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Abstract Reliable forecast of groundwater level is necessary for its sustainable use and for
planning land and water management strategies. This paper deals with an application of
artificial neural network (ANN) approach to the weekly forecasting of groundwater levels in
multiple wells located over a river basin. Gradient descent with momentum and adaptive
learning rate backpropagation (GDX) algorithm was employed to predict groundwater levels
1 week ahead at 18 sites over the study area. Based on the domain knowledge and pertinent
statistical analysis, appropriate set of inputs for the ANN model was selected. This consisted of
weekly rainfall, pan evaporation, river stage, water level in the surface drain, pumping rates of
18 sites and groundwater levels of 18 sites in the previous week, which led to 40 input nodes
and 18 output nodes. During training of the ANN model, the optimum number of hidden
neurons was found to be 40 and the model performance was found satisfactory (RMSE=
0.2397 m, r=0.9861, and NSE=0.9722). During testing of the model, the values of statistical
indicators RMSE, r and NSE were 0.4118 m, 0.9715 and 0.9288, respectively. Using the same
inputs, the developed ANN model was further used for forecasting groundwater levels 2, 3 and
4 weeks ahead in 18 tubewells. The model performance was better while forecasting ground-
water levels at shorter lead times (up to 2 weeks) than that for larger lead times.
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1 Introduction

Groundwater simulation models have emerged as an important tool among water re-
sources researchers and planners to optimize groundwater exploitation and to protect this
vital resource. Physically based numerical models are being used during past several
years for simulation and analysis of groundwater systems and thereby taking corrective
measures for the efficient utilization of water resources. These models serve as a tool for
depicting hydrological variables and understanding physical processes taking place in the
aquifer system. With the proliferation of use of computers, they are being widely used by
engineers, environmentalists and hydrogeologists to problems ranging from aquifer safe
yield analysis to groundwater quality and remediation issues. However, these modeling
techniques are very data intensive, laborious and expensive. Therefore, the use of
physical based models is highly restricted in developing countries due to lack of adequate
and good quality data. In such cases, when the data is not sufficient and getting accurate
predictions is more important than conceiving the actual physics of the system, empirical
models serve an attractive alternative as they can provide useful results using relatively
less data and time. Artificial Neural Network (ANN) techniques are one of such models,
which are treated as universal approximators and have the ability to identify a relationship
from a given pattern (ASCE 2000a). Unlike physically based numerical models, ANNs
do not require explicit characterization and quantification of physical properties, nor
accurate representation of the governing physical laws (Coppola et al. 2005). The ability
to learn and generalize from sufficient data pairs makes it possible for ANNs to solve
large-scale complex problems (ASCE 2000a; Haykin 1999) including water management
problems.

The ANN technique has been used in various branches of hydrology which includes
rainfall-runoff modeling, precipitation forecasting, modeling of streamflows, evapotranspira-
tion, water quality and groundwater management (Gobindraju and Ramachandra Rao 2000;
ASCE 2000a; b). Particularly, in groundwater hydrology, the neural network technique has
been used for aquifer parameter estimation (Aziz and Wong 1992; Morshed and Kaluarachchi
1998; Balkhair 2002; Shigdi and Garcia 2003; Garcia and Shigdi 2006; Samani et al. 2007,
Karahan and Ayvaz 2008; Viveros and Parra 2014), groundwater quality prediction (Hong and
Rosen 2001; Milot et al. 2002; Kuo et al. 2004; Banerjee et al. 2011; Chang et al. 2013), and
groundwater level prediction (Coulibaly et al. 2001; Coppola et al. 2003, 2005; Daliakopoulos
et al. 2005; Nayak et al. 2006; Uddameri 2007; Krishna et al. 2008; Ghose et al. 2010;
Mohanty et al. 2010; Yoon et al. 2011; Taormina et al. 2012; Sahoo and Jha 2013; He et al.
2014; Emamgholizadeh et al. 2014). In most of the past studies on ANN modeling of
groundwater level, ANN models were developed for simulating groundwater level in a single
well or in a few wells only. However, this paper focuses on the application of ANN approach
for the weekly forecasting of groundwater levels in a group of wells in an alluvial aquifer
system.

