BASIC DATA FOR FIELD AND CROP MANAGEMENT

Area conversion
Area of 1 hectare (ha): 10000 m²
Area of 1 acre (ac) = 4000 m²
1 ha = 2.5 acres
1 acre = 0.4 ha

Spacing of crops and plant population:
Spacing: 60cm x 30cm
60cm = row to row spacing
30cm = plant to plant spacing within the row

\[
\frac{10000}{0.6 \times 0.3} = \frac{10000}{0.18} = 55555 \text{ plants/ha}
\]

Calculation of number of plants per plot
Plot size: 5m (L) x 4m (W) = 20 m²

\[
\frac{20}{0.18} = 111 \text{ plants per plot}
\]

Calculation of seed rate required per ha:
Test weight = 100 seed weight (g)
Example: Sunflower test weight: 4 g/100 seeds
100 seeds = 100 plants
1 ha = 55555 plants
100 seeds = 4 g

\[
4 \times 55555 = 2222 \text{ g} = 2.2 \text{ kg/ha} \quad (\text{Recommended seed rate is } 5 \text{ kg/ha})
\]

Actual Germination % = 80 % = 2.2 \times 100/80 = 2.2 \times 1.25 = 2.75 \text{ kg} \quad (\text{Minimum germination standard = 70%})
Number of seeds per hill = 2 = 2.75 \times 2 = 5.5 \text{ kg} \sim 5 \text{ kg/ha} = 2 \text{ kg/acre}
Calculation of seed requirement per plot:

Seed rate = 5 kg/ha = 5 kg per 10,000 m² = 5,000 g per 10,000 m²
Plot size: 200 m²

10000 m² = 5 kg = 5000 g

\[
\begin{align*}
\text{Seed rate} & = 5 \text{ kg/ha} = 5 \text{ kg per 10,000 m}^2 = 5,000 \text{ g per 10,000 m}^2 \\
\text{Plot size} & = 200 \text{ m}^2 \\
10,000 \text{ m}^2 & = 5 \text{ kg} = 5000 \text{ g} \\
5,000 \times 200 & = 100,000 \\
\frac{100,000}{10,000} & = 10 \text{ g per plot}
\end{align*}
\]

FIELD LAYOUT OF EXPERIMENTAL PLOTS

Plot size and shape

Shape: Generally rectangle

All land preparation operations and crop management is done **ACROSS THE SLOPE**

Ensure within plot leveling for uniform irrigation and crop growth

Provide all round channels for each plot so that independent operations of irrigation, fertilizer application and spraying, etc, is possible without mixing or movement from one plot (treatment) to other.

On a perfect levelled plot, sowing to be done in North – South direction to get good sunlight distribution throughout the day. Otherwise, always follow across the slope direction.

Obtaining 90° angle at corners of experimental layout use Pythagora’s theorem (3-4-5 principle).

3-4-5 principle of obtaining 90° sides

1. From a corner point (B) of the well prepared plot, mark one straight base line (three point straight line method) along the major length of plot parallel to a road or path or bund.

2. Along this line measure 4 units (feet or meters) from point B and fix a peg. This is point A.

3. Mark a side line from point B in roughly 90° direction as BC

4. From point A, measure 5 units (feet or meters) towards the line BC and mark the intersection (cutting) of line BC and mark the intersection point as C.
5. Thus, the lines BA and BC are at 90° angle at point B. Extend the lines as per the desired length of plot with three point straight line method in both directions, taking the points BA or BC as two and the third as the extension point of the three point straight line.

6. Cross check the triangle BCA by measuring the perimeter of the triangle equals to 12 units (feet or meters) i.e., 4+3+5 = 12

NUTRIENT MANAGEMENT

Essential nutrient elements for plant growth = 16

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Nutrient Element</th>
<th>Symbol</th>
<th>Status</th>
<th>Major Natural Source</th>
<th>Major Fertilizer Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carbon</td>
<td>C</td>
<td>Primary Nutrients</td>
<td>Air</td>
<td>Free</td>
</tr>
<tr>
<td>2</td>
<td>Oxygen</td>
<td>O</td>
<td></td>
<td>Water</td>
<td>Free</td>
</tr>
<tr>
<td>3</td>
<td>Hydrogen</td>
<td>H</td>
<td></td>
<td>Air</td>
<td>Free</td>
</tr>
<tr>
<td>4</td>
<td>Nitrogen</td>
<td>N</td>
<td>Major Nutrients</td>
<td>Organic matter and soil</td>
<td>Urea (46% N) DAP (18% N)</td>
</tr>
<tr>
<td>5</td>
<td>Phosphorus</td>
<td>P</td>
<td></td>
<td>Soil/ mineral SSP (16% P₂O₅) DAP (46% P₂O₅)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Potassium</td>
<td>K</td>
<td></td>
<td>Soil/ Mineral MOP (60% K₂O) SOP (50% K₂O)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Calcium</td>
<td>Ca</td>
<td>Secondary Nutrients</td>
<td>Soil/ mineral Gypsum (Ca 21%; S 17.5%) Lime</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Sulphur</td>
<td>S</td>
<td></td>
<td>Organic matter/ Mineral Elemental S (90 to 99% S) Pyrites</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Magnesium</td>
<td>Mg</td>
<td></td>
<td>Soil/ Mineral Dolomite lime stone Magnesium sulphate</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Zinc</td>
<td>Zn</td>
<td></td>
<td>Soil/ mineral Zn Sulphate Zinc Oxide</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Iron</td>
<td>Fe</td>
<td></td>
<td>Soil/ Mineral Iron Sulphate</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Copper</td>
<td>Cu</td>
<td></td>
<td>Soil/ mineral Copper sulphate</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Boron</td>
<td>B</td>
<td></td>
<td>Soil/ Mineral Borax (10% B) Solubor (20% B)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Manganese</td>
<td>Mm</td>
<td></td>
<td>Soil/ mineral Manganese sulphate</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Molybdenum</td>
<td>Mo</td>
<td></td>
<td>Soil/ Mineral Ammonium molybdate Sodium molybdate</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Chlorine</td>
<td>Cl</td>
<td></td>
<td>Water/ Salts Free</td>
<td></td>
</tr>
</tbody>
</table>
FERTILIZER CALCULATIONS

Fertilizer and Manure:

Manures: Organic. Example: FYM, Compost, Green Manure, Crop Residue, etc.
Fertilizers: Manufactured or soil mines and processed. Mostly inorganic. Example: Urea, SSP, MOP, etc.

