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ABSTRACT

Groundwater modeling is a crucial tool for simulating groundwater level behavior under 
climate change scenarios, and for studying the effects of water management strategies 
on sustainability of groundwater resources. In this study, two types of models, namely, 
a physical-based numerical model called MODFLOW, and a data-driven model called 
Genetic Algorithm-based Multilayer Perceptron (MLP-GA), were evaluated for the 
reliable predictions of groundwater levels in the semi-arid region of the Karnal district, 
Haryana. Seven hybrid MLP-GA models were developed with different combinations of 
input variables such as rainfall, crop evapotranspiration, deep percolation, and irrigation 
water requirement. The numerical model and hybrid MLP-GA models were calibrated 
and validated using groundwater-level data from the pre-monsoon period. Among the 
hybrid models, the model M-1 with four input variables (crop evapotranspiration, rainfall, 
deep percolation, and applied irrigation water) and 4-29-1 (four input nodes, 29 neurons 
in the hidden layer, and one output node) model architecture performed the best, but the 
numerical model showed superiority over the MLP-GA models. The numerical model 
and M-1 model were used to predict future groundwater levels under projected climate 
change scenario. According to the numerical model, under RCP4.5 scenario, groundwater 
levels in the study area were projected to decline by 7.7 meters by the year 2039 compared 
to the reference year of 2015. The M-1 model predicted decline of 5.0 meter by the year 
2039. The study concluded that all input variables are essential for accurately simulating 
groundwater levels using MLP-GA models, and that the numerical model is more reliable 
for assessing the impact of climate change on groundwater behavior for future periods. 

 

1.  INTRODUCTION

Groundwater is a key natural resource on the earth that 
performs an important role to meet the water demand 
for different sectors namely, residential, commercial, 
and agricultural uses. In several areas of the world, 
groundwater supplies have been over-exploited 
(Konikow & Kendy, 2005), especially in arid and 
semi-arid regions where rainfall is highly variable and 

lower than evapotranspiration. North western region of 
India, particularly the States of Haryana and Punjab, has 
reported decline in groundwater levels (0.33 to 0.88 m 
year-1) in the last few decades due to withdrawal of large 
quantities of groundwater than the replenishment of the 
groundwater resources (CGWB, 2006; Narjary et al., 
2014). This is mainly due to the intensive cultivation 
of crops such as rice and wheat, which are primarily 
irrigated using groundwater (Jalota et al., 2018). Apart 
from that, subsidization of electric charges by state 
governments also induces farmers to over-irrigate the 0256-6524/©2024 ISAE
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crops which might be another reason for over-use of 
groundwater resources. The Intergovernmental Panel 
on Climate Change (IPCC) has projected an increase 
in temperature due to global warming (IPCC, 2013). 
A limited warming (below 2°C) with strong emission 
reductions is projected under RCP2.6, whereas a 
moderate warming (1.5°C to 2.5°C) with stabilization 
efforts is projected under RCP4.5. A higher warming 
(2°C to 3.5°C) with slower emission declines under 
RCP6.0 and a severe warming (exceeding 4°C) without 
mitigation under RCP8.5 pose grave risks to ecosystems 
and societies. Similarly, rainfall amount and its intensity 
are also projected to increase in future periods (IPCC, 
2013). The impact of temperature rise and often erratic 
rainfall on water demand and water availability can be 
explained by two steps related to climate. Firstly, crop 
evapotranspiration is predicted to increase in the future 
by feeble to a significant level depending on different 
climate scenarios due to increases in temperature 
across the world (Gade & Khedkar, 2023). Secondly, 
an increase in total rainfall is also expected, however, 
heatwaves, heavy rainfall, and droughts would be more 
frequent and intense which would lead to an increase 
in crop water requirement (Mahmoud et al., 2023). 
However, increasing atmospheric CO2 concentration 
can decrease crop evapotranspiration due to a decrease 
in stomatal conductance (Ficklin et al., 2010; Nand et 
al., 2021). For example, Kumar et al. (2023) reported 
a reduction in rice and wheat crop evapotranspiration 
under increasing CO2 concentration scenarios in the 
semi-arid region of Karnal district. Similar outcomes 
were reported by other researchers (Yang & Lei, 2022; 
Lenka. et al, 2020; Islam et al., 2012). There would 
be higher runoff yield rather than effective for crops 
due to erratic and heavy rainfall events (Anonymous, 
2017). Thus, more frequent irrigation would be needed 
in future than in the past. This irrigation water demand 
could be met by either surface or groundwater resources 
depending on its availability. In semi-arid region, a large 
proportion of crop water demand is met by groundwater 
resources that resulted in the depletion of aquifers and 
tending to dry because of less replenishment/recharge 
of groundwater. For example, in the Karnal district 
which falls in the semi-arid region of the Indo-Gangetic 
Plain, 514 dry wells were identified (CGWB, 2013). 
In the Karnal district, the groundwater development is 
about 140% which indicates groundwater withdrawal 
exceeded the aquifer recharge and thus whole study 
area has been categorized as over-exploited (CGWB, 
2013). Therefore, there is an urgent need to maintain 
groundwater sustainability to meet the demands of 
different sectors, especially for irrigation. It would be 

a daunting task to maintain groundwater sustainability 
under existing management practices for decision-
makers, water users, managers, and developers. It can 
be managed to some extent by applying different crop 
management practices and water storage techniques. 
Groundwater flow models (i.e., numerical, data-driven, 
and statistical models) are vital tools for evaluating 
aquifer yield under different water management 
scenarios incorporating climate change effects. 

