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Intervention analysis is used to study structural changes 
in data resulting from external events. Traditional 
time series intervention models, viz. autoregressive in-
tegrated moving average model with exogenous variables 
(ARIMA-X) and artificial neural networks with exoge-
nous variables (ANN-X), rely on linear intervention 
functions such as step or ramp functions, or their 
combinations. However, when intervention effects are 
nonlinear, growth models may offer a viable alterna-
tive. This study proposed a new algorithm for time series 
intervention analysis employing ARIMA and ANN 
models with a nonlinear intervention function. The 
Hoerl function has been introduced as a nonlinear in-
tervention function. To demonstrate the effectiveness 
of the proposed model, monthly wholesale price data 
from three markets in Rajasthan, namely, Tonk, Alwar 
and Sriganganagar during January 2010 to May 2023 
have been used. The analysis encompassed a compre-
hensive examination across all markets, revealing that 
the proposed models consistently outperformed the 
conventional ARIMA-X and ANN-X methodologies in 
terms of performance and accuracy. 
 
Keywords: Accuracy, blending, Hoerl model, interven-
tion effect, mustard. 
 
MUSTARD oil holds a prominent position among cooking 
oils in Asia, particularly in India, owing to its significant 
medicinal and economic value. Nearly one-third of India’s 
oil production is derived from mustard, making it the 
country’s second most crucial edible oilseed crop follow-
ing soybean1. Renowned for its multifaceted benefits, 
mustard oil boasts anticarcinogenic properties, aiding in 
the prevention of cancer cell formation, along with anti-
fungal and antibacterial attributes that contribute to skin 
disease protection. Additionally, it aids in reducing body 
temperature, acts as a good appetizer and enhances red 
blood cell strength2. Comprising 37–49% oil content, 
mustard also contains approximately 1–1.5% minerals and 

