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Abstract. A block design with neighbour effect(s) is said to be neightdmalanced if every treatment has every other treatment
appearing constant number of times as neighbour(s). Thessgré are used when the treatment applied to one expeahpuit
may affect the response on neighbouring plot(s) besideseponse to which it is applied. Neighbour-balanced dsségisure
that no treatment is unduly disadvantaged by its neighbpul{owever, there is a possibility that some of the obsamatcould
become unavailable for analysis. In this paper, we exanfieedbustness of neighbour balanced complete block desgiges
specific observations are missing. The information matnxdfrect treatment effects of the resultant design (odeesheighbour
effects) after missing of an observation from a block is\d&tiand the efficiency of resulting design is investigatedbu®tness

of neighbour balanced complete block design has also beestigated against missing of more than one observatiore Th
efficiencies are found to be quite high indicating the desigrbe fairly robust against missing observations.
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1. Introduction

Experiments conducted in agriculture often show neighledfiects i.e., the response on a given plot is affected
by the treatments on the neighbouring plots as well as byr&agrnhent applied to that particular plot. Neighbour-
balanced designs, wherein the allocation of treatmentscis that every treatment occurs equally often with every
other treatment as neighbours, are used under theseaitslalleighbour-balanced designs ensure that no treatment
is unduly disadvantaged by its neighbours. These desigmsiipine estimation of neighbour effects besides the
direct effects of treatments. Understanding the struabfitbe neighbour effects helps in minimizing the bias in
direct treatment effects to great extent.

Series of circular neighbour balanced block (NBB) desigagehbeen developed in the literature. Azais et
al. [5] have given a catalogue of complete and incomplete MB&igns. Tomar et al. [6] have developed series of
incomplete NBB designs and Jaggi et al. [15] have obtainddssef partial NBB designs. Jaggi et al. [14] have
studied the optimal properties of complete block desigih wi&ighbouring competition effects.

In a well-planned experimental work, situation may ariseerehsome observations are lost or destroyed or
unavailable due to certain reasons that are beyond theotofithe experimenter. Unavailability of the observations
destroys the orthogonality and the balance of the desigraksadcaffects the inference.

In the literature, robustness of designs has been studieddny research workers with different angles. The
common factors which generally disturb the structure otigfit/optimal designs are missing data [e.g. missing
observation(s), missing treatment(s), missing block{s);epresence of outlier(s); presence of a common trend
effect in one or more spatial dimension; inadequacy of assumodel (e.g. correlated error structure, inequality of
error variances, incomplete model, etc.); exchange ordhénge of treatments. Among all these disturbances, the
commonest factor responsible for disturbances is the ngssbservation(s).
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The robustness of several kinds of block designs againsumiagailability of data has been investigated in
abundance, for example, see Hedayat and John [3], Ghosh][85tiosh et al. [13], Srivastava et al. [7], Bhaumik
and Whittinghill [4], Ghosh et al. [12], Das and Kageyamadhi Dey [2]. Gupta and Srivastava [16] investigated
the robustness of block design against the unavailabilispme disjoint blocks. As a special case, they also showed
that resolvable balanced incomplete block (BIB) desigedairly robust against the unavailability of one resolatio
set consisting of disjoint blocks.

Ghosh [8] introduced connectedness criterion of robustnesconnection with BIB designs. The criterion
considers a connected desigyi.e., a design in which all the elementary treatment catdgrare estimable, and the
residual desigiid«), the design which has actually remained after some distedhaay,, has occurred. The design
d is said to be robust against the disturbancié the designd* is connected.

Although the desigd may be robust in the sense of connectedness, the residigh desnay not be efficient as
compared to the original design. Hence, efficiency criterdoalso of much importance. According to this criterion,
a design is robust against the loss of observations, if h@exfcy of the residual design is close to the efficiency of
the original design. 1€, is the information matrix of the original connected desiggnd isC - that of the residual
designd*, then the efficiency E of the residual design relative todhiginal design is given by

_Harmonic mean of non-zero eigen value€hyf.
~ Harmonic mean of non-zero eigen value€qf

1)

The purpose of this paper is to assess the consequencessiigndservations from blocks of NBB design. In
particular, we investigate the robustness of complete NB8ghs under one-sided neighbour effects model against
missing of an observation. Further, the efficiency of congBB designs has also been studied with more than
one observation missing.

2. Model

Consider v number of treatments to be studied in b blocks mekperimental units under the following additive
fixed effect model with one-sided (say, left side) neighbeftect:

Y=pul+Ar+A5+D'B+e,

where,Y isn x 1 vector of observationg, is grand meanl isn x 1 vector of unitiesA’ is n x v incidence matrix
of observations versus direct treatmentss vx 1 vector of direct treatment effectd; is n x v incidence matrix
of observations versus left treatmenids v x 1 vector of left neighbour effect®)’ is n x b incidence matrix of
observations versus block$js b x 1 vector of block effects andis n x 1 vector of errors.

