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ABSTRACT : In RSM, it is generally assumed that the observations are in-
dependent and there is no overlap effects from the neighbouring units. But in
situations where the units are placed linearly side by side, there is a chance to
have overlap effects/neighbour effects from the adjoining experiments units.
For example, in field experiments if a chemical spray is applied to one plot,
it may spread over to the nearby plots due to wind. Hence, the response
from a particular plot may be affected by effects from the adjacent plots and
this effect has to be included in the model while fitting RSM. In this paper,
first and second order response surface models with differential effects from
adjoining left and right neighbouring units has been considered and the con-
ditions for the model with differential neighbour effects to be rotatable have
been obtained. Method of obtaining designs satisfying the derived conditions
has been described. An illustration to show the impact of including neigh-
bour effects in the model on the parameter estimates has also been given
using a simulated data set. These designs result in more precise estimates of
the parameters of the response surface model.

Keywords and phrases : Response surface; Differential neighbour effects; Or-
thogonal estimation; FORDDNE; SORDDNE.

1. Introduction

Response Surface Methodology (RSM) consists of the experimental strategy
for exploring relationship between the response variable and the input vari-
ables and to develop an appropriate relationship between them. It is used
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in situations where several input variables influence some performance mea-
sure or quality characteristic of a process. For details on response surface
methodology, one can refer to Khuri and Cornell (1996), Montgomery and
Peck (2006) and Myers et al. (2009).
The independence of observations cannot be ensured when experimental units
are nearby without any separation. For example, in field experiments if a
chemical fertilizer is applied to one plot, it may spread over to the nearby
plots due to water seepage. Thus the response from a particular plot may
also be affected by treatments applied to the adjacent plots and this effect
of neighbouring plots has to be included in the model while fitting response
surfaces. Hence, it is important to include the neighbour effects in the model
to have the proper specification. The interdependence of plots are known
in literature by different names viz., interference effects, neighbour effects,
indirect effects, competition effect etc.
Indirect effects are effects which occur in an experiment due to the units
which are adjacent (spatially or temporally) to the unit being observed.
Spatial indirect effects arise due to the treatments applied to the adjacent
neighbouring units/ plots and the designs so developed are called Neighbour
Balanced Designs (NBDs) whereas temporal indirect effects occur because of
the carryover or residual effects in the periods following the periods of their
direct application and the designs considering temporal effects are called
Crossover Designs. A large number of such designs have been developed in
the literature. For details of NBDs, one can refer to Azais et al. (1993),
Monod and Bailey (1993), Azais and Druilhet (1997), Azais et al. (1998),
Bailey (2003), Bailey and Druilhet (2004), Tomar et al. (2005), Jaggi et al.
(2006), Jaggi et al. (2007) and Pateria et al. (2007). For details of crossover
designs, one can refer to Williams (1949), Patterson and Lucas (1962), Bal-
aam (1968), Sharma (1975), Dey and Balachandran (1976), Sharma (1981),
Sharma (1982), Afsarinejad (1990), Varghese and Sharma (2000), Sharma et
al. (2002), Sharma et al. (2003) and Bose and Dey (2009). A software for the
on line generation of such designs is available (Jaggi et al., 2015). Besides,
incorporation of neighbour effects under two-way blocking setup is discussed
by several authors [Freeman (1979), Federer and Basford (1991), Chan and
Eccleston (2003), Varghese et al. (2011) and Varghese et al. (2014)].
The literature available on response surface designs incorporating neighbour
effects is very few. Bartlett (1978) made an attempt to study the neigh-
bouring plot-response relationships. Draper and Guttman (1980) suggested
a general linear model for response surface problems in which it is anticipated
that the response on a particular unit will be affected by overlap effects from
neighbouring units and the same have been illustrated.
Sarika et al. (2008) studied first order response surface model with equal
neighbour effects and the conditions were derived for the orthogonal esti-
mation of coefficients of this model and for constancy of the variances of
the parameter estimates. Sarika et al. (2009) studied second order response
surface model assuming equal neighbour effects and the expressions for the
parameters were derived. A method of obtaining designs satisfying the de-
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rived conditions was given.
Jaggi et al. (2010) showed that if the neighbour effect is present and is
included in the model, there is a substantial reduction in the residual sum
of squares and the response is predicted more precisely. Therefore, it can
be used to develop an appropriate approximating relationship between the
response variable and the input variables when the experimental units are
nearby and induce some neighbouring effects.
In response surface studies incorporating neighbour effects, it is unreasonable
to expect the equal neighbour effects from adjacent plots always. Hence,
we relax this condition of equality of neighbouring effects and present here
response surface methodology considering differential effects from adjoining
left and right neighbouring units and show that equality of variances as a
particular case.
Consider the response surface model:

yu = f(Xu) + eu u = 1, 2, . . . , N,

where yu is the response at the point u with input vector Xu = (X1u, X2u,
. . . , Xvu)′ of v components. We consider that the performance of a unit is
influenced by the immediate left and immediate right units. Then, the model
incorporating the differential neighbour effects from adjoining left and right
neighbouring units can be written as:

yu′ =

N∑
u=1

guu′f(Xu) + eu′ , u
′ = 1, 2, . . . , N (1.1)

where

guu′ = 1, if u = u′

= α1, | α1 |< 1, if u− u′ = 1, u′ < u
= a2, | α2 |< 1, if u′ − u = 1, u′ > u
= 0, otherwise.





