KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/42713
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Priyanka Anjoy | en_US |
dc.contributor.author | R. K. Paul | en_US |
dc.date.accessioned | 2020-11-26T06:25:57Z | - |
dc.date.available | 2020-11-26T06:25:57Z | - |
dc.date.issued | 2017-01-01 | - |
dc.identifier.citation | Not Available | en_US |
dc.identifier.issn | Not Available | - |
dc.identifier.uri | http://krishi.icar.gov.in/jspui/handle/123456789/42713 | - |
dc.description | Not Available | en_US |
dc.description.abstract | An agriculture-dominated developing country like India has been always in need of efficient and reliable time series forecasting methodologies to describe various agricultural phenomenons, whereas agricultural price forecasting continue to be the challenging areas in this domain. The observed features of many temporal price data set constitute complex nonlinearity, and modeling these features often go beyond the capability of Box–Jenkins autoregressive integrated moving average methodology. Moreover, despite the popularity and sheer power of traditional neural network model, the empirical forecasting performance of this model has not been found satisfactory in all cases. To address the problem, wavelet-based modeling approach is recently upsurging. Present study discusses two wavelet-based neural network approaches envisaging monthly wholesale onion price of three markets, namely Bangalore, Hubli, and Solapur. Wavelet-based decomposition makes it possible to describe the useful pattern of the series from both global as well as local aspects and found to be highly proficient in denoising and capturing the inherent pattern of the series through a distinctive approach. Besides, wavelet method can also be used as a tool for function approximation. The improvement upon time-delay neural network also be made up to a great extent through using wavelet-based approaches as exhibited through proper empirical evidence. | en_US |
dc.description.sponsorship | Not Available | en_US |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartofseries | Not Available; | - |
dc.subject | ARIMA | en_US |
dc.subject | MODWT | en_US |
dc.subject | Nonlinearity | en_US |
dc.subject | TDNN | en_US |
dc.subject | Wavelet | en_US |
dc.title | Comparative performance of wavelet-based neural network approaches | en_US |
dc.title.alternative | Not Available | en_US |
dc.type | Research Paper | en_US |
dc.publication.projectcode | Not Available | en_US |
dc.publication.journalname | Neural Computing and Applications | en_US |
dc.publication.volumeno | Not Available | en_US |
dc.publication.pagenumber | Not Available | en_US |
dc.publication.divisionUnit | Not Available | en_US |
dc.publication.sourceUrl | https://doi.org/10.1007/s00521-017-3289-9 | en_US |
dc.publication.authorAffiliation | ICAR::Indian Agricultural Statistics Research Institute | en_US |
dc.ICARdataUseLicence | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf | en_US |
dc.publication.naasrating | 10.77 | - |
Appears in Collections: | AEdu-IASRI-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.