RDF = Recommended Dose of Fertilizer: \(N : P_2O_5 : K_2O \) kg/ha

Example: RDF for Sunflower: 60:60:30 kg N:P_2O_5:K_2O/ha

Major fertilizers:

\(N : \) Urea (46% N)
\(\text{DAP (18\% N + 46\% P}_2\text{O}_5) \)

\(P_2O_5 : \) SSP (16% \(P_2O_5)\)
\(\text{DAP (46\% P}_2\text{O}_5 + 18\% N) \)

\(K_2O : \) MOP (60% \(K_2O)\)

S: Elemental Sulphur (90 or 99% S)
Gypsum (Ca = 21%; S = 17.5%)

Conversion of recommended nutrient to required major fertilizer

\[N \times 2.17 = \text{Urea} \]
\[P_2O_5 \times 6.25 = \text{SSP} \]
\[K_2O \times 1.67 = \text{MOP} \]

Calculation of NPK required per hectare based on RDF:

Example: RDF for Sunflower: 60:60:30 kg N:P_2O_5:K_2O/ha

\[60 \text{kg N/ha} = 60 \times 2.17 = 130.2 \text{ kg Urea/ha} \]
\[60 \text{ kg P}_2\text{O}_5/\text{ha} = 60 \times 6.25 = 375 \text{ kg SSP/ha} \]
\[30 \text{ kg K}_2\text{O/ha} = 30 \times 1.67 = 50.1 \text{ kg/ha} \]

Calculation of fertilizer (grams) required per plot:

Example formula for N:

Recommended (N kg/ha) x Plot area (m\(^2\))

\[\frac{\text{--}}{\text{10000 (m}^2\text{)}} \]

\[\times 2.17 \times 1000 = \text{Required urea g/plot} \]

Similarly for \(P_2O_5 \) and \(K_2O \), substitute the values as per the requirement and as per the plot size and use the specific conversion factors.
Pot culture studies:

Weight of 6” soil depth = 200,0000 = 2 million kg/ha (1 million = 10 lakhs) (1 million = 1×10^6)

AFC = Acre Furrow Slice = 6” depth = 2 million pounds/acre (~2.5 lb = 1 kg) (2.5 acres = 1 ha) i.e lb/ac = kg/ha

Fertilizer calculations for pot culture studies are based on soil weight, with the RDF value is for the 2 million kg soil weight per hectare (instead of 10,000m2 of area).

PLANT BREEDING AND CROP IMPROVEMENT

Genetic Improvement of crops

- Variety & Hybrid
 - Parental lines
 - Inbred lines
 - Pure line
 - Advanced generation Breeding lines

Nature of works

- Labeling (check and ensure)
- Selfing (timely)
- Sibing (timely)
- Crossing (timely)

Example of traits (Unique characters)

- Early flowering
- Very short plant type
- Very long spike
- Resistance to disease and insects
- High oil content
- High ricinoleic acid content
- High oleic content
- High seed weight

DATA RECORDING, TABULATION AND MEANS CALCULATION

<table>
<thead>
<tr>
<th>Accession/entry</th>
<th>Plant No.</th>
<th>Plant height (cm)</th>
<th>Number of nodes</th>
<th>100-seed weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication I</td>
<td>Plant No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG109</td>
<td>P1</td>
<td>50.5</td>
<td>11.8</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>63.2</td>
<td>13.8</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>54.6</td>
<td>11.4</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>56.1</td>
<td>12.3</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>Total/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEED PRODUCTION
(Operational definitions/meanings)

Seed Vs Grain

Pollination and seed set

Self pollination

Cross pollination

Variety: The seed obtained from the harvest of a crop can be used for repeated cultivation of a crop.

Hybrid: The offspring from a cross between parents. For commercial cultivation each time new F1 seed to be planted.

Genetically Modified Plants or Transgenic crops: The alien trait to the species is inserted using biotechnological tools to develop a plant type that has enhanced trait quality.

Types of seed:
1. Nucleus seed
2. Breeder seed
3. Foundation seed
4. Certified seed
5. Truthfully labeled seed

Labels of seed certification and class of seed

Breeder seed

Tag colour: Yellow
Foundation seed

Certified seed

Rouging: Removing of undesirable and off-type plants before flowering and or harvest

Viability: Live seed with capacity to grow

Dormancy: Failure of viable seed to germinate
NUTRIENT DEFICIENCY IN PLANTS

Mobile element: Dissolve easily and move freely as per the soil water and in the plant. Ex. Nitrogen

Immobile element: Sparingly soluble in water and have low mobility from the site of application in soil and accumulates in lower portions of plants. Ex. Calcium

Deficiency Chart of Micronutrients

- **Boron:** Discoloration of leaf buds. Breaking and dropping of buds.
- **Sulphur:** Leaves light green. Veins pale green. No spots.
- **Manganese:** Leaves pale in color. Veins and venules dark green and reticulated.
- **Zinc:** Leaves pale, narrow and short. Veins dark green. Dark spots on leaves and edges.
- **Magnesium:** Paleness from leaf edges. No spots. Edges have cup shaped folds. Leaves die and drop in extreme deficiency.
- **Phosphorus:** Plant short and dark green. In extreme deficiencies turn brown or black. Bronze colour under the leaf.
- **Calcium:** Plant dark green. Tender leaves pale. Drying starts from the tips. Eventually leaf bundles die.
- **Iron:** Leaves pale. No spots. Major veins green.
- **Copper:** Pale pink between the veins. Wilt and drop.
- **Molybdenum:** Leaves light green/ lemon yellow/orange. Spots on whole leaf except veins. Sticky secretions from under the leaf.
- **Potassium:** Small spots on the tips, edges of pale leaves. Spots turn rusty. Folds at tips.
- **Nitrogen:** Stunted growth. Extremely pale color. Upright leaves with light green/yellowish. Appear burnt in extreme deficiency.

