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SUMMARY 

Robustness aspects of block designs for diallel crosses against one missing 
observation have been investigated using connectedness and efficiency 
criterion. Robustness of binary balanced block designs against the missing 
observations pertaining to one block have also been studied. 
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1. Introduction 

The diallel cross is a type of mating design used to study the genetic 

properties of a set of inbred lines. If we consider only the pep -1) - F I crosses 
2 

of p inbred lines, it is known as Type IV mating design of Griffing [11]. 

The problem of generating optimal block designs for complete diallel cross 
experiments has been recently investigated by Gupta and Kageyama [12], Dey 
and Midha [4], Mukerjee [18] Das, et al. [2], and Parsad et al. [20]. All these 
studies have been made for the situations, where the experimenter is interested 
in estimating the general combining ability (g.c.a) effects and the specific 
combining ability (s.c.a) effects have been excluded from the model. The 
statistical procedures followed for the above designs, for making inductive 
inferences are based on ideal conditions. However, aberrations may occur due to 
some causes (human or natural) during experimentation. Loss of observation(s) 
is one such aberration. An optimal design may become non-optimal (lose its 
original properties) when some observation(s) is(are) missing. Therefore, there 
is a need to look for the designs that are insensitive or robust to this type of 
disturbances. Following Ghosh [9], a block design for diallel crosses (do) is 



377 DIALLEL CROSSES AGAINST MISSING OBSERVATIONS 

termed as robust against the loss of observation(s) if the resulting design (dm) 

obtained after loss of observation(s) remains connected. This criterion of 
robustness is called as connectedness criterion. 

Even if the design remains connected, the efficiency of the resulting design 
may fall considerably. Hence, there is need to examine the efficiency of the 
resulting design relative to the original design. A connected design is said to be 
robust against loss of observation( s) if the efficiency of the dm relative to do is 
high (in this investigation high relative efficiency means that it is at least 
0.9500). This criterion of robustness is called as efficiency criterion. 

The robustness of general block designs against missing observation(s) has 
been investigated in abundance, see e.g., Hedayat and John [14]; John [151; 
Ghosh [9]; Ghosh et al. [10]; Baksalary and Tabis [1]; Kageyama [16]; 
Mukerjee and Kageyama [19]; Srivastava et al. ([21], [22]); Dey et al. [6]; 
Gupta and Srivastava [13]; Dey [3]; Dey et al. [5]; Srivastava et al. [23]; Lal et 
al. [17], etc. In the context of block designs for diallel crosses, Ghosh and 
Desai «(7], [8]) have investigated the robustness aspects of complete diallel cross 
plans subject to the non-availability of observations pertaining to one of the 
blocks of the block designs obtained by taking all possible crosses of lines 
present in a block of a balanced incomplete block (Bm) design and Singular 
Group Divisible design. However, these designs are now known to be inefficient 
for estimation of g.c.a. effects. Therefore, in this investigation an attempt has 
been made to study the robustness of efficient block designs against one missing 
observation in Section 2 and against one missing block in Section 3 using both 
connectedness and efficiency criteria. 

Throughout the present investigation, we use the following notations. A-a 
generalized inverse of A i.e. AA- A = A. A' the transpose of A. All vectors are 
column vectors, 11 being a t x 1 vector of ones, Ot denotes a null matrix, and II 
denotes an identity matrix of order t. 

2. Robustness ofBlock Designs for Diallel Crosses Against One Missing 
Observation 

Consider a connected block design do with p lines. b blocks such that there 
b 

are kj experimental units in the jth block and n =.L k j is the total number of 
j=l 

experimental units. We take (i x i') as a cross between lines i and i' in diallel 
cross such that i < i' and i, i' =1, 2, ..., p. Let one of the n observations be 
missing. Without loss of generality we may assume that this observation pertains 
to the first observation of the first block and also this observation belongs to the 
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cross (1 x 2). Let the resulting design obtained by deleting this observation from 
do, be called dm' For the data obtained from a block design for diallel crosses, the 
model involving general combining ability (g.c.a.) is given by 

Y=!lIn + A'g +D'13 +e (2.1) 

where y is (n x 1) vector of observations, I! is the general mean effect, g is the 
vector of p g.c.a. effects, 13 is the vector of b block effects, A' is the (n x p) 
observations vs lines design matrix. (s, t)th element of /1' is 1 if sth observation 
pertains to the tlb line and zero, otherwise. D' is the (n x b) observations vs block 
design matrix. (s, t)th element of D' is 1 if sth observation pertains to the tlb block 
and zero, otherwise. e is the vector of normally distributed random errors with 
E(e) = 0 and Cov( e) = erIn. 

