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resources have been and continue to be overexploited, 
due to which there is water scarcity in northern states of 
India as groundwater table is diminishing every year. The 
Unavailability of irrigation at its critical stages may result in 
drought stress. Initially, drought stress results in a decrease 
of chlorophyll content in leaves (Nikolaeva et al., 2010) 
which results in visual symptoms with yellowing of leaves, 
i.e. the initiation of senescence. At later stages, drought-
induced senescence results in a significant decrease in yield 
as fertile wheat ears as well as the number of grains per ear 
are reduced (Giunta et al., 1993).

Senescence is the final stage in the wheat crop cycle and 
the point when nutrients become remobilised from the plant 
into the developing grains. Yang et al. (2001) conducted an 
experiment and concluded that water deficiency accelerates 
wheat senescence. The first and most significant change in 
wheat senescence is the damaging of chloroplasts which 
result in the breakdown of photosynthetic pigments such as 
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Wheat is the major cereal crop grown in the larger part of 
India. Wheat is the staple food grain of India and is mainly 
grown in northern states in the Rabi season on irrigated 
lands. Already as a result of the Green Revolution, the water 
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Abstract
Wheat plant senescence is the result of the natural ageing process but also due to unfavorable conditions such as water 
deficiency. Water deficiency induces senescence that directly relates to the yield as a cause to reduce fertile wheat ears and 
the number of grains per ear. For precision farming, it is highly desirable to develop genotypes tolerable to drought stress. 
For selecting the best genotypes tolerable to drought stress, there is a need to measure the senescence percentage. Tradi-
tionally measurement of senescence is manual and time-consuming. In this paper, image-based non-destructive approach 
is proposed for the quantification of senescence percentage. In this study, wheat plant image data was taken from Nanaji 
Deshmukh Plant Phenomics Centre ICAR-IARI and six machine learning algorithms, Naïve Bayes, KNN, Decision Tree, 
Random Forest, Gradient Boosting classifier, and Artificial Neural Network algorithms were trained. These algorithms 
are trained to segment the senescence portion from the wheat plant. All the algorithms performed well but ANN outper-
formed among the above trained algorithms with 97.28% testing accuracy. Machine learning-based proposed approach 
was compared with binary thresholding approach on wheat plant dataset and it was observed that machine learning based 
approach provided best results in the quantification of senescence. A desktop application, named as m-Senescencica, has 
been developed to facilitate senescence quantification using the traine machine learning algorithms and to visualize senes-
cence across different plant growth stages.
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chlorophyll in leaf (Nikolaeva et al., 2010). Due to damage 
in chlorophyll, colour of the leaf changes from the usual 
deep green to yellow and finally brown.

Conventionally, senescence and green-ness are measured 
by visual scoring. Visual scoring is the inspection of plants 
to categorize them on a predefined scale. Visual scoring is a 
simple but subjective and time-consuming method (Rodri-
guez et al., 1979). In any particular agriculture research pro-
gram, replicated trials in different multiple environments, 
are performed, which results in a large group of plant pop-
ulation. Therefore, visual scoring of senescence, for large 
plant populations is time-consuming and challenging.

This bottleneck in phenotyping leads to the new con-
cept High-Throughput Phenotyping (HTP). HTP consists in 
using non-destructive image or sensor-based phenotyping in 
plants for a large number of traits including physiological, 
biotic (living organisms bacteria, fungi, virus, insects-pests, 
and weeds, etc.), and abiotic (includes non-living factors 
such as nutrient deficiency, flood, and drought) stress traits 
(White et al., 2012; Deery et al., 2014). A lot of research 
work is done on image based non-destructive plant pheno-
typing such as Leaf Image Analysis Interface (LIMANI) 
(Dhondt et al., 2012), High-Throughput Phenotyping Plat-
form for plant growth modelling, and functional analysis 
(HPGA) (Tessmer et al., 2013), Integrated Analysis Plat-
form (IAP) (Klukas et al., 2014), Easy Leaf Area (Easlon & 
Bloom, 2014), etc.

For image-based senescence quantification, segmentation 
of senescence portion from green and background portion is 
required. The literature is rich in traditional segmentation 
techniques, but segmentation techniques are totally depen-
dent on the type of image data and other conditions such 
as noise and image illumination. Therefore a segmentation 
technique may be better for one set of images not for the 
other images (Pal & Pal, 1993). Thresholding, edge detec-
tion, and region growing are the three traditional classes of 
image segmentation techniques. The thresholding method is 
used for the quantification of wheat and chickpea senescence 
(Cai et al., 2016), extraction of brown and yellow pixels per-
centages in soybean (Naik et al., 2017). Thresholding is the 
most popular method for segmentation but it suffers from 
noise and illumination conditions (Gonzalez et al., 2002).

