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Evaluation of approaches for estimation of rainfall 
and the unit hydrograph 

B. F. w. Croke, A. Islam, J. Ghosh and M. A. Khan 

ABSTRACT 

The impact of rainfall interpolation techniques and unit hydrograph estimation has been explored for 
four gauged locations in the Brahmani basin in east India. The use of ground-based and satellite­

based data, coupled with testing two interpolation techniques (Thiessen polygon and inverse 

distance weighting), can yield improved rainfall estimates and fits to observed flows. Due to the 

presence of significant errors in the areal rainfall estimate it was found that identification of known 

errors in rainfall data can assist in focusing model calibration on catchment response, thereby 
reducing the uncertainty in model parameter values. Similarly, using several approaches to estimate 

the unit hydrograph can assist in reducing uncertainty. The resulting performance of the model for 

the gauged sites in the Brahmani basin gave Nash-Sutcliffe efficiency (NSE) values for the calibration 

period of 0.6--0.7. For this basin, the inverse distance weighting approach corrected for spatial 
variation in rainfall distribution generally gave the best fits to the observed streamflow. sensitivity to 

errors in the rainfall surface limits the applicability for this approach in modelling the flows in 

ungauged basins, however. 
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INTRODUCTION 

Precipitation data are one of the most critical input variables 

in any hydrological modelling studies. Beven (:wor) noted 

that no model, however well founded in physical theory or 
empirically justified by past perfonnance, will be able to pro­
duce accurate hydrograph predictions if the inputs to the 

model do not characterize the precipitation inputs. Rain 

gauges are fundamental tools that provide an estimate of rain­

fall at a point. Although sat·eUite-based precipitation data is 
becoming widely available, ground-based precipitation data 

is still used widely in modelling hydrological processes; 
long-term historical ground-based precipitation data are avail­

able in all parts of the world and are considered more reliable 

than the satellite- and radar-based data. 
Generally, point measurements of rain gauge accumu­

lations are distributed in space over the catchment by 

different interpolation techniques. Conversion of point rain­
fa ll data to areal estimates is especially difficult in regions 

where rain gauge densities are very low. Among the various 
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sources of uncertainty affecting rainfall-runoff modelling, 

uncertainties in computed precipitation play a particular 

role. Many studies have pointed out that spatial and tem­

poral characteristics of rainfall greatly influence runoff 
generation, especially in regions of highly variable convec­

tive storms. Some studies have concluded that the 
reliability of rainfall-runoff models is mainly associated 

with the ability to represent spatial and temporal rainfall 

characteristics. Singh (r997) observed that the shape, 

timing and peak flow of a stream flow hydrograph are sig­
nificantly influenced by spatial and temporal variability in 

rainfall and watershed characteristics. 
The role of rainfall data quality on model performance 

has been extensively studied. Examples of factors affecting 
the uncertainty in the modelled flow include : number 

of rain gauges (e.g. Faures et al. 1995); rain gauge density 
(e.g. Hansen el al. r996); and spatial variability of rainfall 

(Chaubcy et al. r999). Faurcs et al. (1995) investigated the 
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impact of rainfall variability on runoff modelling by using a 

dense rain gauge network on a small semiarid catchment 

and indicated that the uncertainty on runoff estimation for 

small semjarid catchments is greatly affected by spatial varia­

bility of rainfall. On the other hand, Goodrich et al. (1995) 

observed that rainfall could be considered uniformly dis­

tiibutcd for hydrologic modelling of small basins, where a 

single rainfall station usually exists. In such cases, model 

parameters would be calibrated assuming uniform rainfall 

distribution within the watershed. Chaubey et al. (r999) 
found large uncertainty in estimated model parameters 

when detailed variations in the input rainfall were not 

taken into account. Bardossy & Das (2008) observed that 

the number and spatial distribution of rain gauges affect the 

simulation results, and a model might need recalibration of 

the model parameters when using different rain gauge net­

works. Specifically, a model cal ibrated on relatively sparse 

precipitation information might pe1fonn well on dense 

precipitation information, while a model calibrated on 

dense precipitation information fai ls on sparse precipitation 

infonnation. Moulin et al. (2009) investigated the influence 

of mean areal rainfall estimation errors using lumped 

conceptual rainfall-runoff models to simulate the flood 

hydrographs of three small- to medium-sized catchments of 

the upper Loire River. They concluded that a large part of 

tl1e rainfall-runoff modelling e1TOrs can be explained by the 

uncertainties in rainfall estimates, especially in tl1e case of 

smaller catchments. Andreassian et al. (2001) studied the 

impact of imperfect rainfall data for three catchments on 

three hydrological models - GR4J (modele du Geanie Rural 

a 4 parametres journalier) and derivatives of THACRES 

(identification of unit hydrograph and component flows 

from rainfall, evaporation and stream flow data) and the 

topography-based model TOPMOOEL - and found that the 

models used were able to correct for imperfect rainfall 

input estimates. For predicting flows at ungauged locations, 

however, the variations in the error in rainfall estimates 

between catchments need to be taken into consideration. 