Let Co denote the coefficient matrix of the reduced normal equations for 
estimating linear functions of g.c.a. effects using design do and C denote the m 

coefficient matrix of the reduced normal equations for estimating linear 
functions of g.c.a. effects using design dm' It can easily be seen that 

(2.2) 

where u = [k) (k) -1) rl12 (k) 81 -"1) with 81 as the first column of A, "I as 

the first column of N (the lines vs blocks incidence matrix of the original 
design do), k) is the size of the block 1. Following Dey [3], we have the 

following result. 

Theorem 2.1: The design do is robust as per connectedness criterion against 
the loss of single observation if and only if 

where u is as given in (2.2). 

The above result is quite general in nature and holds for all block designs 
for diallel crosses (complete as well as partial). We shall, hereafter, study the 
robustness aspects of block designs for complete diallel crosses only. 

Using Theorem 2.1, one can see that (i) a binary balanced block design for 
diallel crosses do is robust as per connectedness criterion against the loss of one 

observation if and only if the non-zero eigenvalue of Co is strictly larger than 

two and (U) a balanced block design for diallel crosses do in which each line 

appears twice in each block and is obtained from Family 5 of Das et al. [2] is 
robust as per connectedness criterion against loss of one observation if and only 
if number of lines (p) is greater than three. As mentioned earlier, a design which 
remains connected may lose efficiency. Therefore, we have computed the 

-- ._. ------~-
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efficiency of the resulting design d relative to the original design do using the m 

expression 

E =	Hannonic mean of the non - zero eigenvalues of Cm (2.3) 
Harmonic mean of the non - zero eigenvalues of Co 

The information matrices Co ' uu', eigenvalues of Co ( C m ) and 

expressions for the efficiencies are given in Table 1 of Appendix. 

Using (2.3) and Table 1, the efficiencies for all the universally optimal 
binary balanced block designs for diallel crosses for p S 30 given by Dey and 
Midha [4] and Parsad et al. [20] were computed against the loss of one 
observation. The efficiencies of the designs were more than 0.9500 except for 
the designs in Table 2 (efficiency -A) of Appendix. The efficiencies of balanced 
block designs for diallel crosses for p S 30 obtainable from Family 5 of 
Das et al. [2] were also computed. It is observed that the relative efficiencies are 
greater than 0.9500 except for the designs given in Table 3 of Appendix. 
Therefore, this class of designs with p > 7 are fairly robust against one missing 
observation according to efficiency criterion as well. All the 9 universally 
optimal balanced block designs with 2k > P given in Table 1 of Das et al. [2] 

obtained from triangular partially balanced incomplete block designs are also 
found to be robust according to connectedness and efficiency criteria {except the 
design with parameters p =5, b = 10, k = 4 that is connected but has the relative 

efficiency 0.9330} against one missing observation. 

3. Robustness ofProper Binary Balanced Block Designs for Diallel Crosses 
Against a Complete Block Missing 

Let 	do be a proper binary balanced block design with parameters p, b, k, 

'nf ' , " d ' 2b(k -1) I.. -11 1') 'th ' The I ormation matnx lor 0 IS (p -1) \Ip - p p P WI umque non-zero 

eigenvalue as 2b(k - 1)/(p - 1) with multiplicity (p -1). Let all the observations 
pertaining to a block of the design do be missing, Without loss of generality we 
may assume that these observations pertain to the first block and these 
observations are the crosses of first 2k consecutive lines, i.e, the first block 
which is missing contains k crosses of the following type 

( 1 x 2 ), ( 3 x 4 ), ... , (2k - 1 x 2k) 

Let C b be the information matrix of design db, the resulting block design 

after missing all the observations from the first block of design do. Now, it is 
easy to see that 

~......---------------.---- ­
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(3.1) 

where A =[: ~] where, H =Ik ® (M - N)+ 1k1~ ® N 

M=[1 -IJ121;; N=[- I)121; 