2 Study Area
The study area is located in the Mahanadi Delta of Odisha, India (Fig. 1) and is

surrounded by the Kathajodi River and its branch Surua. It is located between 85° 54’
21” and 86° 00° 41” E longitude and 20 ° 21’ 48” to 20 ° 26 00” N latitude. The
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Fig. 1 Location of observation and pumping wells in the study area

altitude of the area varies from 18 to 23 m MSL. The total area of the river island is
35 km? and agriculture is the major occupation of the inhabitants. Total cultivated area in
the region is 2445 ha of which 1365 ha (55.83 %) is irrigated land. Total low lands in the
region are 408 ha, medium lands are 1081 ha and high lands are 956 ha. All the low
lands, medium lands and 618 ha of total high lands are used for paddy cultivation in the
monsoon season (June to October). In the post-monsoon season, majority of the low
lands are used for paddy cultivation and a substantial portion of the medium lands and
high lands are under vegetable cultivation. Owing to the lack of irrigation infrastructure
for surface water, all the irrigated lands are irrigated by groundwater. There are about 100
government tubewells in the study area, which are the major source of groundwater
withdrawal for irrigation. These have been constructed and managed by the Orissa Lift
Irrigation Corporation, Cuttack; but now they have been handed over to the water users’
associations (WUAs). Of the hundred tubewells in the study area, presently 69 tubewells
are in operation. Besides the government tubewells, there are a few private dug wells,
which are mainly used for the drinking purpose. However, some of these dug wells get
dry during dry (non-rainy) seasons (March-May), and thereby creating drinking water
scarcity in the study area.

Even though the Kathajodi River and Surua River flow on both sides of the study area,
there is a water shortage during dry periods. Embankments have been provided on the
banks of the rivers to prevent the entry of river water into the inhabited area during flood
events. Therefore, entire rainwater of the region is drained through a main drain and
discharged through a single outlet into the River (Fig. 1). A sluice gate is provided at the
outlet to prevent river water inflow into the study area during flood events. During this
time, surface waterlogging problem is often encountered in the downstream portion of the
study area.
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3 Materials and Methods
3.1 Data Collection and Monitoring

Groundwater level data in the study area was obtained by monitoring groundwater levels at 19
sites (A to S in Fig. 1) on a weekly basis from February 2004 to June 2007. However, the
groundwater level data of 18 sites were considered for this study as groundwater level
monitoring could not be continued at one site for the entire period. The climatic data were
obtained from a meteorological station at Central Rice Research Institute (CRRI), Cuttack,
Odisha located at about 2 km from the study area. As the weekly river stage data adjacent to
the project site were not available, the river stage data measured at the Naraj gauging station
were collected from the Central Water Commission Office, Bhubaneswar, Odisha. As the river
stage at Naraj directly influences the river stage around the study area, the use of river stage
data of Naraj for neural network modeling is justified.

3.2 Design of Neural Network Model

In this study, the widely used feedforward neural network (FNN) architecture was employed. It
is one of the simplest neural networks and has been successfully used for water resources
variable modeling and prediction (Maier and Dandy 2000; ASCE 2000a). In a feedforward
neural network, the nodes are generally arranged in layers, starting from a first input layer and
ending at the final output layer. The nodes in one layer are connected to those in the next, but
not to those in the same layer. Thus, the output of a node in a layer is only dependant on the
input it receives from previous layers and corresponding weights. Figure 2 illustrates
feedforward network having one hidden layer, ‘n’ nodes in the input layer and ‘m’ nodes in
the output layer.

The hidden neurons and the output neurons were calculated using the following ANN
functions.

zj=f4 (Z xiWi./+T./> (1)
i=1

Input Hidden Output
Layer Layer Layer

I

Network L

Input

Fig. 2 Configuration of feedforward three-layer ANN for the study area
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h
Vi = 84 (Z Zjﬁjk+¢k> (2)

=1
Where, the ANN model has # input neurons (xi, ..., X,), # hidden neurons (zy, ..., z,), and m
output neurons (vy, ..., Ym); i, j, and k are the indices representing input, hidden, and output

layers, respectively; 7; is the bias for neuron z; and ¢ is the bias for neuron y. w;; is the weight
of the connection from neuron x; to neuron z; and 3 is the weight of connection from neuron z;
to y; g4 and f; are activation functions.

