KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/73760
Title: | An approach to the development of a core set of germplasm using a mixture of qualitative and quantitative data |
Other Titles: | Not Available |
Authors: | Prabina Kumar Meher Sant Wahi Trilochan Mohapatra A. R. Rao |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::Indian Agricultural Statistics Research Institute ICAR::National Rice Research Institute |
Published/ Complete Date: | 2014-06-26 |
Project Code: | Not Available |
Keywords: | crop improvement single nucleotide polymorphism genotyping rice germplasm homogeneous groups |
Publisher: | Not Available |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | Development of a representative and well-diversified core with minimum duplicate accessions and maximum diversity from a larger population of germplasm is highly essential for breeders involved in crop improvement programmes. Most of the existing methodologies for the identification of a core set are either based on qualitative or quantitative data. In this study, an approach to the identification of a core set of germplasm based on the response from a mixture of qualitative (single nucleotide polymorphism genotyping) and quantitative data was proposed. For this purpose, six different combined distance measures, three for quantitative data and two for qualitative data, were proposed and evaluated. The combined distance matrices were used as inputs to seven different clustering procedures for classifying the population of germplasm into homogeneous groups. Subsequently, an optimum number of clusters based on all clustering methodologies using different combined distance measures were identified on a consensus basis. Average cluster robustness values across all the identified optimum number of clusters under each clustering methodology were calculated. Overall, three different allocation methods were applied to sample the accessions that were selected from the clusters identified under each clustering methodology, with the highest average cluster robustness value being used to formulate a core set. Furthermore, an index was proposed for the evaluation of diversity in the core set. The results reveal that the combined distance measure A1B2 – the distance based on the average of the range-standardized absolute difference for quantitative data with the rescaled distance based on the average absolute difference for qualitative data – from which three clusters that were identified by using the k-means clustering algorithm along with the proportional allocation method was suitable for the identification of a core set from a collection of rice germplasm. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Plant Genetic Resources - Characterization and Utilization |
Volume No.: | 13(2) |
Page Number: | 96-103 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | https://doi.org/10.1017/S1479262114000732 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/73760 |
Appears in Collections: | AEdu-IASRI-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.