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A B S T R A C T

The northern part of West Bengal, India partially falls within the Terai region of Himalaya. This region is
distinctive in terms of high forest cover and rich biodiversity, but also features increasing human
population, agricultural practices, and subsequent human-wildlife conflict. This study evaluated the
impact of anthropogenic and agricultural proliferation on land use and land cover (LULC) transition
dynamics of a forest and its surrounding area of this region. Jaldapara National Park along with its
neighbouring region represents an ideal example of such ecology and thus was chosen as the study area.
Satellite remote sensing was used to overcome accessibility issues in areas of protected forest and model
future possible LULC of the area. Results indicated a continuous decrease in dense forest from 1978 to
2016. Modelling predicted a continuation of the same trend through 2050. The total area under forest
increased from 1978 to 2001, possibly due to declaration of a part of the forest as a wildlife sanctuary in
1976 and subsequent increase in supervision and surveillance. However, total forest area started to
decline from 2001 and future reductions are possible. Cultivated lands increased from 1978 to 2016 and
additional future increase is likely due to a commensurate surge in human population in areas adjacent to
the forest. In sum, increasing population pressure, agricultural production demands, and high human
intervention in forest ecology were identified as possible causes of temporal forest degradation.
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1. Introduction

India is a country harbouring diverse wildlife. The high
occurrence of endemic plant and animal species and rapid
decrease in their habitat has resulted in two prominent
biodiversity hotspots in India: the Indo-Burma hotspot and
Western Ghats and Sri Lanka hotspot (Myers et al., 2000). High
population growth rate, expansion of agricultural lands, settle-
ments, and further human-induced changes have caused wide-
spread damage to Indian forests in recent decades (Datta and Deb,
2012; Reddy et al., 2013). To confront this severe deforestation and
degradation of forest ecology, the Ministry of Environment, Forest
and Climate Change (MoEF) as well as the Indian Forestry
Department have declared different forests as protected biosphere
(national parks, sanctuaries, and reserve forests) and increased the
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surveillance and management of such areas. Consequently,
national forest cover has increased in the recent past (Davidar
et al., 2010; World Bank, 2016). However, the data supporting such
increases includes open forests and social forestry; thus, quantifi-
cation of the actual change and transformation of dense protected
forests remains elusive.

The northern part of West Bengal, India features high forest
cover (Dey, 1991). Several national parks such as the Buxa Tiger
Reserve, Jaldapara, Garumara, Neora Valley, Singhalila, and wildlife
sanctuaries such as Chapramari, Jorepokhri, Mahananda, and
Senchal (West Bengal Forest Department, 2016) have substantively
contributed to biodiversity conservation and sustainable forest
management. However, similar to other parts of India, forests of
this region also face an alarming increase in human population,
cultivated lands, escalated human infiltration/development, and
interferences in forest ecology (Dey, 1991).

The use of satellite remote sensing for forest cover delineation is
well documented (Deb et al., 2014; Small and Sousa, 2016). Using
multi-temporal data, remote sensing is also used to reveal the
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temporal change dynamics of forest ecologies under the impact of
anthropogenic pressure (Datta and Deb, 2012; Garbarino et al.,
2014). Through different modelling approaches, further prediction
of future forest cover transition is also possible (Pontius et al.,
2004; Pérez-Vega et al., 2012). This study aimed to use this
technology to evaluate the chronological land use and land cover
(LULC) change dynamics of a sample forest of northern part of West
Bengal. Jaldapara National Park was selected in this context. The
objectives were set as delineation of the temporal LULC variation of
the above mentioned forest and surrounding areas from 1978 to
2016 as well as forecasting the possible LULC of the area in 2025
and 2050 via modelling.

2. Materials and methods

2.1. Study area

Jaldapara is a wildlife division in northern part of West Bengal,
India (Figs. 1 and 2). It is situated within the Terai region at the
southern foothill of the Himalayas (Sudhakar et al., 1999). The
climate is sub-tropical with >3000 mm annual rainfall (as per the
FAO ClimWat 2.0 database at the nearest station). Geographically,
the wildlife division contains nine ranges and extends from 26�310

to 26�450N and 89�140 to 89�240E. Further, the whole wildlife
division is divided into two distinct parts: wildlife sanctuary and
reserve forest, which are distributed intermittently. Combining all
the sanctuaries together, the Government of India declared
Jaldapara a national park in 2012 (Ghosh et al., 2013), which is
home to several animal species including the Indian rhinoceros,
leopard, elephant, Indian gaur, different types of deer, small
animals, and birds (Dey, 2009; Bhattacharyya and Padhy, 2013)
(Fig. 2).