(1.2)

Here, α1 represents left neighbour effect and α2 represents the right neighbour
effect. The layout of the experiment for estimating this model includes border
units for the end units with X matrix given below at (2.1) and (3.2).
Direct effects of the border units are ignored. Thus, model (1.1) can be
written as

Y = GXβ + e, (1.3)

where G = ((guu′)) is the N × (N + 2) neighbour matrix. For a first order
model, X is a (N + 2)× (v + 1) matrix of N points (runs) with two border
units and v predictor variables with first column of unities, β is a (v +1)× 1
vector of parameters and e is N × 1 vector of errors which is N(0, σ2I). If
G is known, the ordinary least squares (OLS) estimate of β, in the presence
of neighbour effects, is :

β̂ = (Z′Z)−1Z′Y , (1.4)



166 Calcutta Statistical Association Bulletin

where Z = GX with D(β̂) = σ2(Z′Z)−1.

For example, when v = 2 and N = 6, then

X =




1 x16 x26

1 x11 x21

1 x12 x22

1 x13 x23

1 x14 x24

1 x15 x25

1 x16 x26

1 x11 x21




G =




α1 | 1 α2 0 0 0 0 | 0
0 | α1 1 α2 0 0 0 | 0
0 | 0 α1 1 α2 0 0 | 0
0 | 0 0 α1 1 α2 0 | 0
0 | 0 0 0 α1 1 α2 | 0
0 | 0 0 0 0 α1 1 | α2




GX = Z =




(1 + α1 + α2) x11 + α1x16 + α2x12 x21 + α1x26 + α2x22

(1 + α1 + α2) x12 + α1x11 + α2x13 x22 + α1x21 + α2x22

(1 + α1 + α2) x13 + α1x12 + α2x14 x23 + α1x22 + α2x24

(1 + α1 + α2) x14 + α1x13 + α2x15 x24 + α1x23 + α2x25

(1 + α1 + α2) x15 + α1x14 + α2x16 x25 + α1x24 + α2x26

(1 + α1 + α2) x16 + α1x15 + α2x11 x26 + α1x25 + α2x21




Note : If α1 and α2 are known, β̂i’s are best linear unbiased estimates for
βi’s. However, the values of α1 and α2 are hardly known in practice. In that
case, one of the procedures, that has been adopted here, is to estimate βi’s by
scanning the entire range of α1, α2 ∈ {0, 1} and choose the values for which
the residual sum of squares is minimum. The estimates are still supposed to
have their asymptotic properties.

2. First Order Response Surface Model with Differential
Neighbour Effects

Here, the function f(xu) takes the form f(xu) = β0 +
∑v

i=1 βixiu. The re-
sponse surface model for v = 2 incorporating indirect effect can be expressed
as

yu = (1 + αi + α2)β0 + β1(x1u + α1x1,u−1 + α2x1,u+1) + β2(x2u + α1x2,u−1 +
α2x2,u+1) + εu, where u = 1, 2, . . . , N, u = 0 for left most border plot and
u = N + 1 for right most border plot.
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In matrix notation, for v factors, the (N + 2) × (v + 1) matrix X with two
extra points as border points is

X =




1 x1N x2N . . . xiN . . . xvN

1 x11 x21 . . . xi1 . . . xv1

1 x12 x22 . . . xi2 . . . xv2

. . . . . . .

. . . . . . .

. . . . . . .
1 x1u x2u . . . xiu . . . xvu

. . . . . . .

. . . . . . .

. . . . . . .
1 x1N x2N . . . xiN . . . xvN

1 x11 x21 . . . xi1 . . . xv1




(2.1)

The neighbour matrix G is of the form (1.2) which yields Z′Z as:




pN p

N∑

u=1

X1u p

N∑

u=1

X2u ... p

N∑

u=1

Xiu ... p

N∑

u=1

Xvu

q
N∑

u=1

X2
1u + A1 q

N∑

u=1

X1uX2u ... q
N∑

u=1

X1uXiu + C1i ... q
N∑

u=1

X1uXvu + C1v

q

N∑

u=1

X2
2u + A2 ... q

N∑

u=1

X2uXiu + C2i ... q

N∑

u=1

X2uXvu + C2v

.

.

.

q

N∑

u=1

X2
1u + Ai ... q

N∑

u=1

XiuXvu + Civ

.

.

.

q

N∑

u=1

X2
vu + Av




(2.2)
where p = (1+α1 +α2)

2 and q = (1+α2
1 +α2

2), with α1 +α2 6= −1, otherwise
| Z′Z |= 0. Further,

Ai = 2α1α2

[
N∑

u=1

XiuXi[(u+2)modN ]

]
+ 2(α1 + α2)

[
N∑

u=1

XiuXi[(u+1)modN ]

]

i = 1, 2, . . . , v;

and

Cii′ = α1α2

[
N∑

u=1

XiuXi′[(u+2)modN ]] +

N∑
u=1

Xi[(u+2)modN ]Xi′u

]
+
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(α1 + α2)

[
N∑

u=1

XiuXi′[(u+1)modN ]] +

N∑
u=1

XiuXi′[(u−1)modN ]

]

∀ i 6= i′ = 1, 2, . . . , v.

To ensure orthogonality in the estimation of the parameters, Z′Z has to be
diagonal. This gives rise to the following conditions:

i)

N∑
u=1

Xiu = 0 ∀ i = 1, 2, . . . , v;

ii)

N∑
u=1

XiuXi′u = 0 ∀ i 6= i′ = 1, 2, . . . , v;

iii) Cii′ = 0 ∀ i 6= i′ = 1, 2, . . . , v.

(2.3)

After imposing the restrictions, the normal equations for the estimation of
(v + 1) parameters are

[
N(1 + α1 + α2)

2 0′

0 S

] [
β0

θ

]
=

[
Y.
T

]
, (2.4)

where θ = (β1β2 . . . βv)′ is the v × 1 vector of parameters corresponding

to predictor variables, Y. =

N∑
u=1

yu and T = (T1, T2, . . . , Tv)′, Ti =

N∑
u=1

Xiu yu i = 1, 2, . . . , v and

S = diag

{[
(1 + α2

1 + α2
2)

N∑
u=1

X2
1u + A1

]
· · ·

[
(1 + α2

1 + α2
2)

N∑
u=1

X2
1u + Ai

]
· · ·

[
(1 + α2

1 + α2
2)

N∑
u=1

X2
vu + Av

]}

Equation (2.4) gives

[
β̂0

θ̂

]
=

[
N−1(1 + α1 + α2)

−2Y.

