KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/42572
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | M. A. Iquebal | en_US |
dc.contributor.author | Prajneshu | en_US |
dc.contributor.author | Himadri Ghosh | en_US |
dc.date.accessioned | 2020-11-24T05:20:27Z | - |
dc.date.available | 2020-11-24T05:20:27Z | - |
dc.date.issued | 2012-05-01 | - |
dc.identifier.citation | Not Available | en_US |
dc.identifier.issn | Not Available | - |
dc.identifier.uri | http://krishi.icar.gov.in/jspui/handle/123456789/42572 | - |
dc.description | Not Available | en_US |
dc.description.abstract | Most widely used statistical technique for estimating cause-effect relationships is the Linear regression methodology. Ordinary least squares (OLS) method, which is valid under certain assumptions, is generally used to estimate the underlying parameters. If the errors are not homoscedastic, OLS estimates lead to incorrect inferences. In this article, use of the powerful stochastic optimization technique of Genetic algorithm (GA) is advocated for estimation of regression parameters and variance parameter simultaneously even when nothing is known about the form of heteroscedasticity. Parametric bootstrap methodology is employed to obtain standard errors of the estimates. The methodology is illustrated by applying it to a dataset | en_US |
dc.description.sponsorship | Not Available | en_US |
dc.language.iso | English | en_US |
dc.publisher | Not Available | en_US |
dc.relation.ispartofseries | Not Available; | - |
dc.subject | Genetic algorithm | en_US |
dc.subject | Heteroscedasticity | en_US |
dc.subject | Linear regression model | en_US |
dc.subject | White’s general heteroscedasticity test | en_US |
dc.title | Genetic algorithm optimization technique for linear regression models with heteroscedastic errors | en_US |
dc.title.alternative | Not Available | en_US |
dc.type | Article | en_US |
dc.publication.projectcode | Not Available | en_US |
dc.publication.journalname | Indian Journal of Agricultural Sciences | en_US |
dc.publication.volumeno | 82(5) | en_US |
dc.publication.pagenumber | 422-425 | en_US |
dc.publication.divisionUnit | Not Available | en_US |
dc.publication.sourceUrl | https://www.researchgate.net/publication/235949653_Genetic_algorithm_optimization_technique_for_linear_regression_models_with_heteroscedastic_errors | en_US |
dc.publication.authorAffiliation | ICAR::Indian Agricultural Statistics Research Institute | en_US |
dc.ICARdataUseLicence | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf | en_US |
dc.publication.naasrating | 6.21 | - |
Appears in Collections: | AEdu-IASRI-Publication |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Genetic algorithm optimization technique for linear regression models with heteroscedastic errors.pdf | 145.5 kB | Adobe PDF | View/Open |
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.