Numerical models are recommended as an excellent 
tool to simulate groundwater flow under different 
crop management practices, groundwater pumping 
scenarios, and climate scenarios. It allows users to 
examine the aquifer yield of any region under numerous 
scenarios, and that plays a vital role in developing water 
management policies for sustainable management of 
groundwater resources. These mathematical models are 
solved by a finite difference/ finite-element approach 
that is recognized as a standard method to solve 
partial differential equations (Arendt & Urban, 2023). 
Numerical models accurately simulate the groundwater 
system as it consists of fundamental internal flows 
(Block Centered Flow (BCF) and Layer-Property 
Flow (LPF)), stresses (groundwater pumping, deep 
infiltration, evapotranspiration, river, lake, and pond, 
etc.), and solver packages (Harbaugh, 2005). However, 
numerical models need huge data sets that are not 
readily available for some regions because of the 
huge costs and time involved in data collection. It also 
demands expert knowledge of hydrologists, extensive 
computational work, and thus it needs more time to 
develop a groundwater flow model for any region. In 
contrast, empirical models need typically less data and 
less effort as compared to physically based models 
(Coppola et al., 2005; Ware et al., 2023; Shahbazi et 
al., 2023). The fundamental benefit of this method is 
that, unlike numerical models, it does not necessitate 
describing complexity of the underlying physical 
systems' processes.

Artificial Neural Network (ANN) models are one such 
model, which are treated as general approximators and 
are especially fit for dynamic nonlinear framework 
displaying (Adisa et al., 2019). ANNs are addressed 
by the beginning capacity, which uses interconnected 
information handling units to change the input into 
yield (output) by identifying information, connections, 
and examples. ANNs are regarded as the best methods 
of extracting information from imprecise and nonlinear 
data. The capacity to take in and sum up enough 
information sets assists ANNs with addressing 
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intricate, enormous-scope issues. A few studies have 
been conducted on the use of neural networks for 
groundwater level (GWL) simulation. Mohanty et 
al. (2015) employed a back propagation algorithm to 
predict GWL at 18 sites and the model performance was 
found satisfactory during ANN training and validation. 
Furthermore, Nadiri et al. (2019) used several models 
using fuzzy logic and reported that groundwater table 
declines by management scenarios, and showed higher 
effects on groundwater level variations than climatic 
variations in the study of aquifer use. As well, Chen et 
al. (2020) simulated groundwater dynamics based on a 
single numerical model and three artificial intelligence 
(AI) methods and tracked down that the exhibition and 
precision of the created AI models were fundamentally 
better compared to that of mathematical models.

However, it was noticed that AI algorithms have 
drawbacks when dealing with nonlinear and non-
stationary systems. Several hybrid modeling approaches 
incorporating statistical analysis and/or combining 
various AI techniques have already emerged in recent 
years to improve the capabilities of AI methods. The 
development of such models is made more effective 
by integrating two AI methods at different phases of 
the modeling process and utilizing efficient approaches 
for input data pre-processing. Some hybrid modeling 
approaches such as the grey wolf optimizer algorithm 
(GWP; Maroufpoor et al., 2019), gravitational search 
algorithm (GSA; Ghorbani et al., 2019), Particle 
Swarm Optimization (PSO; Kennedy & Eberhart, 
1995), Genetic-Algorithms (GA; Jha & Sahoo, 2015), 
Ant Colony Optimization (ACO; Dorigo et al., 1996) 
include certain data-preprocessing and/or combine 
AI techniques have also been developed in the recent 
years to increase the capabilities of the AI methods. 
In the Konan basin of Japan, Jha and Sahoo (2015) 
constructed five hybrid ANN-GA models for modeling 
spatiotemporal GWL. In this study, the GA optimization 
approach was used to optimize the ANN's inputs and 
settings to get accurate results. 

Kumar et al. (2022) reported that pressure on 
groundwater resources will intensify during future 
periods in the Karnal district of Northwest India 
due to reduced recharge and increased withdrawal 
caused by altered precipitation patterns and higher 
evapotranspiration rates under projected climate change 
scenarios. This depletion is expected to have adverse 
effects on the yield, acreage, and production of grain 
crops, particularly during the dry winter season when 
groundwater serves as the primary irrigation source. 

Even with anticipated precipitation increases in certain 
regions due to climate change, the expansion of irrigated 
areas may counterbalance any relief, exacerbating 
groundwater stress. Numerous studies have been 
carried out in the Indo-Gangetic Plain of Haryana to 
simulate groundwater levels, utilizing methods such as 
MOFLOW, deep learning, and statistical models (Kaur 
et al., 2015; Patle et al., 2016; Kochhar et al., 2022; 
Kumar et al., 2020; 2022). However, there remains a 
gap in the literature regarding the direct comparison 
between numerical models and AI-based approaches 
for groundwater level simulation. In the last decade, 
groundwater simulation studies have been conducted 
to compare the potential of numerical and AI-based 
models to predict groundwater behavior (Malekzadeh et 
al., 2019; Chen et al., 2020). However, the groundwater 
level simulation in these studies was mainly limited to 
short monthly periods (Malekzadeh et al., 2019), and 
for the annual groundwater level (pre/post-monsoon 
groundwater level), these models need to be validated. 
With this concern, this study was undertaken to check 
the performance of AI-based models compared to the 
process-based numerical models for predicting pre-
monsoon groundwater levels over the years. In this 
study, pre-monsoon groundwater level simulation was 
compared using the numerical model (MODFLOW) 
and genetic algorithm-based multilayer perceptron 
(MLP-GA) models, and predicted pre-monsoon 
groundwater levels for the future periods (2016-2039) 
under existing management practices of the region. 
The aim of this work is therefore: 1) to evaluate the 
performance of the physical processes-based numerical 
model (MODFLOW) and different architectures 
of MLP-GA model for predicting pre-monsoon 
groundwater level, and 2) to compare the performance 
of the MODFLOW and MLP-GA model for simulating 
futuristic groundwater level under projected climate 
change scenarios.