For interpolation there are many modem methods avail­

able to optimize the available point observations, often 

utilizing additional information from topography, satellite 

data or radar information (Seo et al. 199oa, b; Haberlandt & 

Kite T998; Grimes et al. 1999). Wilk et al. (2006) explored the 

combination of ground-based data and satellite-derived 

spatial distributions of rainfall. Crcutin & Obied (1982) con­

cluded that more sophisticated interpolation· techniques 

might result in an improved estimation of rainfall behaviour, 

especially in cases of high spatial variability. Haberlandt & 

Kite (1998) found that better interpolation techniques and 

tl1e use of combined precipitation data can improve the 

hydrological simulations, and that the enhancements are 

related to the relative size of the simulation units used. 

Tabios & Salas (1985) compared the applicability of various 

interpolation techniques for estimating annual precipitation 

at selected sites. Kriging and optimal interpolation tech­

niques were found superior to the other techniques, and 

the multiquadric technique was almost as good as those 

two. The inverse distance interpolation and the Thiessen 

polygon gave fai rly satisfactory resul ts, wrule the polynomial 

interpolation did not produce good results. 

This paper focuses on the impact of uncertainty in esti­

mates of areal rainfall and unit hydrograph on modelling 

streamtlow in the Brahmani basin in India. No information 

is available regarding the uncertainty in the gauged rainfall 

or strcamflow, so these arc ignored in this analysis. Rather, 

the focus is on the uncertainty in converting the point rainfall 

data to areal rainfall estimates and the implications this has 

for estimation of the urut hydrograph (total UH is considered 

here, not just the runoff component). Four interpolation tech­

niques are tested (inverse distance weighted and Thiessen 

polygon, plus both of these weighted by a long-term rainfall 

surface) and these arc analyzed using the jack-knife uncer­

tainty estimator as well as cross-co1Telation analysis. 

The IHACRES model has been used to test the perform­

ance of each rainfall sequence for each of the catchments 

included in this study. The Catchment Moisture Deficit 

(CMD) version of the non-linear water balance module 

has been used (Croke & Jakeman 2004). The CMD 

module has five parameters: the flow threshold d ; tempera­

ture/potential evaporation conversion factor e; plant stress 

threshold scale factor f; drainage equation shape factor b; 

and dry condition response scale factor n. 

STUDY AREA 

The Brahmani River basin lies in eastern India between lati­

tudes 20'30'10" and 23' 36'42"N and longitudes 83" 52'55" 

"'1 -
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Figure 1 I Brahmani basin, showing location of streamflow and rainfall gauging sites used. 

and 8T 00'38"E, and is situated between Mahanadi Basin 

and Baitarani Basin. The basin has a total catchment area 

of 39,313 km2 and is spread over the states of Orissa 

(57.3% of the basin area), Jharkhand (39.2%) and Chattis­

garh (3.5%). There are four gauged locations in the basin: 

Tilga, Jaraikela, Gomlai and Jenapur (Figure 1). A large mul­

tipurpose dam (Regnali) is located upstream of Jenapur 

gauge and has been operational since 1985. The Rengali 

dam has a catchment area of 25,250 km2 and has live 

storage capacity of 4 x 109 m3
. While the presence of a 

large dam in the Jenapur catchment compiicates the 

hydrological response (the behaviour of such dams is not 

captured by most simple rainfall- streamflow models), the 

catchment was included in the study because modelling 

such catchments is necessary for water resource manage­

ment. Ideally, an approach which accounts for the 

impact of dam releases should be used (e.g. Payan et al. 
2008). 

... 1a~*"'1<>m...,;mn•n=ilHi• ........ 11.a•~==--==---=-n=r=n=n=n=ml:a••.,...,.,~::az2::nr:1t~ 

The basin has a sub-humid tropical climate with an aver­

age annual rainfall of 1,305 mm, most of which is 

concentrated in the southwest monsoon season of mid­

J unc to mid-October. The arable and forest land area 

occupy about 70 and 27% of the total area, respectively, 

and the remaining 3% of the basin area is urban. The 

basin is a key source of water supplies for different towns 

and industries and for irrigation in the state of Orissa. How­

ever, with rapid economic development and population 

growth in this region, lhere are increasing concerns over 

the adequacy of the quantity and quality of water withdrawn 

from the Brahmani River in the future. 