In the recent years, with the increase in computational 
power, nowadays focus has been shifted to the Machine 
Learning (ML) based phenotyping of plants. ML techniques 
are based on data driven approach and algorithms learns 
patterns from data, due to which they are more robust even 
when noise is present in digital images (Pal & Pal, 1993). 
Machine learning based techniques are used in other related 
phenotypic traits such as, spike segmentation in wheat 
plant (Misra et al., 2020), plant disease recognition (Slado-
jevic et al., 2016), weed detection (Gao et al., 2020) etc.

Most of the work done on senescence quantification is 
based on image processing techniques and the ML-based 
approach is least explored. Therefore, in this study machine 
learning-based approach is proposed for senescence seg-
mentation and quantification. In this approach, machine 
learning based models are built for pixel-wise classifica-
tion of plant into defined senescence and green-ness classes. 
After pixel classification, plant pixels are segmented into 
defined classes and for quantification, the total predicted 
pixels in each class are counted.

Senescence quantification results obtained using machine 
learning based approaches are compared with binary 
thresholding. It was observed that machine learning based 
approach provided the best results in comparison with binary 
thresholding.

Materials and methods

Image data acquisition

In this study, images of wheat plants were collected from 
LemnaTec imaging platform installed at Nanaji Deshmukh 
Plant Phenomics Centre (NDPPC), ICAR-IARI, New 
Delhi, India. Images of single wheat plants grown in pots 
under controlled conditions with white backgrounds were 
taken. RGB camera of spectral response 400 to 700 nm with 
sensor size 4384 × 6576 was used to capture visual (VIS) 
images (Fig. 1).

Senescence and green-ness classes

For senescence quantification purpose wheat plant is 
divided into five senescence and green classes by observing 
the wheat plant life cycle. In the initial stage of wheat plant 
and without senescence, leaves remain dark green. Due to 
senescence, leaf colour changes to pale yellow then yellow, 
and finally brown (for dry leaf). Based on this pattern five 
classes; brown, yellow, pale yellow, light green, and dark 
green are defined. Among the defined classes; brown, yel-
low, and pale yellow account for the senescence whereas 
light green and dark green comes under green-ness classes. 
For segmentation of plant from background, two additional 
classes, named as background classes, are also considered. 
Background classes consider the chamber portion, plant leaf 
shadow portion and the white pots turned yellow due to crop 
management practices like watering and soil filling in pots.

Sampling pixel values from image data

In this study, it is proposed to use machine learning based 
classifiers to learn the pattern of senescence from the pixel 
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Fig. 1 Imaging chamber and the captured image of wheat plant in NDPPC facility
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red, green and blue pixel values respectively for each sam-
pled pixel and the class column is the integer encoding of the 
decided training classes.

Around 1000 pixel values are sampled from each speci-
fied class. Table 1 below shows the number of sampled pix-
els values from each class.

Machine learning classifiers

In this study six machine learning based classifiers are 
trained. These classifiers are trained to classify each input 

values. The classifiers are trained on pixels values. Manual 
pixel sampling is done from each acquired image and suf-
ficient numbers of pixel values are collected for the decided 
classes. GUI based ImageJ software (Schneider et al., 2012) 
is used to pick up pixel values. This tool provides a sepa-
rate window to open an image file. ImageJ software has pixel 
inspector tool, which is used to copy pixel values by click-
ing at the desired location in image. Every image is opened 
in Image J software and pixels values is collected for every 
specified class. A CSV file (Fig. 2) is created, which contain 
four columns; R, G, B and class. R, G, B columns contain the 

Fig. 2 Sample “pixel_data.csv” file. This file contains the sampled pixel values for each class. This file is used for the training of machine learning 
based classifiers
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way, each tree is built on different data points and in the sec-
ond way random features are selected. To select distinct data 
points, the bootstrap sample is used and instead of selecting 
the best features, random feature selection is done. For mak-
ing a prediction, voting is done by each built classifier and 
the class with maximum votes is predicted.

