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Abstract
The increasing demand for food production with limited resources is creating 

a frightening situation to meet the hunger requirement of the world population. 
A range of biotic and abiotic stresses significantly affect crop productivity thereby 
widening the gap between demand and supply. Modern crop breeding involving 
the techniques and strategies of molecular biology has always been considered 
as one of the best approaches for creation of variability in the crop species to 
enhance the yield potentials. Transgenic techniques like gene introgression can 
supplement the conventional breeding methods for speedy development of 
desirable crop genotypes. Despite availability of modern techniques of plant 
improvement, identification and isolation of potential genes remains a major 
bottleneck. Crop genetic resources including wild relatives and landraces, which 
have survived all kinds of environmental challenges over centuries, can constitute 
a major reservoir of these potential genes/QTLs for  creation of variability and 
enhance the yield potential of crops. Controlled inter-specific movement of genes 
has the potential to accelerate the pace of crop evolution by overcoming the 
limitations of conventional crossing like incompatibility issues and linkage drag. 
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The present paper reviews the utilization of crop genetic resources for gene 
introgression in different crops.

Key words: Introgression; adaptation; crop wild relatives; cereal; legume; 
tree

Introduction 
Agriculture is the source of income to about 75 per cent population of the 

world. Therefore, improvement in the field of agriculture in terms of high-
yielding and climate-resilient varieties is essential to enhance livelihood quality. 
The improvements in the field of agriculture could be possible due to the search 
of novel genes and potential populations having useful traits1 along with their 
introgression. Introgression of beneficial characteristics into crop varieties has 
always been an important aspect of plant breeding, nevertheless, the magnitude 
and effect of natural or farmer-assisted introgression requires to be determined. 
The advancement in genomics and related techniques has opened new avenues 
to introgress the beneficial genes into the desired crops remained in the 
secondary/tertiary genepools. Presence of diversity in the genetic material gives 
an opportunity to improve or develop novel varieties not only for improved 
productivity, adaptability, nutritional quality but also for providing resistance 
towards pests, diseases and abiotic stresses (FAO 2007)2. Underutilized or 
neglected species, grown without any inputs on the marginal land, may also be 
encouraged for the creation of genetic amelioration3. These species may be 
exploited to assess their crossing compatibility, yield capability and genetic 
variability for the traits of agronomic importance. 

Climate change has affected all the spheres of the earth including human 
health, agriculture, natural resources resulting into serious threat to economic 
development. The increase in temperature may enhance the CO2 concentrations, 
incidence and severity of cyclones, rainfall, floods along with the occurrence of 
droughts4. When it has well established that changing environmental and climatic 
conditions may impose serious threats to the variability of cultivated crops as 
well as crop wild relatives (CWRs), it is essential to take up serious investigations 
in respect to the genetic makeup and or genetic erosion due to environmental 
aberrations. Crop genetic resources (CGRs) have the potential to face the 
challenges caused by climate change in terms of food security and sustainability 
(Fig. 1). Several underutilized plant species are having desired genes that may be 
utilized in crop improvement programmes and in the development of varieties 
having adaptation to varied climatic stresses. CWRs and landraces may be the 
probable basis for creation of resistance against several pathogens and pests5. 
Varieties and genetic materials having higher yield potentials and enhanced 
tolerance toward biotic and abiotic stresses has been developed over the period 
with the help of modern scientific interventions (Fig. 1); however, the climatic 
changes have imposed critical challenges for crop improvement programme and 
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requires extra attempts in terms of techniques and strategies to develop more 
adapted genetic resources for farmers6, particularly for the more susceptible 
regions of developing countries.

Problems associated with narrow genetic variability 
There is a significant decline in the variability of agricultural plants. 