2.  MATERIALS AND METHODS

2.1  Study Area and Data Acquisition
The study was conducted in the Karnal district of north-
western India, which has a total geographical area of 
2,520 square kilometers (Fig. 1 a). The predominant 
land use in the area covers 2271.15 square kilometers 
of agricultural land, followed by built-up areas and 
water bodies (Fig. 1b). The primary soil type found 
in the region is loam, with sandy loam being the 
subsequent soil type (Fig. 1c). Climatologically, the 
study area is classified as a semi-arid region with 
mean annual rainfall and evapotranspiration of 740 
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projections were used to examine the effect of futuristic 
climate on groundwater behaviour. The representative 
concentration pathways (RCP) RCP4.5 climate change 
scenario was selected for studying climate change 
impact as it is based on a moderate global emission 
scenario with mitigating climate change effect (IPCC, 
2013) which could be compatible with the current 
emission scenario and management practices. Bias 
corrected and spatially disaggregated (BCSD) monthly 
projections of rainfall and temperature at 0.50 x 50 
resolutions, from the Coupled Model Inter comparison 
Project phase 5 (CMIP5) multi-model dataset for the 
period 1950–1999, were used (ftp://gdo-dcp.ucllnl.
org/pub/dcp/archive/cmip5/global_mon). More than 
20 modeling groups participated in CMIP5, and 
climate projections were available from a number 
of GCMs. Further, with different initial conditions, 
initialization methods, and perturbed physics versions, 
varying numbers of runs (realizations) per GCM were 

and 1550 mm, respectively. The meteorological data 
for the 1981-2010 period were collected from a local 
observatory situated at ICAR- Central Soil Salinity 
Research Institute (CSSRI), Karnal. The aquifer 
hydraulic properties and stratigraphy were acquired 
from the Central Groundwater Board Report (CGWB, 
2013). Data on depth of groundwater level were 
obtained from the District Hydrology Department, 
Karnal, Haryana for the 2000-2015 periods. The 
conceptual model for groundwater flow was created 
using the Shuttle Radar Topography Mission (SRTM) 
Digital Elevation Model (DEM) at a resolution of 90 
m x 90 m. The Haryana statistical abstract includes 
information on the population, livestock, cropping 
method, sowing dates, and other pertinent field data. 
Consequently, it was applied to calculate the total 
groundwater pumping for agricultural and urban 
areas (Statistical Abstract of Haryana, 2000-2015). 
The IPCC Fifth Assessment Report’s climate change 
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available. The climate projections were available for 
different variables (precipitation, Tmax, Tmin, Tav, 
etc.) and for different simulation periods such as near-
time (up to 2035) and long-time (up to 2100). In this 
study, climate projections of models having long-time 
simulations (up to 2100) of precipitation, Tmax, Tmin 
were selected. Accordingly, 61 climate projections from 
30 GCM of varying number of runs (Abeysingha et 
al., 2020) were available under RCP4.5 and were used 
in this study for generating climate change scenarios. 
The Hybrid-Delta (HD) ensemble method (Islam et 
al., 2012; Tohver et al., 2014)) was used to generate a 
multi-model ensemble climate change projection for 
the study area. Daily temperature and precipitation 
were derived for historical (1981-2010, base period) 
and future (2010-2039) periods. 

2.2  Estimation of Input Variables for Numerical 
and Artificial Intelligence Models
The study area falls under intense agriculture, where 
a large portion of the land (85%) comes under the rice 
and wheat cropping system. The canal water accounts 
for merely 20% of the irrigated crop area and demand 
for the rest of the agricultural land is accomplished by 
groundwater (CGWB, 2013). As a result, groundwater 
is a significant source of water for irrigation sector, 
particularly for growing rice-wheat systems. The area 
of major crops such as rice, wheat, and sugarcane are 
1758, 1766, and 112 square kilometers, respectively. 
Estimation of return flow and irrigation requirement 
(draft) is crucial for predicting groundwater behavior 
accurately. Therefore, irrigation requirement and 
return flow from the agricultural land (rice and wheat) 
were calculated using the previously calibrated and 
validated water balance model AquaCrop (Raes et al., 
2009; Kumar et al., 2022). The water demand for the 
domestic sector was computed using population data 
(www.census2011.co.in/district.php). In the study 
area, the majority of forest land is covered by the 
Eucalyptus plant. Thus, by accounting for the water 
needs of eucalyptus plants as 1500 mm year-1 (Minhas 
et al., 2015), water loss on forest land was computed. 
The seepage loss from the canal was calculated using 
the standard methodology (GEC, 2009) based on 
canal network details collected from the Haryana 
Irrigation Department, Karnal. In the case of urban 
land, it was assumed that return flow would be equal 
to the difference of rainfall and runoff (rainfall-runoff). 
Runoff from urban land was estimated using the Soil 
Conservation Service- Curve Number (SCS-CN) 
method in Microsoft Excel for a 15-year period (2001-

2015) (Soil Conservation Services, 1972). Return flow 
from the barren land was estimated through Hydrus 1-D 
model using the parameter validated by Narjary et al. 
(2021) for this region. 

2.3  Overview of MODFLOW
Visual MODFLOW Flex 8.0 is a numerical model that 
offers a user-friendly graphical interface for simulating 
groundwater flow and pollutant transport. One of 
the notable features of Visual MODFLOW Flex 8.0 
is its built-in Geographic Information System (GIS) 
interface, which enhances the understanding and ease 
of creating conceptual models and interpreting model 
results. The software incorporates components for 
representing basic internal flow processes such as Block 
Centered Flow (BCF) and Layer-Property Flow (LPF), 
as well as various types of stresses like groundwater 
pumping, deep percolation, evapotranspiration, rivers, 
lakes, and ponds (Harbaugh, 2005). These packages 
enable users to construct conceptual models that closely 
mimic the real physical systems and convert them into 
numerical models.

At its core, Visual MODFLOW Flex 8.0 is based on 
the solution of partial differential equations, specifically 
the Bossinesq equation (Equation 1), using finite or 
discrete element methods (Javandel & Witherspoon, 
1968; 1969; McDonald & Harbaugh, 1988).

The Boussinesq equation governs the behavior of 
groundwater and is expressed as follows:

∂
∂a  kx

∂p
∂x + ∂

∂b  ky
∂p
∂y + ∂

∂c  kz
∂p
∂z − V =  Sa

∂p
∂T    

   
...(1)

where, p is the hydraulic head (m) at a point; Sa is the 
aquifer storage time that changes with type of aquifer 
system, in our case it is specific yield ( %) as the aquifer 
is unconfined; , and are the hydraulic conductivity in 
x, y and z-direction in (m day-1), V is a volumetric flux 
(m3 day-1), T is the time (day).