HYDRO-CLIMATIC DATA 

Daily streamffow and rainfall data (1979-2003) of four 

stream gauging stations, namely Tilga, Jaraikela, Gomlai 
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and Jenapur, are collected from the Central Water Commis­

sion (CWC), Bhubaneswar. Daily rainfall and temperature 

data for 20 sites in or near the basin were collected from 

India Meteorological Department (IMO), Pune (Figure 1). 

The number of gauges with data plotted as a function of 

time (Figure 2) shows that the uncertainty in the estimates 

of areal rainfall will vary significantly through the period 

of record, with best estimates available from 111/1982 to 

31112/ 1999. 

METHOD 

Areal rainfall estimation 

Daily rainfall data for 20 gauges in or near the Brahmani 

basin were used to estimate areal rainfall for each of the 

four gauged catchments. Four techniques were explored 

for estimating the areal rainfall: inverse distance weighting 

(IDW), Thiessen polygons (TP) and both of these methods 

with rainfall spatially weighted by a long-term average rain­

fall surface (2000-2009) from the PERSIANN (Precipitation 

E~timation from Remotely Sensed Infonnation using Artifi­

cial Neural Networks) dataset (Sorooshjan et al. 2000). 

The PERSIANN satelli te-derived rainfall surface was used 

as there were insufficient gauges to generate a swfaee 

using spatial interpolation methods (e.g. Taesombat & 
Sriwongsitanon 2009). 

The spatial weighting technique adopted here uses the 

satellite-derived rainfall surface to correct for the long-term 
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Figure 2 I Number of gauges with data as a function of time. 

spatial variability in the rainfall distribution, in order to 

minimize the impact of gauge location on the .rainfall esti­

mates. This is achieved by ilividing the data for each rain 

gauge by the corresponding value in the rainfall surface. 

This allows the use of simple mterpolation techniques 

(such as IDW and TP) of the normalized rainfall values. 

The result is a normalized areal rainfall estimate. Multiply­

ing this estimate by the mean rainfall surface value for the 

catchment gives an areal rainfall estimate that captures the 

influence of the spatial distribution of rainfall represented 

in the rainfall surface. Temporal variations in the rainfall 

surface (e.g. between events, months or years) are ignored 

in this application. Willie there is evidence of a systematic 

bias in the PERSIANN estimates (e.g. Hong et al. 2007; 

Boushaki et al. 2009), the effects of this will be reduced in 

this application as the decadal PERSIANN surface is only 

used to estimate the spatial variation in the rainfall and 

not the rainfall amount. 

Each approach modified the contributions from each 

gauge for each time-step according to availability of data. 

The inverse distance approach used all rain gauges, relying 

on the weights (inverse of the distance to each gauge) to 

effectively remove more distant gauges from contributing 

to the estimate. The weights applied to each gauge were cal­

culated on a cell by cell basis using a 1 km resolution, 

resampling the catchment boundaries delineated based on 

the Shuttle Radar Topography Mission (SRTM) digital 

elevation model (DEM) (90 m resolution, Smith & Sandwell 

2003; Farr et al. 2007). The distance from a cell to a gauge 

was corrected for the spatial extent of a cell. Tills approach 

means that the Thiessen approach is using polygons 

sampled at the rate of 1 km. 

The uncertainty in the daily rainfall estimate was tested 

in two ways. The first was based on a comparison between 

the different techniques, and gives a relative uncertainty 

between two different interpolation methods. The second 

approach involved the jack-knife approach for estimating 

the standard error in each areal rainfall estimate. In each 

trial, one of the ten most heavily weighted gauges was 

removed from the sample (depending on the number of 

available gauges). The jack-knife estimator gives a lower 

limit to the uncertainty in the areal rainfall estimates, as it 

only considers the scatter in the estimates from the rejection 

trials and ignores other factors which will influence the 
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uncertainty (e.g. uncertainty in measured rainfall at each 

gauge and the under-sampling of the spatial distribution of 

rainfall). 

Temperature interpolation 

The IHACRES rainfall-streamflow model uses temperature 

as a surrogate for potential evaporation (as temperature 

data is more readily available and easier to interpolate). 

Daily temperatw-e data (minimum, maximum and mean of 

these values) were avai lable for five gauges .in or near the 

Brahmani basin. Four of these had significant data gaps, 

and these were used to check for changes in the variations 

in temperature for di fferent locations. The remaining 

gauge located in Ranchi (near border at the northeast 

extreme end of the Brahmani basin) has complete data for 

the period from 1980 to 2004. The Ranchi temperature 

data was used to estimate the areal temperature for each 

catchment, adjusted for elevation using a lapse rate of 
7 ' C km- 1. 

Comparison between gauges showed a significant 

difference between all sites, with two upland sites 

showing evidence of systematic errors in temperature 

(up to 2 °C). The two sites near the coast showed signifi­

cantly cooler temperatures than the inland sites in the 

summer, and warmer temperatures in the winter. How­

ever, since only a small fraction of the }enapur 

catchment would be affected by coastal infl uences, this 

effect was ignored as it would not significantly alter the 

water balance. 