S−1T

]
(2.5)

Hence, the variance of parameter estimates is obtained as

V (β̂0) =
σ2

N(1 + α1 + α2)2
;

V (β̂i) =
σ2

[
(1 + α2

1 + α2
2)

N∑
u=1

X2
iu + Ai

] , for i = 1, 2, . . . , v.

The estimated response at a point, say x0 is ŷ0 = x′
0β̂ with variance
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V (ŷ0) = x′
0V (β̂)x0 = σ2x′

0(Z
′Z)−1x0

Thus,

V (ŷ0) =

σ2





1
[N(1+α1+α2)2]

+
x2
10

(1+α2
1+α2

2)

N∑

u=1

X2
1u+A1




+
x2
20

(1+α2
1+α2

2)

N∑

u=1

X2
2u+A2




+ . . . +
x2

i0
(1+α2

1+α2
2)

N∑

u=1

X2
1u+Ai




+ . . . +
x2

v0
(1+α2

1+α2
2)

N∑

u=1

X2
vu+Av








(2.6)
Now, the following restrictions are imposed to ensure the constancy of the
variances of the parameter estimates

i)

N∑
u=1

X2
iu = δ, a constant ∀ i = 1, 2, . . . , v

ii) Ai = A, a constant ∀ i 6= i′ = 1, 2, . . . , v

(2.7)

Therefore,

V (ŷ0) = σ2





1

N(1 + α1 + α2)2
+

N∑
u=1

X2
i0

(1 + α2
1 + α2

2)δ + A





Hence, the variances of β̂i’s (i = 1, 2, . . . , v) are same and it is seen that the

variance of estimated response is a function of

V∑
i=1

X2
i0. For given α1 and α2,

the points for which

V∑
i=1

X2
i0 is same, the estimated response will have the

same variance. The designs satisfying this property are called First Order
Rotatable Designs with Differential Neighbour Effects (FORDDNE).

Remark 2.1 For α1 = α2 = α, the above expressions reduce to those given
in Sarika et al. (2008).

2.1 Method of Constructing FORDDNE

Construct a 2v full factorial in lexicographic order with levels (−1, 1) giving a
rectangle R of 2v rows and v columns with entries −1 and 1. Circular rotation
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of the columns of R, (v − 1) times, yields (v − 1) sets each consisting of 2v

rows and v columns. By appending these sets below R one after another, we
obtain a rectangular array of v×2v rows and v columns. Appending another
column of unity resulting in (v + 1) columns, a FORDDNE in v × 2v points
is obtained by adding two extra points of border units such that each end of
the array has a point of the other end.

Example 2.1 Let v = 3. The 24 × 4 of a FORDDNE developed from a
complete 23 factorial with levels −1 and 1 by rotating its columns 2 times
with first column of 1’s, the coefficient of mean, and two extra points as
border points is written as follows:
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


1 −1 −1 −1

1 1 1 1
1 1 1 −1
1 1 −1 1
1 1 −1 −1
1 −1 1 1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 −1
1 1 1 1
1 −1 1 1
1 1 1 −1
1 −1 1 −1
1 1 −1 1
1 −1 −1 1
1 1 −1 −1
1 −1 −1 −1
1 1 1 1
1 1 −1 1
1 −1 1 1
1 −1 −1 1
1 1 1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 −1

1 1 1 1




The matrix G of order 27× 29 is of the form given in (1.2). Further.

Z′Z =[
24(1 + α1 + α2)

2 0′
1×3

03×1 [4(1 + α1 + α2)
2 + 8(1− α1 − α2)

2 + 12]I3

]
,

with α1 = α2 6= −0.5
Thus,

V (β̂0) =
σ2

24(1 + α1 + α2)2
,

V (β̂i) =
σ2

[4(1 + α1 + α2) + 8(1− α1 − α2)2 + 12]
, i = 1, 2, 3

V (ŷ0) =

σ2

{
1

24(1 + α1 + α2)2
+

3

12(α1 + α2)2 − 8(1− α1 − α2)2 + 24

}

For α1 = 0.2 and α2 = 0.4,
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V (β̂0) = 0.0163σ2, V (β̂i) = 0.0425σ2, i = 1, 2, 3 and V (ŷ0) = 0.1438σ2

2.2 Illustration

For the design given in Example 2.1, following is the synthetic data with plot
numbers and treatment combinations:

Border plot Plot 1 Plot 2 Plot 3 Plot 4 Plot 5
(1-1-1-1) (1111) (111-1) (11-11) (11-1-1) (1-111)

144.06 158.62 164.87 162.01 131.16

Plot 6 Plot 7 Plot 8 Plot 9 Plot 10 Plot 11 Plot 12
(1-11-1) (1-1-11) (1-1-1-1) (1111) (1-111) (111-1) (1-11-1)
116.94 123.25 137.26 140.68 141.06 125.73 131.61

Plot 13 Plot 14 Plot 15 Plot 16 Plot 17 Plot 18 Plot 19
(11-11) (11-1-1) (1-1-11) (11-1-1) (1111) (11-11) (1-111)
146.75 161.87 146.77 143.93 153.43 164.85 148.95

Plot 20 Plot 21 Plot 22 Plot 23 Plot 24 Border plot
(1-1-11) (111-1) (11-11-1) (11-1-1) (1-1-1-1) (1111)
135.75 146.41 141.25 125.13 122.35