Further let,

AA’; =M, v x v incidence matrix of direct versus left neighbour treatrsent

AD’ = Ny, v x b incidence matrix of direct treatments versus blocks

A1D’ = Ng, v x b incidence matrix of left neighbour treatments versus bdcakdr = (r1, 72, ..., 1)’ be the
vx 1 replication vector of direct treatments with (s = 1, 2,.. ., v) being the number of times thé&" treatment
appears in the design.

r1 = (r11,712:- - -, 1) D the vx 1 replication vector of the left neighbour treatments withbeing the number
of times the treatments in the design k&streatment as left neighbour.

R, =diag (1, r2, . . ., 7,) = diagonal matrix of replication of direct treatments
Rs =diag (11,712, - -+ T10)
K =diag (1, ko, - . ., ky) = diagonal matrix of block sizes, whekg, ko, . . ., k; are the sizes of the b blocks.

The joint information matrixC) for estimating direct and left neighbour effects is asdat:

_[R, —N;K™IN'; M -N; KN,

C= M’ — NQK_lNll Rs — NQK_lN/Q (2)

From above, the information matrix for estimating the dirftect of treatments is obtained as given below:
C, =Cy; — C2C5LCx 3
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with C1; = [RT — NlKilNll]; Cio = [M — NlKilN/Q] andCqyy = [R5 — N2K71N/2].

The matrixC, is symmetric, non-negative definite with zero row and collsums and RankQ,) < (v-1).
Similarly, the information matrix for estimating left ndigour effectsC;) can be obtained.

A block design with one-sided neighbour effects is said tméighbour balancedif every treatment has every
other treatment appearing constant (Spgumber of times as a left neighbour. Similarly, under tiated neighbour
effects model, a block design is neighbour balanced if etregtment has every other treatment as left and right
neighbour constant number of times. These designs ardaniiouthe sense that treatment in the left border is the
same as the treatment in the right end inner plot and thenezdtin the right border is same as the treatment in the
left end inner plot. It may be mentioned here that the obsemsare not recorded from the border plots; these plots
are taken only to have the neighbour effects of treatmeritseagnd plots of the blocks.

3. Robustness of one-sided neighbour balanced block desgn

We consider here the class of complete NBB design with vrireats ¢ prime) inb = v — 1 blocks,r; = ry =
coo=ry=v—1,k =ky=...=k, =vand\ = 1 (Azais et al. [5]) obtained by taking th&" block (j = 1, 2,
...,v — 1) of the design as:

v j 2j...(v —1)j modulov
The structure of various matrices for this class is as fadtow
M=J-1I N;=Ny=J R,=R;j=(—-DIand K =0l
Jis thev x v matrix of unities and is an identity matrix of ordes.

The joint information matrixC as given in Eq. (2) reduces here to

@4){17%} J

v

J g @4)[*%

v v

C:

with,
J J J _ 1
Ciu= (-1 {I ;] ;Ci2 = [5 I} ; Cag = [(U 1) [I ;” and Gy, = ml'
Therefore, the information matrix for estimating the direffects and left neighbour effects of treatment is
C. - C;s — v(v — 2) Ifg
(v—=1) v

Example 1: Following is a circular complete NBB design with parametees 7,6 =6,r =6,k =7and\ =1
balanced for left neighbour:

6|7 1 2 3 4 5 6
5|7 2 4 6 1 3 5
417 3 6 2 5 1 4
3|7 4 1 5 2 6 3
2|17 5 3 1 6 4 2
117 6 5 4 3 2 1

Now, let us assume that the observation pertaining to rigigttiplot of a block containing the direct effect of any
treatment and respective left neighbour effect is missiFigs is feasible since in experimental layout in the field,
edge of blocks is more vulnerable for physical damages.

For mathematical simplification, it is assumed that the plan pertaining to right most plot of the last block
containing the direct effect of treatment numbeand respective left neighbour effect is missing. Since #sigh
is circular, without loss of generality the contents of thstlblock can be rearranged in such a way that right most
plot of last block have treatment numher
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After missing of last observation from last block, the vasancidence matrices of the residual design (denoted
with *) are changed as follows:

* o O'U—l 01}—1
M* =M [ : O,U_J,

* 01}717072 01}71 _ Jvfl,1172 ]-vfl
Nl - N]_ |: 01072 1 :| - |: 1/’”72 0 :| ’

* 0/7172 1 _ 1/1;72 0
N2 n N2 B |:0'U—1,'U—2 O'U—l :| n |:JU—1,U—2 11}—1 :| ’

* - Ov—l O'U—l _ (U - 1)11;—1 Ov—l
RT - RT |: Ol'u—l 1 :| - |: O/’U—l v — 2 ’
* 01}72 01}72 _ UIU72 Ov72
K _K_|:O/v2 1 :|_|:0/U2 Ul:|

The joint information matrix of the residual design can bpressed as follows:

R* — NYK* !Nty M* — N7K* 'N3' ]

