NATIONAL INDEX

OF

AGRICULTURAL

FIELD

EXPERIMENTS

VOL. 1 PART 2

ANDHRA PRADESH

1954-59

PUBLISHED BY
INDIAN COUNCIL OF AGRICULTURAL RESEARCH NEW DELHI

FOREWORD

Increase in agricultural production is one of the main objectives of our agricultural planning. It is only by the exploitation of scientific methods of agriculture that we can hope to increase our agricultural production to the level needed for maintaining a reasonable standard of living to the country's population. The technical worth of improvement measures is best judged from carefully conducted field experiments. While it is true that a large number of agricultural field experiments are conducted in the country, the results of these experiments have not been brought together in an integrated manner for the use of research workers. The absence of such a unified account has often led to duplication of work and delay in the utilisation of results for practical farming. The Institute of Agricultural Research Statistics has rendered a very valuable service by preparing a compendium of agricultural field experiments conducted in the country. The first series of compendium containing the results of all agricultural field experiments during the period 1948-53 have already been published by the Institue.

The present compendium is the second in the series covering the period 1954-59. As in the earlier compendium, the present series also contains critical summaries of results of experiments bearing on important agronomic factors, such as the response of crops to fertilizers and manures, inter-relationship of fertilizers, varieties and cultivation practices and other information of value for giving sound advice to farmers in different regions. Judging from the demand for the first series of the compendium, I am sure that the present series will also prove equally useful.

A Standing Committee consisting of the Agricultural Commissioner with the Government of India, the Director, Indian Agricultural Research Institute, and the Statistical Adviser, Indian Council of Agricultural Research, has been set up to provide general guidance to the work under this scheme. I congratulate the members of this Committee and, in particular, the Statistical Adviser and his associates at the Institute of Agricultural Research Statistics for bringing out this compendium. The preparation of this compendium has been made possible only by the wholehearted co-operation of the States and other organisations in making available the results of their experimental researches for this purpose. My thanks are due to the officers of the State Departments of Agriculture and other institutions for participating in this work. I hope that the present series will be followed by periodical publications of similar compendia for later years, in order that the availability, in a consolidated form, of results of scientific experiments in agriculture in India may be maintained up-to-date.

New Delhi,
March 26, 1965.
A. D. Pandit

Vice-President,
Indian Council of Agricultural Research.

PREFACE

The present set of volumes form Part II in the series of compendia of Agricultural Field Experiments being published by the Indian Council of Agricultural Research under the project for National Index of Field Experiments and contains a unified record of experiments conducted at agricultural research stations and institutes all over the country. Volumes in Part I in this series were published in 1962 and contained results of some 7,500 experiments conducted during the period 1948-53. The present set of volumes includes results of experiments conducted during the next period that is 1954-59. After the period, covered by Part I of the series, agricultural research and experimentation has expanded so much that for the period 1954-59, to which the present volumes refer, results of more than 15,000 experiments are available.

The present compendium is prepared on the same pattern as the previous one and is divided into 15 volumes one each for (1) Andhra Pradesh, (2) Assam, Manipur and Tripura, (3) Bihar, (4) Gujarat, (5) Kerala, (6) Madhya Pradesh, (7) Madras, (8) Maharashtra, (9) Mysore, (10) Orissa, (11) Punjab, Jammu and Kashmir and Himachal Pradesh, (12) Rajasthan, (13) Uttar Pradesh (14) West Bengal and (15) All Central Institutes. In each volume, background information of the respective state regarding its division into different soils and agroclimatic regions, rainfall and cropping pattern followed in each region and agricultural production and area under different crops in the state is given. The experiments reported in each volume have been arranged crop-wise for each state. All the experiments belonging to a particular crop at various research stations are grouped together. For a particular crop, experiments are arranged according to the following classification :

Manurial (M), Cultural (C), Irrigational (I), Diseases, pests and chemicals other than fertilizers (D), Rotational (R), Mixed cropping (X) and combinations of these wherever they occur (e.g. CM as Cultural-cum-Manurial). Experiments in which crop varieties also form a factor are denoted by adding V to their symbol and are grouped together (e.g. MV as Manurial-cum-Varietal).

This publication owes its origin to the guidance and help of Dr. D.J. Finney, F.R.S., Professor of Statistics, Aberdeen University, Scotland, in formulating the project during his stay at the Institute of Agricultural Research Statistics as an F.A.O. expert in 1952-53.

At the Institute of Agricultural Research Statistics the work under the scheme was carried out under the supervision of Shri. T.P. Abraham, Assistant Statistical Adviser. The actual working of the scheme was conducted by Shri G.A. Kulkarni, Statistician till he left the Institute in July, 1964. The work was subsequently taken over by Shri O.P. Kathuria, Assistant Statistician. Messrs. L.B.S. Somayazulu, P.P. Rao, M.L. Sahni, Harbhajan Singh, A.L: Punhani, M.K. Joshi, N.K. Worrier, H.C. Jain and J.K. Kapoor of the statistical staff of the Institute deserve special mention for careful and painstaking work in editing and scrutiny of the manuscript as well as proofs of the compendium.

The burden of collecting the data from the various research stations and the analysis of a large number of experiments once again fell on the regional staff of the Council placed in different States. They deserve to be congratulated for the hard work they have put in.

Thanks are due to the State Departments of Agriculture, the Central Institutes and the Commodity Committees who made the data of the experiments conducted under their jurisdiction readily available to the staff of the Institute. The present publication has become possible only through their unstinted co-operation. The Institute is also thankful to the various
officers in the States who worked as Regional Supervisors for the project from time to time and took keen interest in the working of the Scheme. The list of the names of the regional supervisors and the regional staff of the project is given on the following page.

New Delbt,
March 25, 1965.
V.G. Panse

Statistical Adviser,
Institute of Agricultural Research Statistics (I.C.A.R.).

REGIONAL SUPERVISORS AND REGIONAL STAFF FOR THE NATIONAL INDEX OF FIELD EXPERIMENTS

Region and Headquarter	Statistical staff from the Institute of Agricultural Research Statistics.	Regional Supervisors
i. Andhra Pradesh (Hyderabad)	$\begin{aligned} & \text { S.K. JILANI } \\ & \text { P.R. Yeri } \end{aligned}$	Dr. Mohd. Quadiruddin khan, Joint Director of Agricultural. Late Dr. Syed Waheeduddin. Shri Md. Khasim Adoni, Joint Director of Extension.
i		Shri N.V. Mohana Rao, Joint Director, Agricultural Research Institute, Rajendranagar.
,		Shri L. Venkataratnam, Deputy Director of Agriculture (Research).
2. Maharashtra (Poona)	P.D. Mehta B. Ramakrishnan	Shri D.S. Rangarao, Statistician, Department of Agriculture.
3. Gujarat (Ahmedabad)	S.P. Doshi	Dr. D. K. Desat, Deputy Director of Agriculture (Statistics). Shri J.B. Trivedi, Deputy Director of Agriculture (Statistics).
4. Uttar Pradesh (Lucknow)	S.N. Bajpai M.P. Saxena G.N. Bahuguna A.C. Srivastava	Dr. K. Kishen, Joint Director of Agriculture (Statistics).
5. Madhya Pradesh	T. Lokeswara Rao H.G. Gupta	Shri A.G. Khare, Statistician, Department of Agriculture.
6. Punjab, Jammu \& Kashmir	A.C. Kaistha B.L. Kaistha	Shri Piara Singh Sahota, Director of Crop Insurance.
\& Himachal Pradesh (Chandigarh)	M.S. Batra	Shri Mohinder Singh Pannu, Statistician, Department of Agriculture.
7. Bihar (Sabour)	M.K. Joshi P.C. Kholia	Shri G.P. Singh, Statistician, Department of Agriculture. Shri R.S. Roy, Principal, Agricultural Research Institute, Sabour.
8. Rajasthan (Jaipur)	B.P. Dyundi N.K.Ohri	Shri h.C. Kothari, Statistician, Department of Agriculture,
9. Orissa (Bhubaneswar)	L.B.S. Somayazulu	Shri B. Misra, Deputy Director of Agriculture (Hq.) Shri D. Misra, Principal, Uttakal Krushi Mahavidyalaya, Bhubaneswar.
10. West Bengal (Calutta)	S.N. Nath	Shri S.N. Mukerjee, Statistical Officer, Directorate of Agriculture.

11. Madras (Combatore)	P. Prabhakara Rao V. Venkateswara Rao	Late Shri M. Bhavani Sankar Rao, Vice-Principal and Secretary, Research Council, Agricultural College and Research Institute, Coimbatore. Shri T. Natarajan, Agronomist. Shri A.H. Sarma, Extension Specialist. Shri V. Raman, Secretary, Research Council. Shri K.R. Nagaraja Rao, Secretary, Research Council.
12. Assam	T.K. Gupta	Dr. S.R. Barooha, Director of Agriculture, Assam. Shri B.N. Duara, Joint Director of Agriculture, Assam.
13. Mysore (Bangalore)	K.A. Balakrishnan	Shri M.A. Wali, Director of Statistics, Shri B.V.S. Rao, Assistant Director of Statistics.
14. Kerala (Trivandrum)	V.N. Iyer	Shri M. Janardaran nair, Director of Agriculture. Shri N. Shankara Menon Director of Agriculture. Shri P.D. Nair, Director of Agriculture.

ABBREVIATIONS COMMON TO EXPERIMENTS ON ANNUAL AND. PERENNIAL CROPS AND EXPERIMENTS ON CULTIVATORS' FIELDS.

Crops :- In the top left corner is given the name of the crop on which the experiment is conducted. Within brackets along side the crop is mentioned the season wherever the information is available.

Ref:- Against the sub-title 'reference' is mentioned the name of the State, the year in which the experiment is conducted and the serial number of the experiment for that year given in brackets.

```
Abbreviations adopted for States are as follows:-
```

1. A.P.-Andhra Pradesh
2. As.-Assam
3. Bh.-Bihar
4. Gj .-Gujarat
5. H.P.-Himachal Pradesh
6. J.K.-Jammu and Kashmir
7. K.-Kerala
8. M.P.-Madhya Pradesh
9. M.-Madras
10. Mh.-Maharashtra
11. Ms.-Mysore
12. Or.-Orissa
13. Pb .-Punjab
14. Rj.-Rajasthan
15. U.P.-Uttar Pradesh
16. W.B.-West Bangal

For the experiments conducted under the schemes sponsored by the Indian Concil of Agricultural Research like the Model Agronomic Experiments or the Simple Fertilizer Trials scheme no serial numbers have been given at the source as the data of these experiments were collected at the Headquarters (New Delhi). In such cases the abbreviations MAE, SFT or TCM are given in the brackets against the year in which the experiment is conducted.

Site :-Name of the Research Station is mentioned alongwith the place where it is located, e.g. Agri. Res. Stn. for Agricultural Research Station.

For Central Institutes, the corresponding standard abbreviations have been adopted e.g. I.A.R.I. for the Indian Agricultural Research Institute.

- In case of the experiments conducted on cultivators' fields whether under an Indian Council of Agricultural Research scheme or by the State Government, the abbreviation (c.f.) is given along with the site or centre as; for example, Cuttack (c.f.).

Type :- Abbreviations used against this item are one or more than one of the following :-

C-Cultural ; D-Control of Diseases and Pests ; I-Irrigational ; M-Manurial ; RRotational ; V-Varietal and X-Mixed cropping. e.g. CM is to be read as Cultural-cummanurial.

Object :- A statement of the objective of the experiment is given indicating the main crop and type of the experiment. In case of M.A.E., S.F.T. and T.C.M. experiments; the type to which the experiment corresponds is also given, e.g. Type V, Type A or B or C etc.

Results :- Information under this heading should be read against the following items :-
(i) General mean. (ii) S.E. per plot. (iii) Results of test of significance. (iv) Summary table(s) with S.E. of comparison(s).

Other abbreviations used in the text of experiments :

Nitro. Phos.-Nitrogen Phosphate	A/N-Ammonium Nitrate
Ammo. Phos.-Ammonium Phosphate	A/C-Ammonium Chloride
A/S-Ammonium Sulphate	C/N-Chilean Nitrate
A/S/N.-Ammonium Sulphate Nitrate	N-Nitrogen
C/A/N-Calcium Ammonium Nitrate	P-Phosphate

K-Potash	
B.M.-Bone meal	F.M.-Fish Manure
Mur. Pot.-Muriate of Potash	G.N.C.-Groundnut cake
Pot. Sul.-Potassium Sulphate	M.C.-Municipal Compost
Super-Super Phosphate	T.C.-Town Compost
Zn. Sul.-Zinc Sulphate	lb.-Pounds
C/S-Copper Sulphate	Srs.-Seers
G.M.-Green Manure	B.D.-Basal dressing
F.Y.M.-Farm Yard Manure	C.L.-Cart load
F.W.C.-Farm Waste Compost	ac.-Acre
	Dical. Phos.-Dicalcium Phosphate

Under the item (ii) (b) of the sub-heading 'Basal conditions' in the text of the experiment, the respective farm'station at which the experiment was conducted has been referred to for the soil analysis. The soil analysis of the farm, with other details of the research station is given under the background information of each state. The information regarding the details of experimental stations may be obtained under the respective items as given below :

DETAILS OF EXPERIMENTAL STATIONS

A. General information :

(i) District and the nearest railway station with Latitude, Longitude and Altitude if available. General topography of the experimental area. (ii) Type of tract it represents. (iii) Year of establishment. (iv) Cropping pattern. (v) Programme of research.
B. Normal rainfall :

Average monthly rainfall specifying the period on which the figures are based.
C. Irrigation and drainage facilities :
(i) (a) Whether available, if so, since when. (b) Type of facilities available. (ii) Whether there is a proper drainage system.
D. Soil type and soil analysis :
(i) Broad soil type with depth, colour. and structure etc.
(ii) Chemical analysis.

Mechanical analysis.
E. No. of experiments :

No. of experiments conducted on different crops that have been included in the compendium.

Information under the following heads is to be read against the respective items as given below.

BASAL CONDITIONS

A. For experiments on annual crops :

(i) (a) Crop rotation if any. (b) Previous crop. (c) Manuring of previous crop. (State amount and kind’. (ii) (a) Soil type. (b) Soil analysis. (iii) Date of sowing/planting. (iv) Cultural practices. (a) Preparatory cultivation. (b) Method of sowing/planting. (c) Seed-rate. (d) Spacing. (e) No. of seedlings per hole. (v) Basal manuring with time and method of application. (vi) Variety. (vii) Irrigated or Unirrigated. (viii) Post-sowing planting cultural operations. (ix) Rainfall during crop season (x) Date of harvest.

B. For experiments on perennial crops :

(i) History of site including manuring and other operations. (ii) (a) Soil type. (b) Soil analysis. (iii) Method of propagation of plants. (iv) Variety. (v) Date and method of sowing 'planting, 'vi) Age of seedlings at the time of planting. (vii) Basal dressing with time and method of application. (viii) Cultural operations during the year. (ix) Inter cropping if any. (x^{\prime} Irrigated or Unirrigated. (xi) Rainfall during crop season. (xii) Date of harvest.

C. For experiments on cultivators' fields :

(i) (a) Crop rotation, if any. (b) Previous crop. (c) Manuring of previous crop. (ii) Soil type in general. (iii) Basal manuring with time and method of application, (iv) Variety. (v) Cultural practices. (a) Preparatory cultivation. (b) Method of sowing. (c) Seed-rate. (d) Spacing. (e) No. of seedlings per hole. (vi) Period of sowing/planting. (vii) Irrigated or Unirrigated. (viii) Post-sowing/planting cultural operations. (ix) Rainfall during crop season. (x) Period of harvesting.

DESIGN

A. For experiments on annual crops :

(i) Abbreviations for design : C.R.D.-Completely Randomised Design. R.B.D.-Randomised Block Design, L. Sq.-Latin Square, Confd.-Confounded, Fact.-Factorial. (other designs and modifications of the above to be indicated in full.). (ii) (a) No. of plots per block. (b) Block dimensions. (iii) No. of replications. (iv) Plot size. (a) Gross. (b) Net. (v) Border or guard rows kept. (vi) Whether treatments are randomised (separately in each block).

B. For experiments on perennial crops :

(i) Abbreviations for designs: C.R.D.-Completely Randomised Design; R.B.D.Randomised Block Design ; L.Sq.-Latin Square ; Confd.-Confounded. (other designs and modifications of the above indicated in full). (ii) (a) No. of plots per block. (b) Block dimensions. (iii) No. of replications. (iv) No. of trees/plot. (v) Border or guard rows kept. (vi) Are treatments randomised.

C. For experiments on cultivators' fields :

(i) Method of selection of experimental sites. (ii) No. and distribution of experiments.
(iii) Plot size. (a) Gross. (b) Net. (iv) Whether treatments are randomised.

GENERAL

A. For experiments on annual crops :

(i) Crop conditions during growth with date of lodging, if any. (ii) Incidence of pests and diseases with control measures taken. (iii) Quantitative observations taken. (iv), In case of repetition in successive years-(a) from what year to what year, (b) whether treatments were assigned to the same plots in the same manner every year, (c) reference to combined analysis, if any. (v) In case of repetition in other places (a) names of the places along with reference and (b) reference to combined analysis, if any. (vi) Abnormal occurrences like heavy rains, frost, storm etc., if any. (vii) Any other important information.

B. For experiments on perennial crops :

(i) Crop condition during the year. (ii) Incidence of pests and diseases with control measures taken. (iii) Quantitative observations 'taken. (iv) In case of repetition in successive years-(a) from what year to what year, (b) reference to combined analysis, if any. (v) Abnormal occurrences like heavy rains, frost, storm etc., if any. (vi) Any; other important information.

C. For experiments on cultivators' fields :

(i) Crop condition during growth. (ii) Incidence of pests and diseases with control measures taken. (iii) Quantitative observations taken. (iv) In case of repetition in successive years, (a) from what year to what year, (b) whether treatments were assigned to the same plots in the same manner every year, (c) reference to combined analysis, if any. (v) In case of repetition in other places names of places alongwith reference. (vi) Abnormal occurrances, like heavy rains, frost, storm etc., if any. (vii) Any other important information.
(xii)

TABLE OF CONVERSIONS TO METRIC UNITS

| 1 foot | $=304.8 \mathrm{~mm}$. |
| :--- | :--- | :--- |
| 1 acre | $=0.404606$ hectare. |
| 1 gram | $=0.035274$ ounce $=0.085735$ tola $=0.017147$ chatak |
| 1 kg. | $=2.20462$ pounds $=1.07169$ seers. |
| 1 metric tone | $=0.9842$.ton $=26.7923$ maunds. |
| 1 maund | $=0.373242$ quintal $=37.3242 \mathrm{~kg}$. |
| $1 \mathrm{lb} . / \mathrm{ac}$. | $=1.12085 \mathrm{~kg} . /$ hectare. |
| $1 \mathrm{md} . / \mathrm{ac}$. | $=92.23002 \mathrm{~kg} . /$ hectare $=0.9223$ quintal/hectare. |
| 1 ton $/ \mathrm{ac}$. | $=2.51071$ metric tones/hectare. |
| 1 gallon (Imp.) | $=4.54596$ litres. |

GLOSSARY'OF VERNACULAR NAMES OF CROPS

SI. No.	Name of Crop	Botanical Name	. Ássamese	Bengaii	Oriya	Telugu	Tamil	Malayalam	Kannada	Marathi	Gujarati	Hindi	Punjabi
1.	Paddy	Oryza sativa L .	Dhan	Dhan	Dhano	Vadlu; Biyyamu	Nel	Nellu	Bhatta	Bhat	Dangar	Dhan ; Chawal	Chaul ; Dhan
2.	Wheat	Triticum sativum Lamk Triticum aestivum L .	Gaum ; Ghehu	Gam	Gaham	Godumalu	Kothumai	Gothambu	Godhi	Gahu	Ghahu	Gehon	Kanak
3.	Jowar	Andropogon Sorghum	-	Jowar	Juara	Jonna	Cholam	Cholam	Jola	Jowari Jondhla	Jowari ; Jura	Jowar ; Jaur	Jowar
4.	Ragi	Eleusine coracana Gaertn	-	Marwa	Mandia	Ragi; Chodi	Keppai ; Ragi	Muthari Ragi	Ragi	Nagli ; Nachni	Nagli ; Bavto	Ragi ; Mandika; Marwah	Mandhuka ; Mandhal
5.	Maize	Zea mays L.	Gom dhan	Bhutta	Macca	Mokkajonna	MakkaCholam	Cholam Makkacholam	Musukina Jola	Makka	Makkai	Makka	Makki ; Makayee
6.	Tenai	Setaria italica Beauv	-	Kaon	Kanghu ; Kangam Kora	Korra	Tenai	Thena	Navane	Kang ; Rala	Kang	Kakum -	Kangni
7.	Onion	Allium cepa L .	Piyaz	Piaj	Peas, ulli	Ulli	Vengayam Erangayam	Ulli	Eerulli	Kanda	Dungli Kando	Piaz	Ganda, Payaz
8.	Bhindi (Lady's finger)	Hibiscus esculentus; Abelmoschus esculentus Moench.	Bhendi	Dhenrosh	Vendi	Benda	Bendai kai	Venda	Bende kayi	Bhendi	Bhida; Bhinda	Bhindi.	Bhindi; Tori
$\stackrel{9}{\square}$	Brinjal ; Egg plant	Solamum melongena L.	Bengena	Begun	Baigan	Vankaya	Katharikai	Vazhuthana	Badane kayi	Vange	Vengan	Baingan .	Bengan Bataun
10.	Tomato	Lycapersicum esculentum	Bilahi	Bilati begun	Bilati baigan	Tomato	Thakkali	Thakkali	Tomato	Welwangi ; Tambati	Vilaiti wagan; Tameta	Tamatter	Tamatar
11.	${ }_{\text {, Frenç b beans }}$	Phaseolus vulgaris L.	French bean	Pharash bin	Farasi Simba	Baṇgalore Beans	Avarai ; Seemai avarai	Beans	Hurali kayi	Shravan gevda	Phanasi	$\begin{aligned} & \text { Jangli } \\ & \text { Sem } \end{aligned}$	Frans bean
-12.	Cluster bean	Cyamopsis psoraloides Dc ; Cyamophsis	Thupi Urahi	Guar	Gunar Chhuin	Goruchi. kkudu	Kothavarekai Seeniavaraikai	Kothavara	Gori kayi	Guwar	Gavar	Gaur	Guara
13.	Horse gram	Dolichos bifloras R oxb	-	Kulihi Kalai	-.	Vulavalu	Kollu ; Kaanam	Muthira	Huruli	Kulthi Hulga	Kulthi	Kultha	Kulthi
14.	Black gram	Phoseaolus mungo var. radiatus Linn.	Matimah	Mashkalai	Biri	Minumulu	Uzhundu	Uzhuonu	Uddu	Udid	Adad, Udad	Urd	Mash, Urd
15.	Bengal gram	Cicer arietinum \mathbf{L}.	Butmah	Chola	Boot	Senagalu	Kadalai ; Sundal Kadalai	Kadala	Kadale	Harbara	Chana	Chapa	Chholes Chana
16.	$\begin{gathered} \text { Green gram } \\ \text { (Mung) } \end{gathered}$	Phasenlus aureus Roxb.	Magumah'	Sonamug	Mung	Pachapesalu	Pachaipayru Pasipayaru	Cerupayaru Payatu	Hesaru	Mug ,	Mag	Moong	Moong, Mug

glossary or vernacular Name or crops-contd.

SI. No.	Name of Crop	Botamical Name	Assamese	Bengali	Orlya	Telugu	Tamil	Malyalam	Kannada	Marathi	Gujarati	Hindi	Punjabi
17.	Tur	Cajanus cajan Milsp, Calanus indicus sprengl	Arhar	Arahar	Harad	Kandulu	Thuvarai	Thuvara Payaru	Thogari	Tur	Tuver	Arhar	Harhar ; Arhar
18.	Sugarcane	Saccharum officinarum L.	Kuhiar	Akh	-	Cheruku	Karumbu	Karimbu	Kabbu	Oos	Sherdi	Ganna ; Kamad; Naishakar	Kamad ; Gunna; Eakh
19.	Cotton	Gossypium spp.	Kapah	Karpas, Tula	Kapa	Prati	Paruthi	Paruthi	Hatti	Kapus	Kapas	Kapas	Kapah
20.	Tobacco	Nicotlana tabacum L.	Dhopat	Tamak	Uanpatra	Pogaku	Pugayilai	Pukayila	Hoge Sappu	Tambaku	Tamaku	Tambaku	Tamaku Tambaku
21.	Groundnut	Arachis hypogaea L.	China badam	Cheena badam	China badam	Nelashanga	Nilakadalai	Nılakkadala	Kadala kayi	Bhuimug	Bhoising Magafali	Mungphali	Mungfali
22.	Castor	Ricinus Communist L.	Eri	Rehri	Jada	Amudalu	Amanakku	Avanakku	Haralu	Erandi	Diveli Erando	Rehri	Arind Harind; Rind
23.	Gingelly	Sesamum indicum L. Sesamum orientole L.	Til	Til	Rasi	Nuvvalu	Ellu	Ellu	Yellu	Til, Tili	Tal	Til	Til
21.	Jute	Corchorus spp.	Marapat	Shadapat Toshspat	Jhota	Janumu	Chanapai	Chanambu	Senabu	Joot	Moti Chhunchh	Jute	Patsan
25.	Mesta	Hibiscus Cannabinus L.	San	Bimli	Kaunria	Gogu	Pulimanchi; Pulichai	-	Holadapundrike	Ambadi	Ambadi Moti	Patsan	Sanukra Sankukra
26.	Rozelle	Hibiscus Sabderiffa L.	Tengra Mora	Mesta	Khata Kaunria	Erragogu	Sivappu Kashmakai	-	Kempupundrike	Tambdi ambadi	Lal sheria	Patua	-
27.	Turmeric	Curcuma longa; Curcumedomestica Val.	Halodhi	Halud, haldi	Haldi	Pasupu	Manjal	Manjal	Arisina	Halad	Haldar	Haldi	Hald, Haldi Bassar
28.	Chillies	Capsicum frutescens \mathbf{L}.	Jalakiya	Lanka Marich	Lanka	Mirapakaya	Milakai	Mulaku	Menasina kayi	Mirchi	Marcha	Lal mirch	Lal mirch
29.	Berseem	Trifolium alexandrinum L .	-	Berseem	Gini Ghasa	-	-	-	-	Bersim Gavat	Barsim	Berseem	Berseem
30.	Cowpea	Vigna catiang wa'p, V'igna sinensis Savi	Lasaramah	Barbati	Baragadi	Bobbarlu	That apayaru	Mambayar	Aldsande	Chavli	Chola, choli	Lobia	Lobia
31.	Sannhemp	Crotalaria juncea L.	San	Shan	Chani	Janumu	Sadamtu	Kattu Ch.ınam	Apsenabu	Tag	San	Sann	San
32.	Acid lime	Citrus aurantifolia	Kagzi	Kagzi lebu	Kagji Lumbu	Nimma	F lummi chai	Naranga	Kittale	$\begin{aligned} & \text { Kagdi } \\ & \text { limbu } \end{aligned}$	Limbu; khata limbu	Kagzi Nemboo	Nimbu
33.	Lemon	Citrus limonia Ozbeck Citrus limon Burm F.	Nemı Tenga	Pat! ; Gora lebu	Lembu	Peddanimma	-	Naranga	Herale	Limboo	Limbu	Bara Nemboo	Walaiti Nimbu
34.	Mango	Mangifera indica L.	Am	Am	Amba	Mamidi	Mangai	Mavu	Mavu	Amba	Keri	Aam	Amb
35.	Banana	Musa paradisiara L.	Kol	Pakakala	Kduali	Arati	$\begin{aligned} & \text { Vazhaipam. } \\ & \text { zam. } \end{aligned}$	Vazha	Bale	Kele	Kela	Kela	Kela

CONTENTS

(xvi)
Roselle 432
Turmeric 434
Chillies 445
Berseem 460
Pillipesara 460
Cowpea 460
Sannhemp 461
Mixed cropping experiments 463
Acid lime 491
Lemon 496
Citrus 499
Mango 503
Banana 507

ANDHRA PRADESH

1. General:- The State of Andhra Pradesh is situated in a tropical region between $13^{b} \mathrm{~N}$ and $77^{\circ} \mathrm{E}$. It is bounded on the east by the Bay of Bengal, on the north east by the States of Orissa and Madhya Pradesh, on the north by Maharashtra, on the west by Myore and on the south by Madras. It has a 600 mile stretch of coast line and. an area of about 106,041 sq. miles. The state is divided into 20 districts for administrative convenience. The classification of the äreà according to utilisation is given in table I below.

Table 1.
Latd dutilisation statistics of Andhra Pradesh (1958-59)
(Area in '000 acres)
1

2. Topography :- The state can be divided into three physiographic 'divisions (i) The mountainous region, (ii) Plateau or elevated plains with an elevation of 300 to 2500 ft . and (iii) The deltas or plains of rivers and the sea coast. Nallamalai and Erramalai Hills of Rayalaseema and the Eastern Ghats come under the mountainous region while the whole of Telengana and Rayalaseema districts come under the plateau region.

The major rivers of the state i.e., the Godavari, the Krishana and the Pennar pass through the Deccan Plateau in deep cutting and well-defined valleys. The rivers, after they emerge from the hills and uplands, flow to the sea, between embankments through their deltas and their flood levels higher than the surrounding areas.
3. Soil Types and Agroclimatic regions of Andhra Pradesh :- Most regions of the State are semi-arid with little or no water surplus excepting, (i)North west portion (Districts of Nizamabad, Karimnagar and Adilabad), having sub-humid climate with moderate summer water surplus, (ii) North-East portion of Srikakulam having sub-humid climate with little or no water surplus, (iii) South western portion (Major portion of Ananthapur and Kurnool districts) having arid climate with littlef or no water surplus.

The average total rainfall of $45^{\prime \prime}$ is highest in the north gradually decreasing to $20^{\prime \prime}$ in the south-west. The State receives rainfall from both the south-west and the north-east monsoons. The maximum temperature is about $112^{\circ} \mathrm{F}$ in summer and minimum temperature is $66^{\circ} \mathrm{F}$ in winter.

The main soil groups found in the state are the black cotton regur, red and alluvial soils. There are also patches of lateritic soils in the districts of Nellore and East Godavari. Besides, coastal sands are found all along the coast in the districts of Srikakulam, Visakhapatnam, East Godavari, West Godavari, Krishna, Guntur and Nellore.

The black cotton and regur soils are grey, dark-brown and dark grey brown in colour. They are both shallow and deep with depths varying from $6^{\prime \prime}$ to $8^{\prime \prime}$ and over. They are found
spread in the districts of Adilabad, Karimnagar, Nizamabad, Medak, Hyderabad Makaboobnagar, Kurnool, Ananthapur, Chittoor, Cuddapah, Nellore, Guntur, Krishna, Khammam and West Godavari.

There are gypsecious and non-gypsecious soils in the deeper layers. They are heavy textured, comparatively ill-drained and high in soluble-salt content (0.05 to 4.5%). Invariably these soils are calcarious except in the areas of high rainfall where surface layers are relatively free from precipitated calcium carbonate due to leaching. In regions of low rainfall, these soils contain very high amount of free lime occurring as nodules of pepper to soapnut size embeded in soil mass. Invariably such nodules are encountered at depths ranging from 3^{\prime} to 8^{\prime}. The ' pH ' value ranges from 7.0 in the high rainfall regions to 8.5 in the lov: rainfall areas. The soils are poor in humus and nitrogen and are in general extremely de ficient in available phosphates. The clay content of these soils varies from 30 to 60% and over. The clay minerals are of montoorrillonite and beodellite groups with exchange capacity of 1.0 me/gram of clay.

The red soils include the coarse textured sandy loam and the medium fine textured loams. The soils are found scattered in a maximum area of the state, spreading in nea-ly all the districts. The sandy loams in Telangana are locally called the Chalkas.

The soils are brown to red in colour and are shallow with a depth of $6^{\prime \prime}$ to $24^{\prime \prime}$. They are well-drained and low in soluble salt content. The ' pH ' value ranges from 6.5 t , 7.5 . They are poor in humus content. Nitrogen and phosphate contents are usuall low (0.02 to 0.05%; . They are very deficient in calcium but are fairly rich in potassium. The clay content varies from 15 to 25% and the clay minerals belong to the kaolinite group with a low exchange capacity of 0.5% me/gram of clay.

The loams, on the other hand, are shallow to medium deep and are usually loeated in elevated regions and are mostly derived from quartizites and sand stones. They rest mble the sandy loams in many respects and differ from them in that they are more water reteative due to higher clay content.

The alluvial soils are observed either along the sea coast or at the deltaic areas of the rivers. The coastal alluvial soils are sandy having excessive drainage and least water-hotling capacity, but the river alluvials are the rich soils with a high content of fine fraction. These soils include the silts, silty clay loams and silty loams.

Based on the variation in climate and soil, the state can be divided into the folloving agroclimatic regions.

(i) Telangana region.

This includes the districts of Hyderabad, Mahaboobnagar, Khammam, Nizamabad, Medak, Karimnagar, Warangal, Nalgonda, Adilabad and north-west part of Anantapur. The annual rainfall varies from 25 to 30 inches. The soils are chalkas derived from Granite There are also patches of medium black soils; largely derived from trap and genissic parent material. They are neutral in reaction. The dominant ' pH ' range is 6.5 to 7.5. A large number of different crops grown include paddy-jowar, castor, sugarcane and groundrut. However, in general, the soil fertility is low.

(ii) Coastal region

This is the region of high rainfall, both summer and winter. The average rainfall varies from 40 to 50 inches. Besides this the canal irrigation facilities are extensively developed which enable the cultivators to raise two to three crops a year. The districts covered by this region are Srikakulam, Visakhapatnam, East Godavari, West Godavari, Krishna and Guntur. Based on the different major soil types occurring in this region, the area is divided into two sub-divisions.
(xix).
(a) Coastal region with coastal alluvium soil :-This runs across all the districts adjoining the sea coast and covers nearly half the cultivated area. The soil type is coastal alluvial in nature. The annual rainfall ranges from 45 to 50 inches.
(b) Coastal region of red loam :-It differs with the previous sub-division mainly in snil characteristics. This region runs parallel to the coast and has red loam soil type. The annual rainfall ranges from 40 to 50 inches.

This entire region as a whole is very rich in soil fertility. Two crops of paddy are raised by double cropping. The other important crops are tobacco, chillies and sugarcane.
(iii) The Southern region of Andhra Pradesh.

This region consists of Chittoor, Cuddapah, and :South of Anantapur district. The soil type is red loam. The average annual rainfall is about 30 to 40 inches. The field crops grown in this region are paddy, potato, chellies and groundnut.
4. Irrigation :-The State has a total irrigated area of 7046 thousand acres. The area irrigated through different sources is give in table 2 below :

TABLE 2.
Area irrigated (1958-59)

5. Agricultural production and normal cropping pattern :-The important crops of the State are paddy, jowar, groundnut and crops like cotton, pulses and minor millets also cover large areas, The figures for area, production and average yield per acre of various crops in the state are given in table 3 below :

TABLE 3

* Bales of 392 lb . each.
** Bales of 400 lb . each.

6. Experimentation and Agricultural Research :-There are 677 experiments reported from the state for the period $1954-59$. The distribution of these experiments, type wise for different crops is given in table 4. Besides these, 171 experiments belonging to different central schemes like the T.C.M. trials, Model Agronomic Experiments and Simple Fertiliser Trails, are also included in the compendium.