From north to south, the Torsa River bifurcates the Jaldapara
Wildlife Division (Fig. 1) into two parts. The Eastern part is known
as the Chilapata forest (Bhattacharyya and Padhy, 2013) while the
western part is called Jaldapara. Another small fringe of forest
known as Rasamati is situated towards the south, at the eastern
Fig. 1. Location map along with digital 
bank of the Torsa River (Fig. 1). It was likely a part of Chilapata once
and was later disconnected by severe deforestation. This study
covers all these forests. The area also consists of several tea
plantations (Figs. 1 and 2) and covers many villages and associated
agricultural lands (Fig. 2). Among these, a few villages are located
just at the edge or even within boundary of the declared forest area
(Fig. 1). People of these villages are solely dependent upon the
forest for their regular livelihood (Pandit and Yadav, 1996).

2.2. Field investigations and study of human interference

A total 150 ground control points (GCP) were selected using a
GARMIN handheld 12 channel global positioning system (GPS)
receiver (Garmin Ltd., Schaffhausen, Switzerland) for geo-
registration and rectification of all satellite images. Besides, 100
random locations were used to verify the training sites as well as
to validate the classified images. To understand the population
dynamics, census data was collected for all the districts covering
the study area. Further, GPS locations were taken for all villages
with more than 10 houses. These locations were subsequently
inputted to the location map (Fig. 1) to explore the human
interference in forested areas. A field level demographic survey
was carried out especially for the villages located at or within the
boundary of forest areas. Along with secondary data collected
from local offices, detailed discussion was made with the villagers
about change in population dynamics, type of occupation,
dependency on forest resources, etc.

2.3. Physiographic characterization of the area

CartoDEM Version-3 R1 digital elevation data of tile G45L were
downloaded from the Bhuvan portal of Indian Space Research
Organisation (http://bhuvan.nrsc.gov.in). After selecting the area
of interest (AOI), a digital elevation model (DEM) map was
prepared with incorporation of the main rivers of the area (Fig. 1)
via geographic information system software ArcGIS 10.1 (ESRI, The
Redlands, CA, USA).
elevation model of the study area.

http://bhuvan.nrsc.gov.in


Fig. 2. Variation of land use land cover of the study area, A. highway through the forest area, B. tea plantation at the fringe of forest, C. road used for surveillance in the deep
forest, D and E. wild animals in the open grasslands, F. agricultural activities at the vicinity of the forest.
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2.4. Data sources

Landsat satellite images are free and have adequate spectral and
spatial resolution to study forest cover changes (Skole and Tucker,
1993; Dong et al., 2013). Thus, three multispectral cloud-free
Landsat images covering the entire study area were used in this
study. Maintaining the temporal gap, two ortho-rectified Landsat
images (1978 and 2001) were downloaded from United States
Fig. 3. Framework of methodology
Geological Survey browser EarthExplorer (http://earthexplorer.
usgs.gov/); the 2016 image was downloaded from Libra (https://
libra.developmentseed.org/), an open browser for Landsat 8
satellite imagery. The 1978 image was acquired by the Landsat 2
Multispectral Scanner (MSS) sensor. The images of 2001 and 2016
were taken by the Landsat 5 Thematic Mapper (TM) and Landsat 8
Operational Land Imager (OLI) sensors, respectively. Each of these
sensors captured the images in different spectral bands. To
 followed in the present study.
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promote homogeneity, only the spectral bands within the range
of 0.43–1.75 mm (visible to shortwave infrared) were considered
in this study. Thus, one to four bands were used for the Landsat
MSS while spectral bands one to five of the Landsat TM and one to
six of the Landsat OLI sensor were used in this study. All the
images were of the same season (22nd February 1978; 17th March
2001 and 10th March 2016) to avoid misclassification of LULC
classes.
Fig. 4. Land use and land cover classes of t
2.5. Image processing, classification, and change detection