vitamins, 2–3% glucosinolate, 14–15% carbohydrates, 
25–30% protein and 10–12% fibre. The composition of 
mustard oil typically includes around 40–60% erucic acid, 
4.5–13% linolenic acid and 25–30% oleic acid3. In India, 
during the 1990s, blending of edible oils was permitted for 
the first time. This move was prompted by the widespread 
outbreak of dropsy towards the end of the decade, which 
was attributed to the adulteration of mustard oil. However, 
researchers argue that the blending of mustard oil had det-
rimental effects on both the mustard farming community 
and public health. Consequently, blending of mustard  
oil was banned in October 2020. This policy intervention 
has had repercussions on the price of mustard oil and  
on the economy of both the farming community and con-
sumers4. 
 Time series analysis is used to forecast future events 
based on the past pattern. The auto regressive integrated 
moving average (ARIMA) is considered the most notable 
developed in a class of time series forecasting. This model 
performs well if the data under consideration is linear and 
forecast needed is for the short term. But if the past data is 
affected by intervention, the conventional time series 
model fails to predict the actual picture of the future. In-
tervention can be defined as any sudden change in driving 
force of the variable under study which affects the behav-
iour or components of the time series data5. This change 
may be educational, administrative and policy interven-
tions, or any natural or unforeseen or man-made events 
and maybe enforced at the regional, national or continent 
level. 
 The time series model with intervention study was pro-
posed by Box and Tiao6 and further popularized by Larcker 
et al.7 and Enders et al.8. Intervention analysis is used to 
study structural changes in data produced by external 
events. This intervention study has become popular in dif-
ferent areas including economics, agriculture, medicine 
and environment. Bianchi et al.9 used the ARIMA model 
with intervention for the forecasting of telemarketing data. 
Ismail et al.10 studied the effect of terrorism in the tourism 
industry of Bali, Indonesia using the ARIMA model with 
intervention. Arya et al.11 used the autoregressive integrated 
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moving average with exogenous variables (ARIMA-X) 
time-series model to model and forecast the pest popula-
tion. Aboagye-Sarfo et al.12 used an intervention model to 
study the effect of voluntary counselling and testing 
(VCT) in the northern and southern sectors of Ghana. 
Yeasin et al.13 proposed the Generalized Autoregressive 
Conditional Heteroskedasticity with exogeneous varia-
bles (GARCH-X) model with the intervention of exoge-
nous variables and applied it to the data of the domestic 
price index of edible oil of India. Paul and Birthal14 stud-
ied the effect of COVID-19 intervention on the daily  
arrivals and wholesale prices of onions, tomatoes and  
potatoes. Schaffer et al.15 demonstrated the use of the 
ARIMA model with intervention to quantify the impact 
of health policy as an intervention. Long et al.16 applied a 
multi-intervention interrupted time series analysis to esti-
mate the effect of centralized procurement policy on the 
price of centralized procured international non-proprie-
tary names (INNs) and their alternative INNs. Paul and 
Yeasin17 studied the effect of COVID-19 intervention on 
the price of major pulses in four major markets in India 
using the GARCH-X model. Prabhakar et al.18 studied the 
influence of weather factors lagged by one week on soy-
bean semilooper (Chrysodeixis acuta) pest status using a 
hybrid of ARIMAX and Artificial Neural Network 
(ANN). Rathod et al.19 studied the effect of COVID-19 
on the prices of rice in India using the ARIMA model, 
ARIMA with Intervention, ANN, ANN with Intervention, 
the extreme learning machine (ELM) model and ELM 
with Intervention. Xie et al.20 proposed a multi-variable 
hybrid attentive model (MVHA) by jointly mining multi-
ple time series to predict the forthcoming need for intra-
venous injections to the patients of intensive care units. 
Zhang et al.21 introduced a robust technique for the time 
series intervention model by using least squares and the 
bootstrap method. Zhao et al.22 conducted a study using 
the seasonal autoregressive integrated moving average in-
tervention (SARIMA-Intervention) model to study the  
relationship between the monthly HIV cases and COVID-
19 policy intervention in China. 
 In many of these studies, the intervention function  
employed typically consists of a step or ramp function, or 
a combination thereof, which is linear. However, when the 
intervention effect exhibits nonlinearity, growth models 
can also serve as suitable intervention functions. Numer-
ous growth models found in the literature have been dedi-
cated to studying and predicting the nonlinear patterns of 
time series23,24. In this particular study, a new algorithm is 
proposed for time series intervention analysis, utilizing 
ARIMA and ANN models with nonlinear intervention 
functions. To demonstrate the effectiveness of the algo-
rithm, it is applied to analyse the intervention of the ban 
on blending mustard oil in October 2020 for the produc-
tion of multi-sourced edible vegetable oils (MSEVOs)  
by the Food Safety and Standards Authority of India 
(FSSAI). 

Materials and methods 

Time series model 

The time series model employs the lagged variable as the 
independent variable. Several time series models have 
been developed in the literature based on the nature of 
time series data. Notably, the ARIMA and ANN models 
stand out as two important models in time series analysis. 

ARIMA model 

One of the popular linear time series models is ARIMA25, 
which was developed in the 1970s by Box and Jenkins26. 
The ARIMA model is composed of AR and MA models 
with a combination of integrated terms. An ARIMA (p, d, q) 
model can be represented as 
 
 ( ,( )(1 ) )d

t tB B Y Bϕ θ ε− =  (1) 
 
where B is the backward shift operator defined as B(Yt) = 
Yt–1 and Bi(Yt) = Yt–i 
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(1 – B)d is the dth order differencing operator to produce 
the stationarity of the dth order differenced data. 

ANN model 

ANN model is an effective alternative model for forecast-
ing nonlinear time series data27. The ANN imitates human 
intelligence by processing information in three layers, 
such as input, hidden and output layers. The feed-forward 
architecture with back propagation optimization is one of 
the popular ANN types used for time series data. An ANN 
model can be represented by the following equation 
 

 0 0
1 1
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where aj, bij are synopsis weight, p the number of hidden 
nodes represented in terms of a number of lags, q the 
number of hidden nodes and g is the activation function. 