TABLE 4
Crep and type-wise distribution of experiments (1954-1959)

Crop	M	MV	C	CV	CM	CMV	I*	D	X	Total
Paddy	173	8	24	2	48	-	3	14	-	272
Wheat	4	-	-	-	-	-	-	-	-	4
Jowar	17	-	-	-	3	-	3	-	-	23
Ragi	27	-	-	-	-	-	-	-	-	27
Maize	2	-	3	-	4	-	-	-	-	9
Korra	3	-	-	-	-	-	-	-	-	3
Onion	-	-	8	-	-	-	4	-	-	12
Bhindi	-	-	-	2	1	2	-	-	-	5
Brinjal	1	-	-	2	-	2	-	-	-	5
Tomato	-	-	1	2	1	3	-	-	-	7
French Bean	-	-	1	2	-	2	2	-	-	7
Cluster Bean	-	-	-	1	-	2	1	-	-	4
Horse gram	1	-	-	-	-	-	-	-	-	1
Bengal gram	-	-	-	-	-	-	-	1	-	1
Tur	6	-	-	-	-	-	-	-	-	6
Sugarcane	57	1	11	5.	-	1	8	11	-	94
Cotton	10	-	-	-	2	-	4	-	-	16
Tobacco	7	-	6	-	-	-	-	-	-	13
Groundnut	15	-	19	-	-	-	-	8	-	42
Castor	5	-	8	-	-	-	-	-	-	13
Mesta	1	-	2	-	-	-	-	-	-	3
Roselle	1	-	2	-	-	-	-	-	-	3
Turmeric	4	-	8	-	-	-	-	-	-	12
Chilies	12	-	2	-	-	-	-	1	-	15
Legumes	2	-	-	-	-	-	-	-	-	2
Green manures	3	-	-	-	-	-	-	-	-	3
Mixed cropping	-	-	-	-	-	-	-	-	38	38
Acid lime	-	-	10	-	-	-	-	-	-	10
Lemon	-	-	5	-	-	-	-	-	-	5
Citrus	-	-	9	-	-	-	-	-	-	9
Mango	-	-	4	-	5	-	-	-	-	9
Banana	1	-	1	-	1	--	--	1	-	4
Total	352	9	124	16	65	12	25	36	38	677

*includes experiments of types I, IV, IM, IMV, IC and IMC.
Anakapalle, Bapatla, Rajendranagar, Raichur, Samalkot, Mariteru, Kodur and Anantapur are some of the main centres in the state where intensive agricultural research is

(xxi)

carried out. $42: 0$ percent of the experiments under report are on paddy while sugarcane and millets account for 13.9 percent and 9.2 percent respectively. 52 per cent of the experiments are of manurial type while cultural cxperiments cover 30.2 percent of the total.

About 73.4 percent of the experiments are laid out in 'randomised block design and 18.5 per cent in split-plot and strip-plot designs. A few experiments are laid out in Latin Square and confounded designs each accounting for 3 per cent and 5.1 per cent respectively. The block size varied from 2 to 27 in a randomised block design while in split-plot the number of sub-plots per main-plot varied from 2 to 12 . The net plot size adopted in different designs varied from $1 / 36 \mathrm{ac}$. to $1 / 6 \mathrm{ac}$. Number of replications in general varied from 1 to 20.

Particulars of research stations and soil analysis

1. Government Cotton Farm, Adoni.

A. General irformation:

(i) In Adoni taluka of Kurnool district. (ii) Represents mungari and western tract of cotton growing areas. (iii) Year of establishment is N.A. (iv) Jowar-cotton is the normal cropping pattern. (v) Research is conducted on cotton for the improvement of mungari and western cotton.
B. Narmal rainfall in mm.

June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	March	April	y	Total
102	138	159	138	103	139	10	2	1	9	51	41	770
	(Av. rainfall is based on the 10 year period 1953-54 to 1962-63).											

C. Irrigotion and drainage facilities :

(i) No irrigation facilities exist in the farm. (ii) Information about the drainage facilities is not available.
D. Soil type and soil anaiysis :
(i) Black cotton and red soils. (ii) Chemical analysis and (iii) Mechanical analysis -N.A.

E. No. of experiments :

Mixed cropping-20. Total-20.

2. Mesta Resea rch Station, Amadalavalasa.

A. General information :
(i) In Srikakulam taluka of the Srikakulam district, at a distance of half a mile from Srikakulam station. (ii) Information about the type of tract it represents is N.A. (iii) Established in 1958. (iv' No particular cropping pattern is followed. (v) The main programme of research is to evolve superior types of H sabdarifa and to find out the remunerative cultural and agronomical methods of cultivation practices.
B. Normal rainfall in mm.

Information-N.A.
C. Irrigation and drainage facilities :

As there is no permanent farm of the station the particulars vary from year to year.
D. Soil type and soil analysis :

Information-N.A.
E. No. of experiments:

Mesta-3. Rosella-3. Total $=6$.

3. Regional Coconut Research Station, Ambajipeta.

A. General information:

(i) In Amalapuram taluka of the East Godavari district, at a distance of 38 miles from Rajahmundry. R.S. Lat- 82°, long. $16^{\circ} 35^{\prime}$ and altitude 14.05 above mean sea level. (ii) Represents the deep alluvial soils of the Goadvari delta area. (iii) Established in 1955. (iv) As the station conducts research on perennial crops like coconut, no particular cropping pattern is observed year after year. (v) Introduction and acclimatisation of promising varieties and their hybridisation and conducting agronomical and ancillary trials are the main items in the programme of research.
B. Normal rainfall in mm .
Juńe July Aug. Sept. Oct. Nov. Dec. Jan. Feb. March April May Total
(Av. rainfall is based on the 8 year period of 1956 to 1963.)
C. Irrigation and drainage facilities :
(i) Irrigation facilities are not available. (ii) The land is not favourable for efficient drainage.
D. Sails type and soil analysis :
(i) Alluviai black soil, deep, clayey in structure. (ii) Chemical analysis : Moisture 10.46%, Lime $(\mathrm{CaO}) 1.47 \%$, Total $\mathrm{P}_{2} \mathrm{O}_{5} 0.088 \%$, Total $\mathrm{K}_{2} \mathrm{O} 0.452 \%$, Available $\mathrm{P}_{2} \mathrm{O}_{5}$ 0.0197%, Available $\mathrm{K}_{2} \mathrm{O} 0.081 \%$, Nitrogen 0.0336% and pH value 6.6 . (iii) Mechanical analysis N.A.
E. No. of experiments :
G.M. crops -3 . Total $=3$.

4. Agricultural Research Station (Maize Breeding Station), Amberpet.

A. General information :
(i) In Hyderabad district at a distance of 3 miles from Kachiguda railway station. Lat. $-17^{\circ} \mathrm{N}$, Long. $-78^{\circ} \mathrm{E}$, altitude- 1750 feet. (ii) Represents Telangana regions of Andhra Pradesh. (iii) Established in 1951. (iv) N.A. (v) Research on paddy and maize.
B. Normal rainfall in $m m$:

Annual rainfail is 559 mm . Details-N.A:
C. Irrigation and drainage facilities :

Information-N.A.
D. Soil type and soil analysis :
(i) Sandy loam, sandy clay, clay loam and silt soils. (ii) Chemical analysis and (iii) Mechanical analysis-N.A.
E. No. of experiments:

Paddy-3, Maize-1, Total=4.

5. Sugarcane Research Station, Anakapalle:

A. General information:

(i) In Anakapalle taluka of the Visakhapatnam district, at a distance of half a mile from Anakapalle \mathbb{R}. S. It has level lands. Lat. $-17.4 I^{\circ} \mathrm{N}$, Long. $-83.30^{\circ} \mathrm{E}$ and altitude 88 feet above mean sea level. (ii) Represents coastal plains (iii) Established in 1913. (iv) In wet lands: Sugarcane --Sugarcane, Sugarcane-Green manure crops and Millet-Paddy, in garden lands : Ragi-fodder crop, Sugarcane-fodder-vegetables and in dry lands :-Ganti-ragi-fallow ; Ganti-Jonna, are the crop rotations followed. (v) Selection of high yielding and rich cane varieties, manurial and irrigational experiments on sugarcane; studies in nutrition and control of pests and diseases and improvement of gur quality; selection and improvement work on Paddy varieties and millets, propagation and distribution of vegetable seeds, fruits and coconut seedlings are the main items of the programme of research.
B. Nörmal rainfall in mm :

June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Márch April May Total

113	138	140	203	228	79	8	7	23	14	28	28	982

(Av. rainfall is based on 50 years i.e., 1913-1962.)

C. Irrigation and drainage facilities:

(i) Irrigation is done from wells which are sunk from time to time and also from 2 diversion canal of river Sarada which flows only in monsoon months from July to November. (ii) There is a natural drainage system.
D. Soil type and soil analysis :
(i) Coastal alluvial (loam), 10 to 15 feet deep, light to dark brown in colour no stable structure but crumb structure when dry.
(ii) Chemical analysis :

Constituents	$0-12^{\prime \prime}$ deep	$12^{\prime \prime}-24^{\prime \prime}$ deep
1.	pH	7.5
2.	Total Nitrogen $\%$	0.039
3.	Organic carbon $\%$	0.37
4.	Sesquionides $\%$	11.53
5.	Lime $\%$	0.035
6.	Lxchangeable CO	12.60
7.	Available $\mathrm{P}_{2} \mathrm{O}_{5} \%$	0.0175
8.	Available $\mathrm{K}_{\mathbf{2}} \mathrm{O}$	0.0234
9.	Total water soluble	0.058

(iii) Mechanical analysis :

Constituents	$0-12^{\prime \prime}$	$12^{\prime \prime}-24^{\prime \prime}$
1. Clay \%	27.70	24.75
2. Silt \%	9.70	9.75
3. Sand \%	59.36	63.14

E. No. of experiments :

Paddy-22, Ragi-9, Sugarcane-41. Total $=72$

6. Government Fruit Research Station, (Onion Research Station), Anantharajupet.

A. General information:
(i) In district Cuddapah at a distance of 2 miles from Koduru railway station at an altitude of 642 feet above mean sea level. (ii) Representative of Rayalaseema tract. (iii) Established in 1951. (iv) Citrus fruits, guava etc. (v) Programme of research is to study different aspects of fruits and vegetables and to conduct rootstock trials on citrus.
B. Normal rainfall in mm:
$\begin{array}{ccccccccccccc}\text { June } & \text { July } & \text { Aug. } & \text { Sept. } & \text { Oct. } & \text { Nov. } & \text { Dec. } & \text { Jan. } & \text { Feb. } & \text { March } & \text { April } & \text { May } & \text { Total } \\ 58 & 133 & 119 & 92 & 119 & 96 & 65 & - & 3 & 5 & 12 & 72 & 774\end{array}$
(Av. rainfall based on 5 years.)
C. Irrigation and drainage facilities :
(i) Irrigation by pumping water from the wells. (ii) Proper drainage system is also available.
D. Soil type and soil analysis :
(i) Red loamy soils 4^{\prime} to 6^{\prime} deep with sufficiently fine structure. (ii) Chemical analysis : pH 9.5 , Soils 0.3 , Organic matter 0.37 . (iii) Mechanical analysis : Depth 0 to 8^{\prime}, clay 17.1 to 40.2%, salt 9.3 to 18.2%, fine sand 43.4 to 65.7%, coarse sand 5.7 to 10.4%.
E. Vo of experiements :

Acidlime-5, Citrus-4, Mango-9, Onion-12. Total=30.

7. Agricultural Research Station, Araku.

A. General information :

(i) In Paderu taluka of the Visakhapatnam district; at a distance of 55 miles from Kothvalasa railway station. Long. $-82^{\circ} \mathrm{E}$ and Lat. $-18^{\circ} \mathrm{N}$. (ii) The valley is a narrow strip of land about 7 miles in length and 2 miles wide and has an altitude ranging from 3,000 to $3,200 \mathrm{ft}$. above sea level. The soils are poor, often subject to denudations.. (iii) Established in 1944. (iv) Dry crops (rainfed) : three year rotations with ragi, peddasama, dry paddy and niger. Irrigated trop : paddy followed by ragi or groundnut in small areas. Garden land crops (irrigated) : sugarcane, vegetable, cotton etc. orchards of fruits and coffee. (v) The main programmes of research are to try different crops and their strains in wet land, garden land and dry land for cultivation and trials of tropical and sub-tropical fruits in the Government orchards.
B. Normal rainfall in $m m .^{\prime}$:

The tract receives an average annual rainfall of about 1560 mm . Monthwise break up is not available.
C. Irrigation and drainage facilities :

Information not available.
D., Soil type and soil analysis,:

* (i) Red loamy soils with fairly good depth but are very poor in essential plant nutrients due to constant leaching. (ii) Chemical analysis : pH value -4.7 to 5.4 , acidic soluable salts (EC) - $0.2 \overline{5}$ normal, organic matter 0.59% medium, available" phosphate -12° to $38{ }^{\circ} \mathrm{lb} / \mathrm{ac}$. (iii) Mechanical analysis-N.A.

E. No. of experiments :

Ragi-2. Total $=2$.

8. Agricultural College Farm, Bapatla.

A. General information:
(i) In Bapatla taluka of Guntur district, $1 \frac{1}{2}$ miles from Bapatla railway station: The tract is 5 miles from Bay of Bengal. (ii) Coastal sandy soil belt." (iii) . Established in 1950. (iv) Eajra, cowpeá, horse gram and jowar under rainfed conditions and ragi and chillies under irrigated conditions. (v) Programme of research N.A.
B. Normal rainfall in mm.

C. Irrigation and drainage facilities:

, (i) The farm 'is irrigated from the Krishna delta canal system. .. (ii) Proper drainage system exists.
D. Soil type and soil analysis:
(i) Depth 6^{\prime} to 8^{\prime}, colour normal and sandy in structure. (ii) Chemical analysis, -Loss on iginition $0.87 \%, \mathrm{CaO} 0.11 \%$, total $\mathrm{P}_{2} \mathrm{O}_{5} 0.027 \%$, total $\mathrm{K}_{2} \mathrm{O}, 0.132 \%$, nitrogen 0.021%, available $\mathrm{P}_{2} \mathrm{O}_{5} 0.008 \%$ and $\mathrm{K}_{2} \mathrm{O} 0.016 \%$. (iii) Mechanical analysis-Clay 2.60%, silt 0.78%, fine sand 62.29% and coarse sand 33.30%.

En. No. of experiments':-
Paddy-12; Ragi- 6, Horse grám-1, Bengalgram-1, Groundnut $-2 . \quad$ Total $=22.1$ o4

9. Sugarcane Liaison Farm, Bobbili,

A. General information :
(i) In Srikakulam district. (ii) It represents black clay type of tract. (iii) to (v) Information-N.A.
B, C and D.
Information-V. V .
E. Vo. of experiments :

Sugarcane-3. Total $=3$.

10. Rice Research Station, Buchireddipalem.

A. General information :
i) In Nellore, district at a distance of 9 miles from Kodavalur railway station. Lat. $-14.55^{\circ} \mathrm{N}$, Long. $-79.88^{\circ} \mathrm{E}$ and altitude 40 ft . above mean sea level. (ii) It is a plain levelled area. (iii) Established in 1937. (iv) It is mainly a single crop wet land area second crop is taken in alternate years only in restricted areas. The main crop is from July to January. Horse gram or pillipesara is taken as a catch crop after the main crop of rice. (v) To evolve blast resistant varieties of rice suitable for Andhra Pradesh.
B. Normal rainfall in $m m$.

June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. March April May Total $\begin{array}{lllllllllllll}62 & 81 & 93 & 113 & 303 & 281 & 91 & 6 & 3 & - & 16 & 44 & 1103\end{array}$ (Av. of 10 years from 1954 to 1963).
C. Irrigation and drainase facilities :
(i) Irrigation facilities available from Kanigiri reservoir. (ii) There is no proper drainage.
D. Soil type and soi! analysis:
(i) Sandy loam soil. (ii) Chemical analysis and (iii) Mechanical analysis are not available.
E. No. of experiments :

Paddy-29. \quad Total $=29$.

11. Tobacco Research Station, Burgamphad.

A. General information :
(i) In Burgamphad taluka of Khammam district, 35 Km . from Bhadrachalam railway station (Kothagudem). Research station is existing on leased land of cultivators and no permanent site. (ii) It represents silt loamy, clay soils (alluvial soils) (iii) It was started in January 1962. (iv) Tobacco after tobacco (being silty soils). (v) To conduct research on cigarette tobacco in respect of manurial, varietal and cultural aspects for this tract.
B. Normal rainfall in mm.:
$\begin{array}{lllccccccccccc}\text { June } & \text { July } & \text { Aug. } & \text { Sept. } & \text { Oct. } & \text { Nov. } & \text { Dec. } & \text { Jan. } & \text { Feb. } & \text { Mar. } & \text { April } & \text { May } & \text { Total } \\ 178 & 287 & 267 & 119 & 10 & 17 & - & - & 3 & 3 & 19 & 44 & 959\end{array}$
(Av. is based on the rainfall for the last 4 years).
C. Irrigation and drainage facilities :
(i) and (ii) No.
D. Soil type and soil analysis:
(i) Silty clay loam soil (alluvial soils), 4^{\prime} to 10^{\prime} deep, brown to black in colour. (ii) Chemical analysis : pH value 7.5 to 7.8 , organic carbon-medium to high, available $\mathrm{P}_{2} \mathrm{O}_{5}-11$ to $15 \mathrm{lb} . / \mathrm{ac}$., available potash 400 to $500 \mathrm{lb} . / \mathrm{ac}$. (iii) Mechanical analysis-N.A.

(xxvii)

E. No. of experiments :

Tobacco-4. Total=4.
12. Government Agricultural Farm, Dindi.
A. General informaion:
(i) In Devarkonda taluka of Nalgonda district, 48 miles from Jadeherla railway station ; slopy land with rocky sub-strata and of loose texture. Lat. - $16^{\circ} 32^{\prime} \mathrm{N}$, Long. $-78^{\circ} 41 \cdot \mathrm{E}$ and altitude 1300 feet above mean sea level. (ii) It represents chalka (sandy loam) soils. (iii) Started in 1949. (iv) Rice, jowar, castor and groundnut are the main crops grown in the tract. (v) Cultural, varietal and manurial experiments on paddy, castor, groundnut, jowar, cotton and seed multiplication of paddy, castor etc.
B. Normal rainfall in mm :

June	July. Aug.	Sept. Oct.	Nov.	Dec. Jan. Feb. March April May Total								
69	110	101	185	113	18	-	-	-	-	-	-	596

(Av. based on the rainfall data for the last 5 years).

C. Irrigation and drainage facilities:

(i) (a) Irrigation facilities are available since 1949 from Dindi reservoir. (ii) In wet land main and sub-drains are opened but dry land need no drainage as the land is very porous and slopy and rainfall is very low.
D. Soil type and soil analysis :
(i) Red, gravelly with alkaline patches, $6^{\prime \prime}$ to $9^{\prime \prime}$ deep, loose structure subject to leaching. (ii) Chemical analysis and (iii) Mechanical analysis-N.A.
E. No. of experiments :

Paddy-15. Tur-3. Groundnut-3. Total=21.

13. Regional Oilseed Research Station, Kadiri.

A. General information :
(i) In Kadiri taluka of Anantapur district. Lat. $14.75^{\circ} \mathrm{N}$, Long. $78.10^{\circ} \mathrm{E}$ and altitude 2011^{\prime} M.S.L. Bunding was done along the contours. Previously this farm was at Anantapur. (ii) The soil and seasonal conditions obtainable on the station are mostly representative of the entire Rayalaseema region. (iii) It was started in 1958. (iv) Groundnut, castor, gingelly and safflower are the main crops in the cropping pattern. (v) To bring about improvement in oilseed crops of Rayalaseema region by evolving short duration, drought resistant varieties. with high yield and oil content in the major oilseed crops, viz., groundnut and castor, besides. advocating improved ágronomic practices for general adoption by the ryots of the tract.

- B. Normal rainfall in $m m$:

June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. March April May Total

| 42 | 61 | 70 | 119 | 124 | 33 | 8 | 1 | 3 | 4 | 31 | 51 | 547 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(The average is based on the rainfall data from 1947-1963.)
C. Irrigation and drainage facilities :
(i) (a) and (b) No irrigation facilities available. (ii) No artificial drainage system is: existing but the soils are sandy loam in texture and are well drained.
D. Soil type and soil analysis :
(i) Red sandy loam about $9^{\prime \prime}$ to $12^{\prime \prime}$ deep. (ii) Chemical analysis: $\mathrm{pH}-7.5$, total soluble salts (electrical conductivity $\mathrm{m} / \mathrm{mhos} /$ acre) 0.41 , organic carbon 0.42%, total nitrogen : 0.043%, available. $\mathrm{P}_{2} \mathrm{O}_{5} \quad 0.005 \%$ and available potash 0.017%. (iii) Mechanical analysis-N.A.
E. No. of experiments:

Groundnut-6, Castor-12, Mixed cropping-4, Total=22.

14. Groundnut Research Station, Kaikalur.

A. Gineral information :
i In Kaikalur talaka of Krishna district. Kaikalur railway station. It is plain and well levelled land suitable for paddy cu'tivation. (ii) Information-N.A. (iii) Established in 1953. The station was sitifted to Masulinatnam in 1959. (iv) Paddy is the main crop. (v) To evolve high yielding bunch varielies of groundnut.
B. Normal rainfail in mm.

Jure Juiy Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. April May Total

105	382	$: 86$	156	244°	101	1	-	9	-	15	2	1301

(Av. rainfall is based on 2 years ie 1958-1959).
C. Irrization and drainage fucilities:
(i) The farm is irrigated from the Krishna delta canal. (ii) Proper drainage system exists.
D. Soil typ and soil anaiysis:
(i) Clay loam, black in colour. (ii) Chemical analysis and (iii) Mechanical analysis-N.A.
E. Vo. of experiments :

Groundnut-1, Total $=1$.

15. Maize Research Station, Karimnagar.

A. General information :
(i) In Karimnagar district. (ii) Chalka (red loam) Telengana tract soils. (iii) Established in 1952. (iv; Cropping pattern and (v) Programme of research-N.A.
B. .Vormal rainfall in mm :

Annual rainfall is 813 mm . Details-N.A.
C. Irrigation and drainage facilities :

Information-N.A.
D. Soil type and soil analysis :
(i) Sandy loam soil. (ii) Chemical analysis and. (iii) Mechanical analysis are not available.
E. No. of experiments :

Maize-8, \quad Total $=8$.

16. Tobacco Research Station, Kazipet.

A. General information :
(i) In Warangal district. (ii) Represents eastern Telengana tract. (iii) to (v) Information N.A.
B, C and D.
Information-N.A.
E. No. of experiments:

Tobacco-5, Total=5.
(xxix)

17. Citrus Root Stock Trial Station, Kodur.

A. General information.
(i) In Cuddapah district.
(ii) Represents Rayalaseema tract.
(iii) to (v) Information' $-N . A$
B, and C.
Information-N.A.
D. Soil type and soil analysis.
(i) Red loamy soil. (ii) Chemical analysis and (iii) Mechanical analysis. as given below:

Depth in ft .	Clay \%	Silt \%	Fine Sand \%	Coarse Sand \%	$\begin{gathered} \text { Clay }+ \\ \text { Silt } \end{gathered}$	Fine Sand +coarse sand	Water soluble salts	$\begin{aligned} & . \mathrm{pH} \\ & \text { value } \end{aligned}$
0-1	17.1	10.4	65.7	10.4	25.7	76.1	0.014	$7.71{ }^{\text { }}$
1-2	26.3	9.3	56.7	10.4	35.6	67.1	0.042	7.85
2-3	34.6	10.3	50.5	8.8	44.9	59.3	0.015	8.04
3-4	36.1	11.9	48.2	5.1	48.6	53.3	0.012	7.70
4-5	37.3	11.6	45.1	8.3	48.9	53.4	0.014	7.76
5-6	40.2	12.0	43.4	7.1	52.2	50.5	0.012	7.76
6-7	38.7	10.1	46.3	6.8	48.8	53.1	0.015	7.56
7-8	36.7	12.2	47.8	6.6	48.9	54.4	0.016	7.73

There is no effervescence with dilute acid at any depth.
E. No. of experiments.

Acid lime-5, Lemon-5, Citrus-5, Total=1.5.

18. Vegetable Research Station, Kurnool.

A. General information.
(i) At a distance of 1 Km . from Kurnool railway station. It is a level and even land. (ii) Represents Deccan tract. (iii) Established in 1958. (iv) Vegetables grown in rotation. with green manure crops. (v) Hybridization and selection of promising varieties of vegetables suitable for the tract and to conduct survey of vegetable crops in the State.
B. Normal rainfall in mm.

Information-N.A.
C. Irrgation and drainage facilities.
(i) Canal irrigation from July to April and well irrigation in May and June. (ii) No proper drainage system exists.
D. Soil type and soil analysis :
(i) Black clay loam soils, 2^{\prime} to 5^{\prime} deep. (ii) Chemical analýsis pH 7.9 to 8.5, alkaline, soluble salts (E.C.) : 0.76 to 0.6 (normal), organic matter̀ 0.54 to 0.72 (medium), 0.76 to 0.96 (high) and 1.03 (very high), and availabie $\mathrm{P}_{2} \mathrm{O}_{5} 35 \mathrm{lb}$./ac. (medium). 11 to 17 (low) and 2 to 10 (very low). (iii) Mechanical analysis-N.A.
E. No. of e:xperiments.

Bhindi-1, Tomato-1. Total $=2$.

19. Agricultural Research Stetion, (Millet Research Station), Lam.

A. General information.
(i) In district Guntur, at a distance of 6 miles from Guntur railway station and altitude 105 feet above mean sea level. (ii) Deep black soil tract. (iii) Established in 1923.
D. Soil type and soil analysis :
(i) Black cotton soil, 4 to 6 feet deep and clayey in structure. (ii) Chemical analysis and (iii) Mechanical analysis-N.A.
E. No. of experiments :

Cotton-5, Total $=5$.

24. Agricultural Research Station, Nandyal.

A. General information :
(i) In Nandyal taluka of the Kurnool district at a distance of 1 mile from Nandyal railway station. It is situated in Nandyal valley. Lat. $-15.3^{\circ} \mathrm{N}$, Long. $-78.3^{\circ} \mathrm{E}$ and altitude 690 feet above mean sea level. (ii) It represents northern tract of the Nandyal valley area. (iii) Established in 1906. (iv) Both rainfed as well as irigated crops are being cultivated on this station, the main crops cultivated on dry lands are cotton, jowar, groundnut and korra while on wet lands paddy is cultivated. (v) The research is being carried out mainly on cotton and jowar both by pure line selection as well as hybridisation.
B. Normal rainfall in mm. :

June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb. March	April	May	Total	
108	155	170	129	98	17	12	-	2	10	27	54	784

(Av. rainfall is based on 10 years i.e. 1953-63.)
C. Irrigation and drainage facilities :
(i) This is mostly dry land farm but after remodelling K.C. canal in the year 1960 there are sufficient irrigation facilities for raising wet land crops. The sub-channel of K.C. canal flows through the farm. (ii) Drainage system of the farm is satisfactory.
D. Soil type and soil analysis :
(i) Deep black cotton soil, extends upto 6 feet. (ii) Chemical analysis: Nitrogen $0.045 \%, \mathrm{P}_{2} \mathrm{O}_{5} 0.030 \%$, Potash 0.50% and Moisture 7.56%. (iii) Mechanical analysis-N.A.
E. No. of experiments :

Jowar-5, Cotton-2. Total=7.
25. Turmeric Research Station, Peddapallem.

A. General information :

(i) In Guntur district.
(ii) It represents sandy and clay soil tract.
(iii) to (v)

Information-N.A.
B, C and D.
Information-N.A.
E. No. of experiments :

Turmeric-12, Total=12.

26. Millet Research Station Peddapuram.

A. General information :

(i) In Peddapuram taluka of East Godavari district at a distance of $2 \frac{1}{2}$ miles from Samalkot railway station. It has plain area. (ii) It represents uplands of East Godavari and West Godavari districts. (iii) Established in 1954. (iv) Millets rotated with pulses. (v) Evolution of high yielding strains of ragi, ganti and jonna suitable for dry lands of East and West Godavari districts are the main items in the programme of research.
(xxxiii)
B. Normal rainfall of in mm. :

June July Aug. Sept. Oct. Nov, Dec. Jan. Feb. March April May Total $\begin{array}{lllllllllllll}97 & 211 & 153 & 170 & 207 & 108 & 34 & 1 & 18 & 8 & 16 & 111 & 1134\end{array}$
C. Irrigation and drainage facilities :

Information-N.A.
D. Soil type and soil analysis:
(i) Red sandy loam sòil about $9^{\prime \prime}$ deep. (ii) Chemical analysis
S. No. Block No. Crop pH T.S.S. $\%$ organic Av. $\mathrm{P}_{2} \mathrm{O}_{5}$ Av. $\mathrm{K}_{2} \mathrm{O}$ m. mohos/ carbon lb./ac. (a) $25^{\circ} \mathrm{C}$

1	I	Millets and puises	6.7	Traces	0.231	$16.4(\mathrm{M})$	Low
2	II	"	6.3	$"$	0.312	$14.0(\mathrm{M})$	Low
3	III	$"$	6.2	$"$	0.234	$22.4(\mathrm{H})$	Low
4	IV	$"$	6.4	$"$	0.351	$26.0(\mathrm{H})$	Low

(iii). Mechanical analysis-N.A.
E. No. of experiments :

Ragi-3, Total=3.

27. Deep Water Paddy Research Station, Pulla.

A. General information :
(i) In Eluru taluka of the West Godavari district at a distance of $5 \frac{1}{2}$ miles from Pulla railway station, Climate-tropical ; Lat. $17^{\circ} \mathrm{N}$, Long. $82^{\circ} \mathrm{E}$ and Altitude 5^{\prime} to 10^{\prime} above mean sea level. (ii) It represents black clay type of tracts. (iii) Established in 1950. (iv) Paddy after paddy is the normal cropping pattern. (v) (a) To evolve strains suitable to deep water conditions in main crop season and (b) To evolve short duration drought resistant paddy variety for second crop season.
B. Normal rainfall in mm. :

June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. March April May Total
$\begin{array}{lllllllllllll}162 & 287 & 159 & 204 & 203 & \cdot 22 & 2 & 2 & 20 & 4 & 8 & 27 & 1080\end{array}$
C. Irrigation and drainage facilities .
(i) Irrigated from the Eluru main canal since 1950. (ii) Drainage system is not good.
D. Soil type and soil analysis :
(i) Black clayey soils $9^{\prime \prime}$ deep. (ii) Chemical analysis : Moisture : 5.62%, lime : 0.75 , $\mathrm{K}_{2} \mathrm{O}: 0.81 \%, \mathrm{P}_{2} \mathrm{O}_{5}, 0.04 \%$, available $\mathrm{K}_{2} \mathrm{O}: 0.04 \%$, available $\mathrm{P}_{2} \mathrm{O}_{5}: 0.002 \%$ and nitrogen : 0.089%. (iii) Mechanical analysis : Clay : 82.77%, salt : 9.91%, fine sand : 4.97% and coarse sand : 2.32%.
E. No. of experiments :

Paddy-5, Total $=5$.

28. Agricultural Research Institute, Rajendra Nagar.

A. General information :
(i). Situated in the West Hyderabad at a distance of 10 miles from Hyderabad railway station. The experimental area is fairly levelled. Lat. - $17.2^{\circ} \mathrm{N}$, Long. $-78.22^{\circ} \mathrm{E}$ and altitude 1i80 feet above mean sea level. (ii) Represents Telengana region of Andhra Pradesh.. (iii) Established in 1927. (iv) Paddy in $A b i$ and Tabi. In the kharif season crops like jowar, red gram, castor and groundnut are taken while in the rabi season wheat, safflower and linseed are grown. (v) This is the principal research institute of Andhra Pradesh and conducts research on paddy, pulses, oilseeds, vegetables etc. on breeding, agronomic, entomo-

(xxxiv)

logical and plant pathological aspects.
B. Normal rainfall in mme:
$\begin{array}{ccccccccccccc}\text { June } & \text { July } & \text { Aug. } & \text { Sept. } & \text { Oct. } & \text { Nov. } & \text { Dec. } & \text { Jan. } & \text { Feb. } & \text { March } & \text { April } & \text { May } & \text { Total } \\ 73 & 190 & 162 & 216 & 97 & 33 & 19 & .2 & 4 & 20 & 31 & 30 & 876\end{array}$
(Av. rainfall is based on five years i.e. 1958-63.)
C. Irrigation and drainage facilities :
(i) Perennial canal flowing across the farm provides irrigation to the farm. (ii) Except a small area, the entire farm has a good drainage system.
D. Soil type and soil analysis :
(i) Sandy loam (chalka) medium black and silt soil. (ii) Chemical analysis and (iii) Mechanical anaiysis-N.A.
E. No. of experiments:

Paddy-44, Bhendi-1, Brinjal-5, Tomato-6, French bean-7, Cluster bean-4, Groundnut-8, Castor-1, Fodder-2, Total=78.

29. Agricultaral Research Station, Rudrur.

A. General information:

(i) In Bodhan taluka of Nizamabad district at a distance of 6 miles from Bodhan railway Station. This station is situated on the western slope of a ridge. Ridges and valleys are met with alternately in this tract. In the upper land on the slopes of these hills and ridges are lighter chalka soils, reddish brown in colour and in the valley and lower part of the slopes, the heavier soils, clay loam are met with. Lat.- $18.38^{\circ} \mathrm{N}$, Long. $-77.51^{\circ} \mathrm{E}$ and altitude1325 feet above mean sea level. (ii) This station is situated in the heart of the Nizamsagar ayacut and is typical of the zone it represents. (iii) Established in 1932. (iv) Paddy after paddy and sugarcane after sugarcane are generally grown, More recently monsoon padd y followed by a light irrigated crop like groundnut in the summer crop season is being taken. (v) Research is undertaken on sugarcane, paddy, groundnut, vegetables, cotton and fruit crops on the agronomic, varietal, entomological and chemical aspects.

B. Normal rainfall in mm.

June	July	Aug.	Sept.	Oct. Nov.	Dec.	Jan.	Feb. March	April	May	Total		
224	375	400	207	222	19	10	4	6	11	36	29	1543

C. Irrigation and drainage facilities :
(i) Irrigation facilities are available from the Nizamsagar canal from the year 1932.
(ii) This station has established its own drainage system.
D. Soil type and soil analysis :
(i) Two main types of soil occur in the region light sandy loam generally red in colour known as chalka and the dark coloured clay loams known as regur. Chalka soils are generally shallower than the regur which often go upto the depth of 8 to 10 feet. (ii) Chemical analysis

Type	$\mathrm{SiO}_{\mathbf{2}}$	$\mathrm{FiO}_{\mathbf{2}}$	$\mathrm{Al}_{\mathbf{2}} \mathrm{O}_{\mathbf{3}}$	$\mathrm{Fe}_{\mathbf{2}} \mathrm{O}_{\mathbf{z}}$	MnO	CaO	$\mathrm{K}_{\mathbf{2}} \mathrm{O}$
Chalka	70.0	0.30	13.0	5.35	0.05	1.80	4.40
Regur	73.0	0.50	10.0	5.35	0.15	1.25	1.75
Type	NaO	$\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}$	pH	Loss on ignition	Moisture		
Chalka	1.90	0.035	7	3.00		2.25	
Regur	0.75	0.020	8.4	4.75		5.15	

(iii) Mechanical analysis :

| Type | Coarse | Fine | Silt. Clay | Carbonate \because | Moisture | Loss in | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | sand | sand | \ddots | | | | solution |

30. Agricultural Research Station (Sugarcane Liaison Farm), Samalkot.

A. General information:

(i) In Kakinada taluka of East Godavari district at a distance of about 2 miles from Samalkot railway station. It is a plain area. Lat.- $177^{\circ} 03^{\prime} \mathrm{N}$, Long.- $82^{\circ} 1^{\prime}$ E and altitude 2816 feet. (ii) It represents Godavari eastern delta. (iii) Established in 1902. (iv) Paddy-G.M. -paddy is the cropping pattern. (v) Multiplication of nucleus seed of improved and exotic paddy varieties. Hybridisation of Indica-Japonica varieties and raising seed material of pulses and vegetables are some of the items of research.
B. Normal rainfall in mm. :

June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	March	April	May	Total
139	269	167	195	313	32	3	7	3	8	11	62	1209
(Av.	infal	is ba	d on	year	from	94-	1963					

C. Irrigation and drainage facilities:
(i) Irrigation from the Godavari river canal.
(ii) There is no proper drainage.
D. Soil type and soil analysis: '
(i) Clay loam soil deep black in colour. (ii) Chemical analysis : Texture : Clay loam, moisture : $5.55 \%, \mathrm{pH}: 7.3$ (normal), available $\mathrm{P}_{2} \mathrm{O}_{5} 0.076 \%$, soluble salts: 0.7 (normal), nitrogen : 0.083%, organic carbon : 0.58 (medium) and water holding capacity : 55.85%. (iii) Mechanical analysis-N.A.
E. No. of experiments :

Paddy-23. Total=23.