THE COLOUR REPRESENTED ARE INDICATIVE. THEY MAY VARY FROM PLANT TO PLANT
General Symptoms of deficiency of elements: (Example on Sunflower and Castor)

Mobile elements (N): Lower and older leaves show chlorosis or yellowing. Poor growth of seedling/plant.

Immobile elements (Ca): Growing tips and young leaves show chlorosis and poor growth.

Micro-nutrients (Fe): General inter-veinal chlorosis (Only veins of leaves are green rest of lamina yellowish).

Phosphorus (P): leaf margins turn brown or violet colour and get necrotic

Potassium (K): Leaf tip and margins become necrotic.

Boron: Motling and crinkling of leaves, poor seed set.

Diagram:

Diagnostic Techniques for identifying nutrient deficiency

Old / mature leaves

Chlorosis

Uniform over leaf, small leaves

Interval or blotchy

Magnesium

Nitrogen

Possibly Sulfur if symptoms are also on young leaves

Potassium

Magnesium

Sulfur

Zinc, iron, copper, manganese

Calcium

Boron

Necrosis

Tip or edge scorch, possible interveinal yellowing or browning

Interval or blotchy, varying shades of color

Young leaves

Chlorosis

Leaf edges purple, interveinal yellowing, cupping

Interval or blotchy

Necrosis

Interval blotches and leaf edge scorching

Yellow to brown interveinal areas, red to brown-purple leaves, deformed, curled, torn leaves

Calcium

Boron
IRRIGATION WATER MANAGEMENT

Irrigation measure: Volume

Volume = Area (m2) x depth (m) = mm3 or cubic m

1 cubic meter = 1m length x 1 m width x 1 m depth = 1000000 ml = 1000 liters

1 cubic foot = 28.3168466 litre (= 1 feet length x 1 feet width x 1 feet depth)

Water storage in dams or reservoirs

TMC FT = Thousand million cubic feet = Tmc

= 28316.85 million litres

Flow of water:

Cusec = Cubic feet per second

So, 1 cusec of water = 28.32 litre water flowing per second.

Methods of irrigation

1. Flood
2. Check basin
3. Ridges and furrow (All furrows or Alternate furrow irrigation)
4. Broad bed and furrow

Micro-irrigation techniques:

1. Sprinkler
2. Rain gun
3. Drip
4. Sub-irrigation

Water Use Efficiency (WUE)

\[
\text{WUE} = \frac{\text{Yield (kg)}}{\text{Water used or applied (mm)}} = \text{kg yield per mm of water}
\]

Main parts of drip irrigation system:

- Sand filter
- Algal/fungal filter
- Mains
- Sub-mains
- Laterals
- Emitters a) On-line emitter b) in-line emitter
PLANT PATHOLOGY

Pest: Insects, Diseases, Weeds

Pesticide: Insecticide, Fungicide and Herbicide

<table>
<thead>
<tr>
<th>Causal agents</th>
<th>Biotic</th>
<th>Abiotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotic</td>
<td>Fungal</td>
<td>Nutritional disorder</td>
</tr>
<tr>
<td>Bacterial</td>
<td>Geentic disorder</td>
<td></td>
</tr>
<tr>
<td>Viral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insecticide: Toxic to insect pests

Fungicide: Toxic to pathogenic microbes

Herbicide: Toxic to plants

Contact pesticide: Kills the pest only on contact. Examples:

Systemic pesticide: Enters the plant system and kills the pest anywhere on the plant. Examples:

Disease cycle
Comparison of disease cycles

<table>
<thead>
<tr>
<th></th>
<th>Fungi</th>
<th>Bacteria</th>
<th>Viruses</th>
<th>Nematodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival</td>
<td>Crop residue</td>
<td>Crop residue</td>
<td>-</td>
<td>Crop residue</td>
</tr>
<tr>
<td></td>
<td>Soil</td>
<td>Soil</td>
<td>-</td>
<td>Soil</td>
</tr>
<tr>
<td></td>
<td>Alt. hosts</td>
<td>Alt. hosts</td>
<td>Alt. hosts</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Insect vectors</td>
<td>Insect vectors</td>
<td>-</td>
</tr>
<tr>
<td>Dispersal</td>
<td>Wind</td>
<td>Wind</td>
<td>Insect vectors</td>
<td>Tillage</td>
</tr>
<tr>
<td></td>
<td>Rain</td>
<td>Rain</td>
<td>Insects</td>
<td>Equipment</td>
</tr>
<tr>
<td></td>
<td>Insects</td>
<td>Insects</td>
<td>Insects</td>
<td>Water run-off</td>
</tr>
<tr>
<td>Infection</td>
<td>Directly</td>
<td>-</td>
<td>-</td>
<td>Directly</td>
</tr>
<tr>
<td></td>
<td>Wounds</td>
<td>Wounds</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Insect feeding</td>
<td>Insect feeding</td>
<td>Insect feeding</td>
<td>-</td>
</tr>
</tbody>
</table>

