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  Introduction 

 

Experimentation is an integrated component of every scientific endeavour. Designed experiments are 

conducted in the field of agricultural and other allied sciences.  These experiments are being 

conducted under National Agricultural Research System (NARS) comprising of various ICAR 

Institutes, National Research Centres, Project Directorates, State Agricultural Universities, etc. It is 

through the data collected from designed experiments that the valid inferences are drawn.  In any 

experiment, the total variability obtained in the data is broadly divided into two components (a) that 

part of variability to which a cause can be assigned and (b) that part of the variability to which no 

reason can be assigned, also called the experimental error.  It is desirable that the experimental error 

is as small as possible otherwise the results emerging from the experimentation may be misleading.  

This part of the variability can be controlled either through designing or through analytical 

techniques, most common being the analysis of covariance.  The first part of the variability has two 

major components: (i) treatments (ii) the experimental material.  The variability arising because of 

the experimental material is taken care of by adopting the principle of local control like one-way 

blocking, two-way blocking, and so on.  It is the variability among the treatments that is generally of 

interest to the experimenter.   

 

The objectives of the experiment or the problems to be solved may be of some specified type of 

comparisons among the treatments.  For instance, in varietal trials all the possible pairwise treatment 

comparisons could be of interest to the experimenter.  In some other situations, when one particular 

treatment is on a special footing, also termed as control, as compared to other treatments, called the 

tests, the tests versus control comparisons are of interest to the experimenter.  Similarly, when the 

treatment structure is factorial in nature, some special treatment contrasts known as factorial effects 

are of interest.  But one design cannot be good for every problem.  In other words, one has to pick up 

a design for the specific problem.  This is the problem of designing an experiment.  The data 

generated from a designed experiment is analyzed using the technique of analysis of variance. The 

proper choice of an experimental design reduces the per plot variance leading to a considerable 

reduction in error mean squares and hence the precision of the treatment comparisons.   Further, 

contrast analysis can be used to answer further questions that cannot be answered by the usual 

analysis of variance. At present, the Indian Agriculture has steered from the era of chronic food 

deficits to that of self sufficiency and even exports. In fast changing scenario, to make agricultural 

research competitive, it is essential that sound statistical methodologies be used for the collection and 

analysis of experimental data.  

 

This scheme aims at providing efficient design of experiments and sound analytical procedures so as 

to maintain high standards and good quality of agricultural research so as to make agricultural 

research globally competitive.  The main emphasis is being laid on obtaining designs that 

simultaneously maximize the precision and economize on the experimental resources. These designs 

will be quite useful for the experiments with limited experimental material particularly the 

experiments for assessing the impact of soil erosion on crop productivity.  

 

During the period under report, the emphasis was made on obtaining economic, efficient and robust 

designs for single reponse experiments and on the development of analytical procedures for the 

analysis of experimental data related to multi-response experiments with special emphasis on 

contrast analysis for identifying the best treatment.  

 

Step wise procedure for the analysis of block designs for complete multi-response experiments 

including multivariate treatment contrast analysis has been developed. A criterion based on 

Euclidean distance of the treatment means from null vector has been developed for identification of 



 2 

the best treatment in complete multi-response situations. A test statistic for detection of a single 

outlier vector in complete multi-response experiments conducted using block designs has been 

developed.  

 

Minimally connected designs with extra observations, extended group divisible designs, nested 

partially balanced incomplete block designs, nested block designs for correlated observations, doubly 

nested partially balanced incomplete block designs have been obtained and catalogued.  

 

To disseminate the knowledge available on the combinatorial aspects of designs and analytical 

procedures acquired to the scientists engaged in research in National Agricultural Research System, 

the advisory services are pursued rigorously. As a consequence, -designs have been adopted by 

National Research Centre on Rapeseed and Mustard, Bharatpur. Three training programmes on (i) 

Design and Analysis of Experiments for Rapeseed-Mustard Varietal Trials; (ii) Design and Analysis 

of Farmers Participatory Research Trials and (iii) Advances in Data Analytical Techniques were 

organized as Course Director.  

 

For the benefit of the experimenters and practicing statisticians, the beginning made last year in the 

development of DESIGN RESOURCES SERVER was strengthened. Efficient designs for making 

all possible pairwise treatment comparisons for 34,50,35  kbv such that average replication 

number of treatments is not more than 20 and on-line software developed for generation of 

Hadamard matrices of order upto 1000 except the orders 668, 716 and 892 (for which no 

construction method is currently available) and 876 (yet to be implemented) have been posted on 

DESIGN RESOURCES SERVER. A brief description of the achievements made is given in the 

sequel. 
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A) Analytical Techniques for Multi-Response Experiments Under Block Design    

  Setup 
 

A.1  Introduction 

Experiments in which data on several responses are measured from an experimental unit 

corresponding to the application of a treatment are known as multi-response experiments. There is a 

tendency to analyze data from these experiments as a single response experiment in the sense that 

each response variable is analyzed separately as if the responses were independent. As many 

analyses as the numbers of response variables are carried out.  Another approach of analyzing data 

from multi-response experiments is to convert the data into univariate by defining an index.  The 

index may be net returns, total calories, total energy, etc. or some weighted average of all the 

response variables, the weights being the relative importance of the response variables, decided in 

consultation with the subject matter specialist. Sometimes, the first principal component score is 

taken as an index. The first principal component may, however, not explain a significant part of the 

variability in the data. While observing several response variables in an experiment, the basic need is 

to exploit the correlations among the several response variables because these correlations contain a 

lot of information.  On the contrary, if the data were analyzed, as if the variables were independent, 

then the advantage of the correlation structure is lost. It would, therefore, be advantageous to make 

treatment comparisons on the basis of several correlated responses observed on each experimental 

unit.  

 

Therefore, to take advantage of correlation structure between several response variables in multi-

response experiments the data should be analyzed using multivariate analysis of variance 

(MANOVA). The stepwise procedure for performing MANOVA of the data from RCB designs is 

available in the literature. A good account of analysis and designing for multi-response experiments 

are available in Roy (1957), Anderson (1958) and Johnson and Wichern (2002). There, however, 

exist situations, where the use of RCB design may not be possible and one has to use incomplete 

block design. It seems that a stepwise procedure of analysis of multi-response data from incomplete 

block designs is not available. In the present study an effort has been made to develop a stepwise 

procedure for the analysis of data of multi-response experiments conducted using an incomplete 

block design. 

 

If the treatments are found to be significantly different for all the responses simultaneously, then the 

next question is "which treatments are significantly different?" To obtain the answer to this question, 

the procedure of performing multivariate treatment contrast analysis has been developed. Further, if 

the two treatments are found to be different, the procedure of identification of the better treatment 

among the two is required. Some procedures for identification of the best treatment have also been 

suggested.  
 

The linear multi-response model for a complete multi-response experiments conducted using a block 

design is given in Section A.2. The information matrix for estimating the linear function of treatment 

effect vectors is also obtained in this section. Multivariate analysis of variance table for testing the 

equality of treatment and block effects is also given in Section A.2. A multivariate treatment contrast 

analysis along with the testing procedure is given in Section A.3. Some procedures for identification 

of the best treatment from multi-response experiments are described in Section A.4. The analytical 

procedures developed are illustrated with the help of real life examples in Section A.5.  
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A.2  Multivariate Analysis of Variance for Block Designs 

Let there be v treatments laid out in a block design containing b blocks such that j
th
 block contains kj 

experimental units; j = 1,2,…,b and treatment i is replicated ri times, nrk
v

i

i

b

j

j 
 11

, the total 

number of experimental units. From each experimental unit p responses are observed. Let Y = [y1 y2 

… yp] be n  p matrix of observations, where sy is an n  1 vector of observations corresponding to 

the s
th
 response (s = 1, 2, …, p). For s

th
 response the model is 

  ssss εθXy    s = 1, 2, …, p                 (A.2.1) 

 

where  sss D1ΔX   is the design matrix for s
th
 response partitioned in conformity with the 

parameters, sΔ  is (n  v) design matrix of treatments for the s
th
 response, 1 is the n dimensional 

column vector of all elements unity and sD  is the design matrix of blocks for the s
th
 response.  

 



















s

s

s

s

β

τ

θ   is a (v + b + 1)  1 vector of parameters, sτ  is a v × 1 vector of treatment effects, s  is 

general mean and sβ a b × 1 vector of block effects for the s
th
 response, sε is the residual vector for 

s
th
 response variable distributed as N (0, ss In).   

 

The model for multi-response experiments in block design set up can be written as 

 εZθY                        (A.2.2) 

Here  pyyyY 21 .                     (A.2.3) 

 

Now one can roll out the matrix into vector form as follows 
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Assuming the usual Gauss-Markoff setup, the design matrix is 
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               (A.2.5) 

where   denotes the direct sum of matrices. 
 

The matrix of unknown parameters is given by 

  pθθθθ 21                    (A.2.6) 

which can also be written into vector form as 
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We can write θ as follows 
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θ                     (A.2.8) 

where treatment effect vectors, for all the response variables are appended one below the other to 

obtain a single treatment effect vector τ . Similarly general mean μ , block effect vectorβ  are given 

by 
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The residual vector ε  is given by 

 























pε
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.        (A.2.9) 

 

It is assumed that ε  have a p-variate normal distribution with response variables from same 

observation are correlated but there is no correlation between different observations. Therefore, one 

can say that ε ~  Ω0,pN , where Ω  is residual variance-covariance matrix and is 

  nppD IΣεΩ  =
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,                             (A.2.10) 

 

where ss denotes variance of s
th
 variable and ss   is the covariance between ths  and ths  variables, 

ss , = 1, 2, …, p. Here   ss  Σ  and   ss   1
Σ  (say) ss ,  = 1, 2, …, p. Ω  is positive definite 

and 
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In the sequel, we give some matrix results that are used in the development of the analytical 

procedure. 
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A.2.1  Some Results of Matrices 

Let A = (aij) and B = (bij) be m1  n1 and m2  n2 matrices, respectively. Then the Kronecker product 

A  B = (aijB) is an m1m2  n1n2 matrix expressible as a partitioned matrix with aijB as the (I, j)
th
 

partition, I = 1, 2, …, m1 and j = 1, 2, …, n1.  

 

Result A.2.1: Following holds as consequences of the above definition [Rao, 2002, p29]. 

i) 0  A = A  0 = 0, where 0 is a matrix of all elements 0. 

ii) (A1 + A2)  B = (A1  B) + (A2  B) 

iii) A1A2  B1B2 = (A1  B1)(A2  B2) 

iv) [A1      A2]  B = [A1  B     A2  B]  

v) A  [B1     B2]  [A  B1     A  B2] 

vi)   111 
 BABA , if the true inverses exist 

vii)   
 BABA , using any g-inverses 

viii)   BABA 


  

ix)    IBABA   11  

x) Eigenvalues of A  B are product of eigenvalues of A with those of B 

xi) Rank (A  B) = Rank (A).Rank (B) 

xii) trace (A  B) = trace (A). trace (B).           (A.2.11) 

 

We know that the direct sum of w matrices, A1, A2, …, Aw is represented as 

  wii

w

i

w

i

,,2,1;diag
2

1

1


































A

A00

0A0

00A

A . 

 

Result A.2.2: Following holds as consequences of the above definition [Rao, 2002, p29]. 

i) Transposing a direct sum gives the direct sum of transposes. 

ii) The rank of a direct sum is the sum of the ranks 

iii)   0 AA  unless A is null 

iv) (A  B) + (C  D) = (A + C)  (B + D) 

v) (A  B) (C  D) =(AC  BD) 

vi) (A  B)
-1

 = A
-1

  B
-1

          (A.2.12) 

 

Using the Generalized Least Square (GLS) estimation procedure we can obtain the normal equations 

as follows, 

   YΩZθZΩZ
11                               (A.2.13) 

 

Now consider that from same block design from each experimental unit all responses are observed, 

i.e., we are in a complete multi-response experimental situation. Then we have, 

 ΔΔ s , p1,2,...,s   s  DD  

Therefore, all sX become same, i.e.,       s D1ΔXX   and XIXXZ  ps . The 

design matrix Z can be written as  DI1I ΔIZ  npp . 
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Now  

 ZΩZ
1  =   DI1I ΔIIΣ
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(using Result A.2.1 (vi)) 
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  (using Result A.2.1(iii))                 

=
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n                       (A.2.14) 

where 

  vrrr ,...,, 21r , v × 1 replication vector of treatments common to all responses. 

  .responses  theall common to vector sizeblock 1,...,, 21 


 b ,kkk bk  

 vrrr ,...,,diag 21R . 

 bkkk ,...,,diag 21K . 

. bv matrix incidence blocks vstreatmentsN  

 

Let  response for   totals treatmentofvector ths  s T  

and response sfor   totalGrand th
sG   

response sfor  lsblock tota ofvector th
s B  

 

Now we can have, 
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 (using Result A.2.1(iv)) 



 8 

         

 

(say)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1
1

2
1

21

1
1

11

1
1

2
1

21

1
1

11

1
1

2
1

21

1
1

11

1

221

111

1

221

111

11

221

111

















































































































































































b

g

a

BB

BB

BB

GG

GG

GG

TT

TT

TT

DyDy

DyDy

DyDy

y1y1

y1y1

y1y1

ΔyΔy

ΔyΔy

ΔyΔy

1

1

1

1

1

1

1

1

1

p
ppp

p
p

p
p

p
ppp

p
p

p
p

p
ppp

p
p

p
p

p
ppp

p
p

p
p

p
ppp

p
p

p
p

p
ppp

p
p

p
p





















































































       (A.2.15) 

 

From the normal equations given in (A.2.13) one can obtain the reduced normal equations for linear 

function of treatment effects as 

 **
QτC                    (A.2.16) 

where  

   











































ΔDΣ

Δ1Σ

DDΣD1Σ

D1Σ11Σ
DΔΣΔ1ΣΔΔΣC

1

1

11

11
111*   

(using  Result A.2.1(iii), (iv), (vi) and (ix)) 

    ΔDDDDΔΔΔΣ 
 11                (A.2.17) 

and      
  











































YDΣ

Y1Σ

DDΣD1Σ

D1Σ11Σ
DΔΣΔ1ΣYΔΣQ

1

1

11

11
111*  

(using Result A.2.1(iii), (iv), (vi) and (ix))  

              YDDDDΔΔΣ
11                                     (A.2.18) 

 

Solving the reduced normal equations (A.2.16), one can obtain the estimate of linear function of 

treatment effects after eliminating the effect of nuisance parameters (general mean and block 

effects).  

  
**ˆ QCτ


                          (A.2.19) 

 

It is easy to verify that 
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ˆ  where sss BNKTQ
1 , s = 1, 2, …, p.               (A.2.20) 

 

Thus, a solution of τ̂  is the same as the one obtained from the block designs separately for each of 

the responses. For a connected design Rank ( *
C ) = p(v1). 

 

Now to obtain residual sum of squares and cross products (Residual SSCP) matrix, we proceed as 

follows. In this case, we have, 
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From normal equations, it can be easily seen that 
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                               (A.2.21) 

We can see that 2
0R  is the sum of individual residual sum of squares for all the responses and cross 

products for all possible pairs of responses. Following the results of Gauss Markoff setup for multi-

response situations, we can obtain the  s,s  th
 element of residual SSCP matrix from 2

0R  considering 

that, 

      ssssssss 


  yD)D(DDyτΔD)D(DDIyyyR
11

0 ˆ,                        (A.2.22) 

 

R0 = ((R0( s,s  ))) = E, is the p p residual SSCP matrix. Now consider the null hypothesis as  

 

 sayH v
*

210 ...: ττττ    against the alternative hypothesis                   (A.2.23) 

:1H  At least two treatment effects vectors are not same. 
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Under null hypothesis, the model (A.2.2) reduces to 

 εθZY  00  

where  

  DI1I 1IZ  0  

 



















β

μ

τ

θ

*

0                               (A.2.24) 

 ε)βD(Iμ)*1)(τ(IY   

ε)βD(I1)α(IY     (using Result A.2.1 (ii)) 
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α
θ)D(I1)(IZ 00  and:  . 

 

So under H0 residual sum of squares is 

 
   

  .

ˆˆˆ
000000

2
1

YD)D(DDIYYY

θZYYYθZYθZY

1






      

R
                          (A.2.25)

  

Similarly we can obtain SSCP matrix for null hypothesis whose  ss ,
th
 element can be given by  

 

   pssssR

ss ssss

...,,2,1,,,

,

11

1



 




R

D)y)D(DD(yyyR
1

                          (A.2.26) 

 

Now we can obtain SSCP matrix due to treatments (adjusted for block effects) as follows, 

 1R  0R = (  ss ,1R   ss ,0R )                           (A.2.27) 

 

So  ss ,
th
 element of treatment SSCP matrix is  

 
ssss

ss

ssssssssss


























QCQτQ

τΔD))D(DD(Iy
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111

ˆ
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                          (A.2.28) 

This element is same as the treatment cross products for s
th
 and s

th 
response variable. Therefore, the 

treatment SSCP matrix is  

1R  0R =














































pp

p

p

pp        

        

       

QCQ

QCQ

QCQ

QCQQCQ
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2

1

21

2212

2111

= H (say).          (A.2.29) 

 

The unadjusted block SSCP matrix obtained following the similar steps as for H is 

 B (UA) =    ssUA ,B  

where,   ssUA ,B  = ss 
 D)y)D(DD(y

1 - ss 
 D)y1)1(D(y

1          (A.2.30) 

 

In nutshell, the procedure for analysis of multi-response experiments is summarized in Table A.2.1. 
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Table A.2.1: Multivariate Analysis of Variance (MANOVA) Table for Simultaneous 

comparison of Treatment Effects 

Sources of variation d.f. Matrix of SSCP 

Block(Unadjusted) b – 1 = t B (UA) 

Treatment (Adjusted) v – 1 = h H = 1R  0R  

Residual n – b – v +1 = s E 

Total n – 1 T  

 

To test the null hypothesis of equality of treatment effects vectors, we make use of the matrices H 

and E in the above table. In multi-response experiments, test statistic for testing the equality of 

treatment effects is based on the roots of   

0)  Eτ(HH .                 (A.2.31)  

 

One of the most important statistic based on the roots of (A.2.31) is Wilk’s likelihood ratio statistic 

(or Wilk’s lambda) which is given by 

 
HE

E


                  (A.2.32) 

 

The null hypothesis is tested using the F-statistic obtained as an approximation to Wilk’s lambda by 

Rao(2002). Assuming the multivariate normal distribution of observation, Rao (2002) showed that 

under null hypothesis   is distributed as the product of independent beta variables. A better but 

more complicated approximation of the distribution of  is  

ph

cab
b

b )(1
/1

/1 




~ F (ph, ab-c)  

where 






 


2

1hp
sa ,     5/4 2222  hphpb , 

2

2


ph
c . 

 

For some particular values of h and p, it reduces to exact F-distribution. The special cases are given 

below: 

For h = 1 and any p, this reduces to  

p

ps

Λ

)1(Λ)1( 
~ F (p, s – p + 1)  

 

For h=2 and any p, it reduces to  

p

ps

Λ

)1()Λ1( 
~ F (2p, 2(s – p + 1))  

 

For p=2 and any h 

h

s

Λ

)1()Λ1( 
~ F (2h, 2(s – 1)). 

For p = 1, the statistic reduces to the usual variance ratio statistics. 

There are three more multivariate test statistic available in literature viz. Pillai’s trace, Hotellings-

Lawley’s trace and Roy’s largest root. All these tests are made on eigenvalues of A = HE
1

. Each of 

the test statistic has its own associated F- ratio. In some cases all the four test statistic give an exact 

F- ratio for testing the null hypothesis and in other cases the F-ratio is approximated. The reason for 

different statistic and for approximations is that the algebra of MANOVA is quite complicated in 
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some cases and it is difficult to solve them. Here, all that is mentioned is their names and some 

properties. In terms of notations, assume that there are p dependent variables in the MANOVA, and 

let I denote the i
th
 eigenvalue of matrix A. The three multivariate test statistic are then, given in the 

sequel. The first statistic is Pillai’s trace. The formula for Pillai’s trace is 

 Pillai’s trace = trace [H(H-E)
1

]=




p

s s

s

1
1 


             (A.2.33) 

The second test statistic is Hotelling-Lawley’s trace. 

 Hotelling-Lawley’s trace = trace (A) = trace (HE
1

) =


p

s

s

1

            (A.2.34) 

The third and last statistic is Roy’s largest root. This gives an upper bound for the F-statistic. 

 Roy’s largest root = max (s).                (A.2.35) 

 

or the maximum eigenvalue of A = HE
1

 (Recall that a “root” is another name for an eigenvalue). 

Hence, this statistic could also be called Roy’s largest eigenvalue. This is the major reason why 

statistical softwares such as Statistical Analysis System (SAS) prints out the eigenvalues and 

eigenvectors of A = HE
1

. 

 

Once the statistics in (A.2.33.) through (A.2.35) are obtained, they are translated into F-statistic in 

order to test the null hypothesis. The reason for this translation is identical to the reason for 

converting Hotelling’s T
2
,
 
the easy availability of published tables of the F-distribution. The 

important issue to recognize is that in some cases, the F-statistic is exact and in other cases it is 

approximate. In some cases, the four will generate identical F-statistic and identical probabilities. In 

others they will differ. In the present study, we have considered Wilk’s lambda as the criterion for 

testing the significance of treatment effects.  

 

The above description is for testing the equality of treatment effect vectors. If one is interested in 

testing the equality of block effects the null hypothesis is 

 sayH b
*

210 ...: ββββ    against the alternative hypothesis            (A.2.36) 

:1H  At least two block effects vectors are not same. 

 

The SSCP matrix for blocks adjusted for treatment effects is required to be obtained. Block SSCP 

matrix adjusted for treatment effects may be obtained by using the relationship 

 H + B(UA) = H(UA) + B                (A.2.37) 

 

where H(UA), H, B(UA) and B denote respectively the SSCP matrix for treatments unadjusted, 

treatments adjusted for block effects, block unadjusted and blocks adjusted for treatment effects. The 

treatment unadjusted SSCP matrix is 

 H (UA) =   ssUA ,H  

where,   ssUA ,H  = ss 
 Δ)y)Δ(ΔΔ(y

1 - ss 
 Δ)y1)1(Δ(y

1              (A.2.38) 

 

The MANOVA table for testing the equality of block effects is given in Table A.2.2. 
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Table A.2.2: Multivariate Analysis of Variance (MANOVA) Table for Simultaneous 

Comparison of Block Effects 

Sources of variation d.f. Matrix of SSCP 

Block(Adjusted) b – 1 = t B 

Treatment (Unadjusted) v – 1 = h H (UA) 

Residual n – b – v +1 = s E 

Total n – 1 T  

 

To test the null hypothesis of equality of block effects vectors, we make use of the matrices B and E 

in the above table. The same test statistic (Wilk’s Lambda) used for testing equality of block effects 

vectors by replacing H by B and is  

 
BE

E


                   (A.2.39) 

We reject the null hypothesis of equality of block effects if the ratio or Wilk’s Lambda is too small 

using the exact Approximate F-distribution as discussed earlier. 

 

Remark A.2.1: One complication of multivariate analysis of variance that does not arise in the 

univariate case is due to the ranks of the matrices. The rank of E should be greater than or equal to p 

or in other words error degrees of freedom s should be greater than or equal to p (s  p), the number 

of response variables. 

 

A.3  Multivariate Treatment Contrast Analysis 

If the treatments are found to be significantly different for all the response variables simultaneously, 

then the next question is “which treatments are significantly different?"  This is achieved by 

making all possible pairwise treatment comparisons. Sometimes, one may be interested in making 

specific hypothesis. For example, 

– A plant breeder may be interested in comparing exotic collections with indigenous cultivars.   

– An agronomist may be interested in comparing the effects of biofertilisers and chemical 

fertilizers.  

– A water technologist may be interested in studying the effect of nitrogen with farmyard manure 

over the nitrogen levels without farmyard manure in presence of irrigation. 

– A medical experimenter might be concerned with the efficacy of each of several new drugs as 

compared to a standard drug.   

– A nutrition experiment may be run to compare high fiber diets with low fiber diets.  

 

Such questions can be answered through treatment contrasts analysis. In single response 

experiments, treatment contrast analysis can be performed for testing the significance of a treatment 

contrast {see e.g. Dean and Voss (1999)}. The procedure of treatment contrast analysis in multi-

response experiments is developed in the present investigation and is given in the sequel. Let  τP  is 

a treatment contrast such that γIP  p , where γ  is a (v  1) vector and 01γ  . The interest is in 

testing the null hypothesis H0: τP  = 0, against alternative hypothesis H1: τP   0. 

 

Following on the lines of procedure of obtaining SSCP matrix due to treatments, SSCP matrix for the 

treatment contrast is given by 
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                (A.3.1) 

 

Now the null hypothesis H0: τP  = 0, against alternative hypothesis H1: τP   0 can be tested using 

the test statistic, Wilks’ Lambda (  ). 

   
ME

E


                      (A.3.2) 

 

where E is the residual SSCP matrix as obtained through MANOVA. The hypothesis is then tested 

using the following F-test statistic based on Wilk's Lambda for h = 1  

              
p

pdf error 1

*

*1 

Λ

Λ
  F(p, s-p+1). 

where s is the error degrees of freedom. 

 

If the experimenter is interested in making all possible pairwise treatment comparisons, one has to 

write all possible 








2

v
 pairwise treatment contrasts. For example, to test 

210 :  H against 211 :  H , τP  can be written as τγ , where γ  = (1 1 0 0 . . . 0) and using the 

above procedure one can test the null hypothesis H0: τγ = 0 against the alternative 

hypothesis 0:1 τγH . 

 

A.4  Identification of Best Treatment 

From multivariate treatment contrast analysis if the two treatments are found to be significantly 

different, then the next question is “How to identify the better treatment from the two significantly 

different treatments?”. In univariate case we take the mean of the observations pertaining to each 

treatment for the response variable of interest. Then for the identification of the best treatment, we 

take the treatment having highest/ lowest mean value based on the nature of response variable of 

interest. For example, if the response of interest is yield, then we take the treatment with highest 

mean yield as best whereas if the interest is in insect intensity after application of pesticides/ 

insecticides, then the treatment with lowest insect intensity is considered to be the best. In case of 

multi-response experiments this method can not be applied in general.  

 

One way to resolve this problem in multi-response experiments is taking weighted average of the 

response variables and comparing the new averages over the treatments. The weights need to be 

given by subject matter experts depending upon the importance of variables in identification of 

treatments. Assigning proper weights is really tough and a challenging task. It needs thorough 

understanding of the system to assign proper weights to each of the response variables which may 

vary from person to person, situation to situation and objectives of the analysis. So it is not a robust 

procedure for identification of a best treatment. If we give equal weights to all the response 

variables, it amounts to saying that inferences are drawn on the average over all the responses. 

 

One may think of using techniques of multidimensional scaling, one tailed tests, J-plot and Euclidean 

distance from null vector for identification of best treatment. In the present investigation, we have 
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suggested the procedures based on J-plot and Euclidean distance from null vector for identification 

of best treatment. While illustrating the procedures, we have also taken into consideration, the 

average over all responses as one of the criterion. Limitations of the procedure suggested and 

guidelines to overcome these limitations are also discussed in the Remark A.4.1. We begin with J-

plot and Euclidean distance from null vector. 

 

A.4.1  J-plot and Euclidean Distance from Null Vector 

Let us consider the v  p matrix of treatment effects (treatment means/ adjusted treatment means) 

pvE of rank r, where r  min (v1, p) 

 p   TTTE 21                  (A.4.1) 

where Ts is v × 1 vector of treatment means for s
th
 response variable, (s =1, 2, …, p). 

 

It is possible to write pvE , using the singular value decomposition (SVD) (e.g. see Good 1969, 

Jackson 1991) as  

 prrrrvpv   QΛPE ,                    (A.4.2) 

 

where columns of P denotes orthonormal eigenvectors of EE´ and the columns of Q denotes 

orthonormal eigenvectors of E´E; that is, rr IQQPP . The matrix Λ denotes diagonal matrix 

of ordered singular values 021  rl ll  , lk’s (k =1, 2, …, r) which are positive square root of 

the non-zero eigenvalues 1, 2, …, r of EE´ or E´E. On a per-element basis, each element eij of  

pvE  can be expressed as  

 



r

k

jkikkij qple

1

,                    (A.4.3) 

where pik  and qjk are the k
th
 element in the i

th
 row of P and the j

th
 column of Q , respectively.  

 

According to Smith and Cornell (1993), the J-plot is a graphical display of a v  p data matrix by 

means of two dimensional markers r1, r2, …, rv for its rows and two dimensional markers c1, c2, …, 

cp for its columns. The J-plot is a method of displaying a lower rank (usually rank 2 approximation 

of a data matrix (Gabriel 1971, 1981). Because data matrices are usually of rank greater than 2 and 

we choose the display to be two-dimensional, first we shall approximate the data matrix (hereafter, 

when we refer to the data matrix we shall be talking about the effects matrix, pvE ) by a matrix 


pvE  where rank of 

pvE is 2. 

 

The rank-two 
pvE , which approximates the matrix pvE , is now defined by letting r = 2 in (A.4.3), 

as 

222111 qplqplE 
 pv  

            .
2

1

2

1
21 






















q

q

l0

0l
pp                           (A.4.4) 

 

In (A.4.4), p1 and p2 are the first two (leftmost two) columns of P in (A.4.2) and 1q  and 2q  are the 

top two rows of Q  in (A.4.2). Equation (A.4.4) is the best rank-two approximation of pvE in the 

sense of minimizing the Euclidean norm of the matrix of residuals  
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  pvpv EE .                           (A.4.5) 

 

Gabriel (1981) and Jackson (1991) defined J K  factorization of 
pvE  such that  

pvE  = J K . 

where 

  22112 plplJ v                     (A.4.6) 

  212 qqK p .                         (A.4.7) 

 

In this factorization, the columns of K are orthonormal, and therefore, 222 IKK   pp , so that 

 

vv

vvvvpvpv














22

2222

JJ

JKKJEE
                            (A.4.8)  

The v diagonal elements of 



 vppv EE  will approximate the v diagonal elements of vppv  EE . In 

J K  factorization, the row markers for the J-plot are the v rows of Jv2, and the column markers are 

the p rows of Kp2. 

 

From the J-plot inferences can be made about the relative directions as well as the approximate 

relative magnitudes of the treatment effects simultaneously for the multiple responses. Using J-plot 

one can identify the subgroup of treatments which are suitable for a set of response variables. J-plot 

for data of multi-response experiments can be obtained using the following steps. 

 

Steps of Obtaining J-plot 

The J-plot (Smith and Cornell, 1993) is a graphical display of a v  p data matrix of treatment effects 

(treatment means/ adjusted treatment means) in the form of a two-dimensional plot. 

Step 1:   Arrange the data on v treatment means/ adjusted treatment means for p response variables 

in the form of v  p data matrix E. 

Step 2:  It is possible to write pvE , using the singular value decomposition (SVD) as described 

above. SAS code will directly generate the matrices P, Q and Λ.  SAS code for obtaining 

these matrices is given in Appendix 2.2. 

Step 3:   Obtain the two column vectors of the matrices P and Q obtained after SVD of E. 

Step 4:  Take first two columns of P and multiply first column by highest diagonal value of Λ and 

multiply second column by second highest diagonal value of Λ. Now we have v × 2 vector 

which denotes v data points corresponding to treatments.  

Step 5:  Find the maximum absolute value from the two columns and divide each value by the 

maximum absolute values. This ensures that the values of these two columns are within the 

range of 1 to +1.   

Step 6:  Similarly taking first two columns of Q we can obtain p × 2 vector corresponds to p data 

points for p response variables. Follow the step 5 to obtain the values of the two columns 

within the range of 1 to +1. 

Step 7:   Now take the columns obtained in Step 5 and append the columns obtained in Step 6. Now 

we have data points in two dimensions for v treatments and p response variables.   

Step 8:   Plot the two dimensional data in MS-Excel using Scatter Plot option choosing two columns 

as two series for X and Y axis. After plotting remove the Grid lines, clear the Area colour.  

Step 9: After plotting all the data points, click each point and put a label by inserting a text box.  
 

J-plot only helps in identification of best treatments for subset of responses separately. The ranking 

of treatments on the basis of all the responses simultaneously, can be done on the basis of square root 
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of diagonal elements of 



 vppv EE . 

pvE  is an approximation to pvE . Therefore, one may take 

actual v diagonal elements of vppv  EE  without approximating with rank-two matrix for ranking the 

treatments. The square root of diagonal elements of vppv  EE represents Euclidean distance of 

treatment effects means from the null vector (0, 0, …, 0). For single response experiments this is 

nothing but the treatment mean. 
 