Estimation of the unit hydrograph 

Three techniques were employed to estimate the total UH 

which includes all flow components (surface and subsurface 

flow patl1ways): Fourier deconvolution (Croke et al. 2000; 

Croke & Littlewood 2005); direct estimation from the 

streamflow data (Croke 2006) ; and baseflow fi ltering 

(Croke et al. 2002). Fourier deconvolution and the direct 

estimation technique give non-parametric estimates of a 

time-invariant UH, while the baseflow fi ltering approach 

gives a parametric estimate of the UH based on a number 

of exponentially decaying tcnns as well as a llowing testing 

of the time invariance of the UH. 

Non-parametric estimates 

The time-invariant UH approach assumes that the stream­

flow (q) is given by the convolution of the effective rainfall 

(u) with the UH (h): 

q = uxh (1) 

Taking the Fourier transform of Equation (1) gives: 

Q = UH (2) 

where the capital letter indicates the Fourier transform of the 

relevant input. In theory, the Fourier transform of the UH 

(H) can be estimated from QIU. However, noise in the rain­

fall and streamflow data, coupled with temporal variations in 

the UH (e.g. seasonal variations, dependence on event magni­

tude and intensity) make this difficult. A better estimate of the 

average event H can be obtained using the correlation func­

tions as these give a signal averaged across all events, 

reducing the noise in the signal and removing the influence 

from any temporal variations in the UH. 

The Fourier transfo1m of the cross-correlation between 

two series a and b is given by AB*, where B* is the complex 

conjugate of B. This means that Equation (2) can be rewrit­

ten in terms of the Fourier transforms of the cross­

correlation functions: 

H- QP' _ (QP*) (PP') 
- UP• - PP• UP• (3) 

where Pis the Fourier transform of the estimated areal rain­

fall. Since the effective rainfall is unknown, the second 

factor in the right-hand side of Equation (3) limits the accu­

racy of the estimate of h, but docs not prevent valuable 

infotmation from being obtained about the form of h. This 

approach assumes that the autocorrelation of rainfall is an 

adequate representation of the cross-correlation between 

effective rainfall and rainfall. 

The direct estimation technique (Croke 2006) produces 

a high-resolution (one-tenth the original time-step) estimate 

of the decay from flow peak and is better suited than the 

Fourier deconvolution approach for determining the base­

flow response signal. It performs best for hydrographs with 
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well-separated flow peaks. The direct estimation technique 

uses only the observed streamflow data, reducing the data 

requirements and removing a somce of uncertainty. 

Parametric estimates 

The baseflow filtcting approach described by Croke et al. 

(2002) gives an estimate of the effective rainfall time series, 

the UH based on a sum of exponential terms and the base· 

flow (under the assumption that the exponential terms in 

the UH have a physical basis). In this case, the technique 

is used for estimating the UH as well as checking for 

deficiencies in the data. The baseflow filtering approach 

uses an iterative procedure where a first guess of the UH 

is used to estimate the effective rainfall time series. The 

effective rainfall time series is then used to update the esti­

mate of the UH, and the procedure repeated until the 

change in parameter values of the UH between iterations 

decreases to below 10- 6 or 40 iterations are completed. In 

most cases, converged solutions arc obtained in approxi­

mately 20 iterations. Each exponential term in the UH has 

two parameters: the recession time constant -r and the 

volume v. For conservation of mass, the sum of the volumes 

for all stores is 1 (only considering parallel pathways here, 

not cascades of exponential stores). 

Rainfall-streamflow modelling 

In keeping with the top-down approach to model develop· 

ment (e.g. Littlewood et al. 2003; Sivapalan et al. 2003), the 

simplest version of the model was applied initially, with the 

benefit of greater complexity explored by comparing the 

model performance as additional parameters are optimized. 

The CMD version of IHACRES (Croke & Jakeman 2004) 

was calibrated to each catchment using a phased calibration 

approach where the unit hydrograph parameter values were 

estimated from the analysis described in the previous section. 

Initially, only two parameters of the CMD module were cali· 

brated: the plant stress threshold factor f and the dry 

condition contribution scale factor n. The remaining par­

ameter values were set at the values nominated by Croke & 

Jakeman (2004). 

The CMD module parameters were calibrated using a 

multi-criteria approach which included: the Nash-Sutcliffe 

efficiency (both the linear RFis and logarit~ic RFis,1og 
forms); lag 1 correlation coefficients between model residual 

and modelled flow x 1 and effective rainfall u1 ; and root 

mean square error (RMSE) in the flow duration curve 

(FDC) and the FDC for the upper 30 percentile of flows. 