The equation-1 is solved by the finite-element method 
that work on the principle of continuity in the model. 
Thus, it is essential that the net flow (outflow-inflow) in 
each cell must be equal to change in storage of that cell 
(Harbaugh, 2005). The continuity equation (equation-2) 
can be written as follows:

 Qi = Sa
∆p
∆T∆D 

 
...(2)
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where, Qi is the flux into the cell (m3 day-1); Sa is the 
storage time for the unconfined aquifer; ΔD represents 
the cell area i (m2), Δp denotes the change in the head 
(m) in the particular cell and ΔT is the time interval 
(day).

2.4  Hybrid Artificial Intelligence Model
2.4.1  Model overview 
The multilayer perceptron (MLP) neural network is a 
powerful tool for addressing hydrological processes 
(McGarry et al., 1999). It consists of input, hidden, 
and output layers, with adjustable hidden layers to 
minimize errors. Inputs are processed through the layers 
via weighted connections, and adjustments are made to 
minimize errors between calculated and target outputs 
(Farfani et al., 2015). Various learning algorithms like 
Levenberg-Marquardt, steepest descent, etc., optimize 
weights and parameters, often using backpropagation. 
However, backpropagation has limitations, such as slow 
convergence and sensitivity to parameters. This study 
employs a genetic algorithm (GA) to optimize model 
parameters, including hidden layer count, offering a 
more robust solution, and the model is referred to as 
MLP-GA model hereafter. 

GA is a search technique based on the principles of 
natural evolution (Holland, 1975; Li et al., 2011). 
It is particularly effective for optimizing complex 
nonlinear models, where finding the global minimum 
may be possible. The GA begins by generating a 
random population and then performs a series of 
operations on the population, guided by the relative 
fitness of individuals, allowing the population to 
evolve over multiple generations. Parameters such as 
population size, mutation probability, and crossover 
probability need to be carefully tuned through trial 
and error to obtain the best solution. Works by Lotfi 
& Akbarzadeh-T. (2014) and Nourani et al. (2017) 
provide detailed explanations of GA, and its flow chart 
is depicted in Fig. 2. In the initial step of this study, the 
GA is used to determine the number of neurons in the 
hidden layer and other model parameters, optimizing 
the weights in all functions to find the best solution 
to the problem. For each set of hidden neurons, the 
network is trained to minimize the mean square error 
at the output layer. The hyperbolic tangent sigmoid 
transfer function is found to be the most suitable for 
transferring the optimized weights from the hidden 
layer to the output layer during the trial-and-error 
procedure.

2.4.2  Model setup
The study area was equipped with 55 observation wells 
that monitor groundwater fluctuations across the entire 
region. Hence, the pre-monsoon groundwater level 
data from these 55 wells was processed in the model. 
Based on different combinations of inputs and model 
architecture, seven different MLP-GA models were 
formulated (Table 1). In the M-1 model, there are a total 
of 4 input nodes, 29 neurons in the hidden layer, and one 
output node representing the pre-monsoon groundwater 
level data of the 55 observation wells (Table 1). The 
4 input nodes correspond to the input parameters: 
crop evapotranspiration (ETc), rainfall (PCP), deep 
percolation (GR), and applied irrigation water (GD). 
The M-2 and M-4 models have 3 input nodes, 36 and 
31 neurons in the hidden layer, respectively. There 
were 2 (input nodes) in the M-3, M-5, M-6, and M-7 
models and 19, 17, 21, and 11 neurons in the hidden 
layer of the respective models; and groundwater level 
as output. The architectures of seven developed models 
were 4-29-1, 3-36-1, 2-19-1, 3-31-1, 2-17-1, 2-21-1, 
2-11-1 for M-1, M-2, M-3, M-4, M-5, M-6, and M-7 
models, respectively.

Seven hybrid MLP-GA models were trained by different 
input and output combinations which are depicted 
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            Fig. 2. Flow diagram of hybrid artificial intelligence model (MLP-GA) 

Table 1. Input and output variables of the Genetic Algorithm-based Multilayer 
Perceptron (MLP-GA) model 

Note: PCP-Rainfall; ETc -Crop evapotranspiration; GWR- Groundwater recharge; and GWD- Groundwater draft; and 
GWL-Groundwater level 

Model 

INPUT OUTPUT 

Precipitation 
Ground Water 

Recharge 

Ground Water 

Draft 

Crop 

Evapotranspiration 

Ground 

Water 

Level 

M-1 PCP GWR GWD ETc GWL 

M-2 PCP GWR GWD  GWL 

M-3 
 

GWR GWD  GWL 

M-4 PCP GWR  ETc GWL 

M-5 PCP GWR   GWL 

M-6 
 

GWR GWD ETc GWL 

M-7 PCP GWR  ETc GWL 

Fig. 2.  Flow diagram of hybrid artificial intelligence 
model (MLP-GA)
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1999):

11 
 

Note: PCP-Rainfall; ETc -Crop evapotranspiration; GWR- Groundwater recharge; and GWD- Groundwater draft; and 
GWL-Groundwater level 

2.5 Evaluation of Model Performance 

The performance of numerical and MLP-GA models was evaluated using different statistical 

indicators and analyzed to find out which combination of input variables of the model results in the 

simulation close to the observed data. Statistical indicators can be represented by the following 

equations (Willmott et al., 2012; Legates & McCabe Jr., 1999): 

Percentage bias (Gupta et al., 1999) :  

 PBIAS (%) =   GW p−GW t  n
t=1
 GW tn

i=1
× 100      …(3) 

where, GWt is observed data series, GWp is predicted data series, n is number of observations. 