Remark A.4.1: The method proposed based on Euclidian distance from null vector has a drawback 

that it is valid only for the situations in which either maximization or minimization of response 

variables is desired. It may fail in those situations in which the experimenter is interested in 

maximum value of some of the response variables and minimum value of the other set. In these 

situations, one may think of weighted mean of the variables. As discussed earlier, assigning weights 

to different response variables is quite subjective in nature. Therefore, one may think of giving equal 

weight to all the response variables, i.e., + 1 to the variables whose maximum values is desired and 

1 to the variables whose minimum value is desired. This procedure has a drawback that it involves 

adding response variables which are in different units. Another thought can be useful for 

identification of the best treatment out of two significantly different treatments by using the 

following one tailed test. Consider two p-component treatment effect vectors iτ and iτ  (i, i= 1, 2, 

…, v) which are significantly different. Consider testing of the null hypothesis of the following form 

H0: iτ  > iτ against the alternative hypothesis H1: iτ  ≤ iτ . If null hypothesis is rejected then either 

treatment iτ is better than treatment iτ or they are equal. On the other hand, if null hypothesis is 

accepted then one can infer that treatment iτ is better than treatment iτ  with specified level of 

significant. This is still an open area of research. Further efforts need to be made in this direction. 
 

Alternatively, one may transform the variables in the following manner. If the original variables 

follow a p-variate normal distribution with mean vector μ  and dispersion matrixΣ  then the 

transformed variables obtained after premultiplying the matrix of response variables by 2

1


Σ  follows 

p-variate normal distribution with mean vector as 0 and dispersion matrix as I. Now working with 

these standardized transformed variables, if through multivariate treatment contrast analysis one gets 

that treatments 1 and 2 are significantly different then one can take the estimate τP and take the sum 

of the estimates obtained. If the sum is positive, then treatment 1 is taken as better than treatment 2 

and if sum is negative, then we can say that treatment 2 is better than treatment 1. Of course while 

estimating, care should be taken that the values of the response variables to be minimized are taken 

as negative of the original values. It ensures that maximization amounts to minimization. Now if a 

particular treatment is significantly different from every other treatment and the decision in each case 

is towards that treatment, then this can be taken as the best treatment. This method has a drawback 

that one needs to estimate of variance-covariance matrix of the residuals, from the same data set. 

Therefore, further refinements need to be made. 

 
A.5  Illustrations 

In this section we describe the analytical procedures described in the previous sections with the help 

of real life examples. 
 

Example A.5.1: An experiment was conducted during 2004-05 at Department of Agronomy, Bidhan 

Chandra Krishi Viswavidyalaya on Integrated Nutrient Management on Rapeseed. Three different 

sources of sulphur were tested along with recommended dose of nitrogen (N), phosphorus (P) and 

potassium (K) and Farmyard Manure (FYM). Following 9-treatment combinations were tested: 
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T1: N0 P0K0 

T2: N80 P40K40 

T3: T2 + FYM (5t/ha) 

T4: T2 + S40 (Aluminum Sulphate) 

T5 T2 + S40 (Aluminum Sulphate) + FYM (5t/ha) 

T6: T2 + S40 (Gypsum) 

T7: T2 + S40 (Gypsum) + FYM (5t/ha) 

T8: T2 + S40 (El S) 

T9: T2 + S40 (El S) + FYM (5t/ha) 

 

The experiment was laid out in Randomized Complete Block (RCB) design in 3 replications. Data 

on the following response variables were collected: Number of branches per plant, Number of siliqua 

per plant, Number of seed per siliqua, Seed yield (g/plant), Straw yield (g), HI (Harvest Index), Test 

weight (g), Leaf Area Index 45 DAS Leaf Area Index 90 DAS.  The data obtained is given in Table 

A.5.1 (Appendix A.1). 
 

At the first instance data were analyzed separately for each for the response variables. The best 

treatment is identified for each response variable separately. The results obtained are given in Table 

A.5.1a. 
 

Table A.5.1a: Best Treatments for Individual Response Variables 

Response 

variables Character (or Response) 

Prob>F 

(Treatments) Best treatment 

Prob>F 

(Blocks) 

P1 Number of branches 0.0004 T6: NS with T3, T7 and T9 0.2460 

P2 Siliqua per plant < 0.0001 T7: NS with T6 and T9 0.9588 

P3 Seed per siliqua 0.0041 T6: NS with T3 0.0123 

P4 Seed yield 0.0076 T9: NS with T3, T6 and T7 0.5680 

P5 Straw yield 0.0788 - 0.7252 

P6 Harvest Index (HI) 0.2978 - 0.9591 

P7 Test weight 0.0024 T9: NS with T7 0.0675 

P8 Leaf Area Index @ 45 0.0035 T3: NS with T9 0.7530 

P9 Leaf Area Index @ 90 0.8646 - 0.1055 

* NS = Not Significant 
 

From Table A.5.1a, it can be observed that treatment effects are significantly different for the 

response variables like P1, P2, P3, P4, P7 and P8. The treatments which are found to be best for 

different response variables are T3, T6, T7 and T9. For P1, T6 is the best treatment which is not 

significantly different from T3, T7 and T9. Therefore, for number of branches per plant (P1) one 

may recommend or select any one of the T3, T6, T7 and T9 treatments. Similarly, any one of the T3, 

T6, T7 and T9 may be selected as best for seed yield (P4). For leaf area index (P8) the best treatment 

is T3 which is not significantly different from T9. In this way, one can see that different treatments 

may be selected as best for different responses and it is not possible to find a single treatment as best 

for all the responses. In this kind of a situation we need a method which identifies a single treatment 

as the best treatment for all the response variables.  

 

Keeping in view the above, the data were also analyzed by taking first principal component score as 

dependent variable. First Principal Component explained 85% of the total variation. ANOVA based 

on first principal component revealed that treatment effects are significantly different (Prob > F = 

0.0452) and block effects are not significantly different (Prob > F = 0.6734). From all possible 
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pairwise treatment comparisons made using least significant difference, it is found that treatment 1 is 

significantly different from all other treatments. Therefore, any of the treatments T2 through T9 may 

be taken as best (Table A.5.1b).  

 

Table A.5.1b: LSD Grouping of Treatments using First Principal Component  

LSD grouping Treatment 

A 5 

A 4 

A 9 

A 8 

A 7 

A 3 

A 2 

A 6 

B 1 

 

As first principal component only explained 85% of the variation and 15% of the variation remained 

unexplained therefore, there is need to perform multivariate analysis of variance. Therefore, the 

MANOVA was performed and given in Table A.5.1c.  

 

Table A.5.1c: Multivariate Analysis of Variance (MANOVA) Table for Simultaneous 

Comparison of Treatment Effects 

Sources of variation d.f. Matrix of 

SSCP 

Wilk’s 

Lambda  

Prob>F 

Block 2 B 0.13286 0.1917 

Treatment  8 H 0.00017 0.0003 

Residual 16 E   

Total 26 T = B + H + E   

 

From MANOVA, treatment effects are found to be significantly different and replication effects are 

not significantly different. Since the treatment effects are significantly different, therefore, the next 

question one needs to answer is, which treatments are significantly different? To answer this 

significance of all possible treatment comparisons 








2

9
= 36 was tested using the procedure of 

multivariate treatment contrast analysis. The probability levels of the all possible pair-wise treatment 

comparisons are given in Table A.5.1d 
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Table A.5.1d: Probabilities of Significance of All Possible Pairwise Treatment Comparisons 

using Wilk’s lambda () 

Treatment 1 2 3 4 5 6 7 8 9 

1 .         

2 0.0130 .        

3 0.0007 0.0963 .       

4 0.0021 0.1114 0.0105 .      

5 0.0016 0.0595   0.0057 0.9980 .     

6   0.0008 0.0235 0.0112 0.3326 0.2046 .    

7 0.0004 0.0015 0.0003 0.0421 0.0675 0.0367 .   

8 0.0038 0.1186 0.0115 0.7049 0.5194 0.4217 0.0418 .  

9 0.0011 0.0094 0.0011 0.3839 0.4710 0.1390 0.5117 0.2833 . 

*Bold face indicates two treatments are significantly different. 

 

From Table A.5.1d, one can observe that treatment T1 is significantly different from all the 

treatments. Treatment T2 is significantly different from T6, T7 and T9. T3 is significantly different 

from T4, T5, T6, T7, T8 and T9. Treatment T4 is significantly different from T1 and T7. T7 is 

significantly different from T1, T2, T4, T6 and T7. T8 is significantly different from T1, T3 and T7. 

However, ANOVA using first Principal Component scores shows that all the treatments except T1 

are found to be not significantly different from the remaining treatments. Results based on 

multivariate treatment contrast analysis deviates from the results based on first Principal Component 

and provide more information about the significance of the treatment effects.   

 

We have seen that treatment effects are significantly different and some of the pairs of treatments are 

significantly different. Therefore, to identify the best treatment for all the response variables 

simultaneously, Euclidean distance from null vector as well as the average over the response 

variables were computed and are given in Table A.5.1e.   

 

Table A.5.1e: Identification of Best Treatment using J-plot and Euclidean Distance from 

Rapeseed Data 

Euclidean distance 

from null vector 
Treatment 

Average over 

responses 

 

Treatment 

5534.5503 T9 779.5211 T9 

5493.8795 T8 771.4838 T8 

5403.5188 T7 760.2325 T7 

5162.2849 T6 723.0665 T6 

5828.7208 T5 796.8142 T5 

5740.3873 T4 785.7149 T4 

5321.7425 T3 730.0494 T3 

5244.9685 T2 710.9152 T2 

4371.7455 T1 584.4298 T1 

 

According to Euclidean distance from null vector and average over all response variables T5 is the 

best treatment. Through multivariate treatment contrast analysis, T5 is significantly different only 

from T1 and T3. Therefore, one may recommend any of the T2, T4, T5, T6, T7, T8 or T9 treatments. 

 

Using Euclidean distance from null vector and average of the response variables we can infer that 

treatment number 5 i.e. Sulphur through Ammonium Sulphate along with recommended level of N, 

P and K and FYM gives better result in Rapeseed for all the characters. Out of these two methods 

Euclidean distance from null vector is easily comprehensible and requires very less computational 
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effort, therefore we recommend Euclidean distance from null vector for identification of the best 

treatment.  

 

The data were represented pictorially in the form of a two-dimensional plot, J-plot. Treatments 

which are close to any response variable are influenced by that response. For example, top right hand 

corner we have treatments T6, T7, T8 and T9 which influences response variables P2, P3, P4, P5. 

This results match with the results obtained from the analysis of response variables individually as 

given in Table A.5.1a. So using J-plot one can subgroup the treatments based on the response 

variables of interest. Now these subgroups can be used to pick up the desired treatment based on 

choice of subset of response variables. 

 

J-plot on Rapeseed data
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*p1

-p9 represents 9 response variables and t1-t9 represents 9 treatments presented in Table A.5.1a. 

 
A SAS code for the procedure of identification of best treatment has been developed and is given in 

Appndix A.2. 

 
In the above example the experiment was conducted in RCB design. There are situations where 

multi-response experiments are conducted in incomplete block designs. The following example is 

considered for the illustration of analysis of data from a complete multi-response experiment 

conducted using an incomplete block design. 

 



 22 

Example A.5.2: An experiment was conducted using a square lattice design with 49 treatments, in 

28 blocks each of size 7 in 4 replications. The data are collected on 4 response variables. The data 

obtained is given in Table A.5.2 (Appendix A.1). 

 
At the first instance the data were analyzed separately for each of the response variables. The best 

treatment is identified for each response variable separately. The results obtained are given in Table 

A.5.2a. 

 

Table A.5.2a Best Treatments for Individual Characters 

Characters or 

Response variable 

Prob > F 

(Treatments) 
Best treatment 

Prob > F 

(Blocks) 

P1 0.0247 T41 0.0003 

P2 0.0141 T44 0.0117 

P3       < 0.0001 T27 0.0192 

P4 0.5101 - 0.1203 

 

From Table A.5.2a, it can be observed that treatment effects are significantly different for the 

response variables like P1, P2 and P3. The treatments which are found to be best for different 

response variables P1, P2 and P3 are respectively T41, T44 and T27. Therefore, different treatments 

may be selected as best for different responses and it is not possible to find a single treatment as best 

for all the responses. In this kind of situation, a method which identifies a single treatment as the best 

treatment for all the response variables is required. Therefore, there is need to perform multivariate 

analysis of variance and is given in Table A.5.2b. 

 

Table A.5.2b: Multivariate Analysis of Variance (MANOVA) Table for Simultaneous 

Comparison of Treatment Effects 

Sources of variation d.f. Wilk’s 

Lambda  

Prob>F 

Treatment 48 0.0593 <0.0001 

Block (replication) 24 0.2767 <0.0001 

Replication 3 0.3172 <0.0001 

Residual 120   

Total 195   

 

From MANOVA, treatment effects are found to be significantly different and block within 

replication effects and replication effects are also significantly different.  

 

Since the treatment effects are significantly different, therefore, the next question one needs to 

answer is, which treatments are significantly different? To answer this significance of all possible 

treatment comparisons 








2

49
 = 1176 was tested using the procedure of multivariate treatment 

contrast analysis. The treatment pairs which are significantly different at 5% level of significance are 

given in Table A.5.2c in the form of treatment number in column (1) and corresponding treatments 

in column (2) which are significant at 5% level of significance. 
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Table A.5.2c: Multivariate Treatment Contrast Analysis Results Based on Wilk’s Lambda 

Criterion 

Treatment Number 

 

(1) 

Significant treatments 

at 5% level of significance 

(2) 

1 4, 5, 9, 10, 15, 16, 18, 20, 21, 24, 26, 27, 29, 30, 31, 35, 40, 44, 48 

2 5, 7, 8, 9, 16, 24, 26, 26, 27, 29, 30, 31, 38, 40, 42, 44  

3 
4, 5, 8, 9, 10, 11, 12, 15, 16, 18, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 34, 35, 

44, 45, 46, 48, 49 

4 
6, 5, 7, 8, 9, 15, 16, 21, 22, 27, 29, 31, 32, 33, 36, 37, 38, 39, 40, 42, 44, 45, 

46, 47, 49  

5 6, 7, 9, 22, 27, 31, 33, 35, 38, 40, 41, 42, 47, 49 

6 8, 9, 10, 16, 18, 20, 24, 26, 27, 29, 30, 31, 32, 34, 35, 44, 48 

7 8, 9, 10, 11, 16, 17, 18, 20, 24, 26, 27, 29, 30, 31, 32, 34, 35, 44, 48 

8 9, 15, 16, 22, 24, 24, 26, 28, 29, 30, 31, 32, 34, 35, 44, 48 

9 
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 , 21, 22, 23, 25, 26, 27, 28, 29, 30, 

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 

10 22, 27, 31, 37, 38, 40, 41, 42, 47, 49 

11 16, 27, 31, 38, 40, 42, 44,  

12 27, 30, 31, 38, 40 

13 16, 24, 26, 27, 30, 31, 44 

14 16, 24, 26, 27, 30, 31, 38, 44 

15 16, 24, 26, 27, 30, 31, 32, 44 

16 
18, 19, 20 , 21, 22, 23, 27, 28, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 

47, 49 

17 27, 30, 31, 38, 40 

18 27, 31, 38, 40, 42, 47, 49 

19 24, 26, 27, 30, 31, 38, 40, 44 

20 22, 27, 31, 33, 37, 38, 40, 41, 42, 47, 49 

21 27, 30, 31, 32, 38, 41, 42 

22 24, 26, 27, 29, 30, 31, 32, 34, 35, 36, 40, 44, 45 

23 24, 27, 30, 31, 38, 40 

24 27, 28, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 43, 47, 49 

25 27, 31, 38 

26 27, 31, 32, 33,  37, 38, 39, 40, 41, 42, 43, 47, 49 

27 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 

28 31, 38, 40, 42, 44, 47, 49 

29 30, 31, 32, 35, 37, 38, 40, 41, 47 

… 
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30 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 

31 32, 33, 34, 35,  36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 

32 38, 40, 41, 44, 48, 49 

33 35, 40, 44 

34 38, 40, 41, 42, 47, 49 

35 38, 40, 42, 44, 47, 49 

36 38, 41, 44 

37 44, 48 

38 40, 44, 45, 46, 48 

39 44 

40 41, 43, 44, 45, 48 

41 42, 44, 45, 47, 48 

42 44, 48 

43 44 

44 47, 49 

47 48 

 

From Table A.5.2c, it can easily be seen that some of the pairs of treatments are significantly 

different. Therefore, to obtain the best treatment for all the response variables simultaneously, 

Euclidean distance as well as the average (adjusted treatment means) over the response variables 

were computed and are given in Table A.5.2d. As the experimental design considered in this 

example is incomplete block design (square lattice design), we have taken adjusted treatment means 

over the response variables instead of simple averages. 

 

Table A.5.2d: Identification of Best Treatment Using Euclidean Distance from Null Vector 

from Rapeseed Data 

Euclidean distance 

from null vector 
Treatment 

Average 

over responses 
Treatment 

(1) (2) (3) (4) 

297.635 1 95.746 1 

289.402 2 93.255 2 

275.610 3 90.080 3 

278.641 4 89.491 4 

311.987 5 97.944 5 

299.168 6 96.096 6 

306.337 7 98.056 7 

311.226 8 98.559 8 

310.010 9 95.888 9 

296.430 10 93.963 10 

292.941 11 93.554 11 

316.971 12 100.145 12 

292.802 13 93.972 13 

297.865 14 95.076 14 

321.188 15 101.460 15 

321.040 16 99.763 16 
                                                                                                                                                      … 
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315.126 17 99.445 17 

302.143 18 95.974 18 

299.587 19 95.802 19 

312.802 20 98.386 20 

318.311 21 100.177 21 

304.715 22 97.596 22 

313.716 23 99.324 23 

312.078 24 97.474 24 

299.167 25 95.197 25 

315.194 26 98.419 26 

333.339 27 106.165 27 

295.153 28 94.256 28 

327.846 29 102.606 29 

287.550 30 91.029 30 

307.736 31 94.354 31 

278.873 32 90.114 32 

306.014 33 97.842 33 

296.530 34 94.426 34 

283.053 35 90.573 35 

300.651 36 95.716 36 

293.676 37 94.601 37 

307.570 38 99.038 38 

301.739 39 96.612 39 

290.773 40 93.308 40 

289.132 41 93.379 41 

310.644 42 99.239 42 

311.981 43 99.149 43 

338.056 44 104.896 44 

313.437 45 98.915 45 

308.898 46 97.926 46 

304.297 47 97.447 47 

319.529 48 100.394 48 

325.879 49 102.916 49 

 

According to Euclidean distance from null vector T44 is found to be the best treatment. On the other 

hand, average (adjusted treatment means) over all response variables suggests that T27 is the best. 

Again from multivariate treatment contrast analysis it is clear that these two treatments (T27 and 

T44) are not significantly different. Therefore, one may recommend any of the treatments, T27 or 

T44.  
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*p1-p4 represents 4 response variables and t27, t41 and t44 represents the treatments (for clarity of the chart all 

the treatment labels are not shown) 

 

The data were represented pictorially in the form of a two-dimensional plot, J-plot. Treatments 

which are close to any response variable are influenced by that response. For example, top right hand 

corner we have treatment T41 which influences response variable P1, T44 influences response 

variable P2 and T27 influences P1. Treatment effects are not significant for P4, so we don’t consider 

this response variable for making inference. This results match with the results obtained from the 

analysis of response variables individually as given in Table A.5.2a. So using J-plot one can 

subgroup the treatments based on the response variables of interest. Now these subgroups can be 

used to select the desired treatment based on choice of subset of response variables. 
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Appendix A.1 

Table A.5.1: Experimental Data on Integrated Nutrient Management on Rapeseed (Example A.5.1) 

Treat Rep 
No.of 

branches 

Siliqua/ 

Plant 

Seed/ 

Siliqua 
Seed yield 

Straw 

yield 
HI 

Test 

weight 

LAI 

@45 

LAI 

@90 

1 1 4.1 46.0 21.0 975.0 5000.0 0.16 2.65 2.76 1.20 

2 1 7.8 71.8 22.5 1241.7 5000.0 0.20 3.13 7.31 2.52 

3 1 7.7 106.5 22.8 1383.3 5166.6 0.21 2.26 7.69 0.67 

4 1 7.3 93.0 23.3 1141.7 5333.3 0.18 3.18 6.65 1.67 

5 1 8.2 98.0 22.3 1191.7 4916.6 0.20 3.19 6.25 1.63 

6 1 8.9 107.3 24.2 1216.7 5083.3 0.19 2.94 3.94 1.45 

7 1 7.3 116.0 22.8 1366.7 4916.6 0.22 3.22 4.72 1.32 

8 1 8.0 113.2 22.5 1458.3 5166.6 0.22 3.00 5.60 1.08 

9 1 8.3 95.7 22.8 1583.3 5100.0 0.24 3.43 6.40 1.32 

1 2 6.1 50.5 22.2 833.3 3833.3 0.18 3.16 3.22 0.40 

2 2 7.6 66.6 23.3 966.7 5333.3 0.15 3.01 4.91 0.40 

3 2 8.0 79.5 24.8 1433.3 4750.0 0.23 3.15 8.08 1.54 

4 2 7.4 97.0 23.5 1350.0 5500.0 0.20 3.17 6.30 0.71 

5 2 7.8 106.3 23.7 1325.0 6416.6 0.17 3.28 7.20 0.72 

6 2 8.4 104.7 24.0 1558.3 4500.0 0.26 3.14 3.85 0.62 

7 2 9.6 125.3 23.0 1416.7 5583.3 0.20 3.52 3.63 1.55 

8 2 8.9 103.4 23.0 1575.0 5666.6 0.22 3.02 5.28 1.45 

9 2 8.5 126.0 24.2 1675.0 5166.6 0.24 3.32 6.70 1.05 

1 3 4.8 49.8 22.3 891.6 4000.0 0.18 2.90 2.09 0.70 

2 3 7.4 74.3 22.8 1316.7 5000.0 0.21 3.07 6.04 1.26 

3 3 7.8 78.2 24.5 999.9 5583.3 0.15 2.70 7.04 1.41 

4 3 9.1 107.2 22.3 1566.7 5900.0 0.21 3.17 6.38 0.69 

5 3 7.8 100.4 22.4 1566.7 5666.6 0.22 3.23 6.62 1.18 

6 3 7.9 118.3 24.1 1375.0 5333.3 0.20 3.04 7.72 1.04 

7 3 8.2 128.7 22.6 1666.7 5083.3 0.25 3.37 6.48 1.00 

8 3 7.6 91.8 22.4 1533.3 5000.0 0.23 3.01 5.09 1.26 

9 3 7.9 107.5 22.0 1400.0 5666.6 0.20 3.37 5.21 1.19 

1 1 4.1 46.0 21.0 975.0 5000.0 0.16 2.65 2.76 1.20 

2 1 7.8 71.8 22.5 1241.7 5000.0 0.20 3.13 7.31 2.52 
Treat: treatments and Rep: Replication 



 28 

Table A.5.2: Experimental Data on Square Lattice Design (Example A.5.2) 

Replication Block Treatment Response 1 Response 2 Response 3 Response 4 

1 1 45 1.3 292 79.9 8.6 

1 1 31 1.2 284 66.4 7.4 

1 1 38 1.4 261 89.8 8.3 

1 1 24 1.3 299 75.9 7.7 

1 1 10 1.3 267 79.3 7.8 

1 1 3 1.5 230 86.0 8.7 

1 1 17 1.8 302 83.2 8.6 

1 2 40 1.4 270 84.8 0.0 

1 2 12 1.5 342 86.3 7.9 

1 2 33 1.5 295 88.8 8.4 

1 2 47 1.8 309 87.3 7.0 

1 2 26 1.9 335 74.6 7.4 

1 2 5 1.8 286 79.5 7.1 

1 2 19 1.5 283 82.2 8.3 

1 3 21 1.6 348 83.8 7.5 

1 3 7 1.4 332 90.1 9.9 

1 3 35 1.4 312 82.7 7.3 

1 3 28 1.6 312 81.9 8.4 

1 3 42 1.3 284 89.5 8.3 

1 3 14 1.3 295 83.1 8.4 

1 3 49 1.4 336 88.6 7.9 

1 4 22 2.2 285 90.4 8.0 

1 4 15 1.7 326 82.8 7.7 

1 4 29 1.6 337 82.2 8.0 

1 4 36 1.7 343 83.9 9.4 

1 4 43 1.7 341 87.8 8.7 

1 4 1 1.6 323 89.8 9.3 

1 4 8 1.5 311 81.9 9.4 

1 5 34 1.7 264 85.9 9.6 

1 5 27 1.6 325 99.6 7.8 

1 5 41 1.7 255 83.8 8.5 

1 5 13 1.8 251 84.6 7.6 

1 5 20 1.9 296 80.1 7.8 

1 5 48 1.8 310 84.6 7.3 

1 5 6 1.6 264 89.4 7.4 

1 6 9 1.6 327 69.6 8.7 

1 6 2 1.8 309 86.2 8.6 

1 6 37 1.6 290 82.3 9.0 

1 6 30 1.7 328 75.3 6.9 

1 6 16 1.5 333 78.4 7.4 

1 6 44 1.6 341 81.8 7.6 

1 6 23 1.5 347 85.8 8.2 

1 7 46 1.5 332 79.7 7.8 

1 7 39 1.5 364 86.8 8.4 

1 7 32 1.4 306 80.7 9.2 

1 7 11 1.8 342 82.3 7.8 

1 7 18 1.8 319 83.8 7.3 

      … 
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                    1                                                                                              7 4 2.0 293 82.5 7.5 

1 7 25 1.6 307 85.9 7.9 

2 1 43 1.8 307 86.6 8.5 

2 1 45 1.6 289 83.5 7.9 

2 1 46 1.7 262 85.9 8.2 

2 1 48 1.8 300 83.3 7.3 

2 1 44 1.8 302 83.4 7.3 

2 1 47 1.8 290 90.2 7.5 

2 1 49 1.9 347 90.1 7.5 

2 2 26 1.7 280 80.6 7.2 

2 2 22 2.2 319 92.8 7.5 

2 2 23 2.1 312 84.7 7.6 

2 2 25 1.6 286 81.8 7.3 

2 2 28 1.9 281 79.8 8.3 

2 2 27 1.8 316 96.0 7.3 

2 2 24 1.9 299 81.0 7.2 

2 3 40 1.2 253 84.3 8.8 

2 3 38 2.1 290 94.5 7.7 

2 3 36 1.5 265 84.4 6.6 

2 3 42 1.6 310 88.9 8.9 

2 3 37 1.6 308 90.8 8.8 

2 3 39 1.9 272 87.3 8.7 

2 3 41 1.9 265 91.8 7.8 

2 4 6 1.8 292 90.8 6.8 

2 4 4 1.7 278 81.1 6.7 

2 4 2 1.9 258 85.2 8.1 

2 4 7 1.8 294 90.6 0.0 

2 4 1 1.5 258 90.8 8.9 

2 4 3 1.4 246 85.1 7.7 

2 4 5 1.6 292 81.4 6.8 

2 5 14 1.8 315 91.2 7.7 

2 5 9 1.5 317 74.8 7.9 

2 5 8 1.7 293 79.2 8.6 

2 5 11 1.6 297 88.0 7.6 

2 5 13 1.7 264 88.4 8.2 

2 5 10 1.5 274 82.7 6.8 

2 5 12 2.0 275 83.1 7.7 

2 6 33 1.6 264 89.3 8.5 

2 6 31 1.6 292 69.4 7.3 

2 6 32 1.7 268 90.2 8.2 

2 6 29 1.5 306 82.9 8.0 

2 6 30 1.8 272 82.4 7.5 

2 6 34 1.6 280 80.9 8.4 

2 6 35 1.9 271 82.1 8.1 

2 7 18 2.0 310 86.2 9.0 

2 7 15 1.8 292 88.7 7.8 

2 7 19 1.6 277 90.8 8.9 

2 7 16 1.4 317 82.7 7.8 

2 7 21 1.6 288 86.9 8.0 

      … 
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2 7 17 1.5 280 89.2 8.9 

2 7 20 1.8 310 84.8 8.3 

3 1 21 1.6 290 81.9 7.1 

3 1 20 1.9 280 82.8 8.1 

3 1 16 1.6 308 73.8 6.9 

3 1 17 2.0 294 80.5 7.6 

3 1 15 1.9 310 84.3 7.6 

3 1 19 2.0 300 84.2 8.1 

3 1 18 1.8 280 78.9 8.6 

3 2 49 1.9 280 86.8 7.7 

3 2 43 2.1 258 89.9 8.3 

3 2 44 2.3 332 81.7 8.4 

3 2 46 2.1 310 87.5 7.6 

3 2 47 1.3 280 91.1 7.2 

3 2 45 1.9 300 87.3 7.8 

3 2 48 2.0 280 84.9 7.0 

3 3 5 1.6 310 81.9 7.9 

3 3 4 1.9 265 82.9 8.0 

3 3 7 1.5 268 93.7 9.8 

3 3 6 1.5 276 93.7 6.9 

3 3 2 2.0 287 88.8 7.8 

3 3 1 1.6 270 93.5 9.3 

3 3 3 1.6 272 90.8 8.1 

3 4 23 1.3 280 86.1 7.7 

3 4 24 1.6 282 78.8 7.2 

3 4 28 1.5 260 92.5 8.0 

3 4 22 1.3 300 83.9 8.6 

3 4 27 2.0 332 91.4 8.0 

3 4 26 1.5 322 79.5 6.8 

3 4 25 1.4 300 82.9 7.5 

3 5 29 1.6 315 87.9 7.4 

3 5 33 1.6 282 87.5 7.4 

3 5 32 1.3 245 87.1 8.1 

3 5 35 1.5 252 84.7 7.0 

3 5 30 1.5 220 78.8 8.1 

3 5 31 1.2 300 69.9 6.8 

3 5 34 1.6 258 84.2 7.8 

3 6 12 1.9 312 88.6 8.0 

3 6 9 1.9 302 73.2 8.3 

3 6 14 1.8 270 86.8 7.1 

3 6 8 1.7 322 89.7 9.2 

3 6 10 1.8 290 83.4 7.4 

3 6 13 1.8 304 87.2 7.9 

3 6 11 1.7 238 84.7 8.1 

3 7 39 1.7 258 91.0 6.9 

3 7 41 2.1 270 90.7 7.7 

3 7 37 1.5 254 88.4 8.0 

3 7 38 1.6 302 98.3 8.2 

3 7 42 1.5 290 91.1 8.4 

 3 7 40 1.6 300 94.7 7.4 
      … 
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3 7 36 1.3 282 84.9 8.5 

4 1 8 1.6 280 85.4 8.6 

4 1 1 1.8 284 77.4 7.2 

4 1 29 2.1 290 82.7 7.6 

4 1 15 2.3 304 90.7 7.5 

4 1 43 2.1 280 81.4 7.7 

4 1 36 1.9 260 84.9 8.7 

4 1 22 2.2 268 84.9 7.9 

4 2 45 2.0 280 86.6 7.9 

4 2 3 2.0 258 98.5 8.1 

4 2 17 1.8 300 83.8 8.1 

4 2 10 2.4 282 84.2 7.8 

4 2 31 2.1 270 72.0 6.6 

4 2 24 2.0 300 78.2 7.6 

4 2 38 2.3 281 93.1 8.0 

4 3 12 2.0 298 86.8 7.4 

4 3 40 1.9 280 91.8 8.6 

4 3 19 1.8 282 87.0 8.2 

4 3 26 1.9 288 82.3 7.0 

4 3 47 1.9 270 92.0 7.6 

4 3 5 1.8 314 82.4 7.4 

4 3 33 2.1 310 89.8 8.1 

4 4 2 1.6 266 86.4 7.5 

4 4 16 1.7 300 79.2 7.3 

4 4 37 1.6 282 92.0 8.3 

4 4 44 2.0 342 80.3 7.4 

4 4 9 1.8 285 72.3 7.2 

4 4 30 1.9 285 76.3 7.1 

4 4 23 2.2 292 83.4 8.0 

4 5 32 1.7 278 80.8 8.2 

4 5 18 2.0 302 82.8 7.8 

4 5 4 2.0 281 81.4 6.9 

4 5 39 2.1 310 88.6 7.1 

4 5 25 1.9 315 84.7 7.0 

4 5 11 2.1 307 81.3 7.4 

4 5 46 1.6 325 86.7 7.7 

4 6 42 1.7 315 92.0 8.7 

4 6 7 1.9 288 89.8 9.0 

4 6 14 1.9 282 84.4 8.1 

4 6 35 2.0 242 82.4 7.7 

4 6 49 2.2 292 91.3 7.4 

4 6 21 2.3 310 87.9 6.9 

4 6 28 2.3 298 82.3 7.8 

4 7 13 2.2 282 92.1 7.6 

4 7 34 1.9 292 85.6 8.4 

4 7 48 2.2 305 89.1 7.2 

4 7 6 2.2 282 91.1 7.1 

4 7 27 2.3 285 98.9 7.3 

4 7 41 2.4 282 92.5 8.4 

4 7 20 2.1 292 82.7 8.3 
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Appendix A.2 

 

SAS Code for the Identification of Best Treatment 
 

proc iml; 

/* Input v × p matrix of treatment means for all the response variables */ 

 indat = { 

40.28 8.71 111.40 5.00 48.77 21.83 899.97 4277.77 0.17 41.67 295.27 3.39

 3.69 2.69 0.77,  

46.33 9.21 120.37 7.60 70.90 22.87 1175.03 5111.10 0.19 65.23 368.43 5.65

 6.26 6.09 1.39,  

46.17 8.11 122.70 7.83 88.07 24.03 1272.17 5166.63 0.20 65.97 405.67 5.84

 6.33 7.60 1.21,  

…   …   …   … 

45.93 10.11 115.37 8.37 123.33 22.80 1483.37 5194.40 0.22 80.43 396.03 6.54

 4.82 4.94 1.29,  

46.87 9.03 121.17 8.17 102.80 22.63 1522.20 5277.73 0.22 84.10 349.30 6.09

 3.29 5.32 1.26,  

47.27 10.12 122.30 8.23 109.73 23.00 1552.77 5311.07 0.23 84.90 386.03 6.13

 3.55 6.10 1.19  

}; 

run; 
 

%macro jplot(vp); 

call svd(u,v,q,&vp);   /* performing singular value decomposition */ 

*print u v q; 

g=u[,1:2];  /* take first two columns of U which are p1 and p2 as referred in theory */ 

h = diag(v[1:2,])*q[1:2,]; 

j = u[,1:2]*diag(v[1:2,]); /* obtaining J */ 

jj = j*j`;   /* obtaining  the values of JJ` */ 

jjj = diag(sqrt(jj)); 

mx=max(jjj); 

do i= 1 to nrow(jjj); 

 if jjj[i,i] = mx 

 then best= i; 

end; 

res = j(1,2,0); 

do i = 1 to nrow(jjj); 

 res1= jjj[i,i]||i; 

 res=res//res1; 

end; 

res=res[2:nrow(res),]; 

title ' J - plot '; 

print mx best / res; 

run; 

%mend; 

 

/* invoke the SAS macro with the name of the data matrix (INDAT here) as the input parameter */ 

%jplot(indat); 
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B)   Outliers in Multi-response Experiments 
 

B.1  Introduction 

An outlier in a set of data is an observation (or an observation vector) that appears to be inconsistent 

with the remainder of the observations in that data set. Occurrence of outlier(s) is common in every 

field in which data collection is involved. In many experimental situations, data on more than one 

response variable is recorded from the same experimental unit through application of same 

treatment. Such experiments are known as multi-response experiments.  Outlier(s) in multi-response 

experiments is/ are likely to appear. If an experimental plot is heavily infested with pests, disease 

and/or weeds then all the responses observed from that plot may be outlier(s). It may also be due to 

heavy irrigation by mistake on some experimental plot(s) or mistake in recording/ transcription of 

observations etc. The presence of outlier(s) in the data generated from multi-response experiments 

may cause departures from the assumptions of parameter estimation. The analysis of data in presence 

of outlier(s) may give misleading results. Therefore, before analysis of multi-response data, detection 

of outlier is required. Barrett and Ling (1992) proposed a measure of influence for multivariate 

regression as an extension of measure given by Cook and Weisberg (1980) for univariate regression. 