Time series with intervention model 

If there are any intervention effects in time series data, the 
traditional time series model fails to capture behaviour 
within the data. The time series with intervention model 
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came into existence to cope with the drawback of the tra-
ditional time series model. The intervention can be incor-
porated into the model using a dummy as an exogenous 
variable. External factors, known as exogenous variables, 
may affect the target variable even though they are not in-
fluenced by the model. ARIMA-X and ANN-X are two 
important time series with intervention models which have 
been utilized in this study. 

ARIMA-X model 

Autoregressive integrated moving average with exogenous 
inputs is known as the ARIMA-X model28. ARIMA-X is 
the generalization of ARIMA where an exogenous variable 
is incorporated into the ARIMA model to study the effect 
of that exogenous variable29. An ARIMA-X model can be 
represented as 
 

 ´
,

1 1 1
,1 1

p qk
s s

s t i t i s t
s i s

B Y x Bα µ β γ ε
= = =

   
− ∆ = + + +      
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where ∆Yt = Yt – Yt–1, Bs = Yt–s, µ ∈ R, αs ∈ R, βi ∈ R, 
γs ∈ R are unknown parameters. The εt represents the error 
terms, p, q and k are parameters specified in advance. 

ANN-X 

Similar to ARIMA-X, the ANN-X model can be developed 
by incorporating exogenous variables in the ANN model. 
It is a generalization of the ANN model with an exoge-
nous variable. By adding exogenous variables in the ANN 
model, it can handle the intervention data that helps in 
improving the prediction accuracy of the model. The 
ANN-X structure can be visualized in Figure 1. 

Intervention function 

Intervention function is the mathematical representation of 
the exogenous variable included in the study. Depending 
on the nature and behaviour of the intervention effect, the 
intervention function can have a different mathematical 
form. 

Step function 

Following an intervention, the time series undergoes an 
immediate and continuous shift, either upward or down-
ward by a specified magnitude. Prior to the intervention, 
the step change variable holds a value of 0, transitioning 
to 1 upon the commencement of the intervention. The step 
function is represented mathematically as 
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0
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where T0 is the point of intervention. 

Pulse or point function 

A sudden, temporary change, which is observed at one or 
more time points immediately following an intervention, 
and subsequently returns to its baseline level. The pulse 
variable assumes a value of 1 on the day of the interven-
tion, reverting to 0 otherwise. Mathematically, the pulse 
function is represented as 
 

 0

0

0, if 
.

1, if t
t T

P
t T
≠

=  =
 (5) 

Ramp function 

In the ramp function, following the intervention, an im-
mediate alteration in slope takes place. Prior to the onset 
of the intervention, the ramp variable maintains a value of 
0, subsequently incrementing by 1 after the intervention 
date. The ramp function is mathematically represented as 
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Proposed methodology 

In the existing literature on time series model with inter-
vention analysis, the use of ARIMA-X and ANN-X incor-
porating X as an exogenous variable have been mentioned 
where the intervention function is in linear for such as 
pulse, step or ramp function. But in real data, the interven-
tion effect is not always linear. In this study, the nonlinear 
effect of the intervention has been incorporated in the time 
series model using growth models. 
 The nonlinear growth model is a mathematical frame-
work used to describe the growth or change of a variable 
over time in a nonlinear way. It is often employed in fields 
 
 

 
 

Figure 1. Schematic presentation of artificial neural network with exo-
genous variables (ANN-X) model. 
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such as statistics, economics and biology to model com-
plex growth patterns that cannot be adequately captured 
by linear models. Unlike linear models, which assume a 
constant rate of change over time, the nonlinear growth 
model allows for more flexible and realistic representation 
of growth dynamics. There are a number of nonlinear 
models present in the literature such as the exponential 
growth model, the logistic growth model, the Gompertz 
growth model, Richards’s growth model, the Hoerl model, 
etc. 
 In this study, the Hoerl model has been selected and 
implemented. The choice between the Hoerl growth model 
and other nonlinear models is due to several factors, in-
cluding the specific characteristics of the data and the re-
search objectives. One reason to opt for the Hoerl growth 
model is its greater flexibility in capturing diverse growth 
patterns. While the common model assumes a sigmoidal 
growth curve with a clear saturation point, the Hoerl model 
offers more variability in shape and dynamics, allowing 
for a better fit to data that may exhibit complex or irregu-
lar growth trajectories. Additionally, the Hoerl model may 
be preferred when there is uncertainty about the underly-
ing growth process or when there are multiple potential 
factors influencing growth that need to be accounted for 
simultaneously. Its versatility and adaptability make the 
Hoerl growth model a valuable choice to accurately model 
and understand nonlinear phenomena in various fields. 
Mathematically Hoerl model is represented as 
 