31. Fruit Research Sation, Sangareddy.

A. General information :

(i) In Sangareddy taluka of Medak district at a distance of 14 miles from Shankarapalli railway station. The experimental area under Annonacea and mango fiuits is of red chalka type in levelled and terraced plots whilh that under chalkas is of regur type and is a levelled land. Lat.- $170^{\circ} 37^{\prime}$ NL., Long.- $78^{\circ} 5^{\prime}$ E.L. (ii) Represents a predominantlý red sandy loam (chalka) soil with black or regur soil area and low lying lands suitable for paddy to a limited extent. (iii) Established in 1947. (iv) Being a fruit research station no particular crop rotation is followed. However chillies and vegetable like bhendi, bringal, tomato, cluster bean in kharif and 'rabi jowar and rabi paddy to a limited extent are grown for seed multiplication. (v) Manurial, cultural and breeding trials for' the selection of promising strains of chillies and vegetables and to conduct root stock propagation, manurial and cultural trials for evolving superior varieties of mango and sitaphal.
B. Normal rainfall in mm. :

| June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | March | April | May | Total |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 107 | 225 | 283 | 249 | 112 | 18 | 10 | - | 5 | 15 | 14 | 30 | 1068 |

(Av. of 5 years i.e. 1958-62).
C. Irrigation and drainage facilities :
(i) Irrigation is done from wells and tanks. (ii) Open drainage is maintained wherever considered essential.
D. Soil type and soil analysis :
(i) Sandy loam (chalka) 1 to 2 feet deep, black regur and wet land. (ii) Chemical analysis For chalka soils, $\mathrm{N}: 0.043 \%, \mathrm{pH}: 7.34, \mathrm{P}_{2} \mathrm{O}_{5}: 6.62 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{K}_{2} \mathrm{O}: 44.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Mechanical analysis-N.A.
E. No of experiments:

Bhendi-3, Chillies-2. Total=5.

32. Belal Farm, Shakkarnagar (Nigam Sugar Factory).

A. to D.

Information-N.A.
E. No. of experiments :

Sugarcane-2. Total=2.

33. Demonstration-cum-Research Farm, Srikakulam.

A. General information:
(i) At a distance of 5 miles from Srikakulam-Palakonda road. (ii) It represents clay loam tract. (iii) Established in 1956. (iv) In wet lands burada ragi follawed by rice or G.M. followed by rice and in dry lands ganti or ragi followed by jonna. (v) Evaluation of improved strains of rice and millets and to work out improved cultural and manurial practices of rice and millets are the items of research.
B. Normal rainfall in mm.

June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	March	April	May	Total
129	165	192	203	187	67	18	6	2	16	≤ 0	66	1095

(Av. of 80 years of rainfall i.e. 1870 to 1949).
C. Irrigation and drainage facilities ;
(i) A channel from the Nagavali river and tanks irrigates part of rice area. A well for irrigation of dry land crops was sunk in 1964. (ii) Major area of rice is provided with good drainage system.
D. Soil type and soil analysis :
(i) Black soil $9^{\prime \prime}$ to $10^{\prime \prime}$ deep. (ii) Chemical analysis and (iii) Mechanical analysis-N.A.
E. No of experiments :

Paddy-3. Total=3.

34. Sugarcane Liaison Farm, Tanuku.

A. General information :
(i) In west Godavari district.
(ii) Represents Godavari delta tract. (iii) to (v) Information-N.A.
B., C. and D.

Information-N.A.
E. No. of experiments:

Sugarcane-8. Totai $=8$.

35. Banana Research Station, Tanuku.

A. General information :

(i) In Tanuku taluka of West Godavari district at a distance of $\frac{1}{2} \mathrm{Km}$. from. Tanuku railway station. The fields are fairly levelled. (ii) Represents Godavari delta tract. (iii) Established in 1958. (iv) Banana-Green manure-Banana is the crop rotation followed in the state. (v) To improve banana industry in the state by undertaking varietal, cultural, manurial and other investigations with a view to evolve new techniques and improve the existing practices.
B. Normal rainfall in mm :

June		July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	March	April	May	Total
168	328	189	301	259	38	7	7	104	5	45	38	1429	

(Av. rainfall is based on 3 years from $1960-1963$).
C. Irrigation and drainage facilities..
(i) Irrigation from tube wells. (ii) Surface drainage and drainage ditches along the contours to drain off the excess water during rainy season.
D. Soil type and soil analysis :
(i) Black clay loam soil. (ii) Chemical analysis : pH 7.2 to 7.8 , Organic matter content is very poor, Available $\mathrm{P}_{2} \mathrm{O}_{5}$ is classed as very low to medium and Available $\mathrm{K}_{2} \mathrm{O}$ is classed as very high. (iii) Mechanical analysis-N.A.
E. No. of experiments :

Banana-4. Total $=4$.

36. Government Millet Farm, Vizianagaram. ,

A. General information :
(i) In Vizianagaram taluka of Visakhapatnam district at. a distance of one mile from Vizianagaram railway station. . Experimental area is a levelled piece of land. (ii) Reperesents red loamy tract. (iii) Established in 1954. (iv) Millets followed by pulses and green manure crops. (v) To evolve improved strains of major millets and to find out optimum requirements of fertilizers.
B. Normal rainfall in mm. :

June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	March	April	May. Total,	
191	181	153	.233	317	12	7	19	17	3	19	48	1201

(Av. rainfall is besed on 4 years i.e., 1959-1963).
C. Irrigation and drainage facilities :
(i) There are two wells for irrigation purpose for a limited area of 2 to 3 areas. (ii) Well drained soil.
D. Soil type and soil analysis :
(i) Red loamy soil with a depth of 6 feet and porous structure. (ii) Chemical analysis-pH 7.5 to 8.1. (iii) Mechanical analysis-N.A.
E. No. of experiments :

$$
\text { Ragi-7. Total }=7
$$

37. Government Main Farm, Warangal.

A. General information:

(i) In district Warangal, at a distance of 5 miles from Warangal railway station. It represents plain area. Lat. $-18.01^{\circ} \mathrm{N}$, Long. $-39.04^{\circ} \mathrm{E}$ and altitude 111 feet above mean sea
(xxxviii)
level. (ii) Represents eastern Telangana tract. (iii) Established in 1933. (iv) Paddy, jowar, cotton and puises etc. are the main crops. (v) Programme of research is to conduct seed multiplication trials and varietal, manurial and cultural trials on paddy, jowar, cotton, maize and pulses.
B. Vormal rainfall in mm.:

June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. March April May Total $\begin{array}{lllllllllllll}126 & 243 & 166 & 217 & 90 & 12 & - & 1 & 5 & 13 & 22 & 45 & 940\end{array}$
(Av. rainfall bassed on 10 years).
C. Irngation and drainage facilities:
(i) Two small tanks whose supply is entirely dependant on rainfall from 1933. (ii) There is proper drainage system wherever required.
D. Soil type and soil analysis:
(i) Sandy loam (chalka) and regur or black cotton soil. (ii) Chemical analysis : Chalka-pH 6.9 to $8.2, \mathrm{P}_{2} \mathrm{O}_{5}$ available 6.2 to $3.7, \mathrm{~K}_{2} \mathrm{O}$ available 80 to $173 \operatorname{Regur}-\mathrm{pH} 8.0$ to 8.2, available $\mathrm{P}_{2} \mathrm{O}_{3} 0.46$ to 6.4 and available $\mathrm{K}_{2} \mathrm{O} 164.3$ to 249.6. (iii) Mechanical analysis-N.A.
E. No. of expcriments :

Paddy-10, Tur-3, Groundnut-4. Total $=17$.

38. Agricultural Research Farm, Yemmiganur,

A. Gencral information:
i) In Adoni taluka of Kurnool district at a distane of 30 Km . from Adoni railway station. (ii) Represents black soils of the Tungbbadra project ayacut area. (iii) Established in 1963. (iv' Jowar cotton or korra is the cropping pattern. (v) To conduct manurial, cultural and varietial trials on jowar, cotton, and korra and to find out their optimum requirement of water.
B. Normal rainfall in mm. :
$\begin{array}{ccccccccccccc}\text { June } & \text { July } & \text { Aug. } & \text { Sept. } & \text { Oct. } & \text { Nov. } & \text { Dec. } & \text { Jan. } & \text { Feb. } & \text { March } & \text { April } & \text { May } & \text { Total } \\ 74 & 101 & 99 & 151 & 26 & 32 & 8 & - & - & 2 & 17 & 41 & 551\end{array}$
Av. rainfall is based on 10 years).

C. Irrigation and drainage facilities :

(i) Land with complete irrigation facility from the Tunghhadra project is proposed to be acquired for the major river valley project. (ii) There is no proper drainage.
D. Soil type and soil analysis :
(i) Deep black, medium black, shallow and red soil with different depth. The structure depends upon the above soils. (ii) and (iii) Chemical and Mechanical analysis-N.A.
E. No. of experiments :

Paddy-6 Wheat-4, Fowar-6, Korra-3 and Cotton-9. Total=28.

Crop :- Paddy.
Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 55(50).
Type :- ' \mathbf{M} '.
Object:-To study the effect of manuring Paddy with urban compost, F.Y.M. and G.L. at different level of N .

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Paddy. (b) Sugarcane. (c) $100 \mathrm{lb} . / \mathrm{ac}$. of N as A/S. (ii) (a) Loamy. (b) Refer soil analysis, Anakzpalle. (iii) $12.8 .1955 /$ N.A. (iv) (a) Puddling with country plough and levelling. (b) Transplanted. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) As per treatments. (vi) GEB-24. (vii) Irrigated. (viii) 2 weedings (ix) N.A. (x) 6.12.1955.
2. TREATMENTS :

All combinations of (1) and (2) + a control.
(1) 3 leveis of $\mathrm{N}: \mathrm{N}_{1}=40, \mathrm{~N}_{2}=60$ and $\mathrm{N}_{3}=80 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 sources of $N: S_{1}=$ Urban compost, $S_{2}=\dot{F} . Y . M$. and $S_{3}=$ G.L.

Compost and F.Y.M. spread a few days before transplanting. G.M. ploughed with the soil a month before transplanting.
3. DESIGN :
(i) R.B.D.
(ii) (a) 10 .
(b) N.A.
(iii) 4.
(iv) (a) $60^{\prime} \times 6^{\prime}$.
(b) $54 \frac{1}{2}^{\prime} \times 4^{\prime}$.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. Lodging due to cyclonic weather. (ii) Nil. (iii) Yield of grain, height and tiller count. (iv) (a) 1955-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) $2448 \mathrm{lb} . / \mathrm{ac}$. (ii) $296 \mathrm{lb} . / \mathrm{ac}$. (iii) No effect is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

$$
\text { Control }=2350 \mathrm{lb} / \mathrm{ac}
$$

	N_{1}	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$
$\mathrm{~S}_{1}$	2200	2475	2325
$\mathrm{~S}_{2}$	2500	2650	2425
$\mathrm{~S}_{3}$	2575	2450	2525
Mean	2425	2525	2425
2535			
2559			

S.E. of any marginal mean	$=85.4 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table or control mean	$=148.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy.
Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 58(28).
Site :- Sugarcane Res. Stn., Anakapalle.
Type :- ' M '.
Object : - To find out the effect of applying N, P and K fertilizers on Paddy.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Fallow-Paddy. (b) Sugarcane-Fallow. (c) 100 lb ./ac. of N. (ii) (a) Loamy. (b) Refer soil analysis, Anakapa'le. (iii) N.A./17.8.1958. (iv) (a) 4 puddlings and pressing patti for levelling. (b) Transplanted. (c) About $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 to 3 . (v) Nil. (vi) GEB-24 (medium). (viii) Weeding. (ix) N.A. (x) 25.12.1958.

2. TREATMENTS :

All combinations (1), (2) and (3)
(1) 2 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=45 \mathrm{lb} . / \mathrm{ac}$. of N .
(2) 2 leve's of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=45 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(3) 2 levels of $\mathrm{K}_{2} \mathrm{O}: \quad \mathrm{K}_{0}=0$ and $\mathrm{K}_{1}=45 \mathrm{lb}$. ac . of $\mathrm{K}_{2} \mathrm{O}$.

N as A / S applied one month after planting, $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super and $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. appiied at the time of planting.
3. DESIGN :
(i) R.B.D. (ii) (a) $8 . \quad$ (b) N.A. (iii) $4 . \quad$ (iv’) (a) $30^{\prime} \times 10^{\prime}$. (b) $21^{\prime} 8^{\prime \prime} \times 10^{\prime}$. (v) $4^{\prime} 1^{\prime \prime}$ either side. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Height, tiller count and yield of grain. (iv) (a) Not contd. (b) and (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2289 \mathrm{lb} . / \mathrm{ac}$. (ii) $220.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Only main effect of N is highly significant. (iv) Av. yield of grain in lb./ac.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{M e a n}$	\mathbf{K}_{0}
\mathbf{P}_{0}	2211	2437	2324	\mathbf{K}_{1}
\mathbf{P}_{1}	2071	2437	2254	2374
Mean	2141	2437	2289	2296
\mathbf{K}_{4}	2113	2479	2282	
\mathbf{K}_{1}	2169	2395		

S.E. of any marginal mean	$=55.1 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of any table	$=77.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy.
Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 56(42).
Type :- ' \mathbf{M} '.

Object :-To study the effect of manuring Paddy with urban compost as against F.Y.M. and G.L. at different levels of N .

1. BASAL CONDITIONS :
(i) Sugarcane-Paddy. (b) Sugarcane. (c) $100 \mathrm{lb} . / \mathrm{ac}$. of N as A / S. (ii) (a) Loamy. (b) Refer soil analysis, Anakapalle. (iii) $31.8 .1956 /$ N.A. (iv) (a) Puddling with country plough and levelling. (b) Transplanted. (c) $30 \mathrm{lb} . \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) As per treatments. (vi) GEB-24 (medium) (vii) Irrigated. (viii) Two weedings. (ix) 28.81°. (x) 24.11.1956.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 55(50) on page 1.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield.
(iv) (a) 1955-contd.
(b) No.
(c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) $2422 \mathrm{lb} . / \mathrm{ac}$. (ii) $70.0 \mathrm{lb} / \mathrm{ac}$. (iii) All the effects are highly significant. (iv) Av. yield of grain in $\mathrm{lb} \cdot / \mathrm{ac}$.

$$
\text { Control }=2205 \mathrm{lb} . / \mathrm{ac} .
$$

	N_{1}	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$
$\mathrm{~S}_{1}$	2230	2325	2325
$\mathrm{~S}_{2}$	2295	2526	2540
$\mathrm{~S}_{3}$	2465	2632	2680
Mean	2330	2494	2515

| S.E. of any marginal mean | $=20.2 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | ---: | :--- |
| S.E. of body of table or control mean | $=35.0 \mathrm{lb} . / \mathrm{ac}$. |

Grop :- Paddy (Rabi).
Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 54(90).
Type :- ' M '.
Object :-To study the effect of different nitrogenous fertilizers on soil fertility and Paddy yield.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ragi-Paddy. (b) Ragi. (c) $40 \mathrm{lb} . / \mathrm{ac}$. of N in different forms. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) N.A./13.8.1954. (iv) (a) Puddling. (b) Travsplanting. (c) $40 \mathrm{lb} . / \mathrm{ac}$. in nursery. (d) $6^{\prime \prime}$ between rows. (e)-. (v) Nil. (vi) GEB-24. (vii) Irrigated. (viii) Worḳing push hoe twice in between rows. (ix) $26.57^{\prime \prime}$. (x) 1.12 .1954 .
2. TREATMENTS :

5 sources of $60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}: \mathrm{S}_{0}=$ Control (no manure), $\mathrm{S}_{1}=A / S, S_{1}=$ G.N.C., $S_{3}=$ F.Y.M and $S_{4}=$ G.N.C. and A / S in $2: 1$ ratio.
3. DESIGN :
(i) L. Sq. (ii) (a) 5^{\prime}. (b) $198^{\prime} \times 181.5^{\prime}$. (iii) 5 . (iv) (a) $39.6^{\prime} \times 36.3^{\prime}$. (b) $33^{\prime} \times 26.4^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1951-contd. (b) Yes. (c) No. (v) (a) and (b) No. (vi) Nil. (vii) No.
5. RESULTS :
(i) $2682 \mathrm{lb} . / \mathrm{ac}$. (ii) $326.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

Treatment	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
Av. yield	2205	2430	3060	2630	3085

Crop :- Paddy.
Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 55(46).
 Type :- ' \mathbf{M}^{\prime} '.

Object:-To study the effect of different nitrogenous fertilizers on soil fertil ty and Paddy yield.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ragi-Paddy. (b) Ragi. (c) $40 \mathrm{lb} . / \mathrm{ac}$. of N . (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) $20.8 .1956 /$ N.A. (iv) (a) 3 to 4 times ploughing and puddling fertilizers on soil fertility and Paddy yield and levelling. (b) Transplanting. (c) N.A. (d) $6^{\prime \prime}$ between rows. (e) 2 to 3. (v) Nil. (vi) GEB-24. (vii) Irrigated. (viii) Rotary hoe worked in between rows after manuring. (ix) 27.20°. (x) 27.11 .1956.
2. TREATMENTS :

Same as in expt. no. $54(90)$ above.
3. DESIGN :
(i) L. Sq. (ii) (a) 5 . (b) N.A. (iii) 5 . (iv) $39.6^{\prime} \times 33^{\prime}$, (b) $33^{\prime} \times 26.4^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Plots with A/S lodged. (ii) Nil. (ili) Grain yield. (iv) (a) 1951 -contd. (b) Yes. (c) N.A. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2275 \mathrm{lb} / \mathrm{ac}$. (ii) 155.5 lb ./ac. (iii) Treatments are highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$

Treatment	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
Av. yield	2345	2575	2550	2450	1455

Crop:- Paddy.
 Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 55(99).
Type :- $\mathbf{' M}^{\mathbf{M}}$.
Object :-To study the effect of different nitrogenous fertilizers on soil fertility and Paddy yield.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ragi-Rice. (b) Ragi. (c) 40 lb /ac. of N in different forms. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) N.A 9.8 .1955 . (iv) (a) Puddling. (b) Transplanting. (c) $400 \mathrm{lb} / \mathrm{ac}$. in nursery. (d) $6^{\prime \prime}$ between rows. (e)-. (v) Nil. (vi) GEB-24. (vii) Irrigated. (viii) Working push hoe twice in between rows. (ix) $35.66^{\prime \prime}$. (x) 28.11.1955.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(90) on page 3.
5. RESULTS :
(i) $2641 \mathrm{lb} . / \mathrm{ac}$. (ii) $105.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

Treatment	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
Av. yieln	2070	2680	2807	2890	2760
	S.E./mean	$=47.2$	$\mathrm{lb} . / \mathrm{ac}$.		

```
Crop :- Paddy (Kharif).
Ref :- A. P. 57(116).
Site :- Sugarcane Res. Stn., Anakapalle.
Type :- ' \(\mathbf{M}^{\prime}\).
```

Object :-To study the effect of different nitrogenous fertilizers on soil fertility and Paddy yield.

1. BASAL CONDITIONS:
(i) (a) Sugarcane-Ragi-Rice. (b) Ragi. (c) $40 \mathrm{lb} . / \mathrm{ac}$. of N in different forms. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) N.A./5.8.1957. (iv) (a) Puddling. (b) Transplanting. (c) $400 \mathrm{lb} . / \mathrm{ac}$. in nursery. (d) 6° between rows. (e) -. (v) Nil. (vi) G.E.B-24. (vii) Irrigated. (viii) Working push hoe. (ix) 29.5". (x) 3.12.1957.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(90) on page 3.
5. RESULTS :
(i) $2975 \mathrm{lb} / \mathrm{ac}$. (ii) $247.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

Treatment	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{\mathbf{2}}$	$\mathrm{S}_{\mathbf{3}}$	$\mathrm{S}_{\mathbf{4}}$
Av. yield	1597	$\mathbf{3 1 3 3}$	3350	3498	3295
	S.E./mean	$=$	$110.6 \mathrm{lb} . / \mathrm{ac}$.		

```
Crop :- Paddy (Kharif).
Site :- Sugarcane Res. Stn., Anakapallé.
```

Ref :- A.P. 58(145).
Type :- ${ }^{〔} \mathbf{M}$ '.
Object :-To study the effect of different nitrogenous fertilizers on soil fertility and Paddy yield.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ragi-Rice. (b) Ragi. (c) 40 lb ./ac. of N in different forms. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) N.A./6.8.1958. (iv) (a) Puddling. (b) Transplanting. (c) $400 \mathrm{lb} . / \mathrm{ac}$. in nursery. (d) $6^{\prime \prime}$ between rows. (e) 一. (v) Nil. (vi) GEB-24. (vii) Irrigated. (viii) Working push hoe. (ix) $47.92^{\prime \prime}$. (x) ${ }^{\prime} 17.12 .1958$.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(90) on page 3.

5. RESULTS:

(i) $2179 \mathrm{lb} . / \mathrm{ac}$. (ii) 471.82 lb ./ac. (iii) Treatment differences are not. significant. (iv) Av. yield of grain in lb ./ac.

Treatment	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{\mathbf{2}}$	S_{3}	$\mathrm{~S}_{\mathbf{4}}$
Av: yield	1920	1960	2245	2440	2330
	S.E. $/$ mean	$=$	$211.0 \mathrm{lb} . / \mathrm{ac}$.		

```
Grop :- Paddy (Kharif).
Site :- Sugarcane Res. Stn., Anakapalle.
```


Ref :- A.P. 59(134).

```
Type :- ‘M'.
```

Object :--To study the effect of different nitrogenous fertilizers on soil fertility and Paddy yield.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Ragi-Paddy—Sugarcane. (b) Ragi. (c) $18 \mathrm{lb} . / \mathrm{ac}$. of N. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapaile. (iii) N.A./14, 15.8.1959. (iv) (a) Pudding the soil with cattle. (b) Transplanting. (c) $400 \mathrm{lb} . / \mathrm{ac}$. in nursery. (d) $6^{\prime \prime}$ between rows. (e) 2 to 3. (v) Nil. (vi) GEB-24. (vii) Irrigated. (viii). Hoeing twice. (ix) 22.7°. (x) 22.12.1959.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(90) on page 3.

5. RESULTS :

(i) $3028 \mathrm{lb} . / \mathrm{ac}$. (ii) $2205 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differcnces are highiy significant. (iv) Av. yield of grain in lb./ac.

Treatment	$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathrm{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$
Av. yield	2425	3115	3300	3265	3035
	S.E./mean	$=$	$102.2 \mathrm{lb} . / \mathrm{ac}$.		

Cirop : \boldsymbol{P} Paddy.
Site :- Sugarcane Res. Stn,, Anakapalle.

Ref :- A.P. 57(61).
Site :- Sugarcane Res. Stn,, Anakapalle.
Type :- M'.
Object: :-To study the effect of Dical Phos. on Paddy as compared to Triple Super.