Test statistic, available in literature for detecting outlier(s) in multivariate regression cannot directly 

be applied to the multi-response experimental settings because 

i) design matrix of multi-response experiments is not of full column rank as in multivariate 

regression 

ii) in multi-response experiments, interest is in a sub set of parameters (linear function of treatment 

effects) rather than whole vector of parameters. 

 

Most of the literature available for detection of outlier(s) in the experimental data and obtaining 

robust experimental designs in presence of outlier(s) is for single response situations see e.g. Box 

and Draper (1975), John (1978), Gopalan and Dey (1976), Ghosh (1983, 1989), Singh et al. (1987), 

Ben and Yohai (1992), Bhar (1997),  Bhar and Gupta (2001, 2003), Sarker (2002) and Sarker et al. 

(2003, 2005). 

 

John (1978) studied the problems that arise in detecting the presence of outliers in the results from 

factorial experiments by applying the Qk-statistic of Gentleman and Wilk (1975). Ben and Yohai 

(1992) studied the asymptotic theory of M-estimates and their associated test for a one-factor 

experiment in randomized complete block (RCB) design. Gopalan and Dey (1976) studied the 

robustness of general block designs in the presence of a single outlier by minimizing the variance of 

discrepancy or bias in the measurement of error variance (
2
). Singh et al. (1987) showed that the 

variance balanced row-column designs satisfying the property of adjusted orthogonality are robust 

against the presence of a single outlier. Bhar (1997) have investigated the problem of outlier(s) in the 

experimental data for the block designs and modified Cook-statistic, Qk-statistic and AP- statistic for 

detection of single outlier in experimental data for both mean shift and variance inflation models. 

Bhar and Gupta (2001) studied the robustness of block designs by minimizing the value of Cook-

statistic. Bhar and Gupta (2003) made a study of outliers under variance-inflation model in 

experimental designs.   Sarker et al. (2003) extended these results to the experimental situations 

where the interest of the experimenter is only in a subset of all possible elementary treatment 

contrasts (test treatments-control treatment comparisons) rather than the complete set of all the 

possible elementary contrasts. Sarker et al. (2005) formulated a test statistic for detection of a single 

outlier in block designs for diallel crosses.  They also established a correspondence between two 

existing criteria of robustness i.e. minimization of average Cook-statistic and minimization of 

variance of discrepancy or bias in estimation of error variance. It has been shown that a proper binary 

balanced block design for diallel crosses is robust against the presence of a single outlier. Block 
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designs for diallel crosses in which every line appears an equal number of times in each block are 

also found to be robust against the presence of a single outlier.  

 

In multi-response experiments, for taking the advantage of correlation structure among the response 

variables, multivariate analysis of variance (MANOVA) of data should be performed for testing the 

equality of treatment effects,. The inference(s) drawn from MANOVA may be misleading if 

outlier(s) are present in the data. Very little work seems to have been done on detection of outlier(s) 

in data from multi-response experiments. Therefore, in the present investigation an attempt has been 

made to develop a test statistic for detection of an outlier observation from multi-response data 

generated through block design. The test statistic is given in Section B.3. We begin with some 

preliminaries in Section B.2. 

 

B.2   Preliminaries 

Let there be v treatments laid out in a block design containing b blocks such that j
th
 block contains kj 

experimental units; j = 1,2,…,b and treatment i is replicated ri times, nrk
v

i

i

b

j

j 
 11

, the total 

number of experimental units. From each experimental unit p responses are observed. Let Y = [y1 y2 

… yp] be n  p matrix of observations, where sy is an n  1 vector of observations corresponding to 

the s
th
 response (s = 1,2, …, p).  For s

th
 response the model is given by 

 sss εXθy   s = 1, 2, …, p      (B.2.1) 

 

where  D1ΔX   is the design matrix for s
th
 response partitioned in conformity with the 

parameters, Δ  is (n  v) design matrix of treatments, 1 is the n dimensional column vector of all 

elements unity and  D  is the design matrix of blocks.  

 

  ssss βτθ   is a (v + b + 1) component vector, sτ being v-component vector of treatment 

effects,  s  the general mean and sβ  the b-component vector of block effects for the s
th
 response. 

sε is the residual vector for s
th
 response variable distributed as N (0, ss In).   

 

So the model for multi-response experiments in block design set up is 

 εZθY                                   (B.2.2) 

where   pyyyY 21 .       

 

Now we can roll out the matrix into vector form as 

  XIDI1IΔIZ  pppp  and 



















β

μ

τ

θ ,           (B.2.3) 

where treatment effect vectors, general mean and block effect vectors for all the response variables 

are appended one below the other to obtain a single treatment effect vector τ , general mean vector 

μ  and block effect vector β , ε  is p-variate normal with response variables from same observation 

are correlated but there is no correlation between different observations and   denotes the direct 

sum of matrices. As a consequence ε  is now ε ~  Ω0,pN ,  
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where  εΩ D =





















nppnpnp

npnn

npnn

III

III

III















21

22221

11211

npp IΣ  ,                  (B.2.4) 

where ss   is the variance between s
th
 and ths  response variables when s=s, ss ,  = 1, 2, …, p; 

 denotes Kronecker product of matrices and D(.) denotes the dispersion matrices. Using the 

Generalized Least Square (GLS) estimation procedure, the normal equations are 

   YΩZθZΩZ
11                                   (B.2.5) 

 

The reduced normal equations for estimating the linear functions of treatment effects are 
**

QτC                                  (B.2.6) 

where  

  1* 1       C Σ ΔΔ ΔD DD DΔ =  1 Σ ΔSΔ 1 Σ C                     (B.2.7) 

  1* 1     
  

Q Σ Δ ΔD DD D Y =  1 Σ ΔSY
1 Σ Q        (B.2.8) 

and   
1

  S I D DD D . 

 

Here C is the information matrix and Q is the vector of adjusted treatment totals in the usual setup 

for the univariate case. A solution of the reduced normal equations (B.2.6) is  

  **ˆ QCτ


                                        (B.2.9) 

Following theorem can be given for multi-response experiments:  
Theorem 2.1: 

(i)          τCQ
 E  

(ii)          CCΣQ
1D                      (B.2.10) 

(iii)   A design for multi-response experiment is connected for parameters τ  iff    Rank(


C ) = 

p(v−1). In a connected design all contrasts of τ  are estimable. 

 

Here we assume that the design is connected i.e. all p(v1) orthonormalized treatment contrasts are 

estimable or equivalently Rank (


C ) = p(v1). Let the set of all p(v1) orthonormalized treatment 

contrasts for the parameters τ  be given by τP , where LIP  p  and L is such that 1 vILL  

and 11ILL 
v

v
1

,  1 vp IILLIPP  and 







 vvv

v
11IILLIPP

1
. The 

best linear unbiased estimator (BLUE) of τP  is given by τP ˆ , where τ̂  is any solution of the 

reduced normal equation in (B.2.6). 

 

We have the following lemma: 

 

Lemma 2.1: For a connected design for multi-response experiments, the dispersion matrix of 

τP ˆ can be written as  

       11
ˆ


 PCPLLCΣτPD .                     (B.2.11) 
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Proof: We know that the information matrix for estimation of a linear function of treatment effects 

for multi-response experiments run in a block design is given by CΣC   1
. Therefore, 

CΣC11IΣPCP 







  11 1
vvv

v
.    

Also  CΣPPC   1
, so we can write

  PCPPPC . 

Premultiplying P we get,  
*

PCPCPPPPCP  
 

    CPPCPP
1

. 
 

This follows from the fact that LLCΣPCP   1
 and LLC  is positive definite using Lemma 

2.1 of Bhar and Gupta (2001). Therefore, PPC
*   is positive definite.  

 

Post multiplying τ̂ we get, 

  τCPPCPτP ˆˆ  
1

 

=   






  

QCCPPCP
1

     

The dispersion matrix of τP ˆ  is given by 

      11
ˆ

 


PCPPCCCCCPPCPτPD      

 =   1 PCP .                   (B.2.12) 

 

B.3 Detection of Outlier in Multi-Response Experiments 

Let us assume that a single observation vector is suspected to be an outlier in the sense that its 

expected value is shifted from the expected value of other observations. We consider the mean-shift 

model of the form, 

 εγUθZY             (B.3.1) 

where  uIU  p ,    00100 th  tu , if t
th
 observation vector is suspected as 

an outlier and Y and Z are as given in (B.2.2).The dispersion matrix of ε from (B.2.4) is 

  IΣεΩ  D . 

 

Now making use of Z as given in (B.2.2) reduced normal equations for estimating the linear function 

of treatment effects under model (B.3.1) are obtained as  

 

tC  tτ =  


tQ                        (B.3.2) 

where    
11

t
       

  
C Σ ΔS I u u Su u SΔ ,  

         1   Σ C ff .                            (B.3.3) 

 

tQ  

11      
  

Σ ΔS I u u Su u SY  

         =  SYufQΣ  2/11 w                    (B.3.4) 
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where 
1)(  Suuw  and ΔSuf

2/1w . 

 

Following the definition of Cook-statistic for univariate case (Bhar 1997) we give the Cook-statistic 

for the set of contrasts τP of τ  in multi-response experiment as: 

          
  τPD

ττPτPDττP
CD

ˆRank

ˆˆˆˆˆ
)(

1
tt

t









         for t 1, 2,  . . . , n.            (B.3.5) 

 

Lemma B.3.2: The difference between the estimators of the contrasts of τ  under the model (B.2.2) 

and (B.3.1) can be expressed as 

 

  tττP ˆˆ   =  YMCLI
 ,                       (B.3.6) 

where 
   M EC F F EC ΔS , 

1 






ff
E

f C f
, SufF  2/1w . 

  
Proof: From (B.3.3) we have  

 t


C  1   Σ C ff  

And a g-inverse of 
 t


C is obtained as [Pringle and Rayner (1971, p.32) and Dey (1993, Theorem 2)] 

 t


C = 

1

 




 
  

  

C ff C
Σ C

f C f
. 

Thus  

 t


C  t


Q = 

 
).(

1
).(

1

)).(()).((

2/111

2/111

SYufΣ
fCf

CffC
ΣQΣ

fCf

CffC
Σ

SYufΣCΣQΣCΣ





















































w

w

 

 

Then  

   tt

     C Q C Q   SYuf
fCf

CffC
IQ

fCf

CffC
ISYufCI 




















11

2/12/1 ww ppp  

 

Then it follows 

 )(ˆˆ tττP  =   

































SYuf
fCf

CffC
IQ

fCf

CffC
ISYufCILI

11
. 2/12/1 ww pppp  

 =  SYuf
fCf

CffLC
IQ

fCf

CffLC
ISYufLCI 




















11

2/12/1 ww ppp  

 

            = FYECLCIQECLCIFYLCI
  ppp  
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 = p( )I LC M Y  

 

Now from (B.3.5) and (B.3.6) Cook-statistic for multi-response experiments can be written as 

 

 
     YMCLIPCΣPLCMIYCD

 


 1

1

1
)(

vp
t  

           =
 

  YMCMΣY
 



1

1

1

vp
.           (B.3.7) 

 

Remark: For a Randomized Complete Block (RCB) design the matrix S can be written as 

v v v v v v v v v
1 1 1

diag ( ), ( ),..., ( )
v v v

 
      

 
S I 1 1 I 1 1 I 1 1 . Thus the matrices E and F simplified 

as  

ffE 



1r

r
  and SufF 




v

v 1
, where 













vvv

111
1 f . Using these 

simplifications, one can obtain a (CD)t for t
th
 observation in a RCB design. 

 

Belsely et al. (2004) have given a cut off point for (CD)t in case of a multiple linear regression as 

4/n. For any observation vector if calculated value of (CD)t (t = 1, 2, …, n) is more than 4/n, then we 

may conclude that the observation vector from the t
th
 experimental unit is an outlier.  Approximate 

distribution of (CD)t (t = 1, 2, …, n) is unknown and is an open problem. A SAS code has been 

written for obtaining the test statistic for detection of outlier observation vector and is given in the 

Appendix B.1.  

 

The above test statistic helps in detection of a single outlier vector. Once the outlier vector is 

detected, the next question arises as to what to do with this observation vector? First and foremost 

step we have to do is whether there are any recording or tabulation errors? If there are recording or 

tabulation errors, correct them and perform the analysis. If one finds that outlying observation is not 

due to recording or tabulation errors, then one simple way is delete the observation vector that is 

identified as an outlier or perform multivariate analysis of covariance by defining a covariate for 

each outlier. The above procedure is illustrated with the help of an example in Section B.4. 

 

B.4 Illustration 

Example B.4.1: Consider an experiment conducted during winter season of 2003-04 in Terai region 

of West Bengal to study the effect of integrated nutrient management on growth and yield of late-

sown wheat. The experiment was laid out in RCB design with 14 treatments in 3 replications. 

The data on following 9 characters were observed: plant height at harvest (cm), dry matter 

(DM) accumulation at 90 days after sowing (DAS), leaf area index (LAI) at 75 DAS, number 

of spikes/ sq cm, number of grains per spike, test weight (g), grain yield (q/ha), straw yield 

(q/ha) and harvest index (%).  

 

The data were analyzed for detection of single outlier vector using the test statistic developed 

in Section B.3. The results obtained are given in Table B.4.1 (Appendix B.1). From Table 

B.4.1, it can be observed that the observation corresponding to treatment number 1 and replication 

3 has  value of (CD)t-statistic (0.1043) which is more than the cut off value of (4/n =0.09524).  

Therefore,  we can say that the observation vector pertaining to treatment number 1 in replication 3 

is an outlier.  
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Multivariate analysis of variance for testing the equality of treatment effect vectors was performed 

on original data and after deleting the observation outlier vector. The significance of treatment and 

replication effects were tested using Wilk’s Lamda criterion. Multivariate analysis of covariance was 

also performed by defining a covariate for the outlier observation vector as defined in (B.3.3). The 

results obtained are given in Table B.4.2 (Appendix B.1). From the analysis of original data given in 

Table B.4.2, we can see that replication effects are not significantly different at 5% level of 

significance whereas from the analysis after deleting the outlying observation (observation number 

3) showed that replication effects are significantly different at 5% level of significance. Though there 

is no change in the results pertaining to treatment effects. It has been observed that deleting any other 

observation does not change the result of original data.  

 

One can also observe that the results with analysis of covariance and by deleting the outlying 

observation are same. Therefore, these approaches may be able to take care of presence of outlier(s) 

in the experimental data. However, it is necessary that the outlier(s) is (are) detected at the first 

instance. The statistic developed for the detection of outlier(s) in the experimental data may be very 

helpful  

  

B.5 Discussion 

In the present investigation, a test statistic has been developed for detection of a single outlying 

observation vector in multi-response experiments conducted in block designs. It may happen that all 

the components of the observation vector obtained from an experimental unit may not be outlier. 

Therefore, further efforts need to be made for developing a test statistic for detection of a p1-

component sub-vector of a p-component observation vector as outlier. Further, outlier(s) may exist in 

more than one observation vector. Therefore, a test statistic for detection of outlier(s) in more than 

one observation vector needs to be developed. Once an outlier is detected, one may think of either 

deleting the observation(s) identified as outlier(s) or carrying out the analysis of covariance. This 

procedure may be subjected to criticism. Therefore, one way to deal with such a situation is to 

develop robust procedure of estimation of treatment contrasts. Therefore, research efforts need to be 

made for developing a procedure of robust estimation in presence of outlier(s) in multi-response 

experiments.  

 

A lot of literature is available on designs that are robust in presence of a single outlier in single 

response situations {see e.g. Gopalan and Dey (1976), Singh et al. (1987), Ben and Yohai (1992), 

Bhar (1997), Bhar and Gupta (2001, 2003), Sarker (2002) and Sarker et al. (2003, 2005)}. A criteria 

of robustness of multi-response designs in presence of a single outlying observation vector needs to 

be developed.  

 

References 

Barrett, B. E. and Ling, R. F. (1992) General classes of influence measure for multivariate 

regression, Journal of American Statistical Association, 87(417), 184-191. 

Belsley, D.A., Kuh, E. and Welsch, R.E. (2004). Regression Diagnostics-Identifying Influential Data 

and Sources of Collinearity. John Wiley and Sons, New York. 

Ben, M.G. and Yohai, V.J. (1992) Robust analysis of variance for a randomized block design, 

Commun. Statist.-Theory & Meth., 21 (7), 1779-1798. 

Bhar, L. (1997) Outliers in experimental designs, Unpublished Ph.D. Thesis. I.A.R.I. New delhi. 

Bhar, L. and Gupta, V. K. (2001) A useful statistic for studying outliers in experimental designs, 

Sankhya, B63 (4), 338-350. 

Bhar, L. and Gupta, V. K. (2003) Study of outliers under variance-inflation model in experimental 

designs. J. Indian. Soc. Agril. Statist. 56(2), 142-154. 

Box, G.E.P. and Draper, N.R. (1975). Robust designs. Biometrika, 62(2), 347-352. 



 40 

Cook, R. D. (1977) Detection of influential observations in linear regression, Technometrics, 19, 15-

18. 

Cook, R. D. and Weisberg, S. (1980) Characterizations of an empirical influence function for 

detecting influential cases in regression, Technometrics, 22, 495-508. 

Dey, A. (1993). Robustness of block designs against missing data. Statistica Sinica, 3, 219-231. 

Gnanadesikan, R. and Kettenting, J.R. (1972). Robust estimates, residuals, and outlier detection with 

multiresponse data. Biometrics, 28, 81-124. 

Gnanadesikan, R. and Lee, E.T. (1970). Graphical techniques for internal comparisons amongst 

equal degree of freedom groupings in multiresponse experiments. Biometrika, 57, 229-237. 

Gentleman, J.E. and Wilk, M.B. (1975). Detecting outliers in two-way table: 1. Statistical behavior 

of residuals. Technometrics 17, 1-14. 

Ghosh, S. (1983). Influential observations in view of design and inference. Commu. Stat.-Theory and 

Methods, 12(14), 1675-1683. 

Ghosh, S. (1989). On two methods of identifying influential sets of observations. Statist. Prob. 

Letters, 7, 241-245.  

Gopalan, R. and Dey, A. (1976) On robust experimental designs, Sankhya, B38, 297-299. 

John, J.A. (1978). Outliers in factorial experiments. Appl. Statist., 27, 111-119. 

Kang, G. and Bates, D.M. (1990). Approximate inferences in multiresponse regression analysis. 

Biometrika, 77, 321-332. 

Pringle, R.M. and Rayner, A.A. (1971). Generalized Inverse Matrices with Applications in Statistics. 
Griffin's Statistical Monographs and Courses, No. 28. Hafner Publishing Co., New York. 

Singh, G., Gupta, S. and Singh, M. (1987) Robustness of row column designs, Statistics and 

probability letters, 5, 421-424 

Sarker, S. (2002) Studies on outlier(s) in designed experiments. Unpublished Ph. D. Thesis, I.A.R.I. 

Sarker, S.,  Gupta, V. K. and Parsad, R. (2003) Robust block designs for making test treatment- 

control treatment comparisons against the presence of an outlier. J. Indian. Soc. Agril. Statist. 

56(1), 7-18. 

Sarker, S., Parsad, R. and Gupta, V.K. (2005) Outliers in block designs for diallel crosses. Metron-

International Journal of Statistics, 63(2), 177-191. 



 41 

Appendix B.1 

Table B.4.1: Detection of Outlier Using the Test-statistic Developed on the Line of Cook Statistic 

Treat Rep 

Plant Height 

at 

harvest(cm) 

DM 

accumulation 

at 90 DAS 

LAI at 75 

DAS 

No. of 

spikes/ 

sq m 

No. of 

grains/ 

spike 

Test 

weight(g) 

Grain 

yield 

(q/ha) 

Straw 

yield 

(q/ha) 

Harves

t index 

(%) 

(CD)t 

1 1 112.0 723.1 3.3 343.2 34.1 40.7 27.3 44.3 38.1 0.076812 

1 2 133.0 729.0 4.2 325.0 37.0 49.0 32.0 36.0 37.0 0.078462 

1 3 124.0 745.0 3.2 356.0 36.0 78.0 25.0 37.0 26.0 0.104318 

2 1 111.1 784.6 3.7 372.2 38.2 41.4 29.0 47.0 40.3 0.040911 

2 2 123.0 765.0 3.8 354.0 35.0 47.0 27.0 45.0 41.0 0.034252 

2 3 112.0 734.0 3.2 345.0 32.0 43.0 29.0 48.0 43.0 0.063704 

3 1 105.1 722.5 3.1 330.3 33.0 40.4 26.3 43.2 37.9 0.015557 

3 2 110.0 734.0 3.4 323.0 32.0 46.0 27.0 46.0 38.0 0.0346 

3 3 109.0 720.0 3.2 354.0 36.0 42.0 26.0 43.0 39.0 0.049034 

4 1 104.4 715.3 3.1 325.3 33.2 40.4 25.9 54.0 37.8 0.014674 

4 2 109.0 726.0 3.5 342.0 34.0 46.0 25.0 52.0 36.0 0.026203 

4 3 107.0 745.0 3.4 325.0 37.0 43.0 26.0 51.0 39.0 0.032702 

5 1 106.8 729.2 3.2 337.2 45.0 40.5 26.9 43.9 38.0 0.014317 

5 2 110.0 765.0 3.5 335.0 46.0 39.0 27.0 41.0 36.0 0.028023 

5 3 107.0 754.0 3.2 342.0 41.0 42.0 25.0 42.0 41.0 0.035353 

6 1 103.1 704.2 3.0 319.8 32.0 40.0 25.5 42.4 37.5 0.016434 

6 2 109.0 765.0 3.1 323.0 29.0 43.0 25.0 43.0 38.0 0.060864 

6 3 111.0 702.0 3.4 312.0 32.0 47.0 26.0 41.0 36.0 0.04558 

7 1 102.6 696.9 2.9 315.3 32.1 40.0 34.0 41.8 37.4 0.03537 

7 2 103.0 692.0 3.2 312.0 33.0 46.0 32.0 45.0 35.0 0.032348 

7 3 109.0 723.0 3.0 321.0 35.0 42.0 29.0 43.0 36.0 0.046583 

                … 
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8 1 105.8 718.8 3.1 331.2 33.1 40.4 26.0 43.1 37.6 0.037268 

8 2 105.0 726.0 3.2 335.0 31.0 46.0 27.0 42.0 39.0 0.021785 

8 3 106.0 765.0 3.1 345.0 36.0 48.0 26.0 45.0 41.0 0.042323 

9 1 109.0 761.9 3.5 362.5 37.0 41.0 28.7 46.4 38.2 0.030287 

9 2 101.0 765.0 3.6 365.0 36.0 41.0 28.0 43.0 37.0 0.032326 

9 3 109.0 786.0 3.4 356.0 38.0 46.0 29.0 42.0 38.0 0.018721 

10 1 107.2 757.0 3.4 357.8 36.0 40.9 27.2 45.7 38.2 0.019468 

10 2 110.0 725.0 3.5 357.0 40.0 42.0 25.0 48.0 39.0 0.062378 

10 3 105.0 754.0 3.4 376.0 35.0 41.0 25.0 45.0 34.0 0.057845 

11 1 110.7 769.5 3.6 363.0 37.5 41.2 29.6 46.9 38.7 0.049584 

11 2 105.0 754.0 3.4 387.0 38.0 43.0 25.0 43.0 36.0 0.040707 

11 3 113.0 767.0 3.4 367.0 36.0 41.0 28.0 39.0 37.0 0.029235 

12 1 106.0 744.3 3.4 353.8 36.0 40.6 28.0 45.3 38.2 0.007566 

12 2 106.0 765.0 3.3 356.0 35.0 42.0 29.0 45.0 35.0 0.036392 

12 3 109.0 723.0 3.2 354.0 32.0 43.0 24.0 47.0 41.0 0.040477 

13 1 105.0 738.9 3.3 350.5 34.9 40.6 27.7 44.9 38.2 0.047424 

13 2 109.0 734.0 3.2 356.0 33.0 43.0 26.0 51.0 34.0 0.028278 

13 3 110.0 743.0 3.2 354.0 35.0 40.0 28.0 48.0 37.0 0.012904 

14 1 107.8 755.2 3.5 358.2 36.9 41.0 29.0 46.0 38.7 0.033924 

14 2 112.0 765.0 3.4 343.0 36.0 40.0 28.0 46.0 39.0 0.024054 

14 3 113.0 734.0 3.5 323.0 31.0 41.0 25.0 42.0 41.0 0.056339 

 *4/n=0.095238 
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Table B.4.2: Multivariate Analysis of Variance/ Covariance for Simultaneous Comparison 

of Treatment Effects from Original Data, after Removing Outlier Observation Vector and 

by Defining a Covariate Corresponding to Outlier Observation Vector 

 

 

 

 

Source 

Original Data After removing the 

outlying observation 

vector 

Defining a covariate 

corresponding to 

Outlying observation 

vector 

Wilk's 

Lambda 
Prob > F 

Wilk's 

Lambda 
Prob > F 

Wilk's 

Lambda 
Prob > F 

Treatment 0.0001 < 0.0001 0.0001 < 0.0001 0.0001 < 0.0001 

Replication 0.2684 0.0556 0.2406 0.0443 0.2406 0.0443 

Covariate - - - - 0.2058 0.0002 

 

SAS code for Detecting Outlier Observation Vector from Multi-response Experiments: 

 

options ps=2000 ls=100; 

data outlier; 

input trt blk y1-y9; 

cards; 

1 1 112.0 723.1 3.3 343.2 34.1 40.7 27.3 44.3 38.1 

1 2 133.0 729.0 4.2 325.0 37.0 49.0 32.0 36.0 37.0 

1 3 124.0 745.0 3.2 356.0 36.0 78.0 25.0 37.0 26.0 

                      
14 1 107.8 755.2 3.5 358.2 36.9 41.0 29.0 46.0 38.7 

14 2 112.0 765.0 3.4 343.0 36.0 40.0 28.0 46.0 39.0 

14 3 113.0 734.0 3.5 323.0 31.0 41.0 25.0 42.0 41.0 

; 

run; 

 
proc iml; 

use outlier; 

read all into d; 

run; 

n = nrow(d); *number of observations; 

v = max(d[,1]); *number of treatments; 

b = max(d[,2]); *number of blocks; 

x1 = J(n,v,0); *x1 is del prime; 

x2 = j(n,b,0); *x2 is d prime; 

y = d[,3:ncol(d)]; 

p = ncol(y); *p is number of response variables; 

 

do i = 1 to n; 

 do j = 1 to v; 

  if d[i,1] = j then x1[i,j] = 1; 

 end; 

end; 

do i = 1 to n; 

 do j = 1 to b; 

  if d[i,2] = j then x2[i,j] = 1; 

 end; 

end; 

x21 = j(nrow(y),1,1); 
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x = x1||x2||x21; 

beta = ginv(x`*x)*x`*y; 

yv0 = j(1,1,0); 

do i = 1 to ncol(y); 

 yv0 = yv0//y[,i]; 

end; 

print yv0; 

yv = yv0[2:nrow(yv0),]; 

c0 = x1`*x1-x1`*x2*ginv(x2`*x2)*x2`*x1; 

print c0; 

q0 = (x1`-x1`*x2*ginv(x2`*x2)*x2`)*y; 

print q0; 

run; 

 

b0 = x2`*y; 

b01 = b0[,1]; 

b02 = b0[,2]; 

 

tau0 = ginv(c0)*q0; 

 

c01 = ginv(c0); 

 

trssp = q0`*c01*q0;  

 

tssp = j(ncol(y),ncol(y),0); 

 

do i = 1 to ncol(y); 

 do j = 1 to ncol(y); 

 tssp[i,j] = y[,i]`*y[,j]-(y[+,i]*y[+,j])/(nrow(y)); 

 end; 

end; 

 

Repssp=j(ncol(y),ncol(y),0); 

do i=1 to ncol(y); 

 do j=1 to ncol(y); 

  Repssp[i,j]=b0[,i]`*inv(x2`*x2)*b0[,j]-(y[+,i]*y[+,j])/(nrow(y)); 

 end; 

end; 

 

ressp = tssp - repssp - trssp; 

wl_trt = det(ressp)/det(trssp + ressp); 

wl_blk = det(ressp)/det(repssp + ressp); 

 

print trssp; 

print repssp; 

print ressp; 

sig_est = ressp/(nrow(y) - v - b + 1); 

print sig_est; 

c =  inv(sig_est) @ c0; 

q =  (inv(sig_est) @ (x1`-x1`*x2*ginv(x2`*x2)*x2`))*yv;  

tau = ginv(c)*q; 

 

/*Finding out Cook's Distance for outlier detection */ 

 

S = i(nrow(y))-x2*inv(x2`*x2)*x2`; 

u = i(nrow(y)); 
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c_d = j(1,1,0); 

 

dd = j(1,2,0); 

d = j(1,1,0); 

 

 

do i = 1 to nrow(y); 

w=inv(u[,i]`*S*u[,i]); 

f1=sqrt(w)*x1`*S*u[,i]; 

F=sqrt(w)*f1*u[,i]`*S; 

E=f1*f1`*inv(1-f1`*ginv(c0)*f1); 

M=E*ginv(c0)*F+F-E*ginv(c0)*x1`*S; 

  

C_Dt=(yv`*(inv(sig_est)@(M`*ginv(c0)*M))*yv)/(p*(v-1)); 

 c_d=c_d//c_d1; 

 dd=dd//(i||c_d1); 

 

end; 

dd1= dd[2:nrow(dd),]; 

print dd1; 

cut = 4/n; 

print the cut off point is=’ cut; 

run; 
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C) Minimally Connected Designs with Extra Observations 
 

In NARS some experiments are conducted to study the effect of soil erosion on crop yield. In 

such experiments, the soil erosion is done artificially at different levels in different experimental 

plots and their effect is seen on the yield. Artificial creation of soil erosion is quite difficult to be 

made. Moreover, this also amounts to destroying some of the upper layers of the soil from a part 

of the land. Therefore, it is always better to plan such experiments in the minimum possible 

number of experimental units.  To ensure that all pairwise treatment comparisons are possible in a 

block design, the minimum number of experimental units required is equal to one less than the 

sum of the number of blocks and treatments. A design in minimal number of experimental units 

that provides all possible pairwise treatment comparisons is called a minimally connected design. 