C* == ’ ’
[ M* — N3 K*~INj R} — N3K*~IN3

with C = Cj; — C3,C3; C5,.
Here,

220 v—
(U - 1)17171 - %Jvfl —{ U2) 17171

C:, =R - N'K* N} =

~ (v=2) ]‘/U_1 (v=1)(v=2)
B (v—2) (v=2) 4/ (v—2)
v v(v—1) 12 v(v—1)
* * xpok— 1IN+ v— v—
012 =M NlK N2 - %1v72 ,U((U_21)) J072 - 1072 U((,U_Ql)) 11}72
B (v—2) 21/7172 o (v—2)
(v—=1)(v—2) _ (v=2) ]-/'u—l
Cho = Rj — NJK''Nj' = , e
LB, (v- DL - 22T,
and
0 0/7171
Cy = >
1 (v —2v+42)
0,1 mlvfl + m‘]vfl

Therefore, the information matrix for estimating diredeet of treatments after missing of one observation is

v—2 v—2
(U — 2) - E’U—lg 1IU—2 - Ev—lg
v—2 v2—2v 047603+14v2713v+4 v274v+2
C; = | ~tmnl-e Gl — Sy e —Hhe e
(v—2) _('U2—4v+2) ’ (1}3—5U2+71}—2)
=D ez Lv-2 B =Sy

The non-zero eigenvalues 6f: are obtained as(v — 2)/(v — 1)with multiplicity (v — 2) andv(v — 3)/(v — 1)
with multiplicity one. The efficiency of residual design e §1) is worked out as:

E=(v—1)(v—3)/(v—2)>
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Table 1
Efficiencies of complete NBB designs with missing obseorgs)
Design parameters Number of missing Efficiency of residual
Number of ~ Number  observation(s) design for direct effects
treatments  of blocks relative to original

5 4 1 0.89
2 0.79

7 6 1 0.96
2 0.92

3 0.88

Right most plots of each block 0.79

11 10 1 0.99
2 0.98

3 0.96

4 0.95

5 0.94

6 0.93

7 0.92

8 0.91

Right most plots of each block 0.90

13 12 1 0.99
2 0.98

3 0.98

4 0.97

5 0.96

6 0.95

7 0.94

Right most plots of each block 0.91

17 16 1 1.00
2 0.99

3 0.99

4 0.98

7 0.97

9 0.96

11 0.95

13 0.95

14 0.94

Right most plots of each block 0.93

19 18 1 1.00
2 0.99

3 0.99

5 0.98

8 0.97

11 0.96

14 0.95

17 0.94

Right most plots of each block 0.94

We consider design to be robust if the loss in efficiency ofrésédual design is not more than 5% and fairly robust
if the loss in efficiency is between 5% and 10%.

Table 1 gives the efficiency of residual design fox: 20 (only for prime numbers) obtained by missing one
observation from last plot of blocks of the class of desigescdibed in the beginning of this section. Since the
design is totally balanced in the sense that variance of stijmated elementary contrast among the direct effects
and among left neighbour effects of treatments is constaertefore the efficiencies of only direct effects have been
reported. Itis seen that as v increases efficiency incred$ess, the class of complete NBB designs considered are
robust as per the efficiency criteria given in Eq. (1) for thenber of treatments exceeding five when one observation
iS missing.

Obtaining theoretical expression @f: for missing of more than one observation is complicated. ddeit is
difficult to find out the eigenvalues of this matrix in exptitbrm. The information matrix and eigenvalues of the
information matrix have been thus obtained by developing& 8ode using PROC IML (SAS software package).
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Table 2
Efficiencies of complete NBB design when observation(ssmgfrom last block
Design parameters Number of missing Efficiency of residual
Number of  Number of  observation(s) design for direct effect
treatments blocks relative to original
5 4 1 0.89
2 0.79
7 6 1 0.96
2 0.92
3 0.88
Last block 0.80
11 10 1 0.99
2 0.98
3 0.96
4 0.95
5 0.94
6 0.93
7 0.92
8 0.91
9 0.90
Last block 0.89
13 12 1 0.99
2 0.98
3 0.98
4 0.97
5 0.96
6 0.95
Last block 0.91
17 16 1 1.00
2 0.99
3 0.99
4 0.98
7 0.97
9 0.96
11 0.95
13 0.95
Last block 0.93
19 18 1 1.00
2 0.99
3 0.99
5 0.98
8 0.97
11 0.96
14 0.95
Last block 0.94

The efficiency of residual design for the loss of more thanalyservation is also reported in Table 1. Here also, the
efficiency is quite high for the loss of few observations g@tder the caser = 5. But there is a decreasing trend in
efficiency with increase in number of missing observations.

The non availability of observations may also happen frootkd in many situations. Suppose in an agricultural
experiment, there is a patch of pest damage in the field anccassequence the experimenter was unable to get
observations from those blocks which happened to be in @itahp It is therefore logical to study the robustness of
the designs against loss of observations from blocks. Taplkesent the efficiency of residual design after missing
of observations from last block of complete NBB design. Hae® the efficiencies are quite high and the designs
are fairly robust against missing observations.
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