Atmospheric correction was applied to all three Landsat images
using the Fast Line of Sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) module in ENVI 5.0 software (Gong et al.,
2013). Further image processing was accomplished using ERDAS
IMAGINE 9.1 software (ERDAS Inc., Norcross, GA). With the help of
the Survey of India (SOI) topographic map (1:50,000 scale) and
he study area in 1978, 2001, and 2016.
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GCPs, images were rectified and registered (Fig. 3). Staking of the
selected bands for each individual image was done to obtain a false
colour composite (FCC). The nearest neighbour algorithm was used
for resampling to convert MSS raster grids to 30 m resolution
(Echeverria et al., 2006) and to determine the actual brightness
values of pixels (Datta and Deb, 2012). After hedge reduction, the
AOI was selected (Fig. 3).

Supervised classification of the images was used to identify the
LULC classes (Fig. 3) using the maximum likelihood algorithm due
to its availability and usefulness without exhaustive training
required (Deb et al., 2014). Training sites were selected based on
detailed ground survey. Areas with tree canopy cover >40% were
considered as dense forest while tree canopy cover between 10 and
40% was considered open forest (Forest Survey of India, 2017).
Within each image, eight different LULC classes were identified. To
avoid misclassification (Münch et al., 2017), these LULC classes
were further checked with field level observations, detail man-
made maps and secondary information in terms of Google Earth
ProTM data. Spatial filters of (3 � 3 dimension) were used to remove
isolated pixels (Deb et al., 2014). Accuracy assessment was
performed using error matrices for all three classified images.
Temporal change dynamics of the LULC classes were assessed by
comparing the area statistics of sets of images.

2.6. Prediction of future LULC: model approach

The TerrSet 1.0 (Clark Labs, University of California, Berkeley,
USA) software was used for future modelling employing a cellular
automata–Markov (CA–Markov) Model. This model produces
predicted LULC maps based on two available LULC images of
different dates (e.g., date one and relatively new date two). It
merges cellular automata spatial rules with the Markov chain
transition (Sang et al., 2011). Besides, it creates suitability maps
(transition potential map) in land cover change modelling for each
LULC class (Kamusoko et al., 2009). Using fuzzy factor standardi-
zation, this map generation involves a simple assumption (i.e., the
pixel closer to an existing land cover type has higher suitability).
The suitability maps, Markov transition area matrix, and base map
of date two were used to predict the land cover map of date three
(Shooshtari and Gholamalifard, 2015).

In this study, classified Landsat images of 1978 and 2001 were
first used to determine a predicted image for 2016. Subsequently,
this image was statistically validated with the classified image of
2016 (Fig. 3). This approach was essential as it explained the
scenario in a quantitative way (Pontius and Chen, 2006). Following
the same simulation, predicted images of years 2025 and 2050
were obtained, using the classified images of 2001 and 2016
(Fig. 3).
Table 1
Land use land cover of the study area in 1978, 2001, and 2016.

Class 1978 2

Area (ha) % Area A

Dense forest 4605.24 7.93 3
Open forest 6267.65 10.79 1
Grassland 4222.08 7.27 5
Plantation 5049.23 8.70 2
River 757.99 1.31 1
Riverbed 740.76 1.28 1
Cultivated land 15511.70 26.71 1
Non cultivated land 20914.79 36.02 1
Total area 58069.44 100.00 5
3. Results and discussion