Gradient tree boosting

Gradient Tree Boosting (Friedman, 2001) is also an ensem-
ble of decision trees. It builds trees one after another and 
each tree correct the mistakes made by the previous tree, 
by using greedy function approximation. There is no ran-
domization of features or data in gradient-boosted regres-
sion trees as like in decision tree. Gradient-boosted trees are 
very shallow trees with maximum depth five which makes 
predictions faster.

Artificial neural network (ANN)

An artificial neural network (ANN) consists of multiple lay-
ers with Perceptron, they are also known as Multiple Lay-
ers Perceptron (MLP) (Hinton, 1990). ANN is used to detect 
nonlinear relationships in the data set. An ANN consists of 
3 types of layers; input, hidden an output layer. Generally, 
there are more than one hidden layers. More the hidden lay-
ers, deeper is the model. A deeper model follows the training 
data more closely.

Performance measurement

Confusion matrix is a visualization tool used to evaluate 
the performance of trained classifiers. In a confusion matrix 
rows represents the actual classes and columns represents 
predicted classes. The correct prediction is shown by the 
main diagonal elements and off-diagonal elements represent 
the wrong predictions.

For binary classification problem Table 2 shows a confu-
sion matrix.

Based on the confusion matrix following metrics are cal-
culated for classification performance evaluation.

Accuracy

Accuracy quantifies the fraction of correct predictions.

pixel as yellow, pale yellow, green etc. After classification of 
each input pixels of image, quantification for senescence and 
green-ness is possible. Brief description of each classifier is 
given below.

GaussianNB

Gaussian naive Bayes is the simplest algorithms and based 
on bayes theorem (Bayes, 1763). This theorem assumes that 
all features are independent of each other. Gaussian naive 
Bayes classifier is more efficient as this classifier doesn’t 
learn complex decision-making functions (Zhang, 2004). 
It learns parameters by looking at each feature individually 
and independently and collects simple statistics, mean and 
variances, for each feature, and from each class.

k-nearest neighbors (k-NN)

The k-NN algorithm is the simplest and easiest to train 
machine learning algorithm. This model stores the training 
dataset and for a given input point, prediction is made by 
finding the class of the data point nearest to the input data. 
The three algorithms used to find the k-closet data point 
are Brute Force, K-D Tree (Bentley, 1975) and Ball Tree 
(Omohundro, 1989).

Decision tree

Decision Tree (Breiman et al., 1984) learns a hierarchy of 
if/else questions from the input features called as test nodes 
and makes tree-like structure. At every step a test is used 
to partition the dataset in two half’s. One half contains the 
dataset less than test values and other greater than test value. 
The test is chosen in such a way to generate the pure leafs. 
Pure leafs are those which share all the data points of the 
same class/target.

Random forest

A random forest (Breiman, 2001) is essentially an ensemble 
of decision trees, where each tree is built randomly. There 
are two ways by which distinct trees are built. In the first 

Table 1 Sampled pixel values from the image data
Class Sampled pixel values
Brown (0) 999
Yellow (1) 999
Pale yellow (2) 999
Dark green (3) 999
Light green (4) 999
BG-1 (5) 995
BG-2 (6) 1225
Total 7215

Table 2 Confusion matrix
Predicted positive 
(class 1)

Predicted nega-
tive (class2)

Actual positive (class 1) True positive (TP) False negative 
(FN)

Actual negative (class 2) False positive (FP) True negative 
(TN)
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Senescencepercentage = Percentagebrown pixels + Percentageyellow pixels

+ Percentagepale yellow pixels

Senescence segmentation approach

Segmentation consists of removing all the other objects in 
the digital image, and considering only the object of inter-
est. Binary segmentation consists in the generation of binary 
masks (Fig. 3a). These masks are black and white. In binary 
masks, objects of interest are shown in and others in black. 
In this study there are a total of six classes, therefore, there 
are six binary masks for each input image.

Binary masks are difficult to visualize, as there are six 
masks for a single input image. To make visualization 
of segmentation easier, semantic segmentation is done 
(Fig. 3b). Semantic segmentation consists of the generation 
of a coloured mask. In coloured masks, different objects are 
shown by using different colours. A single coloured mask is 
sufficient to visualize the segmentation.

Algorithm for binary segmentation

This algorithm takes image as input and generates six 
2-dimensional arrays, and each array is a binary mask. 
These are initialised with pixel values set to zero.

