
1.	 INTRODUCTION
Rice, a staple food for a significant portion of the 

global population, is pivotal in ensuring food security 
and sustainability. Understanding and accurately 
identifying the various growth stages of the rice plant is 
essential for agronomists and researchers alike. It forms 
the basis for making informed decisions regarding 
planting, irrigation, nutrient management, pest control, 
and harvesting, significantly influencing crop yield and 
quality.

Beginning with the early stages of seedling 
emergence, where delicate shoots pierce through the 
soil and progress through the vegetative growth phases, 
the paddy gradually prepares itself for reproduction. 
As it reaches the booting stage, it transitions into the 
reproductive phase, marking a critical turning point in 
its development. Accurate identification at this stage 

is vital, as it influences the formation of panicles and 
is responsible for producing rice grains. Subsequent 
stages include heading, anthesis (flowering), grain 
filling, and grain maturity. Each of these stages carries 
its significance and requirements. For instance, proper 
irrigation and nutrient management are essential during 
grain filling to ensure that rice grains develop fully and 
contain ample starch, contributing to yield and grain 
quality. Researchers, especially physiologists, need to 
identify these stages to understand plants’ physiology.

Additionally, determining the optimal timing 
for harvesting during the grain maturity stage is 
crucial to maximize the economic value of the crop. 
Understanding and identifying different stages of 
paddy enables researchers to develop appropriate 
crop management practices such as optimized nutrient 
application and irrigation strategies. Different stages of 

Identification of Paddy Stages from Images using Deep Learning

Himanshushekhar Chaurasia1, 2, 3, Alka Arora2, Dhandapani Raju4, Sudeep Marwaha2,  
Viswanathan Chinnusamy4, Rajni Jain5, Mrinmoy Ray2 and Rabi Narayan Sahoo4

1The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi
2ICAR- Indian Agricultural Statistics Research Institute, New Delhi

3ICAR-Central Institute for Research on Cotton Technology, Mumbai
4ICAR-Indian Agricultural Research Institute, New Delhi

5ICAR-National Institute of Agricultural Economics and Policy Research, New Delhi

Received 23 October 2023; Revised 27 December 2023; Accepted 03 January 2024

SUMMARY
Rice, a crucial global staple, is integral to food security. Precise identification of paddy growth stages, booting, heading, anthesis, grain filling, and 
grain maturity is vital for agricultural decisions. However, a gap exists in recognizing these stages using red-green-blue (RGB) images. This study 
uses state-of-the-art computer vision and deep learning classification (Convolutional Neural Networks) algorithms to address this gap. Among the 
studied algorithms, EfficientNet_B0 achieved an impressive 82.8% overall accuracy. Notably, increasing image size from 64X64 pixels to 128X128 
pixels significantly enhanced accuracy. A detailed assessment of growth stages revealed varying accuracy levels, with boot leaf being the most 
accurately detected (95.1%) and anthesis being the most challenging (72.28%). This work significantly advances automated monitoring, empowering 
researchers in real-time decision-making.

Keywords: Paddy; Growth stages; Deep learning; Computer vision; Convolutional neural network.

Corresponding author: Alka Arora
E-mail address:  alka.arora@icar.gov.in 

https://doi.org/10.56093/JISAS.V78I1.9 
Available online at http://isas.org.in/isa/jisas
JOURNAL OF THE INDIAN SOCIETY OF 

AGRICULTURAL STATISTICS 78(1) 2024  69–74



70 Himanshushekhar Chaurasia et al. / Journal of the Indian Society of Agricultural Statistics 78(1) 2024  69–74

crops present varying vulnerabilities to pests, diseases, 
and environmental stresses. Identifying these stages 
allows for timely intervention and implementation of 
targeted pest control measures and disease management 
strategies.

Identifying different stages of paddy is crucial in 
various aspects of agricultural management, decision 
making and research. Computer vision, a subset 
of artificial intelligence, is one such technique that 
transformed how we perceive images. By employing 
advanced image processing techniques and deep 
learning algorithms, we can automate and enhance 
the identification and monitoring of paddy stages 
and manage the crop monitoring of rice plants. 
This optimizes resource utilization and empowers 
agronomists and physiologists with real-time insights 
into their rice fields, revolutionizing the decision-
making process.