3.1. Assessment of present LULC and temporal change dynamics

Analysis of the DEM map (Fig. 1) indicated a trend of increasing
elevation on the northern side of the study area. This was expected
since the region is situated at the southern foothill of the
Himalayas. The rivers were flowing downslope and southward.
The LULC map of 2016 indicated 21.62% of the area under forest
cover (Fig. 4, Table 1). Based upon colour intensity in the FCC, forest
area was further divided into two fractions viz., dense forest and
open forest. Ground truth verification (based on GCPs and random
ground points) confirmed the correlation of these divisions with
actual tree density. Dense forest occupied only 5.03% area and the
remaining forest area was open forest. Maximum dense forest was
found in the Chilapata area with some small patches in the
Jaldapara forest. There were stretches of grasslands (9.99%) in this
area (Fig. 4, Table 1), which were dominant along the western side
of the Torsa River and within the forest area while some patches
were also present at the boundary of the Chilapata forest. Earlier
researchers revealed these as a part of the forest, serving as a food
source and habitat for several animals (Maheswaran, 2006; Lahkar
et al., 2011). The study area also contained several plantations
(3.62%), primarily as tea gardens. The Torsa River and its tributary
occupied a small portion of the area (1.44%) along with the riverbed
(4.47%). These rivers were in the beginning of their middle course
in this region. Therefore, the riverbeds were dominantly filled by
small gravels and sands. A large amount of cultivated (35.42%) and
non-cultivated fallow land (23.44%) denoted profound human
activities (Fig. 4, Table 1), which were intense even near the
periphery of the forest. As per the Wildlife Conservation Strategy
2002 of the Indian Board for Wildlife, there should be an eco-
fragile zone around all national parks and wildlife sanctuaries (Deb
et al., 2014), which serves as a buffer zone around the conservation
forest areas (Mehring and Stoll-Kleemann, 2011). This LULC
classification indicated the presence of no such buffer zone around
these forests. This will likely lead to unwanted anthropogenic
interactions with wildlife and degradation of overall forest
sustainability. In this context, the human activities of the study
area are discussed in the next section.

The LULC change dynamics of the area were executed by multi-
temporal image analysis. Supervised classification of Landsat
images from 1978 showed the presence of dense forest in 7.93%
area. This area decreased to 5.42% and 5.03% in 2001 and 2016,
respectively (Fig. 4, Table 1). It indicated a higher rate of decline in
dense forest from 1978 to 2001 in comparison to 2001 to 2016
(Fig. 5). Open forest area was 10.79% in 1978. There was a
noteworthy increase in open forest area from 1978 to 2001
followed by a decline in later years (2001–2016) (Table 1, Figs. 4
001 2016

rea (ha) % Area Area (ha) % Area

145.50 5.42 2923.11 5.03
0843.65 18.67 9632.17 16.59
395.86 9.29 5799.42 9.99
592.18 4.46 2102.49 3.62
831.86 3.15 837.00 1.44
914.48 3.30 2592.82 4.47
5802.74 27.21 20568.83 35.42
6543.17 28.49 13613.60 23.44
8069.44 100.00 58069.44 100.00



Fig. 5. Land use and land cover change dynamics of the area in 1978 to 2016 (considering total study area as 100%).
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and 5). The possible reason for the early increase (1978–2001) was
the establishment of the Jaldapara Wildlife Sanctuary in 1976 and
subsequent increase in strict vigilance by the Forest Department
which resulted in rejuvenation of forests in surrounding areas.
However, the pronounced decrease in dense forest from 1978 to
2001 (Table 1, Figs. 4 and 5) indicates the partial failure of the
conservation strategy. The noted reduction was likely due to illegal
deforestation by marginal forest dwellers. The drop in dense forest
deforestation rate from 2001 to 2016 may be associated with the
formation of Jaldapara National Park in 2012 with stringent
restrictions over anthropogenic activities within conservation
zones. However during this time span, open forest areas decreased
(Table 1, Figs. 4 and 5) due to the increase in human population
pressure and the associated deforestation in non-conserved areas.
Results further indicated that there was a steady increase of
grasslands from 1978 to 2016. The total forest cover of the area
(summation of dense forest, open forest, and grasslands) increased
from 15,094.96 ha (25.99%) in 1978 to 19,385.01 ha (33.38%) in
2001 followed by a decrease to 18,354.70 ha (31.61%) in 2016.