According to an estimate, out of thirty thousand edible plant species, merely 30 
species including three major crops (Zea mays, Triticum aestivum and Oryza 
sativa) are used to fulfil the world’s food requirement2. The limited interspecific 
and intraspecific genetic variability within the crops may impose serious 
problems of insects, pests and diseases. Infestation caused by Phytophthora 
infestans in the Solanum tuberosum during 1845-1846 in the Western Europe, 
havoc created by Bipolaris maydis with maize crop during 1970 in the USA7, 
outbreak of blight caused by Fusarium graminearum in wheat and barley in 
Western USA during 1994-1996, are some of the examples of the serious 
problems caused due to lesser variability in the genetic materials. Besides these, 
susceptibility towards abiotic stress, quality concerns and male sterility8,9 are 
also some of the issues associated with the lack of genetic variability in the crops. 

Crop genetic resources 
CGRs are basically the genetic materials including new varieties, older 

genetic materials, landraces, wild or weedy species, elite line or mutants10. They 
may serve as the significant biological foundation for food security. Crop 
productivity has strong relations with the environment and genetic makeup. The 
CGRs and diversity therein need to be exploited properly to cope up with the 
future challenges2. Genetic attrition is becoming one of the major problems 
associated with genetic resources. The issue has been globally recognized and 
efforts are being made to conserve the CGRs resulting into very good assemblage 
of genetic material however, some crops could not get proper attentions11. CGRs 
having higher migration capabilities endure better as compared to those that 
have lower migration potentials12. Due to lack of potential or new variants, 
secondary genepool denoted by the wild relatives of the crops open an avenue to 
offer genes of traits of importance13.           

Availability of genetic information in respect to genetic resources is of prime 
importance. The comparative performance of genotypes differs from one 
environment to another and it can be articulated as a linear function of an 
environmental variable14,15. Therefore, understanding of genotype and 
environmental (G×E) interactions is essential for the assessment of a variety for 
the desired trait. High-yielding stable varieties have great significance in several 
crops for cultivation under variable environmental conditions16-18. 

Assessment of genetic response towards individual stress is more effective 
as compared to combined stresses19 as it is governed by multiple genes. The 
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search of climate resilient genetic material ends upon the CGRs. A combination of 
allele mining, gene prospecting and pre-breeding may be some of the better 
aspects to maximize the utilization of CGRs. Genetic improvement in several 
crops has been attributed to higher yields and simultaneously higher income to 
the stakeholders20. Focused identification of germplasm strategy can be a better 
approach to identifying suitable genetic resources and detecting sources of 
resistance in various crops under the changing climatic scenario21. Besides this, 
the composite genetic combinations offer higher tolerance towards abiotic 
stresses22. The characteristics having resistance towards environmental 
aberrations may have positive impact on the enhancement of productivity of 
crops. It is evident from the facts that the short-growth habit traits obtained from 
the cultivars at farmers’ field in Asia were incorporated with other potential 
traits to develop semi-dwarf varieties of cereals such as rice and wheat. The 
approach revealed great success in view of distinctively increased yield potential 
and led to the green revolution. 

Crop wild relatives
With the due course of evolution, the plants showing higher yield potential 

and better characteristics became the choice of cultivation. CWRs are important 
genetic resources for climate change adaptation and provide genes having 
several important traits for biotic and abiotic resistance23. Utilization of multiple 
genes from CWRs and several other organisms to acquire maximum climate 
resilience has always been considered complementary.  CWRs are a wealth of 
beneficial genes but their utilization particularly associated with the tertiary 
gene pool is inadequate and if not managed, will face extinction24. The same is the 
case with the landraces cultivated by the farmers. It may be due to cross 
incompatibility and or pairing limitation between the chromosomes of wild and 
domesticated species25 leading to non-germination of pollen grains, non-fusion 
of male and female gametes or failure of pollen tube26. Besides this, the alliance of 
unwanted genes with the desired genes also known as ‘Linkage drag’ is another 
major problem associated with the utilization of CWRs for gene introgression in 
domesticated species especially diploid crops27. One of the best examples of 
genetic imbalance is the observation of negative impacts on the yield and quality 
of wheat28 when genes other than desired gene (Sr39 from Aegilops speltoides 
Tauschii) were introgressed to the foreign chromatin. In view of this, it was 
suggested to remove the extra chromatin of A. speltoides adjoining to Sr39 gene 
to improve the potential of the gene to control the lineage (Ug99) of wheat stem 
rust29.
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Figure 1: Crop genetic resources, their utilization and applications in agriculture