Recently, the deep learning concept of computer 
vision and artificial intelligence has gained pace to 
solve various problems related to agriculture and allied 
sectors across the world. Typical uses include disease 
and pest detection and crop and weed identification. 
Haque et  al. (2022) applied classification algorithms 
of deep learning to identify diseases of maize viz., 
Maydis Leaf Blight, Banded Leaf, Sheath Blight and 
Turcicum Leaf Blight with an accuracy of 95.99%. 
Nigam et  al. (2023) applied VGG19, ResNet152, 
DenseNet169, InceptionNetV3, and MobileNetV2 
classification algorithms to classify leaf rust, stem rust 
and stripe rust in wheat and reported accuracy ranging 
from 91.2% to 97.8%. Haque et al. (2023) proposed a 
15-layer convolution neural network (CNN) to classify 
Gray Leaf Spot, Common Rust and Northern Corn 
Leaf Blight diseases of maize crops on the publicly 
available dataset PlantVillage. Deep learning-based 
model Fruit-CNN can identify the type of fruit for 
their quality assessment with an accuracy of 99.6% 
(Kumar et al., 2021). Narvekar and Rao, 2020 tested 
classification algorithms such as VGG16, MobileNetV2 
and Resnet50 on publicly available flower datasets. 
The broadleaf and grass weeds of soybean crop were 
identified with an accuracy of 97% using CNN models 
(dos Santos Ferreira et al., 2017). Jiang et al. (2019) 
applied the AlexNet CNN model on hyperspectral 
images combined with a machine learning-based 
segmentation algorithm to detect the postharvest apple 
pesticide residue and reported an accuracy of 99.09%. 

Some studies have also been done on paddy to 
identify diseases and growth stages of the paddy. 
Vardhini et al. (2020) used CNN to classify rice blast, 
sheath blight, false smut and rice tungro disease. 
Ikasari et al. (2016) used LANDSAT-8 remote sensing 
data to identify the growth stages of paddy, namely 
vegetative, reproductive, ripening, and harvesting. 
They applied CNN models with different dropout 
and batch normalization combinations and achieved 
a maximum accuracy of 71.79%. Murata et al. (2019) 
used NDVI images collected from drone at different 
heights to classify growth stages in paddy. Using the 
CNN model, they achieved a classification accuracy of 
71.2% at a height of 60 meters.

Although some work has been done on the paddy 
to classify the growth stages using remote sensing data, 
there is a significant gap in identifying the stages from 
RGB images. In this work, we have undertaken the task 
of identifying the boot leaf, heading, anthesis, grain 
filling and grain maturity using RGB (Red-Green-
Blue) images. We implemented different state-of-the-
art classification algorithms of computer vision and 
deep learning. We also experimented with two different 
sizes of images.

2.	 MATERIALS AND METHODS

2.1	 Data Collection
The image data were collected from Nanaji 

Deshmukh Plant Phenomics Centre (NDPPC), 
ICAR‑Indian Agricultural Research Institute (Misra 
et al., 2019). The images were collected from the side 
view as the images facilitate us not only in identifying 
anthesis, grain filling and grain maturity stages but 
also booting and heading stages, which are crucial for 
the physiological study of the crop. The images were 
collected in five categories, namely boot leaf, heading, 
anthesis, grain filling and grain maturity, making five 
classes for our experiment. The images collected were 
varying in size. Fig. 1 shows the sample images from 
each of the classes. We used boot leaf data as boot leaf 
emerges 1-2 days after booting and has better visibility. 
A total of 4000 images were collected, and the number 
of images was increased to 10000 to train the models 
by adding different augmentations.
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Fig. 1. Different stages used for identification

2.2	 Data Preprocessing
We took two experiments of varying sizes. The 

first one involves resizing the image to 64X64 pixels, 
and the second one involves resizing the image to 
128X128 pixels. After resizing, we applied data 
augmentation using the ‘Albumentation’ package. We 
applied “horizontal flip” to all the images and then 
“random brightness and contrast” to the original and 
horizontally flipped images to augment the data and 
increase the size of the data. Horizontal flip was applied 
as it generates a mirror view of the image. Random 
Brightness and Contrast was applied to get variation 
in the brightness and contrast of the dataset, making 
the models developed on this dataset more robust to 
adapt to these changes. After stacking three channels 
(Red, Green, and Blue) of the images, the data was then 
normalized by mean and variance of pixel values.

2.3	 CNN Models
We used AlexNet (Krizhevsky et al., 2012), VGG19 

(Simonyan and Zisserman, 2014), MobileNetV2 
(Sandler et  al., 2018), ResNet152 (He et  al., 2016), 
GoogleNet (Szegedy et  al., 2015), EfficientNet_B0 
(Tan and Le, 2019) and EfficientNet_B7 (Tan and Le, 
2019) convolutional neural network models to classify 
and compare the model performance.