The neural network model was designed to predict groundwater levels in 18 tubewells
(Fig. 1) with 1-week lead time using a set of suitable input parameters. Based on the
correlation analysis between groundwater level and the selected input parameters, weekly
groundwater level at 1-week lag time, weekly rainfall, weekly river stage, weekly evap-
oration, weekly water level in the main surface drain and weekly pumping from tubewells
were considered as final input parameters. There were altogether 40 input nodes and 18
output nodes in the ANN model of the study area. The 40 input nodes represent ground-
water levels with 1-week lag time at the 18 sites, groundwater pumping rates of the 18
tubewells, weekly rainfall, average weekly pan evaporation, average weekly river stage,
and average weekly water level at the drain outlet. The 18 output nodes represent
groundwater levels at the 18 sites in the next time step (i.e., 1 week ahead). Three ANN
algorithms, namely gradient descent with momentum and adaptive learning rate
backpropagation (GDX) algorithm, Levenberg-Marquardt (LM) algorithm and Bayesian
regularization (BR) algorithm were used for predicting groundwater levels in Kathajodi-
Surua Inter-basin (Mohanty et al. 2010).

3.3 Model Training and Testing

The structure of the neural network consisted of one hidden layer along with the input
and output layer. The optimal number of nodes in the hidden layer was optimized by trial
and error based on selected criteria of evaluation. The activation function of the hidden
layer and output layer was set as log-sigmoid transfer function as this proved by trial and
error to be the best among a set of other options. The log-sigmoid function is defined as
follows:

/()

= Tro wheresis any variable (3)
e

In this study, supervised type of learning with a batch mode of data feeding was used for
ANN modeling. Out of the 174 weeks datasets available, 122 datasets were used for training
the ANN model and 52 datasets were used for testing the model. The ANN modeling was
performed using MATLAB software.

3.4 Model Evaluation Criteria
Observed groundwater level hydrographs and ANN model simulated groundwater level
hydrographs were plotted for visual checking of the model performance. Besides the

visual checking, three statistical indicators (goodness-of-fit criteria) were used to evaluate
the effectiveness of the developed ANN model, which are correlation coefficient (r), root
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mean squared error (RMSE) and Nash-Sutcliffe efficiency (NSE). Correlation coefficient
determines (r) whether two ranges of the data move together, i.e., whether large values of
one dataset are associated with large values of the other dataset, whether small values of
one dataset are associated with large values of the other dataset, or whether values in both
datasets are unrelated. The root mean squared error (RMSE) indicates the degree of error
in modeling. The NSE is a measure of explained variance by the model. For the best-fit
between observed and predicted groundwater levels under ideal conditions, the values of r
would be 1, RMSE would be 0 and NSE would be 1. These statistical indicators are
expressed as follows:

N
Z (hoi*hpi)z
N

NSE=1-“° (6)

_\2
(hui_hu)

—1

Where, h,; is observed groundwater level in the i week [L], A, is predicted
groundwater level in the i week, %, is mean of the observed groundwater levels [L],

hy, is mean of the predicted groundwater levels [L], and N=total number of observed
data [dimensionless].

4 Results and Discussion

4.1 Groundwater Level Forecasting in a Group of Wells

With the ANN model having 40 input nodes and 18 output nodes, the Lavenberg-Marquardt
and Bayesian regularization models consumed a lot of time for completing a single iteration to

be evaluated by the trial and error method. Maier and Dandy (1998) also reported that the
Lavenberg-Marquardt algorithm has a great computational and memory requirement and thus
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it can only be used in small networks. The same is true for the Bayesian regularization
algorithm also. In contrast, the GDX algorithm could effectively be evaluated through trial
and error procedure due to less memory requirement. Thus, the GDX model was found
suitable for forecasting groundwater level in a large group of wells simultaneously in a river
basin, and hence was used in the current study. The ANN architecture with lowest RMSE
value, highest correlation coefficient and highest Nash-Sutcliffe efficiency was considered to
yield optimum number of hidden neurons, and it was found to be 40 by trial and error method.
Figure 3 shows the variation of RMSE and NSE with number of nodes in hidden layer during
the testing of the model. During the training of the model, the statistical indicators r, RMSE
and NSE were 0.9861, 0.2397 m and 0.9722 respectively, whereas the corresponding param-
eters were 0.9715, 0.4118 m and 0.9288 during testing of the model. The values of the
statistical indicators show that the performance of the model is satisfactory during both training
and testing period, and it is able to forecast groundwater levels 1 week in advance with a
reasonable accuracy.

Figure 4a to ¢ show the comparison of observed and predicted groundwater levels at three
sites, i.e., Dadhibamanpur (E) from the upstream side of the basin, Kulakalapada (L) towards
the middle of the basin and Kulasarichuan (R) from the downstream side of the basin. These
figures indicate that there is a very good matching between observed and predicted ground-
water levels at all the sites. Based on the model evaluation criteria (statistical indicators) and
the graphical comparison, it can be inferred that the developed ANN model forecasts ground-
water levels at multiple sites satisfactorily.