Management of CGRs and genetic tools 
Conservation and management of genetic resources have been a common 

practice followed by mankind for centuries. The changing climatic conditions 
may impose serious threats to the CGRs and therefore, their management 
requires a systematic approach. On-farm conservation of CGRs having variable 
crops, landraces or traditionally grown materials by the farmers is one of the 
best management practices of CGRs30, which permits the incorporation of both 
natural and artificial selections in agriculture. In-situ conservation harbours the 
maximum genetic diversity of plants and is the best source for initially 
domesticated crops. The ex-situ conservation possesses higher quantities of 
genetic material that may include improved germplasms, CWRs, landraces etc20.

Genomic studies provide an important insight with respect to finding the 
stress response of a particular crop and also help in searching the genes/alleles/
QTLs within CWRs that may be exploited for creation of variability in the 
cultivated crops. Transfer of important genes in a crop through genetic 
manipulation has always been a debatable issue but development in the field of 
plant genomics provides better insight for crop improvement through 
identification of the presence of diversity at species as well as gene level31,32. DNA 
fingerprinting, mapping of genes, QTLs and evolutionary data are the tools that 
provide better understanding for the identification of a specific trait33.
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With the developments in next-generation sequencing, a higher number of 
genetic markers including single nucleotide polymorphisms (SNPs), insertion-
deletion-substitution etc. has been identified even in several neglected crops34. 
The next-generation sequencing along with the genome-wide association studies 
provides better insight with respect to the location of desired genes, alleles and 
or QTLs35.  Several new genes have evolved naturally over the period and that 
have been rearranged according to the environmental conditions, CWRs are the 
best examples in this context. With the help of genomic tools, the desired gene 
can be identified and also can be incorporated into the subjected germplasm 
leading to the development of improved genetic material having enhanced 
potential over the environment.  Genetic amalgamation from varied sources in 
view of abiotic stresses may be more beneficial in the coming days22. For example, 
traits incorporated from wild species of rice (Oryza rufipogon) to cultivated rice 
varieties exhibited higher survival potential in the submergence of plants under 
deep water or under a flooded environment for a longer period. 

Gene introgression in plants
Plant hybridization has always been a subject of great interest for geneticists 

and it has occupied a huge space in the literature from the start of the 20th 
century. Introgression was discussed initially by DuRietz36 and Marsden-Jones37. 
The term ‘Introgression’ coined by Anderson and Hubricht38 is the incorporation 
of genes from one species to another species by means of frequent crossing 
between hybrid and parental species. Despite a few bottlenecks like linkage drag, 
inadequate complementation etc. introgression breeding has been looked at as a 
potential method in the widening of genetic variability of the genetic resources. 
Renaissance of the work done by Mendel and its utilization in plant breeding 
facilitated the process of introgression of genes in a more systematic, rather more 
controlled way. The introgression of genes leads to genetic diversity and 
encourages the species to acquire or develop adaptation in the particular 
environment39. However, there was a contradictory suggestion at that time that 
the progenies that resulted by the hybrids were limited and or likely to be 
temporary. Therefore, in the absence of adequate confirmation in respect to plant 
evolution, introgression or hybridization was considered doubtful40. With the 
advent of molecular techniques, issues related to inherited genes, their detection 
and quantification could be possible and our understanding with respect to 
introgression has been improved130.