For such experimental situations, the minimally connected designs, minimally connected designs 

with some extra observations may be useful. The basic objection to this kind of designs with 

minimum number of observations in agricultural experimentation is that they do not provide an 

estimate of error.  Therefore, to get an estimate of error, some modifications in these designs are 

required to be made, possibly by adding some more experimental units.  

 

Keeping these problems in mind, last year  we had prepared a catalogue of block designs with n = 

v+b1+i, i=1, 2, 3 observations, where v is the number of treatments; b the block size; k is the 

block size and n is the total number of experimental units. Block contents along with lower 

bounds to A- and D-efficiencies were also given. This year we have prepared catalogues of block 

designs with n = v+b1+i, i=4, 5, 6, 7 and 8 observations. Block contents along with lower 

bounds to A- and D-efficiencies are also given. These catalogues alongwith block contents and 

lower bounds to A- and D-efficiencies are available with the author and can be obtained by 

sending an E-mail to rajender@iasri.res.in. 

 

mailto:rajender@iasri.res.in
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D) Designs for Crop Sequence Experiments 

 

In crop sequence experiments, instead of a mono crop, crop sequences comprising of two or more 

crops are grown in the respective cropping seasons. The two cropping seasons considered here 

are Kharif followed by Rabi. Generally there are two major crops grown, one in each of the 

Kharif and Rabi seasons.  Two different sets of treatments are applied; the treatments belonging 

to one set are applied to the Kharif crop and the other set of treatments are applied to the Rabi 

crop. In these experiments, the interest of the experimenter is in direct effects of treatments 

applied in Kharif and Rabi season, residual effects of Kharif treatments and the interaction 

between the residual effects of Kharif treatments and direct effects of Rabi treatments. The nature 

of the experiment and the questions to be answered from the experiment suggests that block 

designs with factorial structure of treatments may be an appropriate alternative for such 

experiments. In the class of block designs with factorial structure, extended group divisible 

(EGD) designs are very important because these designs have orthogonal factorial structure. In 

this design the experimenter can complete the randomization for both the seasons in the 

beginning because the treatments on every experimental unit would be the treatment 

combinations pertaining to both the seasons. This equivalence between EGD designs and designs 

for crop sequence experiments has encouraged the experimenters to conduct their experiments 

using EGD designs.  EGD designs are obtained as the Kronecker Product of incidence matrices of 

two or more block designs with specified parameters.  It is also seen that there is a loss of 

information on the main effects, the direct effects of Kharif and Rabi treatments and the residual 

effects of Kharif treatments, as well as the interaction of the residual effects of Kharif treatments 

and the direct effects of Rabi treatments.  Indeed it may be possible to obtain designs with desired 

efficiency of the main effects and interactions, but it is not always possible to obtain designs with 

no loss of information on all the main effects.  From experimenters’ interest, it is desirable to 

generate designs that permit estimation of the main effects with full efficiency. In view the above, 

EGD designs for three factors that permit the estimation of all main effects with no loss of 

information have been obtained using self-complementary GD designs with 10, kr and a 

catalogue of such designs along with efficiencies for main effects and interactions have been 

prepared. In all these designs, first factor is at 2 levels. The designs obtained are given in Table 

D.1. 
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Table D.1: EGD designs with r  5 and k  10 Obtained through Self Complementary GD Designs 

m1 m2 m3 b r k 001 010 011 100 101 110 111 E(100) E(010) E(001) E(110) E(101) E(011) E(111) 

4 2 2 6 3 8 0 0 3 1 2 2 1 1.000 1.000 1.000 1.000 1.000 1.000 0.667 

2 4 3 9 3 8 0 1 1 3 0 1 1 1.000 1.000 0.750 1.000 1.000 0.750 1.000 

2 4 3 6 3 6 3 1 1 3 3 1 1 1.000 0.333 1.000 1.000 1.000 1.000 1.000 

2 2 2 4 2 4 0 1 1 0 2 1 1 1.000 1.000 1.000 1.000 0.500 1.000 0.500 

2 2 2 8 4 4 0 2 2 0 4 2 2 1.000 1.000 1.000 1.000 0.500 1.000 0.500 

2 2 2 8 4 4 2 1 1 0 2 3 3 1.000 1.000 1.000 0.500 0.750 1.000 0.750 

2 2 2 10 5 4 3 1 1 0 2 4 4 1.000 1.000 1.000 0.400 0.800 1.000 0.800 

2 2 2 10 5 4 1 2 2 0 4 3 3 1.000 1.000 1.000 0.800 0.600 1.000 0.600 

2 3 2 4 2 6 0 1 1 0 2 1 1 1.000 1.000 1.000 1.000 0.667 1.000 0.667 

2 3 2 6 3 6 2 1 1 0 1 2 2 1.000 1.000 1.000 0.667 0.889 1.000 0.889 

2 3 2 8 4 6 0 2 2 0 4 2 2 1.000 1.000 1.000 1.000 0.667 1.000 0.667 

2 4 2 6 3 8 3 1 1 0 0 2 2 1.000 1.000 1.000 0.667 1.000 1.000 1.000 

2 2 4 6 3 8 1 0 2 0 2 3 1 1.000 1.000 1.000 1.000 1.000 1.000 0.667 

2 4 2 8 4 8 0 2 2 0 4 2 2 1.000 1.000 1.000 1.000 0.750 1.000 0.750 

2 4 2 10 5 8 3 2 2 0 2 3 3 1.000 1.000 1.000 0.800 0.900 1.000 0.900 

2 5 2 8 4 10 0 2 2 0 4 2 2 1.000 1.000 1.000 1.000 0.800 1.000 0.800 

2 5 2 10 5 10 4 2 2 0 1 3 3 1.000 1.000 1.000 0.800 0.960 1.000 0.960 

 

Here m1, m2, m3 are the levels of the three factors, b is the number of blocks, r is the number of replications, k is the block size, stu denotes the 

concurrences of stu
th
 associates and E(stu) denotes the efficiency of the factorial effect, for eg. If s = 1, t = 0 and u = 1 then it denotes the 

efficiency of two factor interaction between first and third factor. 
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E)  Nested Partially Balanced Incomplete Block Designs 

 

E.1  Introduction 

Nested block designs are the designs in which one system of blocks is nested within another 

system of blocks. Here the blocks with larger size are called bigger blocks and sub-blocks are 

nested within these bigger blocks. Nested block designs are useful in many situations. For 

example, consider a field experiment conducted using a block design where harvesting is done 

block-wise. The harvested samples are to be analyzed for their contents (quality indicators viz. 

protein content, etc.) in the laboratory by different technicians at same time or by a technician 

over different periods of time. The variation due to technicians or time periods may be controlled 

by another blocking system. Technicians or time periods form a system of blocks called sub-

blocks that are nested within blocks. Preece (1967) introduced nested balanced incomplete block 

(NBIB) designs and gave methods of construction of NBIB designs. Jimbo and Kuriki (1983), 

Dey et al. (1986), Saha et al. (1998) and Morgan et al. (2001) gave some systematic methods of 

construction of NBIB designs. All NBIB designs for v (number of treatments)  16, r (replication 

number)  30 are catalogued by Morgan et al. (2001). An NBIB design may not always exist or 

even if it exists may require a large number of replications, which the experimenter may not be 

able to afford. To deal with such situations, Homel and Robinson (1975) defined nested partially 

balanced incomplete block (NPBIB) designs. Banerjee and Kageyama (1993), Kageyama et al. 

(1995) and Satpati and Parsad (2004) obtained some methods of construction of NPBIB designs. 

Satpati and Parsad (2004) presented a comprehensive catalogue of NPBIB designs for 

.15,30  rv  For completeness, we define NPBIB designs. 

 

Definition E.1: An NPBIB design based on m ( 2)-class association scheme defined in v 

symbols, is an arrangement of  v symbols into  2b   sub-blocks of size  2k   nested within 1b  (= 

qb /2 , q is an integer) blocks of size 1k  (= 2qk < v) such that 

(i) every symbol occurs at most once in a block; 

(ii) every symbol appears at most r times in the design; 

(iii) if two symbols, say  and , are i
th
 associates, then they occur together in i1  blocks and 

i2  sub-blocks, the numbers i1 , i2  being independent of the particular pair of i
th 

associates  and , i = 1, 2, …, m. 

 

The numbers ,,,,,, 2121 kkrbbv i1 , i2  (i = 1, 2, …, m) are called parameters of the design. If 

i1 = 1  and i2 = 2  ;  i = 1, 2, ..., m, then an NPBIB design reduces to NBIB design.  

 

We have obtained some conditions of non-existence of NPBIB designs and two new methods of 

construction of NPBIB designs. These are described in the sequel. 

 

E.2 Non-Existence of NPBIB Designs Based on Group Divisible Association Scheme  

Consider a NPBIB design based on group divisible (GD) association scheme with parameters v = 

mn, 1b , 2b , )1(,1,,,,,,, 212221121121  mnnnnkkr  . Here symbols have their usual 

meaning.  Let there are q sub-blocks within a bigger block. Therefore, vr = 2211 kbkb  , 

qkkbb  2112 // , ),1( 1122111  krnn   ).1( 2222211  krnn   Now consider 21 = 0, 

i.e., no two treatments that are mutually 1
st
 associates occur together in a sub-block, therefore, 

among the 1
st
 associates a treatment that occur in a sub-block will occur in any of the remaining 

(q – 1) sub-blocks nested within a bigger-block. It is clear that possibility of the concurrences of 

any two mutually 1
st
 associates in bigger block is (q – 1). A treatment i that appears in r blocks 
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may have at most r(q – 1) concurrences with its 1
st
 associates. Treatment i appear with anyone of 

its 1
st
 associates in 11  bigger blocks.  The number of 1

st
 associates of treatment i is 1n , therefore, 

treatment i can appear with its 1
st
 associates in 111n  in bigger blocks. Therefore, the NPBIB 

designs with 21  = 0, can exist if 111n  ≤ r(q – 1). Hence we have the following theorem: 

 

Theorem E.2.1: A NPBIB design based on GD association scheme with parameters v = mn, 1b , 

2b , )1(,1,,0,,,,, 212221121121  mnnnnkkr  cannot be constructed if 111n  > r(q – 1). 

 

Example E.2.1: Consider a NPBIB design based on GD association scheme with m = 2, n = 4,     

v=8, 161 b , ,322 b  r = 8, ,41 k  ,22 k  ,2,0,3,4 22211211    q = 32/16 = 

2, ,31 n  42 n  is non-existent because .8)1(1243111  qrn    

 

Theorem E.2.2: If 02 121  rb , then 1b  should be a multiple of m provided nkv  1 and/or 

02 222  rb , then 2b  should be a multiple of m provided nkv  2 . Otherwise design is 

non-existent. { 02 121  rb  or 02 222  rb  implies that the corresponding 

complementary design is disconnected and for a disconnected design number of blocks has to be 

multiple of number of rows in the association scheme). 

 

E.3 Methods of Construction 

In this section, we give some methods of constructions of NPBIB designs based on 2- and 3- class 

association schemes. 
 

Method E.3.1:  This is a generalization of Method 2.1 given by Satpati and Parsad (2004). Let v 

= s
2
 symbols are defined on an Lp-association scheme. Take all possible combinations of m ( s – 

1) rows of the association scheme. Consider the treatments in m rows to form a block and the 

treatments from the same row within the block as sub-blocks. This process yields 








m

s
 blocks 

each of size ms, their being m sub-blocks each of size s nested within each block. Repeating the 

same procedure for columns, we get another set of 








m

s
blocks. Consider the treatments appearing 

in the positions of the same alphabet in one of the (p – 2) Latin squares as rows or columns. 

Repeat this process for each of the (p – 2) Latin squares. Union of all the blocks so obtained gives 

an NPBIB design based on Lp-association scheme with parameters v = s
2
, b1 = p 









m

s
, b2 = 

pm 








m

s
, r = p 













1

1

m

s
, k1 = ms, k2 = s, 11 = 













1

1

m

s
 + (p – 1) 













2

2

m

s
, 12 = p 













2

2

m

s
, 21  

= 












1

1

m

s
, 22 = 0.  

Example E.3.1: Consider v = 16 treatments defined on L3-association scheme. First associates of 

a particular treatment are the treatments appearing in the same rows, same columns and with the 

same symbols on one of the 3 (4  4) mutually orthogonal Latin squares. For example, 
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CBAD

BADC

ADCB

DCBA

16151413

1211109

8765

4321

. 

 

Following the procedure of Method E.3.1 for m = 3, we get a NPBIB design based on L3-

association scheme with the blocks 

[(1,2,3,4);  (5,6,7,8); (9,10,11,12)];               [(1,2,3,4); (5,6,7,8); (13,14,15,16)];  

[(1,2,3,4);  (9,10,11,12); (13,14,15,16)];         [(5,6,7,8); (9,10,11,12); (13,14,15,16)];   

[(1,5,9,13); (2,6,10,14); (3,7,11,15)];   [(1,5,9,13); (2,6,10,14); (4,8,12,16)];  

[(1,5,9,13); (3,7,11,15); (4,8,12,16)];  [(2,6,10,14); (3,7,11,15); (4,8,12,16)];  

[(1,8,11,14); (2,5,12,15); (3,6,9,16)];   [(1,8,11,14); (2,5,12,15); (4,7,10,13)]; 

[(1,8,11,14); (3,6,9,16); (4,7,10,13)];  [(2,5,12,15); (3,6,9,16); (4,7,10,13)].    

 

The parameters of the above design are v = s
2
 = 16, b1 = 12, b2 = 36, r = 9, k1 = 12, k2 = 4,     11 = 

7, 12 = 6, 21 = 3, 22 = 0. 
 

The designs generated by Method E.3.1 for v  30, r  15 are catalogued in the Appendix E.1. 

The designs which are marked with aestriks (*) are nested complete block partially balanced 

incomplete sub-block designs and the remaining are NPBIB designs.  

 

Method E.3.2: Let v = mn symbols are defined on GD association scheme on an array of m n . 

Consider the symbols come from the same row are 1
st
 associate to each other and are 2

nd
 

associates otherwise. Taking the rows as sub-blocks and putting a set of x disjoint sub-blocks to 

form a block of size nx. Repeat this procedure and form 








x

m
blocks from the complete set of such 

sub-blocks. Now correspondence of each symbol to v different treatments, we get an NPBIB 

design with the following parameters: 

v = mn, b1 = 








x

m
, b2 = x 









x

m
, k1 = nx, k2 = n, r = 













1

1

x

m
, 11 = r, 12 = 













2

2

x

m
, 21 = r, 22 = 0. 

Example E.3.2: Let v = 12 treatments are arranged in m = 3 rows and n = 4 columns as given 

below: 

1284

1173

1062

951

 

Consider that the GD association scheme is defined on these 12 treatments. Then applying the 

procedure of Method E.3.2 by taking x = 3, we get a NPBIB design based on rectangular 

association scheme with blocks as 

[(1, 5, 9); (2, 6, 10); (3, 7, 11)];         [(1, 5, 9);  (2, 6,10); (4, 8, 12)];  

[(1, 5, 9); (3, 7, 11); (4, 8, 12)];          [(2, 6,10); (3,7,11);  (4, 8, 12)]. 

The parameters of the above NPBIB design are v = 12, b1 = 4, b2 = 12, r = 3, k1 = 9, k2 = 3, 11 = 

3, 12 = 2, 21 = 3, 22 = 0. 
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The design generated by this procedure is disconnected in the sub-blocks, therefore, they are not 

catalogued. 

 

Method E.3.3: This method is also a generalization of Method 2.3 of Satpati and Parsad (2004). 

Consider a rectangular association scheme with v = mn. The mn treatments are arranged in a 

rectangular array of m rows and n columns. Let the treatment symbols, in the same row, are 1
st
 

associates, treatment symbols in the same column are 2
nd

 associates and the remaining are 3
rd

 

associates. If m = n + 1, then an NPBIB design based on rectangular association scheme may be 

constructed using the following procedure. 

Step 1:  Take all the treatments appearing in the i
th
 row of the association scheme into one block, 

say B1i. 

Step 2:  Write n-sub-blocks each of size n = (m – 1) by taking treatment symbols in the columns 

(except the treatment symbols in i
th
 row) as sub-blocks. Number these sub-blocks as B21i, B22i, ..., 

B2ni. 

Step 3:  Take all possible combination of  (2    n) blocks from such n-blocks to form 










n
-

blocks like the following manner 

               niiniiiii 2)1(21222211 ;;;;;;;;; BBBBBBB    

Step 4:  Repeat Steps 1 to 3 for all the rows i = 1, 2, ..., m. 

This procedure yields a NPBIB design with rectangular association scheme with parameters as  

v = mn, b1 = m 










n
, b2 = m )1(  











n
, r = 








 n

n


,

1

1















n
 k1 = n(+1), k2 = n,                   

11 = n 












2

2



n
 + 











n
, 12 = m ,

1

1















n
 13 = )1(  ,

1

1















n
 21 = 











n
, 22 = (n – 1) ,

1

1















n
 

23 = 0. 

Example E.3.3: Let v = 12 treatments are arranged in m = 4 rows and n = 3 columns as given 

below 

1284

1173

1062

951

 

Consider that the rectangular association scheme is defined on these 12 treatments. Then applying 

the procedure of Method E.3.3 by taking  = 2, we get a NPBIB design based on rectangular 

association scheme with blocks as 

[(1, 5, 9); (2,3,4); (6,7,8)]; [(1,5,9); (2,3,4); (10,11,12)]; [(1,5,9); (6,7,8); (10,11,12)]; 

[(2,6,10); (1,3,4); (5,7,8)]; [(2,6,10); (1,3,4); (9,11,12)];  [(2,6,10); (5,7,8); (9,11,12)]; 

[(3,7,11); (1,2,4); (5,6,8)]; [(3,7,11); (1,2,4); (9,10,12)];  [(3,7,11); (5,6,8); (9,10,12)]; 

[(4,8,12); (1,2,3); (5,6,7)]; [(4,8,12); (1,2,3); (9,10,11)];   [(4,8,12); (5,6,7); (9,10,11)]. 

The parameters of the above NPBIB design are v = 12, b1 = 12, b2 = 36, r = 9, k1 = 9, k2 = 3, 11 = 

6, 12 = 8, 13 = 6, 21 = 3, 22 = 4, 23 = 0. 

 

The designs generated by this procedure are catalogued in the Appendix E.1 for .15,30  rv  



 

 53 

References 

Banerjee, S. and Kageyama, S. (1990). Existence of -resolvable nested balanced incomplete 

block designs. Utilitas Mathematica, 38, 237-243. 

Banerjee, S. and Kageyama, S. (1993). Methods of constructing nested partially balanced 

incomplete block designs. Utilitas Mathematica, 43, 3-6.  

Dey, A., Das, U.S. and Banerjee, A.K. (1986). On nested balanced incomplete block designs. 

Calcutta Statist. Assoc. Bull., 35 , 161-167. 

Gupta,V.K. (1993). Optimal nested block designs. Jour. Ind. Soc. Agri. Stat., 45(2), 187-194. 

Homel, R.J. and Robinson, J. (1975). Nested partially balanced incomplete block designs. 

Sankhy a , B37, 201-210. 

Jimbo, M. and Kuriki, S. (1983). Constructions of nested designs. Ars Comb., 16, 275-285. 

Kageyama, S., Philip, J. and Banerjee, S. (1995). Some constructions of nested BIB and 2-

associate PBIB designs under restricted dualization. Bull. Fac. Sch. Educ. Hiroshima Univ., 

Part-, 17, 33-39. 

Morgan, J.P., Preece, D.A. and Rees, D.H. (2001). Nested balanced incomplete block designs. 

Discrete Mathematics, 231, 351-389. 

Parsad, R., Gupta, V.K. and Srivastava, R. (1999). Universally optimal block designs for diallel 

crosses. Statistics and Applications, 1, 35-52.   

Philip, J., Banerjee, S. and Kageyama, S. (1997). Construction of nested t-associate class PBIB 

designs under restricted dualization. Utilitas Mathematica, 51, 27-32. 

Preece, D.A.(1967).Nested balanced incomplete block designs. Biometrika, 54, 479-486. 

Saha, G.M., Dey, A. and Midha, C.K. (1998). Construction of nested incomplete block designs. 

Calcutta Statist. Assoc. Bull., 48, 195-205.  

Satpati, S.K. and Parsad, R. (2004). Constructions and cataloguing of the Nested partially 

balanced incomplete block designs. Ars Combinatoria, 73, 299-309. 

 



 

 54 

Appendix E.1 

 

Table E.3.1: Latin-squares Association Scheme Designs Obtained by Method E.3.1 

Sl. 

No. v b1 b2 r k1 k2 11 12 21 22 

 

m 

Association 

Scheme 

*1 9 2 6 2 9 3 2 2 1 0 3 L2 

*2 9 3 9 3 9 3 3 3 1 0 3 L3 

*3 16 2 8 2 16 4 2 2 1 0 4 L2 

*4 16 2 8 2 16 4 2 2 1 0 4 L2 

*5 16 3 12 3 16 4 3 3 1 0 4 L3 

*6 16 4 16 4 16 4 4 4 1 0 4 L4 

7 16 8 24 6 12 4 5 4 3 0 3 L2 

8 16 12 36 9 12 4 7 6 3 0 3 L3 

9 16 16 48 12 12 4 9 8 3 0 3 L4 

*10 25 3 15 3 25 5 3 3 1 0 5 L3 

*11 25 4 20 4 25 5 4 4 1 0 5 L4 

*12 25 5 25 5 25 5 5 5 1 0 5 L5 

13 25 10 40 8 20 5 7 6 4 0 4 L5 

14 25 20 60 12 15 5 9 6 6 0 3 L2 

15 25 20 60 12 15 5 9 6 6 0 3 L2 

16 25 15 60 12 20 5 10 9 4 0 4 L3 

* denotes that the design is  nested complete block partially balanced incomplete sub-block designs. 

 

Table E.3.2: Designs of Rectangular Association scheme Obtained by Method E.3.3 

Sl. 

No. v b1 b2 r k1 k2 11 12 13 21 22 23 

1 6 3 9 3 6 2 3 3 3 1 1 0 

2 12 12 36 9 9 3 6 8 6 3 4 0 

3 12 4 16 4 12 3 4 4 4 1 2 0 

4 20 5 25 5 20 4 5 5 5 1 3 0 

5 30 6 36 6 30 5 6 6 6 1 4 0 
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F) Nested Block Designs under Correlated Error Structure 

 
F.1  Introduction 

Section E deals with the situations where errors within sub-blocks and between sub-blocks within 

blocks are independent. There, however, do occur experimental situations in which the 

assumption of independence of observations gets violated; observations within sub-blocks or 

between sub-blocks within blocks or both may be correlated. The observations between any two 

blocks are generally assumed as independent. To make the exposition clear about the correlation 

structure for nested block designs: consider an experimental situation, where v treatments are to 

be compared via n experimental units, arranged in a nested block set up involving b1 blocks; there 

are q mutually exclusive sub-blocks nested within each block, so that 21 bqb   is the total number 

of sub-blocks. Let k1 be the bigger-block size and qkk /12   be the sub-block size so that total 

number of observations is n = 11kb = 22kb . Let the observations be arranged in such a way that the 

first k2 observations come from first sub-block nested within first bigger block, second k2 

observations come from second sub-block nested within the first bigger block, likewise last k2 

observations come from the last sub-block of the last bigger block. All the observations are 

arranged according to the positions of occurrences within a sub-block. The correlation structure 

that may exist among the observations is of Kronecker product type and is of the following 

form
21 kqb ΩΦI  , the first part denotes that observations from any two different bigger 

blocks are independent, second part denotes the correlation structure of the observations between 

sub-blocks nested within a bigger block and the last part represents the correlation structure 

among the observations within a sub-block. Further, it is assumed that the correlation structure 

along with correlation values is same for all the sub-blocks and blocks. qΦ  and 
2kΩ  may be any 

one of the nearest neighbour (NN), autoregressive of order 1 (AR(1)), equi-correlated or no 

correlation structures. When qq IΦ   and 
22 kk IΩ   then it reduces to the set up with 

uncorrelated error structure. Let )( jtly   be the observation pertaining to the t
th
 position within l

th
 

sub-block nested within the j
th
 block, then the different types of correlation structures can be 

summarized as follows 

 

The correlation between )( jtly  and )( jlty   is of the following form: 
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  (F.1.1) 

where 11   and 12   and 1  is the correlation between observations coming from the 

experimental units of two neighbouring sub-blocks and 2 is the correlation between two 

experimental units that are neighbour within a sub-block ignoring other types of correlations and 

Corr(.) denotes correlation coefficient. Different choices of functions f2(g) and f1(h) defined give 

rise to different types of Kronecker Product type correlation structure 
21 kqb ΩΦI  . If  

 0and

1for

1for1

0for0

)( 11 
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h

h
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then the correlation structure between the sub-blocks nested within a bigger-block is of NN type. 

If f1(h) = h,  h = 0, 1, 2, …, q – 1 and 01  , then this correlation structure is of AR(1) type. 

The correlation structure is called equi-correlated structure if  



 

 56 

 









0for1

0for0
)(1

h

h
hf            and 01   

 

Defining the identical function f2(g) as f1(h), we get similar correlation structure between the 

observations pertaining to the same sub-block. If  

0and

1for

1for1

0for0

)( 21 
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then the correlation structure between the observations within a sub-block is of NN type. If f2(g) = 

g,  g = 1, 2, …, k2 – 1 and 02  , then this correlation structure is of AR(1) type. The 

correlation structure is called equi-correlated structure if  
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)(1

g

g
gf         and .02   

 

The generalized Kronecker product type of correlation structure defined above can produce 

NNNN, AR(1)AR(1), NNAR(1), AR(1)NN, IqAR(1), IqNN, AR(1)
2kI , NN 


2kI  and  

12 kkq III  .  

 

For these experimental situations with correlated observations, it is useful to have efficient nested 

block designs that provide protection against the effects of correlated observations or potentially 

unknown trends, which are highly correlated with positions of experimental units within blocks. 

In the example described earlier, nested block designs are used for laboratory analysis whereas 

the field experiment is conducted using a block design and harvested samples are to be analyzed 

for their contents in the laboratory by different technicians at the same time. The variation due to 

technicians or time periods is controlled through forming sub-blocks within blocks. In this 

experiment, experimenter also records yield in the field besides the characters based on laboratory 

analysis. The experimenter may want to compare the treatments based on their yield performance 

and as well as on the character like protein contents recorded in the laboratory based on the 

analysis of harvested samples. The yield is obtained from the field itself and has not been 

subjected to the laboratory analysis. Therefore, the analysis of experimental data has to be carried 

out as per design adopted for field experimentation i.e. a block design. Therefore, we have to 

choose a design which is efficient both under nested block design setup and block design setup 

ignoring sub-block classification. 

 

The available methods can be used for obtaining efficient nested block designs for independent 

observations. However, using these methods of construction one may not be able to obtain 

designs for all parametric combinations. It seems that very little attention has been paid to obtain 

efficient nested block designs when observations are correlated. In the present investigation, 

therefore, a computer-aided search has been made of efficient nested block designs for given 

parametric combinations both under uncorrelated/ correlated error structure. The algorithm for 

obtaining efficient nested block designs for dependent and independent observations has been 

developed and presented in Section F.3. Implementation of the algorithm and the designs 

obtained through the computer aided search have been summarized in Section F.4. Although the 

algorithm is general in nature and can give designs for any of the correlation structures defined 

earlier, in the present investigation, the main emphasis on the computer aided search has been 

made for IqNN correlation structure for nested block design and block designs ignoring sub-
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block classification. An attempt has also been made for computer aided search of efficient nested 

block designs with IqNN correlation structure that are simultaneously efficient for zero 

correlation structure in block designs ignoring sub-block classification. Some designs have also 

been obtained for NNNN correlation structure at both stages. Efficient nested block designs 

have also been obtained for uncorrelated error structures. Resolvable block designs are also a type 

of nested complete block designs wherein the resolvable group (bigger blocks) are the complete 

replicates and the blocks of the resolvable groups are small or sub-blocks. The computer 

algorithm developed in the present investigation can also be used for generating resolvable block 

designs by defining the bigger block size equal to the number of treatments. Resolvable balanced 

incomplete block (BIB) designs are also described in Section F.4. We begin with the usual model 

of nested block designs and estimates of the linear function of treatment effects when 

observations are correlated. 

 

F.2 Model for Nested Block Designs 

The usual model for nested block designs in matrix notations is 

eηDβDΔ1  211 ny        (F.2.1) 

 

where y is n-component vector of the observations,  is the general mean, n1  is a n component 

vector of 1’s,  =  (1, 2, …, v ) is v-component vector of treatment effects,  is the 

observations versus treatments incidence matrix, 1 = (1, 2, …, 
1b ) is b1-component vector of 

block effects and 1D  = 
11

1kb I  is the observations versus blocks incidence matrix, and 

  )()2(1)1()1(2)1(1 1
,,,,,, bqq  η  is b2-component vector of nested-block effects, 2D  = 

22
1kb I  is the observations versus sub-blocks incidence matrix and e is the vector of random 

error associated with the observation vector y. Assuming all the parameters in (F.2.1) have fixed 

effects and errors are distributed as multivariate normal with mean 0 and   

Cov(e) = 
2   .2

21
ΣΩΦI  kqb       (F.2.2) 

 

For obtaining the best linear unbiased estimate of estimable linear functions of treatment effects, 

the usual coefficient matrix C is given by   
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where X1=  Δ   and X2=  12 D1D  n =  
212121 kqbkqbkqb 11I1I11II   
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Therefore, 

   ΔΩ11ΩΩΦIΔC  
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)(B S

12 bGLS
    (F.2.4) 

 

Taking,   111
S

11 S   Ω11ΩΩΦΓ  Γ , for Kronecker product correlation structure 

 ΔΓIΔC  12 )(B bGLS
        (F.2.5) 
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We know that )(trace)(trace BAAB   and as nIΔΔ   (for a binary block design) 

 )(trace)(trace
12 )(B ΓIIC  bnGLS  )(trace1 Γb     (F.2.6) 

 

which is independent of design matrix or treatments versus observations matrix Δ . Therefore, 

)(trace )(B2 GLSC   is constant for a choice of v, b1, k1, q, .and ΩΦ   

 

It is well known that the problem of obtaining A- [D-] optimal nested block designs for making 

all possible pairwise treatment comparisons is equivalent to the problem of obtaining an A- [D-] 

optimal design for a complete set of orthonormal treatment contrasts ;τP  

./,1 vvv 11IPPIPP    Let D =  
21

,,,,, 2121 kqbkkbbv ΩΦID   be the class of connected 

nested block designs in which v treatments are arranged in b1 blocks of size k1 each such that 

there are b2 = b1q sub-blocks of size k2 = k1/q each and correlation between the observation is of 

the form .
21 kqb ΩΦI  For inferring on complete set of orthonormal treatment contrasts, a 

design d  D is said to be A-optimal if it minimizes the sum of reciprocals of the non-zero 

eigenvalues of the )(B2 GLSdC -matrix over D and is said to be D-optimal if it minimizes the 

inverse of the product of the nonzero eigenvalues of )(B2 GLSdC -matrix over D. For a nested 

block design d  D, let 121 ,,, v   be the non-zero eigenvalues of )(B2 GLSdC . Now define 
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The A-efficiency  )(A de  and D-efficiency  )(D de  of any design d over D is defined as 
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where, *
Ad  and *

Dd  are the A-optimal and D-optimal designs over D, respectively.  