Here, plot 1 has border plot as left neighbouring plot and plot 2 as right
neighbouring plot, plot 2 has plot 1 as left neighbouring plot and plot 3 as
right neighbouring plot and so on. First order response surface model was
fitted to these data with three factors. The coefficient of determination (R2),
Residual Sum of Squares (RSS) and the parameter estimates for different
values of α1 and α2 were calculated and are given in Table 2.1. It can be
seen that RSS is 2556.45 at α1 = 0 and α2 = 0 which decreases as the
value of α1 and α2 increases and is minimum at α1 = 0.78 and α2 = 0.47.
Similar trend can be seen for R2 = 99.98% at α1 = 0.78 and α2 = 0.47.
All the parameters except β0 and β1 are not significant at α1 = α2 = 0
where as all the parameters become significant at α1 = 0.78 and α2 = 0.47
clearly indicating the impact of the neighbouring units. The fitted model at
α̂1 = 0.78 and α̂2 = 0.47 is:

ŷ = 63.24 + 9.26X1 − 4.63X2 + 5.25X3

The variance of the estimated responses is same for all the points within the
design and is obtained as 0.097 at α1 = 0.78 and α2 = 0.47. Hence the design
is rotatable. The maximum response corresponds to the maximum dose of
the input factors X1 and X3 and minimum dose of the input factor X2. The
variance of the estimated response for all the points within the design at
α1 = α2 = 0 is worked out as 0.170.
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Table 2.1 Results of fitting first order model for v = 3 at different values of
α1 and α2

α2 α1 0.00 0.20 0.40 0.60 0.70 0.75 0.78 0.80 0.90

R2 0.4480 0.6046 0.7379 0.8172 0.8364 0.8417 0.8436 0.8444 0.8433
RSS 2556.45 1807.39 1198.26 835.79 747.84 723.86 715.13 711.49 716.24

β̂0 142.28* 118.56* 101.63* 88.92* 83.69* 81.30* 79.93* 79.04* 74.88*
(2.31) (1.62) (1.13) (0.82) (0.73) (0.70) (0.69) (0.68) (0.64)

0.00 β̂1 7.34* 8.71* 9.36* 9.26*2 8.99* 8.83* 8.72* 8.64* 8.24*
(2.31) (1.97) (1.56) (0.23) (1.11) (1.07) (1.05) (1.04) (0.99)

β̂2 -3.63 -4.32 -4.65* -4.61* -4.48* -4.40* -4.35* -4.31* -4.11*
(2.31) (1.97) (1.56) (1.23) (1.11) (1.07) (1.05) (1.04) (0.99)

β̂3 4.11 4.89 5.27* 5.22* 5.08* 4.98* 4.92* 4.88* 4.65*
(2.31) (1.97) (1.56) (1.23) (1.11) (1.07) (1.05) (1.04) (0.99)

R2 0.5264 0.7086 0.8506 0.9279 0.9432 0.9460 0.9464 0.9461 0.9392
RSS 2165.03 1332.10 683.10 329.50 259.52 246.73 245.22 246.57 277.73

β̂0 118.57* 101.63* 88.92* 79.04* 74.88* 72.96* 71.86* 71.14* 67.75*
(1.77) (1.19) (0.75) (0.46) (0.39) (0.37) (0.36) (0.36) (0.36)

0.20 β̂1 8.12* 9.55* 10.17* 9.97*2 9.65* 9.45* 9.32* 9.23* 8.77*
(2.15) (1.71) (1.19) (0.78) (0.66) (0.63) (0.62) (0.62) (0.62)

β̂2 -4.03 -4.74* -5.06* -4.97* -4.81* -4.71* -4.65* -4.61* -4.38*
(2.15) (1.71) (1.19) (0.78) (0.66) (0.63) (0.62) (0.62) (0.62)

β̂3 4.57 5.38 5.74* 5.64* 5.46* 4.35* 5.27* 5.23* 4.96*
(2.15) (1.71) (1.19) (0.78) (0.66) (0.63) (0.62) (0.62) (0.62)

R2 0.5740 0.7585 0.9009 0.9782 0.9932 0.9958 0.9960 0.9956 0.9881
RSS 1947.32 1104.03 452.94 99.82 30.97 19.07 18.22 20.06 54.35

β̂0 101.63* 88.92* 79.04* 71.14* 67.75* 66.18* 65.27* 64.67* 61.86*
(1.44) (0.89) (0.54) (0.23) (0.12) (0.09) (0.13) (0.09) (0.14)

0.40 β̂1 8.25* 9.60* 10.19* 10.00* 9.69* 9.50* 9.37* 9.29* 8.83*
(1.99) (1.47) (0.95) (0.42) (0.22) (0.17) (0.23) (0.17) (0.27)

β̂2 -4.10 -4.78* -5.08* -4.99* -4.84* -4.74* -4.68* -4.64* -4.41*
(1.99) (1.47) (0.95) (0.42) (0.22) (0.17) (0.23) (0.17) (0.27)

β̂3 4.65 5.43* 5.77* 5.66* 5.49* 5.38* 5.31* 5.26* 5.01*
(1.99) (1.47) (0.95) (0.42) (0.22) (0.17) (0.23) (0.17) (0.27)

R2 0.5790 0.7616 0.029 0.9805 0.9961 0.9991 0.9994 0.9992 0.9923
RSS 1924.50 1089.52 443.76 89.08 17.70 4.32 2.56 3.79 35.01

β̂0 98.12* 86.23* 76.91* 69.40* 66.18* 64.67* 63.80* 63.24* 60.54*
(1.38) (0.91) (0.52) (0.21) (0.09) (0.04) (0.03) (0.03) (0.11)