The non-zero eigenvalues of Cb in (3.1) are 

(i) 	 [2b(k-l) -2J withmultiplicity(k-l) 

p-l 


(1'1') _2b.-:...(k_-.-:...1) WI·th muI'tip1"IClty ( p- k) (3.2) 
p-l 

From these eigenvalUes, one can conclude that the design do is robust as 
per connectedness criterion against the loss of all the observations from a block 
if and only if the non-zero eigenvalue of Co is strictly larger than two. Using 

(2.3) and (3.2), the relative efficiency of design db is 

E= _________P7-_1________7 (3.3) 
(p - k) +b(k -1)2[b(k -1) - (p -or' 

The relative efficiencies of all proper binary balanced block designs 
catalogued in Dey and Midha [4] and Parsad et al. [20] for p:5 30 against one 

block missing were computed using (3.3). The relative efficiencies were greater 
than 0.9500 except for the designs given in Table 2 (Efficiency-B) of Appendix. 
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APPENDIX 

Table 1. Expressions for CO, uu'. eigenvalues of Co (Cm ) and expressions for the 

efficiencies for binary balanced block designs for diallel crosses obtained from Family 
5 of Das, Dey and Dean (1998). 

Design 
considered-+ 

Properties J, 

Binary balanced block design for 
complete diallel crosses 

Balanced block designs for diallel 
crosses obtained from Family 5 of 
Das, Dey and Dean (1998) 

Co 2(n-b) (I p-Ilpl~)
(p -1) p 

(p-2)~p _p-llpl~) 

un I 

[! 
B' 1D 0' 

o 0 

[~ ~] 
(p _ 2)2 I 

kl -1 ,
where A = -­ 1212 

where S = --1212 
p(p -1) 

, kl 2(p - 2) ,
T = ---I(p_2)12 and 

B = [ - :1 J12(k l -1) I; and 
p(p-l) 

Z = _4_1(p_2)I(p_2) 

i D= 1 1 l'
kl(k -1) 2(k l -l) 2(kl-l) 

p(p -1) 

l 

Non-zero 
eigenvalues of 
Co 

2(n-b) 
with multiplicity

(p-l) 

(p-l) 

(p - 2) with multiplicity (p - 1) 

Non-zero 
eigenvalues of 
Crn 

0) 2[(n-b)-(p-l)] with 
(p -1) 

mUltiplicity one 

(ii) 2(n - b) with multiplicity 
(p-I) 

(p-2) 

C) (p - 2)(p - 3)
III 

(p-I) 

with multiplicity one 

(iv) (p - 2) with multiplicity 

(p-2) 

Relative 
Efficiency 

E= p 1 

[ (n-b) +(P-2>]
(n-b-p+l) 

E = p2 -4p+3 

p2 4p+5 
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Table 2. Universally optimal binary balanced block designs for diallel crosses with 
Relative Efficiency-A (after one missing observation) and Efficiency-B (after one 

block missing) are less than 0.9500 

SLNo. p b k n Efficiency A Efficiency B 

1. 5 5 2 10 0.5000 0.5000 

2. 5 10 2 20 0.8571 0.8571 

3. 5 15 2 30 0.9167 0.9167 

4. 6 5 3 15 0.8333 0.7143 

5. 6 15 3 45 0.9259 

6. 7 7 3 21 0.8889 0.8000 

7. 7 21 2 42 0.9375 0.9375 

8. 8 7 4 28 0.9333 0.8235 

9. 9 9 4 36 0.8636 

10. 9 18 2 36 0.9091 0.9091 

11. 10 9 5 45 0.8710 

12. 11 11 5 55 0.8947 

13. 12 11 6 66 0.8980 

14. 13 13 6 78 0.9138 

15. 14 13 7 91 0.9155 

16. 15 15 7 105 0.9268 

17. 16 15 8 120 0.9278 

18. 17 17 8 136 0.9364 

19. 18 17 9 153 0.9370 

20. 19 19 9 171 0.9437 

21. 20 19 10 190 0.9441 

22. 21 21 10 210 0.9494 

23. 22 21 11 231 0.9497 

, 
- • denotes that the efficiency-A is greater than or equal to 0.9500 

Table 3. Universally optimal balanced block designs for diallel crosses developed 
from Family-5 ofDas, Dey and Dean (1998) with Relative Efficiencies (after 

missing one observation) are less than 0.9500 

Sl. No. p b k n Efficiency 

1. 5 2 5 10 0.8000 

2. 7 3 7 21 0.9231 


