Commercial mineral mixtures comprising the essential minerals are available for large ruminants like cattle and buffalo. Small ruminants like sheep and goat have specific mineral requirements, which is quite different from the large ruminants. Specific mineral mixture formulations for small ruminants are commercially not available. Of late, sheep and goat rearing is transforming from extensive to semi-intensive in some regions. Realising this, a research project was undertaken at NIANP, Bangalore to formulate specific mineral mixture for sheep and goat and test their efficacy to improve growth and health. Depending on the mineral requirement of sheep and goat, their feeding habits, mineral status of feeds and fodders used and identify the most limiting minerals, specific mineral mixture formulations were made for sheep and goat. These formulations were tested in sheep and goat in organised farms and found to improve growth and immunity. Based on the findings, the technology was commercialized popularise the with NANDI Agrovet Private Ltd., the technology could be upscaled and meet the demands of farmers.

Research Highlights

Protein marker for detecting putative motility in buffalo and cattle semen

In the process of developing a suitable assay to screen sub-fertile buffalo bulls, an attempt was made to characterize the fertility associated proteins namely **CatSper** (a pH-dependent sperm-specific calcium ion channel of human and mouse sperm) and **TIMP-2** (tissue inhibitor of metalloproteinase-2) in buffalo semen. In both buffalo and cattle spermatozoa, CatSper-1 of approx. 22.2 kDa was detected. Specifically in buffaloes, CatSper1 proteins were found to be localized at the post-acrosomal and principal piece regions of spermatozoa.
Besides, five CatSper3 immunoreactive protein bands of 59.7, 51.3, 39.5, 29.5 and 20.0 kDa were detected in buffalo sperm extracts. The low motility of buffalo spermatozoa were associated with aberrant expression of CatSper-3 ion channel proteins. In both buffalo and cattle, two molecular weight forms of TIMP-2 (22.4 and 17.8 kDa) were detected in seminal plasma and significantly lower expression of TIMP-2 were found to be associated with low sperm motility. Thus, TIMP-2 protein was identified as a putative motility marker for buffalo and cattle semen. Which could help in enhancing fertility in buffaloes at farmgate level.

Immunolocalization of CatSper1 proteins in buffalo spermatozoa

Aberrant expression of CatSper3 immunoreactive proteins in low motility buffalo sperm extracts. Lanes 3-4 displayed abnormal presence of 24.9 kDa and 10.8 kDa CatSper3 immunoreactive bands in low motility spermatozoa

Western blot detection of TIMP-2 protein in buffalo and cattle seminal plasmas. Approximately 20 g of proteins/lane were separated using a uniform 15%polyacrylamide gel. Two molecular forms (22.4 and 17.8 kDa) of TIMP-2 proteins were detected in buffalo and cattle seminal plasmas using polyclonal rabbit anti-human TIMP-2 antibody. Lanes 1-3: seminal plasmas from high motility (70%motility) buffalo spermatozoa; Lanes 4-6: seminal plasmas from low motility (40%motility) buffalo spermatozoa; Lane 7: buffalo serum; Lane 8: seminal plasma from high motility (70% motility) cattle spermatozoa; Lane 9: seminal plasma from low motility (40%motility) cattle spermatozoa.

Developing repository of rumen bacteria

Rumen bacteria from domestic ruminants viz; cattle, buffalo, sheep and goats were isolated and characterized microbiologically and biochemically. Eighteen bacterial isolates from sheep was cultured and further processed for DNA extraction, amplification, cloning in suitable vectors, transformation positive clones selection and then sequencing. These cultures were belong to Streptococcossp. The bacteria that have been identified and added to repository are: Streptococcus infantarius subsp. infantarius, Streptococcus lutetiensis, Streptococcus bovis, Streptococcus equines, Clostridium bifermentans, Escherichia coli, Clostridium botulinum A3 and Clostridium sp. Additionally three more gram positive live anaerobic cultures namely Bacillus nealsonii (VTCCRM000020B), Clostridium beijerincki (VTCCRM000021B), Clostridium sartagoforme (VTCCRM000022B) were submitted to the repository by Anand Agricultural University. The phylogenetic analysis of few bacterial isolates obtained have been studied.

Phylogenetic analysis (MEGA 4) of bacteria isolated in the present study

Effect of dietary fungal phytase supplementation on the performance of broiler chicken

Effect of fungal phytase supplementation on the performance of broiler chicken fed on maize- soybean based diet was evaluated. Two fungal isolates Aspergillus awamori (NCIM 885) and Aspergillus foedidus (isolated from soil) showed good phytase activity and therefore finally selected for the bulk production of phytase in laboratory using
immobilization technique. Through immobilization of fungus, phytase activity of 80-100 FTU/ml was obtained within 6-10 days of incubation at a regular interval. Activity of phytase enzyme produced in lab was stable over wide range of temperature (30-70°C) and pH (3.5-6.5). 192 birds divided into 4 groups were fed on maize-soybean based diet supplemented with inorganic P (positive control, T-1), low P (0.45% available, negative control, T-2), lab phytase (T-3) and commercially available phytase (T-4). Supplementation of phytase enzyme @ 500 FTU/ml from both the commercial and lab sources could replace 0.12% of the available or non-phytin P in broiler diet. However, feed intake, body weight gain and meat yield was lower in the broilers receiving lab produced phytase enzyme as compared to birds receiving commercially available phytase. Supplementation of both lab phytase and commercial phytase reduced the excretion of P by 30%. It may be concluded that lab phytase produced by immobilization can replace phytin P up to 0.12% in the diet of broiler chicken.

