KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/44680
Title: | Delineate Soil Characteristics and Carbon Pools in Grassland Compared to Native Forestland of India: A Meta-Analysis |
Other Titles: | Not Available |
Authors: | R Padbhushan S Sharma DS Rana U Kumar A Kohli R Kumar |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::National Rice Research Institute Bihar Agriculture University International Rice Research Institute |
Published/ Complete Date: | 2020-12-15 |
Project Code: | Not Available |
Keywords: | Total carbon; soil carbon pools; carbon dioxide equivalent emission; soil carbon storage; land use |
Publisher: | MDPI |
Series/Report no.: | Not Available; |
Abstract/Description: | Grassland is a highly dynamic land use system and it provides vital ecosystem services, mainly consisting of carbon storage in the tropics and subtropics. The objective of this study was to delineate grassland in India according to soil characteristics and carbon pools in comparison to native forestland, and to discuss management strategies for improving soil carbon (SC) storage in grassland. A total of 675 paired datasets from studies on grassland and forestland in India generated during the period of 1990–2019 were used for meta-analysis study. The analysis shows that soil pH and bulk density (BD) in grasslands were greater by 1.1% and 1.0% compared to forestland while soil organic carbon (SOC) declined by 36.3% (p < 0.05). Among carbon pools, labile carbon (LC), non-labile carbon (NLC), and microbial biomass carbon (MBC) were 35.5%, 35.3% and 29.5% lower, respectively, in the grassland compared to the forestland. Total carbon (TC) was 35.0% lower in the grassland than the forestland (p < 0.05). Soil carbon stocks (SCS) were 32.8% lower in the grassland compared to the forestland. In the grassland, MBC/SOC (%) from the surface layer and subsurface layer were lower by 2.4% and 8.5%, respectively compared to forestland. The percentage effect size was found to have decreased from surface soil to subsurface soil. Relative SCS loss and carbon dioxide equivalent emission from the grassland compared to forestland were 15.2% and 33.3 Mg ha−1, respectively (p < 0.05). Proper management strategies like agroforestry, legume introduction, silvipastoral system, fertilization, irrigation, and quality grass species could improve SC storage and reduce SCS loss in grassland. Overall, this study gives an idea that conversion of native forestland into grassland in India has declined the SC content and hence it is necessary to adapt proper strategies to manage the soil-atmosphere carbon balance. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Review Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Agronomy |
NAAS Rating: | 8.6 |
Volume No.: | 10 |
Page Number: | 1969 |
Name of the Division/Regional Station: | Crop Production Division |
Source, DOI or any other URL: | doi:10.3390/agronomy10121969 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/44680 |
Appears in Collections: | CS-NRRI-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.