Subsequent model runs involved increasing the number of 

parameters being optimized, and comparing the improve­

ment in model performance. 

RESULTS 

Areal rainfall estimates 

A comparison of the rainfall estimates for the Jenapur catch­

ment using the wIDW and wTP approaches (where the prefix 

w indicates that the IDW and TP approaches have been 

weighted by a rainfall surface) is shown in Figure 3, while 

Figure 4 shows the variation between the two approaches 

as a function of the coefficient of variation (CV) of the data 

from all rainfall gauges on the corresponding day. The run· 

ning average shown in Figure 4 clearly shows the influence 

of the CV. For rainfall events distributed across the region 

(low CV), both approaches give comparable estimates.~ 

events that are sufficiently localized (high CV) that the rain 

gauge network does not adequately capture the spatial distri· 

bution, the inverse weighted approach tends to give low<rr 

e.stimates than the Thiessen polygon approach due to the 

increased number of gauges used. 

160 I E 
.§. 140 

i::: 
120 0 

00 
> 
0 100 -Q. 

i::: 
(II 80 
"' "' 'iii 

60 ~ 

I-
"O 

40 ~ 
~ 

.!!!' 20 (II 

:;: 
0 

0""" 

-t 
: - t 

20 40 

.. 

60 80 

Weighted inverse distance (mm) 

100 120 

Figure 3 I comparison of inverse distance and Thiessen polygon estimates of areal 
rainfall for the Jenapur catchment using the PERSIANN rainfall surface to 
correct for spatial variability. 
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with wTP < 10 mm) plotted against the coefficient of variation or the rainfall 
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Figure 5 shows the fractional uncertainty (uncertainty in 

mean/mean) in the TP estimate of areal rainfall obtained 

using the jack-lmife estimator for the Jenapur, Gomlai and 

Jaraikela catchments (the Tilga catchment is not shown as 

the maximum number of gauges used by the TP approach 

was 2). For the Jenapur catchment, all days with more 

than 13 gauges having data are shown with nine gauges 

for the Gomlai catchment and six gauges for the Jaraikela 

catchment. The increase in fractional uncertainty with 

decreasing areal rainfall is due to the impact of more loca­

lized rainfall events which have higher CV and tend to 

have lower rainfall estimates when averaged over large 

areas. Large rainfall events covering a significant fraction 

of the catchment tend to have uncertainties derived from 

the jack-knife estimator of a little less than 100/o. Smaller 

events can have uncertainties ranging up to 40% (sligh tly 

higher for the Jaraikela catchment due to the smaller 

number of available gauges). 

The estimated w1certainty in the IDW-derived areal 

rainfall values was lower than the TP:dcrived values (by 

approximately 70% for the Jenapur catchment). Th.is is due 

to the smaller number of gauges used by the TP approach. 

The significance of this reduction in uncertain ty derived 

using the jack-kinfe estimator depends on the relative impor­

tance of other sources of uncertainty. However, even if there 

is a significant decrease in uncertainty using the IDW 

approach, this is offset by the bias introduced in localized 

events (Figure 4). 
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Figure s I Fractional uncertainty (uncertainty in mean/mean) in areal rainfall plotted 
against areal rainfall for Jenapur (top panel), Gomlai (middle panel) and Jar­
aikela !bottom panel) catchments. 

Correlation analysis 

Figure 6 shows the autocorrelation of rainfall (w!DW 

estimate) and the cross-correlation of streamflow with 

rainfall for the Tilga catchment. The autocorrelation of 

rainfall gives information about the seasonality of the rai · 

!a I signal (large lag§), as we~l as the Ukelihood of rainfall 

on consecutive days (near a lag of zero). This is empha· 

sized in the upper panel in Figure 6 by plotting the 

cross-correlation functions across lags of several years, 

showing the stability of the seasonality of the rainfall. In 
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Figure 6 I cross·c:orrelation analysis of rainfall and streamflow data for Tilga catchment 

(rainfall surface adjusted inverse distance weighted). 

the lower panel, the correlation functions are shown for 

lags between - 10 and 100 in order to show the event 

scale rainfall and subsequent streamflow response of the 

catchment. 

The cross-correlation of streamflow with rainfall shows 

the increased seasonali ty in the streamllow compared with 

the rainfall (necessitating a water balance module that has 

a seasonal dependence - e.g., the influence of variation in 

potential evaporation), the lag in streamflow response at 

the start of the wet season and the persistence in flow at 

the end of the wet season due to the baseflow component. 

The peak of the cross-correlation function near a lag of 

zero (lower panel in Figure 6) gives information on the aver­

age event response, i.e., lag in the peak with respect to 

rainfall, shape of UH and the strength of the dependence 

of streamflow on the rainfall (sec earlier discussion on the 

non-parametric estimation of the UH). 