Awards / Recognitions

Dr. S. B. N. Rao, Principal Scientist, was conferred the Fellow Award of Society for Applied Biotechnology for the year 2012.

Dr. A. Thulasi, Senior Scientist was conferred the Fellow Award of Society for Applied Biotechnology for the year 2012.

Dr. P. K. Malik, Senior Scientist was conferred the Fellow Award of Society for Applied Biotechnology for the year 2012.

Trainings

Valedictory function of Model Training Course on 21-02-2013

Publications

Technical bulletins/Folders

- Feeding and Management of Goats
 - Technical bulletin - 12
 - Complete feed blocks as viable technology for livestock

- Early embryonic mortality in buffalo: A New Look
 - S. Mondal
 - I.J. Reddy
 - S. Nandi

- A calf per year for profitable dairying
 - S. Selvaraju
 - A. Arangasamy
 - D. Rajendran
 - J. P. Ravindra

- Feeds and fodders rich in minerals

- Plant derivatives: Ideal agents to combat aflatoxins
The Second Innovative and Progressive Farmers Meet was held on 24th January, 2013. Dr. S. Ayyappan, Secretary DARE & DG, ICAR was the chief guest of this function. Padmashree Dr. M Mahadevappa, Former VC, UAS, Dharwad and Former Chairman, ASRB, presided over the function. Dr. K D Kokate, DDG (Ag Ext.), ICAR; Dr. K M L Pathak, DDG (AS), ICAR; and Dr. Renuka Prasad, VC, KAFSU, Bidar were the guests of honour. Ten selected progressive farmers were felicitated on this occasion. They shared their experiences and innovations with the fellow farmers. About 150 farmers attended the meet. In the scientist-farmer interaction session, a panel discussion was held under the chairmanship of Dr. Narayangowda, VC, UAS, Bangalore, wherein queries of farmers in relation to livestock farming were answered by the experts from different departments. The dignitaries released several technical bulletins and ‘Feed Assist’: a farmer friendly ration formulation program was also launched by chief guest.
Laboratory Profile

Molecular biology lab

The Molecular Biology Laboratory of the institute was established in 1998 with the vision of creating a state-of-the-art facility for conducting research in the advanced area of functional genomics such as proteins, transcripts, and regulatory small molecules. Some of the research facilities include ultracentrifuge and other refrigerated and non-refrigerated centrifuges, ultrasonic processor, tissue homogenizers, gel electrophoresis system for proteins and nucleic acids, imaging systems for chromogenic, fluorescence and radio-labelled gels, fast pressure liquid chromatography system, in vitro prokaryotic and eukaryotic cell culture facilities for recombinant protein production and other in vitro experiments, DIC and fluorescent microscopes, shaking incubators, gradient and real-time PCR systems, micro-plate reader, isoelectric focussing system etc.

Salient achievements

- Cloned and confirmed the sequence of major buffalo PAG transcript of fetal cotyledon and caruncular tissues.
- Identified a putative motility marker for buffalo and cattle semen

Current focus of research

- Development of pregnancy diagnosis assay for buffaloes based on already available marker
- Exploring the newer markers of pregnancy in cell free body fluids of buffaloes
- Identification of sub-fertile buffalo bulls using molecular markers
- Development of suitable semen extender for improved post-thaw motility of buffalo semen