AlexNet is one of the pioneering deep convolutional 
neural network (CNN) architectures. It gained attention 
after winning the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) in 2012. It consists 
of eight layers—five convolutional layers (first, second 
and fifth convolution layers are followed by max-
pooling layers) and three fully connected layers. AlexNet 
introduced concepts like ReLU activation functions 
and dropout, significantly advancing the field of deep 
learning (Krizhevsky et al., 2012). The architecture of 
AlexNet is displayed in Fig. 2. The convolutional layer 
is the core building block of CNNs and is responsible 
for feature extraction. It comprises a set of learnable 
filters (kernels) that slide over input data (images) to 
perform convolution operations. These filters extract 
features by performing element-wise multiplications 
and aggregations, detecting patterns like edges, 
textures, and shapes within the input data. The resulting 
feature maps preserve spatial relationships, enabling 
the network to learn hierarchical representations of 
visual information. ReLU is an activation function 
commonly used in CNNs, introducing non-linearity 
by replacing negative values with zero and leaving 
positive values unchanged. It helps the network learn 
complex relationships in the data by introducing non-
linearities, aiding in feature learning, and mitigating 
the vanishing gradient problem during training. Max 
pooling is a downsampling technique used after 
convolutional layers to reduce spatial dimensions while 
retaining essential features. It partitions feature maps 
into non-overlapping regions and retains the maximum 
value within each region, discarding other values. By 
capturing the most prominent features and reducing 
computational complexity, max pooling helps in spatial 
abstraction, translation invariance, and controlling 

Fig. 2. Architecture of AlexNet
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over fitting by providing a form of regularization. 
Fully connected layers, also known as dense layers, 
constitute the final segments of a CNN, preceding the 
output layer. Neurons in these layers are interconnected 
to all neurons in the preceding layer, enabling the 
network to learn complex patterns and relationships 
across the extracted features. Fully connected layers 
integrate high-level features captured by earlier layers 
and transform them into predictions or classifications 
suitable for the given task.

VGG19, part of the VGG (Visual Geometry 
Group) series, is a deep CNN architecture known 
for its simplicity and uniform architecture. It has 19 
layers with small 3x3 convolutional filters, making the 
network deeper while maintaining a simple structure. 
VGG models are characterized by their stack of 
convolutional layers, often followed by max-pooling 
layers, and are effective at feature extraction (Simonyan 
and Zisserman, 2014).

MobileNetV2 is a lightweight CNN architecture 
optimized for mobile and edge devices. It employs 
depthwise separable convolutions to reduce 
computational complexity while maintaining good 
performance. MobileNetV2 introduces inverted 
residuals and linear bottlenecks, allowing for efficient 
use of parameters and faster inference on resource-
constrained devices (Sandler et al., 2018).

ResNet152 is part of the ResNet (Residual 
Network) series. It addresses the vanishing gradient 
problem by introducing skip connections or shortcuts 
that enable the flow of gradients through the network. 
ResNet152 has explicitly 152 layers, utilizing residual 
blocks that ease the training of very deep networks 
and achieve state-of-the-art performance in various 
computer vision tasks (He et al., 2016).

GoogLeNet, also known as the Inception 
architecture, introduced the concept of inception 
modules employing multiple filter sizes within the 
convolutional layer. This architecture aims to capture 
features at various scales efficiently. GoogLeNet also 
employs global average pooling and auxiliary classifiers 
to aid in training deeper networks without encountering 
vanishing gradients (Szegedy et al., 2015).

EfficientNet is a family of CNN architectures that 
achieve state-of-the-art performance with improved 
efficiency. The architecture uses a compound scaling 
method that scales the network’s depth, width, and 

resolution. EfficientNetB0 represents the base model, 
while EfficientNetB7 is a larger, more powerful 
variant. These models balance accuracy and efficiency 
by optimizing network scaling (Tan and Le, 2019).

3.	 IMPLEMENTATION
We implemented all the models using PyTorch 

(Paszke et  al., 2019), a machine learning framework 
developed by Meta AI in the Python programming 
language. We used a Tesla V100 Nvidia DGX GPU 
server to run the experiments. While running the 
experiments, we used 10-fold cross-validation to 
avoid overfitting the data. The dataset was divided 
into a train set, validation set and test set in the ratio 
of 18:2:5, i.e. data was first divided into a 4:1 ratio to 
separate the “train+validation” set and the “test” set. 
The “train+validation” set was used for 10-fold cross-
validation, dividing the “train+validation” set to a 9:1 
ratio of the “train” set and “validation” set for each fold. 