1. Take input an image of size w×h, where w and h denotes 
width and height of the input image.

2. Declare six 2-dimensional arrays of size w × h and 
initialise all w × h values to zero. Let brown[ ]w×h, 
yellow[ ]w×h, pale_yellow[ ]w×h, light_green[ ]w×h, 
dark_green[ ]w×h, background[ ]w×h are the 2-D arrays 
for brown, yellow, pale yellow, light green, dark green 
and background portion respectively.

3. Repeat steps 4 to 7 for i = 0 to i = w − 1.
4. Repeat step 5 to 6 for j = 0 to j = h − 1.
5. Input the (i, j)th pixel to the trained machine learning 

classifier. The classifier predict whether the inputted pix-
els is brown, yellow pale yellow etc. If the predicted pixel 
is dry then set brown[ ]i×j = = 1, or if the predicted pixel is 
yellow then set yellow[ ]i×j = = 1, similarly for the other 
classes too. Here brown[ ]i×j denotes the jth pixel value in 
ith row.

6. Set j = j + 1.
7. Set i = i + 1.
8. Save all binary masks to disk as an image using OpenCV 

library.
9. Repeat the steps 1 to 8 for all the input images.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100

Precision

Precision is used to capture the percentages of samples that 
are predicted as positive are positive. Precision is calculated 
by the formula:

Precision =
TP

TP + FP
× 100

Recall

Recall is used to measure the percentages of the positive 
samples which are captured by positive predictions i.e. 
among all the positive predictions, how many are positives. 
Recall is calculated by the formula.

Recall =
TP

TP + FN
× 100

F1 score

This measure is used to summarize both precision and 
recall. The harmonic means of recall and precision is the F1 
score. It is calculated by the formula.

F1 score =
Precision− Recall
Precision+ Recall

× 2

Approach for senescence quantification

After training of machine learning-based classifier, they 
are used to quantify the senescence percentage in the input 
image. The approach for senescence segmentation consists 
three steps:

Step 1 Select a machine learning-based classifier, input an 
image and predict the classes for all the pixels in the image.

Step 2 Count the total number of predictions made for all 
the classes. Senescence percentage and total plant pixels are 
calculated by using the following calculations.

Totalplant pixels = Totalbrown + Totalyellow + Totalpale yellow

+ Totallight green + Totaldark green

Percentagebrown pixels = Totalbrown/Totalplant pixels × 100

Percentageyellow pixels = Totalyellow/Totalplant pixels × 100

Percentagepale yellow pixels = Totalpale yellow/Totalplant pixel × 100

Percentagelight green pixels = Totallight green/Totalplant pixels × 100

Percentagedark green = Totaldark green/Totalplant pixels × 100

Step 3 Senescence percentage calculated by using this 
equation.
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d. Elif predicted class is light green, set (i, j)th pixel to 
orange colour.

e. Elif predicted class is green, set (i, j)th pixel to green 
colour.

f. Elif predicted class is background, set (i, j)th pixel 
to white colour.

3. Set j = j + 1, j < h, repeat step 2 for all values of j.
4. Set i = i + 1, i < w, repeat steps 2 and 3 for all values of i.
5. Save C_MASK as an image to the disk.
6. Repeat steps 1 to 5, for all input images.

Manual scoring of senescence

Senescence traditionally is measured by manual scoring, 
where a senescence scorer assigns the scores to the plants 

Algorithm for semantic segmentation

1. Take input an image of size w×h, where w and h denotes 
width and height of input image.

2. Declare one 2-Dimensional array, C_MASK of size w×h 
and initialise all w×h values to zero. Set i = 0 and j = 0. 
Input (i, j)th pixel to trained classifier, and predict the 
class. Based on the condition matched below, change the 
(i, j)th pixel value of C_MASK:

 a. If predicted class is brown, set (i, j)th pixel to red 
colour.

b. Elif predicted class is yellow, set (i, j)th pixel to yel-
low colour.

c. Elif predicted class is pale yellow, set (i, j)th pixel to 
blue colour.

Fig. 3 Binary and semantic segmentation (a) Binary segmentation 
involves the partitioning of an image into two distinct regions: one 
representing objects of interest, displayed in white, and the other rep-
resenting background, displayed in black. (b) Semantic segmentation 

where various objects within an image are distinguished by assigning 
them different colour schemes, enabling clear differentiation between 
them
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For computation aspects, a desktop application named 
as m-Senescencica (Fig. 5), for senescence quantifica-
tion was developed using Python. The application offers a 
user-friendly interface. The interface allows users to load 
images, select a trained classifier model, and choose input 
and output folders. After these selections, users can initiate 
image processing, which generates binary masks, semantic 
segmentation masks, and senescence quantification data, 
all saved automatically to the specified output folder. The 
application also includes features to visualize time-series 
plots comparing growth, senescence percentage, and total 
leaf area between control and drought-stress conditions.