0.45 β̂1 8.18* 9.50* 10.08* 9.90* 9.61* 9.42* 9.30* 9.22* 8.77*
(1.95) (1.49) (0.93) (0.39) (0.17) (0.08) (0.06) (0.07) (0.22)

β̂2 -4.06 -4.73* -5.02* -4.94* -4.80* -4.70* -4.65* -4.60* -4.38*
(1.95) (1.49) (0.93) (0.39) (0.17) (0.08) (0.06) (0.07) (0.22)

β̂3 4.62 5.37* 5.71* 5.61* 5.45* 5.34* 5.27* 5.23* 4.98*
(1.95) (1.49) (0.93) (0.39) (0.17) (0.08) (0.06) (0.07) (0.22)
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R2 0.5803 0.7618 0.9026 0.9804 0.9963 0.9994 0.9998 0.9997 0.9932
RSS 1918.77 1088.76 445.12 89.69 17.04 2.92 0.69 1.59 31.22

β̂0 96.79* 85.20* 76.08* 68.73* 65.57* 64.09* 63.24* 62.68* 60.03*
(1.36) (0.90) (0.51) (0.21) (0.09) (0.04) (0.02) (0.03) (0.11)

0.47 β̂1 8.14* 9.45* 10.02* 9.86* 9.56* 9.38* 9.26* 9.18* 8.74*
(1.93) (1.48) (0.92) (0.39) (0.16) (0.07) (0.03) (0.03) (0.20)

β̂2 -4.05 -4.70* -4.99* -4.92* -4.78* -4.69* -4.63* -4.59* -4.37*
(1.93) (1.48) (0.92) (0.39) (0.16) (0.07) (0.03) (0.05) (0.20)

β̂3 4.60 5.34* 5.68* 5.59* 5.42* 5.32* 5.25* 5.21* 4.96*
(1.93) (1.48) (0.92) (0.39) (0.16) (0.07) (0.03) (0.05) (0.20)

R2 0.5814 0.7612 0.9011 0.9791 0.9954 0.9988 0.9994 0.9994 0.9935
RSS 1913.67 1091.58 452.26 95.61 20.84 5.44 2.40 2.77 29.63

β̂0 94.85* 83.69* 74.88* 67.75* 64.67* 63.24* 62.40* 61.86* 59.28*
(1.33) (0.89) (0.51) (0.21) (0.09) (0.05) (0.03) (0.03) (0.10)

0.50 β̂1 8.08* 9.35* 9.93* 9.77* 9.49* 9.31* 9.20* 9.12* 8.69*
(1.92) (1.47) (0.92) (0.40) (0.18) (0.09) (0.06) (0.06) (0.20)

β̂2 -4.01 -4.66* -4.95* -4.88* -4.74* -4.65* -4.60* -4.56* -4.34*
(1.92) (1.47) (0.92) (0.40) (0.18) (0.09) (0.06) (0.06) (0.20)

β̂3 4.57 5.29* 5.62* 5.54* 5.38* 5.28* 5.22* 5.17* 4.93*
(1.92) (1.47) (0.92) (0.40) (0.18) (0.09) (0.06) (0.06) (0.20)

R2 0.5791 0.7514 0.8871 0.9661 0.9843 0.9889 0.9903 0.9907 0.9874
RSS 1924.40 1136.56 515.90 154.98 71.56 50.88 44.49 42.55 57.59

β̂0 88.92* 79.04* 71.14* 64.67* 61.86* 60.54* 59.78* 59.28* 56.91*
(1.25) (0.85) (0.52) (0.26) (0.17) (0.14) (0.13) (0.12) (0.14)

0.60 β̂1 7.79* 8.97* 9.52* 9.42* 9.18* 9.02* 8.92* 8.85* 8.46*
(1.86) (1.45) (0.95) (0.49) (0.32) (0.27) (0.23) (0.24) (0.27)

β̂2 -3.87 -4.47* -4.75* -4.70* -4.58* -4.51* -4.46* -4.42* -4.23*
(1.86) (1.45) (0.95) (0.49) (0.32) (0.27) (0.23) (0.24) (0.27)

β̂3 4.41 5.08* 5.40* 5.35* 5.21* 5.12* 5.06* 5.02* 4.81*
(1.86) (1.45) (0.95) (0.49) (0.32) (0.27) (0.23) (0.24) (0.27)

R2 0.5530 0.7055 0.8299 0.9099 0.9323 0.9396 0.9428 0.9445 0.9477
RSS 2043.54 1346.50 777.43 412.05 309.27 276.08 261.51 253.91 238.91

β̂0 79.04* 71.14* 64.67* 59.28* 56.91* 55.80* 55.15* 54.72* 52.70*
(1.47) (0.84) (0.58) (0.39) (0.32) (0.30) (0.29) (0.28) (0.26)

0.80 β̂1 6.98* 7.97* 8.47* 8.48* 8.32* 8.21* 8.14* 8.09* 7.80*
(1.76) (1.44) (1.08) (0.75) (0.63) (0.58) (0.56) (0.55) (0.51)

β̂2 -3.48 -3.97* -4.23* -4.24* -4.16* -4.11* -4.07* -4.05* -3.90*
(1.76) (1.44) (1.08) (0.75) (0.63) (0.58) (0.56) (0.55) (0.51)

β̂3 3.97 4.53 4.82* 4.82* 4.73* 4.67* 4.63* 4.60* 4.44*
(1.76) (1.44) (1.08) (0.75) (0.63) (0.58) (0.56) (0.55) (0.51)

R2 0.5333 0.6750 0.7930 0.8725 0.8968 0.9054 0.9094 0.9117 0.9183
RSS 2133.42 1485.71 946.48 582.84 471.74 432.69 414.20 403.82 373.64

β̂0 74.88* 67.75* 61.86* 56.91* 54.72* 53.69* 53.10* 52.70* 50.82*
(1.11) (0.84) (0.61) (0.44) (0.38) (0.36) (0.35) (0.34) (0.32)