Important diseases of Sunflower and Castor

<table>
<thead>
<tr>
<th>Disease</th>
<th>Sunflower</th>
<th>Castor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pathogen</td>
<td>Pathogen</td>
</tr>
<tr>
<td>Alternaria leaf blight</td>
<td>Alternaria helianthi</td>
<td>Seedling blight</td>
</tr>
<tr>
<td></td>
<td>Plasmopara halstedii</td>
<td>Alternaria blight</td>
</tr>
<tr>
<td>Rust</td>
<td>Puccinia helianthi</td>
<td>Cercospora leaf spot</td>
</tr>
<tr>
<td>Sclerotium wilt/rot</td>
<td>Sclerotium rolfsii</td>
<td>Wilt</td>
</tr>
<tr>
<td>Charcoal rot</td>
<td>Macrophomina phaseolina</td>
<td>Root rot/Die-back</td>
</tr>
<tr>
<td>Head rot</td>
<td>Rhizopus arrhizus</td>
<td>Botrytis gray rot</td>
</tr>
<tr>
<td>Viral diseases</td>
<td>Mosaic (CMV), SND, YRMV</td>
<td>Bacterial leaf spot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xanthomonas campestris pv. ricini</td>
</tr>
</tbody>
</table>
Chemicals used for managing Castor diseases

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>Common name</th>
<th>Concept of active ingredient in formulation</th>
<th>Target organism/host</th>
<th>Physiological stage for application</th>
<th>Recommended dose & mode of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiram</td>
<td>Thiraflo, Royalflo, Thiram</td>
<td>Contact</td>
<td>Seedling blight, Alternaria leaf spot, Cercospora leaf spot, Macrophomina root rot</td>
<td>Seed treatment</td>
<td>3g/kg seed for seed treatment</td>
</tr>
<tr>
<td>Captan</td>
<td>N-trichloromethylthio-cyclohexene-1,2-dicarboximide</td>
<td>Contact</td>
<td>Seedling blight, Alternaria leaf spot, Cercospora leaf spot, Macrophomina root rot</td>
<td>Seed treatment</td>
<td>3g/kg seed for seed treatment</td>
</tr>
<tr>
<td>Copper oxy chloride</td>
<td>Blitox; Green copper.</td>
<td>Contact</td>
<td>Seedling blight, Alternaria leaf spot, Cercospora leaf spot, Bacterial leaf spot</td>
<td>Seedling stage, vegetative stage.</td>
<td>3 g/lt at seedling stage; vegetative stage: 2-3 times at 10-15 days interval depending upon severity of disease.</td>
</tr>
<tr>
<td>Bavistin Goldstein</td>
<td>Carbendazim</td>
<td>Systemic</td>
<td>Fusarium wilt, root rot, Botrytis grey rot</td>
<td>Seed treatment for wilt, root rot; Prophylactic spraying at flowering, capsule formation stage for grey rot.</td>
<td>Slurry 2g/Kg or seed soaking 1g/l for 12 hrs; 1g/lt for spraying two times at 15 days interval</td>
</tr>
</tbody>
</table>

Chemicals used for managing Sunflower diseases

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>Common name</th>
<th>Concept of active ingredient in the formulation</th>
<th>Target organism/host</th>
<th>Physiological stage for application</th>
<th>Recommended dose & mode of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiram</td>
<td>Thiraflo, Royalflo, Thiram</td>
<td>Contact</td>
<td>Alternaria leaf spot, Charcoal rot</td>
<td>Seed treatment</td>
<td>3g/kg seed</td>
</tr>
<tr>
<td>Captan</td>
<td>Captan, Maestro Captan</td>
<td>contact</td>
<td>Alternaria Leaf spot, Powdery mildew</td>
<td>Seed treatment for leaf spot and spraying for leaf spot, Powdery mildew</td>
<td>2g/kg seed for seed treatment; 0.2% for spraying three times at 15 days interval</td>
</tr>
<tr>
<td>Bavistin</td>
<td>Carbendazim</td>
<td>Systemic</td>
<td>Leaf spot, Sclerotium rot, Sclerotinia wilt & root rot</td>
<td>Seed treatment; spraying at budding stage; flowering</td>
<td>2g/kg seed for seed treatment; 0.1% for spraying 2-3 times at 15 days interval.</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Sulphur</td>
<td>Wettable Sulphur, Sulfex, Thiovit</td>
<td>90%</td>
<td>Powdery mildew, Rust</td>
<td>Spraying at vegetative stage</td>
<td>0.2% two times at 15 days interval.</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>Ridomyl MZ; Apron 35 SD</td>
<td>Systemic</td>
<td>Downy mildew</td>
<td>Seed treatment and spraying at vegetative stage</td>
<td>6g/kg seed for seed treatment; 0.2% for spraying two times at 15 days interval</td>
</tr>
<tr>
<td>Mancozeb</td>
<td>Mancozeb; Dithane, Manzef, Nemispot; Manzane; Gold M-45; MancoPlus, Penncozeb, Manzate, Tuberseal, Protect</td>
<td>contact</td>
<td>Alternaria leaf spot; rust; head rot / Sunflower</td>
<td>Stem elongation, flowering stages.</td>
<td>0.3%; three-four times at 10 days interval</td>
</tr>
<tr>
<td>Iprodione</td>
<td>Rovral, Proturf</td>
<td>systemic</td>
<td>Alternaria leaf spot, rust / Sunflower</td>
<td>Vegetative, flowering stages.</td>
<td>0.05% two times at 15 days interval</td>
</tr>
<tr>
<td>Copper oxychloride</td>
<td>Blitox; Green copper, Copper Spray, Fixed copper, Copper oxychloride</td>
<td>contact</td>
<td>Head rot (Rhizopus arrhizus) / Sunflower</td>
<td>50% flowering stage</td>
<td>0.4%; 2-3 times at 15 days interval</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Tilt,Dhan</td>
<td>Systemic</td>
<td>Alternaria leaf spot, Powdery mildew / Sunflower</td>
<td>Foliar spraying at Stem elongation, flowering stage</td>
<td>1ml/lt ; 2-3 times at 15 days interval</td>
</tr>
<tr>
<td>Hexaconazole</td>
<td>Hexon, Contaf,</td>
<td>systemic</td>
<td>Alternaria Leaf spot, Powdery mildew / Sunflower</td>
<td>Foliar spraying at Stem elongation, flowering stage</td>
<td>1ml/lt ; 2-3 times at 15 days interval</td>
</tr>
<tr>
<td>imidacloprid</td>
<td>Gaucho</td>
<td>Systemic</td>
<td>Necrosis/sunflower</td>
<td>Foliar spray at vegetative / flowering stage</td>
<td></td>
</tr>
</tbody>
</table>
Important diseases of Safflower