 .t c
tH ab t=  (7) 

 
This is a combination of exponential and power functions, 
where Ht represents the value of the residual of the study 
variable at time t, bt represents an exponential growth or 
decay factor and tc represents a power term. a is the scaling 
parameter or the initial value of the function, b controls 
the exponential growth (or decay) rate and c controls the 
growth (or decay) rate of the power function. The con-
stants a, b and c determine how the function behaves with 
different t values. 
 Utilizing the Hoerl nonlinear model as a foundation, 
ARIMA-X and ANN-X models with nonlinear interven-
tion have been proposed. In the case of the time series 
model featuring nonlinear intervention, initial fitting of 
ARIMA/ANN models has been conducted using pre-
intervention data. Subsequently, leveraging the best-fitted 
ARIMA/ANN models, predictions were computed for the 
post-intervention period. Following this, residuals were 
computed, and various nonlinear growth models were ap-
plied to these residuals. Among these models, the nonlinear 
Hoerl model emerged as the best fit for the residuals in 
this study. Consequently, a new approach was adopted, 
incorporating nonlinear growth models as intervention 
functions. The resulting nonlinear model for the post-
intervention period was then combined with the forecast 

from ARIMA/ANN for the same period. The methodology 
has been outlined in Figure 2. 

Forecasting performance 

To compare the performance of the developed model with 
the existing model, mainly two approaches are followed, 
viz. mean absolute percentage error (MAPE) and root mean 
squared error (RMSE). 
 The MAPE is represented by 
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The RMSE is represented by 
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where n represents the total number of observations, Yt the 
actual value at time t and t̂Y  represents the estimated value 
at time t. 

Result and discussion 

The monthly wholesale price (Rs/quintal) of mustard from 
January 2010 to May 2023 has been collected from three 
major markets in Rajasthan, namely, Tonk, Alwar and 
Sriganganagar from AGMARKNET portal (https:// 
agmarknet.gov.in/). Rajasthan is one of the major mus-
tard-producing states, contributing approximately 43% of 
overall production. Each market has 161 data points, of 
which the initial 129 data points represent the period prior 
to the intervention (before October 2020) and the remain-
ing 32 data points correspond to the post-intervention 
phase. 
 
 

 
 

Figure 2. Flowchart of the proposed model. 

https://agmarknet.gov.in/
https://agmarknet.gov.in/
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Table 1. Descriptive statistics of different markets 

Statistics Alwar market Tonk market Sriganganagar market 
 

Mean 4041.89 3820.44 3944.79 
Median 3760.60 3637.94 3657.47 
Standard deviation 1284.03 1584.11 1263.80 
Kurtosis 0.70 1.20 0.54 
Skewness 1.11 –0.27 1.08 
Range 5335.42 7486.60 5084.55 
CV (%) 31.77 41.46 32.04 
Minimum 2125.47 2196.21 2138.44 
Maximum 7460.89 7486.60 7222.99 

 
 

Table 2. Stationarity test and appropriate differencing 

 Augmented Dickey–Fuller (ADF) test Phillips–Perron (PP) test 
 

 Original First differenced Original First differenced 
 

Markets t-statistic P-value t-statistic P-value t-statistic P-value t-statistic P-value 
 