There was a substantive decrease in plantation areas from 1978
to 2016 (Table 1, Fig. 4 and 5), which was due to the closing of tea
gardens situated within the Chilipata forest area (Fig. 4) given its
conservation status. Image analysis revealed a high amount of
water flow in the rivers in 2001, covering 3.15% of LULC, in
comparison to 1978 (1.31% of LULC) and 2016 (1.44% of LULC). For
context, precipitation data of the area was collected from the
Gramin Krishi Mausam Sewa project (Government of India). Due to
unavailability of data of 1978, a comparison was made for the
precipitation data of 2001 and 2016 only. It showed significantly
higher rainfall (3276 mm) in 2000–2001 (1st January 2000 to 17th
March 2001) than 2015–2016 (2819 mm) (1st January 2015 to 10th
March 2016), explaining the higher water flow in the rivers in 2001.
Table 2
Accuracy assessment for supervised classified images of 1978, 2001, and 2016.

LULC Classes 1978 2001 

Producer’s Accuracy
(%)

User’s Accuracy
(%)

Kappa Producer’s
Accuracy (

Open forest 88.89 88.89 0.88 91.43 

Dense forest 95.00 95.00 0.95 86.67 

Grassland 87.95 83.33 0.85 95.45 

Plantation 95.24 90.91 0.90 91.67 

River 72.67 73.62 0.73 75.00 

Riverbed 76.23 76.06 0.76 83.33 

Cultivated land 91.18 92.54 0.90 94.12 

Non cultivated land 94.38 93.33 0.90 91.36 

Overall Classification
Accuracy

91.20 90.40 

Overall Kappa 0.89 0.88 
There was also a consistent increase in the riverbed area from 1978
to 2016 (Table 1, Figs. 4 and 5), possibly due to high alluvial
deposition by the rivers in the monsoon (Jana,1997). The transition
statistics indicated a small increase in cultivated land from 1978 to
2001 followed by a rapid escalation from 2001 to 2016 (Table 1,
Figs. 4 and 5). This suggests rapid growth as well as intensification
of agricultural activities in this area. A continuous decline in non-
cultivated lands (from 36.02% in 1978 to 23.44% in 2016) also
supported this premise.

Accuracy assessment of the LULC images was carried out in
coordination with ground data. The GCPs and 100 random location
points were used for this purpose. Interaction and information
from the local people was considered for identification of past
LULC of this area. The accuracy assessment of the three images are
presented in Table 2. Kappa coefficients were in the range of 0.88 to
0.91 for all three images (lowest in 2001; highest in 2016). The
lowest overall accuracy was for the 2001 image (90.40) followed by
1978 (91.20) and 2016 (93.20). This indicates the least accuracy for
the 2001 TM image while the 1978 MSS image shows better
accuracy despite its coarser spatial resolution. Considering the
LULC classes individually, Table 2 depicts comparative low
producer as well as user accuracy for the river and riverbed.
One possible reason for this was less spatial coverage of these two
classes in the images.

3.2. Human settlements and interference

To understand the human interaction with the forest, a study of
the population, their occupations, and social imprints are
important. Thus, the present research considered the demo-
graphics of the study area, which are under the Alipurduar,
Jalpaiguri, and Cooch Behar districts of West Bengal, India. Among
2016

%)
User’s Accuracy
(%)

Kappa Producer’s
Accuracy (%)

User’s Accuracy
(%)

Kappa

88.89 0.87 96.55 90.32 0.89
80.00 0.89 87.50 87.50 0.87
84.00 0.82 88.24 88.24 0.87
84.62 0.84 83.33 90.91 0.90
74.29 0.74 77.78 87.50 0.87
83.33 0.82 94.12 94.12 0.94
94.12 0.92 97.09 95.24 0.92
94.87 0.92 91.49 95.56 0.95

93.20

0.91
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these, the major portion of forest cover falls under the first two
districts while the southern part of the study area falls within
Cooch Behar. Alipurduar is a newly formed district, created in 2014
by dividing Jalpaiguri (Alipurduar district web portal, 2016).
Therefore the latest census report (2011) detailed the whole area as
only the Jalpaiguri and Cooch Behar districts. As per the District
Census Handbook Jalpaiguri (2011), this district features a large
number of tribes (18.89%) as well as marginal workers (9.27%).
While a significant number of people are associated with
cultivation (37.32%), a majority found other work (60.69%) (District
Census Handbook Jalpaiguri, 2011). Conversely, in the Cooch Behar
district, 67.08% and 29.32% of the population was involved with
agriculture and other work, respectively (District Census Hand-
book Koch Bihar, 2011).