Root mean square error (c) (Legates & McCabe Jr., 1999): 

 RMSE =   (GW t−GW p )2n
i=1

n       . …(4) 

Correlation coefficient (Legates & McCabe Jr., 1999): 

            r =    (GW t−GW     t )(GW p−GW     p ) n
i=1

  (GW t−GW     t )2n
i=1   (GW p−GW     p )2n

i=1
      …(5) 

where ,GW     t is average of the observed data series and  GW     p  is average of predicted data series. 

Coefficient of efficiency (Legates & McCabe Jr., 1999): 

 CE = 1 −   GW t−GW p  
2n

i=1
  GW t−GW     t 2n

i=1
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in Table 1. The combination of input and output 
parameters was investigated based on the correlation 
between input i.e., crop evapotranspiration (ETc), 
rainfall (PCP), deep percolation (GR), and applied 
irrigation water (GD), and output i.e., groundwater 
level (GL) parameters. It was done to check whether 
two or more input parameters were reasonable to 
represent entire groundwater variability with relevant 
periods of observed groundwater level and that can be 
used for groundwater modeling. The best model was 
opted in among those models that were chosen based 
on statistical performance and made a comparison 
with the numerical model. A 15-year data (10 years 
for training and 5 years for testing) of all parameters 
(dependent and independent variables) was used for 
developing the model. 

2.5  Evaluation of Model Performance
The performance of numerical and MLP-GA models 
was evaluated using different statistical indicators 
and analyzed to find out which combination of input 
variables of the model results in the simulation close 
to the observed data. Statistical indicators can be 
represented by the following equations (Willmott et 
al., 2012; Legates & McCabe Jr., 1999):

Percentage bias (Gupta et al., 1999) :  

PBIAS (%) =   GW p−GW t  n
t=1
 GW tn

i=1
× 100  

 
...(3)

where, GWt is observed data series, GWp is predicted 
data series, n is number of observations.

Root mean square error (c) (Legates & McCabe Jr., 

Table 1. Input and output variables of the Genetic Algorithm-based Multilayer Perceptron (MLP-GA) 
model

Model
INPUT OUTPUT

Precipitation Groundwater 
recharge

Groundwater 
draft

Crop 
evapotranspiration

Groundwater 
level

M-1 PCP GWR GWD ETc GWL
M-2 PCP GWR GWD GWL
M-3 GWR GWD GWL
M-4 PCP GWR ETc GWL
M-5 PCP GWR GWL
M-6 GWR GWD ETc GWL
M-7 PCP GWR ETc GWL
Note: PCP-Rainfall; ETc -Crop evapotranspiration; GWR- Groundwater recharge; and GWD- Groundwater draft; and GWL-
Groundwater level
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3.  RESULTS AND DISCUSSION

3.1  Calibration and Validation 
3.1.1  Numerical model
The groundwater flow model (MODFLOW) was 
calibrated under transient conditions for a period of 
10 years (2001-2010) by comparing the observed and 
simulated hydraulic head data, which represents the 
depth of the water table. The calibration process utilized 
an auto-calibration model PEST (Model Independent 
Parameter Estimation and Uncertainty Analysis) for 
parameter estimation, focusing on two key parameters: 
hydraulic conductivity and specific yield. The hydraulic 
conductivity values varied across different geographical 
zones of the study area, ranging from 4 to 300 m day-1, 
with an average estimated value of 27 m day-1 (Fig. 3). 
Most of the region exhibited hydraulic conductivity 
values between 20 and 30 m day-1, although a few 
patches had higher values (up to 300 m day-1). The 
estimated specific yield ranged between 0.1 and 0.2 
(Fig. 4).

The performance of the calibrated model was 
evaluated using statistical indicators such as PBIAS 
(Percent Bias), RMSE (Root Mean Square Error), r 
(correlation coefficient), CE (coefficient of efficiency), 

PI (peak deviation index), WI (Willmott's Index), and 
LMI (Legates-McCabe Index) (Willmot et al., 2012; 
Legates & McCabe Jr., 1999). The comparison between 
observed and simulated hydraulic head values during 
the calibration period (2001-2010) demonstrated 
satisfactory accuracy, as indicated by the statistical 
indicators: PBIAS (0.07), RMSE (2.36 m), r (0.98), 
CE (0.96), PI (0.03), WI (0.99), and LMI (0.30) (Table 
2 and Fig. 5).

Furthermore, the calibrated model was validated 
for the subsequent 5-year period (2011-2015) by 
maintaining the calibrated parameters constant. The 
statistical indicators for the validation period indicated 
a good agreement between the observed and simulated 
hydraulic head values: PBIAS (-0.02), RMSE (1.85 
m), r (0.96), CE (0.94), PI (0.05), WI (0.99), and LMI 
(0.40) (Fig. 5). Overall, the calibration and validation 
results demonstrate a very good model performance  
in reproducing the observed hydraulic head data, 
indicating its reliability in simulating the groundwater 
system.

3.1.2  Hybrid artificial intelligence models
All the MLP-GA models were calibrated by adjusting 
the independent parameters to match the observed 
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Fig. 4.  Scatter radar plot of spatial specific yield (Sy) values over 
the iterations

Table 2.  Performance of Genetic Algorithm-based Multilayer Perceptron (MLP-GA) models and numerical 
model (MODFLOW) during training/calibration and testing/validation period

Performance 
indicators

Numerical 
model

MLP-GA models (Model architecture)

M-1 
(4-29-1)

M-2 
(3-36-1)

M-3  
(2-19-1)

M-4 
(3-31-1)

M-5  
(2-17-1)

M-6 
(2-21-1)

M-7 
(2-11-1)

Training/ Calibration Period
PBIAS (%) 0.07 -1.53 0.23 -0.89 -0.13 1.56 0 -0.04
RMSE (m) 2.36 1.28 1.51 2.5 2.02 2.63 3.64 3.75
r 0.98 0.96 0.94 0.83 0.89 0.81 0.59 0.56
CE 0.96 0.92 0.89 0.69 0.8 0.66 0.35 0.31
PI 0.03 0.05 0.06 0.1 0.08 0.1 0.14 0.15
WI 0.99 0.98 0.97 0.89 0.94 0.87 0.54 0.46
LMI 0.3 0.37 0.38 0.49 0.45 0.52 0.6 0.62