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pathogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safflower wilt</td>
<td>Fusarium oxysporum f.sp. carthami</td>
</tr>
</tbody>
</table>

Soil Application

The soil treatment methods involving the use of chemicals are (i) **Soil drenching** (ii) **broadcasting** (iii) **furrow application** (iv) **fumigation** and (v) **chemigation**

(i) **Soil drenching**: Requisite quantity of fungicide suspension is applied per unit area so that the fungicide reaches to a depth of at least 10-15 cm. Eg. Emisan, PCNB, Carbendazim, Copper fungicides, etc.

(ii) **Broadcasting**: It is followed in granular fungicides wherein the pellets are broadcasted near the plant.

(iii) **Furrow application** It is done specifically in the control of some diseases where the direct application of the fungicides on the plant surface results in phytotawa. It is specifically practiced in the control of powdery mildew of tobacco where the sulphur dust is applied in the furrows.

(iv) **Fumigation**: Volatile toxicants (fumigants) such as methyl bromide, chloropicrin, formaldehyde and vapam are the best chemical sterilants for soil to kill fungi and nematodes as they penetrate the soil efficiently. Fumigations are normally done in nursery areas and in glass houses. The fumigant is applied to the soil and covered by thin polythene sheets for 5-7 days and removed.

(v) **Chemigation**: In this method, the fungicides are directly mixed in the irrigation water. It is normally adopted using sprinkler or drip irrigation system.

Foliar Application

Spraying

This is the most commonly followed method. Spraying of fungicides is done on leaves, stems and fruits. Wettable powders are most commonly used for preparing spray solutions. The most common diluent or carrier is water. The dispersion of the spray is usually achieved by its passage under pressure through nozzle of the sprayer. The amount of spray solution required for a hectare will depend on the nature of crops to be treated. For trees and shrubs more amount of spray solution is required than in the case of ground crops. Depending on the volume of fluid used for coverage, the sprays are categorized into high volume, medium volume, low volume, very high volume and ultralow volume.

The different equipments used for spray application

- Foot-operated sprayer,
- Rocking sprayer,
- Knapsack sprayer,
- Motorized knapsack sprayer (Power sprayer),
- Tractor mounted sprayer,
- Mist blower and
- Aircraft or helicopter (aerial spray).
Classification of the Insecticides

<table>
<thead>
<tr>
<th>Classification of the Insecticides</th>
<th>Medium lethal dose by the oral route acute toxicity LD 50 mg/kg body weight of test animals</th>
<th>Medium lethal dose by the dermal route dermal toxicity LD 50 mg/kg Body weight of test animals</th>
<th>Colour of identification band on the label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Extremely toxic</td>
<td>1-50</td>
<td>1-200</td>
<td>Bright red</td>
</tr>
<tr>
<td>2. Highly toxic</td>
<td>51-500</td>
<td>201-2000</td>
<td>Bright yellow</td>
</tr>
<tr>
<td>3. Moderately toxic</td>
<td>501-5000</td>
<td>2001-20000</td>
<td>Bright blue</td>
</tr>
<tr>
<td>4. Slightly toxic</td>
<td>More than 5000</td>
<td>More than 20000</td>
<td>Bright green</td>
</tr>
</tbody>
</table>

Hazard colour codes on pesticide label

![Hazard Categorization of the Pesticides](image)

The toxicity classification applies only to pesticides which are allowed to be sold in India. Some of the classified pesticides may be banned in some of the states of India, by decision of the State Government. Some of the Red Label and Yellow label pesticides were banned in the State of Kerala following the Endosulfan crisis.
ENTOMOLOGY

PESTS

Defoliators : Semilooper, Spodoptera, Helicoverpa,

Sucking pests : Aphids, leaf hoppers, thrips, white flies

Beneficial insects

- Parasites
- Predators
- Pollinators

Insect Pests of Castor

Semilooper (Achaea Janata)

Tobacco caterpillar (Spodoptera litura)

Capsule borer (Conogethes punctiferalis)

Leafhopper, (Empoasca flavescens)

Registered insecticides, CIB, GOI, 2014 for CASTOR

<table>
<thead>
<tr>
<th>Insecticides</th>
<th>Insect Pests</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethoate 30% EC</td>
<td>Rogor</td>
<td>Jassids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semilooper</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorvos 76% EC</td>
<td>Nuvan</td>
<td>Hairy caterpillar</td>
</tr>
<tr>
<td>Malathion 50% EC</td>
<td>Malathion</td>
<td>Jassids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semi looper</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorfon 5% GR</td>
<td></td>
<td>Capsule borer</td>
</tr>
<tr>
<td>Trichlorfon 5% DUST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorfon 50% EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis var. kurstaki</td>
<td>Delfin</td>
<td>Hairy caterpillar, Semilooper</td>
</tr>
</tbody>
</table>