Alwar –2.87 0.21 –4.73 <0.01 –2.48 0.37 –69.57 <0.01 
Tonk –2.47 0.37 –3.80 0.02 –10.51 0.50 –73.55 <0.01 
Sriganganagar –2.70 0.28 –5.14 <0.01 –13.26 0.35 –94.97 <0.01 

 
 

Table 3. Best-fitted autoregressive integrated moving average (ARIMA) for different markets 

  Parameters  Box-Pierce test 
 

Market Model MA 1 MA 2 MA 3 AIC Test statistic P-value 
 

Alwar ARIMA (0, 1, 3) 0.434 (0.092) 0.217 (0.108) –0.183 (0.092) 1639.03 0.002 0.962 
Tonk ARIMA (0, 1, 1) 0.392 (0.072)   1579.73 0.029 0.864 
Sriganganagar ARIMA (0, 1, 2) 0.252 (0.091) –0.085 (0.111)  1671.25 0.027 0.868 

AIC, Akaike information criterion. The standard error has been given in ‘()’. 
 
 

Table 4. Parameters estimate of Hoerl model for ARIMA residuals 

Market Parameter Estimate P-value R2 Adjusted R2 
 

Alwar a 3.188 0.351 0.807 0.793 
 b 0.723 <0.001   
 c 4.316 <0.001   
Tonk a 2.036 0.320 0.843 0.832 
 b 0.719 <0.001   
 c 4.428 <0.001   
Sriganganagar a 5.707 0.209 0.862 0.853 
 b 0.754 <0.001   
 c 3.779 <0.001   

 
 
 Table 1 indicates that the highest mean price for the 
mustard quantity is in the Alwar market (Rs 4041.89/ 
quintal) and the lowest mean price is in the Tonk market  
(Rs 3820.44/quintal). The kurtosis for all the markets rep-
resents that the markets are platykurtic in nature, the coef-
ficient of variation of the markets ranges from 31.76% to 
41.46%. 
 Prior to the implementation of the ARIMA model, the 
stationarity of the series was assessed using the augmented 
Dickey-Fuller (ADF) test and Phillips-Perron (PP) test. 
The null hypothesis for both the ADF test and the PP test 
is that the time series data has a unit root, indicating that it is 
non-stationary. In other words, the null hypothesis suggests 

that the series possesses a stochastic trend and lacks sta-
tionarity. The findings are summarized in Table 2. 
 The results indicated that all series were initially non-
stationary but achieved stationarity after the first differen-
tiation. 
 To preliminarily select the order of the ARIMA model, 
the autocorrelation function (ACF) and partial autocorre-
lation function (PACF) were consulted. Subsequently, the 
best model was chosen based on the Akaike information 
criterion (AIC)30 and Bayesian information criterion 
(BIC)31. Diagnostic checking of the best-fitted ARIMA 
model was conducted using the Box-Pierce test on the re-
siduals. 
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Table 5. Parameters estimate of Hoerl model for artificial neural network  
 (ANN) residuals 

Market Parameter Estimate P-value R2 Adjusted R2 
 

Alwar a 197.908 <0.01 0.903 0.896 
 b 0.859 <0.01   
 c 1.918 <0.01   
Tonk a 106.101 0.005 0.919 0.914 
 b 0.829 <0.01   
 c 2.361 <0.01   
Sriganganagar a 205.480 <0.01 0.807 0.793 
 b 0.861 <0.01   
 c 1.869 <0.01   

 
Table 6. Comparison of the existing and proposed model using ARIMA 

 ARIMA with step  
function 

ARIMA with ramp  
function 

ARIMA with  
(step + ramp) function 

 
Proposed model 

 

Market RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 
 

Alwar 419.34 5.48 419.77 5.51 419.35 5.48 382.17 5.302 
Tonk 357.18 4.64 357.80 4.67 357.03 4.63 326.92 4.473 
Sriganganagar 314.29 4.53 311.74 4.37 314.03 4.52 294.89 3.935 
RMSE, Root mean squared error; MAPE, Mean absolute percentage error. 