Testing/Validation period
PBIAS (%) -0.02 11.38 8.76 10.31 -10.2 15.38 11.35 -1.83
RMSE (m) 1.85 3.45 3.17 3.91 3.73 4.04 4.69 5.24
r 0.96 0.84 0.86 0.78 0.82 0.81 0.66 0.62
CE 0.94 0.97 0.97 0.96 0.96 0.96 0.94 0.93
PI 0.05 0.09 0.09 0.11 0.11 0.11 0.13 0.15
WI 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98
LMI 0.4 0.63 0.61 0.6 0.59 0.67 0.6 0.54

Note: PBIAS (Percentage bias), RMSE (Root mean square error), r (Correlation coefficient), CE (Coefficient of efficiency), PI (Performance 
index), WI (Willmott’s index of agreement), LMI (Legates–McCabe’s index)
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groundwater level. The results of the models for 
the training period are presented in Table 2 and Fig. 
6a. The performance indicators of the M-1 and M-2 
models, including PBIAS, RMSE, r, CE, PI, WI, and 
LMI, indicated a satisfactory agreement between the 
observed and simulated groundwater levels. The values 
for these indicators were PBIAS (-1.52 and 0.22), 
RMSE (1.28 m and 1.50 m), r (0.96 and 0.94), CE (0.91 
and 0.8), PI (0.049 and 0.06), WI (0.97 and 0.96), and 
LMI (0.37 and 0.45), respectively.

On the other hand, the performance indicators of 
the M-6 and M-7 models showed a poor agreement 
between the simulated and observed groundwater 
levels. The statistical indicators of PBIAS (0.001 and 
0.037), RMSE (3.63 m and 3.74 m), r (0.59 and 0.55), 
CE (0.35 and 0.31), PI (0.14 and 0.15), WI (0.53 and 
0.46), and LMI (0.60 and 0.62), indicated a poorer 
performance of these models. The results in Table 2 
also demonstrate that the M-3, M-4, and M-5 models 
provided only marginally adequate results. However, 
since their RMSE values were greater than 2 m, these 
models cannot be considered reliable for estimating 
future groundwater levels. Among the seven hybrid 
MLP-GA models, the M-1 model performed reasonably 
well despite having more input parameters compared 
to the other models. This suggests that adding more 
model inputs can be beneficial for accurately building 
the groundwater flow model.

Model validation is the essential process to check the 
simulation accuracy of the calibrated model. Results 
of the model validation for period (2011-2015) given 
in (Table 2 and Fig. 6b). The performance indicators 

of M-1 and M-2 and M-4 model were PBIAS 
(11.38,8.75 and -10), RMSE (3.44 m, 3.16 m and 3.72 
m), r(0.84,0.85 and 0.81), CE (0.96,0.97 and 0.0.96), 
PI(0.09,0.08 and 0.10), WI(0.99) and LMI(0.63,0.61 
and 0.59), respectively. Results indicated that Models 
M-1, M-2, and M-4 had RMSE values of more than 
3 m, but other statistical evaluating parameters were 
within the acceptable range. While the model’s (M-3, 
M-5, M-6, and M-7) performance in the validation 
period was subpar and showed a very low level 
of agreement with observed and simulated GWL. 
The results of the models also indicated that in the 
validation period, performance was lower than that 
of in the calibration period. This may be due to 
overfitting of models in short training and testing 
data sets (Singh et al., 2018). All hybrid MLP-GA 
models resulted in higher RMSE during the validation 
period, and this might be due to the fact of smaller 
size (2011-2015) of data than the calibration period 
(2001-2010) (Mohanty et al., 2013). In addition, it was 
found that incorporating all the inputs is essential for 
simulating groundwater behaviour accurately rather 
than a few variables for the study region. However, 
a combination of precipitation (PCP), groundwater 
recharge (GWR) and groundwater draft (GWD) inputs 
can be used for groundwater simulation that had 
considerable variability with the groundwater level of 
the study region, whereas the combination of GWR, 
GWD and crop evapotranspiration (ETc) inputs did 
not show good performance in the model. Importantly, 
M-3 model results indicate that GWR and GWD had 
greater variability with groundwater hydrology in the 
region. Finally, ETc exhibits a variability of less than 
4%, while PCP shows nearly 20% variability with 

Fig. 5.  Observed and simulated hydraulic head during calibration and validation period
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LMI 0.3 0.37 0.38 0.49 0.45 0.52 0.6 0.62 

Testing/Validation period 
PBIAS (%) -0.02 11.38 8.76 10.31 -10.2 15.38 11.35 -1.83 
RMSE (m) 1.85 3.45 3.17 3.91 3.73 4.04 4.69 5.24 
r 0.96 0.84 0.86 0.78 0.82 0.81 0.66 0.62 
CE 0.94 0.97 0.97 0.96 0.96 0.96 0.94 0.93 
PI 0.05 0.09 0.09 0.11 0.11 0.11 0.13 0.15 
WI 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 
LMI 0.4 0.63 0.61 0.6 0.59 0.67 0.6 0.54 

Note: PBIAS (Percentage bias), RMSE (Root mean square error), r (Correlation coefficient), CE (Coefficient of efficiency), 
PI (Performance index), WI (Willmott’s index of agreement), LMI (Legates–McCabe’s index) 

 

Fig. 5. Observed and simulated hydraulic head during calibration and validation period 

3.1.2 Hybrid artificial intelligence models 
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the groundwater system (Fig. 7). It may be due to an 
increase in heavy rainfall leading to higher runoff, 
resulting in a loss of effective rainfall available for 
crop plants. As a result, the remaining water demand 
of the crops is fulfilled by groundwater, leading to its 
decline. Hence, a combination of PCP and ETc inputs 
is not better option for developing a groundwater 
model for selected region. Unsatisfactory results 
were reported by Javadinejad et al. (2020) while 
using two variables (rainfall and air temperature) as 
a combination of input parameters for groundwater 
level prediction.