No fungicides registered for castor

Recommended pesticides - Castor

- Defoliators & Hairy caterpillars: Profenofos 50EC@1ml/l or Flubendiamide 39.35SC@ 0.2ml/l or Chlorantraniliprole 18.5 SC@ 0.3ml/l or Thiodicarb 75WP @ 1g/l
- Sucking pests (leafhopper, thrips): Thiamethoxam 25% WG @0.4g/l or Acetamiprid 20%SP @ 0.2g/l or Dimethoate 30EC @1.7ml/l
- Capsule borer: Profenofos 50EC@1ml/l or Spinosad 45SC@ 0.4 ml/l and Indoxacarb 14.5SC @ 1ml/l
- Grey rot: Carbendazim 0.1% / Thiophanate methyl 1g/l or Propiconazole 1ml/l at 50% flowering depending on weather forecast
Wilt: Treat seeds with Carbendazim (2g/kg seed) or Thiram (3g/kg seed). Soaking seeds in Carbendazim (1g/l) for 12 hrs & shade drying before sowing

Insect Pests of Sunflower

Green Semilooper (*Thysanoplusia orichalcia*)

Tobacco caterpillar (*Spodoptera litura*)

Leafhopper (Jassid), (*Amrasca biguttula biguttula*)

Thrips, *Frankliniella scultze* (*Thrips palmi* and *Scirtothrips dorsalis*)

Capitulum borer / Head borer (*Helicoverpa armigera*)

Registered insecticides, CIB, GOI, 2014 for SUNFLOWER

<table>
<thead>
<tr>
<th>Insecticides</th>
<th>Dosage</th>
<th>Insect Pests</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichlorvos 76% EC</td>
<td>Nuvan, Nukem- 776</td>
<td>Caterpillar, Cabbage looper, Semilooper</td>
<td>1ml/l</td>
</tr>
<tr>
<td>Imidacloprid 17.8% SL</td>
<td>Tatamida,</td>
<td>Jassid, Thrips, Whitefly</td>
<td>0.2ml/l</td>
</tr>
<tr>
<td>Malathion 50% EC</td>
<td>Malathion, Hilthion</td>
<td>Whitefly</td>
<td>1ml/l</td>
</tr>
<tr>
<td>Imidacloprid 48% FS</td>
<td>Confidor, Tatamida</td>
<td>Jassid, Whitefly (Seed Treatment)</td>
<td>5g/kg seed</td>
</tr>
<tr>
<td>Imidacloprid 70% WS</td>
<td></td>
<td>Jassid, Whitefly (Seed Treatment)</td>
<td>7g/kg seed</td>
</tr>
</tbody>
</table>

Recommended pesticides - Sunflower

- Defoliators: Profenofos (1 ml/l of water) or quinalphos (2ml/l) or chlorpyriphos (2.5 ml/l) or chlorantraniliprole (0.3 ml/l)
- Capitulum borer: Profenofos (1 ml/l) or spinosad (0.4 ml/l)
- Leafhopper and thrips: Seed treatment with imidacloprid 70 WS @ 5g/kg of seed; Spray imidacloprid 200 SL (0.2 ml/l) or dimethoate (1.6ml/l)
- Alternaria leaf blight: Treat seed with thiram or captan (2.5g) or carbendazim (1g/kg) or spray mancozeb @ 0.3% or rovral (iprodione) and tilt (propiconazole) 0.05%
- Powdery mildew: Wettable sulphur 0.2% or karathane 0.2% or propiconazole 0.1% or difenoconazole 0.05%

Insect Pests of Sunflower

Safflower aphid (*Uroleucon compositae*)

Safflower caterpillar (Perigaea capensis)

Army worm (*Spodoptera exigua*)

Tobacco caterpillar (*Spodoptera litura*)

Gram pod borer (*Helicoverpa armigera*)
Registered insecticides, CIB, GOI, 2014 for SAFFLOWER

<table>
<thead>
<tr>
<th>Insecticides</th>
<th>Trade names</th>
<th>Insect Pests</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethoate 30% EC</td>
<td>Rogor, Tara 909</td>
<td>Aphid</td>
<td>1.5 ml/l</td>
</tr>
<tr>
<td>Acephate 75% SP</td>
<td>Starthene, Lancer, Asataf</td>
<td>Aphid</td>
<td>1.0 g/l</td>
</tr>
<tr>
<td>Phenthoate 2% DP</td>
<td>Agrophen, Phentox</td>
<td>Aphid</td>
<td>20 kg/ha</td>
</tr>
<tr>
<td>Quinalphos 1.5% DP</td>
<td>Ekalux</td>
<td>Aphid</td>
<td>20 kg/ha</td>
</tr>
</tbody>
</table>

Recommended pesticides - Sunflower

- Safflower aphid: Dimethoate @ 1.6ml/l
- Safflower caterpillar: Indoxacarb 0.3ml/l or Quinalphos 2ml/l
- Gujbia weevil: Soil application of Phorate @ 1kg ai/ha at sowing followed by foliar sprays of chlorpyriphos @ 2ml/l
- Pod borer, Bihar hairy caterpillar, Safflower caterpillar, cut worms, Spodoptera : Quinalphos 2ml/l or Chlorpyriphos 2ml/l. Dusting Quinalphos 1.5D or Chlorpyriphos 1.5D @ 25 kg/ha (water scarce areas) – all the pests
- Wilt: Seed treatment with Carbendazim (slurry 2g/kg or seed soak 1g/l for 12 hrs)
- Alternaria leaf spot: Seed treatment with Thiram/Captan/Mancozeb @ 2- 3 g/kg. Spray Mancozeb 2.5g/l or Copper oxychloride 3g/l 2-3 times at 15 day interval starting from 90 days of crop growth