 

It is not always possible to obtain a design that is A-optimal or D-optimal over D. Therefore, it is 

required to see the performance of a given design with respect to an hypothetical optimal design. 

To deal with such situations, Cheng and Wu (1981) and Rathore et al. (2006) provided 

expressions of lower bounds to A-efficiency and D-efficiency of a given binary proper block 

design for zero correlation structure for making all possible pairwise treatment comparisons 

which is equivalent to obtaining lower bounds to A-efficiency and D-efficiency of a connected 

block design for a specific correlation structure for inferring on a complete set of orthonormalized 

treatment contrasts. On similar lines, we have obtained lower bounds to A- and D-efficiencies for 

D.  The lower bounds to )(A d  and )(D d  are used instead of )( *
AA d  and )( *

DD d  in the 

computation of )(A de  and )(D de .  

 

The lower bounds to A- and D-efficiencies of a nested block design d compared to the 

hypothetical optimal design belong to the class that contains design d are 

A-efficiency = 
))(()(trace
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2A1

2

db

v





Γ
      (F.2.7) 

and 
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D-efficiency =
)1/(1

D1 ))(()(trace

)1(
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      (F.2.8) 

where,   111
S

11 S   Ω11ΩΩΦΓ . 

 

As mentioned in Section F.1, we are searching for efficient nested block designs that are efficient 

for bigger block set up ignoring the sub-block classification as well. Hence, we define the lower 

bounds to A- and D-efficiencies of the block designs ignoring sub-block classification. We know 

that ignoring the sub-block classifications, a nested block design becomes a block design 

),,,( 11 ΩΦD  kbvd for correlated observations if the correlation structure is same in the 

bigger-block design as in the nested-block design set up. We know that the coefficient matrix of 

reduced normal equations for estimating linear function of treatment effects for a block design 

),,,( Ωkbvd  is ΔΩIΔC  )( *
b , where .

1

11
1*

kk

kk

1Ω1

Ω11Ω
ΩΩ









  Then C-matrix of bigger 
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Now the lower bounds to A-efficiency and D-efficiency of the bigger-block design ignoring sub-

block classification are 

A-efficiency = 
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and 

 

D-efficiency = 
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For zero correlation structure, the coefficient matrix of the reduced normal equations of bigger-

block design ignoring the sub-block classifications can be obtained by replacing 
1kI in the place 

of 
2kq ΩΦ   and is same as the C-matrix of block design set-up under zero correlation structure. 

Δ11IIΔC 
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Now we describe the cases of different choices of Φ , Ω  and on their effect on C-matrix: 
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Case I: If ,IΦ   then    ,)(S 111
S

1
)(B 12

ΔΩ11ΩΩIΔC  
bGLS , this is the C-matrix for 

correlated observations for sub-block classification ignoring the block classification. 

 

Case II: If ,IΦ   and ,IΩ   then    HHRΔ11IIΔC   1
2

1
2)(B )()(

22
kkbGLS   = 

)(B2 OLSC , we can get this expression by solving (F.2.4), where, R is the diagonal matrix of 

replications and H is the treatments versus nested-blocks incidence matrix i.e. usual C-matrix for 

independent correlation structure.  

Case III: If ,IΦ  and k2 = 2, then .
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This is proportional to the C-matrix for independent observations for nested block design. 

 

Remark F.2.1: If we ignore nested-block structure and consider only bigger-block structure, then 

the problem reduces as block design for dependent observations. Further assuming the correlation 

structure in the bigger-block part of the design same as that of the nested-block design, we can 

compute the efficiencies of the bigger-block design by usual way of obtaining lower bounds to A- 

and D-efficiencies for the block design d D  using (F.2.10) and (F.2.11) respectively. In the 

present investigation, we consider the correlation structure in the bigger block design is same as 

that of the nested-block designs. This is useful for the situations, where it is known in advance 

that a particular sub-set of treatments will be allocated to a given sub-block and even the position 

of sub-blocks nested within bigger-blocks are known in advance. In some situations, however, the 

design is conducted using the bigger block structures where there may be zero correlation 

structure. While sub-dividing the treatments allocated to a given bigger block to sub-blocks, there 

may be correlation within sub-blocks and/ or sub-blocks within blocks. Therefore, we have 

obtained some designs for these experimental situations as well. 

 

In the following section, we describe the computer-aided search of efficient nested block designs 

for correlated observations. The algorithm developed is general in nature and can produce the 

design for different types of correlation structures. This has been illustrated by generating designs 

for different combinations of correlation structure. The designs obtained are presented in 

Appendix F.1. In the present investigation, however, main emphasis has been given on obtaining 

block designs when the observations between sub-blocks within a bigger block are uncorrelated 

and the experimental units within a sub-block are correlated, i.e., for Case I. Some designs also 

have been obtained for NNNN, NNAR(1), AR(1)NN and AR(1)AR(1) correlation 

structure at both systems of blocks. Nested block designs have also been obtained for zero 

correlation structure as well. An attempt has also been made for computer aided search of 

efficient nested block designs with IqNN correlation structure that are simultaneously efficient 

for zero correlation structure in bigger blocks ignoring the sub-block classification. Lower bounds 

to A- and D-efficiencies of the generated nested block designs are obtained using (F.2.7) and 

(F.2.8) respectively and Remark F.2.1 and the lower bounds to A- and D-efficiencies of the 

bigger block designs are obtained using (F.2.10) and (F.2.11) respectively.  

 

Martin and Eccleston (1991) derived that qΩ  is positive definite under NN correlation structure 

if     1
22 1Π/cos2


 k . This bound depends upon k2. Pooladsaz and Martin (2005) 
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investigated for more restrictive nearest neighbour correlation structure .50.02   In present 

investigation we consider 50.02   for NN correlation structure between the observations 

within sub-blocks and taking .01   The computer aided search of designs was made starting 

from 0.50 to 0.50 by taking the step of the correlation as 0.05, and the efficiencies of the designs 

are recorded. We computed the percent coefficient of variation (CV) of A-efficiencies and D-

efficiencies for each of the four ranges: (i) 0.50 ≤ ρ2 < 0.00  (ii) 0.00 < ρ2 ≤ 0.50  (iii) 0.20 ≤ ρ2 ≤ 

0.20 and (iv) 0.50 ≤ ρ2 ≤ 0.50 (except zero).  

F.3 Computer Algorithm to Construct Efficient Nested Block Designs 
In this section we describe the algorithm to construct efficient nested incomplete block designs. 

The algorithm is dynamic and general in nature and is capable of producing efficient designs for 

dependent observations as well as independent observations. Jones and Eccleston (1980), Zergaw 

(1989), Martin and Eccleston (1992), Rathore et al. (2006) gave exchange and interchange 

algorithm to develop computer-aided search for efficient block designs. We make use of 

exchange and interchange procedures after random start in the bigger blocks taking care of 

binarity and connectedness in the sub-blocks. For application of exchange and interchange steps, 

we have redefined the weakest observations, the strongest observations and the strongest 

treatment interchange with respect to the nested block design setup. The random start and 

exchange and interchange steps are described in the sequel. The algorithm starts with a random 

selection of initial design. 

 

Step 1: Random Start 

Initialize a b1k1 array with all elements as zero. Now generate n = b1k1 random numbers of 

modulo v one by one and put into this array. If any random number gets repeated in k1 runs, it is 

rejected. In other words, choose one set of k1 distinct random numbers. Put the random numbers 

into one row of that array. Likewise, search for b1 such distinct set of random numbers to put into 

b1k1 array. This yields the random initial design for the bigger blocks. Sub-blocks are created by 

making q groups from each set of k1 elements in a particular run by making q sets of k2 elements, 

randomly. From each set of k1 elements first k2 random elements form first sub-block, next k2 

random elements form next sub-block, likewise remaining k2 elements are used to form last sub-

block in the last block. This random start is selected for further processing if the design is 

connected in nested block set up and also in bigger blocks classification ignoring the sub-blocks. 

Otherwise, repeat the process. 

 

Once the connected design is obtained through random start the process enters into exchange 

step. 

Step 2: Exchange Steps 

Exchange refers to replacement of the weakest observation from the design by the strongest 

observation. The strongest observation is chosen so that design remains binary with respect to 

sub-blocks and hence blocks. Exchange step is implemented for improving the criterion 

considered by changing replication vector of the treatments. Here we are interested in obtaining 

an efficient nested block design which is efficient for block classification as well. Therefore, 

through the exchange of treatments, it may sometimes happen that the exchange improves the 

criterion value for nested block design set up and efficiency for block design ignoring sub-block 

classification may decrease or vice versa. Therefore, we redefine the concept of weakest and 

strongest observations. Let 
)(2 )(B onGLSC  be the coefficient matrix of reduced normal equations 

for estimating the treatment effects using GLS for nested-block design with original n 

observations, 
12 )(B nGLSC is same for n – 1 observations after 1 observation is deleted, and 
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)(2 )(B nnGLSC  is the new C-matrix of nested-block design when a new observation is added to the 

design with deleted observation. 
)(1 )(B onGLSC  is the coefficient matrix of reduced normal 

equations for estimating the treatment effects using GLS for bigger-block design ignoring the 

sub-block classification with original n observations, 
11 )(B nGLSC  is same for n – 1 observations 

after the observation has been deleted and 
)(1 )(B nnGLSC  is new C-matrix for bigger block design 

when the new observation is added to the design in place of deleted observation. In exchange step 

we first find the weakest observation from the design. 

 

Weakest Observation: An observation is said to be weakest if trace )(
11 )(B PPC 




nGLS
 – 

trace )(
)(1 )(B PPC 

onGLS  is minimum subject to trace )(
12 )(B PPC 




nGLS
  is minimum for all 

possible 
11 )(B 



nGLSC  and 
12 )(B 



nGLS
C ; in other words trace )(

11 )(B PPC 




nGLS
 and trace 

)(
12 )(B PPC 




nGLS
 is jointly minimum. 

 

We delete the weakest observation from the design. This weakest observation is to be replaced by 

the strongest observation.  

 

Strongest Observation: An observation for which trace )(
11 )(B PPC 




nGLS
– 

trace )(
)(1 )(B PPC 

nnGLS  is maximum subject to trace )(
)(2 )(B PPC 

nnGLS ≤ trace )(
)(2 )(B PPC 

onGLS   

for all possible 
)(1 )(B nnGLS


C  is called the strongest observation. 

 

The strongest observation is added at the position of the deleted treatment. The algorithm 

continues with the exchange steps till the weakest and the strongest observation pertains to the 

same treatment. After this there is no further scope of improvement on continuing the exchange 

steps, therefore, the exchange step gets terminated. 

Step 3: Interchange Steps 

After the termination of exchange step, the interchange process is implemented. Interchange 

means, the mutually swapping of the positions between a pair of observations to improve the 

criterion under consideration. The positions of treatments are swapped by putting a restriction that 

the design remains binary with respect to sub-blocks and blocks. While trying to improve the 

criterion for any of the blocking systems by interchanging the position of two treatments may 

adversely affect the criterion in other blocking system. Therefore, care should be taken. If the 

improved design is one that minimizes the criterion value in one blocking system, then change in 

the criterion value in the other system must be non-positive. To deal with this situation, we define 

the strongest treatment interchange as follows: 

 

Let 
IGLS )(B1

C  be the new C-matrix after swapping the positions between two observations in the 

bigger block and 
IGLS )(B2

C  be the same for the nested-block design set up. 

 

The positions of two treatments are swapped which favours the criterion most i.e. for which  

trace )( )(B1
PPC 

OGLS
–trace )( )(B1

PPC 

IGLS
 is maximum subject to trace )(

)(B 2
PPC 

OGLS
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trace )( )(B 2
PPC 

IGLS
 is called Strongest treatment interchange for bigger-blocks and the 

swapping of the positions of two observations which favours the nested-block criterion most i.e. 

for which the trace )(
)(B 2

PPC 

OGLS
– trace )( )(B 2

PPC 

IGLS
 is maximum subject to 

trace )( )(B1
PPC 

OGLS
   trace )( )(B1

PPC 

IGLS
is called Strongest treatment interchange for sub-

block structure. 

 

The strongest treatment interchange procedure is implemented for the bigger-blocks first i.e., 

swapping the positions between/ within bigger blocks. Once the procedure of strongest treatment 

interchange is implemented for bigger blocks gets terminated we follow the process of the 

strongest treatment interchange for sub-blocks. We go on swapping the positions of treatments 

between and within sub-blocks of a given bigger block by the strongest treatment interchange for 

the sub-block structure procedure. This process terminates when there is no further improvement 

in the nested-block criterion. With this interchange step gets terminated. 

Step 4: Computation of Lower Bounds to A- and D-Efficiency 

After termination of the interchange steps, we compute the lower bounds to A- and D-efficiencies 

for the nested block designs using (F.2.7) and (F.2.8), respectively and for bigger-block structure 

ignoring the sub-block classification using (F.2.10) and (F.2.11).  

 

If the efficiency of the design is not satisfactory, then the whole procedure is repeated by 

selecting a new starting design. This procedure is continued till a design with satisfactory 

efficiency is obtained. In the present investigation, all the designs are obtained with maximum of 

3 to 4 random starts. 

F.4 Implementation of Algorithm and Generated Designs 

The algorithm developed was used for computer aided search of efficient nested block designs for 

dependent/independent observations. For this, the algorithm was converted into an efficient 

VC++ code. In this code user is asked to enter the parameters as v, b1, k1, q, and ρ1 and ρ2 for a 

specified correlation structure, in the front end. These are sufficient as we incorporate the equal 

numbers of sub-blocks to be nested within the bigger-blocks and the given correlation structure is 

dependent on ρ1 and ρ2. The algorithm can be implemented for any type of Kronecker product 

correlation structure; however, the rigorous search of designs has been attempted for the 

correlation structure IqNN i.e. the observations have a nearest neighbour correlation structure 

in sub-blocks and observations between sub-blocks within blocks and between blocks are 

independent. Some designs have also been generated for the general correlation structures and are 

presented in Appendix F.3. Within the parametric restrictions v (number of treatments) ≤ 10, n 

(total number of experimental units) ≤ 100, k1 (bigger block size) <  v, b1 (number of blocks) = 

1kn ,  k2 (sub-block size) is a factor of  k1 and b2 (number of sub-blocks) = )/( 211 kkb , for 

IqNN correlation structure, the generated designs have the frequency distribution as given in 

Table F.1. 
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Table F.1: Summary of generated Nested block designs. 

Nested-block design A-

efficiency 

Bigger-block design A-

efficiency 

Designs 

0.95-0.98 

(639) 

0.95-0.98 

0.98-0.99 

Above 0.99 

229 

270 

140 

0.98-0.99 

(1074) 

0.95-0.98 

0.98-0.99 

Above 0.99 

139 

296 

639 

Above 0.99 

(1182) 

0.95-0.98 

0.98-0.99 

Above 0.99 

153 

208 

821 

 

From the designs summarized in Table F.1, 38 designs are A-optimal in both blocking systems, 

96 designs are optimal in nested block set-up and not in bigger blocks and 4 designs are optimal 

in bigger-block set-up and not in the nested-block set up for NN correlation structure in sub-

blocks.  

 

The design from the algorithm is generated by using a particular value of correlation coefficient 

2  in IqNN correlation structure. The value of correlation coefficient may not be known 

exactly. A design which is efficient for given values of 2  may not be efficient for other values 

of 2 . We have to study the behaviour of the designs that are efficient for a particular value 

of 2 , for any other value of 2  in IqNN correlation structure. A design is said to be robust for 

a specific correlation structure if the percent coefficient of variation (CV) of efficiencies for 

different correlation values is less than 1% for both the blocking systems. However, only those 

designs whose lower bound to the A-efficiencies is at least 0.95 and have minimum CV of A- and 

D-efficiencies for other value of 2  for both systems of block designs are catalogued.  

 

We could obtain 91 such designs for IqNN correlation structure. Out of these 91 designs, 25 

designs are equireplicated and 66 designs are un-equireplicated. In most of the unequireplicated 

designs, replications of the treatments differ at most by one, except in two cases where these 

differ by 2. All equireplicated designs are catalogued in Table F.2 of Appendix F.1 and all 

unequireplicated designs are catalogued in Table F.3 of Appendix F.1. The tables contain the 

parameters of the designs v, b1, b2, k1, k2, r or the average replication number ( r ), 2 , AE0 

denotes the A-efficiency in the bigger-block and DE0 denotes the D-efficiency in the bigger-block 

assuming zero correlation structure for the bigger blocks ignoring sub-block classification, AE1 

denotes the A-efficiency in the bigger-block and DE1 denotes the D-efficiency in the bigger-block 

assuming IqNN for the bigger blocks ignoring sub-block classification, AE2 denotes the A-

efficiency in the nested-block, DE2 denotes the D-efficiency for the nested-block design for 

IqNN correlation structure, CAN1 denotes CVs of A-efficiencies in bigger-block design for 

negative 2 (0.50 ≤ 2  < 0)
 
, CAP1 denotes CVs of A-efficiencies in bigger-block design for 

positive 2  (0 < 2  ≤ 0.50), CAL1 denotes CVs of A-efficiencies in bigger-block design for low 

2 (0.20 ≤ 2  ≤ 0.20), CA1 denotes CVs of A-efficiencies in bigger-block design for whole 

range of 2  except 0, and CDN1, CDP1, CDL1, CD1 denotes the same description but for D-

efficiencies in bigger-block design, and CAN2, CAP2, CAL2, CA2, CDN2, CDP2, CDL2, and CD2 

have the same description as earlier for nested-block design set up. 
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With IqNN correlation structure, the C-matrix of nested block design is same as that of a 

design considering sub-blocks as blocks ignoring bigger block classification with NN correlation 

structure. In this case when k2 (sub-block size) is 2, then the C-matrix becomes proportional to  

C-matrix of an uncorrelated error structure (Case III, Section F.2). Therefore, for sub-block size 

2, the efficiencies of all the correlation values will be same. However, when we compute 

efficiencies for bigger blocks ignoring sub-block classification with this correlation structure, 

then the efficiencies may change for different values of correlation. Therefore, such designs have 

also been included in Tables F.2 and F.3, respectively. 

 

An attempt has also been made for computer aided search of efficient nested block designs with 

IqNN correlation structure that are simultaneously efficient for zero correlation structure in 

bigger blocks ignoring the sub-block classification. The designs obtained for this are catalogued 

in Table F.4 of Appendix F.2.  

 

To illustrate that the algorithm is general in nature, we have obtained some designs for NNNN, 

NNAR(1), AR(1)NN and AR(1)AR(1) correlation structure as well. These are presented 

in Tables 5, 6, 7 and 8 of Appendix 3. Efficiencies of these designs are more than 0.96 in both 

systems of blocks. 

Nested Block Designs for Uncorrelated Error Structure 

If we take ,IΦ   and IΩ   in the algorithm described in Section F.3, we get efficient nested 

block designs for independent observations. In the present investigation, this has been used for 

generation of nested incomplete block designs for independent observations. Within the 

parametric range tried, there are 13 existent NBIB designs. NBIB design with parameters v = 10, 

b1 = 15, b2 = 30, r = 9, k1 = 6, k2 = 3 is non-existent within the restricted parametric range. 

Applying the algorithm, we got 7 out of these 13 NBIB designs. These are presented in Table F.9 

in Appendix F.4. For the rest 6 existent NBIB designs and 1 non-existent NBIB design, we got 

designs which are BIB designs in bigger-blocks and have efficiencies greater than 0.98 for the 

other block structure. These designs are given in Table F.10 of Appendix F.4. While emphasis 

was laid on sub-blocks, 4 designs are obtained which are BIB designs in sub-blocks ignoring 

block classification and have efficiencies more than 0.99 for block designs obtained by ignoring 

the sub-block classification. These designs are given in Table F.11 of Appendix F.4.   

Resolvable Block Designs 

Resolvable block designs are also a kind of nested block designs with set of blocks forming a 

complete replicate as bigger block and blocks of the resolvable block designs as sub-blocks. The 

algorithm has also been used for obtaining efficient resolvable BIB designs. Of course it can 

usefully be employed for generation of efficient resolvable block designs by taking k1 = v. All 

resolvable BIB designs for 10v and 100n  have been obtained using the algorithm.  

 

All the nested block designs generated are available with the authors and can be available by 

writing a mail to rajender@iasri.res.in. 
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Appendix F.1 

Table F.2: Catalogue of Robust and Efficient Equireplicated Nested Block Designs (all the designs are generated for ρ = – 0.50) 

SN v b1 b2 
K

1 
k2 r AE0 DE0 AE1 DE1 AE2 DE2 CAN1 CAP1 CAL1 CA1 CDN1 CDP1 CDL1 CD1 CAN2 CAP2 CAL2 CA2 CDN2 CDP2 CDL2 CD2 

1 5 5 10 4 2 4 1.000 1.000 1.000 1.000 1.000 1.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 6 9 18 4 2 6 0.995 0.998 0.972 0.986 0.980 0.990 0.73 0.11 0.20 0.69 0.35 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 6 12 24 4 2 8 0.996 0.998 0.969 0.985 0.987 0.993 0.84 0.00 0.24 0.82 0.40 0.00 0.12 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 6 15 30 4 2 10 0.997 0.999 0.992 0.996 1.000 1.000 0.18 0.00 0.00 0.24 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 7 7 14 6 3 6 1.000 1.000 0.960 0.981 0.996 0.998 1.28 1.55 0.17 1.43 0.61 0.77 0.00 0.70 0.00 1.35 0.36 1.32 0.00 0.66 0.18 0.65 

6 7 7 21 6 2 6 1.000 1.000 1.000 1.000 1.000 1.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

7 8 8 24 6 2 6 0.999 0.999 0.987 0.993 0.980 0.990 0.38 0.17 0.00 0.33 0.19 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8 8 12 24 4 2 6 0.988 0.994 0.958 0.980 0.980 0.990 0.97 0.00 0.31 0.99 0.45 0.00 0.15 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

9 8 14 28 4 2 7 0.990 0.995 0.966 0.983 1.000 1.000 0.72 0.22 0.39 0.96 0.35 0.11 0.19 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 8 16 32 4 2 8 0.995 0.998 0.983 0.992 0.988 0.994 0.45 0.00 0.14 0.45 0.22 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11 8 18 36 4 2 9 0.996 0.998 0.980 0.990 0.984 0.992 0.52 0.00 0.13 0.48 0.26 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

12 8 20 40 4 2 10 0.996 0.998 0.980 0.990 0.986 0.993 0.50 0.00 0.13 0.47 0.25 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

13 8 22 44 4 2 11 0.992 0.996 0.978 0.989 0.990 0.995 0.69 0.00 0.25 0.74 0.33 0.00 0.12 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

14 8 16 32 6 3 12 0.999 1.000 0.972 0.985 0.999 0.999 0.86 0.71 0.14 0.81 0.44 0.35 0.00 0.41 0.00 0.55 0.15 0.55 0.00 0.26 0.00 0.27 

15 8 16 48 6 2 12 0.999 1.000 0.995 0.997 0.992 0.996 0.15 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

16 8 24 48 4 2 12 0.996 0.998 0.977 0.989 0.992 0.996 0.58 0.00 0.20 0.61 0.28 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

17 9 9 27 6 2 6 0.998 0.999 0.983 0.992 0.970 0.984 0.49 0.30 0.00 0.41 0.24 0.16 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

18 9 12 36 6 2 8 0.998 0.999 0.995 0.998 1.000 1.000 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

19 9 18 36 4 2 8 0.992 0.996 0.974 0.987 1.000 1.000 0.56 0.17 0.30 0.75 0.27 0.00 0.15 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 9 15 30 6 3 10 0.998 0.999 0.967 0.983 0.998 0.999 1.01 1.54 0.16 1.32 0.50 0.78 0.00 0.67 0.00 1.25 0.33 1.22 0.00 0.63 0.17 0.62 

21 9 15 45 6 2 10 0.998 0.999 0.990 0.995 0.986 0.993 0.25 0.00 0.00 0.22 0.12 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

22 10 10 20 6 3 6 0.994 0.997 0.893 0.949 0.992 0.996 3.29 2.65 0.36 3.00 1.55 1.40 0.18 1.48 0.13 2.22 0.65 2.23 0.00 1.16 0.33 1.16 

23 10 10 30 6 2 6 0.995 0.998 0.960 0.980 0.954 0.976 1.11 0.34 0.24 0.98 0.54 0.18 0.12 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

24 10 10 40 8 2 8 1.000 1.000 0.995 0.997 0.988 0.994 0.15 0.11 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25 10 10 30 9 3 9 1.000 1.000 0.967 0.984 0.995 0.998 1.06 1.60 0.16 1.37 0.52 0.80 0.00 0.69 0.00 1.33 0.36 1.32 0.00 0.66 0.18 0.66 

26 10 15 45 6 2 9 0.997 0.998 0.991 0.996 1.000 1.000 0.17 0.00 0.11 0.25 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
*Subscript 0 is for the bigger block design for zero correlation structure, and Subscript 1 is for bigger-block designs, and Subscript 2 is for NIB designs with. Iq NN correlation structure; AE is the A-

efficiency, DE is for D-efficiency, CAN  denotes CV of AE for (-)ve correlations, CAP denotes CV of AE for (+)ve correlations, CAL denotes CV of AE for low-correlations [-0.20, 0.20], CA 

denotes CV of AE, CDN  denotes CV of DE for (-)ve correlations, CDP denotes CV of DE for (+)ve correlations, CDL denotes CV of DE for low-correlations [-0.20, 0.20], CD denotes CV of 

DE. 
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Table F.3: Catalogue of Robust and Efficient Unequireplicated Nested Block Designs (all the designs are generated for ρ = – 0.50) 
SN v b1 b2 k1 k

2 

r  AE0 DE0 
AE1 DE1 AE2 DE2 CAN1 CAP1 CAL1 CA1 CDN1 CDP1 CDL1 CD1 CAN2 CAP2 CAL2 CA2 CDN2 CDP2 CDL2 CD2 

1 5 6 12 4 2 4.8 0.990 0.995 0.980 0.990 0.972 0.986 0.30 0.18 0.00 0.25 0.16 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 5 7 14 4 2 5.6 0.989 0.995 0.977 0.988 0.969 0.984 0.40 0.22 0.00 0.34 0.21 0.11 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 6 8 16 4 2 5.3 0.985 0.992 0.974 0.987 0.987 0.993 0.35 0.00 0.17 0.43 0.17 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 6 10 20 4 2 6.7 0.989 0.994 0.956 0.979 0.975 0.987 1.03 0.00 0.30 1.02 0.49 0.00 0.15 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 6 11 22 4 2 7.3 0.994 0.997 0.985 0.992 0.978 0.989 0.28 0.17 0.00 0.23 0.14 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

6 6 13 26 4 2 8.7 0.994 0.997 0.989 0.994 0.986 0.993 0.17 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

7 6 14 28 4 2 9.3 0.995 0.998 0.992 0.996 0.992 0.996 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8 6 16 32 4 2 10.7 0.995 0.998 0.988 0.994 0.994 0.997 0.21 0.00 0.00 0.24 0.11 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

9 6 17 34 4 2 11.3 0.997 0.998 0.994 0.997 0.992 0.996 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 7 6 18 6 2 5.1 0.995 0.997 0.991 0.996 0.972 0.986 0.37 0.23 0.00 0.32 0.18 0.11 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11 7 8 24 6 2 6.9 0.997 0.998 0.992 0.996 0.984 0.992 0.16 0.11 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

12 7 9 18 4 2 5.1 0.989 0.994 0.961 0.981 0.972 0.986 0.88 0.13 0.22 0.82 0.43 0.00 0.11 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

13 7 9 18 6 3 7.7 0.996 0.998 0.953 0.975 0.996 0.998 1.40 2.05 0.24 1.79 0.72 1.04 0.12 0.91 0.23 2.11 0.69 2.22 0.11 1.05 0.34 1.11 

14 7 9 27 6 2 7.7 0.996 0.998 0.989 0.994 0.979 0.990 0.23 0.16 0.00 0.20 0.12 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

15 7 10 20 6 3 8.6 0.996 0.998 0.951 0.975 0.998 0.999 1.46 2.21 0.25 1.92 0.73 1.07 0.12 0.94 0.25 2.54 0.76 2.60 0.13 1.21 0.37 1.26 

16 7 10 30 6 2 8.6 0.996 0.998 0.989 0.994 0.981 0.990 0.23 0.15 0.00 0.20 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

17 7 11 22 4 2 6.3 0.997 0.998 0.970 0.985 0.991 0.995 0.46 0.14 0.25 0.61 0.21 0.00 0.12 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

18 7 11 33 6 2 9.4 0.997 0.998 0.990 0.995 0.985 0.992 0.21 0.12 0.00 0.17 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

19 8 7 21 6 2 5.3 0.991 0.995 0.958 0.981 0.955 0.977 1.06 0.34 0.19 0.91 0.47 0.17 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 8 9 18 4 2 4.5 0.967 0.984 0.900 0.952 0.927 0.962 2.22 0.37 0.45 1.96 1.02 0.20 0.21 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

21 8 9 27 6 2 6.8 0.994 0.997 0.989 0.995 0.981 0.991 0.16 0.12 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

22 8 10 30 6 2 7.5 0.994 0.997 0.990 0.995 0.990 0.995 0.11 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

23 8 11 33 6 2 8.3 0.996 0.998 0.991 0.995 0.985 0.992 0.17 0.10 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

24 8 12 36 6 2 9.0 0.996 0.998 0.989 0.995 0.982 0.991 0.20 0.13 0.00 0.17 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25 8 13 39 6 2 9.8 0.997 0.998 0.989 0.995 0.983 0.992 0.24 0.12 0.00 0.20 0.12 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

26 8 14 28 6 3 10.5 0.997 0.998 0.958 0.978 0.999 0.999 1.26 1.47 0.18 1.38 0.63 0.75 0.00 0.70 0.19 1.54 0.53 1.66 0.00 0.79 0.27 0.85 

27 8 14 42 6 2 10.5 0.997 0.998 0.990 0.995 0.986 0.993 0.21 0.11 0.00 0.18 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

28 8 15 30 4 2 7.5 0.984 0.992 0.957 0.979 0.990 0.995 0.86 0.18 0.40 1.05 0.41 0.00 0.19 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

29 8 15 30 6 3 11.3 0.997 0.999 0.970 0.985 0.999 0.999 0.85 1.06 0.11 0.97 0.43 0.53 0.00 0.48 0.00 1.14 0.35 1.17 0.00 0.57 0.17 0.58 

30 8 15 45 6 2 11.3 0.997 0.999 0.989 0.995 0.988 0.994 0.25 0.00 0.00 0.22 0.12 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

31 8 17 34 4 2 8.5 0.986 0.993 0.953 0.977 0.983 0.991 1.04 0.10 0.41 1.16 0.50 0.00 0.20 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

32 8 19 38 4 2 9.5 0.988 0.994 0.954 0.977 0.983 0.991 1.07 0.00 0.39 1.14 0.52 0.00 0.19 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

33 8 21 42 4 2 10.5 0.992 0.996 0.972 0.986 0.985 0.992 0.63 0.00 0.20 0.64 0.31 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

34 8 23 46 4 2 11.5 0.992 0.996 0.975 0.988 0.988 0.994 0.63 0.00 0.22 0.67 0.31 0.00 0.11 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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SN v b1 b2 k

1 

k2 r  AE0 DE0 AE1 DE1 AE2 DE2 CAN1 CAP1 CAL1 CA1 CDN1 CDP1 CDL1 CD1 CAN2 CAP2 CAL2 CA2 CDN2 CDP2 CDL2 CD2 

35 9 8 24 6 2 5.3 0.985 0.992 0.959 0.980 0.945 0.971 0.86 0.40 0.12 0.72 0.41 0.21 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

36 9 10 30 6 2 6.7 0.990 0.995 0.976 0.989 0.972 0.986 0.45 0.16 0.00 0.40 0.21 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

37 9 11 22 6 3 7.3 0.992 0.996 0.944 0.972 0.994 0.997 1.55 1.96 0.21 1.78 0.76 0.98 0.11 0.89 0.11 2.24 0.61 2.20 0.00 1.11 0.30 1.10 

38 9 11 33 6 2 7.3 0.985 0.993 0.997 0.992 0.985 0.993 0.26 0.00 0.00 0.25 0.13 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

39 9 11 44 8 2 9.8 0.993 0.998 0.999 0.997 0.985 0.993 0.15 0.11 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

40 9 12 48 8 2 10.7 0.998 0.999 0.993 0.996 0.985 0.992 0.16 0.12 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