However, in contradiction to this, some researchers found 
that a combination of input parameters like rainfall, air 
temperature, and reference evapotranspiration (ET0) 
with the groundwater level resulted in acceptable 
simulation (Kisi et al., 2017; Alizamir et al., 2018). 
Results of the M-1 model also support the finding of 
past studies that incorporated numerous combinations 
of input parameters such as rainfall, temperature, 
evapotranspiration, groundwater level, river discharge, 
and groundwater pumping altogether to improve the 
accuracy of groundwater level prediction (Mirzavand 
& Ghazavi, 2015; Mirarabi et al., 2019). Overall, it was 

Fig. 6.  A comparison of MLP-GA models performance during training and testing period

Fig. 7.  Variability of groundwater level with precipitation (PCP) and crop evapotranspiration (ETc) 

10 
 

WI(0.99) and LMI(0.63,0.61 and 0.59 ), respectively. Results indicated that Models M-1, M-2, and 

M-4 had RMSE values of more than 3 m, but other statistical evaluating parameters were within the 

acceptable range. While the model’s (M-3, M-5, M-6, and M-7) performance in the validation period 

was subpar and showed a very low level of agreement with observed and simulated GWL.  The 

results of the models also indicated that in the validation period, performance was lower than that of 

in the calibration period. This may be due to overfitting of models in short training and testing data 

sets (Singh et al., 2018). All hybrid MLP-GA models resulted in higher RMSE during the validation 

period, and this might be due to the fact of smaller size (2011-2015) of data than the calibration period 

(2001-2010) (Mohanty et al., 2013). In addition, it was found that incorporating all the inputs is 

essential for simulating groundwater behaviour accurately rather than a few variables for the study 

region. However, a combination of precipitation (PCP), groundwater recharge (GWR) and 

groundwater draft (GWD) inputs can be used for groundwater simulation that had considerable 

variability with the groundwater level of the study region, whereas the combination of GWR, GWD 

and crop evapotranspiration (ETc ) inputs did not show good performance in the model. Importantly, 

M-3 model results indicate that GWR and GWD had greater variability with groundwater hydrology 

in the region. Finally, ETc exhibits a variability of less than 4%, while PCP shows nearly 20% 

variability with the groundwater system (Fig.7). It may be due to an increase in heavy rainfall 

leading to higher runoff, resulting in a loss of effective rainfall available for crop plants. As a result, 

the remaining water demand of the crops is fulfilled by groundwater, leading to its decline. Hence, a 

combination of PCP and ETc inputs is not better option for developing a groundwater model for 

selected region. Unsatisfactory results were reported by Javadinejad et al. (2020) while using two 

variables (rainfall and air temperature) as a combination of input parameters for groundwater level 

prediction. 
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Model validation is the essential process to check the simulation accuracy of the calibrated model. 

Results of the model validation for period (2011-2015) given in (Table 2 and Fig. 6b). The 

performance indicators of M-1 and M-2 and M-4 model were PBIAS (11.38,8.75 and -10), RMSE 

(3.44 m,3.16 m and 3.72 m), r(0.84,0.85 and 0.81), CE (0.96,0.97 and 0.0.96), PI(0.09,0.08  and 0.10), 

WI(0.99) and LMI(0.63,0.61 and 0.59 ), respectively. Results indicated that Models M-1, M-2, and 

M-4 had RMSE values of more than 3 m, but other statistical evaluating parameters were within the 

acceptable range. While the model’s (M-3, M-5, M-6, and M-7) performance in the validation period 

was subpar and showed a very low level of agreement with observed and simulated GWL.  The 

results of the models also indicated that in the validation period, performance was lower than that of 

in the calibration period. This may be due to overfitting of models in short training and testing data 

sets (Singh et al., 2018). All hybrid MLP-GA models resulted in higher RMSE during the validation 

period, and this might be due to the fact of smaller size (2011-2015) of data than the calibration period 

(2001-2010) (Mohanty et al., 2013). In addition, it was found that incorporating all the inputs is 

essential for simulating groundwater behaviour accurately rather than a few variables for the study 

region. However, a combination of precipitation (PCP), groundwater recharge (GWR) and 

groundwater draft (GWD) inputs can be used for groundwater simulation that had considerable 

variability with the groundwater level of the study region, whereas the combination of GWR, GWD 

and crop evapotranspiration (ETc ) inputs did not show good performance in the model. Importantly, 

M-3 model results indicate that GWR and GWD had greater variability with groundwater hydrology 

in the region. Finally, ETc exhibits a variability of less than 4%, while PCP shows nearly 20% 

variability with the groundwater system (Fig.7). It may be due to an increase in heavy rainfall 

leading to higher runoff, resulting in a loss of effective rainfall available for crop plants. As a result, 

  

Fig. 6. A comparison of MLP-GA models performance during training and testing 
period 6(a) 6(b) 

6(a) 6(b)
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which can be crucial for resolving water management 
concerns and creating a sustainable water management 
plan. Overall, our study suggests need for more 
systematic research to ascertain which model is more 
accurate for long-time horizon groundwater simulation 
because groundwater behaviour varies from place to 
place, climatic conditions, and human intervention.

3.3  Impact of climate change on groundwater level
Figure 8 depicts the spatial-temporal variations in 
groundwater levels under the RCP4.5 climate change 
projections, considering the prevailing agricultural 
system, with specific reference to the year 2015. The 
simulation results using MODFLOW numerical model 
showed that the rates of groundwater decline in Zones 
1 and 5 ranged from 0.07 to 0.12 meters per year and 
0.62 to 0.68 meters per year, respectively, depending 
on the future time period under RCP4.5. The relatively 
lower decline in groundwater levels in Zone 1 could be 
attributed to the limited utilization of marginal quality 
groundwater for crop production, as there is adequate 
canal water supply in the area. Conversely, intensive 
rice-wheat farming relying on groundwater in Zone 5 
is likely the main cause for the highest groundwater 
depletion observed there. Based on the simulation 
results, it is expected that the average groundwater 
levels will decline by approximately 7.7 meters by the 
end of the early period (2039) compared to the reference 
year of 2015.