Dust Formulations: Dry areas, water scarce areas. Dry land crops

Quinolphos, Methyl parathion dust

Spray formulations: WP : Methomyl, Bavistin

EC, SC, FL : Liquids

Insecticide recommendation

<table>
<thead>
<tr>
<th>Insecticides</th>
<th>Trade names</th>
<th>Pests</th>
<th>Dosage /L</th>
<th>Per 10 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethoate 30% EC</td>
<td>Rogor, Tara 909</td>
<td>Aphid</td>
<td>1.5 ml</td>
<td>15</td>
</tr>
<tr>
<td>Acephate 75% SP</td>
<td>Starthene, Lancer, Asataf</td>
<td>Aphid</td>
<td>1.0 g</td>
<td>10</td>
</tr>
<tr>
<td>Phenthoate 2% DP</td>
<td>Agrophen, Phentox</td>
<td>Aphid</td>
<td>20 kg/ha</td>
<td></td>
</tr>
<tr>
<td>Quinalphos 1.5% DP</td>
<td>Ekalux</td>
<td>Aphid</td>
<td>20 kg/ha</td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam 25WDG</td>
<td>Actara</td>
<td>Aphid</td>
<td>0.2g</td>
<td>2</td>
</tr>
<tr>
<td>Acetamirpíd 20SP</td>
<td>Pride</td>
<td>Aphid</td>
<td>0.2g</td>
<td>2</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>Poncho</td>
<td>Aphid</td>
<td>0.2g</td>
<td>2</td>
</tr>
</tbody>
</table>
Last resort insecticides

<table>
<thead>
<tr>
<th></th>
<th>Dose /l</th>
<th>Dose/10l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cypermethrin 10EC</td>
<td>1ml</td>
<td>10</td>
</tr>
<tr>
<td>Cypermethrin 25EC</td>
<td>0.4ml</td>
<td>4</td>
</tr>
</tbody>
</table>

INCOMPATIBILITY: Monocrotophos + Mancozeb X

Monocrotophos banned on vegetables

Endosulfan banned on all crops in India

PLANT PROTECTION EQUIPMENT

High volume sprayer: 300-500liters/ha: Example: Knapsack sprayers

Low volume sprayer: 50-150 liters/ha: Example: mist blowers

Ultra low volume sprayers: < 5 liters/ha: Electrodyne sprayers

Pressure:

Insecticide and fungicide: 40-60 PSI

Weedicide: 10-20 PSI

Horticulture (Tree) crops: 120PSI

When pressure decreases, droplet size increases

Nozzle type:

Hollow cone: used only for insecticide and fungicide spray on to crops

Flat Fan: used only for herbicide spray on the soil

Spray volume requirement:

Total spray volume required: Weedicide: 200 liters/acre

Insecticide/fungicide at flowering stage of crops: 250 to 350liters/acre

Calibration:

\[
F = \frac{S \times D \times A}{10000}
\]

Where,

F = Flow rate in liters/min

S = Swath width in meters

D = Operator walking speed in meters/min

A = Application rate in liters/ha
Precautions in using pesticides

- Don’t tank mix; mix in water and pour
- Do not fill up to mouth. In knap sack, fill only up to 3/4th
- Use correct nozzle
- Use correct dosage
- Do not spray against wind
- Do not touch insecticides with hands
- Do not smoke or eat while spraying
- Wash hands and body thoroughly
- Do not use same sprayer for herbicides and insecticides
- Wash sprayer and lance and nozzle thoroughly after spray
Practically all pesticides are toxic to man and animals. Therefore, great care should be taken in storing, using and disposing them. For safe handling of pesticides, the following precautions may be taken:

1. Keep the insecticides in closed, properly labelled containers.
2. The containers containing pesticides should be stored in dry and cool place away from food and fodder.
3. Use the pesticides strictly according to the instructions given on the container.
4. Use only the recommended doses of the pesticides.
5. The nozzle and other parts of the sprayer should never be cleaned with the mouth.
6. Persons handling pesticides should avoid the contact of the pesticides with their skin and inhalation of vapours or mists. They should wear rubber gloves and the face should be covered with a suitable mask.
7. The operators should not smoke, eat or drink anything while applying pesticides. While spraying in open fields, the direction of the wind should be kept in mind.
8. After spraying pesticides, the operators should wash their hands and face with soap and should take bath and change their clothes. The clothes worn by them during operations should be washed properly.

9. The various containers such as buckets, ladler, etc. used for mixing pesticides should be washed properly after the operation.

10. A first-aid box should be kept ready while pesticides are being applied.

11. In case pesticides are inhaled or consumed accidentally, a doctor should be called at once after giving the first aid. It is very important that the persons handling the pesticides should have a proper knowledge of the first aid to be given in case of any emergency.

ECONOMICS CALCULATION

1 man day = 8 hours of work for 1 person (male or female)

Returns = Income

Gross returns = Yield (q/ha) x Market rate (Rs/q)

Cost of cultivation = Total cost of growing crop (mostly variable costs on land preparation, seeds and sowing, manures and fertilizers, weeding, plant protection, harvesting, threshing, bagging, labour wages, etc.) (Rs/ha)

Net returns (Rs) = Gross returns (Rs) – Cost of cultivation (Rs)

Benefit : Cost ratio (B:C ratio) = \(\frac{\text{Gross returns (Rs/ha)}}{\text{Cost of cultivation (Rs/ha)}} \)

Additional returns due to the particular treatment (Rs/ha)

Incremental Benefit : Cost ratio (IBC ratio) = \(\frac{\text{Additional returns due to the particular treatment (Rs/ha)}}{\text{Additional cost of the particular practice (Rs/ha)}} \)

Additional returns = Additional yield (q) x Market rate (Rs/q)

Additional cost = Cost exclusively on the treatment (Rs)

Costs:

Fixed Cost: Depreciated value of land, tractor, machinery, permanent facility or infrastructure

Variable costs: Land preparation (tractor or bullock operation cost), seeds and sowing, manures and fertilizers, weeding, plant protection, irrigation, harvesting, threshing, labour wages, and any special operations for the crop.
DATA AND FIELD NOTE BOOK