0.90 β̂1 6.54* 7.43* 7.90* 7.96* 7.84* 7.75* 7.69* 7.65* 7.42*
(1.72) (1.44) (1.13) (0.85) (0.75) (0.70) (0.68) (0.67) (0.62)

β̂2 -3.26 -3.71* -3.95* -3.98* -3.92* -3.88* -3.85* -3.83* -3.71*
(1.72) (1.44) (1.13) (0.85) (0.75) (0.70) (0.68) (0.67) (0.62)

β̂3 3.72 4.22 4.50* 4.53* 4.46* 4.41* 4.38* 4.36* 4.22*
(1.72) (1.44) (1.13) (0.85) (0.75) (0.70) (0.68) (0.67) (0.62)

Figures within parentheses are the standard errors of the estimates ∗p < 0.01

Even though the method explained above gives designs which ensure the
constancy in variance of the estimated response, the number of runs required
to layout the experiment is large. This problem of large runs can be solved
by considering fractional replication.
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Example 2.2 Consider a 24−1 factorial with four columns for four factors
in 8 runs. Rotate the columns cyclically 3 times to obtain 32 points. Finally,
add the first run at the bottom and last run at the top as border rows.
The 32 × 5 matrix X of 4 predictor variables with first column of 1’s, the
coefficients of mean and two extra points as border points is obtained.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 −1 1

1 −1 −1 −1 −1
1 −1 −1 1 1
1 −1 −1 −1 1
1 −1 1 1 −1
1 1 −1 −1 −1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1 −1 −1
1 1 −1 −1 1
1 1 −1 1 −1
1 −1 −1 1 1
1 −1 1 −1 −1
1 1 1 −1 1
1 1 1 1 −1
1 −1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1 −1 −1
1 1 1 −1 −1
1 −1 1 −1 1
1 1 −1 −1 1
1 −1 −1 1 −1
1 1 1 1 −1
1 −1 1 1 1
1 1 −1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1 −1 −1
1 −1 1 1 −1
1 1 −1 1 −1
1 1 1 −1 −1
1 −1 −1 −1 1
1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1

1 −1 −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

The variance of the parameter estimates and variance of the estimated re-
sponse is obtained as V (β̂0) = 0.0122σ2, V (β̂i) = 0.0309σ2, and V (ŷ0) =
0.1360σ2. The values in the case of full factorial are V (β̂0) = 0.0061σ2, V (β̂i) =
0.0121σ2 and V (ŷ0) = 0.504σ2.

3. Second Order Response Surface Model with Differential
Neighbour Effects

We consider the following form of f(Xu):

f(Xu) = β0 +

v∑
i=1

βiXiu +

v∑
i=1

βiiX
2
iu (3.1)
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X(N+2)×5 =




1 X1N X2N X2
1N X2

2N

1 X11 X21 X2
11 X2

21

1 X12 X22 X2
12 X2

22

.

.

.
1 X1u X2u X2

1u X2
2u

.

.

.
1 X1N X2N X2

1N X2
2N

1 X11 X21 X2
11 X2

21




(3.2)

Thus,

Z′Z is




pN p
N∑

u=1

X1u p
N∑

u=1

X2u p
N∑

u=1

X2
1u p

N∑

u=1

X2
2u

q

N∑

u=1

X2
1u + A1 q

N∑

u=1

X1u X2u + C1 q

N∑

u=1

X3
1u + C2 q

N∑

u=1

X1u X2
2u + C3

q

N∑

u=1

X2
2u + A2 q

N∑

u=1

X2
1u + C4 q

N∑

u=1

X3
2u + C5

q
N∑

u=1

X4
2u + B1 q

N∑

u=1

X2
1uX2u2 + D

q

N∑

u=1

X4
2u + B2




where p = (1 + α1 + α2)
2 and q = (1 + α2

1 + α2
2)
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where,

A1 = 2α1α2

[
N∑

u=1

X1uX1[(u+2) modN ]

]
+ 2(α1 + α2)

[
N∑

u=1

X1uX1[(u+1) modN ]

]

A2 = 2α1α2

[
N∑

u=1

X2uX2[(u+2) modN ]

]
+ 2(α1 + α2)

[
N∑

u=1

X2uX2[(u+1) modN ]

]

B1 = 2α1α2

[
N∑

u=1

X2
1uX2

1[(u+2) modN ]

]
+ 2(α1 + α2)

[
N∑

u=1

X2
1uX2

1[(u+1) modN ]

]

B2 = 2α1α2

[
N∑

u=1

X2
2uX2

2[(u+2) modN ]

]
+ 2(α1 + α2)

[
N∑

u=1

X2
2uX2

2[(u+1) modN ]

]

C1 = α1α2

[
N∑

u=1

X1uX2[(u+2) modN ]

]
+

[
N∑

u=1

X1[(u+2) modN ]X2u

]

+(α1 + α2)

[
N∑

u=1

X1uX2
1[(u+1) modN ] +

N∑

u=1

X2
1uX1[(u+1) modN ]X2u

]

C2 = α1α2

[
N∑

u=1

X1uX2
1[(u+2) modN ] +

N∑

u=1

X2
1uX1[(u+2) modN ]

]

+(α1 + α2)

[
N∑

u=1

X1uX2
1[(u+1) modN ] +

N∑

u=1

X2
1uX1[(u+1) modN ]X2u

]

C3 = α1α2

[
N∑

u=1

X1uX2
2[(u+2) modN ] +

N∑

u=1

X1[(u+2) modN ]X
2
2u

]

+(α1 + α2)

[
N∑

u=1

X1uX2
2[(u+1) modN ] +

N∑

u=1

X1[(u+1) modN ]X
2
2u

]