Figure 6 shows the output of the semantic segmentation 
approach. For a given input image, output image contains 
the labelled pixels, where pixels are labelled according to 
the predicted classes. Pixels are labelled by using a specified 
colour scheme.

Senescence quantification algorithm was implemented 
using python programming language. This algorithm takes 
input image and returns the predicted percentage for each 
class and total plant pixels (Fig. 7).

To compare the results of machine learning based senes-
cence quantification with binary Thresholding approach, 

by visually observing the senescence percentage. The scales 
used for scoring are described below.

1 = less than or equal to 20% senescence.
2 = more than 20% and less than or equal to 40% senescence.
3 = more than 40% and less than or equal to 60% senescence.
4 = more than 60% and less than or equal to 80% senescence.
5 = more than 80% senescence.

Manual scoring is used to evaluate the senescence scores 
predicted by the trained classifiers. Senescence scores pre-
dicted by classifiers were converted to these 5 scales. Accu-
racy is calculated by taking manual scoring as ground truth. 
Higher the accuracy score for a classifier, better is the clas-
sifier learning (Fig. 4).

Results

Training dataset was created by sampling pixels values from 
the image data for three senescence, two green-ness and two 
background classes. This dataset has total 7215 labelled pix-
els values, approx. 1000 values for each class. Six machine 
learning-based classifiers were trained on this dataset.

Python’s scikit-learn library (Pedregosa et al., 2011) was 
used to train the classifiers. 10-fold cross-validation was 
used to measure the performance evaluation metrics. All 
the classifiers performed extremely well where ANN out-
performed with 97.23% 10-fold average accuracy (Table 3).

After training of machine learning based classifiers, they 
are used for senescence segmentation and quantification.

Table 3 10-fold performance measurements for classifiers
Algorithm Precision Recall F1 score Val. accuracy
Naïve bayes 0.88 0.87 0.87 0.87
k-NN 0.96 0.96 0.96 0.96
Decision tree 0.95 0.95 0.95 0.95
Random forest 0.96 0.96 0.96 0.96
Gradient boosting 0.96 0.96 0.96 0.96
ANN 0.97 0.97 0.97 0.97

Fig. 4 Scale used for the manual senescence rating
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just 2.3 s, while Lemnagrid software was the slowest, taking 
174.06 s.

Lemnagrid is a comprehensive software platform 
designed for HTP, enabling the analysis and management 
of plant image data. It provides workflows for image-based 
senescence quantification and various image processing 
and trait extraction tasks. However, Lemnagrid has some 
limitations: it is expensive, features complex workflows 
that require specialized training to operate, and lacks the 
open-source flexibility needed for customized solutions to 
specific problems. To quantify the percentage of senescence 
using Lemnagrid software, the workflows illustrated in 
supplementary file (Fig. S1–S7) was followed. The process 
begins with segmenting the foreground and background 
using a neural network. Next, two morphological operations 
were applied, and a colour classification system categorized 
the image into five classes: green, dark green, light green, 
senescent, and dead leaf. When compared with ground-truth 
senescence scores, Lemnagrid’s senescence quantification 
achieved an accuracy of 92.1% (Fig. 8).

for 1200 wheat plants, manual senescence scoring was per-
formed at the maturity stage by the defined scales. Images 
for these plants were processed by using machine learn-
ing classifiers to get the senescence percentage. Binary 
threshoding based senescence percentage was obtained 
by finding the thresholding values to segment senescence 
portion. After segmentation, senescence percentage was 
obtained. Obtained senescence scores were converted to the 
scale 1 to 5, based on obtained senescence percentage. For 
example if senescence percentage is 57%, then scale is 3. 
This provided the predicted senescence scale.

To compare both the techniques, accuracy is calculated 
by taking manual scoring as ground truth. ANN achieved 
maximum 98.58% accuracy while Binary Thresholding 
based approach achieved 76.98% accuracy (Fig. 8).