The MLP-GA model (M-1) was used for future 
predictions under the existing system suggesting that 
the groundwater level in all zones would decline by 5 
meters by the end of the early century compared to the 
reference year of 2015. It is worth noting that the MLP-
GA model predicted a lower decline in groundwater 
levels compared to the numerical model (Fig. 8c and 
9). Interestingly, the numerical model consistently 
projected a decline in groundwater levels throughout 
the simulation period from 2016 to 2039, while the 
hybrid MLP-GA model showed significant fluctuations, 
including both rises and falls in groundwater levels. 
However, the overall trend in both models was similar. 
The hybrid MLP-GA model provided comparatively 
reasonable forecasts for groundwater levels until the 
year 2031. Beyond that period (2032-2040), there was a 
sudden change in the rise and fall of groundwater levels, 
which is not realistic in a real-world system. Therefore, 
the numerical model is better suited for assessing the 
long-term impacts of future climate on groundwater 
behavior, as it captures the physics of the entire system. 

found that based on statistical information of results of 
all models, the M-1 model can be used for groundwater 
level simulation. 

3.2  Comparison of Numerical and Hybrid AI-based 
Models
A comparison was done to evaluate the simulation 
performance of the numerical (MODFLOW) and 
one best-chosen hybrid MLP-GA model (M-1). The 
effectiveness of both models was evaluated for the 
training/calibration and testing/validation periods using 
different statistical indicators. The statistical indicators 
for the numerical model were PBIAS (0.07 and -0.02), 
RMSE (2.36 m and 1.85 m), r (0.98 and 0.96), CE (-0.96 
and 0.94), PI (0.032 and 0.045), WI (0.99) and LMI 
(0.30 and 0.40) during calibration and validation period, 
respectively (Table 2). These statistical indicators 
revealed that the numerical model accurately simulated 
the groundwater behaviour, with good agreement 
between the simulated and actual groundwater levels. 
While comparing the results of the numerical and MLP-
GA model M-1, the M-1 model's results weren't better 
than those of the numerical model (Table 2). It may be 
because the MLP-GA model predicts the output based 
on the input and output relation, whereas the numerical 
model allows users to develop a prototype real physical 
aquifer system (conceptual model) that represents 
area-specific physics of groundwater system correctly 
by assigning numerous kinds of boundary condition 
and hydraulic parameters. However, in previous 
studies, researchers reported that the AI-based model 
was superior to the numerical model (Malekzadeh et 
al., 2019; Chen et al., 2020). Importantly, all of these 
studies were based on monthly groundwater simulation, 
whereas in this study, pre-monsoon season (annual) 
groundwater level simulation was done.

Thus, AI models showed better performance in short-
time horizon (large data size) groundwater simulation 
than in long-time horizon (small data size). It was also 
found that the numerical model simulates groundwater 
level reasonably well both for short- and long-term time 
horizons, however, it needs a good hydrological expert 
as well as considerable time to calibrate and validate 
the groundwater flow behaviour of any region. Whereas 
AI models do not need additional data/parameters 
like lithology, hydraulic properties of sub-strata, or 
assigning of numerous boundary conditions that are 
essential for the representation of the groundwater 
system. Notably, numerical models are best suited for 
creating a variety of scenarios to assess aquifer yield, 
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On the other hand, MLP-GA-based models may be 
more suitable for short-time predictions as they rely 
on the relationship between past input and output data.

4.  CONCLUSIONS
Groundwater is a crucial freshwater resource that caters 
needs of various sectors. With the growing human 
population and climate variability, the demand for 
groundwater has increased, necessitating the need to 
protect this valuable resource for future generations. 
Groundwater models have emerged as decision-
making tools to address this objective. While numerical 
groundwater models provide realistic representations 

of groundwater behavior, they require extensive data 
and expertise. In this study, a comparison was made 
between a numerical model (MODFLOW) and seven 
hybrid Genetic Algorithm-based Multilayer Perceptron 
(MLP-GA) models for predicting groundwater levels 
in both the present and future periods. It was found 
that by incorporating all relevant hydrological input 
components, a reliable hybrid MLP-GA groundwater 
model can be developed for accurate predictions. 
Among the seven hybrid AI-based models, the M-1 
hybrid model with four input nodes, 29 neurons in 
the hidden layer, and one output node demonstrated 
superior prediction accuracy. However, the numerical 

Fig. 8. A comparison of simulated spatial groundwater level (m) between MODFLOW (a) and MLP-
GA hybrid model(b) under RCP 4.5 climate projections with reference to the base year (c)

13 
 

  

 

Fig. 8. A comparison of simulated spatial groundwater level (m) between 
MODFLOW (a) and MLP-GA hybrid model(b) under RCP 4.5 climate 
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model outperformed the M-1 hybrid model in predicting 
groundwater levels. The numerical model projected an 
average decrease of 7.7 meters in groundwater levels 
by the end of the early century (2039) under RCP4.5 
projected climate change scenario compared to the 
reference year 2015 in the entire study region. On the 
other hand, the hybrid MLP-GA model (M-1) predicted 
a decline of 5 meter in groundwater levels by the 
end of the early century under RCP4.5. Though the 
hybrid MLP-GA model M-1 provided comparatively 
reasonable simulation for groundwater levels in the 
near future (until 2031), but it failed to simulate 
groundwater levels reasonably well with the rise and 
fall of groundwater levels, which is not realistic in a 
real-world system, beyond the year 2031 (2032-2040). 
Based on the findings of this study, the numerical 
model was considered a more reliable tool for long-
time (seasonal /annual) groundwater level predictions 
than the hybrid MLP-GA model (M-1). However, 
further research is needed to determine the best model 
for annual groundwater level simulations in different 
climate regions. Additionally, other AI-based models 
should be explored and compared with the numerical 
model to validate their performance. 
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