The baseline shown in Figure 6 is the average of the 

values at integer year lags (therefore representing the seaso­

nal variation in the cross-correlation function) and 

highlights the event response signal, where the cross-corre­

lation function is considerably higher than the baseline 

near a lag of zero and merges with the baseline after about 

50 days. The peak value of the cross-correlation function is 

higher when using the wIDW-cstimated areal rainfall 

(0.55) than that obtained using the wTP approach (0.46), 

showing a stronger relationship between strcarnflow and 

wIDW-derived areal rainfall. 

Non-parametric estimates of the UH 

The estimated UH for the Tilga catchment derived using 

Fourier deconvolution of the correlation functions is 

shown in Figure 7 for the TP- and JDW-derived areal rain­

fall estimates. Generally, both rainfall estimates give 

similar estimated unit hydrographs. The plot extends to 

negative lags as this gives an indication of the noise in 

the UH estimates, enabling an assessment of the signifi­

cance of the shape of the UH. The difference in the 

values at a lag of 1 day is approximately the same as the 

highest absolute value for negative lags (~0.05 at a lag of 

- 9). The difference in the peak of each UH is therefore 

not very significant. 

The resulting UHs for the four catchments are shown 

in Figure 8. The response curves for Jaraikcla and Gomlai 
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Figure 7 I Deconvolved non-parametric estimate or the unit hydrograph for Tilga cateh­

ment using the rainfall surface adjusted inverse distance, and sampled 
Thiessen polygon derived rainfall time series. 
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Figure 8 I UH derived for all catchments using the direct estimation technique. 

are very similar, while Tilga (the smallest catchment) has a 

reduced baseflow volume and Jenapur (largest catchment, 

data from 9/4/1980 to 17 / 12/1993 used) has the strongest 

baseflow. In all catchments, the baseflow recession appears 

to be exponentially decaying. Both Gomlai and Jenapur 

catchments show evidence of a very slow low-volume base­

flow component. While the significance of th is is small, it is 

in agreement with these gauges being located lower in the 

Brahmani basin so the potential for such a baseflow 

component cannot be ruled out. The quick flow recession 

appears to be ordered according to catchment area, 

with Tilga having the most rapid decay from peak and 

Jenapur having the slowest. These estimates of the UH 

can then be compared with parametric estimates (sec 

next section) to assess whether the adopted functional 

form is suitable. 

Parametric estimate of the UH 

The underlying assumption of the fi ltering approach for 

obtaining a parametric form of the UH is that the effective 

rainfall at each time-step is less than or equal to the areal 

rainfall. As such, this approach tests for significccnt underes­

timation in the areal rainfall but does not test for 

overestimation. Figure 9 shows the estimated flow obtained 

using the baseflow filter in comparison to the observed flow 

for the Tilga catchment, using the wTP estimate of areal 

rainfall. The top panel shows the en ti re period of record 

and the lower panel shows the observed and fil ter-derived 

flow for the years 1986 and 1987. There is a systematic 

underestimation of the largest flow peaks, which is due to 

the estimated rainfall amount on the relevant day being 

considerably underestimated. This problem is less severe 

for the other catchments, for which more rain gauges are 

available. 

Figure 10 shows the observed rainfall (wIDW) and 

streamflow (both in mm) for the 1987 wet season (containing 

the highest observed flow for the Tilga catchment). The high 

flow on 28th August (81.9 mm) is not accompanied by a sig­

nificant amount of rainfall (19.3 mm). Consequently, no 

model would be able to reproduce this flow peak. The 

number of flow peaks that are not captured by the baseflow 

filtering technique demonstrates the poor quality of the 
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Figure 9 I Flow obtained using the baseflow filtering approach (q_filO compared with 
observed now for the Tilga catchment using wTP areal rainfall. 



381 B. F. w. Croke et al. I Evaluation of approaches for estimation of rainfall and the unit hydrograph Hydrology Research I 42.5 I 2011 

.r:. .... 
a. 
QJ 

-0 ... 
QJ .... _ 
ra E 
~ E 
c 

.!l:! 
ra 
> ·:; 
CT 
w 

180 

160 1 

140 

120 

100 

80 

60 

40 

20 I 

0 u 
1/ 05/ 1987 

- Areal rainfall 

- Observed flow 

1/ 07/1987 1/ 09/ 1987 

Figure 10 I Obsenled streamflow and estimated areal rainfall (WT!') for Tilga catchment. 

estimated areal rainfall (in tenns of a lower limit), and indi­

cates that any model would give poor perfonnance for 

these catchments when assessed using objective functions 

based on the sum of squared residuals (e.g. Nash- Sutcliffe 

efficiency) due to the weight given to high-flow events by 

such objective functions. Care must therefore be taken in 

evaluating model performance so that the focus is on the 

model rather than errors in the data. 