Seminars/ lectures

<table>
<thead>
<tr>
<th>SI No</th>
<th>Month</th>
<th>Presenter</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Feb 2013</td>
<td>Prof. Dr T G Nagaraja of Kansas State University, USA</td>
<td>Feed safety</td>
</tr>
<tr>
<td>2</td>
<td>Feb 2013</td>
<td>Dr. PSP Gupta, Principal Scientist, Animal Physiology</td>
<td>Role of WNT signaling in granulosa cell estradiol synthesis in cattle</td>
</tr>
<tr>
<td>3</td>
<td>Mar, 2013</td>
<td>Dr. K Gridhar, Senior Scientist, Animal Nutrition</td>
<td>Crop Simulation Modelling</td>
</tr>
<tr>
<td>4</td>
<td>May, 2013</td>
<td>Mrs Sreja Ajith, PhD Scholar, Microbiology</td>
<td>Use of Microbes for Environmental Management.</td>
</tr>
<tr>
<td>5</td>
<td>May, 2013</td>
<td>Dr Sumanta Nandi, Senior Scientist, Animal Physiology</td>
<td>Mechanistic insights of wound healing (tissue repair)</td>
</tr>
<tr>
<td>6</td>
<td>June, 2013</td>
<td>S Parthipan, PhD Scholar, Biochemistry</td>
<td>Next Generation Sequencing Technology: Application in Animal Reproduction</td>
</tr>
<tr>
<td>Sl No</td>
<td>Name of the event</td>
<td>Duration</td>
<td>Dates/period</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>Independence Day</td>
<td>-</td>
<td>15.08.2013</td>
</tr>
<tr>
<td>2</td>
<td>IMC meeting</td>
<td>1 day</td>
<td>August 2013</td>
</tr>
<tr>
<td>4</td>
<td>Short course on 'Precision feeding and nutrient regulation of underlying physiology to ameliorate stress and promote production in livestock'</td>
<td>10 days</td>
<td>04.09.2013-13.09.2013</td>
</tr>
<tr>
<td>5</td>
<td>Ganesh Chaturthi</td>
<td>-</td>
<td>09.09.2013</td>
</tr>
<tr>
<td>6</td>
<td>PMC meeting</td>
<td>1 day</td>
<td>28.09.2013</td>
</tr>
<tr>
<td>7</td>
<td>Midterm Expert Committee meeting for research projects evaluation 2012-13</td>
<td>1 day</td>
<td>29.09.2013</td>
</tr>
<tr>
<td>8</td>
<td>Winter School on 'Climate change and Abiotic stress management in livestock: Basic concepts and amelioration measures'</td>
<td>21 days</td>
<td>05.11.2013-25.11.2013</td>
</tr>
<tr>
<td>9</td>
<td>Agricultural Education day</td>
<td>-</td>
<td>November 2013</td>
</tr>
<tr>
<td>10</td>
<td>National Integration & Kannada Rajyotsava</td>
<td>-</td>
<td>19.11.2013</td>
</tr>
<tr>
<td>11</td>
<td>Institute Foundation Day & Scientist-Farmer interaction meet</td>
<td>1 day</td>
<td>24.11.2013</td>
</tr>
</tbody>
</table>

Forthcoming events
Director’s Desk

Though the stake of agriculture to the National Gross Domestic Product (NGDP) has receded from 30 percent in 1990-91 to 14.5 percent in 2011-12, a trend that is expected in the development process of any economy, it still forms the backbone of development. Structural change in the composition of agriculture leading to a diversification of Indian agriculture into livestock, horticulture and fisheries since the 1990s is a landmark development with great challenges and unlimited opportunities. The share of livestock in total output from the agriculture and allied sectors has increased from 20% in Triennium Ending (T.E.) 1990-91 to 25% in T.E. 2009-10 (at 2004-05 prices). Currently food-grains constitute about one fifth of the total value of output from the agriculture & allied sector which is less than the contribution from the livestock sector. Being the unique transformer of natural vegetation to product, livestock is the primal theme of ecological trans-equilibrium. It creates all the year round diverse employment cushion leveraging an average 35 million human years per annum. This rainbow lining of livestock sector looms a dream canvas for the Indian agriculture.

With its predicament of ‘Agrisearch with a human touch’, the Indian Council of Agricultural Research (ICAR) has translated myriads of farmer friendly technologies in the area of agriculture and livestock farming. Ensembled under its canopy and embellished with the ‘Sardar Patel Best Institute Award-2012’, the National Institute of Animal Nutrition and Physiology, has delivered its share of technologies in the area of livestock feed and reproduction. These include - area specific mineral mixture, bypass nutrients, complete feed block, adaptation of azolla, use of areca sheath as feed, sheep and goat mineral mixture, efficacy of red spectra in egg production and development of kits for early pregnancy detection.

These ‘discoveries’ blossomed the Second Innovative and Progressive Farmers Meet at NIANP on January 24, 2013, with indelible impressions from a spectrum of stakeholders. The translation of such themes summons wider projection and knowledge transmittance. At the behest of the Department of Animal Husbandry, Dairying and Fisheries, MoA, GoI, one Model Training Course (Feb 14-21, 2013) and two ‘trainers training programme’ (May 28-June 6 & June 27-July 6, 2013) were organized for the field officers of state animal husbandry departments to equip them with nascent advances in livestock feed quality for its dissemination to the farm clientele. The institute had also organized a ‘Hands on training programme on isolation and characterization of rumen microbes’ (March 12-18, 2013) to vent the cutting edge technologies in fibre degradation.

The expectations from the institute fuel us to strive continually through quality research, propped on ‘motivated multidisciplinary team effort’ and ‘demand-driven, responsive, and vibrant’ stakeholders. The institute would facilitate need based research in ongoing and emerging areas of livestock farming to denote productivity increase, reduce gap between potential and actual yield, and to prepare the country for the challenges of green globalization.

C.S. Prasad