4.	 RESULT AND DISCUSSION
The models were developed using a cross-validation 

of 10 folds to validate the developed models. Further, 
to compare the developed models and evaluate their 
performance on unseen datasets, we assessed various 
CNN models using the test dataset and compared their 
accuracy. To understand how different image sizes 
impact model performance, the evaluation tests the 
models using two distinct image resolutions: 64X64 
and 128X128 pixels. This analysis is essential as it 
helps assess how well these models adapt to different 
input image scales. The results of this evaluation 
are presented in Table 1, which offers a side-by-side 
comparison of the performance of each model. The 
overall accuracy achieved by each model is recorded 
for both 64X64 and 128X128 pixels image sizes.

Table 1. Performance of different CNN models

S. 
No. Model

Mean accuracy of model on all the stages 
(%)

64X64 pixels image 
size

128X128 pixels 
image size

1 AlexNet 43.79 49.02

2 VGG19 62.09 65.26

3 MobileNetV2 72.08 74.43

4 ResNet152 71.24 72.59

5 GoogleNet 70.13 72.73

6 EfficientNet_B0 77.27 82.80

7 EfficientNet_B7 73.38 75.32
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The study begins by evaluating a set of CNN 
models. This evaluation involves subjecting these 
models to a test dataset to determine how effectively 
they can classify images. Although the EfficientNet_
B7 has been reported to be the best-performing model 
among the studied models, EfficientNet_B0 stood out 
as the top-performing model, achieving an impressive 
overall accuracy of 82.8% as it performs better for 
smaller-size images. On the opposite end of the 
spectrum, AlexNet, a model known for its historical 
significance in the field of deep learning, exhibits the 
lowest accuracy. It is dubbed the least effective model 
in this evaluation. An intriguing observation is made 
regarding the impact of image size on model accuracy. 
Increasing the image size from 64X64 to 128X128 
pixels leads to a noticeable improvement in accuracy, 
especially for AlexNet. This indicates that some models 
benefit from higher-resolution input images. This 
is mainly because of increased spatial information, 
ultimately leading to enhanced feature extraction and 
reduction in information loss. Similar findings were 
noted by Nigam et al., 2023 where they recorded that 
increasing image size led to increased accuracy up to a 
point after which the accuracy started decreasing.

With EfficientNet_B0 emerging as the top-
performing model, the evaluation delves deeper into its 
capabilities. It specifically focuses on its performance 
at the 128X128 pixels image size, examining its ability 
to classify images at individual growth stages. Various 
metrics such as precision, recall, accuracy, and the 
F1 score are employed to assess its performance in 
detail. These metrics provide a more comprehensive 
understanding of how well EfficientNet_B0 performs 
at different growth stages. Fig. 3 visually represents 
the performance metrics at each growth stage. This 
visual aid offers a clear and intuitive way to understand 
the model’s strengths and weaknesses in classifying 
images at different stages of growth.

This deeper analysis reveals that the “boot leaf” 
stage is where EfficientNet_B0 shines the brightest, 
achieving a high accuracy rate of 95.1% and good 
precision, recall and F1 score. In contrast, the 
“anthesis” stage presents a challenge, with an accuracy 
of 72.28%. Although the “heading” stage displayed 
better accuracy, it also displayed poor precision, recall 
and F1 score. This is mainly because the “heading” and 
“anthesis” stages have some similarities, which can be 
easily viewed in Fig. 1. A similar situation can be seen 

in the “grain filling” and “grain maturity” stages, where 
the “grain maturity” stage displayed good accuracy but 
also displayed comparatively poor precision, recall 
and F1 score. This highlights potential improvement 
in the model’s ability to detect these specific stages 
accurately.

Fig. 3. Comparison of performance metrics for each  
class of EfficientNet_B0

CONCLUSION
Computer vision, a subset of artificial intelligence, 

has emerged as a transformative tool in agriculture. 
We can automate and improve the identification and 
monitoring of rice plant growth stages by employing 
advanced image processing techniques and deep 
learning algorithms. This innovation optimizes resource 
utilization and empowers stakeholders with real-time 
insights into their rice fields, revolutionizing decision-
making processes.

The results demonstrated that the EfficientNetB0 
model outperformed others with an overall accuracy 
of 82.8%. Increasing the image size from 64X64 to 
128X128 pixels significantly improved model accuracy, 
particularly for AlexNet. Furthermore, a detailed 
analysis of the EfficientNetB0 model revealed varying 
accuracy levels for different growth stages, with boot 
leaf being the most accurately detected (95.1%) and 
anthesis being the most challenging (72.28%).

This study highlights the potential of computer 
vision and deep learning in accurately identifying rice 
growth stages from RGB images. The findings provide 
valuable insights for further advancements in precision 
agriculture, ultimately contributing to optimizing rice 
farming practices and global food security. Further 
research and refinement of these models can unlock 
even greater potential in leveraging technology for 
sustainable agricultural development.
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