The processing time for senescence quantification is a 
critical factor in selecting the appropriate algorithms. There-
fore, it is important to compare the algorithms based on their 
time complexity. We assessed the time required to process a 
single image on a system with an Intel Core i5-4705 CPU, a 
2.90 GHz processor, and 32 GB of RAM. The decision tree 
algorithm proved to be the fastest, processing an image in 

Fig. 5 User interface of the m-Senescencica software
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Traditionally segmentation of senescence commonly 
relies on binary thresholding. Binary thresholding entail 
labour-intensive and intricate procedures for constructing 
image processing pipelines. These involve manual defini-
tion of texture and colour intensity ranges specific to a given 
scenario, aiming to detect and characterize segmentation 
issues (Gonzalez et al., 2002).

This method often encounters the issue of mistakenly 
categorizing background elements as part of the plant. In 
this study, it was noted that binary thresholding failed to 

Discussion

Given the random and pattern-less nature of senescence in 
wheat plants, employing a deep learning-based object detec-
tion and segmentation approach is less suitable for accurately 
segmenting senescence. Therefore, machine learning-based 
approach is the ideal solution for senescence segmentation. 
Machine learning-based classifiers achieve more than 90% 
accuracy and (Naik et al., 2017) also reported the same 
results for iron induced stress in soybean crop.

Fig. 7 Senescence quantification output for an input wheat plant. For each class senescence percentage is computed using a classifiers and output 
is saved into a csv file

 

Fig. 6 This figure represents the semantic segmentation of an input wheat plant into different classes using a trained classifier and the colour 
scheme used to label the each pixel according to the predicted class. For example, red colour is used for all the pixels predicted as brown/dry
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Conclusions

Wheat plant senescence is a vital phenotypic parameter in 
breeding programs aimed at developing varieties tolerant 
to abiotic stresses like nutritional deficiencies and drought. 
Accurate and high-throughput measurement of senescence 
is essential for selecting superior varieties. In this study, we 
introduced a novel approach for segmenting and quantifying 
wheat plants into green and senescent portions. We trained six 
machine learning-based classifiers using pixel data sampled 
from images of wheat plants grown in controlled environ-
ments. Among the classifiers evaluated, the artificial neural 
network (ANN) demonstrated the highest performance on 
comparison with binary thresholding and Lemnagrid soft-
ware. For high-throughput senescence quantification and 
visualization, we developed m-Senescencica desktop appli-
cation for the users with minimal technical expertise to oper-
ate. The developed application takes less computation time 
than Lemnagrid software, offering a viable alternative to the 
time-consuming process of senescence quantification. Our 
study introduces a novel approach for senescence segmenta-
tion that specifically computes leaf area. This method not only 
segments senescent leaves from the rest of the plant but also 

effectively segment pots that had turned yellow as a result 
of agronomic management practices. As a result, binary 
thresholding achieved an accuracy of 76.98%, whereas the 
proposed machine learning-based classifiers achieved more 
than 90% accuracy.

One potential solution for dealing with the issue of yel-
low pots is to use a Region of Interest (ROI) approach. 
However, during senescence, lower leaves often turn yellow 
and fall onto the pot. Since senescence typically begins with 
the yellowing of these lower leaves, excluding them through 
an ROI can lead to an underestimation of senescence quan-
tification. The Lemnagrid-based senescence quantifica-
tion workflow uses an ROI-based approach, which fails to 
account for these fallen lower leaves. In contrast, the trained 
classifiers in our study analyse the entire image for senes-
cence quantification, successfully segmenting the plant 
from the background. The data showed that the senescence 
scores obtained from Lemnagrid were slightly lower, likely 
due to the software misclassifying some senescent areas as 
background (Cai et al., 2016) and the use of an ROI that 
excludes fallen leaves.

Fig. 8 Accuracy by taking manual scoring as ground truth. Binary thresholding, a conventional image processing technique, yielded an accuracy 
of 76.98%, whereas Artificial Neural Networks (ANN) achieved a significantly higher accuracy of 98.58%
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isolates the plant from the background, a crucial step for accu-
rate phenotypic analysis. By enabling precise measurement 
of leaf area and plant height, this approach directly supports 
the assessment of traits closely linked to yield, enhancing the 
ability to monitor plant health, manage agricultural practices 
effectively, and ultimately improve crop productivity. Look-
ing ahead, we plan to test the trained classifier on other crops 
such as rice and maize, where senescence patterns exhibit 
similar characteristics to those observed in wheat. Given the 
resemblance in senescence patterns, we anticipate that the 
classifier will perform effectively in quantifying senescence 
in other crops.
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