1. BASAL CONDITIONS :
[^0]```
Crop :- Paddy.
Ref :- A.P. 54(34).
Site :- Agri. College Farm, Bapatla.
Type :- \(\mathbf{M}^{\prime}\).
```

Object:-To study the continuous application of organic and inorganic manures and their combination on the yield of Paddy.

1. BASAL CONDITIONS :
(i) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Bapatla. (iii) 1.6.1954, 22.7.1954 to 26.7.1954. (iv) (a) Digging plots and trimming bunds. (b) Transplanted. (c) 20 lb./ac. (d) $6^{\circ} \times 6^{\prime \prime}$. (e) N.A. (v) As per treatment. (vl) MTU 19 (late). (vii) Irrigated. (viii) Weeded on 28.8.1954. (ix) $39.83^{\circ}$. (x) 28.12 .1954 .
2. TREATMENTS :

Main-plot treatments :
5 sources of $\mathrm{N}: \mathrm{S}_{0}=$ Control (no manure), $\mathrm{S}_{1}=60 \mathrm{lb} . / \mathrm{ac}$. as $\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=60 \mathrm{lb} . / \mathrm{ac}$. as compost, $\mathrm{S}_{2}=60$ lb ./ac. as C.M. and $S_{4}=60 \mathrm{lb}$./ac. as G.M.
Sub-plot treatments :
All combinations of (1), (2) and (3)
(1) 2 levels of $P: P_{0}=0$ and $P_{1}=60 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(2) 2 levels of $\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0$ and $\mathrm{K}_{1}=60 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$.
(3) 2 levels of Lime: $L_{0}=0$ and $L_{1}=1500 \mathrm{lb} . / \mathrm{ac}$.

Treatments: $1=P_{0} K_{0} L_{0}, \quad 2=P_{0} K_{1} L_{0}, \quad 3=P_{1} K_{0} L_{0}, \quad 4=P_{1} K_{1} L_{0}, \quad 5=P_{0} K_{0} L_{1}, \quad 6=P_{0} K_{1} L_{1}, \quad 7=P_{1} K_{0} L_{1}$ and $8=P_{1} K_{1} L_{1}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/block; 8 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $35.6^{\prime} \times 15.8^{\prime}$. (b) $34.6^{\prime} \times 14.8^{\prime}$. (v) $6^{\prime \prime} \times 6^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) and (iii) Nil. (iv) (a) 1953 -contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $2712 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) and (b) N.A. (iii) No effect is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathbf{1}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{S}_{\mathbf{0}}$ | 2113 | 2461 | 2546 | 2503 | 2640 | 2138 | 2324 | 2178 | 2363 |
| $\mathrm{~S}_{\mathbf{1}}$ | 3149 | 3221 | 3170 | 2857 | 2874 | 2929 | 2866 | 2512 | 2947 |
| $\mathrm{~S}_{\mathbf{2}}$ | 2451 | 2631 | 2716 | 2681 | 2478 | 2849 | 2553 | 2476 | 2604 |
| $\mathrm{~S}_{3}$ | 2757 | 2684 | 2939 | 2788 | 2828 | 2852 | 2919 | 2778 | 2818 |
| $\mathrm{~S}_{4}$ | 2583 | 2921 | 2925 | 2683 | 2936 | 2794 | 2871 | 2872 | 2831 |
| Mean | 2611 | 2784 | 2871 | 2702 | 2751 | 2712 | 2707 | 2563 | 2712 |

S.E.'s. N.A.

| Crop :- Paddy (Kharif). | Ref :- A.P. 55(67). |
| :--- | :--- |
| Site :- Agri. College Farm, Bapatla. | Type :- ‘'M'. |

Object :-To study the effect of continuous application of organic and inorganic manures and their combinations on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay. (b) Refer soil analysis, Bapat'a. (iii) 4.6.1955/ 6.7.1955. (iv) (a) Digging once. (b) Transplanted. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\circ}$. (e) N.A. (v) Nil. (vi) MTU -19. (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 16 to 18.12.1955.

## 2. TREATMENTS :

Main-plot treatments :
5 sources of $60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}: \mathrm{S}_{0}=$ Control, $\mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=$ Compost, $\mathrm{S}_{3}=$ C.M. and $\mathrm{S}_{4}=$ G.M.

## Sub-plot treatments :

(All combinations of (1), (2) and (3)
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=60 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(2) 2 levels of $\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0$ and $\mathrm{K}_{1}=60 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$.
(3) 2 levels of lime : $\mathrm{L}_{0}=0$, and $\mathrm{L}_{1}=1500 \mathrm{lb}$./ac. of slaked lime.
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication; 8 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $35.6^{\prime} \times 15.8^{\circ}$. (b) $34.6^{\prime} \times 14.8^{\prime}$. (v) $6^{\prime \prime} \times 6^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1953-contd. (b) Yes. (c) Nil. (v) to (vii) NiI.
5. RESULTS :
(i) $2268 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $1498.2 \mathrm{lb} . / \mathrm{ac}$. (b) $459.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Only interactions $\mathrm{L} \times \mathrm{P}$ and $\mathrm{L} \times \mathrm{P} \times \mathrm{K}$. are significant. (iv) Av. yield of grain in lb./ac.

|  | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $S_{2}$ | $S_{3}$ | $\mathrm{S}_{4}$ | $L_{0}$ | $L_{1}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 2019 | 2302 | 2385 | 2161 | 2253 | 2150 | 2298 | 2295 | 2153 | . 2224 |
| $\mathrm{P}_{1}$ | 2157 | 2352 | 2293 | 2491 | 2271 | 2382 | 2242 | 2315 | 2309 | 2312 |
| Mean | 2088 | 2327 | 2339 | 2326 | 2262 | 2266 | 2270 | 2305 | 2231 | 2268 |
| $\mathrm{K}_{0}$ | 2221 | 2242 | 2384 | 2411 | 2270 |  |  |  |  |  |
| $\mathrm{K}_{1}$ | 1955 | 2412 | 2294 | 2241 | 2254 |  |  |  |  |  |
| $\mathrm{L}_{0}$ | 2165 | 2248 | 2287 | 2463 | 2167 |  |  |  |  |  |
| $\mathrm{L}_{1}$ | 2011 | 2406 | 2391 | 2189 | 2357 |  |  |  |  |  |

S.E. of difference of two

1. S marginal means $=374.5 \mathrm{lb} \cdot / \mathrm{ac}$.
2. $\mathbf{P}, \mathrm{K}$ or L marginal means $\quad=72.6 \mathrm{lb} . / \mathrm{ac}$.
3. $\mathrm{P}, \mathrm{K}$ or L means at the same level of $\mathrm{S}=162.3 \mathrm{lb} . / \mathrm{ac}$.
4. S means at the same level of $\mathrm{P}, \mathrm{K}$ or $\mathrm{L}=391.74 \mathrm{Jb}$./ac.
S.E. of body of $P \times K, P \times L$ or $K \times L$ table $=114.81 \mathrm{lb} . / \mathrm{ac}$.

## Crop :- Paddy. <br> Site :- Agri. College Farm, Bapatla.

Ref:- A. P. 56(1).
Type:- ${ }^{〔} \mathbf{M}^{\prime}$.

Object :-To study the effect of continuous application of organic and inorganic manures and their combinations on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Fallow-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy black soil. (b) Refer soil analysis, Bapatla. (iii) $13.6 .1956 / 26.7 .1956$ to 29.7 .1956 . (iv) (a) 2,3 ploughings. (b) Transplanted. (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) MTU-19 (medium). (vii) Irrigated. (viii) Weeding once two-months after planting. (ix) $41.5^{\prime \prime}$. (x) 19.12 .1956 and 20.12.1956.
2. TREATMENTS :

Same as in expt. no. $55(67)$ on page 8.
3. DESIGN :
(i) Split-piot. (ii) (a) 5 main-plots/replication; 8 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $35.6^{\prime} \times 15.8^{\prime}$. (b) $34.6^{\prime} \times 14.8^{\prime}$. (v) $6^{\prime \prime} \times 6^{\prime \prime}$. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1953-contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2920 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $771.6 \mathrm{lb} / \mathrm{ac}$. (b) 432.8 bb ./ac. (iii) Only main effects due to S and P are highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

S.E. of difference of two

| 1. $S$ marginal means | $=192.9 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. $P, K$ or $L$ marginal means | $=68.5 \mathrm{lb} . / \mathrm{ac}$. |
| 3. $P, K$ or $L$ means at the same level of $S$ | $=153.0 \mathrm{lb} . / \mathrm{ac}$. |
| 4. $S$ means at the same level of $P, K$ or $L$ | $=221.7 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $P \times K$ or $P \times L$ or $K \times L$ table | $=968 \mathrm{bb} . / \mathrm{ac}$. |

Ref:- A. P. 54(37).
Type :- ‘M'.

Object :-To study the effect of placement and broadcasting of A/S on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Bapatla. (iii) 1.6.1954/23.7.1954. (iv) (a) 2 to 3 ploughings. (b) Transpianting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\circ} \times 6^{\circ}$. (e) 3 (v) $\mathrm{P}_{2} \mathrm{O}_{5}$ at $30 \mathrm{lb} . / \mathrm{ac}$. of Super. (vi) MTU-3 (early). (vii) Irrigated. (viii) Weeding twice. (ix) $39.83^{\prime \prime}$. (x) 25.12 .1954.
2. TREATMENTS :

All combinations of (1) and (2) + a control,
(1) 2 methods of application of $\mathrm{N}: \mathrm{M}_{1}=$ Broadcasting and $\mathrm{M}_{2}=$ Placement.
(2) 3 levels of N as $\mathrm{A} / \mathrm{S}: \mathrm{N}_{1}=30, \mathrm{~N}_{2}=45$ and $\mathrm{N}_{3}=60 \mathrm{lb}$./ac.

Broadcasting 4 weeks after planting and placement of $\frac{2}{3} \mathrm{~N}$ done on 22.8 .1955 with clay formed into pellets and $\frac{1}{3}$ placed similarly after 4 weeks.
3. DESIGN :
(i) R.B.D.
(ii) (a) 7.
(b) N.A.
(iii) 7. (iv) (a) $13.2^{\prime} \times 26.4^{\prime}$.
(b) $12.2^{\prime} \times 25.4^{\prime} . \quad$ (v) $6^{\prime \prime} \times 6^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Lodged due to heavy floods. (ii) Nil. (iii) Tiller count and yield of grain. (iv) (a) 1953-1955. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 2853 lb ./ac. (ii) 347.2 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of grain ic $\mathrm{lb} / \mathrm{ac}$.

$$
\text { Control }=2784 \mathrm{lb} \cdot / \mathrm{ac}
$$

|  | $\mathbf{N}_{1}$ | $\mathbf{N}_{2}$ | $\mathbf{N}_{3}$ | Mean |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{M}_{1}$ <br> $\mathrm{M}_{2}$ | 2802 2854 2812 <br> 2885 2877 2965 | 2822 |  |  |
| Mean | 2843 | 2865 | 2888 | 2865 |


| S.E. of $M$ marginal mean | $=100.2 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of N marginal mean | $=122.7 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=173.6 \mathrm{lb} . / \mathrm{ac}$. |


| Crop :- Paddy. | Ref :- A.P. 55(3). |
| :--- | :--- |
| Site :- Agri. College Farm, Bapatla. | Type :- $\mathbf{c}^{\circ}:$ |

Object :--To study the effect of placement and broadcasting of A/S on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) Refer soil analysis, Bapalla. (iii) 22.6.1955/22.8.1955. (iv) (a) Mummatty digging once. (b) Transplanted. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) As per treatments. (vi) MTU-19. (vii) Irigated. (viii) 2 weedings. (ix) $22.5^{\prime \prime}$. (x) 14.11 .1955 .
2. TREATMENTS :

Same as in expt. no. 54(37) on page 10.
3. DESIGN :
(i) R.B.D. (ii) (a) 7.
(b) N.A.
(iii) 4. (iv) (a) $13.2^{\prime} \times 26.4^{\prime}$.
(b) $12.2^{\prime} \times 25.4^{\prime}$. (v) $6^{\prime \prime} \times 6^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nit. (iii) Yield of grain and straw. (iv) (a) 1953-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 2706 lb ./ac. (ii) $389.7 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb ./ac.

$$
\text { Control }=2607 \mathrm{lb} . / \mathrm{ac}
$$



1

| S.E. of $M$ marginal mean | $=137.8 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | ---: |
| S.E. of $N$ marginal mean | $=112.5 \mathrm{lb} / \mathrm{ac}$. |
| S.E. of body of table | $=194.8 \mathrm{lb} . / \mathrm{ac}$. |

## Crop :- Paddy. <br> Site :- Agri. College Farm, Bapatla.

Ref :- A.P. 56(4).
Type :- ‘M'.
Object :-To study the effect of placement and broadcasting of A/S on Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy-Fallow-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) Refer soil analysis, Bapatla. (iii) $10.6 .1956 / 31.7,1956$. (iv) (a) Usual ploughing. (b) Transplanted. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) 3. (v) 4000 lb ./ac. of G.L. applied on 29.7 .1956 and 30.7 .1956 and 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super on 30.7.1956. (vi) MTU-3 (early). (vii) Irrigated. (viii) 2 wéedings. (ix) 41.5*. (x) 13.11 .1956 .
2. TREATMENTS:

Same as ini expt, no. $54(37)$ on page 10.
3. DESIGN :
(i) R.B.D.
(ii) (a) 7 .
(b) N.A.
(iii) 4.
(iv) (a) $13.2^{\prime} \times 26.4^{\prime}$.
(b) $12.2^{\prime} \times 25.4^{\prime}$. (v) $6^{\prime \prime} \times 6^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1953-contd. (b) Yes. (c) Nol. (v) to (vii) Nil.
5. RESULTS :
(i) $2523 \mathrm{lb} . / \mathrm{ac}$. (ii) $270.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not ?significant. (iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Control $=2425 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{1}$ | $\mathrm{~N}_{2}$ | $\mathrm{~N}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M}_{1}$ | 2526 | 2534 | 2508 | 2522 |
| $\mathbf{M}_{2}$ | 2522 | 2499 | 2649 | 2556 |
| Mean | 2524 | 2516 | 2598 | 25.39 |

S.E. of N marginal mean $\quad==95.6 \mathrm{lb} . / \mathrm{ac}$.
S.E. of $M$ marginal mean $\quad=78.0 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=135.1 \mathrm{lb} . / \mathrm{ac}$.

## Grop:- Paddy. <br> Site :- Agri. College Farm, Bapatla.

## Ref :- A.P. 54(35). <br> Type :- ' $\mathbf{M}$ '.

Object:-To study the effect of N and $\mathbf{P}$ applied at different levels on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Bapatla. (iii) $18.6 .1954 / 12$ to 14.8 .1950 . (iv) (a) Trimming bunds and digging plots and incorporation of manures and weeding. (b) N.A. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) As per treatments. (vi) MTU- 19 (ate). (vii) Irrigated. (viii) Weeding twice at monthly intervals. (ix) $39.83^{\prime \prime}$. ( $x^{\prime} 4.1 .1955$.
2. TREATMENTS :

Main-plot treatments :
4 levels of N as $\mathrm{A} / \mathrm{S}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=30, \mathrm{~N}_{2}=45$ and $\mathrm{N}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments :
4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30, \mathrm{P}_{2}=45$ and $\mathrm{P}_{3}=60 \mathrm{lb}$./ac. $\mathrm{P}_{2} \mathrm{O}_{5}$.
N as A/S applied on 16.9.1954 and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied on 10.8.1954.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $33^{\prime} \times 13.2^{\prime}$. (b) $52^{\prime} \times 12.2^{\prime}$. (v) $6^{\prime} \times 6^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Crop lodged due to heavy rainfall. (ii) Incidence of leaf roller was noticed ard was removed by dusting 5\% Gammexane. (iii) Yield records were taken. (iv) (a) 1953-Contd. (b) Yes. (c) Nl. (v) to (vii) Nil.
5. RESULTS:
(i) 3666 ib/ac. (ii) N.A. (iii) No effect is significant. (iv) Av. yield of grain lb,iac.

|  | $\mathrm{N}_{0}$ | $\mathrm{~N}_{1}$ | $\mathrm{~N}_{2}$ | $\mathrm{~N}_{3}$ | Mean <br> $\mathrm{P}_{0}$ <br> $\mathrm{P}_{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}_{2}$ | 3594 | 3846 | 3802 | 3339 | 3395 |
| $\mathrm{P}_{3}$ | 3715 | 3926 | 3819 | 3495 | 3739 |
| Mean | 3214 | 4128 | 3350 | 3698 | 359 |
|  | 3074 | 3961 | 3819 | 3932 |  |

S.E.'s N.A.

## Crop :- Paddy. -

Site :- Agri. College Farm, Bapatla.

Ref:- A.P. 55(2).
Type :- ' $\mathbf{M}$ '.

Object :-To study the effect of N and P applied at different levels on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) Refer soil analysis, Bapatla. (iii) 17.5.1955/24,25.8.1955. (iv) (a) Mummatty digging once. (b) N.A. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) MTU—19 (vii) Irrigated. (viii) Two weedings. (ix) $23.5^{\circ}$. (x) 21.12.1955.
2. TREATMENTS :

Same as in expt. no. 54(35) on page 12.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $33^{\prime} \times 13.2^{\prime}$. (b) $32^{\prime} \times 12.2^{\prime}$. (v) $6^{\prime \prime} \times 6^{\prime \prime}$. (vi) Yes.
-4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1953-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 2022 lb ./ac. (ii) (a) 573.0 lb ./ac. (b) 449.0 lb ./ac. (iii) Main effects of N and P and interaction $\mathrm{N} \times \mathrm{P}$ are not significant. (iv) Av. yield of grain in lb./ac.

|  | $\mathrm{N}_{0}$ | $\mathrm{~N}_{1}$ | $\mathrm{~N}_{2}$ | $\mathrm{~N}_{3}$ | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{P}_{0}$ | 1874 | 1827 | 2257 | 1905 | 1966 |
| $\mathbf{P}_{1}$ | 2067 | 1872 | 2436 | 1954 | 2082 |
| $\mathbf{P}_{2}$ | 1737 | 1987 | 2413 | 2046 | 2046 |
| $\mathbf{P}_{3}$ | 2078 | 2001 | 1973 | 1923 | 1994 |
| Mean | 1939 | 1922 | 2270 | 1957 | 2022 |

S.E. of difference of two

1. N marginal means
$=202.6 \mathrm{lb} . / \mathrm{ac}$.
2. P marginal means
$=159.0 \mathrm{lb} . / \mathrm{ac}$.
3. P means at the same level of N
$=318.0 \mathrm{ib} / \mathrm{ac}$.
4. N means at the same level of P
$=342.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy.
Site :- Agri. College Farm, Bapatla.

Ref :- A.P. 56(3).
Type :- 'M'.

Object:-To determine the manurial requirements for high yields of Paddy.

## 1, BASAL CONDITIONS

(i) (a) Paddy-Fallow-Paddy. (b) Padjy. (c) As per treatments. (ii) (a) Sandy loam. (b) Refer soil analysis, Bapatla. (iii) $13.6 .1956 / 31.8 .1956$. (iv) (a) Usual ploughing. (b) Tiansplanted. (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 3. (v) Nil. (vi) MTU-19 (mediun). (vii) Irrigated. (viii) Weeding twice. (ix) $41.5^{\circ}$. (x) 19.12.1956.
2. TREATMENTS :

Same as in expt.no. 54(35) on page 12.
3. DESIGN :
(i) Split-plot. (i) (a) 4 maio-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $33^{\prime} \times 132^{\prime}$. (b) $32^{\prime} \times 12.2^{\circ}$. (v) $6^{\prime \prime} \times 6^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain and strıw yield. (iv) (a) 1953-contd. (b) Yes. (c) N.A. (v) to (vii) Nil.

## 5. RESULTS :

(i) $1671 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $236.4 \mathrm{lb} . / \mathrm{ac}$. (b) $291.0 \mathrm{lb} . / \mathrm{dc}$. (iii) O.lly main effeats N and P are highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{~N}_{1}$ | $\mathrm{~N}_{2}$ | $\mathrm{~N}_{3}$ | Mean |
| :--- | ---: | :--- | :--- | :--- | :--- |
| $\mathrm{P}_{0}$ | 979 | 1363 | 1623 | 1511 | 1369 |
| $\mathrm{P}_{1}$ | $\cdot 1676$ | 1774 | 1913 | 1907 | 1817 |
| $\mathrm{P}_{\mathbf{2}}$ | 1481 | 1746 | 2028 | 1694 | 1737 |
| $\mathrm{P}_{3}$ | 1192 | 1628 | 2189 | 2035 | 1761 |
| Mean | 1332 | 1628 | 1938 | 1786 | 1671 |

S.E. of difference of two

1. N marginal means $=83.6 \mathrm{lb} . / \mathrm{ac}$
2. $P$ marginal means $\quad=102.9 \mathrm{lb} .{ }^{\prime} \mathrm{ac}$.
3. P means at the same level of $\mathrm{N}=205.8 \mathrm{lb} . / \mathrm{ac}$.
4. N means at the same level of $\mathbf{P}=196.8 \mathrm{lb} . / \mathrm{ac}$.

Grop :- Paddy.
Site :- Agri. College Farm, Bapatla.

Ref :- A.P. 57(31).
Type :- ' $\mathbf{M}$ '.

Object:-To determine the optimum manurial treatments for Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) F.Y.M. and A/S. (ii) (a) Alluvial soil. (b) Refer soil analysis, B:patla. (iii) i6.8.1957-N.A. (iv) (a) Ploughing and puddling. (b) to (e) N.A. (v) Basal dressing of G.L. at $3000 \mathrm{lb} . / \mathrm{ac}$. (vi) MTU-19 (long duration). (vii) Irrigated. (viii) Hand weeding and Japanese push hoes. (ix) 40.7". (x) 15.12.1957.
2. TREATMENTS:

All combinations of (1), (2) and (3) +2 extra treatments.
(1) 2 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=45 \mathrm{lb}$./ac. as $\mathrm{A} / \mathrm{S}$.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=45 \mathrm{lb}$./ac. $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
(3) 2 levels of $\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0$ and $\mathrm{K}_{1}=45 \mathrm{lb}$./ac. as Pot. Sul.

Extra treatments : $T_{1}=45 \mathrm{lb}$./ac. of N as F.Y.M. and $\mathrm{T}_{2}=$ Fertilizer mixture of $30 \mathrm{lb} / \mathrm{ac} . \mathrm{N}+30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ applied before transplading and mixture of $15 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+15 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}+15 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$ applied as top-dressing part before flowering.
3. DESIGN :
(i) R.B.D.
(ii) (a) 10 .
(b) N.A.
(iii) 4. (iv) (a) 1.3 cents.
(b) 1 cent.
(v) and ('vi) Yes.
4. GENERAL:
(i) Normal. (ii) Shoot borer attack. (iii) Tiller count, height and grain and straw yield. (iv) (a) 1957contd. (b) Yes. (c) N.A. (v) to (vii) Nil.
2. RESULTS :
(i) $2466 \mathrm{lb} . / \mathrm{ac}$. (ii) $200.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of N is highly significant. Main effect of P is significant. (iv) Av. yield of grain in lb./ac.

|  | $\mathrm{T}_{1}=2375 \mathrm{lb} . / \mathrm{cc}, \quad \mathrm{T}_{2}=2818 \mathrm{lb} / \mathrm{ac}$. |  |  |  | $\mathrm{K}_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | Mean | $\mathrm{K}_{0}{ }^{\text {a }}$ |  |
| $\mathrm{N}_{0}$ | 2101 | 2236 | 2168 | 2154 | 2183 |
| $\mathrm{N}_{1}$ | 2601 | . 2798 | 2700 | 2630 | 2769 |
| Mean | 2351 | 2517 | 2434 | 2392 | 2476 |
| $\mathrm{K}_{0}$ | 2336 | 2447 |  |  |  |
| $\mathrm{K}_{1}$ | 2366 | 2587 |  |  |  |

S.E. of any marginal mean
$=50.0 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of any table or extra treatment mean $\quad=70.8 \mathrm{lb} . / \mathrm{ac}$
Crop :- Paddy.
Site :- Rice Res. Stn., Buchireddipalem.

## Ref:- A.P. 56(61). <br> Type :- ' $\mathbf{M}$ '.

Object :-To assess the relative merits of B.M. and Super applied to Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Compost at 100 C.L. $+\mathrm{A} / \mathrm{S}$ at 100 lb ./ac. (ii) (a) Sandy loam. (b) Refer soil analysis, Bucheriddipalem. (iii) 4.7.1956 19 and 20.8.1956. (iv) (a) 2 to 3 dry ploughings and two puddlings with country plough followed by one pudding with puddle. (b) Transplanting. (c) 30 lb ./ac. (d) $8^{\prime \prime} \times 6^{\prime \prime}$. (e) 3. (v) $4000 \mathrm{lb} . / \mathrm{ac}$. of G.L. (vi) $\mathrm{BCP}-2^{\prime}$ (late). (vii) Irrigated. (viii) 3 hand weedings. (ix) $60.92^{\prime \prime}$. (x) 20.1.1957.

## 2. TREATMENTS:

Main-plot treatments :
2 sources of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{1}=$ B.M. and $\mathrm{S}_{2}=$ Super
Sub-plot treatments :
3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=45 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. DESIGGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 3 sub-plots/main-p'ot. (b) N.A. (iii) 4 . (iv) (a) $42^{\prime} \times 8^{\prime}$. (b) $41^{\prime} 6^{\prime \prime} \times 7^{\prime} 6^{\prime \prime}$. (v) $9^{\prime \prime} \times 4^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Slight attack of stem-borer. (iii) Yield of grain. (iv) (a) $1950-$ contd. (b) No. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) $4183 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $291.0 \mathrm{lb} . / \mathrm{ac}$. (b) $361.7 \mathrm{lb} . / \mathrm{ac}$. (iii) No main effect or interaction is significant. (iv) Ay. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $P_{0}$ | $P_{1}$ | $P_{2}$ |
| :---: | :---: | :---: | :---: |
| $S_{1}$ | $\left.\begin{array}{cc}3996 & 4142 \\ S_{2} & 4348 \\ 4277 & 4197\end{array}\right) 4133$ | 4164 |  |
| Mean | 4137 | 4170 | 4241 |

S.E. of difference of two

1. $S$ marginal means
$=118.8 \mathrm{lb} . / \mathrm{ac}$.
2. P marginal means $\quad=181.0 \mathrm{lb} . \mathrm{jac}$.
3. P means at the same level of $\mathrm{S}, \quad=256.0 \mathrm{lb} . / \mathrm{ac}$.
4. $S$ means at the same level of $P=240.0 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy.
Site :- Rice. Res. Stn., Buchireddipalem.
Ref :- A.P. 57(20).
Type :- ' $\mathbf{M}$ '.
Object : - To assess the relative merits of B.M. and Super applied to Paddy through different methods.

## 1. BASAL CONDITIONS :

(i) (a) Nil (b) Second crop paddy followed to sesbania. (c) $4000 \mathrm{lb} . a c$. of G.L. 10 C.L. of F.Y.M. before ploughing. $75 \mathrm{lb} . / \mathrm{ac}$. Triple Super at the time of last puddling; A/S at $100 \mathrm{lb} / \mathrm{ac}$. as top-dressing. (ii) (a) Sandy loam. (b) N.A. (iii) 17.7.1957 to 30, 31.8.1957. (iv) (a) Ploughed twice with iron plough, puddling twice and trimming of bunds. (b) Transplanted. (c) N.A. (d) $8^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 . (v) $4000 \mathrm{lb} . / \mathrm{ac}$. of G.L. (vi) $\mathrm{BCP}-1$ (late). (vii) Irrigated. (viii) 3 weedings and 3 hoeings. (ix) $26.66^{\circ}$. (x) 31.1.1958.
2. TREATMENTS :

Main-plot treatments :
2 sources of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{1}=$ B.M. and $\mathrm{S}_{2}=$ Super.
Sub-plot treatments:
3 doses of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{M}_{0}=0, \quad \mathrm{M}_{1}=\mathrm{P}_{2} \mathrm{O}_{5}$ at 30 lb ./ac. applied in plough furrows, $\mathrm{M}_{2}=\mathrm{P}_{2} \mathrm{O}_{5}$ broadcast at $30 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :-
(i) Split-plot. (ii) (a) 2 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $42^{\prime} \times 8^{\prime}$.
(b) $4^{\prime} 6^{\prime \prime} \times 7^{\prime \prime} 4^{\prime \prime}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Good. Lodged at pre-harvest stage. (ii) Attack of jassids-sprayed D.D.T. $50 \%$. (iii) Height measurement and tiller count for 25 clumps at random. (iv) (a) 1957-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.

## 5. RESLLTS :

(i) $2188 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $405.8 \mathrm{ib} / \mathrm{ac}$. (b) $160.4 \mathrm{lb} / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

$$
\text { Control }=2155 \mathrm{lb} . / \mathrm{ac}
$$

|  | $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ | Mean |
| :--- | :--- | :--- | :---: |
| $\mathrm{M}_{1}$ <br> $\mathrm{M}_{2}$ | 2107 2301 <br> 2139 2269 | 2204 |  |
| Mean | 2123 | 2285 | 2204 |

S.E. of difference of two

1. $S$ marginal means
$=202.8 \mathrm{lb} . / \mathrm{ac}$.
2. M marginal means $\quad=80.2 \mathrm{lb} . / \mathrm{ac}$.
3. $M$ means at the same level of $\mathbf{S} \quad=113.4 \mathrm{lb} / \mathrm{ac}$.
4. S means at the same level of $\mathrm{M} \quad=232.4 \mathrm{lb} . / \mathrm{ac}$.

## Crop :- Paddy.

Site :- Rice Res. Stn., Buchireddipalem.

## Ref:- A.P. 58(6).

Type :- 'M'.

Object :- To assess the relative merits of B.M. and Super applied to Paddy through different methods.

## 1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 16.7.1958/10.9.1958. (iv) (a) 3 dry ploughings. (b) Transplanted. (c) $21 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 6^{\prime \prime}$. (e) 3. (v) 4000 lb ./ac. of G.L. applied and wetland puddler worked (vi) BCP-1 (late). (vii) Irrigated. (viii) 3 hand weedings. Push hoe working at fortnightly intervals upto shot-blade stage. (ix) $46.98^{\prime \prime}$. (x) 28.1.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $57(20)$ on page 16.
4. GENERAL :
(i) Satisfactory during growth, lodged in the first week of December due to rains. (ii) Affected by leaf. roller and stem borer. BHC $10 \%$ dusted and Endrine sprayed. (iii) Height measurement and tiller count. (iv) (a) 1957-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.

## 5. RESULTS :

(i) $2074 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $374.5 \mathrm{lb} . / \mathrm{ac}$. (b) $257.6 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in lb./ac.

Control $=2043 \mathrm{lb} . / \mathrm{ac}$.

|  | $S_{1}$ | $\mathrm{S}_{2}$. | Mean |
| :---: | :---: | :---: | :---: |
| $\mathrm{M}_{1}$ | 2071 | 2186 | 2129 |
| $\mathrm{M}_{2}$ | 1799 | 2302 | 2015 |
| Mean | 1935 | 2244 | 2072 |

S.E. of difference of two

| 1. M marginal means | $=187.0 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. S marginal means | $=128.7 \mathrm{lb} . / \mathrm{ac}$. |
| 3. S means at the same level of M | $=182.1 \mathrm{lb} . / \mathrm{ac}$. |
| 4. M means at the same level of S | $=226.2 \mathrm{lb} . / \mathrm{ac}$. |

## Cirop :- Paddy.

Site :- Rice Res. Stn., Buchireddipalem.

Ref :- A.P. 56(31).
Type :- ' $\mathbf{M}^{\prime}$.

Object :-To study the incidence of blast on Paddy against different combinations of N and K .

## 1. BASAL CONDITIONS :

(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 30.6.1956/8.8.1956. (iv) (a) 2 to 3 dry ploughings and two puddlings with country plough followed by one puddling with puddie. (b) N.A. (c) $25 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) 3. (v) As under treatments. (vi) BCP-1 (late). (vii) Irrigated. (viii) 3 hand weedings and working push hoe. (ix) $60.92^{\prime \prime}$. (x) 15.1.1957.
2. TREATMENTS :

All combinations of (1) and (2)+one extra treatment (E).
(1) 2 levels of $\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{1}=30$ and $\mathrm{K}_{2}=45 \mathrm{lb}$./ac.
(2) 2 levels of N as $\mathrm{A} / \mathrm{S}: \mathrm{N}_{1}=30$ and $\mathrm{N}_{2}=45 \mathrm{lb}$./ac.
$\mathrm{E}=4000 \mathrm{lb} . / \mathrm{ac}$. of G.L. $+75 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super $+100 \mathrm{lb} . / \mathrm{ac}$. of N as A/S.
3. DESIGN :
(i) R.B.D.
(ii) (a) 5
(b) N.A.
(iii) 6. (iv) (a) and (b) $8^{\prime} \times 25^{\prime}$.
(v) No. (vi) Yes.
4. GENERAL :
(i) Normal lodged in December, 1956. (ii) Stem-borer and leaf-roller, jassids and cirphis pest in epidemic form-Sprayirg Fndrine and dusting BHC $10 \%$. (iis) Grain and straw yie'd, neck infection. (iv) (a) 1955-contd. (b) Yes. (c) Nil. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) $3199 \mathrm{lb} . / \mathrm{ac}$. (ii) $281.2 \mathrm{lb} / \mathrm{ac}$. (iii) No effect is significant. (iv) Av. yield of grain in in $\mathrm{lb} . / \mathrm{ac}$.

$$
\mathrm{E}=3068 \mathrm{lb} . / \mathrm{ac} .
$$

|  | $\mathbf{K}_{\mathbf{J}}$ | $\mathbf{K}_{\mathbf{2}}$ | Mean |
| :---: | :---: | :---: | :---: |
| $\mathbf{N}_{\mathbf{1}}$ | 3425 | 3173 | 3299 |
| $\mathbf{N}_{\mathbf{2}}$ | 3019 | 3312 | 3166 |
| Mean | 3222 | 3242 | 3232 |

S.E. of any marginal mean $\quad=81.2 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=114.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy.
Ref:- A.P. 57(21).
Site :- Rice Res. Stn., Buchireddipalem.

Object :-To study the effect of different combinations of $N$ and $K$ on the incidence of blast disease on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 13.7.1957,14 and 15.8.1957. (iv) (a) Ploughed twice, puddled twice trimming of bunds and working wetland puddler. (b) Transplanting. (c) -. (d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 . (v) As per treatments. (vi) BCP-1 (late). (vii) Irrigated. (viii) 3 weedings and gap filling, push hoe working were done. (ix) $26.66^{\prime \prime}$. (x) 31.1.1958.
2. TREATMENTS :

All comoinations of (1), (2) and (3)+one extra treatment (E)
(1) 2 levels of $N$ as $A / S: N_{1}=30$ and $N_{2}=4515$./ac.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=30 \mathrm{lb} / \mathrm{ac}$.
(3) 2 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. : $\mathrm{K}_{1}=30$ and $\mathrm{K}_{2}=45 \mathrm{lb}$./ac.
$\mathrm{E}=4000 \mathrm{lb}$./ac. of G.L. $+150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +100 lb ./ac. of N as A/S.
3. DESIGN :
(i) R.B.D. (ii) (a) 9 (b) N.A. (iii) 4 . (iv) (a) and (b) $45^{\prime} \times 8^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good, lodged at pre-barvest stage. (ii) Mealy bug, stem-borer and leaf-roller attack-Endrine sprayed and BHC dusted. No blast ; neck infection was severe. Helminthosporium was also noticed. (iii) Height mearurement, tiller count and neck infection count were taken before harvest from a random sample of 25 clumps. (iv) (a) 1955-1958. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.

## 5. RESULTS :

(i) $945 \mathrm{lb} . / \mathrm{ac}$. (ii) 142.8 lb ./ac. (iii) No effect is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.


| S.E. of any marginal mean | $=35.7 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of body of any table | $=50.5 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy.
Site :- Rice Res. Sta., Buchireddipalem.

Ref :- A.P. 58(4).
Type :- ' $\mathbf{M}^{\prime}$.
Object :-To study the effect of different combinations of N and K on the incidence of blast disease on Paddy.

## 1. BASAL CONDITIONS :

(i) (a) Paddy after paddy. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 16.7.1958/ 18.9.1958. (iv) (a) Ploughed dry thrice and puddled after letting in water. Wetland puddler worked thrice. Trimming bunds and digging corners. (b) Transplanted. (c) $21 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) 3. (v) Nil. (vi) BCP-1 (late). (viii) Irrigated. (vii) 2 hand weedings push hoe worked at fortnightly intervals upto shot blade stage. (ix) $46.98^{\prime \prime}$. (x) 28.1.1959.
2. TREATMENTS :

Same as in expt. no. 57(21) on page 18.
3. DESIGN :
(i) R.B.D.
(ii) (a) 9 .
(b) $22^{\prime} \times 92^{\prime}$.
(iii) 4 .
(iv) (a) and (b) $20^{\prime} \times 8^{\prime}$.
(v) No.
(vi) Yes.
4. GENERAL :
(i) Early establishment and growth were quite satisfactory. (ii) Paddy leaf-roller and rice stem-borer. No incidence of blast-control measures N.A. (iii) Tiller count height measurement and blast count. (iv) (a) 1955. (b) Yes. (c) No. (v) (a) N A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1897 \mathrm{lb} . / \mathrm{ac}$. (ii) $368.9 \mathrm{lb} . / \mathrm{ac}$. (iii) No effect is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

$$
\mathrm{E}=2033 \mathrm{lb} \cdot / \mathrm{ac}
$$

|  | $\mathbf{P}_{0}$ | $\mathrm{P}_{1}$ | Mean | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}_{1}$ | 1854 | 1926 | 1890 | 1828 | 1952 |
| $\mathrm{N}_{2}$ | 1844 | 1899 | 1871 | 1888 | 1854 |
| Mean | 1849 | 1912 | 1880 | 1858 | 1903 |
| $\mathrm{K}_{1}$ | 1854 | 1862 |  |  |  |
| $\mathrm{K}_{2}$ | 1844 | 1962 |  |  |  |

$$
\begin{array}{ll}
\text { S.E. of any marginal mean } & =92.2 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of any table } & =130.4 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :- Paddy (Rabi).
Site :- Rice Res, Stn., Buchireddipalem.

Ref. :- A.P. 58(5).
Type :- ' $\mathbf{M}^{\prime}$.

Object :-To assess the relative merits of $\mathrm{C} / \mathrm{A} / \mathrm{N}$ and $\mathrm{A} / \mathrm{S}$ as sources of N for Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy after Paddy. (b) Paddy. (c) G.L. at $4000 \mathrm{lb} . / \mathrm{ac} .+$ Ammo. Phos. to supply $30 \mathrm{lb} . / \mathrm{ac}$. of N. (ii) (a) Sandy loam. (b) N.A. (iii) 31.8.1958./11.10.1958. (iv) (a) Field ploughed dry four times; puddled soon after letting in water; trimming bunds and digging coruers. Working wetland puddler worked forming bunds, channels and small plets sowing G.M. in nursery. (b) Transplanted. (c) $21 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) 3 . (v) Nil. (vi) BCP-1. (late). (vii) Irrigated. (viii) 3 hand weedings push hoe working at fortnightly intervals upto shot-blade stage. (ix) $46.91^{\prime \prime}$. (x) 12.2.1959.

## 2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 sources of $\mathrm{N}: \quad \mathrm{S}_{1}=A / S$ and $S_{2}=C / A / N$.
(2) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=30$ and $\mathrm{N}_{2}=45 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) $30^{\prime} \times 74^{\prime}$. (iii) 4 . (iv) (a) and (b) $30^{\prime} \times 16^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Badly affected due to late planting and early incidence of blast and borer. (ii) Attack of stem-borer and blast-control measures N.A. (iii) Height measurement and tiller count ; yield of paddy. (iv) (a) 1958contd. (b) and (c) No. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $846 \mathrm{lb} /$.ac. (ii) $145.2 \mathrm{lb} . / \mathrm{ac}$. (iii) No effect is significant. (iv) Av. yield of grain in lb./ac.

$\begin{array}{ll}\text { S.E. of any marginal mean } & =51.3 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of table } & =72.6 \mathrm{lb} / \mathrm{ac} .\end{array}$

Crop :-Paddy (Kharif).
Site :- Rice Res. Stn., Buchireddipalem.

Ref. :- A.P. 55(93)
Type :- ' $\mathbf{M}$ '.

Object :-To compare the relative merits of B.M. and Super.

## 1. BASAL CONDITIONS :

(i) (a) N.A. (b) Paddy. (c) N.A. (ii) Sandy loam. (b) Nil. (iii) 4.8.1955/6.9.1955. (iv) (a) 3 puddlings and levelling. (b) Transplanting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 . (v) As per treatments. (vi) BCP-2 (late). (vii) Irrigated. (viii) Weeding and gap filling. (ix) 22.95". (x) 10.2.1956.
2. TREATMENTS :

Main-plot treatments :
2 Sources of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{M}_{1}=$ B.M. and $\mathrm{M}_{2}=$ Super.
Sub-dlot treatments:
3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=45 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Solit-plot. (ii) (a) 2 main-plots/replication; 3:sub-plots/main-plot. (b) $266^{\prime} \times 8^{\prime}$. (iii) 4 . (iv) (a) $42^{\prime} \times 8^{\prime}$. (b) $40^{\prime} \times 7^{\prime}$. (v) $1^{\prime}$ at the ends and $\frac{1^{\prime}}{}$ along the sides. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield date. (iv) (a) No. (b) and (c) Nil. (v) to (vii) Nil.

## 5. RESULTS :

(i) $2357 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $705.8 \mathrm{lb} . / \mathrm{ac}$. (b) 269.8 lb ./ac. (iii) No effect is significan'. (iv) Av. yield of grain in lb./ac.

21

|  | $\mathbf{P}_{0}$ | $\mathbf{P}_{1}$ | $\mathbf{P}_{\mathbf{2}}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{M}_{1}$ <br> $\mathbf{M}_{2}$ | 2343 2173 2557 <br> 2226 2433 2411 | Mean <br> Mean <br> - <br> 2285 | 2303 |
| 2357 |  |  |  |

S.E. of differcace of two

1. $M$ marginal means
$=288.1 \mathrm{lb} . / \mathrm{ac}$.
2. $P$ marginal means
$=134.9 \mathrm{lb} . / \mathrm{ac}$.
3. $P$ means at the same level of $M$
$=190.8 \mathrm{lb} . / \mathrm{ac}$.
4. M means at the same level of $\mathbf{P}=327.5 \mathrm{lb} . / \mathrm{ac} .{ }^{*}$

## Crop :- Paddy (Kharif). <br> Site :- Rice Res. Stn., Buchireddipalem.

Ref:- A.P. 55(91).
Type :- ${ }^{6} \mathbf{M}$.

Object :-To study the incidence of blast on - Paddy under different doses of N and $\mathrm{K}_{2} \mathrm{O}$.
1." BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) N.A. (ii) (a) Sandy loam. (b) Nii. (iii) 4.8.1955/3.9.1955. (iv) (a) 3 puddlings and levelling. (b) Transplanting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 . (v) As per treatments. (vi) BCP-1 (late). (vii) Irrigated. (viii) Weeding and gap filling. (ix) $22: 95^{\prime \prime}$, ( $x$ ) 11.2.1956.
2. TREATMENTS :
$\mathrm{T}_{1}=30 \mathrm{lb} . / \mathrm{ac} . \mathrm{K}_{2} \mathrm{O}+30 \mathrm{lb} . / \mathrm{ac}$. of N.
$\mathrm{T}_{2}=30 \mathrm{lb} . / \mathrm{ac} . \mathrm{K}_{2} \mathrm{O}+45 \mathrm{lb} . / \mathrm{ac}$. of N .
$\mathrm{T}_{3}=45 \mathrm{ib}$./ac. $\mathrm{K}_{2} \mathrm{O}+30 \mathrm{lb}$./ac. of N .
$\mathrm{T}_{4}=45 \mathrm{lb}$./ac. $\mathrm{K}_{2} \mathrm{O}+45 \mathrm{lb}$./ac. of N .
$\mathrm{E}=4000 \mathrm{lb} . / \mathrm{ac}$. of G.M. +150 lb . $/ \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as $S u p e r+100 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) $137^{\prime} \times 8^{\prime}$. (iii) 6 . (iv) (a) $44^{\prime} \times 10^{\prime}$. (b) $23 \frac{3^{\prime}}{} \times 7^{\prime}$. (v) $10^{\prime}$ at the ends and $1 \frac{1}{2}^{\prime}$ at the sides. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Neck infection \%. (iv) (a) 1955. (b) N.A. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 8.7 degrees. (ii) 3.45 degrees. (iii) Treatments do not differ significantly. (iv) Mean infection in degrees.

| Treatment | $\mathrm{T}_{1}$ | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{3}$ | $\mathrm{~T}_{4}$ | E |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Mean angle | 8.6 | 10.2 | 9.4 | 7.3 | 8.2 |
|  |  |  |  |  |  |
|  |  | S.E./mean |  |  |  |


| Grop:- Paddy (Rabi). | * | Ref :- AP. 57(103). |
| :---: | :---: | :---: |
| Site :- Govt. Agri, Farm, Dindi. | , | Type :- 'M'. |

Object :-To study the effect of Paddy-Fertilizer—Mixtures on Paddy yield.
1: BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 2.2.1957. (iv) (a) 3 puddlings.
(b) Transplanting.
(c) $50 \mathrm{lb} . / \mathrm{ac}$.
(d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 to 3 .
(v) No
(vi) HR-19
(medium). (vii) Irrigated. (viii) 2 weedings. (ix) $4.00^{\prime \prime}$. (x) 3.5.1957.
2. TREATMENTS:

4 methods of application of manure : $\mathbf{M}_{0}=0, M_{1}=$ At first puddle, $M_{2}=$ half at first puddle and half one month after transplating and $\mathbf{M}_{3}=$ One month after transplating.
30 lb ./ac. of N applied as Paddy-Fertilizer-Mixture.
3. DESIGN :
(i) R.B.D.
(ii) (a) 4 .
(b) N.A.
(iii) 2.
(iv) (a) and (b) $32^{\prime} \times 25^{\prime}$.
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield data. (iv) (a) 1956 -contd. (b) Yes. (c) No. (v) to (vii) Nil.
5. RESULTS:
(i) $2818 \mathrm{lb} . / \mathrm{as}$. (ii) $155.6 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

| Treatment | $\mathbf{M}_{0}$ | $\mathbf{M}_{1}$ | $\mathbf{M}_{\mathbf{2}}$ | $\mathbf{M}_{3}$ |
| :--- | :--- | :---: | ---: | :---: |
| Av. yield | 2069 | 2886 | 2586 | 3730 |
|  |  |  |  |  |
|  | S.E./mean | $=$ | $110.0 \mathrm{lb} . / \mathrm{ac}$. |  |


| Crop :- Paddy (Kharif). | Ref :- A.P. 54(24). |
| :--- | :--- |
| Site :- Govt. Agri. Farm, Dindi. | Type :- ‘M'. |

Object :-To find out the response of different organic and inorganic manures.

1. BASAL CONDITIONS:
(i) (a) No. (b) Paddy. (c) Nil. (ii) (a) Chalka (sandy loam). (b) N.A. (iii) 23.6.1954. (iv) (a) 2 dry ploughings, puddling and levelling. (b) and (c) N.A. (d) $9^{*} \times 9^{* \prime}$. (c) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) 2 weedings by weeder. (ix) $43.25^{\prime \prime}$. (x) 8.11.1954.
2. TREATMENTS :

All combinations of (1) and (2) +2 extra treatments each repeated twice.
(1) 4 sources of $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}: \mathrm{S}_{1}=$ F.Y.M., $\mathrm{S}_{2}=$ G.M., $\mathrm{S}_{3}=$ G.N.C. and $\mathrm{S}_{4}=A / S$.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=25 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{T}_{0}=$ Control and $\mathrm{T}_{1}=25 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 2. (iv) (a) N.A. (b) $26^{\prime} \times 2 \mathrm{I}^{\prime}$. (v) 2 rows all round. (vi) Yes.
4. GENERAL:
(i) Normal.
(ii) Nil.
(iii) Straw and grain yield.
(iv) (a) 1954-1959.
(b) Yes.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(1) $1116 \mathrm{lb} . / \mathrm{ac}$. (ii) 311.2 lb ./ac. (iii) Only S effect is significant. (iv) Av. yield of grain in lb ./ac. $\mathrm{T}_{0}=1010 \mathrm{lb} . / \mathrm{ac} . ; \mathrm{T}_{1}=887 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ | Mean |
| ---: | ---: | ---: | ---: | ---: | :---: |
| $\mathrm{P}_{0}$ | 742 | 1772 | 1195 | 1195 | 1226 |
| $\mathrm{P}_{1}$ | 1277 | 1483 | 837 | 1112 | 1174 |
| Mean | 1010 | 1628 | 1010 | 1154 | 1200 |


| S.E. of $S$ or $T$ marginal mean | $=155.6 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $P$ marginal mean | $=110.0 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=220.1 \mathrm{lb} . / \mathrm{ac}$ |