Mutagenesis has been widely applied for the creation of required genetic 
variability in crops41. Presently, targeted mutagenesis is induced with the help of 
gene editing tools like zinc finger nucleases42, transcription activator-like effector 
nucleases43, engineered homing endonucleases or meganucleases44, clustered 
regularly interspaced short palindromic repeats (CRISPR), CRISPR-associated45. 
Various advantages and disadvantages in terms of efficiency of targeting, ease of 
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construction, cost etc. have been ascertained for each technique46. Genome 
editing has been successfully demonstrated in different plant species such as 
rice, wheat etc.47. Genome engineering is getting more importance parallel to the 
conventional plant breeding and transgenic approaches to improve several 
characteristics for sustainable agriculture47. Introgression using molecular 
techniques has been attempted in different crops such as Brassica48, Zea49, 
Oryza50, Potato51 and Sunflower52. Genes or QTLs introgressed for different 
potential characteristics in different cereal crops are presented in Table 1.

Table 1: Genes/QTLs introgressed for different potential characteristics in 
different cereal crops

Crop Gene/QTL Target trait References
Wheat Sr31/Yr9/Lr26/Pm9 Resistance against fungal disease 53

LrM Leaf rust resistance 54
Ug99 Linage Resistance against all stem rusts 55
CDH gene, BADH Tolerance to salt, drought and cold 56

TaPIMP1 Resistance to the fungal pathogen 
and drought stresses

57

TiMYB2R-1 Resistance to the take-all disease 58
Ta-Mlo RC24 Resistance to powdery mildew and 

stripe rust disease
59

SN1 Resistance to take-all pathogen 60
KN2 Tolerance to freezing stress 61
TaERF3 Adaptation towards salt and 

drought stresses
62

Mildew-resistance locus 
gene

Resistance to powdery mildew 63

NIb8 gene Resistance to wheat yellow mosaic 
virus

64

Rice Sub1 Survivability under submergence 65
Dro-1 Drought tolerance 66
GSV strain1 Grassy stunt virus 67
Pi-b and Pi-kh Blast resistance 68

Millet SiDREB2 Drought resistance 69
Maize acetyl-CoA carboxylase 

(ACC1)
herbicide resistance 70

o2 gene Quality protein maize (QPM) 71
Phol1, 2a Nutrition 72
o1, Orp2, Sbe1, Ss5, Su4 Grain development 73
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Gene introgression in legumes
Legumes are generally grown on marginal lands with limited inputs and are, 

therefore, more prone to climatic changes in comparison to other crops. In view 
of this, gene introgression has got significant success in the field of legume 
breeding. The CWRs, landraces and non-native genotypes provide immense 
opportunities for introgression of variability and broadening of the genetic base 
in the available genetic materials of legumes. Gene introgression from wild 
relatives has been effectively utilized in several legumes viz., Cicer arietinum, 
Cajanus cajan, Arachis hypogaea, Lens culinaris, Vigna radiata, V. mungo, Phaseolus 
vulgaris etc. for development of better genetic materials and to improve their 
performance. In chickpeas, crosses between C. arietinum and C. echinospermum 
were performed74 and their diversity has been exploited to transfer beneficial 
characteristics such as disease resistance, cold tolerance in the domesticated 
chickpea75,76. Interspecific crosses have effectively been performed in several 
species of chickpea using C. arietinum77. These exhibited effective introgression 
of beneficial genes into Cicer species. Interspecific hybridization of Phaseolus 
vulgaris was performed with the wild species of Phaseolus and white mold-
resistant line was developed from P. costaricensis. Several germplasm lines were 
developed by different workers78 by crossing the domesticated and wild-type 
bean germplasm.