Field level investigation inferred the existence of more than 100
villages within the study area (Fig. 1). The southern part of the area
was dominated by cultivated and non-cultivated fallow lands with
minimum dense forest (Fig. 4). This finding reinforced demography
data of the Cooch Behar district, which indicated a large portion of
the population was associated with cultivation. Fig. 1 depicts the
presence of some villages at the boundary of the forest areas while
a few villages were even found within the forest periphery. Field
level survey of these villages indicated marginal tribal populations,
dependent on forest resources for their livelihood. Population
dynamics of these villages were very inconsistent. A few villages at
the fringe of forests were assemblages of ten to fifteen households
only. And, the livelihood of the people living there was affected by
regular interference of wild elephants. However, some villages
situated just outside the official forest periphery had several
houses (>50–100) and even small markets. Detailed conversations
Fig. 6. A. Predicted land use and land cover classes of the area in 2016 and B. its validat
agreements and disagreement.
with the local people indicated that the larger human colonies
were developed in the last few decades from tiny clusters of
houses. Analysis of this trend inferred a continuous tendency of
human infiltration and colonization in the forest. In these villages,
wood procurement for both fuel wood and timber purposes was
found to be a common practice. Besides, these people were found
to be dependent on forests for collection of honey, wax, resin,
shredded leaves, and tree parts. There were some villages in
proximity to forests as well as tea plantations which were
identified as the colonies of tribal tea garden workers. As per
the survey, human-wildlife confrontation was also found to be
common in these areas. Before 1972, there was no legal protection
for wild animals beyond reserved and protected areas. Poaching of
animals, especially leopards, was common outside the forest (Dey,
1991). With the enforcement of the Wildlife (Protection) Act, 1972,
these activities have been reduced. However, earlier research (Dey,
1991) as well as the survey inferred continuous conflict between
humans and wild elephants, even through the present day.

3.3. Modelling for potential prediction of the future LULC of the area

The CA–Markov is a globally accepted and widely used model
for simulation of future LULC (Sang et al., 2011; Aithal et al., 2013;
Nouri et al., 2014). This model was used by Guan et al. (2011) for
prediction of LULC change during 2015–2042 while Sayemuzza-
man and Jha (2014) estimated the LULC of North Carolina for the
year 2030 using United States-National Land Cover Data of 1992,
2001, and 2006. In the present study, forecasting of LULC of 2016
(Fig. 6A) was accomplished using a land transition model with
supervised images of 1978 and 2001. Fig. 6B depicts the component
ion with classified 2016 image using multiple-resolution budget for components of
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of agreement and disagreement between the predicted image
(Fig. 6A) and original LULC image (Fig. 4). The multiple resolutions
utilized explained the proportion of pixels classified correctly and
incorrectly (Pontius and Spencer, 2005). The outcomes showed a
total 79.65% agreement, inferring a strong association between the
simulated and original images (Fig. 6B). Strong agreement due to
location at the grid cell level (45.30%) showed high correlation
between these images at the grid cell level of each category within
each stratum (El-Hallaq and Habboub, 2015). The agreement also
serves as a baseline for the actual similarity of the two images,
without any prior information of location and quantity (El-Hallaq
and Habboub, 2015). Therefore, the CA–Markov model represents a
feasible approach for predicting the future LULC status of the study
area.

The validated model was used to predict the LULC of the area for
2025 and 2050 (Fig. 7) using classified images of 2001 and 2016.
The LULC change dynamics were obtained by comparing the 2016
image (Fig. 4) with the simulated images of 2025 and 2050 (Fig. 7).
Models indicate a possible steady reduction in total forest area
(Fig. 8). Considering the total study area as 100%, there was a 0.24%
Fig. 7. Predicted land use and land cover clas
possible decline in dense forest from 2016 to 2025 and a 0.54%
decrease from 2025 to 2050. The possible decrease in open forest
area was 2.01% from 2016 to 2025 and 0.93% from 2025 to 2050.
Nevertheless, the prediction inferred an increase in grasslands
(0.22% and 0.16% for 2016–2025 and 2025–2050, respectively).
Across the entire time span (2016–2050), the maximum possible
increase of area was found under cultivated land (5.13%) while non-
cultivated lands decreased by 3.85%. The LULC modelling also
indicated an escalation in river water as well as the extent of
riverbeds in the future. However, river water flow and its carrying
capacity depends upon the precipitation of that season (Jiang et al.,
2007) and is therefore hard to model based only upon LULC
simulation. Nevertheless, the Torsa River originates from the
Himalayas and thus, increases in glacial melting in the near future
under the influence of global warming (Ming et al., 2015) might
support this prediction. Model predictions showed plantations as
the class with the least area change. Summarily, the results
inferred a possible future increase of population pressure in this
area and further agricultural intensification. Human population
pressure frequently leads to anthropogenic interference in
ses of the study area in 2025 and 2050.