Croke (2009) proposed a modified NSE that explicitly 

included the uncertainty in the observed and modelled 

flows. A simpler approach has been adopted here, where 

time-steps with significantly underestimated rainfall (if 

necessary, effective rainfall exceeds the estimated rainfa ll 

by more than 2000/o) are not included in the calculation of 
the objective functions. 

MODEL APPLICATION 

The base UH parameter set was that estimated using the 

baseflow fi ltering technique. This was then compared to 

the non-parametric forms of the UH obtained using the 

direct estimation and Fourier deconvolution techniques, 

and alternative parameter values and model structures 

developed. The calibrated paran1eter values and NSE 

(both linear and logarithmic fo1ms) for the calibration 

period (16/ 111988 to 18/ 4/ 1996) for all catchments using 

the wlWD areal rainfall estimates are shown in Table 1. 

NSE (linear and logarithmic) are shown in Table 2 for a ll 

catchments and all areal rainfa ll estimates (UJ-I parameters 

Table 1 I Parameter values and NSE values for each catchment using the wlDW areal rain­

fall methOd 

Parameter Tllga Jaralkela 

Unit hydrograph parameter values 

T1 45.96 45.0 

r2 1.88 1.0 

r3 0.5 

V 1 0.248 0.5 

V2 0.752 0.95 

V3 - 0.45 

CM D module parameters 

F 0.44 0.78 

II 0.12 0. 13 

Performance criteria 

R~s 0.702 0.634 

R~s.1og 0.835 0.839 

Gomlal Jenapur 

35 67.08 

1.12 2.95 

0.75 

0.4 0.525 

1.95 0.475 

- 1.35 

0.52 0.68 

0.18 0.18 

0.737 

0.798 

0.623 

0.579 

Table 2 I NSE and NSE_log values for all catchments and all rainfall estimation techniques 

IDW WIDW TP wTP 

Tilga 0.693/0.854 0.702/0.835 0.591/0.813 0.628/0.804 

Jaraikela 0.55910.806 0.633/0.842 0.128/0. 7 43 0.238/0.772 

Gomlai 0.739/ 0.802 0.737/0.798 0.664/0.768 0.706/0.774 

jenapur 0.623/ 0.577 0.623/0.579 0.600/ 0.562 0 .60110.558 

were fixed at values shown in Table 1). The baseflow filter­

derived UH was adopted for the Tilga and Jenapur catch­

ments as the departure from a simple exponential form 

was not significant enough to warrant a more complex 

UH structure. For the Jeraikela and Gomlai catchments, a 

rapidly decaying negative-volume component was added to 

the model to capture the decrease in the lag zero value of 

the UH due to the fraction of a day delay between rainfall 

and strearnflow peak. 

This form of the UH is simpler to estimate the parameter 

values compared to the more physically meaningful series of 

exponentially decaying stores. As the focus in this study is 

exploring whether the shape of the UJ-I peak is significant 

in terms of reproducing the observed flows, this lack of pro­

cess understanding is not c1itical. The relatively poor 

performance for the Jenapur catchment may be attributed 

to the presence of a large dam in this ca tchment. 

-
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In Table 3, the various performance criteria arc shown 

for the different areal rainfall estimates and UH for the 

Tilga catchment. Comparable results were obtained for the 

Gomlai catchment. The Jaraikela catchment gave a very 

poor performance using both Thiessen polygon-based 

approaches (NSE = 0.24) but reasonable performance 

using the inverse distance-weighted approaches (NSE = 
0.63), suggesting at least one gauge selected by the TP and 

wTP approaches had significant errors. 

Jn comparison with the other catchments, ~he Jenapur 

catchment showed little difference in model performance 

for all the different areal rainfall estimates. This is due to 

most of the rain gauges being used in estimating the areal 

rainfall using the TP and wTP approaches. The influence 
• of the dam may also have been a contributing factor. The 

calibrated parameter values were sensitive to the inclusion 

of the rainfall surface for the inverse distance technique, 

while the Thiessen polygon approach showed insignificant 

changes in parameter values. Interestingly, the parameter} 
values obtained using rainfall derived from both the TP 

and wTP approaches generally agreed with the JDW esti­

mates. This suggests there are deficiencies in the rainfall 

surface, particularly at large scales. 

The results showed that the best UH structure and par­

ameter values were generally obtained using a 

hybridization of the different techniques, with the direct 

estimation giving the baseflow parameter values and 

the Fourier deconvolution approach used to' adjust the 

shape of the UH peak. As suggested by WiU< et al. (2006), 

the areal rainfall time series generated using the interp­

olation techniques investigated were tested based on 

the performance of the model. Results showed that the 

wIDW approach gave the best NSE values and fits 

to the FDC, while the wTP-derived values gave the best 

U1 values. 