Traits of interest including disease resistance and tolerance towards salinity 
have been identified in wild soybean species. QTL analysis in wild relatives of 
soybean revealed that it has the potential to increase protein content in cultivated 
soybean79. Lentil CWRs have been exploited in the breeding programme and 
early maturing and biofortified lines of lentil was developed80. The hybrids 
developed with the crossing of cultivated lentils and Lens ervoides resulted into 
the introgression of resistance in the domesticated species against Orobanche 
crenata and anthracnose81. L. orientalis and L. ervoides have been successfully 
utilized for the introgression of several agronomically important characteristics 
along with disease resistance and biofortification in the pre-bred lines. These 
lines exhibited higher micronutrient content and early maturity82. In pigeonpea, 
seven cytoplasmic male sterility (CMS) systems have been developed and out of 
these, six were developed using the wild species of secondary genepool while 7th 
system was developed using a member (Cajanus platycarpus) of tertiary 
genepool83. Hybridization between mung bean and urd bean showed tolerance 
against biotic and abiotic stresses, non-shattering of pods, synchronicity in 
podding etc.84. Hybridization between V. radiata and V. umbellata was performed 
and hybrids having transitional morphological traits along with resistance 
against MYMV were obtained. Some of the early maturing varieties in mung bean 
as well as in Urd bean are the important outcome of hybridization between mung 
bean and Urd bean85.    
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An important gene having heat and drought resistance potential has been 
reported in P. vulgaris86. Several genetic maps based on intra and interspecific 
distance have been constructed for chickpea87. Besides this, regions of the 
genome that are accountable for biotic88, abiotic stresses89 and several 
agronomically important characteristics90 has also been identified in chickpea. 
Several QTLs in peanut having tolerance against abiotic stresses91, disease 
resistance92 and better oil quality93 have been recognized. The available genetic 
information and resources may be exploited in the crop improvement with the 
help of introgression of genes in the breeding programme. Potential wild species 
selected for gene introgression have been listed in Table 2.

Table 2: Potential wild species for gene introgression in legumes

Crop Species  Target trait References
C. echinospermum Ascochyta blight 94
C. judaicum Ascochyta blight 94
C. reticulatum Pratylenchus thornei 95
C. echinospermum; C. oxyodon Drought 94
C. yamashitae Drought 96
C. echinospermum Phytophthora root 

rot
97

Lentil L. culinaris ssp. orientalis, 

L. ervoides

Fusarium wilt 98

L. culinaris Medikus subsp. orientalis, L. 
nigricans, 

L. lamottei

Bruchids 99

L. ervoides Powdery mildew and 
Fusarium wilt

98

Several 
Vigna 
species

V. angularis Heterodera glycines 100
V. luteola, V. marina, 

V. vexillata, V. riukiuensis, 

V. trilobata, V. vexillata, 

V. marina subsp. oblonga,

V. luteola, V. unguiculata, 

V. nakashimae, and V. marina

Salt stress 101-104

Field pea P. sativum subsp. elatius Seed protease 
inhibitors

105

P. elatius;P. fulvum Pulse beetle 106
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Crop Species  Target trait References
Pigeonpea C. acutifolius, C. cinereus, 

C. lanceolatus, C. latisepalus

Heat, drought 107

C. confertiflorus, C. mollis, 

C. platycarpus, C. trinervius

Cold 107

C. sericeus, C. lineatus High precipitation, 
waterlogging

107

C. scarabaeoides Insect resistance 108
C. sericeus Pod fly 109

Common 
bean

P. acutifolius Abiotic stresses 110, 111

Cowpea V. unguiculata group sesquipedalis Heat and salinity 103

Gene introgression in tree species
Trees are perennials that survive for a longer period compared to cereals and 

legumes. The dispersal of tree species is anticipated to change due to the effect of 
climate change, biotic and abiotic stresses. Gene introgression plays an important 
role in the novel genetic modification that helps the tree species to survive under 
the changed environmental conditions. However, its understandings with respect 
to plant species are comparatively less. Efforts in terms of domestication and 
breeding in tree species are lesser as compared to other agricultural crops. The 
interspecific hybridization offers a base for the genetic variability by the mean of 
introgression of genes/alleles between inter-fertile species112 and the 
development of more potential species113.        