41 9 13 39 6 2 8.7 0.994 0.997 0.987 0.993 0.991 0.995 0.24 0.00 0.00 0.26 0.12 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

42 9 14 28 6 3 9.3 0.996 0.998 0.960 0.979 0.998 0.999 1.17 1.88 0.20 1.61 0.60 0.95 0.10 0.81 0.18 1.90 0.60 1.98 0.00 0.96 0.30 1.01 

43 9 14 42 6 2 9.3 0.996 0.998 0.989 0.994 0.987 0.993 0.23 0.00 0.00 0.21 0.12 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

44 9 15 30 4 2 6.7 0.985 0.993 0.971 0.985 0.972 0.986 0.47 0.12 0.10 0.42 0.24 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

45 9 16 32 4 2 7.1 0.986 0.993 0.971 0.985 0.984 0.992 0.70 0.00 0.28 0.79 0.35 0.00 0.14 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

46 9 16 32 6 3 10.7 0.995 0.998 0.954 0.977 0.998 0.999 1.34 1.93 0.22 1.70 0.67 0.95 0.11 0.84 0.14 1.94 0.55 1.95 0.00 0.95 0.28 0.97 

47 9 16 48 6 2 10.7 0.996 0.998 0.992 0.996 0.985 0.992 0.14 0.11 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

48 9 17 34 4 2 7.6 0.985 0.992 0.963 0.982 0.988 0.994 0.67 0.13 0.31 0.81 0.31 0.00 0.15 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

49 9 19 38 4 2 8.4 0.989 0.995 0.975 0.988 0.992 0.996 0.43 0.10 0.21 0.55 0.21 0.00 0.10 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

50 9 20 40 4 2 8.9 0.990 0.995 0.97 0.986 0.990 0.995 0.59 0.00 0.26 0.70 0.29 0.00 0.13 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

51 9 21 42 4 2 9.3 0.991 0.995 0.967 0.983 0.987 0.993 0.75 0.00 0.28 0.82 0.37 0.00 0.14 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

52 9 22 44 4 2 9.8 0.991 0.995 0.975 0.988 0.985 0.993 0.49 0.00 0.17 0.51 0.24 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

53 9 23 46 4 2 10.2 0.991 0.996 0.968 0.984 0.985 0.992 0.72 0.00 0.26 0.77 0.36 0.00 0.13 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

54 9 24 48 4 2 10.7 0.990 0.995 0.96 0.981 0.985 0.992 0.93 0.00 0.33 0.99 0.44 0.00 0.16 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

55 9 25 50 4 2 11.1 0.995 0.997 0.976 0.988 0.986 0.993 0.60 0.00 0.18 0.59 0.29 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

56 10 8 32 8 2 6.4 0.993 0.996 0.975 0.988 0.958 0.978 0.58 0.34 0.00 0.49 0.27 0.17 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

57 10 9 36 8 2 7.2 0.996 0.998 0.988 0.994 0.973 0.986 0.28 0.22 0.00 0.25 0.14 0.11 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

58 10 9 27 9 3 8.1 0.999 0.999 0.966 0.983 0.995 0.998 1.06 1.78 0.18 1.49 0.52 0.89 0.00 0.75 0.10 1.58 0.45 1.58 0.00 0.80 0.23 0.81 

59 10 11 33 6 2 6.6 0.989 0.995 0.975 0.988 0.962 0.980 0.55 0.26 0.00 0.46 0.26 0.14 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

60 10 11 44 8 2 8.8 0.997 0.998 0.993 0.997 0.991 0.995 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

61 10 11 33 9 3 9.9 0.999 0.999 0.963 0.982 0.996 0.998 1.15 1.82 0.18 1.55 0.56 0.89 0.00 0.76 0.14 1.70 0.49 1.72 0.00 0.81 0.24 0.83 

62 10 12 36 6 2 7.2 0.991 0.996 0.979 0.989 0.974 0.987 0.40 0.15 0.00 0.35 0.20 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

63 10 12 48 8 2 9.6 0.997 0.998 0.995 0.998 0.993 0.996 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

64 10 13 39 6 2 7.8 0.993 0.997 0.983 0.992 0.982 0.991 0.32 0.00 0.00 0.29 0.15 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

65 10 14 42 6 2 8.4 0.994 0.997 0.988 0.994 0.989 0.995 0.21 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

66 10 16 32 6 3 9.6 0.994 0.997 0.959 0.979 0.998 0.999 1.15 1.47 0.17 1.33 0.59 0.75 0.00 0.68 0.16 1.68 0.54 1.76 0.00 0.85 0.27 0.89 

*Subscript 0 is for the bigger block design for zero correlation structure, and Subscript 1 is for bigger-block designs, and Subscript 2 is for NIB designs with. Iq   NN correlation structure; AE is the 

A-efficiency, DE is for D-efficiency, CAN  denotes CV of AE for (-)ve correlations, CAP denotes CV of AE for (+)ve correlations, CAL denotes CV of AE for low-correlations [-0.20, 0.20], CA 

denotes CV of AE, CDN  denotes CV of DE for (-)ve correlations, CDP denotes CV of DE for (+)ve correlations, CDL denotes CV of DE for low-correlations [-0.20, 0.20], CD denotes CV of 

DE. 
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Appendix F.2 

 

Table F.4: Catalogue of Robust and Equireplicated Efficient Nested Block Designs for Correlation 

Structure of type IqNN for Sub-Blocks and Zero Correlation Structure for the Bigger-Block (all 

the designs are generated for ρ = – 0.50) 

 SN v b1 b2 k1 k2 r AE0 DE0 AE2 DE2 CAN2 CAP2 CAL2 CA2 CDN2 CDP2 CDL2 CD2 

1 7 7 14 6 3 6 0.990 0.995 0.986 0.993 0.14 3.31 0.86 3.20 0.00 1.67 0.44 1.63 

2 7 9 18 6 3 7.8 0.996 0.998 0.995 0.997 0.23 1.77 0.63 1.93 0.12 0.91 0.32 0.99 

3 8 14 28 6 3 10.5 0.997 0.998 0.996 0.998 0.13 1.44 0.43 1.47 0.00 0.71 0.22 0.74 

4 8 15 30 6 3 11.2 0.998 0.999 0.997 0.999 0.00 1.23 0.36 1.24 0.00 0.62 0.18 0.63 

5 8 16 32 6 3 12.0 0.998 0.999 0.998 0.999 0.12 1.48 0.45 1.52 0.00 0.75 0.23 0.77 

6 9 11 22 6 3 7.3 0.995 0.997 0.992 0.996 0.19 2.19 0.66 2.24 0.00 1.07 0.33 1.11 

7 9 14 28 6 3 9.3 0.997 0.998 0.994 0.997 0.20 1.84 0.60 1.94 0.00 0.93 0.30 0.98 

8 9 15 30 6 3 10.0 0.997 0.998 0.996 0.998 0.17 2.26 0.64 2.27 0.00 1.10 0.32 1.12 

9 10 9 27 9 3 8.1 0.999 0.999 0.990 0.995 0.12 1.96 0.55 1.96 0.00 0.97 0.28 0.98 

10 10 10 20 6 3 6 0.997 0.998 0.985 0.993 0.00 2.26 0.57 2.17 0.00 1.12 0.28 1.09 

 

Appendix F.3 

 

Table F.5: Designs for NN between Sub-Blocks and NN within Sub-Blocks 

SN v b1 b2 k1 k2 r    AE1 DE1 AE2 DE2 

1 7 7 14 6 3 6 0.25 0.25 0.9627 0.9817 0.9978 0.9989 

 [(6,0,2);(1,4,5)];  [(0,5,6);(3,2,4)];  [(5,0,2);(3,1,4)];  [(6,5,1);(2,4,3)];  [(2,3,0);(1,4,6)]; 

 [(1,3,5);(2,6,0)];  [(3,6,4);(5,1,0)]. 

2 8 8 16 6 3 6 0.25 0.25 0.9645 0.9832 0.9987 0.9994 

 [(3,2,4);(0,1,7)];  [(2,7,6);(4,0,5)];  [(1,6,2);(5,3,0)]; [(2,1,3);(0,6,7)];  [(4,6,2);(1,0,5)]; 

 [(4,5,7);(6,3,1)];  [(5,4,0);(6,3,7)];  [(5,7,2);(1,4,3)]. 

3 9 9 18 8 4 8 0.50 0.50 0.9841 0.9920 0.9981 0.9940 

 [(5,8,2,4);(3,6,7,1)]; [(4,5,1,8);(3,0,2,6)]; [(8,4,0,2);(5,3,7,6)]; 

 [(6,4,3,2);(5,1,0,7)]; [(0,6,8,4);(3,1,7,2)]; [(6,1,4,7);(5,8,0,3)]; 

 [(3,1,0,4);(8,7,5,2)];  [(6,0,5,4);(3,8,2,7)];  [(2,5,7,4);(1,6,3,8)]. 

4 10 15 30 6 3 9 0.50 0.50 0.9755 0.9883 0.9955 0.9977 

[(7,9,2);(6,4,1)]; [(8,2,4);(0,9,3)]; [(8,1,5);(9,6,7)]; 

[(4,3,6);(8,2,5)];  [(4,9,1);(7,3,5)]; [(5,8,9);(0,2,4)]; 

[(3,7,9);(1,6,5)]; [(3,9,6);(0,1,4)]; [(4,0,3);(5,9,8)]; 

 [(0,2,3);(5,7,4)];  [(1,7,8);(6,2,5)]; [(7,0,4);(8,6,2)];  

 [(6,0,1);(4,8,3)];  [(8,5,2);(0,7,1)];  [(8,6,5);(1,3,0)]. 
*Subscript 1 is for bigger-block designs, and Subscript 2 is for nested block designs. 
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Table F.6: Designs for NN between Sub-Blocks and AR(1) within Sub-Blocks 

SN v b1 b2 k1 k2 r    AE1 DE1 AE2 DE2 

1 7 7 14 6 3 6 0.25 0.25 0.9835 0.9916 0.9877 0.9833 

[(4,3,6);(0,5,2)];  [(0,2,4);(1,5,6)]; [(6,5,4);(0,3,1)];      [(6,1,2);(0,5,4)];  

 [(1,3,0);(2,6,4)];  [(4,5,1);(3,2,0)];  [(2,3,4);(0,6,1)]. 

2 8 8 16 6 3 6 0.25 0.25 0.9640 0.9825 0.9946 0.9973 

 [(0,5,7);(2,6,4)]; [(5,2,7);(1,3,0)]; [(6,7,2);(0,3,1)]       [(4,2,3);(0,1,5)];  

 [(0,6,3);(7,1,4)];  [(5,4,0);(3,6,1)];  [(5,7,1);(2,3,4)];      [(4,5,0);(7,6,2)]. 

3 9 9 18 8 4 8 0.50 0.50 0.9924 0.9962 0.9957 0.9978 

              [(3,1,5,8);(7,4,0,2)]; [(4,6,0,2);(5,1,3,7)]; [(8,5,3,0);(2,6,7,1)];       [(0,8,7,1);(5,6,4,3)]; 

              [(3,5,7,2);(6,4,8,1)]; [(4,2,1,6);(8,3,0,7)];           [(0,4,5,2);(7,1,8,6)];       [(8,3,4,2);(0,6,7,5)]; 

              [(3,2,5,1);(4,8,6,0)]. 

4 10 15 30 6 3 9 0.50 0.50 0.9925 0.9962 0.9950 0.9975 

[(3,9,5);(7,6,1)]; [(7,8,4);(2,3,9)]; [(7,1,9);(5,4,3)]; [(5,9,4);(1,2,3)]; [(2,9,8);(4,0,6)]; 

[(5,6,2);(7,0,8)];  [(4,1,6);(3,0,2)];   [(0,1,3);(7,9,6)]; [(3,8,2);(6,5,0)]; [(6,5,3);(4,2,1)]; 

[(2,5,1);(8,4,9)];   [(8,5,7);(6,2,4)];  [(8,9,0);(1,7,4)];  [(6,7,3);(8,0,5)]; [(7,8,1);(2,0,3)].  

 

Table F.7: Designs for AR(1) between Sub-Blocks and AR(1) within Sub-Blocks 

SN v b1 b2 k1 k2 r    AE1 DE1 AE2 DE2 

1 7 7 14 6 3 6 0.25 0.25 0.9828 0.9914 0.9828 0.9864 

[(2,5,0);(4,6,3)];  [(3,5,1);(4,0,6)]; [(6,5,2);(3,1,0)];     [(2,3,1);(4,5,6)]; 

[(3,5,0);(2,4,1)];  [(6,2,1);(4,0,3)];  [(3,2,6);(4,1,0)].   

2 8 8 16 6 3 6 0.25 0.25 0.9696 0.9852 0.9940 0.9970 

 [(3,4,5);(0,2,7)]; [(3,2,5);(7,0,1)]; [(3,7,2);(6,4,1)]; [(6,2,5);(1,7,0)];  [(1,4,2);(0,5,6)]; 

 [(6,7,1);(0,4,3)];  [(3,1,5);(0,4,6)];         

[(7,6,1);(5,3,2)]. 

3 9 9 18 8 4 8 0.50 0.50 0.9827 0.9915 0.9926 0.9963 

[(4,5,8,3);(6,0,7,1)]; [(5,6,3,7);(1,2,0,4)]; [(6,8,7,3);(2,5,1,4)];  

[(5,2,0,6);(4,8,1,3)]; [(3,4,8,1);(2,7,0,6)]; [(6,7,5,8);(1,0,3,4)];  

[(0,2,4,1);(5,7,6,8)];  [(4,7,5,6);(0,3,2,1)];  [(1,0,4,5);(3,8,2,6)]. 

4 10 15 30 6 3 9 0.50 0.50 0.9901 0.9951 0.9948 0.9974 

[(4,8,1);(7,2,6)]; [(1,3,0);(9,7,8)]; [(4,2,0);(3,8,5)]; [(5,9,7);(4,3,6)]; [(1,2,9);(4,8,6)]; 

[(7,1,9);(0,3,5)]; [(2,9,4);(3,8,6)];   [(0,8,4);(2,5,1)]; [(7,4,0);(1,5,6)]; [(8,1,2);(9,6,3)]; 

[(5,3,7);(0,9,6)];   [(5,6,2);(7,8,0)];  [(5,9,0);(7,3,1)]; [(2,6,4);(5,0,1)];  [(7,2,1);(0,4,9)]. 

 

Table F.8: Designs for AR(1) between Sub-Blocks and NN within Sub-Blocks 

SN v b1 b2 k1 k2 r    AE1 DE1 AE2 DE2 

1 7 7 14 6 3 6 0.25 0.25 0.9861 0.9880 0.9941 0.9971 

[(2,0,3);(4,6,5)];  [(2,1,0);(3,4,5)];  [(2,6,4);(5,1,0)];       [(0,3,5);(4,1,6)];  

[(5,1,6);(4,2,3)];  [(3,4,2);(6,0,5)];  [(5,1,3);(0,2,6)]. 

2 8 8 16 6 3 6 0.25 0.25 0.9769 0.9883 0.9814 0.9903 

[(7,5,1);(4,0,2)]; [(2,6,4);(7,3,1)]; [(2,0,7);(4,6,1)];       [(2,6,1);(7,5,4)];  

[(5,6,7);(3,0,1)]; [(6,3,5);(7,0,1)]; [(2,4,3);(5,0,1)];       [(4,3,7);(5,2,1)]. 

3 9 9 18 8 4 8 0.50 0.50 0.9845 0.9924 0.9873 0.9937 

[(0,7,3,8);(2,5,1,6)]; [(7,6,5,0);(8,4,2,1)]; [(8,6,4,7);(1,0,5,3)];  

[(1,4,3,6);(5,8,0,7)]; [(7,2,0,3);(8,1,5,6)]; [(2,4,0,6);(3,7,1,8)]; 

[(6,2,5,4);(3,8,7,1)];  [(7,1,6,5);(0,3,2,8)];  [(8,3,4,1);(7,2,0,6)]. 

4 10 15 30 6 3 9 0.50 0.50 0.9773 0.9889 0.9948 0.9974 

[(0,1,9);(6,7,5)];  [(1,7,8);(4,9,0)];  [(5,4,6);(1,7,0)]; [(2,7,0);(3,8,1)]; [(0,3,6);(2,8,1)]; 

[(6,9,8);(4,3,2)];   [(4,9,5);(0,8,6)];   [(4,8,1);(2,6,3)]; [(0,3,1);(2,7,9)]; [(4,5,6);(2,3,7)];  

[(3,5,4);(1,2,9)];   [(9,5,1);(2,8,6)];   [(2,5,6);(9,0,4)]; [(0,7,4);(8,5,2)]; [(0,4,1);(6,3,9)] 
*Subscript 1 is for bigger-block designs, and Subscript 2 is for nested block designs. 
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Appendix F.4 

Table F.9: NBIB Designs Generated from the Computer Algorithm for v ≤ 10, b1 ≤ 33 and k1 

<min(10,v) 
SN v b1 b2 k1 k2 r Block Diagram 

1 5 5 10 4 2 4 [(4,0);(3,1)]; [(0,3);(1,2)]; [(4,2);(0,1)];[(2,3);(1,4)]; [(2,0);(3,4)]. 

2 6 15 30 4 2 10 [(0,3);(5,4)]; [(2,4);(5,0)]; [(5,4);(2,3)]; [(4,3);(1,0)]; [(4,2);(5,1)]; [(2,5);(0,3)]; 

[(4,3);(0,2)]; [(0,4);(1,5)]; [(1,3);(0,5)]; [(2,5);(1,0)]; [(2,1);(5,3)]; [(3,5);(1,4)]; 

[(2,3);(1,4)]; [(4,0);(2,1)]; [(2,0);(1,3)]. 

3 7 7 14 6 3 6 [(6,3,4);(2,1,0)]; [(3,1,5);(6,2,0)]; [(3,1,2);(0,4,5)]; [(5,1,6);(4,3,2)]; [(2,6,5);(1,4,0)]; 

[(6,4,1);(3,5,0)]; [(4,5,2);(0,6,3)]. 

4 7 7 21 6 2 6 [(3,1);(0,6);(2,4)]; [(3,5);(2,0);(4,6)]; [(3,0);(5,6);(1,4)]; [(0,1);(4,3);(2,5)]; 

[(4,5);(1,2);(6,3)]; [(0,4);(5,1);(2,6)]; [(2,3);(1,6);(5,0)]. 

5 7 21 42 4 2 12 [(1,3);(2,4)]; [(3,2);(5,6)]; [(5,1);(4,6)]; [(1,0);(2,5)]; [(4,1);(2,0)]; [(4,5);(6,0)]; 

[(5,1);(0,4)]; [(1,4);(3,5)]; [(4,5);(0,3)]; [(0,2);(4,6)]; [(2,1);(0,3)]; [(2,6);(3,4)]; 

[(1,6);(3,4)]; [(4,2);(3,5)]; [(3,6);(0,5)]; [(2,3);(5,0)]; [(6,2);(4,0)]; [(3,1);(0,6)]; 
[(1,0);(3,6)]; [(5,6);(2,1)]; [(2,5);(6,1)]. 

6 9 9 36 8 2 8 [(5,4);(3,8);(6,1);(2,7)]; [(4,0);(5,7);(1,2);(6,8)]; [(5,6);(7,1);(8,0);(2,3)]; 

[(5,3);(8,7);(6,0);(4,1)]; [(2,5);(4,6);(3,1);(7,0)]; [(3,6);(8,2);(7,4);(5,0)]; 

[(1,0);(2,4);(8,5);(3,7)]; [(6,2);(0,3);(8,4);(1,5)]; [(3,4);(0,2);(8,1);(7,6)]. 

7 9 12 36 6 2 8 [(1,0);(4,5);(2,6)]; [(6,4);(3,1);(2,7)]; [(4,3);(6,5);(0,7)]; [(3,5);(6,8);(2,4)]; 

[(7,5);(8,4);(0,2)]; [(4,1);(7,3);(5,8)]; [(8,0);(3,6);(5,1)]; [(0,6);(4,7);(1,8)]; 

[(7,1);(3,2);(5,0)]; [(6,7);(8,2);(3,0)]; [(7,8);(2,5);(6,1)]; [(0,4);(8,3);(1,2)]. 

 

 

Table F.10: Nested Block Designs Generated that are BIB Designs in Bigger-blocks and Their A-

Efficiencies (AE) and D-Efficiencies (DE) in Sub-blocks 

SN v b1 b2 k1 k2 r AE DE Block Diagram 

1 8 14 28 4 2 7 0.9813 0.9908 [(3,7);(2,1)]; [(5,4);(7,0)]; [(5,3);(4,2)]; [(4,0);(3,6)]; [(2,6);(7,4)]; 

[(1,4);(2,0)][(5,3);(6,7)]; [(4,3);(7,1)]; [(1,0);(7,5)]; [(5,0);(2,3)]; 

[(2,5);(1,6)]; [(5,1);(6,4)];[(0,6);(2,7)]; [(1,6);(0,3)]. 

2 9 9 18 8 4 8 0.9961 0.9980 [(1,0,7,3);(4,5,8,2)]; [(0,8,7,3);(5,4,1,6)]; [(3,5,0,4);(1,6,2,7)]; 

[(1,8,3,6);(0,2,7,4)]; [(5,3,6,7);(0,2,1,8)]; [(3,2,5,1);(6,7,4,8)]; 

[(6,8,0,5);(7,3,4,2)]; [(1,4,3,8);(6,0,5,2)]; [(7,8,5,2);(0,4,1,6)]. 

3 9 12 24 6 3 8 0.9953 0.9977 [(2,5,4);(3,1,6)]; [(7,6,3);(4,1,8)]; [(0,2,7);(3,5,1)]; [(2,8,3);(4,7,5)]; 

[(3,0,4);(1,8,2)]; [(7,1,0);(4,6,2)]; [(1,7,2);(5,8,6)]; [(8,0,5);(6,2,4)]; 

[(6,5,0);(3,4,7)]; [(0,4,8);(7,1,5)]; [(8,7,6);(0,3,2)]; [(8,3,5);(1,0,6)]. 

4 9 18 36 4 2 8 0.9811 0.9906 [(3,0);(5,1)]; [(0,6);(7,3)]; [(8,1);(7,0)]; [(4,6);(5,8)]; [(2,6);(0,8)]; 

[(7,4);(6,3)]; [(2,4);(0,1)]; [(1,3);(4,8)]; [(7,6);(1,2)]; [(6,8);(1,3)]; 

[(5,3);(2,7)]; [(2,5);(3,8)]; [(7,8);(5,0)]; [(4,0);(6,5)]; [(7,1);(4,5)]; 

[(2,5);(1,6)]; [(0,2);(4,3)]; [(2,8);(7,4)]. 

5 10 10 30 9 3 9 0.9967 0.9983 [(1,7,3);(5,4,0);(8,6,2)]; [(3,2,7);(0,4,1);(9,6,8)]; [(7,6,0);(3,2,9);(1,5,8)]; 

[(6,3,5);(2,4,1);(7,9,8)]; [(2,6,5);(9,3,0);(7,8,4)]; [(1,0,6);(7,5,9);(3,4,8)]; 

[(4,6,3);(7,5,0);(9,1,2)]; [(8,0,3);(4,2,7);(9,1,5)]; [(6,4,9);(8,0,2);(3,5,1)]; 

[(7,1,6);(4,5,8);(9,2,0)]. 

*6 10 15 30 6 3 9 0.9956 0.9978 [(7,5,4);(1,6,2)]; [(2,7,4);(0,1,9)]; [(6,3,5);(9,7,2)]; [(1,6,2);(9,4,8)]; 

[(8,4,0);(9,7,5)]; [(2,8,0);(1,3,7)]; [(0,3,2);(6,8,4)]; [(5,0,1);(9,6,8)]; 

[(6,5,3);(1,4,0)]; [(4,6,9);(3,8,7)]; [(8,2,5);(7,6,0)]; [(0,9,5);(4,3,2)]; 

[(4,3,5);(8,7,1)]; [(3,9,2);(1,8,5)]; [(6,7,0);(9,1,3)]. 

7 10 15 45 6 2 9 0.9908 0.9955 [(0,5);(4,9);(8,3)]; [(0,7);(8,9);(2,6)]; [(6,3);(0,1);(4,9)]; 

[(1,5);(0,2);(6,4)]; [(9,7);(4,8);(6,1)]; [(3,5);(6,8);(1,2)]; 

[(6,0);(2,7);(3,4)]; [(8,2);(4,1);(7,3)]; [(7,6);(1,3);(9,5)]; 

[(9,0);(1,8);(2,3)]; [(7,4);(5,2);(3,9)]; [(2,9);(0,1);(7,5)]; 

[(8,0);(7,1);(5,4)]; [(9,6);(8,5);(2,4)]; [(5,6);(3,0);(7,8)]. 
*denotes the non-existent NBIB design 
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Table F.11: Nested Block Designs that are BIB Designs in Sub-blocks and their Efficiencies in 

Bigger-blocks 

SN v b1 b2 k1 k2 r AE DE Block Diagram 

1 8 14 28 4 2 7 0.9980 0.9990 

[(1,0);(4,6)]; [(6,7);(4,5)]; [(5,3);(0,4)]; [(2,5);(1,4)]; 

[(3,1);(5,0)]; [(3,4);(1,2)]; [(3,2);(6,1)]; 

[(7,4);(6,3)]; [(5,6);(2,0)]; [(3,7);(5,1)]; [(2,4);(0,7)]; 

[(6,0);(1,7)]; [(7,5);(6,2)]; [(0,3);(7,2)]. 

2 9 18 36 4 2 8 0.9966 0.9983 

[(5,3);(4,6)]; [(7,1);(5,6)]; [(2,8);(0,4)]; [(5,8);(1,0)]; 

[(0,6);(3,7)]; [(2,1);(8,7)]; [(7,5);(8,3)]; 

[(7,2);(5,4)]; [(2,4);(3,1)]; [(8,0);(6,2)]; [(1,8);(4,3)]; 

[(6,1);(3,0)]; [(0,5);(7,4)]; [(8,6);(1,4)]; 

[(3,2);(0,7)]; [(0,2);(5,1)]; [(6,7);(8,4)]; [(3,6);(5,2)]. 

*3 10 15 30 6 3 9 0.9959 0.9980 

[(9,0,5);(2,8,6)]; [(0,3,6);(8,5,7)]; [(7,3,9);(4,0,2)]; 

[(2,8,9);(0,5,1)]; [(9,8,1);(3,4,7)]; 

[(9,5,3);(8,4,1)]; [(6,1,3);(5,7,4)]; [(2,9,0);(4,3,8)]; 

[(6,0,7);(5,2,4)]; [(9,1,7);(3,5,2)]; 

[(1,6,5);(7,8,0)]; [(1,2,7);(8,6,5)]; [(1,2,3);(6,4,9)]; 

[(8,3,0);(6,4,9)]; [(7,2,6);(0,4,1)]. 

4 10 15 45 6 2 9 0.9986 0.9993 

[(8,2);(0,9);(4,6)]; [(2,6);(7,8);(5,0)]; [(0,8);(1,2);(7,4)]; 

[(7,1);(6,3);(2,0)]; [(8,4);(6,9);(3,7)]; 

[(2,5);(4,9);(1,6)]; [(9,7);(6,5);(0,3)]; [(8,6);(0,1);(9,3)]; 

[(0,7);(5,9);(1,8)]; [(9,8);(7,2);(1,3)]; 

[(5,8);(7,6);(1,4)]; [(4,2);(5,3);(6,0)]; [(7,5);(4,3);(2,9)]; 

[(2,3);(5,1);(0,4)]; [(1,9);(4,5);(8,3)]. 
*denotes the non-existent NBIB design 
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G) Doubly Nested Partially Balanced Incomplete Block Designs  

 

G.1 Introduction 
Nested block designs are useful for the experimental situations, where there are two sources of 

variation in the experimental units and one is nested within another. For such experimental 

situations, Preece (1967) introduced nested balanced incomplete block (NBIB) designs. Some 

methods of construction of NBIB designs have been given by Preece (1967), Jimbo and Kuriki 

(1983) and Dey et al. [3]. For a complete catalogue of NBIB designs for 30,16  rv , a 

reference may be made to Morgan et al. (1999). An NBIB design may not exist for all parametric 

combinations or even if it exists, it may require a large number of replications which the 

experimenter may not be able to afford. Hence, Homel and Robinson (1975) introduced nested 

partially balanced incomplete block (NPBIB) designs. Construction of NPBIB designs can be 

found in Homel and Robinson (1975), Banerjee and Kageyama (1993), Phillip et al. (1997) and 

Satpati and Parsad (2004). Kageyama et al. (1995) and Saha et al. (1998) cover some methods of 

constructions of both NBIB and NPBIB designs. Satpati and Parsad (2004) gave a catalogue of 2-

associate NPBIB designs and 3-associate NPBIB designs for .15,30  rv  

There may arise situations when there exists another source of variation among the units in sub-

blocks of a nested incomplete block design. To be clearer, consider the following experimental 

situation. Consider a field experiment which is conducted at several locations using a nested 

block design. The harvesting is done sub-block wise and the harvested samples from each sub-

block are to be analyzed for their content in laboratory by different technicians. To control 

variation due to technicians, this may be taken as another blocking factor. Hence, nesting of units 

within sub-blocks may be required. To deal with the experimental situations where there are three 

sources of variation; third source of variation is nested within the second and the second source is 

nested within the first, doubly nested balanced incomplete block (DNBIB) designs are introduced 

by Preece et al. (1999). In these designs, there are n experimental units that can be arranged in b 

blocks such that there are m1 sub-blocks within each block and m2 sub-sub-blocks within each 

sub-block. In general, in a proper block design set up, a DNBIB design with parameters 

23331222,111 ,,,,,,,,,,,,( mkbmkbkbrv  ) may be defined as an arrangement of v treatments each 

replicated r times in three systems of blocks if  

a) each block of the first system contains m1 blocks of the second system and each block of 

the second system contains m2 blocks of the third system. 

b) ignoring the first and second system of blocks, it leaves a BIB design with 1213 bmmb   

blocks each of size 
21

1

2

2
3

mm

k

m

k
k   units with 3 concurrences. 

c) ignoring the first and third system of blocks, it leaves a BIB design with 112 bmb   blocks 

each of size 
1

1
2

m

k
k   units with 2  concurrences. 

d) ignoring the second and third system of blocks, it leaves a BIB design with 1b  blocks 

each of size 1k  units with 1  concurrences. 

The parameters of the design satisfy the following necessary conditions: 

332211̀ kbkbkbvr  , )1()1(),1()1(),1()1( 332211  krvkrvkrv  . 

Preece et al. (1999) also gave a catalogue of DNBIB designs for v  20 and r 30.  A DNBIB 

design may not exist for all parametric combinations or even if it exists it may require large 
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number of replications which the experimenter may not be able to afford. To deal with such 

situations, one can use doubly nested partially balanced incomplete block (DNPBIB) designs. In 

these designs, there are n experimental units that can be arranged in b blocks such that there are 

m1 sub-blocks within each block and m2 sub-sub-blocks within each sub-block. In general, in a 

proper block design set up, a DNPBIB design based on m-class association scheme with 

parameters 23331222,111 ,,,,,,,,,,,,( mkbmkbkbrv iii  , i =1, 2, …, m) may be defined as an 

arrangement of v treatments each replicated r times in three systems of blocks if  

a) Each block of the first system contains m1 blocks of the second system and each block of 

the second system contains m2 blocks of the third system. 

b) Ignoring the first and second system of blocks, it leaves a PBIB design with 1213 bmmb   

blocks each of size 
21

1

2

2
3

mm

k

m

k
k   units with i3 concurrences of any pair of 

treatments which are i
th
 associates of each other (i =1, 2, …, m). 

c) Ignoring the first and third system of blocks, it leaves a PBIB design with 112 bmb   

blocks each of size 
1

1
2

m

k
k   units with i2  concurrences of two treatments which are i

th
 

associates of each other (i =1, 2, …, m). 

d) Ignoring the second and third system of blocks, it leaves a PBIB design with 1b  blocks 

each of size 1k  units with i1  concurrences of two treatments which are ith associates of 

each other (i =1, 2, …, m). 

Here, the three PBIB designs obtained from a DNPBIB design share the same association 

scheme. But it may be mentioned that it is always not necessary that all the three PBIB designs in 

a DNPBIB design are based on same association scheme. Some methods of constructions of 

DNPBIB designs sharing same association scheme are given in Section G.2. A Catalogue of all 

DNPBIB designs for 20,20  rv  obtainable from these methods of construction is given in 

the Appendix G.1. 