C4 = α1α2

[
N∑

u=1

X2
1[(u+2) modN ]X2u +

N∑

u=1

X2
1uX2[(u+2) modN ]

]

+(α1 + α2)

[
N∑

u=1

X2
1[(u+1) mod N ]X2u +

N∑

u=1

X2
1uX2[(u+1) modN ]

]
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C5 = α1α2

[
N∑

u=1

X2uX2
[(u+2) modN ] +

N∑

u=1

X2
2uX2

2[(u+2) modN ]

]

+(α1 + α2)

[
N∑

u=1

X2uX2
2[(u+1) modN ] +

N∑

u=1

X2
2uX2[(u+1) modN ]

]

D = α1α2

[
N∑

u=1

X2
1uX2

2[(u+2) modN ] +
N∑

u=1

X2
1[(u+2) modN ]X

2
2u

]

+(α1 + α2)

[
N∑

u=1

X2
1uX2

2[(u+1) modN ] +
N∑

u=1

X2
1[(u+1) modN ]X

2
2u

]

For near-orthogonal estimation of parameters and constancy of variances
of linear parameters and quadratic parameters, the following conditions are
required:

i)

N∑
u=1

2∏
i=1

Xωi
iu = 0 for ωi = 0, 1 or 3 and 0 <

∑
ωi < 4

ii)

N∑
u=1

X2
iu = 0 constant Nη = δ, ∀ i = 1, 2

iii)

N∑
u=1

X2
iuX2

i′u = constant = Nγ = L

iv)

N∑
u=1

X4
iu = constant = CL

v) Ai = A and Bi = B ∀ i = 1, 2. (3.3)

Therefore,

Z
′
Z =




N(1 + α1 + α2)
2 0′

1×2 | (1 + α1 + α2)
2δ1′

1×2
|

0′
2×1 [(1 + α2

1 + α2
2)δ + A]I2 | 02×2

|
(1 + α1 + α2)

2δ12×1 02×2 | H2×2



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Thus,

(Z
′
Z)
−1

=




1
N(1+α1+α2)2

+ 2 δ
N ξ 0′

1×2 −ξ1′
1×2

02×1
1

[(1+α2
1+α2

2)δ+A]
I2 02×2

−ξ12×1 02×2 Ψ2×2




,

where,

ξ =
δ

N

[
[(1 + α2

1 + α2
2)L(C − 1) + B −D] + [(1 + α2

1 + α2
2)L + D − δ2

N (1 + α1 + α2)
2]

∆

]
,

Ψ =

[
(1 + α2

1 + α2
2)L(C + 1) + B + D − 2(1 + α2

1 + α2
2)

δ2
N

∆

]
I2

+

[
− (1 + α2

1 + α2
2)L + D − delta2

N (1 + α1 + α2)
2

∆

]
11

′

and

∆ = [(1 + α2
1 + α2

2)L(C − 1) + B −D]{[(1 + α2
1 + α2

2)L(C − 1) + B −D]

+2[(1 + α2
1 + α2

2)L + D − δ2

N
(1 + α1 + α2)

2]}
The variances of the parameter estimates and covariances between the pa-
rameter estimates are obtained as

V (β̂0) =
σ2

N(1 + α1 + α2)2
[
1 + 2δ(1 + α1 + α2)

2ξ
]

V (β̂i) =
σ2

[(1 + α2
1 + α2

2)δ + A]
, i = 1, 2 (3.4)

V (β̂ii) = σ2 (1 + α2
1 + α2

2)L(C + 1) + B + D − 2(1 + α2
1 + α2

2)
δ2

N

∆

Cov(β̂0, β̂ii) = −σ2ξ

Cov(β̂ii, β̂i′i′) = −σ2

[
− (1 + α2

1 + α2
2)L + D − δ2

N
(1 + α1 + α2)

2

∆

]
, i 6= i′

Cov(β̂0, β̂ii) = 0
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The estimated response at the point x0 is ŷ0 = x′0β̂ = β̂0 +

2∑
i=1

β̂i xi0 +

2∑
i=1

β̂ii x2
i0 with its variance

V (ŷ0) = x′0V (β̂)x0 = σ2x′0(Z
′Z)−1x0.

Thus,

V (ŷ0) = V (β̂0) + V (β̂i)

v∑
i=1

x2
i0 + V (β̂ii)

v∑
i=1

x4
i0

+2 Cov(β̂0, β̂ii)

v∑
i=1

x2
i0 + 2 cov(β̂ii, β̂i′i′)

v−1∑
i=1

v∑

i′=i+1

x2
i0 x2

i′0

Therefore,

V (ŷ0)σ
−2 =

1

N(1 + α1 + α2)2
[1 + 2δ(1 + α1 + α2)

2ξ]

+{ 1

[(1 + α2
1 + α2

2)δ + A]
− 2ξ}

v∑
i=1

x2
i0

+
(1 + α2

1 + α2
2)L(C + 1) + B + D − 2(1 + α2

1 + α2
2)

δ2

N

∆

v∑
i=1

x4
i0

−2
[(1 + α2

1 + α2
2)L + D − δ2

N
(1 + α1 + α2)

2]

∆

v−1∑
i=1

v∑

i′=i+1

x2
i0 x2

i′0

For v factors,

Z
′
Z =




N(1 + α1 + α2)
2 0′

1×v | (1 + α1 + α2)
2δ1′

1×v

|
0′

v×1 [(1 + α2
1 + α2

2)δ + A]Iv | 0v×v

|
(1 + α1 + α2)

2δ1v×1 0v×v | Hv×v




with

(Z
′
Z)
−1

=




1
N(1+α1+α2)2

+ 2 δ
N ξ 0′

1×v −ξ1′
1×v

0v×1
1

[(1+α2
1+α2

2)δ+A]
Iv 0v×v

−ξ1v×1 0v×v Ψ




,

where,

ξ =
δ

N
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


[(1 + α2
1 + α2

2)L(C − 1) + B −D] + (v − 1)
[
(1 + α2

1 + α2
2)L + D − δ2

N (1 + α1 + α2)
2
]