The inter-species introgression is often observed in sympatric tree species 
that influence the addition, substitution and deletion of bases in the DNA 
fragments and may stimulate the adoption process of the species. Evidence of 
natural hybridization has been reported in the genus Eriobotrya suggesting that 
E. prinoides var. Daduheensis is the outcome of hybridization between E. japonica 
and E. prinoides114. Similarly, the genetic material of the natural hybrid poplar 
Populus × Jrtyschensis was reported to be influenced by two distantly related 
species P. nigra and P. laurifolia115. The species Juglans regia and J. cathayensis 
exhibited resilient reproductive isolation along with exceptional occurrence of 
gene introgression116.

Two (PjMT1, PjMT2) metallothionein (MT) genes were isolated from Prosopis 
juliflora. The genes were cloned on pCAMBIA1301 and after cloning, gene 
introgression was done in tobacco to study the tolerance against heavy metals. 
The study revealed nine times and five times higher cadmium accretions in the 
transgenic plants of tobacco developed by PjMT1 and PjMT2 genes, respectively 
as compared to non-transgenic tobacco plants along with higher accumulation of 
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chlorophyll content117. An example of ancient gene introgression between two 
conifers (Cupressus gigantea to its relative species C. duclouxiana) was presented 
by Ma et al.118. Cross genera transferability of microsatellite markers from 
Incarville asinensis, I. mairei, Jacaranda copaia, Tabebuia aurea and Arrabidaea 
chica to  Tecomella undulata  was undertaken119,120 and about 40.58 per cent 
transferability was recorded. The study revealed that the transferability of SSR 
motifs having dinucleotide repeats, trinucleotide repeats and complex nucleotide 
sequences were higher than the penta-nucleotide-based or hexa-nucleotide-
based repeats. Utilization of genetic resources from con-familiar species may be 
useful for the assessment of genetic diversity and preparation of genetic maps in 
tree species. Plant growth regulators were also utilized to induce genetic 
diversity, especially in fruit trees121.

Genetic as well as morphological diversity of different Sorbus species 
comprising of S. aria (domesticated species), S. intermedia (foreign species) and 
S. carpatica (hybrid species) was assessed122 and hybridization between tested 
species were recorded with the confirmation of its hybrid species (S. carpatica). 
Oaks are exploited to understand the adoption mechanism and gene 
introgression. Hybridization and introgression in the populations of oak species 
were studied123 and 361 alleles in all the species were identified. A better 
understanding of life antiquity and reproductive mechanism may be an important 
factor for the determination of gene introgression in tree species.   

Conclusions
CGRs are the fundamental material for sustainable development in 

agriculture. Parents having variable and improved characteristics are utilized for 
enhancing the potential of desired traits124,125. Genomics-aided approaches for 
the development of genotypes may considerably help in the reduction of the 
negative effects of climate change on agriculture126,127. Advancements in the 
technologies such as transgene-based, molecular breeding or genomic-assisted 
breeding have expedited the development of potential crops for crop 
improvement128,129. Several underutilized or neglected plant species have been 
reported with useful genes/QTLs. The genes associated with the desired traits in 
these plant species may be decoded and introgressed in the domesticated plant 
species. The genetic base of domesticated varieties should be widened in such a 
way that they can acquire more resistance toward abiotic and biotic stresses, 
seed quality and higher yields. DNA sequencing and genomic tools may be useful 
for the detection of desired genes and or governing regions with respect to higher 
yields as well as stress resilience. Hybridization and utilization of exotic 
germplasms and CWRs may be utilized in the improvement of several crops. 
Increasing the pervasive crossing between domesticated species and their wild 
relatives may provide improved and precise introgression of genes/alleles of 
choice. Introgression of genes from wild genetic resources has been fruitful in 
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several cereals and legumes and resulted in the development of several varieties, 
breeding and male sterile lines that may be exploited in the planning of breeding 
programmes.
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