Fig. 8. Predicted land use and land cover change dynamics of the area in 2016 to 2050 (considering total study area as 100%).
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contiguous forest resulting in destruction of the ecological
equilibrium (Datta et al., 2011; Laurance et al., 2014). This is
evidenced by the predicted decrease in dense and open forest by
2025 and 2050.

3.4. Possible management for sustainable forestry

With a high human population growth rate (Census of India,
2011), human-forest conflict is inevitable in India (Datta et al.,
2011); in fact, this problem will become more complex in the
future. In this context, regular monitoring and management of
forest areas through ground survey as well as via satellite/drone
remote sensing may lead to sustainable forestry (Higman et al.,
2013). Further, the delineation of eco-sensitive zones or buffer
zones around any national, protected, reserve forest, or sanctuary
are imperative for the protection of forest ecology and biodiversity
(Deb et al., 2014). Such zones act as a buffer interface between
human and forest. Although, MoEF has initiated buffer zones since
1989, further actions are necessary for practical implementation.
Community based forest management might also act as a powerful
supplement where high human-forest interaction occurs (Datta
and Deb, 2017). Involvement of local people in decision making
about effective conservation strategies can lead to better forest
management, especially in buffer zones and open forest areas
(DeFries et al., 2007).

4. Conclusions

This study indicated the significance of anthropogenic intensi-
fication and interferences on natural land use ecology in India. The
research was carried out on a forest and its surrounding areas,
representing a diversity of significantly different LULC classes. The
change dynamics of LULC of the area over a span of the last 38 years
(1978–2016) was evaluated and modelling was performed using a
CA–Markov model to predict the possible future LULC of the area in
2025 and 2050. In sum, our results indicated that:

(1) There was a continuous curb in dense forest from 1978 to 2016
and this trend possibly will continue in the future. There was a
reduction in open forest area also from 2001 to 2016 and as per
simulation results, this trend will continue. The only forest
fraction that continuously increased and probably will
maintain the pace is grasslands. The total area under forest
cover increased from 25.99% in 1978 to 33.38% in 2001.
Thorough monitoring and management of forests, after
declaration of the Jaldapara Wildlife Sanctuary might be the
reason behind this positive change. However, total forest area
was reduced to 31.61% in 2016 and possibly will decrease to
29.73% by 2025 and further to 29.08% by 2050.

(2) There was a constant increase in cultivated lands and decrease
in non-cultivated fallow land across the area in the last 38
years. This trend remained similar while predicting future
LULC. It implies continuous conversion of fallow to agricultural
lands under increasing population pressure. The demographic
analysis, as performed in this study, also supported this
premise. The summation of cultivated lands and non-cultivat-
ed fallow land increased from 55.70% in 2001 to 58.86% in 2016
and as per modelling will increase even more in the future
(59.58% and 60.15% in 2025 and 2050, respectively).

The LULC dynamics of forest and human activities of the study
area were directly associated with each other. The area loss from
forest cover and addition under human activities (agriculture)
exemplify this trend. The degradation and conversion of forest
lands under the pressure of increasing human population,
expanding cultivation practices, and immense human intervention
indicate an alarming scenario considering the enriched biodiver-
sity of the region. There is a need for monitoring, planning, and
field-level management to mitigate this situation. Use of technol-
ogies such as remote sensing, implementation/enforcement of
already existing rules, and possibilities like community-based
forest management should be blended to reach a holistic approach
to protect the forests of India.
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