that NaCl and mannitol treatments 
increased the rate of genetic transformation and CRISPR/
Cas9-mediated genome editing in potato, but inhibited root 
regeneration under higher concentrations of NaCl. How-
ever, all regenerated roots had mutations with no off-tar-
gets. Mechanistically, salt and osmotic stresses are known to 
cause ROS outburst, which in turn can cause DNA damage 
(Chiera et al. 2008; Raja et al. 2017). As a consequence, the 
cells could potentially upregulate NHEJ pathway to repair 
the damaged DNA. This potential upregulation in NHEJ 
pathway could play a role in increasing genome editing effi-
ciecny (Ye et al. 2023). However, further investigations are 
required to understand the precise mechanisms underlying 
abiotic stress-enhanced genome editing efficiency.

Modulation of DSB repair pathways

RAD51 is a conserved eukaryotic protein that is responsi-
ble for an essential protein for homologous recombination-
mediated DSB repair (Choi et al. 2020; Hong et al. 2019). 
A recent study in human cell lines has shown that consti-
tutive expression of RAD51 could enhance the efficiency 
of CRISPR-Cas9-mediated gene knock-out and knock-in 
processes. Given the conservation of RAD51 gene family 
in plants (Lin et al. 2006; Suwaki et al. 2011), constitu-
tive expression of RAD51 can be explored in plants to also 
enhance genome editing efficiency.

In another strategy, (Wimberger et al. 2023) inhibited the 
endogenous DNA-dependent protein kinase (DNA-PK) and 
DNA polymerase theta (Polϴ) to improve the integration 
efficiency and the precision of genome editing in human 
cell lines. DNA-PK is a critical component of NHEJ path-
way, and Polϴ is a DNA polymerase enzyme involved in 
alternative end-joining (alt-EJ) mechanism to repair DSBs 
when non-homologous end joining (NHEJ) is unavailable. 
(Wimberger et al. 2023) identified inhibitors of DNA-PK 
and (Polϴ) as potent regulators of DSB repair pathway 
selection favoring HDR over EJ. DNA PK is conserved in 
plants and therefore, similar strategy of DNA PK inhibition 
can be explored in plants to enhance HDR efficiency.

Lastly, we highlight a reporter-based screening approach 
for high-throughput identification of small molecules 
(chemical compounds) that enhances efficiency of all three 
kinds (SDN1, SDN2, and SDN3) of genome editing (Yu 
et al. 2015). This study also found that a small molecule that 
inhibits HDR can enhance frame shift insertion and dele-
tion (indel) mutations. Small molecules that modules SDN1, 

SDN2, and SDN3 in plants can also be identified through 
similar screening approaches.

Other strategies

Mutating the EFR receptor which detects the bacterial 
EF-Tu, a component of pathogen-associated molecular 
patterns (PAMPs), resulted in an enhanced Agrobacte-
rium-mediated T-DNA transformation (Zipfel et al. 2006). 
Although several crop plant species, other than those 
belonging to Brassicaceae, appear to lack an ortholog for 
EFR gene in their genomes (Zipfel et al. 2006), their func-
tional gene equivalent(s) may still be existing, which needs 
to be investigated.

To effectively deliver genetic material into monocot plant 
species, Ziemienowicz et al. (2012) designed Agrobacterium 
Transfer DNA-derived nano-complex. In this method, an 
in vitro-prepared nano-complex consisting of Agrobacte-
rium-derived transfer DNA (T-DNA), its virulence protein 
D2 (VirD2), and recombination protein A (RecA from E. 
coli) were delivered to triticale microspores with the help 
of a Tat2 cell-penetrating peptide (Tat2 CPP). GE constructs 
can be delivered into monocots in a similar fashion.

Lately, the CRISPR/Cpf1 system from Francisella 
novicida has been emerging as a desirable alternative to 
CRISPR/Cas9 (Bin Moon et al. 2018). Cpf1 (also known as 
Cas12a) is a smaller endonuclease than Cas9, and it requires 
shorter CRISPR RNA (crRNA) to function effectively (Liu 
et al. 2017). Cpf1 is a single-stranded RNA-guided effector 
nuclease protein, which binds upstream of PAM and intro-
duces 5 base pair (bp) staggered cuts into the DNA at the 
proximal end of the PAM, far away from the seed region. 
During the conversion of Cpf1-associated CRISPR repeats 
to mature crRNAs, the CRISPR/Cpf1 system does not 
require trans-activating crRNA (tracrRNA) (Zetsche et al. 
2015). CRISPR/Cpf1 system successfully cleaves target 
DNA conveniently close to a short T-rich PAM, whereas 
Cas9 only works with a G-rich PAM.

Recently, a hyper-compact genome editor called CRISPR/
Casϕ has been identified, which uses a single active site for 
both crRNA processing and crRNA-guided DNA cleavage 
for targeting foreign nucleic acids (Pausch et al. 2020). This 
strategy has been shown to be effective in in vitro, animal, 
and plant systems with greater target recognition potential 
than other CRISPR/Cas proteins. Moreover, the molecular 
weight of Casϕ protein is approximately half of the Cas9 and 
Cas12a, which makes it more convenient for delivery into 
host organisms (Pausch et al. 2020). CRISPR/Casϕ system 
can therefore serve as an effective alternative to CRISPR/
Cas system for genome editing. Similarly efforts have been 
made to genetically engineer Cas nucleases to improve their 
cleavage efficiency. For example, (McGaw et al. 2022) used 
a high-throughput mutational scanning method to engineer 
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Cas12i2 (the type V CRISPR-Cas system), and found indel-
enhancing single amino acid substitutions that enhanced 
on-target activity in immortalized and primary human cells 
while maintaining type V CRISPR-Cas systems' high speci-
ficity. ABR-001, an engineered Cas12i2 variant, can edit 
genomes with excellent efficiency and specificity, making it 
a promising in vivo gene editor (McGaw et al. 2022). ABR-
001 could be explored in plant genome editing endeavors to 
for similar enhancement of editing efficiency.

Conclusions

Genome editing technologies comprise site-directed 
mutagenesis of genomes, involving alterations of few bases 
to replacement of one or more gene sequences. CRISPR-
Cas9-based genome editing has been revolutionizing the 
field of plant biotechnology. We expect that several emerg-
ing strategies to improve CRISPR-Cas9-based genome 
editing efficiency that we discussed in this review would 
serve as a valuable source of information for genome edi-
tors. Given the minimal biosafety regulations for SDN1 and 
SDN2 genome edited crop plants in India and several other 
countries, genome editing-mediated crop plant improvement 
is expected to gain pace in the coming years.
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