 
 

Table 7. Comparison of the existing and proposed model using  
  ANN 

 Proposed model ANN with intervention 
 

Market RMSE MAPE RMSE MAPE 
 

Alwar 328.53 4.09 348.93 4.29 
Tonk 341.37 4.71 347.53 4.79 
Sriganganagar 240.46 3.32 319.63 4.43 

 
 
 The null hypothesis for the Box-Pierce test posits that 
the residuals are independently distributed. Table 3 indicates 
that the model fits the data well. The estimated parameters 
and the corresponding AIC values for the best-fitted 
ARIMA models for the three markets, along with the results 
of the Box-Pierce test, are also summarized in Table 3. 
The ANN has been fitted using the optimization of various 
parameters and hyper-parameters. 
 Following the development of ARIMA and ANN models, 
forecasted values for the post-intervention period have 
been obtained, and residuals were subsequently calculated. 
These residuals were then fitted using various nonlinear 
estimation techniques. Models including the exponential 
model, modified exponential model, logistic model, Gom-
pertz model, monomolecular model, Richard’s model and 
Hoerl model were applied to the residuals of both ARIMA 
and ANN forecasts. These models were evaluated using 
R2 and adjusted R2 statistics. Across all data series, the 
Hoerl model emerged as the best-fitted model for both 
ARIMA and ANN residuals. Table 4 shows the parameters 
of the best-fitted Hoerl model and Table 5 shows the resi-
dual ARIMA and ANN respectively, along with their cor-
responding R2 and adjusted R2 values. 
 From Tables 4 and 5, it is evident that the Hoerl model 
demonstrates R2 value exceeding 80% and 90% across  

different markets, suggesting a well-fitted model for the 
residual series. 
 In the traditional approach, intervention analysis has 
been conducted using step function, ramp function and 
their amalgamation. To assess the performance of the pro-
posed model against the existing one, we have tabulated 
the MAPE and RMSE values in Tables 6 and 7 respectively. 
 The comparison reveals that the proposed ARIMA-based 
model outperforms the conventional intervention analysis 
method across all existing combinations of pulse and ramp 
functions, as indicated by lower RMSE and MAPE values 
for all three markets. Similarly, it is evident from Table 7 
that the proposed model with ANN surpasses the perfor-
mance of the conventional intervention analysis model. 
The actual and predicted plot of Hoerl model and the pro-
posed model have been shown in Figures 3 and 4 respec-
tively. 

Conclusion 

Intervention analysis plays a pivotal role in understanding 
the significant impact of interventions both in the present 
and future contexts. Interventions are the main cause of 
inducing a sudden behavioural change in specific time se-
ries. While various established methods exist for studying 
intervention effects, historically, researchers have primarily 
relied on step functions, ramp functions, or a combination 
of both, i.e. linear intervention function for incorporating 
intervention in a time series model. In the present study, a 
new approach for analysing intervention effects in time 
series data has been proposed using ARIMA and ANN 
with nonlinear growth models. To illustrate the proposed 
model, monthly price data from three major markets of 
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Figure 3. Actual and fitted plot of Hoerl model on the residuals of ARIMA (a, b and c) and ANN (d, e and f ) forecast for different markets. 
 
 

 
 

Figure 4. Actual and fitted plots for different markets of proposed models, ARIMA-X (a, b and c) and ANN-X (d, e and f ) with nonlinear intervention. 
 
 
mustard have been used. Across all markets, the proposed 
models exhibited superior performance compared to the 
existing methodologies. Specifically, when comparing the 
pre-intervention period, the proposed intervention models 
outperformed existing ARIMA with intervention models 
and ANN with intervention models utilizing step, ramp or 
combined functions. Notably, within the same market, the 
model employing ANN demonstrated superior performance 
over the model utilizing ARIMA. The future scope lies in 
exploring the application of advanced machine learning 
techniques and deep learning models for more precise  

intervention analysis in diverse datasets. Additionally, inte-
grating real-time data and incorporating dynamic model-
ling frameworks could further enhance the effectiveness 
of intervention analysis in addressing contemporary socio-
economic challenges. 
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