```
Crop :- Paddy (Rabi). Ref :- A.P. 57(104).
Site :- Govt. Agri. Farm, Dindi.
Type :- '`M'.
```

Object:-To find out the response of different organic and inorganic fertilizers on Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy after paddy. (b) Paddy. (c) As per treatments. (ii) (a) Chalka. (b) N.A. (iii) 4.2.1957. (iv) (a) 3 puddlings. (b) Transplanting. (c) $50 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 to 3. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) Weeding. (ix) $4.00^{\prime \prime}$. (x) 3.5.1957.

## 2. TREATMENTS:

Same as in expt. no. $54(24)$ on page 22.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 2. (iv) (a) and (b) $26^{\prime} \times 21^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-1959. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 2613 lb ./ac. (ii) $245.6 \mathrm{lb} . / \mathrm{ac}$. (iii) 'Control vs. others effect' is highly significant. S effect is highly significant. Interaction $\mathrm{S} \times \mathrm{P}$ is significant. (iv) Av. yield of grain in lb./ac.

$$
\mathrm{T}_{0}=1835 \mathrm{lb} . / \mathrm{ac} . ; \mathrm{T}_{1}=2413 \mathrm{lb} . / \mathrm{ac}
$$

| $\mathrm{P}_{\mathbf{0}}$ |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{\mathbf{1}}$ | $\mathrm{S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ | Mean. |
| Mean | 2114 2952 2912 2832 <br> 2912 3072 3191 2872 | 2702 <br> 3012 |  |  |
| 2513 | 3012 | 3052 | 2852 | 2857 |


| S.E. of P marginal mean | $=86.8 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of S or T marginal mean | $=122.8 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=173.7 \mathrm{lb} . / \mathrm{ac}$. |

## Crop :- Paddy (Kharif). <br> Site :- Govt. Agri Farm, Dindi.

Ref :- A.P. 58(126).
Type :- 'M'.
Object :-To find out the response of different organic and inorganic manures on Paddy.

1. BASAL CONDITIONS :
(i) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) $12.7 .1958 /$ 22.8.1958, (iv) Two puddlings and leveling. (b) Transplanting. (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-19. (vii) Irrigated. (viii) Working of weeders and hand weeding. (ix) 18.29". (x) 17.10.1958.

## 2. TREATMENTS :

All combinations of (1) and (2) +2 extra treatments each repeated twice.
(1) 4 sources of $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}: \mathrm{S}_{1}=$ G.N.C, $\mathrm{S}_{2}=\mathrm{G} . \mathrm{M}, \mathrm{S}_{3}=$ Compost and $\mathrm{S}_{4}=\mathrm{A} / \mathrm{S}$.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=50 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{T}_{0}=$ control and $\mathrm{T}_{1}=50 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) R.B.D.
(ii) (a). 12.
(b) N.A.
(iii) 2.
(iv) (a) and (b) $26^{\prime} \times 21^{\circ}$
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii) Nil. (iii) Grain yield.
(iv) (a) 1954-1959.
(b) Yes.
(c) Nil:
(v) to (vii) Nil.
5. RESULTS:
(i) $1157 \mathrm{lb} . / \mathrm{ac}$. (ii) $184.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of S and 'control $v s$. others' are highly significant. 'Extra treatment $v s$. others' is significant. (iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

| $T_{0}$ | $=838 \mathrm{lb} . / \mathrm{ac} . ; \mathrm{T}_{1}=1037 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{P}_{0}$ <br> $\mathrm{P}_{1}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ | Mean |
| 1516 | 1157 | 997 | 1396 | 1266 |  |
| Mean | 1516 | 1396 | 878 | 1276 | 1266 |


| S.E. of $P$ marginal mean | $=65.2 \mathrm{lb} / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $S$ or $T$ marginal mean | $=92.2 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=130.4 \mathrm{lb} . / \mathrm{ac}$. |

$$
\begin{array}{ll}
\text { Crop :- Paddy }(R a b i) . & \text { Ref :- A.P. 59(103). } \\
\text { Site :- Govt. Agri. Farm, Dindi. } & \text { Type :- }{ }^{\prime} \mathbf{M} \text { '. }
\end{array}
$$

Object :-To find out the response of different organic and inorganic manure on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments (ii) (a) Chalka. (b) N.A. (iii) 11.2.1959. (iv) (a) 3 puddlings and levelling. (b) Transplanting. (c) Nil. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2. (v) Niil. (vi) HR-19. (vii) Irrigated. (viii) 2 weedings with rottary weeder and one b and weeding. (ix) $1.06^{\prime \prime}$. (x) 1.5.1959.

## 2. TREATMENTS :

Same as in expt. 58(126) on page 23.
3. DESIGN :
(i) R.B.D.
(ii) (a) 12 .
(b) N.A.
(iii) 2.
(a) and (b) $26^{\prime} \times 21^{\prime}$.
(v) No. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-1959. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(1) $1489 \mathrm{lb} . / \mathrm{ac}$. (ii); $370 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.


S E. of $P$ marginal mean
S.E. of $S$ or $T$ marginal mean
S.E. of body of table
$=130.8 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $=261.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Govt. Agri. Farm, Dindi.

Ref:- A.P. 59(14).
Type :- ' $\mathbf{M}^{\prime}$ '.

Object :-To find out the response of different fertilizers on Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Chalka soil. (b) N.A. (iii) 25.6 .1959 to 29.7 .1959 . (iv) (a) 3 puddlings and levelliug. (b) Transplanting. (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-19. (vii) Irrigated. (viii) 2 weedings after transplanting. ^(ix) $22.43^{\prime \prime}$. (x) 1.11.1959.
2. TREATMENTS :

All combinations of (1) and (2)+2 extra treatments ( $\mathrm{P}_{0}$ and $\mathrm{P}_{1}$ )
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=$ Super.
(2) 5 sources of $N: S_{0}=0, S_{1}=$ Compost, $S_{2}=$ G.M., $S_{3}=$ G.N.C. and $S_{4}=A / S$.

Levels of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ are N.A.
3. DESIGN:
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 2. (iv) (a) and (b) $21^{\prime} \times 26^{\circ}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield data. (iv) (a) 1956. (b) N.A. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $2189 \mathrm{lb} . / \mathrm{ac}$. (ii) $256.54 \mathrm{lb} . / \mathrm{ac}$. (iii) Only S effect is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| $\mathrm{S}_{0} \mathrm{P}_{0}=1895 \mathrm{lb} . / \mathrm{ac} . ; \mathrm{S}_{0} \mathrm{P}_{1}=2124 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{3}$ | $\mathrm{S}_{4}$ | Mean |
| $\mathrm{P}_{0}$ | 2194 | 2752 | 2234 | 1994 | 2294 |
| $\mathrm{P}_{1}$ | 2154 | 2892 | 2074 | 1935 | 2264 |
| Mean | - 2174 | 2822 | 2154 | 1964 | 2279 |

S.E. of $S$ marginal mean or $\mathrm{S}_{0} \mathrm{P}$ mean $\quad=128.3 \mathrm{lb} . / \mathrm{ac}$. S.E. of $P$ marginal mean $\quad=90.7 \mathrm{lb} . / \mathrm{ac}$. S.E. of body of table $\quad=181.4 \mathrm{lb} . / \mathrm{ac}$.

```
Crop:- Paddy (Kharif).
Site :- Govt. Agri. Farm, Dindi.
```

Ref :- A.P. 59(16).
Type :- ' $\mathbf{M}$ '.

Object:-To find out the response of lime along with other fertilizers.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Paddy. (c) $88 \mathrm{lb} . / \mathrm{ac}$. Urea and $125 \mathrm{lb} . / \mathrm{ac}$. Super. (ii) (a) Chalka soil. (b) N.A. (iii) 266.1959 . (vi) (a) 6 puddlings. (b) Transplating by Japanese method. (c) and (d) N.A. (e) 3. (v) Nil. (vi) HR-33 (medium). (vii) Irrigated. (viii) 4 weedings. (ix) 22.43". (x) 3.11.1959.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 levels of $N$ as $A / S: N_{0}=0$ and $N_{1}=4 \frac{1}{2} \mathrm{lb} . / \mathrm{ac}$.
(2) 2 levels of $\mathrm{P}_{5} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=3 \mathrm{lb}$./ac.
(3) 2 levels of lime : $\mathrm{C}_{0}=0$ and $\mathrm{C}_{1}=5 \mathrm{lb}$./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 1 . (iv) (a) and (b) $43^{\prime} \times 20.3^{\circ}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Not satisfactory due to sulphite injury.
(ii) Nil. (iii) Grain yield. (iv) (a) 1959-N.A.
(b) N.A.
(c) Nil. (v) to (vi) Nil.

## RESULTS :

(i) $1057 \mathrm{lb} . / \mathrm{ac}$. (ii) $555.8 \mathrm{lb} . / \mathrm{ac}$. (iii) No effect is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.


Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Maruteru.

Ref :- A. P. 54(66).
Type :- ‘M'.

Object :-To determine the optimum requirement of organic manure with a basal dose of Super and A/S for Paddy.

1. BASAL CONDITIONS :
(i) (a) Rice-Rice. (b) Rice. (c) As per treatments. (ii) (a) Heavy black?clay. (b) N.A. (iii) 20.5.1954/ 22.7.1954. (iv) (a) Water puddling thrice, levelling. (b) Transplanting. (c) to (e) N.A. (v) $60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super before transplanting and 45 lb ./ac. of N as $\mathrm{A} / \mathrm{S}$ as top dressing. (vi) MTU-1 (medium). (vii) Irrigated. (viii) Weeding twice. (ix) $55.4^{\prime \prime}$. (x) 27.11.1954.
2. TREATMENTS:

All combinations of (1) and (2)+a control (no manure)
(1) 3 sources of $\mathrm{N}: \mathrm{S}_{1}=$ F.Y.M., $\mathrm{S}_{2}=$ G.L and $\mathrm{S}_{3}=$ Compost.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=2500, \mathrm{~N}_{2}=5000$ and $\mathrm{N}_{3}=7500 \mathrm{lb}$./ac.
3. DESIGN :
(i) R.B.D.
(ii) (a) 10 .
(b) N.A.
(iii) 4. (iv) (a) and (b) $24^{\prime} \times 38^{\prime}$.
(v) Nil. (vi) Yes.
4. GENERAL :
(i) The crop had excessive vegetative growth at shot blade stage. (ii) Nil. (iii) Yield, height measurement and tiller count at preflowering and dought stages (iv) (a) 1953-1954. (b) Yes. (c) N.A. (v) (a) Samalkot. (b) N.A. (vi) Nil. (vii) As the crop prelodged the yield of the individual plots was affected.
5. RESULTS :
(i) $1687 \mathrm{lb} . / \mathrm{ac}$. (ii) $158.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of S and interaction $\mathrm{N} \times \mathrm{S}$ are significant. Other effects are not significant. (iv) Av. yield of grain in lb ./ac:

$$
\text { Control }=1716 \mathrm{lb} . / \mathrm{ac}
$$

|  | $S_{1}$ | $S_{2}$ | $S_{3}$ | Mean |
| :--- | :--- | :--- | :--- | :---: |
| $\mathrm{N}_{1}$ | 1720 | 1608 | 1778 | 1702 |
| $\mathrm{~N}_{2}$ | 1859 | 1561 | 1671 | 1697 |
| $\mathrm{~N}_{3}$ | 1752 | 1570 | 1644 | 1655 |
| Mean | 1777 | 1580 | 1697 | 1684 |

S.E. of any marginal mean $\quad=30.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table or control mean $=52.8 \mathrm{lb}$.jac.

Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Maruteru.

Ref:- A. P. 56(58).
Type :- ' $\mathbf{M}^{\prime}$.

Object :-To study the effect of $N$ on the yield of Paddy.

## 1. BASAL CONDITIONS :

(i) (a) Paddy-Paddy. (b) Paddy. (c) $2000 \mathrm{lb} / \mathrm{ac}$. of G.L. (ii) (a) Ciay. (b) N.A. (iii) $21.6 .1956 /$ 28.7.1956. (iv) (a) Puddling thrice. (b) N.A. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to the entire experimental area applied before planting. Broadcast and puddled. (vi) GEB-24 (late). (vii) Irrigated. (viii) Weeding thrice. Interculture thrice with Japanese push hoe. (ix) $53.35^{\prime \prime}$. (x) 10.12 .1956.
2. TREATMENTS :

All combinations of (1) and (2) + a control
(1) 2 sources of $\mathrm{N}: \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}$ and $\mathrm{S}_{2}=\mathrm{A} / \mathrm{C}$.
(2) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=30 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{N}_{2}=45 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) and (b) $17^{\prime} 6^{\prime \prime} \times 26^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) In the early stage the crop was affec'ed with silver shoot (Gall fly). (iii) Yield, tiller count and height measurement. (iv) (a) 1956-contd. (b) No. (c) N.A. (v) (a) Samalkot. (b) N.A. (vi) and (vii) Nil.
$\qquad$
(c) N.A. (v) (a) Samakot. (b) N.A. (i)
5. RESULTS:
(i) $2118 \mathrm{lb} . / \mathrm{ac}$, (ii) $190.6 \mathrm{lb} . / \mathrm{ac}$. (iii) 'Only control $v s$. others effect' is significant. (iv) Av. yield of grain in lb./ac.

|  | Control $=1897 \mathrm{lb} . / \mathrm{ac}$. |  |  |
| :---: | :---: | :---: | :---: |
|  | $S_{1}$ | $\mathrm{S}_{2}$ | Mean |
| $\mathrm{N}_{1}$ | 2166 | 2220 | 2193 |
| $\mathrm{N}_{2}$ | 2094 | 2269 | 2152 |
| Mean | 2130 | 2215 | 2173 |

S.E. of $N$ or $S$ marginal mean $\quad=674 \mathrm{lb} . / \mathrm{ac}$. S.E. of bedy of table or control mean $=95.3 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Maruteru.
Object :-To study the effect of N on the yield of Padiy.

1. EASAL CONDITIONS :
(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy clay. (b) N.A. (iii) $7.6 .1957 /$ 13.7.1957. (iv) (a) Puddling thrice, levelling, digging corners and trimming bunds. (b) Raised seed-bed with Japanese method of planting. (c) $35 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 . (v) Nil. (vi) GEB-24 (late). (vii) Irrigated. (viii) Interculturing thrice with Japanese push hoe. (ix) $36.03^{\prime \prime}$. (x) 2.12.1957.

## 2. TREATMENTS:

All combinations of (1) and (2) +2 extra treatments
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=30$ and $\mathrm{N}_{2}=45 \mathrm{lb}$./ac.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{2}=A / C$.

Extra treatments are : $\mathrm{E}_{0}=$ Control (no manure), and $\mathrm{E}_{1}=30 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. All four combinations received a basal dressing $E_{1}$.
3. DESIGN :
(i) R.B.D.
(ii) (a) 6 .
(b) N.A. (iii) 4.
(iv) (a) and (b) $17 \frac{1}{2}^{\prime} \times 26^{\prime}$.
(v) No. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Yie!d, tllier count and height measurement. (iv) (a) 1956-contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2811 \mathrm{lb} . / \mathrm{ac}$. (ii) $206.8 \mathrm{lb} . / \mathrm{ac}$. (iii) Only S effect is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.


Crop :- Paddy (Saraua).
Site :- Agri. Res. Stn., Maruteru.

Ref :- A.P. 58(20).
Type :- ' $\mathbf{M}$ ’.

Objec :-To study the effect of $N$ on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) 2000 lb ./ac. of G.L. $+35 \mathrm{lb} . / \mathrm{ac}$. of Ammo. Phos. (ii) (a) Heavy black clay. (b) N.A. (iii) 7.7.1958/4.8.1958. (iv) (a) Puddled thrice and levelled. (b) Sown and transplanted. (c) $35 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) 2. (v) Nil. (vi) GEB-24 (late). (vii) Irrigated. (viii) Gapfilling and weeding was done. Japanese push hoe was worked for four times. (ix) $37.87^{\prime \prime}$. (x) 19.12.1958.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 57 (55) on page 27.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Height measurement and yield data. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2609 \mathrm{lb} . / \mathrm{ac}$.
(ii) $169.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

| $\mathrm{E}_{0}=2441$ and $\mathrm{E}_{1}=2681 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | Mean |
| $\mathrm{N}_{1}$ | 2561 | 2681 | 2621 |
| $\mathrm{N}_{2}$ | 2681 | 2609 | 2645 |
| Mean | 2621 | 2645 | 2633 |
| S.E. of N or S marginal mean |  |  | $\begin{aligned} & 59.9 \mathrm{lb} . \\ & 84.7 \mathrm{tb} . \end{aligned}$ |

```
Crop :- Paddy (Dalua).
Site :- Agri. Res. Stn., Maruteru.
Ref :- A.P. 58(21).
Type :- ' \(\mathbf{M}\) '.
```

Object :- To study the effect of N on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) $4000 \mathrm{lb} . / \mathrm{ac}$. of G.L. $+112 \mathrm{lb} . / \mathrm{ac}$. of R.M. and $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}$ (ii) (a) Heavy black clay. (b) N.A. (iii) $29.12 .1958 / 31.1 .1959$. (iv) (a) Puddled thrice, levelled. (b) dibbling and transplanting (c) 40 lb ./ac. (d) $8^{\prime \prime} \times 4^{\prime \prime}$. (e) 2 . (v) Nil. (vi) MTU- 15 (early). (vii) Irrigated. (viii) Gap-filling and weeding was done. Japanese push hoe was worked for three times at an interval of 15 days. (ix) 7.12". (x) 7.5.1959.
2. TREATMENTS :

Same as in expt. no. $57(55)$ on page 27.
3. DESIGN :
(i) R.B.D.
(ii) (a) 6 .
(b) N.A.
(iii) 4. (iv) (a) and (b) $30^{\prime} \times 14^{\prime}$.
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Blast attack was noted-Bordeaux mixture was sprayed. (iii) Height measurement and yield data. (iv) (a) 1956 -contd. (b) No. (c) Nil. (v) (a) and(b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2148 \mathrm{lb} . / \mathrm{ac}$. (ii) $273.9 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is signifcant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| $\mathrm{E}_{0}=2152$ and $\mathrm{E}_{1}=2178 \mathrm{lb}$./ac. |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{N}_{1}$ <br> $\mathrm{~N}_{2}$ | $\mathrm{S}_{1}$ $\mathrm{~S}_{2}$ <br> 2048 2204 <br> 2152 2152 | Mean <br> Mean | 2126 |
| 2152 |  |  |  |

S.E. of N or S marginal mean $=96.8 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $=136.9 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy (Dalua).
Site :- Agri. Res. Stn., Maruteru.
Ref :- A.P. 59(87).
Type :- ' \({ }^{\mathbf{M}}\) '.
```

Object :-To study the effect of N on the yield of Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy—Paddy. (b) Paddy. (c) G.L. at $2000 \mathrm{lb} . / \mathrm{ac}$. + Super at $150 \mathrm{lbs} . / \mathrm{ac}$. and $\mathrm{A} / \mathrm{S}$ at $50 \mathrm{lb} . / \mathrm{ac}$. (ii)
(a) Clayey. (b) N.A. (iii) $22.12 .1959 / 16.2 .1960$ (vi) (a) 3 puddlings and levelling. (b) Transplanted. (c) $30 \mathrm{lb} / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 . (v) As per treatments. (vi) MTU-15 (early). (vii) Irrigated. (ii) Gapfilling and weeding was done month after planting. (ix) $2.81^{\circ}$. (x) 11.5.1960.
2. TREATMENTS :

Same as in expt. no. $57(55)$ on page 27.
3. DESIGN :
(i) R.B.D.
(ii) (a) 6 .
(b) N.A
(iii)
(iv) (a) $30^{\prime} \times 14^{\prime}$. (b) $29^{\prime} \times 13^{\prime}$
(v) One row kept. (iv) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Severe blast attack was noticed and it was controlled by spraying of $1 \%$ Bordeaux mixture. (iii) Yield data. (iv) (a) 1956-1960. (b) Yes, from 1958 onwards. (c) Nil (v) to (vii) Nil.
5. RESULTS:
(i) $2217 \mathrm{lb} . / \mathrm{ac}$. (ii) $118.0 \mathrm{lb} . / \mathrm{ac}$. (iii) 'Extra treatments $v s$. others' effect is highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

30


## Crop :- Paddy (Sarara). <br> Site :- Agri. Res. Stn., Maruteru.

Ref. :- A.P. 59(88).
Type :- $\varsigma^{\prime} \mathbf{M}^{\prime}$.
Object :- To study the effect of N on the yield of Paddy.

## 1. BASAL CONDITIONS :

(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clayey soil. (b) N.A. (iii) 6.5.1959/ 306.1959. (iv) (a) 3 puddlings and levelling. (b) Transplanted. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\circ} \times 6^{\prime \prime}$. (e) 2 . (v) As per treatments. (vi) GEB-24 (late). (vii) Irrigated. (viii) Gap-filling and weeding was done one month after transplanting. (ix) $45.44^{*}$. (x) 9.12.1959.
2. TREATMENTS :

Same as in expt. no. 57,55) on page 27.
3. DESIGN :
(i) R.B.D.
(ii) (a) 6 .
(b) N.A.
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii; N.A.
(iii) Yield data.
(iv) (a) 1956-1960.
(b) Yes.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $1198 \mathrm{lb} . / \mathrm{ac}$. (ii) $50.8 \mathrm{lb} . / \mathrm{ac}$. (iii) 'Only control vs. others' effect is significant. (iv) Av. yield of grain in lb./ac.

$$
\mathrm{E}_{0}=1257 \mathrm{lb} . / \mathrm{ac} . \text { and } \mathrm{E}_{2}=1191 \mathrm{lb} . / \mathrm{ac}
$$

|  | $S_{1}$ | $S_{2}$ | Mean |
| :--- | :--- | :--- | :--- |
| $\mathbf{N}_{1}$ | 1219 | 1153 | 1186 |
| $\mathbf{N}_{2}$ | 1200 | 1168 | 1184 |
| Mean | 1209 | 1161 | 1185 |

$$
\begin{array}{ll}
\text { S.E. of } N \text { or } S \text { marginal mean } & =17.9 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of bcdy of table } & =25.4 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Ref:- A.P. 54(70).
Type :- 'M'.

Site :- Agri. Res. Stn., Maruteru.
Object :-To study the effect of different sources and levels of $N, P$ and lime on the yield of Paddy.

## 1. BASAL CONDITIONS :

(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy black soil. (b) N.A. (iii) 12.5.1954/22, 23.7.1954. (iv) (a) Ploughings, puddling thrice, levelling, digging corners and trimming bunds. (b) Bult. planting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) As per treatments. (vi) MTU-19(late). (vii) Irrigated. (viii) 2 weedings. (ix) $55.4^{\prime \prime}$. (x) 17.12.1954.
2. TREATMENTS :

Main-plot treatments :
5 basal manures : $\mathrm{S}_{0}=$ Nil $\mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=$ Compost, $\mathrm{S}_{3}=$ C.M. and $\mathrm{S}_{4}=$ G.M.

## Sub-plot treatments :

All combinations of (1), (2) and (3)
(1) 2 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. : $\mathrm{K}_{0}=0$ and $\mathrm{K}_{1}=60 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=60 \mathrm{lb} . / \mathrm{ac}$.
(3) 2 levels of lime : $\mathrm{L}_{0}=0$ and $\mathrm{L}_{1}=1500 \mathrm{lb} . / \mathrm{ac}$.

N applied at 60 lb ./ac. in the main-plots.
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication : 8 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $89^{\prime} 6^{\prime \prime} \times 46^{\prime \prime} 3^{\prime \prime}$ (main-plot). (b) $43^{\prime} \times 11^{\prime}$, (sub-plot). (v) One row of each sub-plot was left off. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Yield d̉ata. (iv) (a) 1953-contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $4072 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $1163 \mathrm{lb} . / \mathrm{ac}$. (b) $531 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

S.E. of difference of two

| 1. $S$ marginal means | $=290.8 \mathrm{lb} / \mathrm{ac}$. |
| :--- | :--- |
| 2. $P, K$ or $L$ marginal means | $=83.9 \mathrm{lb} . / \mathrm{ac}$. |
| 3. $P, K$ or $L$ means at the sameflevel of $S$ | $=187.7 \mathrm{lb} . / \mathrm{ac}$. |
| 4. $S$ means at the same level of $P, K$ or $L$ | $=319.3 \mathrm{lb} / / \mathrm{ac}$. |
| S.E. of body of $P \times K, P \times L$ or $K \times L$ table | $=83.9 \mathrm{lb} / \mathrm{ac}$. |

## Crop:- Paddy (Dalua).

Site :- Agri. Res. Stn., Maruteru.

Ref:- A. P. 54(71).
Type :- ‘M'.

Object:-To study the effect of different sources and levels of $N, P$ and lime on the yield of Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy black soil. (b) N A. (iii) 10.12.1954/10, 11.2.1955. (iv) (a) Ploughings, puddling thrice, levelling, digging corners and trimming bunds. (b) Bulk planting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) As per treatments. (vi) MTU-15 (early). (vii) Irrigated. (viii) Weeding twice. (ix) Nil. (x) 10, 12.5.1955.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. $54(70)$ on page 30.
5. RESULTS :
(i) $2641 \mathrm{lb} / \mathrm{ac}$. (ii) (a) 391.2 lb .ac. (b) $217.2 \mathrm{lb} / \mathrm{ac}$. (iii) Main effect of S is highly significant. Effects of $\mathrm{L}, \mathrm{P}$ and K are significant. Other effects are not significant. (iv) Av. yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.

|  | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{3}$ | $S_{4}$ | Mean | $\mathrm{L}_{0}$ | $\mathbf{L}_{1}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K | 2159 | 3001 | 2343 | 2538 | 3192 | 2648 | 2656 | 2638 | 2563 | 2731 |
| $\mathrm{K}_{1}$ | 2175 | 3015 | 2359 | 2480 | 3148 | 2636 | 2626 | 2644 | 2547 | 2723 |
| Mean | 2167 | 3008 | 2351 | 2509 | 3170 | 2641 | 2641 | 2641 | 2555 | 2727 |
| $\mathbf{P}_{0}$ | 2054 | 2943 | 2227 | 2497 | 3054 | 2553 | 2557 | 2553 |  |  |
| $\mathrm{P}_{1}$ | 2280 | 3073 | 2475 | 2521 | 3286 | 2727 | 2725 | 2729 |  |  |
| $\mathrm{L}_{0}$ | 2163 | 3021 | 2313 | 2525 | 3182 | 2641 |  |  |  |  |
| $\mathrm{L}_{1}$ | 2171 | 2995 | 2389 | 2492 | 3158 | 2641 |  |  |  |  |

S.E. of difference of two

| 1. $S$ marginal means | $=97.8 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2: $P, K$ or $L$ marginal means | $=34.3 \mathrm{lb} . / \mathrm{ac}$. |
| 3. $P, K$ or $L$ means at the same level of $S$ | $=76.8 \mathrm{lb} . / \mathrm{ac}$. |
| 4. $S$ means at the same level of $P, K$ or $L$ | $=111.8 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $P \times K, P \times L$ or $K \times L$ table | $=97.8 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Saraza).
Site :- Agri. Res. Stn., Maruteru.

Ref :- A.P. 55(64).
Type :- ‘M',

Object :-To study the effect of different sources and levels of N, P and lime on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy black clay. (b) N.A. (iii) 11.5.1955/ 25,26.7.1955. (iv) (a) Water let in ; puddled thrice and levelled. (b) Bulk planting. (c) $30 \mathrm{lb} / \mathrm{ac}$. (d) and (e) N.A. (v) As per treatments. (vi) MTU-19 (late). (vii) Irrigated. (viii) Weeding twice. (ix) $4361^{\prime \prime}$. (x) 11, 12.12.1955.
2. TREATMENTS :

Main plot treatments :
5 B.D. of $\mathrm{N}: \mathrm{S}_{0}=$ Nil. $\mathrm{S}_{1}=30 \mathrm{lb}$.ac. as $\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=60 \mathrm{lb} . / \mathrm{ac}$. of N as compost, $\mathrm{S}_{3}=60 \mathrm{lb}$./ac. of N as C.M. and $S_{4}=60 \mathrm{lb}$./ac. of N as G.M.

Sub-plot treatments :
All combirations of (1), (2) and (3)
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=60 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sui. : $\mathrm{K}_{0}=0$ and $\mathrm{K}_{1}=60 \mathrm{lb} . / \mathrm{ac}$.
(3) 2 :evels of lime : $L_{0}=0$ and $L_{1}=1500 \mathrm{lb} / / \mathrm{ac}$.
3. DESIGN :
$\begin{array}{llllll}\text { (i) Split-plot. (ii) (a) } 5 \text { mair-plots,replication; } 8 \text { sub-plots/main-plot. } & \text { (b) } \text { N.A. (iii) } 4 . & \text { (iv) (a) } \\ 46^{\prime} 3^{\prime} \times 89^{\prime} 6^{\prime \prime} \text { (main-piot). } & \text { (b) } 11^{\prime} \times 43^{\prime} \text { (sub-plot). } & \text { (v) Nil. (vi) Yes. }\end{array}$
4. GENERAL :
(i) Crop satisfactory. No lodging. 'ii: Nil. (iii) Tiller count, height measurement, ear-head measurement. grain and chaff coun:s and yied Samples o grain, straw, chaff, stalk and soil sent for analysis. (iv) (a) 1953 $\rightarrow$ contd, (b) Yes. (c) N.A. (v) (a) Samalkot. (b) N.A. (vi) and (vii) Nii.
5. RESULTS:
(i) $2596 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $282.8 \mathrm{lb} . / \mathrm{ac}$. (b) $215.6 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in lb ./ac.

|  | $\mathrm{S}_{0}$ | $S_{1}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{3}$ | $S_{4}$ | Mean | $L_{0}$ | $\mathrm{L}_{1}$ | $\mathbf{P}_{0}$ | $\mathbf{P}_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{K}_{0}$ | 2497 | 2676 | 2618 | 2498 | 2532 | 2564 | 2589 | 2539 | 2541 | 2587 |
| $\mathrm{K}_{1}$ | 2515 | 2751 | 2682 | 2566 | 2624 | 2628 | 2652 | 2603 | 2610 | 2645 |
| Mean | 2506 | 2713 | 2650 | 2532 | 2578 | 2596 | 2620 | 2571 | 2576 | 2616 |
| $\mathrm{P}_{0}$ | 2446 | 2750 | 2607 | 2486 | 2590 | 2576 | 2615 | 2537 |  |  |
| $\mathrm{P}_{1}$ | 2566 | 2676 | 2693 | 2578 | 2566 | 2616 | 2626 | 2605 |  |  |
| $L_{0}$ | 2515 | 2716 | 2722 | 2578 | 2572 | 2620 |  |  |  |  |
| $\mathrm{L}_{1}$ | 2497 | 2710 | 2578 | 2486 | 2584 | 2571 |  |  |  |  |

## S.E. of difference of two

| 1. $S$ marginal means | $=70.7 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. $P, K$ or $L$ marginal means | $=34.1 \mathrm{lb} . / \mathrm{ac}$. |
| 3. $P, K$ or $L$ means at the same level of $S$ | $=76.2 \mathrm{lb} . / \mathrm{ac}$. |
| 4. $S$ means at the same level of $P, K$ or $L$ | $=88.9 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $P \times K, P \times L$ or $K \times L$ table | $=34.1 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Dalua).
Site :- Agri: Res. Stn., Maruteru.

## Ref :- A.P. 55(65). <br> Type :- ' $\mathbf{M}$ '.

Object :-To study the effect of different sources and levels of N, P and lime on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy black soil (b) N.A. (iii) 15.12.1955/15.2.1956. (iv) (a) N.A. (b) Bulk planting. (c) to (c) N.A. (v) As per treatments. (vi) MTU-15 (early). (viii) Weeding twice. (ix) $43.61^{\prime \prime}$ (x) $16,17.5 .1956$.
2. TREATMENTS to 4. GENERAL :

Same as in expt. No. 55(64) on page 32.
5. RESULTS:
(i) $2521 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $356.4 \mathrm{lb} . / \mathrm{ac}$. (b) $260.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of $\mathrm{S}, \mathrm{P}, \mathrm{K}$ and L are significant. Other effects are not significant. (iv) Av. yield of grain in lb./ac.

|  | $\mathrm{S}_{0}$ | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | Mean | $\mathrm{L}_{0}$ | $\mathrm{L}_{1}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{K}_{0}$ | 2058 | 2822 | 2284 | 2295 | 3126 | 2517 | 2453 | 2581 | 2374 | 2660 |
| $\mathrm{K}_{1}$ | 2076 | 2860 | 2191 | 2376 | 3126 | 2526 | 2505 | 2547 | 2415 | 2636 |
| Mean | 2067 | 2841 | 2237 | 2335 | 3126 | 2521 | 2479 | 2564 | 2394 | 2648 |
| $\mathrm{P}_{0}$ | 1897 | 2759 | 2087 | 2174 | 3057 | 2394 | 2377 | 2413 |  |  |
| $\mathrm{P}_{1}$ | 2237 | 2924 | 2387 | 2497 | 3195 | 2648 | 2581 | 2715 | , |  |
| $\mathrm{L}_{0}$ | 2059 | 2758 | 2203 | 2295 | 3080 | 2479 |  |  |  |  |
| $\mathrm{L}_{1}$ | $2075$ | 2924 | 2272 | 2376 | 3172 | 2564 |  |  |  |  |

S.E. of difference of two

| 1. $S$ marginal means | $=89.1 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. $P, K$ or $L$ marginal means | $=41.2 \mathrm{lb} . / \mathrm{ac}$. |
| 3. $P, K$ or $L$ means at the same level of $S$ | $=92.2 \mathrm{lb} . / \mathrm{ac}$. |
| 4. $S$ means at the same level of $P, K$ or $L$ | $=110.9 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $P \times K, P \times L$ or $K \times L$ table | $=41.2 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Maruteru.

> Ref :- A.P. $56(74)$.
> Type :- 'M'.

Object :-To study the effect of different sources and levels of $N, P$ and lime on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy black soil. (b) N.A. (iii) 27.8.1956/14,15.7.1956. (iv) (a) Puddling thrice, levelling, digging corners and trimming bunds. (b) Bulk planting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) As per treatments. (vi) MTU-19 (late). (vii) Irrigated. (viii) Weeding twice. (ix) $53.36^{\circ}$. (x) $15,16.12 .1956$.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 55(64) on page 32.
4. GENERAL :
(i) Good. (ii) There was hispa attack against which gammexane was dusted. There was stem borer attack to a considerable extent. (iii) Yield data. (iv) (a) 1953-contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2602 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $223.1 \mathrm{lb} . / \mathrm{ac}$. (b) $204.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of S is highly significant. Main effect of $L, P$ and $K$ are significant. All interactions are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

S.E. of difference of two

| 1. S marginal means | $=55.8 \mathrm{lb} / \mathrm{ac}$. |
| :--- | :--- |
| 2. $P, K$ or $L$ marginal means | $=32.3 \mathrm{lb} . / \mathrm{ac}$. |
| 3. $\mathrm{P}, \mathrm{K}$ or L means at the same level of S | $=72.2 \mathrm{lb} . / \mathrm{ac}$. |
| 4. S means at the same level of $\mathrm{P}, \mathrm{K}$ or L | $=75.6 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $\mathrm{P} \times \mathrm{K}, \mathrm{P} \times \mathrm{L}$ or $\mathrm{K} \times \mathrm{L}$ table | $=32.3 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Dalua).
Site :- Agri. Res. Stn., Maruteru.

Ref :- A.P. 56(75).
Type :- 'M'.