- Learn the titles of the experiment
- Ask the scientist repeatedly till you understand completely.
- Go to the field always with field note book and layout plan
- Have keen observations on the treatment differences and plant growth differences – discuss with scientists
- Sincerity and timeliness/punctuality are utmost important in research
<table>
<thead>
<tr>
<th>N</th>
<th>LAY OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R2</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Labelling

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Observations

- Variable: aphids/plant, plant height, yield kg/plot

- Date of obtn: 27/12/15

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>P2</td>
</tr>
<tr>
<td>P3</td>
<td>P4</td>
</tr>
<tr>
<td>P5</td>
<td>P6</td>
</tr>
<tr>
<td>P7</td>
<td>P8</td>
</tr>
<tr>
<td>P9</td>
<td>P10</td>
</tr>
</tbody>
</table>

Rep1

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T4</th>
<th>T5</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>T3</td>
<td>T5</td>
<td>T2</td>
<td>T4</td>
</tr>
</tbody>
</table>

Rep3

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T4</th>
<th>T5</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>T2</td>
<td>T5</td>
<td>T2</td>
<td>T4</td>
</tr>
</tbody>
</table>
What is Gross plot and Net Plot?

Spacing: 90 cm x 60 cm
Gross Plot: 3.6 m x 6.0 m (4 rows)
Net Plot: 1.8 m x 4.8 m (2 rows)

Gross Plot
3.6 m x 6.0 m (4 rows)
Spacing: 90 x 60

Net Plot
1.8 m x 4.8 m (2 rows)
Spacing: 90 x 60

Spacing: 1.8 x 4.8
HCF: 1157.41
Number of Plants: 40
No. of per hectare: 13518

Spacing: 1.8 x 4.8
HCF: 1157.41
Number of Plants: 32
No. of per hectare: 17037
Demonstration:

Method demonstration: Any individual practice demonstration ex: seed treatment, Boron spray, etc.

Result demonstration: Complete effect on crop from sowing to harvesting and yield. Ex: variety, fertilizer dose, etc.

Demonstration site selection:

- Accessibility – road side
- Farmer cooperation

ICT for transfer of technology : Information – Communication - Technology

- Mobile based advisories – on real time and interactive
- Remote monitoring the process
FARM AND LABOUR MANAGEMENT

Farm Records

- Labour Indent register
- Muster Roll
- Crop Register
- Yield Register
- Farm Produce register
- Log books
- Usage register
- Indents – Labor and inputs

DOPT rules of Labour engagement: 240 days in a year for getting all benefits

Composting and crop residue recycling:

No crop residue to be burned.

All the residue should be composted

Compost Vs FYM: Compost is well decomposed whereas FYM is partially decomposed.
Vermicompost is prepared using earthworms.

Vermiwash is used both as nutrient source as well as protection and growth promotion of plants.

Green manure:

Green manuring in-situ: Green manure crops are grown in field and incorporated. Example: Dhaincha and Pilli pesara green manuring

Green leaf manuring: Green leaf are brought from lopping of trees and incorporated in the field. Example: Pongamia green leaf manure

LIBRARY AND INFORMATION SEARCH

Library

- Books
- Periodicals
- Journals

Catalogues

- Author index
- Subject index
- Year
- Publisher

ISBN Code
PHOTOGRAPHY TECHNIQUES

Importance of photography

Camera – Lenses: Normal, Tele lens, Wide angle Lens, Zoom lens

Angle of view and Angle of coverage: a) top angle b) low angle c) straight angle

Focusing

Use of background

OPERATIONAL HAZARDS AND SAFETY

Types of Hazards:

Natural: Abiotic and Biotic

Man made hazards: Fire accidents, electric shock, injuries caused by implements, road accidents

Health related hazards: Heart attack, hypoglycaemia

Farm operation related hazards.

Personal Protective Equipments (PPE)

- Aprons
- Sunglass
- Sun cream
- Eye goggles
- Steel toed shoes
- Gloves
- Helmet
- Field cap
- Mask

Laboratory safety and hazardous chemicals

Emergency Response: Alarm, follow instructions

Fire extinguisher location and usage

Personal and general laboratory safety

Read labels clearly and follow scrupulously

Get trained in use of chemicals

Wear PPE

Understand First aid and expertise
ADMINISTRATIVE RULES RELATED TO TECHNICAL STAFF

- Promotion policy for technical personnel
- Essential qualifications for promotion
- New circulars
- General administrative Rules

PURCHASE PROCEDURES AND BILLS

GFR Rules (General Financial Rules)

Government Receipts and Expenditure

BE = Budget Estimate (September)

RE = Revised Estimate

Cash Bill contents – Name, Letterhead, Date, Address, To, TAN, PIN, Certification

Vouchers

COMPUTER OPERATIONS AND INTERNET

Data entry: Microsoft Excel spread sheet

File creation, Naming and saving

Path and file location

Text entry and editing

Data entry through Excel spread sheet

Email and Internet

Searching for information using key words

DOR Web Site: www.iior.icar.org.in

Mail: http://mail.icar.gov.in

MIS-FMS: http://icarerp.iasri.res.in

Biometric attendance system: bas@dor.icar.org.in
MOTIVATION, TIMELINESS AND TEAM WORK

Self motivation techniques:
1. Following the inspiring person
2. Seeing the picture of the inspiring photo/person/situation/quote
3. Listening to inspiring talk/saying/prayer/content
4. Weighing benefit and loss of the work to be done
5. Breaking down the work into smaller tasks
6. Monitoring the growth or progress bar or chart or line and corrective action
7. Fixing deadline as challenge
8. Begin the work

Timeliness of work
- Attend to the work on priority of ‘important and not urgent’ work so that the work will not move to ‘urgent and important’ type of situation wherein stress builds.
- Avoid ‘urgent and non-important’ works
- Distance from acts of indulging ‘not-urgent and not-important’ activities.

For effective progress of team, Set clear goal, Communicate, Cooperate, and avoid selfishness as the progress of team is important over progress of individual in a team or institution growth.