4.2 Forecasting of Groundwater Levels at Higher Lead Times

While a 1 week ahead forecast is good enough for groundwater management in the aquifer,
forecasts of higher lead time are required for efficient planning of integrated management of
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Fig. 3 Variation of RMSE and NSE with the number of nodes in the hidden layer
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surface water and groundwater. Therefore, the ANN model was further used to forecast
groundwater levels at 2-, 3- and 4-week in advance in the study area. It may be noted
that the inputs used for this analysis were the same as that used for forecasting
groundwater levels at 1 week in advance. The performance of this model in terms of r,
RMSE and NSE statistics during the training and testing period is shown in Table 1. It is
apparent from this table that during the training period, the r value varies from 0.9861 for
1-week lead time forecast to 0.9306 for 4-week lead time forecast, the RMSE value
varies from 0.2397 m for 1-week lead time to 0.4831 m for 4-week lead time and the
value of NSE varies from 0.9722 for 1-week lead time to 0.8841 for 4-week lead time.
During testing period, the r value varies from 0.9715 for 1-week lead time forecast to
0.9270 for 4-week lead time forecast, the RMSE value varies from 0.4118 m for 1-week
lead time to 0.6148 m for 4-week lead time and the value of NSE varies from 0.9288 for
I-week lead time to 0.8471 for 4-week lead time. It is evident that even though
prediction of groundwater level for higher lead times is reasonably satisfactory, the
values of r and NSE are slightly decreased and the RMSE value is slightly increased
with an increase in the lead time. It indicates that the model can forecast groundwater
levels at lower lead times more accurately. A variation was also observed in the
performance of the model in predicting groundwater levels in different wells; this can
be attributed to the quality of data available.

The observed and simulated groundwater levels at different lead time forecasts are
shown in Fig. 5 (a to ¢) for three sites, Dadhibamanpur (Site E), Kulakalapada (Site L)
and Kulasarichuan (Site R), respectively. These figures also indicate better matching
between observed and simulated groundwater levels for the smaller lead times (up to
2 weeks) compared to large lead time. Thus, it can be inferred that the performance of
the ANN model generally decreases with an increase in the lead time. However, the
groundwater-level prediction for higher lead times (up to 4 weeks) is also reasonably
accurate in this study. Thus, it could be inferred that despite the data constraints in this
study, the developed ANN models predicted weekly groundwater levels over the river
basin reasonably well for 1-, 2-, 3- and 4-week lead times. The neural networks also have
the advantage of not requiring explicit characterization and quantification of the physical
properties and condition of the aquifer system. Also, the data requirement of ANNSs is
generally easier to collect and quantify than the physically based models. However, the
numerical models can be more appropriate for long-term predictions, whereas the ANN
technique may be better for real-time short-horizon predictions at selected locations
(Coppola et al. 2005).

Table 1 Goodness-of-fit statistics for different lead time forecasts

Lead time r RMSE (m) NSE

Training Testing Training Testing Training Testing
1 week 0.9861 0.9715 0.2397 0.4118 0.9722 0.9288
2 weeks 0.9639 0.9407 0.3885 0.5540 0.9260 0.8713
3 weeks 0.9306 0.9336 0.5226 0.5866 0.8652 0.8589
4 weeks 0.9403 0.9270 0.4831 0.6148 0.8841 0.8471
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5 Conclusions

This paper demonstrates the effectiveness of artificial neural network (ANN) modeling in
forecasting weekly groundwater levels in a group of wells located in an alluvial aquifer system.
Owing to less memory requirement, the Gradient descent with momentum and adaptive
learning rate backpropagation (GDX) algorithm was found suitable for simultaneously fore-
casting groundwater levels in a large group of wells. The developed ANN model was capable
of forecasting groundwater levels in the study area 1-week in advance with a reasonable
accuracy. This model was further used to forecast groundwater levels at 18 sites for higher lead
times, viz., 2- 3- and 4-week lead times. The analysis of the modeling results revealed
reasonably good prediction/forecast of groundwater levels for all the three larger lead times,
though the accuracy of prediction was found to decrease with increasing lead times.

The developed model can be used to get a reasonable estimate of groundwater level 1 week
ahead in the study area, thereby it can help in the proper planning of groundwater utilization. In
future, the present work can be extended to develop ANN models to estimate groundwater
level at a monthly time step so that groundwater-level prediction can be done at a longer time
ahead. In addition, a sensitivity analysis of the ANN model can be conducted to find out most
significant number of ANN connections, which in turn can improve the robustness of the
developed ANN model.
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