KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/64354
Title: | Anti-inflammatory polyether triterpenoids from the marine macroalga Gracilaria salicornia: Newly described natural leads attenuate proinflammatory 5-lipoxygenase and cyclooxygenase-2 |
Other Titles: | Not Available |
Authors: | Antony,Tima Chakraborty,Kajal |
ICAR Data Use Licennce: | Not Available |
Author's Affiliated institute: | Not Available |
Published/ Complete Date: | 2020 |
Project Code: | Not Available |
Keywords: | Gracilaria salicornia Polyether triterpenoids Pro-inflammatory 5-lipoxygenase cyclooxygenase-2 In silico molecular docking Biosynthetic mechanism |
Publisher: | Not Available |
Citation: | Not Available |
Series/Report no.: | Not Available |
Abstract/Description: | 5-Lipoxygenase (5-LOX)/cyclooxygenase-2 (COX-2) were found to be the two major inducible pro-inflammatory enzymes catalysing the rate-limiting stage in the development of pro-inflammatory prostaglandins/thromboxanes by COX-2 pathway and leukotrienes by 5-LOX pathway. Instantaneous quenching of COX-2/5-LOX-associated cascade is an important therapeutic objective in the attenuation of inflammatory pathologies. Two polyether triterpenoids, characterised as 15-(octahydro-7-(4,5-dihydro-3-methoxy-2,6-dimethyl-2H-pyran-6-yl)-10-methylpyrano[3,2-b]pyran-14-yl)-18-(19-methyl-23-methyleneoxepan-19-yl)pent-15-en-18-ol (1) and tetrahydro-6-(hexahydro-13-((tetrahydro-18-(23-hydroxy-23-methylheptan-19-yl)-15-methylfuran-15-yl)methyl)-10-methyl-2H-furo[3,2-b]pyran-7-yl)-2,2,6-trimethyl-2H-pyran-3-yl butyrate (2) were isolated from the organic extract of the marine macroalga, Gracilaria salicornia harvested from southeast-coastal zones of the Indian peninsular. Polyether analogue bearing trimethyl-2H-pyran-3-yl butyrate moiety (2) disclosed potent attenuation properties against 5-LOX (IC50 1.89 mM) and COX-2 (IC50 1.87 mM) enzymes. In-silico molecular docking methods designated the anti-inflammatory mechanisms of isolated compounds and their comparison of docking factors assigned that the polyether 2 displayed the smallest binding energy of −10.29 and −10.96 kcal mol−1 in COX-2 and 5-LOX active sites, respectively and designated competent hydrogen-bonding associations with the enzymatic catalytic regions. Greater electronic factors along with lesser steric bulk of the polyether 2 bearing furanyl-furo[3,2-b]pyran-2H-pyran moiety was found to have noteworthy functional roles to attenuate the inflammatory enzymes. Proposed bio-synthetic origin leading to the polyether analogues comprising the cyclization of squalene epoxides through the sequences of enzyme-catalysed cascade corroborated their structural attributions. These reports designated that polyether triterpenoid enclosing furanyl-furo[3,2-b]pyran-2H-pyran skeleton might be considered as a prospective anti-inflammatory therapeutic source to alleviate COX-2 and 5-LOX-mediated inflammatory pathologies. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Article |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Algal Research |
Volume No.: | 47 |
Page Number: | 44211 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | https://www.sciencedirect.com/science/article/pii/S2211926419306599?via%3Dihub http://eprints.cmfri.org.in/14106/1/Algal Research_2020_Kajal Chakraborty_Anti-inflammatory polyether triterpenoids from the marine macroalga Gracilaria salicornia.pdf |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/64354 |
Appears in Collections: | FS-CMFRI-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.