Object :-To study the effect of different sources and levels of $N, P$ and lime on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy black soil. (b) N.A. (iii) 24.12.1956/23, 24.2-1957. (iv) (a) Puddling thrice, levelling, digging corners and trimming bunds. (b) Bulk planting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) As per treatments. (vi) MTU-15 (early). (vii) Irrigated. (viii) Weeding twice. (ix) Nil. (x) 21 to 23.5 .1957
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. $54(70)$ on page 30.
5. RESULTS:
(i) $2665 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $462.6 \mathrm{lb} . / \mathrm{ac}$. (b) $214.2 \mathrm{lb} / \mathrm{ac}$. (iii) All effects are significant. (iv) Av. yield of
grain in lb./ac.

|  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

S.E. of difference of two

| 1. $S$ marginal means | $=115.7 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. $P, K$ or $L$ marginal means | $=33.9 \mathrm{lb} . / \mathrm{ac}$. |
| 3. $P, K$ or $L$ means at the same level of $S=75.7 \mathrm{lb} / \mathrm{ac}$. |  |
| 4. $S$ means at the same level of $P, K$ or $L=127.5 \mathrm{lb} . / \mathrm{ac}$. |  |
| S.E. of body of $P \times K, P \times L$ or $K \times L$ table $=33.9 \mathrm{lb} . / \mathrm{ac}$. |  |

Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Maruteru.

## Ref :- A.P. 57(51).

Type :- ' $\mathbf{M}$ '.

Object:-To find the effect of basal dose of N with and without $\mathrm{P}, \mathrm{K}$ and lime and their combinations on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy clay. (b) N.A. (iii) 2.6.1957/ 23.7.1957. (iv) (a) Puddling thrice, levelling, digging corners and trimming bunds. (b) Bulk planting. (c) $300 \mathrm{lb} / \mathrm{ac}$. (d) and (e) N.A. (v) As per treatments. (vi) ${ }^{\text {h }} \mathrm{MTU}-19$ (late). (vii) Irrigated. (viii) Interculturing twice with Japanese push hoe uniformly to all treatments. (ix) $36.03^{\prime \prime}$. (x) 7, 8.12.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $55(64)$ on page 32.
4. GENERAL :
(i) Good. (ii) Stem-borer-controlled by the spray of Endrine at $0.037 \%$. (iii) Tiller count, height measurement and yield data. (iv) (a) 1953-1957. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.

## 5. RESULTS :

(i) $2158 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $782.9 \mathrm{lb} . / \mathrm{ac}$. (b) 250.7 lb ./ac. (iii) Main effect of $L$ is highly significant. Interaction $K \times L$ and $S$ effect are significant. Other effects are not significant. (iv) Av. yield of grain in lb. $/ \mathrm{ac}$.

|  | $S_{n}$ | $S_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | $\mathrm{S}_{4}$ | Mean | $\mathrm{L}_{0}$ | $\mathrm{L}_{1}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{K}_{0}$ | 2020 | 1899 | 2394 | 2342 | 2181 | 2168 | 2178 | 2157 | 2120 | 2206 |
| $\mathrm{K}_{1}$ | 1894 | 1957 | 2481 | 2406 | 2003 | 2148 | 2243 | 2054 | 2125 | 2171 |
| Mean | 1957 | 1928 | 2437 | 2374 | 2092 | 2158 | 2211 | 2107 | 2127 | 2189 |
| $\mathrm{P}_{0}$ | 1899 | 1969 | 2458 | 2302 | 2009 | 2127 | 2184 | 2070 |  |  |
| $\mathrm{P}_{1}$ | 2014 | 1888 | 2417 | 2446 | 2175 | 2189 | 2236 | 2141 |  |  |
| $\mathbf{L}_{0}$ | 1997 | 1928 | 2515 | 2429 | 2181 | 2210 |  |  |  |  |
| $L_{1}$ | 1916 | 1928 | 2359 | 2319 | $2 \mathrm{CO3}$ | 2106 |  |  |  |  |

S.E. of difference of two

| 1. $S$ marginal means | $=195.7 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. $P, K$ or $L$ marginal means | $=39.6 \mathrm{lb} . / \mathrm{ac}$. |
| 3. $P, K$ or $L$ means at the same level of $S$ | $=88.6 \mathrm{lb} . / \mathrm{ac}$. |
| 4. $S$ means at the same level of $P, K$ or $L$ | $=205.5 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $P \times K, P \times L$ or $K \times L$ table | $=39.6 \mathrm{lb} . / \mathrm{ac}$. |

```
Crop :- Paddy (Dalua).
Site :- Agri. Res. Stn., Maruteru.
Ref :- A.P. 57(52).
Type :- 'M'.
```

Object:-To find the effect of basal dose of N with and without $\mathrm{P}, \mathrm{K}$ and lime and their combinations on the yield of Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy -Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy clay. (b) N.A. (iii) 31.12.1957, 1.8.1958/19.2.1958. (iv) (a) Puddling thrice, levelling. digging corners and trimming bunds. (b) Bulk p.anting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) As per treatments. (vi) MTU-15 (early). (vii) Irrigated. (viii) Interculturing twice with Japanese push hoe uniformly to all treatments. (ix) Nil. (x) 22 to 285.1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 55(64) on page 32.
4. GENERAL :

Same as in expt. no. 57(51) on page 35.
5. RESULTS:
(i) $2199 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) 752.0 lb ./ac. (b) 299.1 lb ./ac. (iii) Main effect of P is highly significant. Effect of L is significant. Other effects and interactions are not significant. (iv) Av. yield of grain in lb ,/ac.

S.E. of difference of two


Object :-To study the effest of different sources and levels of $N$ and $P$ on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy clay. (b) N.A. (iii) 30.12.1957/
19.2.1958. (iv) (a) Puddling thrice, levelling, digging corners and trimming bunds. (b) Raised seed beds;
Japanese method of planting.
(c) $35 \mathrm{lb} . / \mathrm{ac}$.
(d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) 2. (v) Nil.
(vi) MTU-15 (early). (vii) Irrigated. (viii) Intercultivations twice with Japanese push hoe. (ix) Nil. (x) 18.5.1958.
2. TREATMENTS :

Main-plot treatments :
2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=30 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments :
All combinations of (1) and (2) + a control $\left(\mathrm{N}_{0} \mathrm{~S}_{0}\right)$.
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=30$ and $\mathrm{N}_{2}=45 \mathrm{lb}$./ac.
(2) 3 sources of $N: S_{1}=A / S, S_{2}=C / A / N$ and $S_{3}=A \cdot C$.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 7 sub-plots/maic-plot. (b) N.A. (iii) 4 . (iv) (a) and (b) $45^{\prime} \times 6^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Tiller count, height measurement and vield data. (iv) (a) 1956-contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
(
5. RESULTS :
, (i) $1735 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $229.7 \mathrm{lb} . / \mathrm{ac}$. (b) $200.0 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of NS is highly significant. Effect of $P$ is significant. Interaction $N S \times V$ is not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $N_{0} S_{0}$ | $N_{1} S_{1}$ | $N_{1} S_{2}$ | $N_{1} S_{3}$ | $N_{2} S_{1}$ | $N_{2} \dot{S}_{2}$ | $N_{2} S_{3}$ | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $P_{0}$ <br> $P_{1}$ | 1170 | 1664 | 1412 | 1502 | 1896 | 1492 | 1865 | 1571 |
| Mean | 1293 | 2057 | 1623 | 2086 | 2117 | 1714 | 2097 | 1898 |
| 1860 | 1517 | 1794 | 2007 | 1603 | 1981 | 1735 |  |  |

S.E. of difference of two

1. P marginal means $=86.5 \mathrm{lb} . / \mathrm{ac}$.
2. NS marginal means $\quad=100.0 \mathrm{lb} / / \mathrm{ac}$.
3. NS means at the same level of $P=141.4 \mathrm{lb} / \mathrm{ac}$.
4. $P$ means at the same level of $N S=144.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Maruteru.

## Ref :- A.P. 58(18).

Type :- ' $\mathbf{M}^{\prime}$ 。

Object :-To find out the effect of $A / S$ and $C / A / N$ applied at different times on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Paddy—Paddy. (b) Paddy. (c) $2000 \mathrm{lb} . / \mathrm{ac}$. of G.L. $+35 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii) ${ }^{-}$(a) Heavy black clay.
(b) N.A. (iii) 5.7.1958/3.8.1958. (iv) (a) Puddled thrice and levelled. (b) Dibbled and transplanted. (c)
$35 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 . (v) As per treatments. (vi) MTU- 10 (late). (vii) Irrigated. (viii) Gap-
filling and weeding was done. Japanese push hoe was worked for four times. (ix) 32.01". (x) 12.12-1958.
2. TREATMENTS :

5 methods of applying $\mathrm{N}: \mathrm{M}_{0}=0, \mathrm{M}_{1}=$ Full dose a fortnight after planting, $\mathrm{M}_{2}=\frac{1}{2}$ a fortnight after planting and $\frac{1}{2}$ at one month after planting, $M_{3}=\frac{1}{4}$ a fortnight after planting $+\frac{1}{2}$ one month after planting of $+\frac{1}{4}$ applied a week before planting and $M_{4}=\frac{1}{2}$ at planting and the other $\times$ one month later.
$N$ applied at $40 \mathrm{lb} . / \mathrm{ac}$. as $\mathrm{C} / \mathrm{A} / \mathrm{N}$ in $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$ and as $\mathrm{A} / \mathrm{S}$ in $\mathrm{M}_{4} .30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ was applied as B.D. except in control.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) and (b) $14^{\prime} \times 31^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Height measurement and yield data. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2969 \mathrm{lb} . / \mathrm{ac}$. (ii) $146.6 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not sigaificant. (iv) Av. yield of grain in lb./ac.

| Treatment | $\mathrm{M}_{0}$ | M ${ }_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $\mathrm{M}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 3036 | 2961 | 2911 | 3020 | 2919 |
|  | S.E./ | $=$ | ./ac. |  |  |


| Crop :- Paddy (Dalua). | Ref :- A. P. 58(19). |
| :--- | :--- |
| Site :- Agri. Res. Stn., Maruteru. | Type :- ${ }^{\prime} \mathbf{M}{ }^{\prime}$. |

Object :-To find out the effect of $A / S$ and $C / A / N$ applied at different times on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) $4000 \mathrm{lb} . / \mathrm{ac}$. of G.L. $+112 \mathrm{lb} . / \mathrm{ac}$. of B.M. and $50 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii) (a) Heavy black clays. (b) N.A. (iii) 29.12.1958/30.1.1959. (iv) (a) Puddled thrice and levelled. (b) Dibbled and transplanted. (c) $35 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 4^{\prime \prime}$. (e) 2 . (v) As per treatments. (vi) MTU— 15 (early). (vii) Irrigated. (viii) Gap-filling and, weeding was done. Japanese push hoe was worked for three times, at interval of 15 days. (ix) $7.12^{*}$. (x) 6.5.1959.
2. TREATMENTS :

Same as in expt. no. 58(18) on page 37 ,
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6 . (iv) (a) and (b) $22^{\prime} \times 18^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Blast attack was noticed-Bordeaux mixture was sprayed. (iii) Height measurements and yield data. (iv) (a) and (b) No. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2207 \mathrm{lb} . / \mathrm{ac}$. (ii) 235.7 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

| Treatment | $\mathrm{M}_{0}$ | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $\mathrm{M}_{4}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1998 | 2181 | 2273 | 2328 | 2255 |  |
|  |  |  |  |  |  |  |
|  | S.E./mean | $=$ | $96.2 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |

Crop :- Paddy (Dalia).
Ref :- A.P. 59(86).
Site :- Agrí. Res. Stn., Maruteru.
Type :- ' ${ }^{\prime}$ ’.
Object:-To test the efficacy of $\mathrm{C} / \mathrm{A} / \mathrm{N}$ as nitrogenous fertilizer to Paddy crop in comparison with $\mathrm{A} / \mathrm{S}$.

1. BASAL CONDITIONS:
(i) (a) Paddy-Paddy. (b) Paddy. (c) N.A. (ii) (a) Heavy black clayey. (b) N.A. (iii) $22.12 .1959 /$ 15.2.1:60. (iv) (a) 3 puddlings and breaking of clods. (b) Transplanted. (c) $30 \mathrm{lb} / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2. (v) As per treatments. (vi) MTU-15 (early). (vii) Irrigated. (viii) Gap-filliing, weeding and intercultivation. (ix) $2.81^{\prime \prime}$. (x) 12.5 .1960 .
2. TREATMENTS :

Same as in expr. no. $58(18)$ on page 37.
DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) $22^{\prime} \times 98^{\prime}$. (iii) 6 . (iv) (a) $22^{\prime} \times 18^{\prime}$. (b) $21^{\prime \prime} \times 17^{\prime}$. (v) One row on all sides. (vi) Yes
, GENERAL:
(i) Satisfactory. (iii) Severe attack of paddy blast was controlled by spraying $1 \%$ Bordeaux mixture. (iii) Yield data. (iv) (a) 1958-1960. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $2338 \mathrm{lb} . / \mathrm{ac}$. (ii) $164.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av.' yield of grain in lb./ac.

| Treatment | $\mathbf{M}_{0}$ | $\mathbf{M}_{1}$ | $\mathbf{M}_{2}$ | $\mathbf{M}_{3}$ |  | $\mathbf{M}_{\mathbf{4}}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1749 | 2278 | 2369 | 2455 |  | 2837 |
|  |  |  |  |  |  |  |.

```
Crop :- Paddy (Sarava).
Site :- Agri. Res, Stn, Maruteru.
```


## Ref :- A.P. 59(89). <br> Type :- ' $\mathbf{M}$ '.

Object :-To test the efficacy of $\mathrm{C} / \mathrm{A} / \mathrm{N}$ as nitrogenous fertilizer to Paddy crop in comparison with $\mathrm{A} / \mathrm{S}$.

1. BASAL CONDITIONS :
(i) (a) Paddy after Paddy. (b) Paddy. (c) N.A. (ii) (a) Heavy block clay. (b) N.A. (iii) 27.6.1959. (iv) (a) 3 puddlings and breaking of clods. (b) Transplanting. (c) $35 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) 2. (v) As per treatments. (vi) MTU-10 (late). (vii) Irrigated. (viii) Gap-filling and weeding done one month. after planting. (ix) $45.39^{\prime \prime}$. (x) 5.12 .1959 .
2. TREATMENTS

Same as in expt. no. 58(18) on page 37.
3. DESIGN :
(1) R.B.D.
(ii) (a) 5 .
(b) $30^{\prime} \times 83^{\prime}$. (iii)
iii) 6.
(iv) (a) and
(b) $15^{\prime} \times 30^{\prime}$.
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield data. (iv) (a) 1958-1960. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $3385 \mathrm{lb} . / \mathrm{ac}$. (ii) 469.2 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathbf{M}_{\mathbf{0}}$ | $\mathbf{M}_{\mathbf{1}}$ | $\mathbf{M}_{\mathbf{2}}$ | $\mathbf{M}_{\mathbf{3}}$ | $\mathbf{M}_{\mathbf{4}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 3404 | 3404 | 3437 | 335 | $\mathbf{3 3 2 4}$ |
|  | $\vdots$ |  |  |  |  |
|  | S.E. $/$ mean | $=$ | $191.5 \mathrm{lb} . / \mathrm{ac}$. |  |  |

```
Crop :- Paddy (Dalua).
Ref :- A.P. 54(68).
Site :- Agri. Res. Stn., Maruteru.
Type:- ' M '.
```

Object:-To find the best method of application of phosphatic manures to Paddy either by direct or indirect application with G.M. crop.

1. BASAL CONDITIONS :
(i) (a) Paddy-G.M.-Paddy. (b) Paddy followed by G.M. (c) Super applied to G.M. as per treatments. (ii) (a) Heavy black clay. (b) N.A. (iii) $19.12 .1953 / 6.2$.1954. (iv) (a) Water let, puddled thrice and levelled. (b) Transplanted and bulk planting. (c) $300 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) MTU-15. (vii) Irrigated. (viii) 2 weedings. First weeding one month after transplanting. (ix) $0.22^{\circ \prime}$ (Dec. to May). (x) 4.5.1954.
2. TREATMENTS :

Main plot treatments :
2 G.M. crop: $G_{1}=$ Dhaincha and $G_{2}=$ Sannhemp.
Sub-plot treatments :
3 manurial treatments : $\mathrm{M}_{1}=$ G.M. + Paddy without $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{2}=$ G.M. +45 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ to Paddy crop and $\mathrm{M}_{3}=45 \mathrm{lb}$./ac. to G.M. + Paddy crop.
Dhaincha and sannhemp sown on 24.11 .1953 in the standing paddy crop of the main crop paddy and the G.M. ploughed in situ.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) and (b) $22^{\prime} \times 90^{\prime}$. (v) No. (vi) Yes.
4. GENERAL:
(i) Growth and germination satisfactory for sannhemp. Dhaincha failed completely. Paddy crop in Sannbemp plots was satisfactory. (ii) Nil. (ili) Straw yield. (iv) (a) 1954-1956. (b) Yes. (c) N.A. (v) (a) (b) Samalkot. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
$\begin{array}{llll}\text { (i) } 2347 \mathrm{lb} . / \mathrm{ac} . & \text { (ii) (a) } 321.1 \mathrm{lb} . / \mathrm{ac} . & \text { (b) } 237.6 \mathrm{lb} . / \mathrm{ac} \text {. (ili) Only } G \text { effect is significant. (iv) Av. yield of }\end{array}$ grain in lb./ac.

|  | $\mathbf{M}_{1}$ | $\mathbf{M}_{\mathbf{2}}$ | $\mathbf{M}_{\mathbf{3}}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{G}_{1}$ | 2271 | 2337 | 2349 | 2319 |
| $\mathbf{G}_{2}$ | 3371 | 3384 | 3366 | 3374 |
| Mean | 2821 | 2861 | 2858 | 2847 |

S.E. of difference of two

1. G marginal means $\quad=131.1 \mathrm{lb} . / \mathrm{ac}$.
2. M marginal means $==118.8 \mathrm{lb} . / \mathrm{ac}$.
3. $M$ means at the same level of $G=163.0 \mathrm{lb} / \mathrm{ac}$.
4. $G$ means at the same level of $M=189.2 \mathrm{lb} . / \mathrm{ac}$.
```
Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Maruteru.
```

Ref :- A.P. 54(67).
Type :- ' $\mathbf{M}$ '.

Object:-To find out the merits and demerits of application of phosphatic manure fto Paddy applied directly and indirectly with G.M.

1. BASAL CONDITIONS :
(i) (a) Paddy-G.M.-Paddy. (b) Paddy followed by G.M. crop. (c) As per treatments. (ii) (a) Clay (b) N.A. (iii) $12.5 .1954 / 11,12.7 .1954$. (iv) (a) 3 ploughings, trimming bunds, and levelling. (b) Transplanting and bulk planting. (c) to (e) N.A. (v) Nil. (vi) MTU-5 (late). (vii) Irrigated. (viii) 2 Weedings. (ix) $55.40^{\prime \prime}$. ( $x^{\prime}, 2,3.12 .1954$.

## TREATMENTS :

Main-plot treatments :
2 G.M. crop: $\mathrm{G}_{1}=$ Sesbania and $\mathrm{S}_{2}=$ Pillipesara.
Sub-plot treatments :
3 manuijal treatments : $M_{1}=$ G.M. followed by Paddy with no $\mathrm{P}_{2} \mathrm{O}_{3}, \mathrm{M}_{2}=$ G.M. +45 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ 1 as Super applied to Paddy crop and $\mathrm{M}_{3}=45 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to G.M. followed by Paddy (indirect method).
G.M. was puddled in situ after estimation in every plot. G M. sown on 8.3.1954. The estimated yield of G.M. are: Sesbania: $17206 \mathrm{lb} . / \mathrm{ac}$, to $39422 \mathrm{lb} . / \mathrm{ac}$. and Pillipesara: 871 to $15681 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication ; 3 sub-plots/main $\cdot$ plot. (b) N.A. (iii) 6 . (iv) (a) and (b) $24^{\circ} \times 99^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Tiller count and height measurements were recorded. Grain and straw samples sent for analysis. (iv) (a) 1953-1956. (b) Yes. (c) N.A. (v) (a) Samalkot. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $3385 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $406.9 \mathrm{lb} . / \mathrm{ac}$. (b) $171.6 \mathrm{lb} . / \mathrm{ac}$. (iii) Only the interaction $\mathrm{M} \times \mathrm{G}$ is significant. (vi) Av. yield of grain in lb./ac.

|  | $\mathbf{M}_{\mathbf{1}}$ | $\mathbf{M}_{\mathbf{2}}$ | $\mathbf{M}_{\mathbf{3}}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{G}_{1}$ | 3330 | 3380 | 3278 |
| $\mathbf{G}_{2}$ | 3233 | 3513 | 3575 |
| Mean | 3282 | 3447 | 3427 |

S.E. of differencc of two.

1. G marginal means $=135.6 \mathrm{lb} / \mathrm{ac}$.
2. $M$ marginal means $\quad=70.0 \mathrm{lb} / \mathrm{ac}$.
3. $M$ means at the same level of $G=99.0 \mathrm{lb} / / \mathrm{ac}$.
4. G neans at the same level of $\mathrm{M}=157.8 \mathrm{Ib} . / \mathrm{ac}$.

$$
\begin{aligned}
& \text { Crop :- Paddy (Sarava). } \\
& \text { Site :- Agri. Res. Stn., Maruteru. }
\end{aligned}
$$

Ref :- A.P. 55(54).

Object:-To find out merits and demerits of application of phosphatic manures to Rice directly with G.M. and indirectly applied to the G.M. crop in single crop wet lands.

1. BASAL CONDITIONS :
(i) (a) Paddy—Paddy. (b) Paddy followed by G.M. crop. (c) Super at $45 \mathrm{lb} . / \mathrm{ac} . \mathrm{P}_{2} \mathrm{O}_{5}$ applied to the G.M. crop as per schedule. (ii) (a) Clay. (b) N.A. (iii) 11.5.55/16, 17.7.55. (iv) (a) Ploughing thrice, trimming bunds, digging corners and levelling. (b) Transplanting. (c)-. (d) Bulk planting. (e) N.A. (v) As per treatments. (vi) MTU-5. (vii) Irrigated. (viii) Weeding twice. (ix) $43.61^{\prime \prime}$. (x) 29.11 .1955.
2. TREATMENTS:

Same as in expt. no. 54 (67) on page 40.
G.M. puddled in situ after estimation in every plot. G.M. sown on 18.3.1955. The estimated yield of green matter in the plots are : Sesbania: 5227 lb . to $34848 \mathrm{lb} . / \mathrm{ac}$. ; Phillipesara: 0 to $20,909 \mathrm{lb} . / \mathrm{ac}$.
3. JESIGN and 4. GENERAL :

Same as in expt. no. $54(67)$ on page 40.
5. RESULTS :
(i) $2567 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $417.4 \mathrm{lb} / \mathrm{ac}$. (b) $117.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Only interaction $\mathrm{G} \times \mathrm{M}$ is significant. (iv) Av. yield of grain in lb ./ac.

|  | $\mathrm{M}_{1}$ | $\mathrm{Ma}_{2}$ | $\mathrm{M}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{G}_{1}$ | 2676 | 2602 | 2517 | 2598 |
| $\mathrm{G}_{2}$ | 2441 | 2551 | 2615 | 2536 |
| Mean | 2558 | 2577 | 2566 | 2567 |

S.E. of difference of two

| 1. $G$ marginal means | $=139.1 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. $M$ marginal means | $=48.1 \mathrm{lb} . / \mathrm{ac}$. |
| 3. $M$ means at the same level of $G=68.0 \mathrm{lb} . / \mathrm{ac}$. |  |
| 4. $G$ means at the same level of $M=149.7 \mathrm{lb} . / \mathrm{ac}$. |  |

Grop :- Paddy (Saraia).<br>Ref:- A.P. 54(65).<br>Site :- Agri. Res. Stn., Maruteru.<br>Type :- ' $M$ '.

Object :-To find out the best method of application of phosphatic manures to Paddy crop by direct and indirect application to preceeding G.M.

1. BASAL CONDITIONS :
(i) (a) Paddy-G.M.-Paddy. (b) Paddy followed by G.M. (c) Super at $45 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to G.M. as per treatments. (ii) (a) Clay. (b) N.A. (iii) 12.5.195419.7.1954. (iv) (a) Ploughing thrice, trimming bunds, digging corners nnd levelling. (b) Transplanting and bulk plantiog. (c) to (e) N.A. (v) As per treatments. (vi) MTU-5 (iste). (vii) Irrigated. (viii) Weeding twice. (ix) 53.40". (x) 4.12.1954.
2. TREATMENTS :

Same as in expt. no. 54(68) on page 40.
G.M. were paddled in situ after estimation in every plot. G.M. sown on 23.4.1954. Estimated yield of G.M. in the plots is: Dhaincha: $8,118 \mathrm{lb}$. to $28,314 \mathrm{lb} . / \mathrm{ac}$. Sannhemp : $1,100 \mathrm{lb}$. to 2200 lb ./ac.
3. DESIGN :

Same as in expt. no. 54 (68) on page 40.
4. GENERAL :

Same as in expt. no. $54(67)$ on page 40.
5. RESULTS :
(i) $3528 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $140.4 \mathrm{lb} . / \mathrm{ac}$. (b) $217.4 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in ib ./ac.

|  | $\mathrm{M}_{1}$ | $\mathbf{M}_{2}$ | $\mathrm{M}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $G_{1}$ | 3581 | 3493 | 3462 | 3512 |
| $\mathrm{G}_{2}$ | 3586 | 3424 | 3622 | 3544 |
| Mean | 3584 | 3459 | 3542 | 3528 |

S.E. of difference of two

1. G marginal means $\quad=57.3 \mathrm{lb} . / \mathrm{ac}$.
2. $M$ marginal means $\quad=108.7 \mathrm{lb} . / \mathrm{ac}$.
3. $\mathbf{M}$ means at the same level of $\mathbf{G}=153.8 \mathrm{lb} . / \mathrm{ac}$.
4. $G$ means at the same level of $M=137.8 \mathrm{lb} . / \mathrm{ac}$.
Crop:- Paddy (Dalua).

Site :- Agri. Res. Srn., Maruteru.

Ref:- A.P. 54(64).
Type :- 'M'.

Object :-To find out the best method of application of phosphatic manures to Paddy either by direct or indirect application to preceeding green manure.

1. BASAL CONDITIONS:
(i) (a)’Padjy—G.M.—Paddy. (b) Paddy followed G.M. (c) Super at $45 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to G.M. as per treatments. (ii) (a) Clay. (b) N.A. (iii) $12.12 .1954 / 21,22.2 .1955$. (iv) (a) Ploughing thrice, trimm ng bunds, digging corners, levelling. (b) Transplanting and bulk planting. (c) to (e) N.A. (v) As per treatments. (vi) MTU-15 (early). (vii) Irrigated. (viii) Weeding twice. (ix) $3.24^{\prime \prime}$. (x) 18.5.1955.

## 2. TREATMENTS :

Same as in expt no. 54(68) on page 40.
G.M. puddled in situ after estimation in each plot. G.M. sown on 30.11 .1954 in the standing crop of main crop Paddy. The estimated yield of green matter ranged from 2831 to 6525 lb ./ac. of sannhemp and from 1504 to $4574 \mathrm{lb} . / \mathrm{ac}$. of dhanicha.
3. DESIGN :

Same as in expt no. $54(68)$ on page 40.
4. GENERAL :

Same as io expt. no. 54(67) on page 40.
5. RESULTS :
(i) $2626 \mathrm{lb} / \mathrm{ac}$. (ii) (a) $200.6 \mathrm{lb} . / \mathrm{ac}$. (b) $148.1 \mathrm{lb} / \mathrm{ac}$. (iii) Only main effect of $G$ is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{M}_{1}$ | $M_{2}$ | $\mathrm{M}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| G1 | 2299 | 2376 | 2305 | 2327 |
| $\mathrm{G}_{2}$ | 2822 | 3014 | 2937 | . 2924 |
| Mean | 2561 | 2695 | 2621 | . 2626 |

S.E. of difference of two

1. G marginal mean $\quad=81.9 \mathrm{lb} . / \mathrm{ac}$.
2. M marginal means $\quad=74.1 \mathrm{lb} / \mathrm{a} \mathrm{a}$.
3. M means at the same level of $G=124.7 \mathrm{lb} . / \mathrm{ac}$.
4. G means at the same level of $\mathrm{M}=118.3 \mathrm{lb} / \mathrm{ac}$.

$$
\begin{aligned}
& \text { Crop :- Paddy (Sarava). } \\
& \text { Site :- Agri. Reṣ. Stn., Maruteru. }
\end{aligned}
$$

Ref:- A.P. 55(56).
Type :- ' $\mathbf{M}^{\prime}$.

Object:-To find out the best method of application of phosphate manures to Paddy either by direct or by indirect method to preceeding G.M. crop.

1. BASAL CONDITIONS :
(i) (a) Paddy-G.M.—Paddy. (b) Paddy followed by G.M. (c) Super Phosphate at $945 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to G.M. crop as per schedule, (ii) (a) Clay. (b) N.A. (iii) 11.5.1955/26.7.1955. (iv) (a) Ploughing
1 thrice, trimming bunds, digging cornes, levelling and transplanting. (b) Bulk planting. (c) to (e) N.A. (v) G.M. as per treatments. (vi) MTU-5 (late). (vii) Irrigated. (viii) Weeding twice. (ix) $43.61^{\prime \prime}$. (x) 7.12.1955.
2. TREATMENTS :

Same as in expt. no. 54(68) on page 40.
G M. were applied and puddled in situ after estimation in every plot. G.M. sown on 8.5.1955. Estimated yield of green matter in the plots ranges from $5226 \mathrm{lb} . / \mathrm{ac}$. to $12194 \mathrm{lb} . / \mathrm{ac}$. in Dhanicha and from 0 to $7400 \mathrm{lb} . / \mathrm{ac}$. in sannhemp.
3. DESIGN and 4. GENERAL :

Same as in expt. no. $54(67)$ on pige 40.
5. RESULTS :
(i) $2598 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $204.6 \mathrm{lb} . / \mathrm{ac}$
(b) $66.4 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is signifizant. (iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

|  | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathbf{M}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{G}_{1}$ | 2609 | 2558 | 2673 | 2613 |
| $\mathrm{G}_{2}$ | 2530 | 2634 | 2585 | 2583 |
| Mean | 2569 | 2596 | 2629 | 2598 |

S.E. of difference of two

| 1. G marginal means | $=83.5 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. $M$ marginal means | $=33.2 \mathrm{lb} . / \mathrm{ac}$. |
| 3. $M$ means at the same level of $G$ | $=46.9 \mathrm{lb} . / \mathrm{ac}$. |
| 4. G means at the same level of $\mathbf{M}$ | $=91.9 \mathrm{lo} . / \mathrm{ac}$. |

Crop :- Paddy (Dalua).
Site :- Agri. Res. Stn., Maruteru.

Ref:- A.P. 55(55).
Type :- 'M'.

Object:-To find out the best method of application of phosphatic manures to Paddy either by direct or by indirect method.

1. BASAL CONDITIONS :
(i) (a) Paddy-G.M.-Paddy. (b) Paddy followed by G.M. (c) Super at $45 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to G.M. crop as per treatments. (ii) (a) Clay. (b) N.A. (iii) 21.12.1955/18.2.1956. (iv) (a) Ploughing thrice, trimming bunds, digging corners and levelling. (b) Bulk planting. (c) to (e) N.A. (v) As per treatments. (vi) MTU-15 (early) (vii) Irrigated. (viii) 3 weedings. (ix) $4.90^{\circ}$. (x) 12.5.1956.
2. TREATMENTS :

Same as in expt. no. $54(68)$ on page 40.
3. DESIGN and 4. GENERAL :

Same as in expt. no. $54(67)$ on page 4.
5. RESULTS:
(i) $2604 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) 197.0 lb ./ac. (b) $172.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Only main effect of $G$ is significant. (iv) Av. yield of grain in ib./ac.

|  | $\mathbf{M}_{1}$ | $\mathbf{M}_{\mathbf{2}}$ | $\mathbf{M}_{\mathbf{3}}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{G}_{1}$ | $\left.\begin{array}{lll}2827 & 2810 & 2893 \\ \mathrm{G}_{2} & 2354 & 2365\end{array}\right) 2376$ | 2843 |  |  |
| Mean | 2591 | 2588 | 2634 | 2604 |

S.E. of difference of two

1. G marginal means $=81.2 \mathrm{lb} . / \mathrm{ac}$.
2. $M$ marginal means $\quad=\quad 86.2 \mathrm{lb} / \mathrm{ac}$.
3. $M$ means at the same level of $G=121.8 \mathrm{lb} . / \mathrm{ac}$.
4. $G$ means at the same level of $M=128.4 \mathrm{lb} . / \mathrm{ac}$.
```
Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Maruteru.
Ref :- A.P. 56(56).
Type :- ‘M'.
```

Object:-To find out the merits and demerits of application of phosphatic manures to Paddy directly and indirectly.

## 1. BASAL CONDITIONS :

(i) (a) Paddy-G.M.-Paddy. (b) Paddy followed by G.M. (c) Super at 45 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to G.M. crop as per treatments. (ii) (a) Clay. (b) N.A. (iii) 22.5.1956/10, 11.7.1956. (iv) (a) Ploughing thrice, trimming bunds, digging corners and levelling. (b) Transplating and bulk planting. (c) to (e) N.A. (v) G.M.-As per treatments. (vi) MTU-10 (late). (vii) Irrigated. (viii) 2 weedings. (ix) $53.76^{\prime \prime}$. (x) 29.11.1956 and 1.12.1956.

## 2. TREATMENTS:

3 manurial treatments : $\quad \mathrm{M}_{1}=$ G.M. without $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{2}=\mathrm{G} . \mathrm{M} .+45 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Paddy crop and $\mathrm{M}_{3}=45 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to G.M. followed by Paddy. Where the G.M. is Sesbania :
G.M. was puddled in situ after estimation in every plot. G. W. was sown on 25.3 .1956 . The yield of green matter ranges from 4066 to 3078 lb ./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 12 . (iv) (a) and (b) $24^{\prime} \times 99^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Tiller count and height measurements. Grain and straw samples were sent for analysis. (iv) (a) 1953-1956. (b) Yes. (c) N.A. (v) (a) Agri. Res. Stn., Samalkot. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2997 \mathrm{lb} . / \mathrm{ac}$. (ii) $226.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathbf{M}_{\mathbf{1}}$ | $\mathbf{M}_{\mathbf{2}}$ | $\mathbf{M}_{\mathbf{3}}$ |
| :--- | :--- | :--- | ---: |
| Av. yield | 2952 | 3012 | 3028 |
|  |  |  |  |
|  | S.E./mean | $=$ | $65.4 \mathrm{lb} . / \mathrm{ac}$. |

Crop:- Paddy (Dalua).
Site :- Agri. Res. Stn., Maruteru.

Ref :- A.P. 57(12).
Type :- ' $\mathbf{M}^{\prime}$ '.

Object:-To find out the best method of application of phosphatic manures to Paddy either by direct or indirect application to preceeding G.M. crop.

1. BASAL CONDITIONS :
(i) (a) Paddy—G.M.—Paddy. (b) Paddy followed by G.M. (c) Super phosphate at $45 \mathrm{lb} . / \mathrm{ac} . \mathrm{P}_{2} \mathrm{O}_{5}$ to G.M. crop as per schedule. (ii) (a) Clay. (b) N.A. (iii) $10.1 .1957 / 14.15 .2 .1957$. (iv) (a) Ploughing thrice and trimming bunds, digging corners, levelling and transplanting. (b) Bulk planting. (c) to (e) N.A. (v) G.M. as per treatments. (vi) MTU-15 (early) (vii) Irrigated. (viii) 2 weedings. (ix) $2.14^{\prime \prime}$. (x) $9,10.5 .1957$.
2. TREATMENTS:

Same as in expt. no. $56(56)$ above.
DESIGN :
(i) R.B.D. (ii) (a) 3 . (b) N.A. (iii) $8 . \quad$ (iv) (a) and (b) $22^{\prime} \times 90^{\circ}$ (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Tiller count and height measurement. Grain and straw samples sent for analysis. (iv) (a) 1953-1956. (b) Yes. (c) N.A. (v) (a) Agri. Res. Stn., Samalkot. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2830 \mathrm{lb} . / \mathrm{ac}$.
(ii) $24.6 \mathrm{lb} . / \mathrm{ac}$
(iii) Treatment differences are not significant. (iv) Av. yield of grain
in lb. $/ \mathrm{ac}$.

| Treatments | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ |
| :--- | :--- | :--- | ---: |
| Av. yield | 2790 | 2873 | 2821 |
|  | S.E./mean | $=$ | $8.7 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Tabi).
Site :- Agri. Res. Instt. Rajendranagar.