∆


 ,

Ψ =

[
(1 + α2

1 + α2
2)L(C + v − 1) + B + (v − 1)D − v δ2

N (1 + α1 + α2)
2

∆

]
Iv

+

[
− (1 + α2

1 + α2
2)L + D − δ2

N (1 + α1 + α2)
2

∆

]
11

′

and

∆ =
[
(1 + α2

1 + α2
2)L(C − 1) + B −D

]





[
(1 + α2

1 + α2
2)L(C − 1) + B −D

]
+

v
[
(1 + α2

1 + α2
2)L + D − R2

N
(1 + α1 + α2)

2
]





Thus, expression for variances/covariances of the estimates are

V (β̂0) =
σ2

N(1 + α1 + α2)2
[
1 + vδ(1 + α1 + α2)

2ξ
]

V (β̂i) =
σ2

[(1 + α2
1 + α2

2)δ + A]
for i = 1, 2 . . . , v

V (β̂ii) = σ2

[
(1 + α2

1 + α2
2)L(C + v − 1) + B + (v − 1)D − v δ2

N
(1 + α1 + α2)

2

∆

]

Cov(β̂0, β̂ii) = −σ2ξ

Cov(β̂ii, β̂i′i′) = σ2

[
− (1 + α2

1 + α2
2)L + D − δ2

N
(1 + α1 + α2)

2

∆

]

Cov(β̂0, β̂i) = 0 (3.5)

The estimated response at the point x0 is ŷ0 = x′0β̂ = β̂0 +

v∑
i=1

β̂i xi0 +

v∑
i=1

β̂ii x2
i0 with its variance

V (ŷ0) = V (β̂0) + V (β̂i)

v∑
i=1

x2
i0 + V (β̂ii)

v∑
i=1

x4
i0

+2 Cov(β̂0, β̂ii)

v∑
i=1

x2
i0 + 2 cov(β̂ii, β̂i′i′)

v−1∑
i=1

v∑

i′=i+1

x2
i0 x2

i′0
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Using (3.5), we get

V (ŷ0)σ
−2 =

1

N(1 + α1 + α2)2
[1 + 2δ(1 + α1 + α2)

2ξ]

+{ 1

[(1 + α2
1 + α2

2)δ + A]
− 2ξ}

v∑
i=1

x2
i0+

(1 + α2
1 + α2

2)L(C + v − 1) + B + (v − 1)D − v δ2

N
(1 + α1 + α2)

2

∆

v∑
i=1

x4
i0

−2
[(1 + α2

1 + α2
2)L + D − δ2

N
(1 + α1 + α2)

2]

∆

v−1∑
i=1

v∑

i′=i+1

x2
i0 x2

i′0

A design under this situation is said to be rotatable if this variance is same
for all points x which are equidistant from the design centre and the designs
satisfying this property are called as Second Order Rotatable Designs with
Differential Neighbour Effects (SORDDNE).

Remark : For α1 = α2 = α, the above expression reduces to Sarika et al.
(2009).

3.1 Method of Constructing SORDDNE

Considering the method given in section 2.1, construct a 3v full factorial with
levels (−1, 0, 1) giving a rectangle R of 3v rows and v columns with entries
−1, 0 and 1. Circular rotation of the columns of R, (v − 1) times, yields
(v − 1) sets each consisting of 3v rows and v columns. By appending these
sets below R one after another, we obtain a rectangular array of v× 3v rows
and v columns. Appending another (v + 1) columns (a column of unity and
v columns of square terms), a SORDDNE in v × 3v points is obtained by
adding two extra points of border units such that each end of the array has
a point of the other end.

Example 3.1 For v = 2 (X1 and X2), the design matrix, X in 18 points
with two border points is as follows:
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X20−5 =




1 −1 −1 1 1

1 1 1 1 1
1 0 1 0 1
1 −1 1 1 1
1 1 0 1 1
1 0 0 0 0
1 −1 0 1 0
1 1 −1 1 1
1 0 −1 0 1
1 −1 −1 1 1
1 1 1 1 1
1 1 0 1 0
1 1 −1 1 1
1 0 1 0 1
1 0 0 0 0
1 0 −1 0 1
1 −1 1 1 1
1 −1 0 1 0
1 −1 −1 1 1

1 1 1 1 1




For α1 = 0.6 and α2 = 0.4

Z′Z =




72 0 0 48 48
0 16.8 0 0 0
0 0 16.8 0 0

48 0 0 37.6 32
48 0 0 32 37.6




Hence,

V (β̂0) = 0.172σ2, V (β̂i) = 0.059σ2, V (β̂ii) = 0.178σ2,

Cov (β̂0, β̂ii) = −0.1090 and V (ŷ0) = 0.1726σ2

Here, the variance of the estimated response is the same for all the points in
the design and hence the design is rotatable.

4. Conclusions

The problem of neighbour effects is common in experiments conducted in the
field. In response surface analysis, the presence of neighbour effect cannot
be ignored as it may affect the precision of the parameter estimates of the
model and hence of the estimated response. The methodology developed
here may be useful to tackle the problem of neighbour effects and to get
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precise estimates of parameters. The technique has been illustrated through
a simulated data set. Designs have been obtained for the experimental sit-
uations where neighbour effect is suspected. The design obtained here is
considerably larger as compared to the designs used for fitting response sur-
face without the neighbouring contamination, but this structure is needed to
ensure proper estimation when neighbour effect is suspected.

Acknowledgements : We are grateful to the Editor of CSAB and the referee
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the paper.
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