DISCUSSION 

For best model performance at gauged sites, the random 

error in the areal rainfall estimate needs to be minimized. 

Most systematic errors will be compensated for in the 

calibrated values of the model parameters (e.g. underestima­

tion of the areal rainfall can be corrected by adjusting the 

model parameter values to reduce the model predicted evap­

oration rates). For prediction at ungauged sites, factors 

affecting the physical significance of the parameter values 

should be minimized; for example, the influence of temporal 

resolution (Littlewood & Croke 2008). In the case of areal 

rainfall estimates, the systematic errors need to be mini­

mized (or at least, the variation in the systematic errors 

between sites needs to be minimized). The technique for 

Table 3 J Calibrated non-linear mOdule parameter values. source of UH parameter values and performance measures for the Tilga catchment using each rainfall estimation technique (best 
values are in bold) 

UH f n R~s R~s.103 Blas x, u, FDC FDC_hl 

IDW 

Base flow 58 10 0.693 0.854 6.58 0.02 0.468 0.236 0.346 

Corrected 59 12 0.702 0.855 6.71 0.056 0.46 0.238 0.35 

TP 
Baseflow 58 18 0.591 0.813 -0.04 0.293 0.175 0.174 0.246 

Corrected 59 19 0.598 0.81 -0.2 0.353 0.153 0.174 0.245 

w/ DW 

Baseflow 44 12 0.702 0.835 9.55 -0.117 0.567 0.237 0.342 

Corrected 44 12 0.713 0.836 9.24 -0.075 0.553 0.235 0.341 

wTP 

Baseflow 60 20 0.628 0.804 0.33 0.321 0 .259 0.172 0.242 

Corrected 59 18 0.617 0.803 0.03 0.374 0.255 0.174 0.243 
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estimating the areal rainfall that gives the best model per­

formance at gauged sites is therefore not necessarily the 

best method for prediction at ungauged sites. While the 

wIDW approach generally yielded the best NSE values in 

this study, the dependence of the parameter values on the 

rainfall surface means that care should be taken in the 

interpretation of the parameter values, particularly in regio­

nalization applications. 

The method selected for generating the rainfall input 

for the model depends on modelling purpose. For best repro­

duction of observed streamflow, however, the wIDW 

approach gave the best result. This indicates that many rain­

fall events had a large spatia l coverage, leading to reduced 

uncertainty in areal rainfall due to averaging of a larger 

number of stations. For predicting flows at ungauged sites, 

however, the wIDW is more sensitive to errors in the rainfall 

surface (due to the wider spatial distribution of gauges used), 

and the wTP approach should generally be preferred (or 

possibly the wIDW approach, with the long-term average 

adjusted to match the wTP-derived estimate). 

CONCLUSIONS 

Extra care is needed when attempting to model streamflow 

in data-sparse regions. It is recommended that a range of 

methods be used to estimate areal rainfall (including correc­

tion for spatial variations in rainfall distribution). Further, 

the rainfall t ime series generated by the different methods 

should be assessed through application in a rainfall- stream­

flow model. The performance of the different techniques 

depends on the distribution and density of rain gauges and 

the spatial variability in the rainfall distribution, and hence 

will vary between sites. Care should be taken, however, as 

the selection of the best approach may be model dependent. 

In the application of the approach to the Brahmani basin, it 

was found that the inverse distance-weighted approache; 

(IDW and wIDW) gave the best model performance under 

'calibration, with preference given to the wJDW approach 

due to the low rain gauge density. 

Comparison of observed rainfall wi th recorded stream­

flow can identify errors in rainfall data (e.g. far too little 

rainfall to account for a streamflow peak). Model calibration 

should avoid time-steps affected by such errors, as these will 

affect model parameter values based on the errors rather 

than the catchment response. Further, the physical interpret­

ation of the parameter values (often required for prediction 

in ungauged basins) should tal<e into account the likely 

uncertainty in the areal rainfall estimates (and streamflow, 

although this is not the focus of this paper), including vari­

ations between the estimated and actual (unknown) values 

for different catchments. 

Similarly, various techniques (baseflow fi ltering, direct 

and deconvolution) were used in this paper to estimate 

the shape of the unit hydrograph, improving model perform­

ance in some catchments. This demonstrates the importance 

of using different techniques in order to separate the actual 

response from the errors in the data. The direct and decon­

volution approaches are not model dependent, while the 

baseflow filtering technique is dependent only on the UH 

module of the IHACRES model. The most effective 

technique for estimating the UH when assessed using a 

combination of the linear- and log-transformed NSE was 

that derived using a combination of the techniques 

described in this paper. 
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