Ref :- A.P. 58(61).
Type :- ' $\mathbf{M}^{\prime}$.

Object : -To study the effect of different placements of chemical fertilizers on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (chalka).. (b) N.A. (iii) 22.12.1958/23.1.1959. (iv) (a) 4 puddlings. (b) Transplanting. (c) to (e) N.A. (v) As per treatments. (vi) HR -19 'medium). (vii` Irrigated. (viii) One manuring and 2 weedings. (ix) $0.5^{\circ}$. (x) 29.4.1959.
2. TREATMENTS:

15 manurial treatments : $\quad M_{0}=$ No manure, $M_{1}=45 \mathrm{lb} / \mathrm{ac}$. of N in puddle, $\mathrm{M}_{2}=45 \mathrm{lb} / \mathrm{ac}$. of N smeared, $\mathrm{M}_{3}=22 \mathrm{lb} . / \mathrm{ac}$. of N smeared $+23 \mathrm{lb} . / \mathrm{ac}$. of N at first weedirg, $\mathrm{M}_{4}=$ 22 lb ./ac. of N in puddie +23 lb ./ac. of N at first weeding, $\mathrm{M}_{5}=22 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in puddle, $\mathrm{M}_{6}=22 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ smeared, $\mathrm{M}_{7}=\mathrm{M}_{1}+\mathrm{M}_{5}, \mathrm{M}_{8}=\mathrm{M}_{1}+\mathrm{M}_{6}$ $M_{9}=M_{2}+M_{5}, M_{10}=M_{2}+M_{6}^{\prime}, \quad M_{11}=M_{3}+M_{5}, \quad M_{12}=M_{3}+M_{6}, \quad M_{13}=M_{4}+M_{5}$, and $\mathrm{M}_{14}=\mathrm{M}_{4}+\mathrm{M}_{6}$.
Sources of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ are N.A.
3. DESIGN :
(i) R.B.D.
(ii) (a) 15 .
(b) N.A.
(iii) 2. (iv) (a) $1 / 33.33 \mathrm{ac}$
(b) $1 / 34.25 \mathrm{ac}$.
(v) N.A. (vi) Yes.

GENERAL :
(i) Good. (ii) Endrine sprayed as preventive measure. (iii) Grain yield. (iv) (a) 1958-1959. (b) Yes. (c) N.A. (v) (a) Rudrur. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1610 \mathrm{lb} / \mathrm{ac}$. (ii) $174.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av, yield of grain in fb ./ac.

| Treatment | $\mathrm{M}_{0}$ | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $\mathrm{M}_{4}$ | $\mathrm{M}_{5}$ | $\mathrm{M}_{6}$ | $\mathrm{M}_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 830 | 1841 | 1267 | 1464 | 1892 | 634 | 993 | 2380 |
| Treatment | $\mathrm{M}_{8}$ | M9 | $\mathrm{M}_{10}$ | $\mathrm{M}_{11}$ | $\mathrm{M}_{12}$ | $\mathrm{M}_{13}$ | $\mathrm{M}_{14}$ |  |
| Av. yield | 1866 | 1712 | 1318 | 2089 | 1935 | 1883 | 2055 |  |

Crop :- Paddy (Abi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 58(55).
Type :- ' $\mathbf{M}$ '.

Object :-To study the effect of different placements of chemical fertilizers on Paddy.

1. BASAL CONDITIONS :
(i) (a) Ni1. (b) Paddy. (c) N.A. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii) 166.1958/12.7.1958.
(iv) (a) 4 puddlings. (b) Transplanting. (c) to (e) N.A. (v) As per treatments. (vi) HR-19 (medium). (vii) Irrigated. (viii) One manuring and two weedings. (ix) 27.9". (x) 27.10.1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58(61) above.
5. RESULTS :
(i) $2378 \mathrm{lb} . / \mathrm{ac}$. (ii) $263.2 \mathrm{ib} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yseld of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Trearment | $\mathrm{M}_{0}$ | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $\mathrm{M}_{4}$ | $\mathrm{M}_{5}$ | $\mathrm{M}_{6}$ | M 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1815 | 2312 | 1798 | 2363 | 2603 | . 2038 | 2397 | 2911 |
| $\frac{1}{\text { Treatment }}$ | $\mathrm{M}_{8}$ | $\mathrm{M}_{9}$ | $\mathrm{M}_{10}$ | $\mathrm{M}_{11}$ | $\mathrm{M}_{12}$ | $\mathrm{M}_{13}$ | $\mathrm{M}_{14}$ |  |
| A.v. yield | 2757 | 2312 | 1815 | 2586 | 2551 | 2808 | 2603 |  |
| ! | S.E./mean $=186.1 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |  |

- Crop :- Paddy (Abi).

Site :- Agri. Res. Instt., Rajendranagar.

## Ref :- A.P. 59(79).

Type :- ' $\mathbf{M}$ '.

Object :-To study the effect of placement of different chemical fertilizer on Paddy.
baSAl CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) N.A. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii) 1.6.1950/11.7.1959. (iv) (a) 4 puddlings. (b) Transplanting. (c) to (e) N.A. (v) N.A. (vi) HR-19 (medium); (vii) Irrigated. (viii) One hand weeding. (ix) 26.". (x) 7.10.1959.
2. TREATMENTS :

Same as in expt. no. $58(61)$ on page 46.
3. DESIGN :
(i)
. GENERAL :
(i) Satisfactory. : (ii) Nil. (iii) Grain yield. (iv) (a) 1958-1959. (b) Yes. (c) Nil. (v) and (vii) Nil. 1
RESULTS:
(i) $4839 \mathrm{lb} . / \mathrm{ac}$. (ii) 268.5 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathrm{M}_{0}$ | $\mathbf{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $\mathrm{M}_{4}$ | $\mathrm{M}_{5}$ | M ${ }_{6}$ | $\mathrm{M}_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 3694 | 4704 | 3659 | 4809 | 5297 | 4147 | 48:9 | 5924 |
| Treatment | $\mathrm{M}_{8}$ | M9 | $\mathrm{M}_{10}$ | $\mathrm{M}_{11}$ | $\mathrm{M}_{12}$ | $\mathrm{M}_{13}$ | $\mathrm{M}_{14}$ |  |
| Av. yield | 5511 | 4704 | 3694 | 5262 | 5192 | 5.15 | 5297 |  |
| S.E./mean $=189.9 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |  |  |

$\stackrel{1}{4}$

```
Crop :- Paddy (Abi).
Site :- Agri. Res. Instt., Rajendranagar.
Ref:- A.P. 58(54).
Type :- 'M'.
```

Object:-To study the effect of Plantomine as an activisor of organic manures like F.Y.M. and G.N.C. for Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) Red sandy loam (chalka). (b) N.A. (iii) $16.6 .1958 / 16.71958$. (iv) (a) 3 puddlings. (b) Transplanting. (c) to (e) N.A. (v) Nil. (vi) HR-19 (medium) (vii) Irrigated. (viii) 2 weedings. (ix) $27.9^{\prime \prime}$. (x) 28.10.1958.
2. TREATMENTS:

18 manurial treatments : $M_{0}=$ Control (no manure), $M_{1}=45 \mathrm{lb} . / \mathrm{ac}$. of N as F.Y.M. $\mathrm{M}_{2}=45 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C., $\mathrm{M}_{3}=\mathrm{M}_{1}+$ Plantomine, $\mathrm{M}_{4}=\mathrm{M}_{2}+$ Plantomine, $\mathrm{M}_{5}=22.5 \mathrm{lb}$./ac. N as F.Y.M. + Plantomine, $M_{6}=22.5 \mathrm{lb} / \mathrm{ac}$. of N , as G.N.C.+Plantomine, $\mathrm{M}_{7}=$ Plantomine, alone. $\mathrm{M}_{8}=$ Plantomine +22 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{9}=$ Plantomine $+11 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5} . \mathrm{M}_{10}=\mathrm{M}_{1}+22 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{11}=\mathrm{M}_{2}+22 \mathrm{lb} . / \mathrm{ac}$. of $P_{2} \mathrm{O}_{5}, \mathrm{M}_{12}=\mathrm{M}_{1}+\mathrm{M}_{8}, \mathrm{M}_{13}=\mathrm{M}_{2}+\mathrm{M}_{8}, \mathrm{M}_{14}=\mathrm{M}_{1}+\mathrm{M}_{9}, \mathrm{M}_{15}=\mathrm{M}_{2}+\mathrm{M}_{9}, \mathrm{M}_{16}=\mathrm{M}_{1}$ +11 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{M}_{17}=\mathrm{M}_{2}+11 \mathrm{lb}$. $/ \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. DESIGN :
(i) R.B.D. (ii) (a) $18 . \quad$ (b) N.A. (iii) $2 . \quad$ (iv) (a) $1 / 43.48 \mathrm{ac}$. (b) $1 / 45.45 \mathrm{ac}$ (v) N.A. (vi) Yes.
4. GENERAL:
(i) Good. (ii) No insect attack was observed-Endrine sprayed as a preventive measure. (iii) Grain yie.d. (iv) (a) 1958-1959. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) $2071 \mathrm{lb} . / \mathrm{ac}$. (ii) $298.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (vi) Av. yield of grain in lb. $/ \mathrm{ac}$.

| Treatment | $\mathrm{M}_{0}$ | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $\mathrm{M}_{4}$ | $\mathbf{M}_{\mathbf{3}}$ | M ${ }_{6}$ | $\mathrm{M}_{7}$ | $\mathrm{M}_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1829 | 2022 | 2477 | 1375 | 2375 | 1829 | 2568 | 1954 | 1659 |
| Treatment | $\mathrm{M}_{3}$ | $\mathrm{M}_{10}$ | $\mathrm{M}_{11}$ | $\mathrm{M}_{10}$ | $\mathrm{M}_{13}$ | M ${ }_{14}$ | $\mathrm{M}_{15}$ | $\mathrm{M}_{16}$ | $\mathrm{M}_{17}$ |
| Av. yield | 1920 | 1443 | 2420 | 2125 | 2091 | 2034 | 2386 | 2170 | 2602 |

```
Crop :- Paddy (Tabi).
Site :- Agri. Res. Instt., Rajendranagar.
Ref:- A.P. 58(62).
Type :- ' \(\mathbf{M}\) '.
```

Object:-To study the effect of Plantomine as an activisor of organic manures like F.Y.M. and G.N.C. for Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii: $7.12 .1958 /$ 17.1.1959. (iv) 4 puddlings. (b) Transplanting. (c) to (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) 2 weedings. (ix') $0.3^{*}$. (x) 18.4.1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. $58\left(5 \frac{1}{}\right)$ on page 47.
5. RESULTS:
(i) $1232 \mathrm{lb} . / \mathrm{ac}$. (ii) $184.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb ./ac.

| Treatment | $\mathrm{M}_{\mathbf{0}}$ | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $\mathrm{M}_{4}$ | $\mathrm{M}_{5}$ | $\mathrm{M}_{6}$ | $\mathrm{M}_{7}$ | $\mathrm{M}_{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 614 | 795 | 1909 | 852 | 1613 | 1011 | 1579 | 727 | 898 |
| Treatment | $\mathrm{M}_{9}$ | $\mathrm{M}_{10}$ | $\mathrm{M}_{11}$ | $\mathrm{M}_{12}$ | $\mathrm{M}_{13}$ | $\mathrm{M}_{14}$ | $\mathrm{M}_{15}$ | $\mathrm{M}_{15}$ | $\mathrm{M}_{17}$ |
| Av. yield | 932 | 1148 | 1727 | 1318 | 1773 | 875 | 1773 | 864 | 1773 |
|  | S.E./mean $=$ | $130.2 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |  |

Crop :- Paddy (Abi).
Site :- Agri. Res. Instt. Rajendranagar.

Ref:- A.P. 59(80).
Type :- 'M'.

Object :- To study the effect of Plantomine as an activisor of organic manures like F.Y.M. and G.N.C. for Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) N.A. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii) 1.6.1959/10.7.1959. (iv) (a) 4 puddlings. (b) Transplating. (c) to (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) $26.0^{\circ}$. (x) 5.10 .1959 .
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. $58(54)$ on page 47.
5. RESULTS:
(i) $1236 \mathrm{lb} . / \mathrm{ac}$. (ii) $246.7 \mathrm{lb} . / \mathrm{ac}$.' (iii) Treatment differences are significant. (iv) Av. yield of grain in lb./ac.

| Treatment | $\mathrm{M}_{0}$ | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $\mathbf{M}_{4}$ | $\mathrm{M}_{5}$ | $\mathrm{M}_{6}$ | $\mathrm{M}_{7}$ | $\mathrm{M}_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 750 | 1205 | 1341 | 989 | 1625 | 1080 | 1466 | 784 | 1114 |
| Treatment | $\mathrm{M}_{9}$ | $\mathrm{M}_{10}$ | $\mathrm{M}_{11}$ | $\mathrm{M}_{12}$ | $\mathrm{M}_{13}$ | $\mathrm{M}_{14}$ | $\mathrm{M}_{15}$ | $\mathrm{M}_{16}$ | $\mathrm{M}_{17}$ |
| Av. yield | 909 | 1068 | 1636 | 1500 | 1409. | 1068 | 1625 | 1250 | 1432 |
| S.E. $/$ mean $=174.4 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |  |  |  |

Crop :- Paddy ( $A b i$ ).
Site :- Agri. Res. Instt., Rajendranagar.

## Ref:- A.P. 54(77).

Type :- ' $\mathbf{M}$ ’.
'Object:-To study the effect of phosphate on paddy and its residual effect on the subsequent Paddy crop. BASAL CONDITIONS :
' (i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Black cotton soil: (b) N.A. (iii) N.A./27.7.1954. (iv) (a) One ploughing and 2 to 3 puddlings. (b) Transplanting. (c)-. (d) $9^{\prime \prime} \times 6^{\prime \prime}$. (e) 2. (v) Nil. (vi) HR-19. - (vii) Irrigated. (viii) Weeding. (ix) N.A. (x) 29 and 30.10.1954.
2. TREATMENTS :

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \& $\mathrm{P}_{2} \mathrm{O}_{5}$ applied as basic dose | 0 | 200 | 0 | 0 | 200 | 100 | 0 | 0 | 100 | 200 | 0 | 0 |
| ${ }^{1} \mathrm{~N}$ applied every season | 0 | 50 | 0 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| $\mathrm{P}_{2} \mathrm{O}_{5}$ applied every season | 0 | 37.5 | 37.5 | 25 | 12.5 | 25 | 37.5 | $50^{\circ}$ | 37.5 | 25 | 75 | 100 |

3. DESIGN:
(i) R.B.D. (ii) (a) 12 .
(b) N.A.
(iii) 4.
(iv) (a) N.A.
(b) $1 / 47.6 \mathrm{ac}$.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-N.A. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :


Crop :- Paddy (Tabi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 55(73).
Type :- ‘'M'.

Object : - To study the effect of phosphate on paddy and its residual effect on the subsequent Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Black cotton soil. (b) N.A. (iii) N.A./27.1.1955. (iv) (a) One ploughing and 2 to 3 puddlings. (b) Transplanting. (c)一. (d) $9^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 (v) Nil. (vi) HR-19(medium). (vii) Irrigated. (viii) Two weedings. (ix) N.A. (x) 21.5.1955.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(77) above.
5. RESULTS:
(i) $2002 \mathrm{lb} . / \mathrm{ac}$. (ii) $207,9 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 238 | 2476 | 988 | 1940 | 2250 | 2119 | 2226 | 2274 | 2333 | 2333 | 2298 | 2548 |

S.E./mean $=103.9 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy. Ref :- A.P. 57(75).
Site :- Agri. Res. Instt., Rajendranagar. Type :- `M'.
```

Object :-To study the effect of phosphate on Paddy and its residual effect on the subsequent Paddy crop.

1. BASAL CONDITIONS :
(i) (a) NiI. (b) Paddy. (c) As per treatments. (ii) (a) Black cotton soil. (b) N.A. (iii) 18.6.1957/17.7.1957. (iv) (a) 4 puddlings. (b) Transplanting. (c) to (c) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) 2 weedings, (ix) N.A. (x) 24.10.1957.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(77) on page 49.
5. RESULTS :
(i) 1266 lb. (ac. (ii) $336.8 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb.jac.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 331 | 1531 | 1081 | 1269 | 1560 | 1175 | 1137 | 1537 | 1144 | 1369 | 1737 | 1387 |

Grop:- Paddy (Tabi).
Ref :- A.P. 57(38).
Site :- Agri. Res. Instt., Rajendranagar.
Type :- ${ }^{6} \mathbf{M}$ '.

Object :-To study the effect of phosphate on Paddy and its residual effect on the subsequent Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) N.A. (iii) 19.12.1957/29.1.58. (iv) (a) 4 puddlings. (b) Transplanting. (c) to (e) N.A. (v) As per treatments. (vi) HR-19 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 7.S.1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(77) on page 49.
5. RESULTS:
(i) $1234 \mathrm{lb} . / \mathrm{ac}$. (ii) $337.7 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb. lac .

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $!12$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 169 | 1363 | 744 | 1100 | 888 | 1419 | 1213 | 1594 | 1300 | 1587 | 1381 | 2050 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

$$
\begin{array}{lc}
\text { Crop :- Paddy }(A b i) . & \text { Ref :- A.P. 58(57). } \\
\text { Site :- Agri. Res. Instt., Rajendranagar. } & \text { Type :- ‘M'. }
\end{array}
$$

Object :-To study the effect of phosphate on paddy and its residual effect on the subsequent Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) N.A. (iii) 16.6.1958/19.7.1958.
(iv) (a) 4 puddlings. (b) Transplanting. (c) to (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) $27.9^{\prime \prime}$. (x) 23.10 .1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. $54(77)$ on page 49.
5. RESULTS :
(i) $621.5 \mathrm{lb} . / \mathrm{ac}$. (ii) $158.8 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb ./ac.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 150 | 719 | 475 | 381 | 525 | 569 | 563 | 694 | 619 | 681 | 863 | 1219 |

S.E. $/$ mean $=79.4 \mathrm{lb} . / \mathrm{ac}$.

| Crop :- Paddy (Tabi). | Ref :- A.P. 58(60). |
| :--- | :--- |
| Site :- Agri. Res. Inst., Rajendranagar. | Type :- $\varsigma^{\mathbf{M}}$. |

Object :-To study the effect of phosphate on paddy and its residual effect on the subsequent Paddy crop.

1. EASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) $45 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$ applied to all the plots except one and three. (ii) (a) Black soil. (b) N.A. (iii) 22.12.1958/25.1.1959. (iv) (a) 4 puddlings. (b) Transplanting. (c) to (e) N.A. (v) No manure was applied to study the residual effects. (vi) HR-19 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) $0.5^{\prime \prime}$. (x) 4.5.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(77) on page 49 .
4. GENERAL :
(i) Not satisfactory. (ii) Endrine sprayed as a preventive measure. (iii) Yield data. (iv) (a) 1954-N.A. (b) Yes. (c) Nil. (v) (a) Rudrur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $336.9 \mathrm{lb} . / \mathrm{ac}$. (ii) $73.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 156.2 | 375.0 | 418.8 | 231.2 | 262.5 | 287.5 | 243.8 | 262.5 | 312.5 | 5450.0 | 456.3 | 587.5 |
|  | S.E | mean | $=36$ | 7 lb .'a |  |  |  |  |  |  |  |  |

## Crop :- Paddy (Abi).

Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 54(78)
Type :- ‘ ${ }^{\prime}$ ’.

Object :-To study the relative effect of organic and inorganic manures with and without P on Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam. (chalka) (b) N.A. (iii) N.A.-1st week of July 1954. (iv) (a) One ploughing and 2 puddlings. (b) Transplanting. (c) Nil. (d) $9^{\prime \prime} \times 6^{\prime \prime}$. (e) 2. (v) Nil. (vi) HR-19. (vii) Irrigated (viii) Weeding. (ix) N.A. (x) 13 10.1954.
2. TREATMENTS:

All the combinations of (1) and (2)
(1) 5 sources of nitrogenous manures : $\mathrm{S}_{0}=$ No manure, $\mathrm{S}_{1}=50 \mathrm{lb}$./ac. of N as G.M., $\mathrm{S}_{2}=50 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}, \mathrm{S}_{3}=50 \mathrm{lb} . / \mathrm{ac}$. of N as F.Y.M., $\mathrm{S}_{4}=50 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \mathrm{P}_{1}=25 \mathrm{lb} / \mathrm{ac}$.
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 10 .
(b) N.A.
(iii) 2. (iv) (a) N.A.
(b) $1 / 52.7 \mathrm{ac}$.
(v) No. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-contd. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) Nil. (vii) In repl. II the crop under 4 treatments was affected due to very fast percolation, these plots being located at the verge of an abrupt fall. In these plots only $4 \%$ of the seedlings established.
5. RESULTS :
(i) $2403 \mathrm{lb} . / \mathrm{ac}$. (ii) 605.7 lb ./ac. (iii) No effect is significant. (iv) Av . yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{S}_{0}$ | $S_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | S4 | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{\text {n }}$ | 1976 | 2451 | 2793 | 2266 | 2477 | 2392 |
| $\mathrm{P}_{1}$ | 2213 | 2925 | 2345 | 2372 | 2213 | 2414 |
| Mean | 2095 | 2688 | 2569 | 2319 | 2345 | 2403 |
| S.E. of $S$ marginal mean $=191.5 \mathrm{lb}$. <br> S.E. of $P$ marginal mean $=302.8 \mathrm{lb}$ <br> S.E. of body of table $=428.3 \mathrm{lb}$ |  |  |  |  |  |  |


| Crop :- Paddy (Tabi). | Ref :- A.P. 55(72). |
| :--- | :--- |
| Site :- Agri. Res. Instt., Rajendranagar. | Type :- ‘M’. |

Object :-To study the relative effect of organic and inorganic manures with and without $P$ en Paddy.

## 1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam. (chalka) (b) N.A. (iii) N.A./ 12.1.1955. (iv) (a) One ploughing and 2 puddlings. (b) 7 ransplanting. (c) Nil. (d) $9^{*} \times 6^{\prime \prime}$. (e) 2 . (v) Nil. (vi) HR-19. (vii) Irrigated. (viii) Weeding. (ix) N.A. (x) 19.4.1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $54(78)$ on page 51.
4. GENERAL:
(i) Not satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954 -contd. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) Nil. (vii) Crop failed due to lack of water supply.
5. RESULTS :
(i) $1731 \mathrm{lb} . / \mathrm{ac}$. (ii) $59.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of S and P are highly significant. (iv) Av. yield of grain in lb./ac.

|  | $\mathrm{S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{\mathbf{2}}$ | $\mathrm{S}_{\mathbf{3}}$ | $\mathrm{S}_{\mathbf{4}}$ | Mean |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | $\vdots$ | 474 | 1924 | 2082 | 1028 | 2108 | 1523 |
| $\mathrm{P}_{1}$ | 553 | 2345 | 2556 | 1133 | 3109 | 1939 |  |
| Mean | 514 | 2134 | 2319 | 1080 | 2609 | 1731 |  |

$$
\begin{array}{ll}
\text { S.E. of S marginal mean } & =18.8 . \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of } P \text { marginal mean } & =29.7 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =42.0 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :- Paddy ( $A b i$ ).
Site :- Agri. Res. Instt., Rajendranagar.

## Ref :- A.P. 57(70).

Type :- 'M'.

Object :- To study the relative effect of organic and inorganic manures with and without $\mathbf{P}$ on Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam. (chalka) (b) N.A. (iii) 18.6 .1957 17.7.1957. (iv) (a) 4 puddlings. (b) Transplanting. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigation (viii) 2 weedings. (ix) N.A. (x) 25.10.1957.
2. TREATMENTS :

All the combinations of (1) and (2)
(1) 5 sources of nitrogenous manures: $S_{0}=0, S_{1}=$ G.M., $S_{2}=$ A/S, $S_{3}=$ F.Y.M. and $S_{4}=$ G.N.C.
(2) 2 levels of application of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=25 \mathrm{lb} . / \mathrm{ac}$.

N applied at 50 lb ./ac. $\mathrm{A} / \mathrm{S}$ and G.NC. applied in two doses. G.M., F.Y.M. and $\mathrm{P}_{2} \mathrm{O}_{5}$ applied at second puddle. All manures broadcast.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 10 . (b) N.A. (iii) 2 . (iv) (a) $1 / 50 \mathrm{ac}$. (b) $1 / 52.7 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) A spray was given as a precautionary measure. (iii) Grain yield. (iv) (a) 1954-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.

## 5. RESULTS :

(i) $1235 \mathrm{lb} . / \mathrm{ac}$. (ii) $253.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of S is highly significant. Main effect of $\mathbf{P}$ and interaction $S \times P$ are not significant. (iv) $A v$. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

|  | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | $\mathrm{S}_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 663 | 1825 | 1163 | 1163 | 1187 | 1200 |
| $\mathrm{P}_{1}$ | 1025 | 1687 | 1375 | 975 | 1287 | 1270 |
| Mean | 844 | 1756 | 1269 | 1069 | 1237 | 1235 |


| S.E. of $S$ marginal mean | $=126.7 \mathrm{lb} . / \mathrm{ac}$ |
| :--- | ---: |
| S.E. of P marginal mean | $=80.1 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=$ |
|  | $179.2 \mathrm{lb} . / \mathrm{ac}$. |

,
$=126.7 \mathrm{lb} . / \mathrm{ac}$.

S.E. of P marginal mean $=$|  |
| :---: |
| S.E. |
|  |
|  |

$$
\begin{array}{ll}
\text { Crop :- Paddy (Tabi). } & \text { Ref :- A.P. 57(72). } \\
\text { Site :- Agri. Res. Instt., Rajendranagar. } & \text { Type :- ‘'M’. }
\end{array}
$$

Object:-To study the relative effect of organic and inorganic manures with and without $P$ on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii) $19.12 .1957 /$ 31.1.1958. (iv) (a) 4 puddlings. (b) Transplanted. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) Two weedings. (ix) N.A. (x) 3.5.1958.
2. TREATMENTS to 4. GENERAL :

Same as in expt no. $57(70)$ above.
5. RESULTS :
(i) 831 lb ./ac. (ii) $233.1 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of S is highly significant. Main effect of P is significant. Interaction $S \times P$ is not significant. (iv) Av. yield of grain in lb./ac.

|  | $\mathrm{S}_{0}$ | $S_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | $S_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{1}$ | 263 | 1421 | 1039 | 329 | 605 | 731 |
| $\mathrm{P}_{2}$ | 447 | 1329 | 1302 | 381 | 1197 | 931 |
| Mean | 355 | 1375 | 1171 | 355 | 901 | 831 |


| S.E. of $S$ marginal mean | $=116.5 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- | ---: |
| S.E. of P marginal mean | $=73.7 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=164.8 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Abi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 58(56).
Type :- ' $\mathbf{M}$ '.

Object :-To study the relative effects of organic and inorganic manures with and without P on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam. (chalka). (b) N.A. (iii) $16.6 .1958 /$ 10.7.1958. (iv) (a) 4 puddlings. (b) Transplanting. (c) to (e) N.A. (v) Nil. (vi) HR-19(medium). (vii) Irrigated. (viii) 2 weedings. (ix) $27.9^{\prime \prime}$. (x) 23.10.1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $57(70)$ on page 53.
4. GENERAL :
(i) Good. (ii) No insect attack was observed-Endrine sprayed as a preventive measure. (iii) Grain yield. (iv) (a) 1954-contd. (b) Yes (c) Nil. (v) (a) Rudrur and Warangal. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 2716 lb ./ac. (ii) 823.1 lb ./ac. (iii) Main effects of $S$ and $P$ are significant. Interaction $S \times P$ is not significant. (iv) Av. yield of grain in lb./ac.


Crop :- Paddy (Tabi).
Site :- Agri. Res. Instt., Rajendranagar.
Ref :- A.P. 58(65).
Type :- ${ }^{\boldsymbol{6}} \mathbf{M}^{\prime}$.
Object :-To study the relative effects of organic and inorganic manures with and without P on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii) 7.12.1958/14.1.1959. (iv) (a) 4 puddlings. (b) Transplanting. (c) to (e) N.A. (v) Nil. (vi) HR-19 (medium), (vii) Irrigated. (viii) 2 weedings. (ix) $0.3^{\prime \prime}$. (x) 19.4.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $57(70)$ on page 53.
4. GENERAL :
(i) Good. (ii) No insect attack was observed-Endrine sprayed as preventive measure. (iii) Grain yield. (iv) (a) 1954-contd. (b) Yes. (c) Nil. (v) (a) Rudrur and Warangal. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1735 \mathrm{lb} . / \mathrm{ac}$. (ii) 316.1 lb ./ac. (iii) Main effects of S is highly significant. Main effect of $\mathbf{P}$ and interaction $\mathrm{S} \times \mathrm{P}$ are not significant. (iv) Av. yield of grain in lb ./ac.

|  | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | $\mathrm{S}_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 842 | 2408 | 1868 | 1368 | 1868 | 1671 |
| $\mathrm{P}_{1}$ | 999 | 2605 | 2092 | 1395 | 1908 | 1799 |
| Mean | 921 | 2507 | 1980 | 1382 | 1888 | 1735 |

$$
\begin{array}{ll}
\text { S.E. of } S \text { marginal mean } & =158.1 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of P marginal mean } & =99.9 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =223.5 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :- Paddy (Tabi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 58(113).
Type :- $\boldsymbol{\epsilon}^{\mathbf{M}}$ '.

Object :-To study the relative effect of organic and inorganic manures with and without $P$ on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii) 7.12.1958/
N.A. (iv) (a) 1 ploughing and 2 puddlings. (b) Transplanting. (c) Nil. (d) $9^{\circ} \times 6^{\prime \prime}$. (e) 2 . (v) Nil. (vi) HR-19. (vii) Irrigated. (viii) 1 weeding. (ix) N.A. (x) 19.4.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $57(70)$ on page 53.
4, GENERAL :
(i) Satisfactory.
(ii) Nil.
(iii) Grain yield.
(iv) (a) 1954-contd.
(b) Yes.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $1738 \mathrm{lb} . / \mathrm{ac}$. (ii) $316.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of $S$ is highly significant. Main effect of $P$ and interaction $\mathrm{S} \times \mathrm{P}$ are $\mathrm{n}_{\mathrm{ot}}$ significant. (iv) Av. yield of grain in lb ./ac.

|  | $S_{0}$ | $S_{1}$ | $S_{\mathbf{2}}$ | $S_{3}$ | $S_{\mathbf{4}}$ | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $P_{0}$ | 843 1370 2411 1871 1871 <br> $P_{1}$ 1001 1397 2609 1910 | 2095 | 1673 |  |  |  |
| Mean | 922 | 1384 | 2510 | 1891 | 1983 | 1738 |


| S.E. of $S$ marginal mean | $=100.1 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $P$ marginal mean | $=158.3 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=223.8 \mathrm{lb} . / \mathrm{ac}$. |

```
Crop :- Paddy (Abi).
Site :- Agri. Res. Instt., Rajendranagar.
Ref :- A.P. 59(78).
Type :- ' \({ }^{\prime}\) '.
```

Object:-To study the relative effects of organic and inorganic manures with and without P on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii) 1.6.1959/ 3.7.1959. (iv) (a) 4 puddiings and 2 weedings. (b) Transplanting. (c) to (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) 1 weeding and puddlings. (ix) $26.0^{\circ}$. (x) 5.10.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $57(70)$ on page 53.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) $1954-$ N.A. (b) Yes. (c) Nil. (v) (a) Rudrur and Warangal. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1866 \mathrm{lb} . / \mathrm{ac}$. (ii) $236.0 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of $S$ and $P$ are not significant. Interaction $S \times P$ is not significant. (iv) Av. yield of grain in lb./ac.


Crop :- Paddy (Tabi).
Site :- Agri. Res. Instt., Rajendranagar.
Object :-To study the relative effects of organic and inorganic manures with and without $P$ on Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii)) (a) Red sandy loam. (chalka) (b) N.A. (iii) 24.12.1959/ 29.1.1960. (iv) (a) 4 puddlings, 2 weedings. (b) Transplanting. (c) to (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (ix) and (x) N.A.
2. TREATMENTS to 3. DESIGN :

Same as in expt. no. $57(70$ ) on page 53.
5. GENERAL:
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) $1954-$ N.A. (b) Yes. (c) Nil. (v) (a) Rudrur and Warangal. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 1967 lb .,'ac. (ii) 128.3 ib ./ac. (iii) Main effects of S and $\mathbf{P}$ are highly significant. Interaction $\mathrm{S} \times \mathbf{P}$ is not significant. (iv) Av. yield of grain in lb./ac.

|  | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | $\mathrm{S}_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 961 | 2237 | 2039 | 1711 | 2421 | 1874 |
| $\mathrm{P}_{1}$ | 1092 | 2539 | 2316 | 1816 | 2539 | 2060 |
| Mean | 1026 | 2389 | 2177 | 1763 | 2480 | 1967 |

S.E. of $S$ marginal mean $=64.2 \mathrm{lb} . / \mathrm{ac}$.
S.E. of $P$ marginal mean $=40.6 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $=90.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy ( $A b i$ ).
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 54(79).
Type :- 'M'.

Object:-To find out the optimum time of application of N to Paddy.

1. BASAL CONDITIONS
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii) 3.6.1954/ N.A. (iv) (a) 1 ploughing and 2 puddlings. (b) Transplanting. (c) Nil. (d) $9^{\prime \prime} \times 6^{\prime \prime}$. (e) 2, (v) Nil. (vi) HR-35. (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 6.12.1954.
2. TREATMENTS :

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{1}$ | - | $N$ | - | - | $\frac{1}{2} N$ | $\frac{1}{2} N$ | - | $\frac{1}{3} N$ | $\frac{1}{2} N+\frac{1}{2} \mathrm{P}$ |
| $\mathrm{t}_{2}$ | - | - | N | - | $\frac{1}{2} \mathrm{~N}$ | - | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{3} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}+\frac{1}{2} \mathrm{P}$ |
| $\mathrm{t}_{3}$ | - | - | - | N | - | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{3} \mathrm{~N}$ | - |

N as $\mathrm{A} / \mathrm{S}$ applied at $45 \mathrm{lb} . / \mathrm{ac}$. and P applied at $45 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5} . \mathrm{t}_{1}=$ application before planting, $\mathrm{t}_{2}=40$ days after planting and $t_{3}=80$ day's after planting.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) and (b) $1 / 50$ ac. (v) Nil. (vi) Yes.
4. GENERAL:
(i) Satisfactory.
(ii) Nil. (iii) Grain yield. (iv) (a) $1954-$ N.A.
(b) Yes. .(c) Nil.
(v) to (vii) Nil.
5. RESULTS :
(i) $3492 \mathrm{lb} . / \mathrm{ac}$. (ii) $437.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of grain in. 1b./ac.

| Treatmert | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yjeld | 2813 | 3638 | 3838 | 3638 | 3738 | 3563 | 3888 | 3225 | 3088 |

S.E./mean $=218.9 \mathrm{lb} . / \mathrm{ac}$.
Crop :- Paddy (Tabi),
Site :- Agri. Res. Instt., Rajendiranagar.