 

G.2 Methods of Construction of DNPBIB Designs 

Method G.2.1: Let a DNBIB design D with parameters ,,,,,*,,* *
2

*
2

*
1

*
1

*
1 kbkbrmv  ,*

2  *
3

*
3

*
3 ,, kb  

exists. Replace treatment i in design D by the set of n new treatments, i,  i  +  v*, i + 2v*,…, i + 

(n – 1)v*. Repeating this procedure for all v* treatments, we get a 2-associate DNPBIB design 

based on group divisible association scheme in which super blocks, sub-blocks and sub-sub-

blocks form a singular group divisible design. The parameters of DNPBIB so obtained are 

,*,,,,,,,*,*, *
11211

*
33

*
33

*
22

*
22

*
11

*
*1 1

  rnkkbbnkkbbnkkbbrrnvv 21 *r

*
33231

*
222 *,,   r , m = v*, n = n.  

Here n new set of treatments which replace a particular treatment will be first associate to each 

other and treatments from the different sets will be second associates. 

Example G.2.1: Consider a DNBIB design {Serial number 1 in Preece et al. (1999)} with 

parameters ,8,9,8,9 11  kbrv 1,2,36,3,4,18,7 3332221   kbkb  with block 

contents as  
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[{(1 5) (3 7)} {(2 6) (4 8)}] 

[{(5 9) (4 2)} {(8 3) (6 7)}] 

[{(8 7) (1 4)} {(6 9) (5 3)}] 

[{(4 6) (7 9)} {(1 8) (2 5)}] 

[{(6 3) (2 1)} {(5 7) (8 9)}] 

[{(9 1) (6 8)} {(7 4) (3 2)}] 

[{(3 4) (8 5)} {(9 2) (7 1)}] 

[{(2 8) (9 3)} {(4 5) (1 6)}] 

[{(7 2) (5 6)} {(3 1) (9 4)}] 

 

Replacing each treatments by n = 2 new treatments as per procedure of Method G.2.1 we get a 

DNPBIB design based on group divisible association scheme. The parameters of the design are 

,8,3,8,7,8,4,36,8,18,16,9,8,18 3122211211332211  kbkbkbrv .112   

The blocks of the design are 

[{(1    10 5    14) (3      12 7     16)} {(2    11 6      15) (4     13 8    17)}] 

[{(5   14 9    18) (4      13 2     11)} {(8    17 3      12) (6     15 7    16)}] 

[{(8   17 7    16) (1      10 4     13)} {(6    15 9      18) (5     14 3    12)}] 

[{(4   13 6    15) (7      16 9     18)} {(1    10  8      17) (2     11  5    14)}] 

[{(6   15 3    12) (2      11 1     10)} {(5    14 7      16) (8     17 9    18)}] 

[{(9   18 1    10) (6      15 8     17)} {(7    16 4      13) (3     12 2    11)}] 

[{(3   12 4    13) (8      17 5     16)} {(9    18 2      11) (7     16 1    10)}] 

[{(2   11 8    17 ) (9      18 3     12)} {(4    13 5      14) (1     10 6    15)}] 

[{(7   16 2    11) (5      14 6     15)} {(3    12 1      10) (9     18 4    13)}] 

 

 Method G.2.2: Let there exists an m-class associate class PBIB design with parameters 

mikrbv i ,...,2,1,',',',''.   and also there exists a DNBIB design with 

parameters *
3

*
3

*
3

*
2

*
2

*
2

*
1

*
1

*
1 ,,,,,,,,*,,'*  kbkbkbrkv  . Then writing each block contents of PBIB 

design as DNBIB design, we get a DNPBIB design with parameters 
*
11

*
33

*
33

*
22

*
22

*
11

*
11 ',,',,',,'*,','  iikkbbbkkbbbkkbbbrrrvv 

miiiii ,...,2,1,',' *
33

*
22    with common association scheme for blocks, sub-blocks and 

sub-sub-blocks. 

 

Example G.2.2: Consider the following 2-associate class PBIB design based on group divisible  

association scheme {S82 in Clatworthy (1973)} with parameters v = 12, b = 4, r   = 3, k = 9, 

31  and 22  . 

(1 5 9 2 6 10 3 7 11) 

(2 6 10 3 7 11 4 8 12) 

(3 7 11 4 8 12 1 5 9) 

(4 8 12 1 5 9 2 6 10) 

There also exists a DNBIB design {at serial number 1 in Preece et al. (1999)} with parameters 

,8,9,8,9 11  kbrv ,18,7 21  b 1,2,36,3,4 33322   kbk  with block contents 

as ((.) represents the sub-sub-blocks, {.} represents the sub-blocks and [.] represents the blocks of 

the design)  
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[{(1 5) (3 7)} {(2 6) (4 8)}] 

[{(5 9) (4 2)} {(8 3) (6 7)}] 

[{(8 7) (1 4)} {(6 9) (5 3)}] 

[{(4 6) (7 9)} {(1 8) (2 5)}] 

[{(6 3) (2 1)} {(5 7) (8 9)}] 

[{(9 1) (6 8)} {(7 4) (3 2)}] 

[{(3 4) (8 5)} {(9 2) (7 1)}] 

[{(2 8) (9 3)} {(4 5) (1 6)}] 

[{(7 2) (5 6)} {(3 1) (9 4)}] 

Writing each of the block contents of PBIB design as DNBIB design, we get the following 

DNPBIB design with parameters ,12v ,24r ,361 b ,81 k ,722 b  ,144,4 32  bk  

,21,2 113  k  6,9,14 222112   331   and .232   

[{(1 6) (9 3)} {(5 10) (2 7)}] 

[{(6 11) (2 5)} {(7 9) (10 3)}] 

[{(7 3) (1 2)} {(10 11) (6 9)}] 

[{(2 10) (3 11)} {(1 7) (5 6)}] 

[{(10 9) (5 1)} {(6 3) (7 11)}] 

[{(11 1) (10 7)} {(3 2) (9 5)}] 

[{(9 2) (7 6)} {(11 5) (3 1)}] 

[{(5 7) (11 9)} {(2 6) (1 10)}] 

[{(3 5) (6 10)} {(9 1) (11 2)}] 

[{(2 7) (10 4)} {(6 11) (3 8)}] 

[{(7 12) (3 6)} {(8 10) (11 4)}] 

[{(8 4) (2 3)} {(11 12) (7 10)}] 

[{(3 11) (4 12)} {(2 8) (6 7)}] 

[{(11 10) (6 2)} {(7 4) (8 12)}] 

[{(12 2) (11 8)} {(4 3) (10 6)}] 

[{(10 3) (8 7)} {(12 6) (4 2)}] 

[{(6 8) (12 10)} {(3 7) (2 11)}] 

[{(4 6) (7 11)} {(10 2) (12 3)}] 

[{(3 8) (11 1)} {(7 12) (4 5)}] 

[{(8 9) (4 7)} {(5 11) (12 1)}] 

[{(5 1) (3 4)} {(12 9) (8 11)}] 

[{(4 12) (1 9)} {(3 5) (7 8)}] 

[{(12 11) (7 3)} {(8 1) (5 9)}] 

[{(9 3) (12 5)} {(1 4) (11 7)}] 

[{(11 4) (5 8)} {(9 7) (1 3)}] 

[{(7 5) (9 11)} {(4 8) (3 12)}] 

[{(1 7) (8 12)} {(11 3) (9 4)}] 

[{(4 5) (12 2)} {(8 9) (1 6)}] 

[{(5 10) (1 8)} {(6 12) (9 2)}] 

[{(6 2) (4 1)} {(9 10) (5 12)}] 

[{(1 9) (2 10)} {(4 6) (8 5)}] 

[{(9 12) (8 4)} {(5 2) (6 10)}] 

[{(10 4) (9 6)} {(2 1) (12 8)}] 

[{(12 1) (6 5)} {(10 8) (2 4)}] 

[{(8 6) (10 12)} {(1 5) (4 9)}] 

[{(2 8) (5 9)} {(12 4) (10 1)}] 
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Remark G.2.1: This method of construction is quite general in nature. Depending on the 

existence of families of DNBIB designs and corresponding PBIB design, one can develop a large 

number of DNPBIB designs. 

 

Method G.2.3: Let there exists a NBIB design, D, with parameters ,,,,*,,* *
2

*
1

*
1

*
1 bkbrmv   

*
2

*
2 ,k . Replace each treatment i in design D by the group of n new treatments, i,  i  +  v*, i + 

2v*,…, i + (n – 1)v*. Repeating this procedure for all v* treatments and considering the replaced 

treatments as sub-sub-blocks, we get a DNPBIB design with ,*,*, *
11 bbrrnvv   

,, *
22

*
11 bbnkk   *

22 nkk  , *
2

*
23 bkb  ,, 3 nk  *,11 r  ,*

112   *,21 r  ,*
222   *,31 r  

.032   

 

Example G.2.3: Consider the same NBIB design {serial number 5 in Morgan et al. (1999)} with 

parameters ,8*,9*  rv ,3,4,18 *
1

*
1

*
1  kb 1,2,36 *

2
*
2

*
2  kb . The block contents are 

given by 

{(1 5) (3 7)} {(2 6) (4 8)} 

{(5 9) (4 2)} {(8 3) (6 7)} 

{(8 7) (1 4)} {(6 9) (5 3)} 

{(4 6) (7 9)} {(1 8) (2 5)} 

{(6 3) (2 1)} {(5 7) (8 9)} 

{(9 1) (6 8)} {(7 4) (3 2)} 

{(3 4) (8 5)} {(9 2) (7 1)} 

{(2 8) (9 3)} {(4 5) (1 6)} 

{(7 2) (5 6)} {(3 1) (9 4)} 

 

Replacing each treatments by n = 2 new treatments as per procedure of Method G.2.3, we get the 

following design with parameters ,8,18  rv ,181 b ,81 k ,362 b  ,72,4 32  bk  

,8,2 113  k  ,1,8,3 222112   .0,8 3231    

[{(1  10) (5    14)} {(3    12) (7  16)}] [{(2  11) (6    15)} {(4    13) (8  17)}] 

[{(5  14) (9   18)} {(4    13) (2  11)}] [{(8  17) (3    12)} {(6    15) (7  14)}] 

[{(8  17) (7    16)} {(1    10) (4  13)}] [{(6  15) (9    18)} {(5    14) (3  12)}] 

[{(4  13) (6    15)} {(7    16) (9  18)}] [{(1  10) (8    17)} {(2    11) (5  14)}] 

[{(6  15) (3    12)} {(2    11) (1  10)}] [{(5  14) (7    16)} {(8    17) (9  18)}] 

[{(9  18) (1    10)} {(6    15) (8  17)}] [{(7  16) (4    13)} {(3    12) (2  11)}] 

[{(3  12) (4    13)} {(8    17) (5  14)}] [{(9  18) (2    11)} {(7    16) (1  10)}] 

[{(2  11) (8    17)} {(9    18) (3  12)}] [{(4  13) (5    14)} {(1    10) (6  15)}] 

[{(7  16) (2    11)} {(5    14) (6  15)}] [{(3  12) (1    10)} {(9    18) (4  13)}] 

 

Here m = v = 9 and n = 2. 

 

Remark G.2.2: The DNPBIB designs obtained through this method are disconnected at sub-sub-

block level. 

 

Method G.2.4: Let there exists a 2-associate class NPBIB design with parameters 
*
22

*
21

*
12

*
11

*
2

*
2

*
1

*
1 ,,,,,,,*,*, kbkbrv . Also let there exists a resolvable BIB design with 

parameters ',',',',' *
2  ktbtrkv   where within each of t complete replications there are 

 blocks. Writing the sub-blocks of NPBIB design as BIB design one gets a DNPBIB design 
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with parameters '**, rrrvv  ,,, *
11

*
11 kktbb  *

22 tbb  , '*
23 bbb  , ,*

22 kk   ,',' *
11113  rkk   

,' *
1212  r '21 r ,*

21 ,' *
2222  r ,' *

2131   *
2232 '  . 

 

Example G.2.4: Consider the following 2-associate class NPBIB design {serial number 16 in 

Satpati and Parsad (2004)} based on GD association scheme {GD(5,2)} with parameters 

,8,5,4,10 11  kbrv ,4,10 22  kb ,411  12 1,4,3 2221   . 

 

{( 1 6 4 9 ) ( 2 7 3 8 )} 

{( 2 7 5 10 ) ( 3 8 4 9 )} 

{( 3 8 1 6 ) ( 4 9 5 10 )} 

{( 4 9 2 7 ) ( 5 10 1 6 )} 

{( 5 10 3 8 ) ( 1 6 2 7 )} 

 

The association scheme is  

1 6 

2 7 

3 8 

4 9 

5 10 

 

There exists a resolvable BIB design with parameters v = 4, b = 6, r = 3, k = 2, 1 with block 

contents as (1,2), (3, 4), (1,3) ,(2, 4), (1, 4) , (2, 3). Following the Method G.2.4, we get the 

following DNPBIB design with parameters ,8,15,12,10 11  kbrv  

,12,9,12,2,60,4,30 2112113322  kbkb  22 ,3 1,4 3231   . 

[{(1 6) (4 9)}  {(2 7) (3 8)}] 

[{(2 7) (5 10)}  {(3 8) (4 9)}] 

[{(3 8) (1 6)}  {(4 9) (5 10)}] 

[{(4 9) (2 7)}  {(5 10) (1 6)}] 

[{(5 10) (3 8)}  {(1 6) (2 7)}] 

[{(1 4) (6 9)}  {(2 3) (7 8)}] 

[{(2 5) (7 10)}  {(3 4) (8 9)}] 

[{(3 1) (8 6)}  {(4 5) (9 10)}] 

[{(4 2) (9 7)}  {(5 1) (10 6)}] 

[{(5 3) (10 8)}  {(1 2) (6 7)}] 

[{(1 9) (6 4)}  {(2 8) (7 3)}] 

[{(2 10) (7 5)}  {(3 9) (8 4)}] 

[{(3 6) (8 1)}  {(4 10) (9 5)}] 

[{(4 7) (9 2)}  {(5 6) (10 1)}] 

[{(5 8) (10 3)}  {(1 7) (6 2)}] 

 

Method G.2.5: Let there exists a resolvable NPBIB design with parameters 
*
22

*
21

*
12

*
11

*
2

*
1

*
2

*
1 ,,,,,,,,**,  kkbtbtrv   where *

1b blocks can be grouped into t sets such that 

there are  blocks in each set and every treatment appears once in each set. Taking all the   

blocks of a complete replication of NPBIB design into one bigger block and repeating this 

procedure for all the t sets, a DNPBIB design can be constructed where sub-sub-blocks and sub-

blocks form a PBIB but at block level, it is a complete block design. The parameters of the design 
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so constructed are *,vv  ,,*, *
121 bbtbrr   ,,,, *

23
*
12

*
11

*
23 kkkkkkbb    

,,, *
11211211   tt *

2232
*
2131

*
1222 ,,    

 

Example G.2.5:  Consider the following resolvable NPBIB design {serial number 5 in Satpati 

and Parsad (2004)} based on group divisible association scheme {GD(4,2)} with parameters 

,4,9,36,18,8 121  krbbv  .1,3,3,9,2 222112112  k  

[(1 2) (5 6)] [(3 4) (7 8)] 

[(1 5) (2 6)] [(3 7) (4 8)] 

[(1 6) (2 5)] [(3 8) (4 7)] 

[(1 3) (5 7)] [(2 4) (6 8)] 

[(1 5) (3 7)] [(2 6) (4 8)] 

[(1 7) (3 5)] [(2 8) (4 6)] 

[(1 3) (5 8)] [(2 4) (6 7)] 

[(1 5) (3 8)] [(2 6) (4 7)] 

[(1 8) (3 5)] [(2 7) (4 6)] 

 

Following the Method G.2.5, we get a DNPBIB design with parameters ,8v  

.1,3,3,9,2,4,8,9,36,18,9 2312221321321  kkkrbbb  

with block contents as 

 

[{(1 2) (5 6)} {(3 4) (7 8)}] 

[{(1 5) (2 6)} {(3 7) (4 8)}] 

[{(1 6) (2 5)} {(3 8) (4 7)}] 

[{(1 3) (5 7)} {(2 4) (6 8)}] 

[{(1 5) (3 7)} {(2 6) (4 8)}] 

[{(1 7) (3 5)} {(2 8) (4 6)}] 

[{(1 3) (5 8)} {(2 4) (6 7)}] 

[{(1 5) (3 8)} {(2 6) (4 7)}] 

[{(1 8) (3 5)} {(2 7) (4 6)}] 

 

A catalogue of the obtained DNPBIB designs through the above methods of constructions in the 

range 30,25  rv  is presented in the Appendix G.1. 

G.3 Application of Doubly Nested Block Designs in Tetrallel Crosses 

Tetrallel crosses involving four lines provide a useful method of conducting plant breeding 

experiments. It is a type of mating design used to study the genetic properties of a set of inbred 

lines. A four line cross is obtained by crossing two unrelated F1 hybrids symbolized as 

)()( 4321 llll   where li denotes the ith line {See Rawlings and Cockerham (1962), Hinkelman 

((1967, 1968) and Parsad et al. (2005)}.  

 

A doubly nested incomplete block design with sub-sub-block size 2 and sub-block size 4 has a 

one-to-one correspondence with the block designs for tetrallel crosses. Consider the treatments of 

doubly nested incomplete designs as lines of a tetrallel cross experiment. Performing crosses 

among the lines appearing in the same sub-sub-block of doubly nested incomplete design and 

then crossing the crosses so obtained in a sub-block gives a required tetrallel cross. If v, b1, b2, 

3213213 ,,,2,4,,,  kkkrb  are the parameters of a DNBIB design, then the parameters of 

block design for tetrallel crosses are 
4

,, 1
1

k
kbbv  .  Parsad et al. (2005) have shown that the 
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designs for tetrallel crosses obtained from DNBIB design are universally optimal in the D (v, b, 

k), the class of block designs in which tetrallel crosses of v inbred lines are arranged in b blocks 

of size k. Morgan et al. (2001) gave a comprehensive catalogue of DNBIB designs. Using their 

designs at serial number 1, 2, 5, 6, 9, 10, 16, 17 and 18 one can easily obtain efficient designs for 

number of inbred lines, 13,9v , 16, 16, 17, 12, 13, and 15 respectively. 

Often a design for tetrallel crosses may be required for some parametric combinations for which a 

corresponding DNBIB design may not exist. In such situations, designs for tetra-allel crosses can 

be obtained using DNPBIB designs. To be clearer, consider the following example. 

 

Example G.3.1: Consider the DNPBIB design in Example G.2.5. Corresponding design for 

tetrallel cross is given by 

[{(1    5)     (3    7)} {(2    6)     (4    8)}] 

[{(5    9)     (4    2)} {(8    3)     (6    7)}] 

[{(8    7)     (1    4)} {(6    9)     (5    3)}] 

[{(4    6)     (7    9)} {(1    8)     (2    5)}] 

[{(6    3)     (2    1)} {(5    7)     (8    9)}] 

[{(9    1)     (6    8)} {(7    4)     (3    2)}] 

[{(3    4)     (8    5)} {(9    2)     (7    1)}] 

[{(2    8)     (9    3)} {(4    5)     (1    6)}] 

[{(7    2)     (5    6)} {(3    1)     (9    4)}] 

[{(1    7)     (5    3)} {(2    8)     (6    4)}] 

[{(5    2)     (9    4)} {(8    7)     (3    6)}] 

[{(8    4)     (7    1)} {(6    3)     (9    5)}] 

[{(4    9)     (6    7)} {(1    5)     (8    2)}] 

[{(6    1)     (3    2)} {(5    9)     (7    8)}] 

[{(9    8)     (1    6)} {(7    2)     (4    3)}] 

[{(3    5)     (4    8)} {(9    1)     (2    7)}] 

[{(2    3)     (8    9)} {(4    6)     (5    1)}] 

[{(7    6)     (2    5)} {(3    4)     (1    9)}] 

 

Some connected block designs for tetrallel crosses are designs obtained through Method G.2.4 

given at serial no. 2, 26, 30-35, 37, 40 in Table G.1 (Appendix G.1). Designs for tetrallel crosses 

can also be obtained using resolvable NPBIB designs.  The NPBIB designs with sub-block size as 

2 at serial number 5, 6, 8, 20, 28 and 43 given by Satpati and Parsad (2004) are resolvable and 

Now using Method G.2.5, one can obtain a DNPBIB design whose super blocks are complete 

blocks. Now following the above procedure, one can obtain designs for tetrallel crosses with 

following parameters: 

v = 8, b= 9, k = 2; v = 8, b= 12, k = 2; v = 8, b= 12, k = 2; v = 12, b= 15, k = 3; v = 16, b= 12, k = 

4; v = 20, b= 15, k = 5 respectively. 

More efforts to obtain efficient designs for tetrallel crosses are required to be made. 
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Appendix G.1 

Table G.1: 2-associate class DNPBIB design with 30,20  rv   

v b1 b2 b3 r k1 k2 k3 
11  12  21  22  31  32  Method Source 

Design 

Association 

Scheme 

18 9 18 36 8 16 8 4 8 7 8 3 8 1 2.1 PRM1 GD(9, 2) 

12 36 72 144 24 8 4 2 21 14 9 6 3 2 

2.2 S82, 

MPR1 

GD(4, 3) 

10 5 10 20 4 8 4 2 4 3 4 1 4 0 2.3 MPR1 GD(5, 2) 

12 15 30 60 10 8 4 2 10 6 10 2 10 0 2.3 MPR13 GD(6, 2) 

14 7 21 42 6 12 4 2 6 5 6 1 6 0 2.3 MPR2 GD(7, 2) 

14 21 42 84 12 8 4 2 12 6 12 2 12 0 2.3 MPR19 GD(7, 2) 

14 7 14 42 6 12 6 2 6 5 6 2 6 0 2.3 MPR3 GD(7, 2) 

16 14 28 56 7 8 4 2 7 3 7 1 7 0 2.3 MPR4 GD(8, 2) 

16 28 84 168 21 12 4 2 21 15 21 3 21 0 2.3 MPR50 GD(8, 2) 

16 28 56 168 21 12 6 2 21 15 21 6 21 0 2.3 MPR51 GD(8, 2) 

18 9 36 72 8 16 4 2 8 7 8 1 8 0 2.3 MPR8 GD(9, 2) 

18 9 18 72 8 16 8 2 8 7 8 3 8 0 2.3 MPR9 GD(9, 2) 

18 12 36 72 8 12 4 2 8 5 8 1 8 0 2.3 MPR6 GD(9, 2) 

18 12 24 72 8 12 6 2 8 5 8 2 8 0 2.3 MPR7 GD(9, 2) 

18 18 36 72 8 8 4 2 8 3 8 1 8 0 2.3 MPR5 GD(9, 2) 

20 10 30 90 9 18 6 2 9 8 9 2 9 0 2.3 MPR12 GD(10, 2) 

20 15 45 90 9 12 4 2 9 5 9 1 9 0 2.3 MPR10 GD(10, 2) 

20 15 30 90 9 12 6 2 9 5 9 2 9 0 2.3 MPR11 GD(10,2) 

20 30 60 180 18 12 6 2 18 10 18 4 18 0 2.3 MPR47 GD(10,2) 

20 45 90 270 27 12 6 2 27 15 27 6 27 0 2.3 MPR58 GD(10,2) 

20 45 90 180 18 8 4 2 18 6 18 2 18 0 2.3 MPR46 GD(10,2) 

15 5 10 20 4 12 6 3 4 3 4 1 4 0 2.3 MPR1 GD(5,3) 

18 15 30 60 10 12 6 3 10 6 10 2 10 0 2.3 MPR13 GD(6,3) 

20 5 10 20 4 16 8 4 4 3 4 1 4 0 2.3 MPR1 GD(5,4) 

10 15 30 60 12 8 4 2 12 9 12 3 4 1 2.4 SP16 Gd(5,2) 

12 45 90 180 30 8 4 2 30 18 30 6 10 2 2.4 SP18 GD(6, 2) 

14 21 63 126 18 12 4 2 18 15 18 3 6 1 2.4 SP23 GD(7, 2) 

15 45 90 180 24 8 4 2 12 12 9 0 3 0 2.4 SP25 Triangular 

16 36 72 144 18 8 4 2 12 6 9 0 3 0 2.4 SP30 L2 

16 54 108 216 27 8 4 2 15 9 9 0 3 0 2.4 SP31 L2 

16 72 84 168 21 8 4 2 21 9 21 3 7 1 2.4 SP33 GD(8, 2) 

18 54 108 216 24 8 4 2 24 9 24 3 8 1 2.4 SP34 GD(9, 2) 

18 36 108 216 24 12 4 2 24 15 24 3 8 1 2.4 SP35 GD(9, 2) 

18 27 108 216 24 16 4 2 24 21 24 3 8 1 2.4 SP38 GD( 9, 2) 

20 45 135 270 27 12 4 2 27 15 27 3 9 1 2.4 SP40 GD(10, 2) 

22 33 165 330 30 20 4 2 30 27 30 3 10 1 2.4 SP48 GD(11, 2) 

25 75 150 300 24 8 4 2 9 6 9 0 3 0 2.4 SP54 L2 

8 9 18 36 9 8 4 2 9 9 9 3 3 1 2.5 SP5 GD(4, 2) 

8 12 24 48 12 8 4 2 12 12 12 4 0 2 2.5 SP6 GD(4, 2) 

8 12 24 48 12 8 4 2 12 12 0 6 0 2 2.5 SP8 GD(4, 2) 

12 15 45 90 15 12 4 2 15 15 15 3 5 1 2.5 SP20 GD(6, 2) 

16 12 48 96 12 16 4 2 12 12 0 3 0 1 2.5 SP28 GD(4, 4) 

16 7 14 28 7 16 8 4 7 7 7 3 7 1 2.5 SP33 GD(8, 2) 

                        … 
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20 15 75 150 15 20 4 2 15 15 0 3 0 1 2.5 SP43 GD(4,5) 

24 11 33 66 11 24 8 4 11 11 11 3 11 1 2.5 SP50 GD(12,2) 

24 7 14 28 7 24 12 6 7 7 7 3 7 1 2.5 SP51 GD(8,3) 

24 11 22 66 11 24 12 4 11 11 11 5 11 1 2.5 SP52 GD(12,2) 

24 11 22 44 11 24 12 6 11 11 11 5 11 2 2.5 SP53 GD(12,2) 

PRM# denotes the design at serial number # in Preece, Rees and Morgan (1999). 

MPR # denotes the design at serial number # in Morgan, Preece and Rees (2001). 

SP# denotes the design at serial number # in Satpati and Parsad (2004). 

S82 denotes the PBIB design S82 in Clatworthy (1973). 
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H) Design Resources Server 

 

“Design Resources Server” (www.iasri.res.in/design) was launched on the website of Indian 

Agricultural Statistics Research Institute (I.A.S.R.I.), New Delhi in the year 2005 under the 

National Fellow Scheme. One of the main goals of the server is to help the experimenters in 

agricultural sciences, biological sciences, social sciences and industry in planning and designing 

their experiments. The site makes available design theory and the actual layout of the designs 

through web. The server also aims to spread the advances in theoretical, computational, and 

statistical aspects of Design of Experiments among the mathematicians and statisticians in 

academia and among the practicing statisticians involved in advisory and consultancy services.  

During this year efforts have been made to strengthen the Design Resources Server in 

collaboration with National Professor at I.A.S.R.I., New Delhi 

 Design Resources Server has been strengthened by uploading 6574 block designs for making 

all possible pair wise treatment comparisons for 34,50,35  kbv such that average 

replication number of treatments is not more than 20 and kv   have been added on the 

DESIGN RESOURCES SERVER linked with the website of the Institute. For given v, b, k 

user can generate the layout of these designs. A snapshot of the link and design generated is 

given on the left page. 

 On-line software developed for generation of Hadamard matrices of order up to 1000 except 

the orders 668, 716 and 892 (for which no construction method is currently available) and 

876 (yet to be implemented) has been posted on the Design Resources Server. 

 Dissemination workshop proceedings and links to other URL where the literature on Designs 

of Experiments is available have been placed at the Design Resources Server. A snapshot of 

the link is given on left side of the next page. 

 An electronic book on Advances in Data Analytical Techniques has been compiled, edited 

and developed by Rajender Parsad, V.K. Gupta, Lal Mohan Bhar and V.K. Bhatia. The E-

book consists of chapters on 66 topics described in more than 920 pages. The topics covered 

in this electronic book have been categorized into six modules namely Computer Usage and 

Statistical Software Packages, Basic Statistical Techniques consisting of Statistical methods 

and Inference, Design of Experiments and Sample Surveys, Diagnostics and Remedial 

Measures, Applications of Multivariate Techniques, Modelling and Forecasting Techniques 

in Agriculture and Other Useful Techniques such as Bio-informatics, Geoinformatics, 

Microarrays, DNA Fingerprinting, nanotechnology in agriculture etc. This book is available 

at IASRI website (www.iasri.res.in/design).an electronic book on Advances in Data 

Analytical Techniques. A snap shot of the link of Electronic book and the text material 

available in the Electronic book is given on the next page. 
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I) Transfer of Technology/ Advisory services 

Advisory services were pursued rigorously. Details of some of them are given below: 

 

National Research Centre on Rapeseed and Mustard 
 -designs have been suggested for initial varietal trials conducted by National Research 

Centre on Rapeseed and Mustard, Bharatpur. These designs are resolvable incomplete block 

designs and a monograph has been published for the benefit of the experimenters. The 

parameters for which the -designs recommended are: (i) v = 12, b = 6, r = 3, k =6; (ii) v = 

15, b = 9, r = 3, k =5 ; (iii) v = 18, b = 9, r = 3, k = 6; (iv) v = 21, b = 9, r = 3, k = 7; (v)  v = 

24, b = 12, r = 3, k = 6 and (vi) v = 28, b = 12, r = 3, k = 7. These designs were developed 

during the preparation of Monograph on -designs. Finally the following  -designs were 

adopted for 29 trials 

v b r k Efficiency Trial Name Centres 

12 12 3 3 0.9241 Mustard Saline Faizabad 

15 15 3 3 0.9067 Yellow Sarson Faizabad, Pantnagar, Bharatpur, 

Shillongini 

     Gobhi Sarson Ludhiana 

     Mustard Quality Ludhiana, Faizabad, Morena, 

Pantangar 

18 18 3 3 0.8915 IHT Faizabad, Ludhiana, Morena, 

Varansi, Pantnagar 

24 12 3 6 0.9699 Toria Ludhiana, Faizabad, Jagdalpur, 

Morena, Kanke, Pantnagar, 

Shillongini 

28 12 3 7 0.9603 Late Sown Faizabad, Jalgaon, Pantnagar, 

Morena, Varans 

36 12 2 6 0.9074 Mustard Timely 

Sown 

Faizabad, Pantnagar 

 

Rice-Wheat Consortium for Indo-Gangetic Plains 
 Farmers’ participatory Research Trials in Indo-Gangetic plains for conservation agriculture                                               

are designed and managed by farmers, the researchers have only advisory role in the selection 

of the resource conservation technologies (treatments). Farmer has full control over the 

selection of treatments to be tested on his/her field(s). The main objective of these trials is to 

establish and demonstrate the benefits of resource conservation technologies such as zero 

tillage, furrow irrigated raised bed planting system, fresh beds, reduced tillage, etc. over the 

conventional tillage practices. In these trials, farmers are briefed about new practices. The 

participating farmers are given full control over the selection of subset of resource 

conservation technologies to be tested on their fields with a view to assess farmer innovation 

and acceptability. They are also given the freedom to modify the treatments such as number of 

ploughings in reduced tillage, number of ploughings in conventional tillage, number of 

irrigation, leaving residue in the field, complete burning of the residue, zero tillage with 

different machines such as double disc, happy seeder, etc. as per their choice and availability 

of equipments. Further, date of sowing vary widely over years from treatment to treatment. 

Often as many treatments will arise as there are farmers.   

 Further, Farmers’ Participatory Research Trials are conducted over different regions and over 

years. The RCT options may have an interaction with regions and/ or years. It is desired to 

identify the RCT options that are suitable over regions/ years. It is desired to identify the 

varieties that are most suitable for zero tillage, bed planting systems, etc. Therefore, different 
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varieties are included in Farmers’ Participatory Research Trials. Generally, the variety to be 

used is the prerogative of the participatory farmer. Farmers’ Participatory Research Trials may 

have different soil types or land leveling.  The aim is to study the interaction between 

treatments and varieties/ soil types/ land leveling.  If we consider varieties, soil types, years, 

regions, land leveling, etc. as environments and RCT options as treatments then it amounts to 

studying the treatment  environment interactions. If there is no treatment  environment 

interaction then the best RCT option may be identified by averaging over the environments.  If 

treatment  environment interaction is present then first we have to identify whether the 

interaction is a cross-over (treatment ranks change from one environment to another) or non-

cross-over type where treatment difference change in magnitude but not in direction among 

environments. In non-cross-over interaction the treatments with superior mean can be used in 

all the environments.  If there is cross-over interaction, then the subsets of treatments are to be 

recommended only for certain environments.  Therefore, it is important to test for crossover 

interactions.  In case of cross over interactions, one-way to identify the sub-sets of treatments 

for certain environments is to use the technique of biplots. Analytical techniques using linear 

mixed effects models and biplots have been developed for the analysis of data from these 

trials. These techniques have been passed on to the research personnel involved in conduct of 

Farmers’ Participatory Research Trials in association with Rice-Wheat Consortium for Indo-

Gangetic Plains. 
 

Indian Agricultural Research Institure, New Delhi 
 Dr. Dinesh Kumar, Senior Scientist from Division of Agronomy was advised on the analysis 

of experimental data conducted for standardization of nitrification inhibiting property of 

neem oil coated urea for Kharif Rice, 2005. In one experiment, 16 treatments tried were all 

possible combinations of 5 sources of nitrogen viz. prilled urea, 500 ppm oil coated urea, 

1000 ppm oil coated urea, 2000 ppm oil coated urea, 5000 ppm oil coated urea and three 

doses viz. 50, 100, 150 kg/ha and one absolute control. In the another experiment, 16 

treatments tried were all possible combinations of 5 sources of oil viz. FFA, pure oil, 

meliacins, saturated and unsaturated and three doses of oil viz. 500 ppm, 1000 ppm and 5000 

ppm and one absolute control. The experiments were conducted using a randomized complete 

block design. The analysis was carried out using the concept of contrast analysis. 

 Sh. Abdullah Altaher, Ph. D. student of Molecular Biology and Biotechnology was advised 

on the analysis of data pertaining to an experiment related to study of wheat transformation 

for tolerance to dehydration stress. 30 wheat genotypes were grown in the field in a 

randomized complete block design with 3 replications. Samples for each plot were taken and 

studied for callus formation in the laboratory. Samples from these 90 plots were also 

investigated in 2 regeneration media and the characters observed were G-spot, shoots per 

callus and number of shoots. The analysis was performed using PROC GLM of SAS. 

 Dr U.K. Behera, Senior Scientist from Division of Agronomy was advised on the contrast 

analysis for comparison between durum, timely sown aestivum and late sown aestivum 

cultivars of wheat for the characters grain yield, thousand grain weight, harvest index, water 

use efficiency, etc. 

 

Punjab Agricultural University, Ludhiana 
 Sh. M. Ashraf Bhat, Ph.D. student from Department of Plant Breeding and Genetics was 

advised on the analysis of data pertaining to 37 inbred lines (maize), all at advanced stage of 

development, selected for estimating the genetic diversity using molecular markers (SSR).  
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Banaras Hindu University, Varanasi 
 Dr. Arun Kumar Joshi, Professor, Department of Genetics and Plant Breeding, Institute of 

Agricultural Sciences and Visiting Scientist at CIMMYT Mexico was advised on (i) analysis 

of data pertaining to experiments conducted with resource conservation technology viz. zero 

tillage and conventional tillage in combination with different varieties of wheat to identify 

varieties that are good for zero tillage /conventional tillage and (ii) analysis of data pertaining 

to the experiment conducted for detecting the variation in 963 diverse lines of wheat for stay 

green trait. The experiment was conducted using randomized complete block design with 

three replications for three years. He was also advised on the analysis of data pertaining to an 

experiment on 100 diverse lines for stay green, canopy temperature difference and yield 

traits. The 100 lines comprised of 25 lines from each of the four groups, stay green, 

moderately stay green, moderately non-stay green and non-stay green. The experiment was 

conducted using a randomized complete block design with three replications for three years. 

There were three dates of sowing in each of the year.  
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11. R. Srivastava, Rajender Parsad, Amitava Dey and V.K. Gupta (2006). A-efficient block 

designs for asymmetrical slope ratio assays. Journal of Statistics and Applications: A 

Publication of 'Forum for Interdisciplinary Mathematics', 1(2-4), 185-192. 

12. Rajender Parsad, V.K. Gupta and R. Srivastava (2007). Designs for cropping systems 

research. Journal of Statistical Planning and Inference, 137, 1687-1703. 

 

Accepted for Publication 

13. Subrata Kumar Satpati, Rajender Parsad, V.K. Gupta and A.K. Nigam. Computer Aided 

Search of Efficient Nested Incomplete Block Designs for Correlated Observations. Journal of 

Combinatorics, Information and System Sciences. 
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14. Subrata Kumar Satpati, Rajender Parsad and V.K. Gupta. Efficient block designs for 

dependent observations: A computer aided search. Communications-in-Statistics: Theory & 

Methods, 36(6).  

15. Jitendra Kumar, G. Singh, R.K. Palta, Suresh Walia, Rajender Parsad and B.S. Parmar. 

Field appraisal of controlled release formulations of carbofuran against the rice leaffolder, 

cnaphalocrocis medinalis (guenee). Indian Journal Agricultural Sciences. 

16. Rajender Parsad. A note on semi-Latin squares. Journal of Indian Society of Agricultural 

Statistics.  
 

Communicated/Under Revision 

17. Ananta Sarkar, Rajender Parsad and M.R. Vats. Multivariate analysis of variance of data 

from long term fertilizer experiments. Journal of Indian Society of Agricultural Statistics. 

18. Ananta Sarkar, Rajender Parsad, Abhishek Rathore and V.K. Gupta. Efficient block designs 

for microarray experiments. Statistical Applications in Genetics and Molecular Biology. 

19. Ananta Sarkar, Rajender Parsad, V.K. Gupta and Abhishek Rathore. Efficient row-column 

designs for microarray experiments. Biostatistics. 

20. V.K. Gupta, Rajender Parsad and Lal Mohan Bhar. Supersaturated designs for 

asymmetrical factorial experiments. Journal of Statistical Theory and Practice. 

21. A.K. Joshi, O. Ferrara, M.R. Bhatta, G. Singh, E. Duveiller, R. Sharma, R. Chand, B. Arun, 

D.B. Pandit, N.C.D. Barma, M.M. A.B. Siddique, S.Y. Das, R.N. Sharma and Rajender 

Parsad. Sources of resistance to spot blotch pathogen Bipolaris sorokiniana of wheat for 

warm humid regions of south Asia. Field Crops Research. 

22. B.N. Mandal, Rajender Parsad and V.K. Gupta. Computer-aided construction of polygonal 

designs. Journal of Statistical Planning and Inference. 

23. B.N. Mandal, Rajender Parsad, V.K. Gupta and U.C. Sud. A family of distance balanced 

sampling plans. Biometrika. 

 

(B) Popular Article/Bulletin 
1. jktsUnz izlkn] v#.k dqekj fuxe] fouksn dqekj xqIrk ,oa vthr dqekj (2006). 

vuqla/kku dsUnzksa vkSj fdlkuksa ds [ksrksa ij fd;s x;s d`f"k ijh{k.kksa dh vfHkdYiuk ,oa 
fo'ys"k.k% ,d iqujkoyksdu A lkaf[;dh foe'kZ] Hkkjrh; d`f"k lkaf[;dh vuqla/kku 

laLFkku] ubZ fnYyh A 

2.  Rajender Parsad and V.K. Gupta (2007). Statistical issues for experimentation in national 

agricultural research system. Proceedings of XIV National Conference of Agricultural 

Research Statisticians, 144-151. 

3. V.K. Gupta and Rajender Parsad (2007). Status of agricultural experimentation in national 

agricultural research system. Proceedings of XIV National Conference of Agricultural 

Research Statisticians, 58-68. 
 

(C) Book Chapters Published 

1. V.K. Gupta and Rajender Parsad (2006). Statistical Designing of Experiments with 

Emphasis on Hill Agriculture. Sustainable Production from Agricultural Watersheds in North 

West Himalaya. Eds. HS Gupta, AK Srivastava and J.C. Bhatt, Vivekananda Parvatiya Krishi 

Anusandhan Sansthan, Almora, 457-474. 

2. Rajender Parsad, Anshu Dixit, P.K.  Malhotra and V.K. Gupta (2007).  Geoinformatics in 

precision farming: An overview.  In the Book entitled "Geoinformatics Applications for 
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sustainable development” Eds. A.K.Singh and U.K. Chopra, 39-78, New India Publishing 

Agency, New Delhi. 
 

(D) Electronic Book  

An electronic book on Advances in Data Analytical Techniques has been compiled, edited and 

developed by Rajender Parsad, V.K. Gupta, Lal Mohan Bhar and V.K. Bhatia. The E-book 

consists of chapters on 66 topics described in more than 920 pages. The topics covered in this 

electronic book have been categorized into six modules namely Computer Usage and Statistical 

Software Packages, Basic Statistical Techniques consisting of Statistical methods and Inference, 

Design of Experiments and Sample Surveys, Diagnostics and Remedial Measures, Applications 

of Multivariate Techniques, Modelling and Forecasting Techniques in Agriculture and Other 

Useful Techniques such as Bio-informatics, Geoinformatics, Microarrays, DNA Fingerprinting, 

nanotechnology in agriculture etc. This book is available at IASRI website (www.iasri.res.in).  

 

(E) Monographs 

Rajender Parsad, V.K. Gupta, P.K. Batra, S.K. Satpati and Pabitra Biswas (2007). -Designs. 

IASRI, New Delhi. 
 

 Awards and Recognitions 

Awards 

 Associate Fellow of National Academy of Agricultural Sciences, New Delhi from January 

01, 2007. 

Recognitions 

 Member, Organizing Committee and Chairman, Publication and Souvenir Committee 

of the International Conference on Statistics and Informatics in Agricultural Research 

organized at IASRI, New Delhi during December 27-30, 2006. 

 Convener for the Theme on Emerging Issues in Areas of Basic Statistical Research 

during International Conference on Statistics and Informatics in Agricultural Research 

organized at IASRI, New Delhi during December 27-30, 2006. 

 Convener of a symposium on Information Extraction from Data Investigation and 

Chaired a session on Contributed Papers during 9
th
 Annual Conference of Society of 

Statistics, Computer and Applications held at Department of Statistics, Saurashtra 

University Rajkot during November 11-13, 2006. 

 Nominated as Managing Editor of Journal of Econometric Applications and Theory, A 

publication of Forum for Interdisciplinary Mathematics. 

 Nominated as Joint Secretary, Forum for Interdisciplinary Mathematics. 

 Acted as referee for Journal of Statistical Planning and Inference, Journal of Statistical 

Theory and Practice, ARS Combinatoria 

 Member, Editorial Board for  2006-2007. 

 
 

1.  
2.  
3.  
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 Conferences/ Workshops organized 

 A training programme on Design and Analysis of Experiments for Rapeseed-Mustard 

Varietal Trials for the plant breeders and statisticians of All India Co-ordinated Research 

Project on Rapeseed-Mustard, National Research Centre on Rapseed-Mustard, Bharatpur was 

organized during May 10-11, 2006. 13 participants attended the training programme. 8 

participants were from State Agricultural Universities and 5 from ICAR Institutes. The topics 

covered in this training programme included Fundamentals of Design of Experiments, MS-

Excel: Analysis of Experimental Data, SPSS: An Overview, Combined Analysis of Data and 

Stability Analysis. Participants have analyzed some of the data sets on their own. The 

preparation of data and important characters such as seed yield, oil content and plant stand  

were finalized on which replicated data shall be collected.  It was also decided that the 

randomized layout should also be provided along with data to the co-ordinating unit.  

 A Workshop-cum-training programme on Design and Analysis of Farmers Participatory 

Research Trials for the research personnel involved in the conduct of farmers participatory 

research trials under the aegis of Rice Wheat Constortium for Indo-Gangetic Plains was 

organized during August 10-12, 2006. This workshop-cum-training programme aimed at the 

theme of statistical principles involved in the conduct of farmers participatory research trials. 

It was attended by 20 participants. Out of 20 participants, 7 were from RWC-CIMMYT, 2 

from IRRI, 2 from Banaras Hindu University, 4 from different ICAR Institutes, 4 from SAUs 

and 1 from State Department of Agriculture. The topics discussed were fundamentals of 

design of experiments, contrast analysis, analysis of covariance, biplot graphic display, SAS 

and ASreml.  The main emphasis was laid on case studies. Several real data sets were 

analyzed by the participants using SAS. The workshop-cum-training programme was 

conducted in participatory mode. A lot of discussions took place. It was decided that some 

treatments such as conventional tillage may be kept common for all the farmers. The data 

may be analyzed on grain yield, straw yield, thousand grain weight and returns over variable 

cost. To investigate the effect of resource conversation technologies on the soil physical and 

biological properties, long term experiments with reference to resource conservation 

technologies may be conducted at some of the ICAR institutes. The clear cut definition and 

identification of treatments was done and all the centres were asked to present their data as 

per the terminology finalized. The variables on which the data is to be supplied were also 

finalized along with EXCEL sheets. 

 Organized a symposium on Information Extraction from Data Investigation as Convener 

during the 9
th
 Annual Conference of Society of Statistics, Computer and Applications held at 

Department of Statistics, Saurashtra University Rajkot during November 11-13, 2006. 

 Organized four Sessions on the Theme 2: Emerging Issues in Areas of Basic Statistical 

Research as Convener along with Professor Sudhir Gupta, Northern Illinois University, USA 

during International Conference on Statistics and Informatics in Agricultural Research 

organized by at I.A.S.R.I., New Delhi during December 27-30, 2006 to celebrate the 

Diamond Jubilee of Indian Society of Agricultural Statistics at NASC Complex, New Delhi. 
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 Teaching and Research Guidance 

 

A) Teaching 

Year Trimester Course Taught Jointly 

with 

Number of 

Lectures Taken 

2005-06 Trimester II AS 171: Bioinformatics-I 

(3L+1P) 

Dr. V.K. Bhatia, 

Dr. A.R. Rao & 

Dr. K.V. Bhatt 

9 (8L + 1P) 

2005-06 Trimester III AS 163: Statistical Inference 

(4L + 1P) 

Dr. L.M. Bhar 31(25L+6P) 

2005-06 Trimester III AS 208: Bio-informatics-II 

(2L+1P) 

Dr. V.K. Bhatia 

and Dr. K.V. Bhat 

6 (6L+0P) 

2006-07 Trimester - I AS 200: Design of 

Experiments-II  

(1L+1P) 

 

Dr. Cini Varghese 18 (15L +3P) 

2006-07 Trimester-II AS 171: Bioinformatics-I 

(3L+1P) 

Dr. V.K. Bhatia 

and Dr. K.V. Bhat 

19 (15L+4P) 

 

B)  Research Guidance (P.G. Students Guided) 

 Chairman Advisory Committee:  

- 2 Ph.D. (Agricultural Statistics) : Continuing 

- Sh. Ananta Sarkar, Roll No. 8976 completed his Ph.D. (Agricultural Statistics). Title of his 

thesis was A Study on Design and Analysis of Microarray Experiments. 

 

The salient achievements of the above research investigation are: 

In microarray experiments, the four experimental factors are array (A), dye (D), variety (V) and 

gene (G). These four experimental factors give rise to 2
4 

-1= 15 possible experimental effects 

excluding the general mean. Out of these 15 possible experimental effects, seven effects viz. 

array (A), dye (D), variety (V), gene (G), array-gene interaction (AG), dye-gene interaction (DG), 

variety-gene interaction (VG) effects are of main interest to the experimenter. In the present 

investigation, we have considered experimental situations where the same set of genes is spotted 

on each array. Therefore, gene/gene specific effects (G, AG, DG, VG) are orthogonal to  global 

effects (A, D, V). Optimality aspects of designs for microarray experiments, can therefore, be 

studied leaving gene specific effects from the model, i.e., by taking only array, dye and variety 

effects in the model. Designs that are good under the model containing global effects are also 

good under the model containing both global and gene specific effects. 

 

In 2-colour microarray experiments, only two varieties labelled with two different dyes can be 

accommodated on one array; therefore, arrays may be considered as blocks of size 2. Further, 

array effects may be taken as random. To deal with the problem of obtaining efficient designs 

when array effects are random, the lower bounds to the A- and D-efficiencies of the designs in a 

given class of designs have been obtained for block designs under mixed effects model. The 

existing algorithm based on exchange and interchange of treatments has been modified by 

incorporating the procedure of computing lower bounds to A- and D-efficiencies under mixed 

effects model. The algorithm developed is general in nature and can be used for generation of 

efficient block designs for any vk 2 , where v is the number of treatments (varieties) and k is 

block size. Using this algorithm, efficient block designs for microarray experiments have been 

obtained in the parametric range 3  v  16, v  b  v(v-1)/2 and 17  v  25 ; b = v and k = 2, 

where b is the number of arrays/ blocks. A total of 569 designs including all the 14 unreduced 
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balanced incomplete block designs in this parametric range have been obtained. Efficient block 

designs obtained under fixed effects model have been compared with the best available designs 

(designs with highest lower bound to A-efficiency) in literature and 2-associate partially balanced 

incomplete block designs. 30 designs are found to be more efficient than the best available block 

designs. The robustness aspects of designs obtained and best available block designs have been 

investigated under mixed effects model. Out of 30 more efficient designs, 7 designs are found to 

be strongly robust, 18 designs are found to be robust and the remaining 5 designs are non-robust.  

 

Efficient block designs for 2-colour microarray experiments have been obtained under a restricted 

model involving array and variety effects. The dye effects have been ignored from the model, 

since in microarray experiments, the two varieties appearing on the array are to be labeled with 

two different dyes. If the variety at position 1 in a block is labeled with dye 1 and the variety at 

position 2 is labeled with dye 2, then the block contents should be so arranged that the varieties 

are most balanced with respect to dyes. Further, if dye effects are included in the model, then the 

structure of the design becomes that of a row-column design where arrays represent columns, 

dyes represent rows and varieties represent treatments. Efficient row-column designs have been 

obtained in the parametric range 2/)1(,103  vvbv v ; vb v  ,2511  and ),( b v = 

(11, 13), (12, 14), (13, 14) and (13, 15), where b is the number of arrays/columns by modifying 

the existing exchange and interchange algorithm of row-column designs. A total of 139 designs 

have been obtained. Efficient row-column designs obtained under fixed effects model are then 

compared with the best available designs (block designs with highest A-efficiency under row-

column set up after rearranging the block contents in such a fashion that the varieties are most 

balanced with respect to dyes)  and even designs (designs in which replication of each variety is 

even). 45 designs are found to be more efficient than the best available designs and 90 designs 

obtained are more efficient than the best even designs. Robustness aspects of designs obtained 

and best available designs are then investigated under mixed effects model. Out of 45 more 

efficient designs, 9 designs are found to be strongly robust, 22 designs are found to be robust and 

the remaining 14 designs are not-robust.  

 

The catalogues of all efficient block designs and row-column designs obtained and the best 

available designs have been prepared along with their lower bounds to A-and D-efficiencies 

under fixed/mixed effects models and their robustness status.  Strength of the algorithm for 

obtaining block designs/ row-column designs for 3-colour microarray experiments has also been 

demonstrated with the help of examples. 

 

After the conduct of experiment using an appropriate design, the next step is analysis of data to 

identify differentially expressed genes from microarray experiments. We have developed 

analytical procedure based on single-step mixed effects model as well as two-stage linear mixed 

effects models considering array effects as random to identify differentially expressed genes from 

microarray experiments. The analytical techniques developed have been illustrated using real life 

data sets. 

 Co-Chairman Advisory Committee: 2 M.Sc. (Agricultural Statistics) students completed. 

 Member Advisory Committee: 6 students (1 Ph.D. and 5 M.Sc.) completed their respective 

degrees. 
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 Presentations in Conferences/ Symposia/ Workshop/ Seminar and Other fora 
 

 Presented 11 research papers (2 Invited by self, 4 invited and 5 contributed  by co-authors) 
No. Name of the 

Conference/ Sumposia/ 

Workshop 

Organizing Institution, 

Venue and Duration 

Papers Presented 

1. Group Meeting of 

AICRP on STCR 

I.A.S.R.I., New Delhi 

during November 02-03, 

2006 

- Design and Analysis of Experiments Under 

AICRP on STCR (V.K. Gupta*, Rajender 

Parsad) 

2. 9
th

 Annual Conference of 

Society of Statistics, 

Computer and 

Applications  

 

Department of Statistics, 

Saurashtra University 

Rajkot during November 

11-13, 2006. 

- Statistical Analytical Techniques for 

Farmers’ Participatory Research trials for 

Conservation Agriculture.  (Rajender 

Parsad*, Jose Crossa and V.K. Gupta): 

Invited Talk in Symposium on 

Information Extraction from Data 

Investigation. 

- Super Saturated Designs: Some Thoughts 

(V.K. Gupta*, Rajender Parsad and Lal 

Mohan Bhar): Special Invited Talk  

3. International Conference 

on Statistics and 

Informatics in 

Agricultural Research as 

Diamond Jubilee of 

Indian Society of 

Agricultural Statistics at 

NASC Complex, New 

Delhi. 

 

I.A.S.R.I., New Delhi 

during December 27-30, 

2006 

- Efficient Designs for 2-Colour Microarray 

Experiments (Ananta Sarkar, Rajender 

Parsad*, V.K. Gupta and Abhishek 

Rathore): Invited Talk in Theme 4: 

Statistical and Computational Biology in 

Agriculture 

- Supersaturated Designs for Asymmetrical 

Factorial Experiments (V.K. Gupta*, 

Rajender Parsad and L.M. Bhar): Invited 

Talk in Theme 2: Emerging Issues in Areas 

of Basic Statistical Research. 

- Computer Aided Generation of  Hadamard 

Matrices and Orthogonal Arrays (A. 

Dhandpani*, V.K. Gupta and Rajender 

Parsad): Invited Talk in Theme 3: 

Agricultural Informatics 

Poster Presentations 

- Robustness aspects of response surface 

designs against loss of data (R. 

Srivastava*, Rajender Parsad, Manisha 

Jain and P.K. Batra) 

- Robustness of BIB and GD designs for 

correlated observations (Seema Jaggi. 

Rajender Parsad, V.K.Gupta and Suman 

Kumar*) 

- Construction of Doubly Nested Balanced 

Incomplete Block Design (B.N. Mandal*, 

Rajender Parsad and V.K. Gupta) 

- Analysis of On-Farm Experiments over 

Farming Situations (D.N. Jha*, P.K. Batra 

and Rajender Parsad) 

- Analysis of Microarray Data (Ananta 

Sarkar*, Rajender Parsad, K.V. Bhat and 

V.K. Bhatia). 

 (* represents the author who presented the paper) 
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 Besides the above, I also attended the following: 

- Brain Storming Session on Low and Declining Crop Responses organized by National 

Academy of Agricultural Sciences during February 20-21, 2006. 

- XIII Annual Group Meeting of AICRP on Rapeseed and Mustard held at CCS HAU Hisar 

during August 02-04, 2006 as Resource Person. 
 

 Special Lectures Delivered 
 

A) Lectures Delivered in Training Programmes at IASRI, New Delhi 

 22 Lectures were delivered on the following topics during various training 

programmes held at I.A.S.R.I., New Delhi. 
 Training programme on Design and Analysis of Experiments for Rapeseed-

Mustard Varietal Trials for plant breeders and statisticians of AICRP on 

Rapeseed-Mustard (May 10-11, 2006). 

4 Lectures 

- File preparation in MS-Excel 1 Lecture 

- Analysis of Variance, Analysis of Covariance, Multiple Comparison Procedures 1 Lecture 

- Diagnostics in Designed Experiments 1 Lecture 

- Combined Analysis of Experimental Data 1 Lecture 
  

 Refresher course on Small Area Estimation for the senior and middle level 

officers from Central Statistical Organization (July 10-15, 2006) 

2 Lectures 

- SAS: An Overview 2 Lectures 
  

 Summer School on Sample Survey Techniques in Agricultural Research 

(September 05-25, 2006). 

1 Lecture 

- SAS: An Overview 1 Lecture 
  

 Training programme on Biometrics in Agricultural Research (October 03- 

November 30, 2006) 

3 Lectures 

- SPBD Release 1.0   1 Lecture 

- SPFE 1.0 2 Lectures 
  

 Training programme on Statistical Methods for Agricultural Research with 

Use of Software (November 01-21, 2006). 

4 Lectures 

- SAS: An overview and SAS: Statistical Procedures 2 Lecture 

- Multiple Comparison Procedures 1 Lecture 

- SPBD/SPFE/SPAD 1 Lecture 
  

 Training programme on Advances in Data Analytical Techniques (February 

08-28, 2007). 

8 Lectures 

- SAS: An Overview 1 Lecture 

- Minitab: An Overview 1 Lecture 

- SPBD/SPFE/SPAD 1 Lecture 

- Hotelling T
2
 and Multivariate Analysis of Variance 1 Lecture 

- Principal Component Analysis, Factor Analysis and Discriminant Analysis 1 Lecture 

- Response Surface Methodology 1 Lecture 

- Multiple Comparison Procedure 1 Lecture 

- Design and Analysis of Microarrays 1 Lecture 

 

 Besides above, a Seminar on Hands on Experience of  Analysis of Farmers Participatory 

Research Trials Conducted By Rice-Wheat Consortium for Indo-Gangetic Plains was 

delivered on July 28, 2006. 
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B)    Invited Lectures Delivered 

3 Invited Lectures are delivered Division of Agricultural Economics, IARI, New 

Delhi; Water Technology Centre, IARI, Faculty and Students, M.D. University, 

Rohtak. 

- One lecture on Multivariate Techniques: An Overview to the participants of the training 

programme organized under center of Advanced Studies at Division of Agricultural 

Economics, IARI, New Delhi. (March 14, 2006). 

- One lecture on Fundamentals of Design of Experiments at Water Technology Centre, 

IARI, New Delhi (December 04, 2006) 

- One lecture on Statistics: Career and Prospects to the students and faculty of Department 

of Statistics, M.D. University, Rohtak during their study visit to IASRI, New Delhi on March 

22, 2007. 
 

 Visits Abroad 

 

1. Deputed for a study visit on Hands-on Experience on Analysis of Farmer Participatory 

Research Trials conducted by Rice-Wheat Consortium for Indo-Gangetic Plains to CIMMYT, 

Mexico from May 24-June 28, 2006. During this study visit, I worked on ASREML (a 

statistical package that fits linear mixed effects models using Residual Maximum Likelihood 

(REML)) for spatial data analysis. Also worked on SAS to obtain biplots from Additive Main 

Effects and Multiplicative Interactions, and Sites Regression (SREG) models. Analyzed 5 

data sets of RWC for IGP. In this analysis, farmers or villages are taken as blocks and 

resource conservation technology options as treatments. Farmers/villages effects were taken 

as random. Efforts were also made to find year  trt interactions and variety  treatment 

interactions. The efforts were also made to identify technology for a given variety or soil 

type. The results obtained were communicated to Dr R.K. Gupta and other scientists involved 

for their comments. The data file preparation for the analysis is very important. Some 

suggestions were also made on how to prepare the EXCEL files to maintain uniformity 

overall locations and years. 

 

2. Deputed for participating in 14
th
 Regional Technical Coordination Committee Meeting of the 

Rice-Wheat Consortium for Indo-Gangetic Plains held at Katmandu, Nepal during February 

13-16, 2007. During this meeting, I presented a paper on Statistical Tools for Farmers’ 

Participatory Research Trials for Conservation Agriculture. 
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Executive Summary                        

 In agricultural experiments, generally data on more than one character is observed. The 

experiments, where corresponding to the application of a treatment, more than one response 

variables are recorded, are known as multi-response experiments. Analytical procedures of 

analysis of data from multi-response experiments conducted using block designs have been 

developed. A method based on Euclidean distance and J-plot has also been developed for 

identification of the best treatment. 

 To tackle the problem of outlier(s) in multi-response experiments, a test statistic has been 

developed for identification of a single outlier observation vector in complete multi-response 

experiments run in a block design.  

 A catalogue of block designs with minimally connected designs with 4, 5, 6, 7 or 8 extra 

observations has been prepared alongwith lower bounds to A- and D- efficiencies and block 

contents.  

 Extended Group Divisible (EGD) designs for three factors that permit the estimation of all 

main effects with no loss of information were obtained using self-complementary GD 

designs with replication number less than 6 and block size less than 11. A catalogue of such 

designs along with efficiencies for main effects and interactions was prepared. These designs 

are useful for crop sequence experiments. 

 Results on non-existence of NPBIB designs based on group divisible designs has been 

obtained. Methods of construction of NPBIB designs based on Latin Square association 

scheme and Rectangular association scheme have been obtained and catalogued. 

 Nested block designs for nearest neighbour correlation structure within sub-blocks of a 

block in a nested block design set up and for zero correlation structure in bigger blocks 

ignoring the sub-block classification were obtained. 

 Analytical techniques based on mixed effects models and biplots have been developed for 

analysis of data generated from Farmers’ participatory research trials for Resource 

Conservation Technologies conducted by the Rice-Wheat Consortium (RWC) for Indo-

Gangetic Plains. 

 Doubly nested partially balanced incomplete block designs have been introduced. Some 

general methods of construction of doubly nested partially balanced incomplete block 

designs are obtained using doubly nested balanced incomplete block (DNBIB) designs, 

nested balanced incomplete block designs and partially balanced incomplete block designs. 

 Robustness of BIB and PBIB [Group Divisible (GD) and Cyclic] designs has been studied 

under correlated error structure [NN and AR(1)] for a given value of correlation coefficient 

in terms of A-efficiency.  

 Binary variance balanced block designs have been shown robust in the presence of two 

outliers. Robust estimation procedure of treatment effects based on Least Median Squares 

has been developed.  

 Developed a -version of On-line Software for the generation of Hadamard matrices up to 

the order 1000.  

 Supersaturated designs for asymmetrical factorial experiments have been obtained using 

resolvable orthogonal arrays and Hadamard matrices. Some criteria for comparing 

supersaturated designs for asymmetrical factorial experiments are also given. 

 To disseminate the knowledge available on combinatorial aspects of designs and analytical 

procedures acquired to scientists engaged in research in the National Agricultural Research 

System. The advisory services are pursued rigorously. For the benefit of the experimenters 



and practicing statisticians, Design Resources Server has been strengthened by adding 6574 
etTIcient block designs for making all possible pairwise treatment comparisons. 

• 	 Taught 5 courses to M.Sc. and Ph.D. students and gui ded 1 Ph.D. student as Chairman; 2 
M.Sc. students as Co-Chairman and 5 M.Sc. and 1 Ph.D. students as memb r advisory 
committee. 2 Ph.D. students are working under my gu idance. 

• 	 Published 12 research papers; 3 popular articles; 2 Book Chapters; 1 Electron ic Book and 1 
Monograph. 4 papers have been accepted for publication and 7 papers have been 
communicated. 11 papers are presented in InternationallNational Conferences. Del ivered 24 
lectures in ad-hoc training programmes organized at [ASRI and 3 invited lectures in other 
acaden1!l.. organizations. 

Organized an International Conference on Statistics and Informatics in Agricultural 
Resear('h as Member Organizing Committee and organized Four Sessions on the Theme 2: 
Emerging Issues in Areas of Basic tatistical Research as Convener al ong with Professor 
Sudhir Gupta, Northern Illinois University, USA during this conference. 

• 	 Organ ized a Symposium on Information Extraction from Data Investigation as Convener 
during the 9'h Annual Conference of Society of Statistics, Computer and Applicati ons 

Organized three trainmg programmes (i) Design and Analysis of Experimen ts for Rapeseed
Mustard Varietal Trials; (ii) Design and Analys is of Fanners Partic ipato ry Research rials 
and (iii) Advances in Data Analytical Techniques as Course Director. Deput d for a study 
visit on lIands-Dn-Experience on Analysis of Farmers' Part icipatory Research Trials 
Conducted by R WC fo r Indo-Gangetic Plains to CIMMYT, Mexico during May 24-June 28, 
2006. Also deputed for participating in 14'h R gional Technical Coordination Committee 
Meeting of RWC for Indo-Gangetic Plains held at Kathmandu, Nepal during February 14 
15,2007. 

• 	 Elected as Associate Fellow of National Academy of Agricultural Sciences. Nomi nated as 
Managing Editor, Journal of Econometric Applications and Theory, a publicatio n of 
Forum for Interdiscipl inary Mathematics and Joint Secretary, Forum fo r Interdisciplinary 
Mathematics. 

}~~~ 
r , 	 -:<.\. C.~ .R b~~ I0')

( ]) ~j ) Rajender Parsad ) 
- Principal Investigator, ~ 

'-~) l 'j(~ 
Signature of Head of the Institu te 
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