```
Ref :- A.P. 55(74).
Type :- 'M'.
```

Object :-To find out the optimum time of application of N to Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (Chalka). (b) N.A. (iii) 20.1.1955. (iv) (a) 1 ploughing and 3 puddlings. (b) Broadcasting. (c) to (e) N.A. (v) Nil. (vi) RDR-7. (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 12 to 13.5.1955.
2. TREATMENTS :

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{1}$ | - | $\mathbf{N}$ | - | - | $\frac{1}{2} N$ | $\frac{1}{2} N$ | - | ${ }_{2}^{\frac{1}{3} N}$ | $\frac{1}{2} N+\frac{1}{2} P$ |
| $t_{2}$ | - | - | $N$ | - | $\frac{1}{2} N$ | - | $\frac{1}{2} N$ | $\frac{1}{2} N$ | $\frac{1}{2} N+\frac{1}{2} P$ |
| $t_{3}$ | - | - | - | $N$ | - | $\frac{1}{2} N$ | $\frac{1}{2} N$ | $\frac{1}{3} N$ | - |

N as $\mathrm{A} / \mathrm{S}$ applied at $45 \mathrm{lb} . / \mathrm{lac}$. and P applied at 45 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5} . \quad \mathrm{t}_{1}=$ application before broadeasting, $t_{2}=30$ days after broadcasting and $t_{3}=50$ days after broadcasting.
3. DESIGN :
(i) R.B D. (ii) (a) 9.
(b) N.A. (iii) 4.
(iv) (a) and (b) $1 / 50 \mathrm{a}$.
(v) Nil. (vi) Yes.

4, GENERAL:
(i) N.A. (ii) Attack of thrips-Endrine sprayed. Slight attack of Helminthosporium-Perenox sprayed. (iii) Grain yield. (iv) (a) $1954-$ N.A. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) $1433 \mathrm{lb} . / \mathrm{ac}$. (ii) $240.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1063 | 1400 | 1425 | 1588 | 1600 | 1575 | 1525 | 1500 | 1225 |
|  |  |  |  |  |  |  |  |  |  |
|  | S.E./mean | $=$ | $120.5 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |


| Crop :- Paddy (Abi). | Ref :- A.P. 57(71). |
| :--- | :--- |
| Site :- Agri. Res. Instt., Rajendranagar. | Type :- 'M'. |

Object :-To find out the optimum time of application of N to Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii) 3.6.1957/ 27.6.1957. (iv' (a) 4 puddlings. (b) Transplanted. (c) N.A. (d) $8^{\prime \prime} \times 8^{\circ}$. (e) N.A. (v) Nil. (vi) HR-35 (late). (vii) Irrigated. (viii) 3 weedings. (ix) N.A. (x) 28.11.1957.
2. TREATMENTS :

Same as in expt. no. $54(79)$ on page 57.
3. DESIGN :
(i) R.B.D.
(ii) (a) 9 .
(b) N.A.
(iii) 4. (iv) (a) $1 / 47.6 \mathrm{ac}$.
(b) $1 / 50$ ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Spraying was done as precautionary measure. (iii) Grain yield. (iv) (a) 1954-N.A. (b) Yes. (c) Nil. (v) (a) Rudrur. (b) Nil. (vi) and (vii) Nil.
5. RESULTS ;
(i) $2122 \mathrm{lb} . / \mathrm{ac}$. (ii) $315.1 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathbf{1}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2037 | 2581 | 2006 | 1950 | 2387 | 2025 | 1969 | 2200 | 1944 |
|  | S.E./mean | $=$ | $157.6 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |

[^1]Ref :- A.P. 58(37).
Type :- 'M'.

Object:-To find out the optiman tine of application of N to Paddy.

## 1. BASAL CONDITIONS :

(i) (a) Nil (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii).18.1.1958.
(iv) (a) 4 puddlings. (b) Broad casting. (c) $80 \mathrm{lb} / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) RDR-7 (early). (vii) Irrigated. (viii) 3 weedings. (ix) N.A. (x) 3.5.1958.
2. TREATMENTS :
same as in expt. no. 55(74) on page 57.
3. DESIGN :
(i) R.B.D.
(ii) (a) 9
(b) N.A.
(iii) 4 .
v) (a) $1 / 47.6 \mathrm{ac}$
(b) $1 / 50 \mathrm{ac}$.
(v) N.A. (vi) Yes.
4. GENERAL
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) $1954-$ N.A. (b) Yes. (c) Nil. (v) (a) Rudrur. (b) Nil (vi) and (vii) Nil.
5. RESULTS:
(i) $1406 \mathrm{lb} . / \mathrm{ac}$. (ii) $309.8 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

| Treatrent | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1070 | 1438 | 1225 | 1288 | 1413 | 1505 | 1600 | 1655 | 1463 |
|  |  |  |  |  |  |  |  |  |  |
|  | S.E. $/$ mean | $=$ | $154.9 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |

Crop :- Paddy (Abi).
Site :- Agri. Res. Instt., Rajendranagar.
Ref :- A.P. 59(77).
Type :- 'M':

Object :-To study the comparative efficacy of Urea as manure and as spray in different concentrations. to Paddy.

## 1. BASAL CONDITIONS :

(i) (a) No. (b) Paddy. (c) As per treatments. (ii) Chalka. (b) N.A. (iii) $1.6 .1959 / 3.7 .1959$. (iv) (a) 4 puddlings and 2 weedings. (b) to (e) N.A. (v) Urea as manure is applied in puddle at time planting. (vi) HR-19 (medium). (vii) Irrigated. (viii) 1 weeding and ${ }^{\mathbf{5}} 1$ puddling. (ix) $26.0^{\prime \prime}$. (x) 5.10.1959.

## 2. TREATMENTS :

All combinations of (1), (2) and (3) +3 extrā treatments
(1) 3 levels of N as Uaea applied at puddling : $\mathrm{N}_{0}=0, \mathrm{~N}_{1}=22.5$ and $\mathrm{N}_{2}=45 \mathrm{lb}$./ac.
(2) 3 levels of spray of Urea ( 100 gallons/ac.): $S_{0}=1, S_{1}=2$ and $S_{3}=3$ sprays.
(3) 3 concentrations of Urea spray : $\mathrm{C}_{0}=1 \% \mathrm{C}_{1}=2 \%$ and $\mathrm{C}_{2}=3 \%$

3 extra treatments: $\mathrm{N}_{0}, \mathrm{~N}_{1}$ and $\mathrm{N}_{2}$ as in (1) above
3. DESIGN :
(i) $3^{3}$ confd design with 3 extra treatments in each block. (ii) (a) 12 plots/block; 3 block/replication. (b) N.A. (iii) 1 . (iv) (a) $1 / 45.4 \mathrm{ac}$. (b) $1 / 47.6 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1954. (b) Yes. (c) Nil. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(1) $1669 \mathrm{lb} . / \mathrm{ac}$. (ii) $240.1 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of N is significant. Main effects of S and C are not significant. Interactions $N \times S, N \times C$ and $S \times C$ are not significant. Effect of 'extra treatment vs. others' is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.
$\mathrm{N}_{0}=1285 ; \mathrm{N}_{1}=1535 ; \mathrm{N}_{2}=1804 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathbf{N}_{1}$ | $\mathrm{N}_{2}$ | Mean | $\mathrm{C}_{0}$ | $C_{1}$ | C2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{0}$ | 1517 | 1753 | 1703 | 1657 | 1398 | 1670 | 1906 |
| $S_{1}$ | 1558 | 1698 | 1884 | 1713 | 1833 | 1510 | 1796 |
| $\mathrm{S}_{2}$ | 1492 | 1791 | 2008 | 1763 | 1925 | 1725 | 1641 |
| Mean | 1522 | 1747 | 1865 | 1711 | 1719 | 1635 | 1781 |
| $\mathrm{C}_{0}$ | 1662 | 1651 | 1844 |  |  |  |  |
| $\mathrm{C}_{1}$ | 1275 | 1743 | 1887 |  |  |  |  |
| $\mathrm{C}_{2}$ | 1631 | 1848 | 1864 |  |  |  |  |


| S E. of N, S or C marginal mean | $=80.0 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S E. of body of table | $=138.6 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of extra treatment mean | $=138.6 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Abi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref:- A.P. 57(73).
Type :- ‘M’.

Object :-To compare the efficacy of different sources of N with and without P on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii) $18.6 .1957 /$ 15.7.1957. (iv) (a) 4 puddlings. (b) to (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 26.10 .1957.
2. TREATMENTS :

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S | - | - | - | $\mathrm{S}_{1}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{3}$ |
| N | - | - | - | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}$ | N | N | N | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}$ | N | N | N | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}$ | N |
| P | - | $\frac{1}{2} \mathrm{P}$ | P | - | P | P |

$S_{1}=A / S, S_{2}=A / N, S_{3}=$ Urea. $N$ applied at $60 \mathrm{lb} . / a c$. as $S$ and $P_{2} O_{5}$ at 30 lb ./ac. as Super.
3. DESIGN :
(i) R.B.D. (ii) (a) 18 . (b) N.A. (iii) 2. (iv) (a) $1 / 45.4$ ac. (b) $1 / 50$ ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Spray was given as a precautionary measure. (iii) Grain yield. (iv) (a) 1955-1958. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) $1041 \mathrm{lb} . / \mathrm{ac}$. (ii) 212.2 lb . ac . (iii) Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 600 | 750 | 975 | 1038 | 1363 | 1150 | 1363 | 1113 | 1313 |
| Treatment | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| Av. yield | 975 | 750 | 900 | 950 | 888 | 1463 | 888 | 1025 | 1225 |
|  | S.E. $/$ mean | $=$ | $150.0 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

Grop :- Paddy (Abi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 57(74).
Type :- 'M'.

Object :-To study the effect of Dical. Phos. on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Red sandy loam (chalka). (b) N.A. (iii) $18.6 .1957 /$ 16.7.1957. (iv) (a) 4 puddlings. (b) to (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) 3 weedings. (ix) N.A. (x) 26.10.1957.
2. TREATMENTS :
$\mathrm{T}_{1}=$ No manure (control).
$\mathrm{T}_{2}=45 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$.
$\mathrm{T}_{3}=\mathrm{T}_{2}+25 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Dical. Phos.
$\mathrm{T}_{4}=\mathrm{T}_{2}+25 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
Half dose of N was supplied at planting and other half after a month.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) and (b) $1 / 27.8$ ac. (v) Nil. (vi) Yes.
4. GENERAL:
(i) Good. (ii) A spray was given as precautionery measure. (iii) Grain yield. (iv) (a) 1954-1957. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) $1189 \mathrm{lb} . / \mathrm{ac}$. (ii) $243.7 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

| Treatment | $\mathrm{T}_{1}$ | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{3}$ | $\mathrm{~T}_{4}$ |
| :--- | :--- | :---: | :---: | :---: |
| Av. yield | 1065 | 1162 | 1310 | 1218 |
|  |  |  |  |  |
|  | S.E./mean | $=$ | $99.5 \mathrm{lb} . / \mathrm{ac}$. |  |

Crop:- Paddy ( $\dot{T} a b i$ ).
Site :- Agri. Res. Instt., Rajendramagar.
Ref :- A.P. 54(45).
Type :- $\mathbf{6}^{\mathbf{M}}$ '.

Object :-To test the direçt and indirect application of phosphate through G.M. crops on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) G.M. (c) As per treatments. (ii) (a) Red sandy loam. (b) N.A. (iii) N.A./25.1.1954. (iv) (a) Usual ploughing and levelling. (b) Transplanting. (c) $30 \mathrm{lb} / \mathrm{ac}$. (d) $6^{\prime \prime} \times 4^{\prime \prime}$. (e) N.A. (v) Nil. (vi) $\mathrm{HR}-19$ (medium). (vii) Irrigated. (viii) Weeding. (ix) $0.8^{\prime \prime}$. (x) 21.4.1958. ,
2. TREATMENTS:
$\mathrm{T}_{1}=$ Control.
$\mathrm{T}_{2}=$ Sannhemp followed by paddy.
$\mathrm{T}_{3}=$ Sannhemp receiving 15 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ followed by paddy.
$\mathrm{T}_{4}=\mathrm{T}_{2}+15 \mathrm{Jb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at planting.
$\mathrm{T}_{5}=\mathrm{T}_{2}+7.5 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at planting +7.5 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ and 15 lb ./ac. of N at weeding.
$\mathrm{T}_{6}=\mathrm{T}_{2}+15 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at planting +15 lb ./ac. of N at weeding.
$\mathrm{T}_{7}=\mathrm{T}_{2}+15 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ and 15 lb ./ac. of N at planting.
$\mathrm{T}_{8}=\mathrm{T}_{3}+15 \mathrm{lb}$./ac. of N at planting.
$\mathrm{T}_{9}=\mathrm{T}_{3}+15 \mathrm{lb} . / \mathrm{ac}$. of N at weeding.
N as $\mathrm{A} / \mathrm{S}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. Since it was not possible to raise the G.M. crop in Tabi season, $30 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. was used in place of G.M.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) $48^{\prime} \times 20^{\prime}$. (b) $46^{\prime} \times 19^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) and (iii) Nil. (iv) (a) 1951-1954. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) $2295 \mathrm{lb} . / \mathrm{ac}$. (ii) $488 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

| Treatment | T 1 | $\mathrm{T}_{2}$ | T3 | $\mathrm{T}_{4}$ | $\mathrm{T}_{5}$ | T6 | $\mathrm{T}_{7}$ | T8 | T9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1413 | 1800 | 1913 | 2213 | 2600 | 2338 | 2738 | 2663 | 2975 |
| S.E./mean $=244 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |  |  |  |

> Crop :- Paddy (Abi).
> Site :- Agri. Res. Instt., Rajendranagar.

## Ref :- A.P. 54(46). <br> Type :- ' $\mathbf{M}^{\prime}$.

Object :-To test the direct and indirect application of phosphate through G.M. crops on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) G.M. (c) As per treatments. (ii) (a) Red sandy loam. (b) N.A. (iii) N.A./20.7.1954.
(iv) (a) Usual ploughings and levelling. (b) Transplanted. (c)-. (d) $6^{\circ} \times 4^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-19. (vii) Irrigated. (viii) Weeding. (ix) $27.61^{\circ}$. (x) 28.10.1954.
2. TREATMENTS :
$\mathrm{T}_{1}=$ Control.
$\mathrm{T}_{2}=$ Sannhemp followed by paddy.
$\mathrm{T}_{\mathbf{3}}=$ Sannhemp receiving 15 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ followed by paddy.
$\mathrm{T}_{4}=\mathrm{T}_{2}+15 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at plating.
$\mathrm{T}_{5}=\mathrm{T}_{2}+7.5 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at planting +7.5 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $15 \mathrm{lb} . / \mathrm{ac}$. of N at weeding.
$\mathrm{T}_{6}=\mathrm{T}_{2}+15 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at planting +15 lb ./ac. of N at weeding.
$\mathrm{T}_{7}=\mathrm{T}_{2}+15 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ and 15 lb ./ac. of N at planting.
$\mathrm{T}_{8}=\mathrm{T}_{3}+15 \mathrm{lb} / \mathrm{ac}$. of N at planting.
$\mathrm{T}_{9}=\mathrm{T}_{3}+15 \mathrm{lb}$./ac. of N at weeding.
N applied as $\mathrm{A} / \mathrm{S}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) R.B.D.
(ii) (a) 9.
(b) N.A.
(iii) 4. (iv) (a) $48^{\prime} \times 20^{\prime}$.
(b) $46^{\prime} \times 19^{\prime}$.
(v) N.A. (vi, Yes.
4. GENERAL :
(i) Normal.
(ii) Nil.
(iii) Grain yield
(iv) (a) 1954-1957.
(b) Yes. (c)
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $2971 \mathrm{lb} . / \mathrm{ac}$. (ii) 590 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathrm{T}_{\mathbf{3}}$ | $\mathrm{T}_{2}$ | $\mathrm{~T}_{3}$ | $\mathrm{~T}_{4}$ | $\mathrm{~T}_{5}$ | $\mathrm{~T}_{6}$ | $\mathrm{~T}_{7}$ | $\mathrm{~T}_{8}$ | $\mathrm{~T}_{9}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1425 | 2675 | 2838 | 3225 | 3763 | 3500 | 3087 | 2800 | 3525 |
|  |  |  |  |  |  |  |  |  |  |
|  | S.E./mean $=295 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |  |  |

Crop :- Paddy (Tabi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 54(47).
Type :- ‘M'.

Object :-To determine the test time and method of application of $N$ and $P$ to Paddy crop.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) $30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}(20 \mathrm{lb} / \mathrm{ac}$. as G.N.C. and 10 lb ./ac. as $\mathrm{A} / \mathrm{S})$ and $15 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. (ii; (a) Sandy loam. (b) N.A./28.1.1954 (iv) (a) Usual ploughings and levelling. (b) Tranplanted. (c) $30 \mathrm{lb} .{ }^{\prime a c}$. (d) $6^{\prime \prime} \times 4^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-19. (vii) Irrigated. (viii) Weeding. (ix) $0.8^{\prime \prime}$. (x) 23.4.1954.
2. TREATMENTS :

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At last puddling | $\mathrm{N}+\mathrm{P}$ | $\mathrm{N}+\frac{1}{2} \mathrm{P}$ | N | $\frac{2}{3} \mathrm{~N}+\mathrm{P}$ | $\frac{2}{3} \mathrm{~N}+\frac{1}{3} \mathrm{P}$ | $\frac{2}{3} \mathrm{~N}$ | P | $\frac{1}{2} \mathrm{P}$ | - |
| At weeding | - | $\frac{1}{2} \mathrm{P}$ | P | $\frac{1}{3} \mathrm{~N}$ | $\frac{1}{3} \mathrm{~N}+\frac{1}{2} \mathrm{P}$ | $\frac{3}{3} \mathrm{~N}+\mathrm{P}$ | N | $\mathrm{N}+\frac{1}{2} \mathrm{P}$ | $\mathrm{N}+\mathrm{P}$ | $30 \mathrm{lb} . / \mathrm{az}$. of $\mathrm{N}\left(20 \mathrm{lb} . / \mathrm{ac}\right.$. as G.N.C. $+10 \mathrm{lb} . / \mathrm{ac}$. as $\mathrm{A} / \mathrm{S}$ ) and 15 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.

3. DESIGN :
(i) R.B.D.
(ii) (a) 9 .
(b) N.A. (iii) 4.
(iv) (a) $48^{\prime} \times 20^{\prime}$.
(b) $46^{\prime} \times 19^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) and (iii) Ni
iI. (iv) (a) 1951-1954.
(b) Yes.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $2285 \mathrm{lb} . / \mathrm{ac}$. (ii) $324 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

| Treatments | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2375 | 2288 | 2563 | 2400 | 2225 | 2338 | .2013 | 2113 | 2250 |
|  |  |  |  |  |  |  |  |  |  |
|  | S.E./mean | $=$ | $162 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |

```
Crop :- Paddy (Abi).
Ref :- A.P. 55(12).
Site :- Agri. Res. Instt., Rajendranagar. Type :- 'M'.
```

Object :-To determine the effect of different levels of $N, P$ and $K$ alone and in combination on Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) Nil. (ii) (a) Sandy loam (chalka). (b) N.A. (iii) $12.6 .1955 / \mathrm{N}$ A. (vi) (a) 4 to 5 puddlings and levelling. (b) and (c) N.A. (d) $6^{\prime \prime} \times 4^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HiR -21 (early). (vii) Irrigated. (viii) 2 weedings. (ix) $23.27^{\prime \prime}$. (x) 2 nd to 6 th Dec. 1955 ;
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of $N$ as $A / S: N_{0}=0, N_{1}=30$, and $N_{2}=60 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb} / \mathrm{ac}$.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. : $\mathrm{K}_{0}=0, \mathrm{~K}_{1}=30$ and $\mathrm{K}_{2}=60 \mathrm{ib}$. $/ \mathrm{ac}$.

Time and method of application N.A.
3. DESIGN :
(i) $3^{3}$ confd. design ( $Y$ and $Z$ components of $A B C$ confd.). (ii) (a) 9 plots/block; 3 blocks/replication (b) N.A. (iii) 2 . (iv) (a) $1 / 75.6 \mathrm{ac}$. (b) $1 / 113.4 \mathrm{ac}$. (v) Two rows alround. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Hispa attack—Gammexane at 10 lb ./ac. dusted. (iii) Grain yield. (iv) (a) 1955-contd. (b)Yes. (c) Nil. (v) (a) No. (b) Nil. (vi) and (vii) Nil.

5 RESULTS:
(i) $3453 \mathrm{lb} . / \mathrm{ac}$. (ii) $308.6 \mathrm{lb} / \mathrm{ac}$. (iii) Main effect of N is significant. Main effects of $\mathrm{P}, \mathrm{K}$ and interactions $\mathrm{N} \times \mathrm{P}, \mathrm{N} \times \mathrm{K}, \mathrm{P} \times \mathrm{K}$ are not significant. (iv) Ay. yield of grain in lb./ac.

|  | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | Mean | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}_{0}$ | 3111 | 3031 | 3162 | 3101 | 3157 | 3049 | 3098 |
| $\mathrm{N}_{1}$ | 3484 | 3682 | 3649 | 3605 | 3455 | 3686 | 3673 |
| $\mathrm{N}_{2}$ | 3598 | 3784 | 3575 | 3652 | 3791 | 3409 | 3757 |
| Mean | 3398 | 3499 | 3462 | 3453 | 3468 | 3381 | 3509 |
| $\mathrm{K}_{0}$ | 3498 | 3469 | 3436 |  |  |  |  |
| $\mathrm{K}_{1}$ | 3368 | 3324 | 3452 |  |  |  |  |
| $\mathrm{K}_{2}$ | 3328 | 3703 | 3497 |  |  |  |  |

```
S.E. of N,P or K marginal means }=72.6 ib./ac
```

S.E. of body of any table $=126.0 \mathrm{lb} . / \mathrm{ac}$.

```
Grop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Rudrur.
```

```
Ref:- A.P. 54(40).
Type :- 'M'.
```

Object:-To find out whether different times of application of G.M. can completely replace the usage of compost and Paddy-Fertilizer-Mixture for Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam (chalka). (b) Refer soil analysıs, Rudrur. (iii) N.A./22, 23.7.1954. (iv) (a) N.A. (b) Transplanting. (c) Nil. (d) $6^{* \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-35 late). (vii) Irrigated. (viii) 1 hand weeding and 3 rotary weedings. (ix) $25.61^{*}$. (x) 8.12.1954.
2. TREATMENTS :

All combinations of (1) and (2) +3 extra treatments.
(1) 3 G.M. crops: $\mathrm{G}_{1}=$ Sannhemp, $\mathrm{G}_{2}=$ Pillipesara, and $\mathrm{G}_{3}=$ Dhaincha.
(2) 3 times of sowing of G.M. crops: $S_{1}=4$ th week of April, $S_{2}=2$ nd week of May and $S_{3}=$ At paddy harvesting.
3 extra treatments: $\mathrm{T}_{1}=$ Control, $\mathrm{T}_{2}=30$ C.L./ac. of F.Y.M. and $\mathrm{T}_{3}=30 \mathrm{lb} . / \mathrm{ac}$. of N as Paddy-FertilizerMixture.

3 DESIGN:
(i) R.B.D.
(ii) 12 (iii) 6 .
(iv) (a) $47.5^{\prime} \times 18^{\prime}$.
(b) $45.5^{\circ} \times 16^{\prime}$
(v) 2 rows on all sides. (vi) Yes.
4. GENERAL:
(i) Fair. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-1954. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $2461 \mathrm{lb} . / \mathrm{ac}$. (ii) 524.4 lb .'ac. (iii) Only differences between extra treatments are highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.


```
Crop :- Paddy (Rabi).
Site :- Agri. Res. Stri, Rudrur.
```


## Ref :- A.P. 54(43).

Type :- ' $\mathbf{M}^{\prime}$.
Object:-To determine the best time and method of application of $N$ and $P$ to Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Black cotton. (b) Refer soil analysis, Rudrur. (iii) 19.1.1954. (iv' (a) 2 ploughings, 3 puddling and levelling. (b) Broadcast. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) HR-19. (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 20.5.1954.

## 2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 applications of $\mathrm{N}: \mathrm{N}_{1}=45 \mathrm{lb}$./ac. of $\mathrm{N}(30 \mathrm{lb} . / \mathrm{ac}$. as G.N.C $+15 \mathrm{lb} . / \mathrm{ac}$. as $\mathrm{A} / \mathrm{S}$ at last puddle) $\mathrm{N}_{2}=30 \mathrm{lb}$./ac. of N as G.N.C. at last puddle +15 lb ./ac. of N as $\mathrm{A} / \mathrm{S}$ at ear-primordium, $\mathrm{N}_{3}=45 \mathrm{lb}$./ac. of N at ear-primordium.
(2) 3 applications of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=30 \mathrm{lb} . / \mathrm{ac}$. at last puddle, $\mathrm{P}_{2}=15 \mathrm{lb} . / \mathrm{ac}$. at last puddle $+15 \mathrm{lb} . / \mathrm{ac}$. at ear-primordium and $\mathrm{P}_{3}=30 \mathrm{lb}$./ac. at ear primordium.
3. DESIGN :
(i) R.B.D.
(ii) (a) 9. (b) N.A.
(iii) 4. (iv) (a) $48^{\prime} \times 20^{\prime}$.
(b) $46^{\prime} \times 19^{\prime}$.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Germination satisfactory, growth not satisfactory. (ii) Severe attack by stem-borer at tillering stage. (iii) Grain and sttaw yield. (iv) (a) 1951-1954. (b) Yes. (c) N.A. (v) (a) Himayatsagar. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $388 \mathrm{lb} . / \mathrm{ac}$. (ii) $80 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of N is highly significant. Main effect of $\mathbf{P}$ is not significant. Interaction $\mathrm{N} \times \mathrm{P}$ is significant. (iv) Av . yield of grain in lb ./ac.

|  | $\mathbf{N}_{1}$ | $\mathbf{N}_{2}$ | $\mathbf{N}_{3}$ | Mean |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{P}_{1}$ | 450 | 475 | 350 | 425 |
| $\mathrm{P}_{\mathbf{2}}$ | 363 | 475 | 325 | 388 |
| $\mathrm{P}_{3}$ | 263 | 550 | 238 | 350 |
| Mean | 359 | 500 | 304 | 388 |

S.E. of marginal mean of N or $\mathrm{P}=23 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $=40 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Rabi)
Ref:- A.P. 57(3).
Site :- Agri. Res. Stm., Rudrur.
Type :- ‘M'.
Object:-To study the part played by drainage, gypsum, G.M., Super pressmud, molasses individually and in various combinations in correcting alkalinity.

## 1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Alkaline patch. (b) Refer soil analysis, Rudrur.
(iii) 21.1.1957. (iv) (a) 1 to 2 dry ploughings, 2 to 3 wet puddlings and levelling. (b) Broadcasting. (c) $80 \mathrm{lb} . / \mathrm{ac}$. . (d) and (e) N.A. (v) Nil. (vi) HR-33 (early). (vii) Irrigated. (viii) 2 weedings. (ix) $6.44^{\prime \prime}$. (x) 6.5.1957.

## 2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 main-treatments (drainage) : $\mathrm{D}_{1}=$ Drained and $\mathrm{D}_{2}=$ Undrained.
(2) 10 sub-treatments (manuring) : $\mathrm{M}_{0}=$ Control, $\mathrm{M}_{1}=30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{2}=10000 \mathrm{lb} . / \mathrm{ac}$. of G.M., $\dot{M}_{3}=M_{1}+M_{2}, \quad M_{4}=$ Gypsum (full dose in first season) $+M_{1}, M_{5}=$ $\mathbf{M}_{2}+\mathbf{M}_{4}, \mathbf{M}_{6}=$ Gypsum ( $\frac{1}{3}$ dose every season) $+\mathrm{M}_{1}, \mathrm{M}_{7}=\mathbf{M}_{2}+\mathrm{M}_{6}$, $M_{s}=$ Pressmud (full dose in first season) $+M_{1}, M_{9}=10000 \mathrm{lb} . / \mathrm{ac}$. Molasses $+\mathrm{M}_{1}$ every season.
Dose of gypsurn and pressmud used and time and method of application N.A.
3. DESIGN :
(i) Split-plot. (ii) (a) 10 sub-plots/main-plat; 2 main-plots/replication. (b) N.A. (iii) 3. (iv) (a) N.A. (b) $30^{\prime} \times 20^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Slightly lodged and grain shed due to rain received during April: (ii) Nil. (iii) Tiller count, yield of grain and straw. (iv) (a) 1956-contd. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS:
(i) $779 \mathrm{lb} . / \mathrm{ac}$. (ii) a : 783.4 lb .'ac. (b) 497.3 lb ./ac. (iii) Main effects of M is significant. Main effect of D and interaction $\mathrm{M} \times \mathrm{D}$ are not significant. (iv) Av. yield of grain in $\mathrm{b} / \mathrm{ac}$.

|  | $\mathbf{M}_{\mathbf{0}}$ | $\mathbf{M}_{1}$ | $\mathbf{M}_{\mathbf{2}}$ | $\mathbf{M}_{\mathbf{3}}$ | $\mathbf{M}_{\mathbf{4}}$ | $\mathbf{M}_{5}$ | $\mathbf{M}_{\mathbf{6}}$ | $\mathbf{M}_{\mathbf{7}}$ | $\mathbf{M}_{8}$ | $\mathbf{M}_{9}$ | Mean |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{D}_{\mathbf{1}}$ | 218 | 508 | 1452 | 436 | 363 | 799 | 341 | 1923 | 748 | 1126 | 791 |
| $\mathbf{D}_{\mathbf{2}}$ | 152 | 1081 | 711 | 842 | 51 | 1016 | 276 | 1764 | 1154 | 631 | 768 |
| Mean | 185 | 795 | 1082 | 649 | 207 | 908 | 309 | 1844 | 952 | 879 | 779 |

S.E. of difference of two

1. D marginal means $\quad=202.2 \mathrm{lb} . / \mathrm{ac}$.
2. $\mathbf{M}$ marginal means $\quad=287.1 \mathrm{lb} . / \mathrm{ac}$.
3. M means at the same level of $D .=406.1 \mathrm{lb} / \mathrm{ac}$.
4. D means at the sime level of $\mathrm{M}^{\cdot}=436.0 \mathrm{lb} . / \mathrm{ac}$.

## Crop :- Paddy (Rabi).

Ref:- A. P. 59(123).

## Site :- Agri. Res. Stn., Rudrur.

Object :-To study the effect of C/A/N in increasing Paddy yield and also its deleterious effect on soil.

1. BASAL CONDITIONS:
(i) (a) Paddy-Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 4.2.1959. (iv) (a) Ploughing, puddling, levelling. (b) Broadcast. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) -. (v) Nil. (vi) RDR-7. (vii) Irrigated. (viii) Weeding. (ix) $3.01^{\prime \prime}$. (x) 7.51959.
2. TREATMENTS:

|  | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| At the time of broadcasting | - | - | - | - | $\frac{1}{2} \mathrm{~N}$ as $\mathrm{A} / \mathrm{S}$ |
| 14 days after broadcasting | - | N as C/A/N | $\frac{1}{2} \mathrm{~N}$ as $\mathrm{C} / \mathrm{A} / \mathrm{N}$ | $\frac{1}{4} \mathrm{~N}$ as $\mathrm{C} / \mathrm{A} / \mathrm{N}$ |  |
| One month after broadcasting | - | - | $\frac{1}{2} \mathrm{~N}$ as $\mathrm{C} / \mathrm{A} / \mathrm{N}$ | $\frac{1}{2} \mathrm{~N}$ as $\mathrm{C} / \mathrm{A} / \mathrm{N}$ | $\frac{1}{2} \mathrm{~N}$ as $\mathrm{A} / \mathrm{S}$ |
| One week before harvesting | - | - | - | $\frac{1}{4} \mathrm{~N}$ as $\mathrm{C} / \mathrm{A} / \mathrm{N}$ | - |

N applied at $40 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) and (b) $1 / 80 \mathrm{ac}$. (v) Nil, (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1959. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESLLTS :
(i) $86 \mathrm{lb} . / \mathrm{ac}$. (ii) 180.3 lb ./ac. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb/ac.

| Treatment | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 525 | 785 | 977 | 8.7 | 1115 |
|  |  |  |  |  |  |
|  | S E.fmean | $=$ | $73.6 \mathrm{lb} . / \mathrm{ac}$. |  |  |

[^2]Object :-To find out the optimum time of application of N to Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) N.A. (ii) (a) Sandy Ioam (chalka). (b) Refer soil analysis, Rudrur. (iii) 1.2.1955. (iv) (a) 1 dry ploughing, 2 puddlings and levelling. (b) Broadcast. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) N.A. (e) N.A. (v) Nil. (vi) RDR-7 (very early). (vii) Irrigated. (viii) 4 weedings. (ix) $0.59^{\prime \prime}$. (x) 9.5.1955.

## 2. TREATMENTS :

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At final puddle | P | N | - | - | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}$ | - | $\frac{1}{3} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}+\frac{1}{2} \mathrm{P}$ |
| 30 days after broadcasting | - | - | N | - | $\frac{1}{2} \mathrm{~N}$ | - | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{3} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}+\frac{1}{2} \mathrm{P}$ |
| 50 days after broadcasting | - | - | - | N | - | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{3} \mathrm{~N}$ | - |
| N applied at 45 lb ./ac. as $\mathrm{A} / \mathrm{S}$ and P applied at $22 \frac{1}{2} \mathrm{lb}$./ac. of | $\mathrm{P}_{2} \mathrm{O}_{5}$ | as Super. |  |  |  |  |  |  |  |

3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) and (b) $55^{\prime} \times I 4^{\prime}$. (v) 2 rows. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) and (iii) Nil. (iv) (a) 1955-contd. (b) Yes. (c) Nil. (v) (a) Rajendranagar. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) 2214 lb ./ac. (ii) $552 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb ./ac.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1714 | 2929 | 2143 | 1929 | 2321 | 2107 | 2050 | 2179 | 2571 |
|  | S.E./mean $=$ | $276 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |  |

## Crop :- Paddy (Rabi). <br> Site :- Agri。 Res. Stn., Rudrur. <br> Ref:- A.P. 57(6). <br> Type :- ${ }^{6} \mathbf{M}^{\prime}$

Object:-To find out the optimum time of application of N to Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 23.1.1957. (iv) (a) 1 to 2 dry ploughings, 2 to 3 wet puddings and levelling. (b) Broadcasting. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) RDR-7 (early): (vii) Irrigated. (viii) 2 weedings. (ix) 6.44". (x) 9.5.1957.
2. TREATMENTS:

Same as in expt. no. 55(22) on page 66.
3. DESIGN :
(i) R.B.D. (ii) (a) 9 . (b) N.A. (iii) 4 . (iv) (a) $48^{\prime} \times 20^{\prime}$. (b) $46^{\prime} \times 19^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Lodged and the grain'shed due to rains received in April. Had a set-back due to hail-storm during last week of Febuary. (ii) Very mild attack of stem-borer. (iii) Tiller count, yield of grain and straw. (iv) (a) 1954-contd. (b) Yes. (c) N.A. (v) (a) Rajendranagar. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1175 \mathrm{lb} . / \mathrm{ac}$. (ii) 166.0 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 963 | 1163 | 1150 | 1338 | 1225 | 1325 | 1163 | 1113 | 1138 |

S.E./mean $=83.0 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy (Rabi).
Site :- Agri. Res. Stn., Rudrur.
Ref :- A. P. 58(36).
Type :- 'M'.
```

Object :-To find out the optimum time of application of N to Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 251.1958 . (iv) (a) 1 dry ploughing, 3 puddlings, levelling. (b) Broadcasting sprouted seeds, (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) RDR-7 (early). (vii) Irrigated. (viii) 2 weedings. (ix) 1.77". (x) 9.5.1958.
2. TREATMENTS :

Same as in expt. ro. $55(22)$ on page 66.
3. DESIGN :
(i) R.B.D.
(ii) (a) 9 .
(b) N.A. (iii) $4 . \quad$ (iv) (a) $48^{\circ} \times 20^{\prime}$.
(b) $46^{\prime} \times 19^{\prime}$.
(v) $1^{\prime} \times \frac{1^{\prime}}{2}$. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Mild attack of stem-borer. (iii) Tiller count and grain yield. (iv) (a) 1955-contd. (b) Yes. (c) Nil. (v) (a) Rajendranagar. (b) Nil. (vi) and (vii) Nil.

## RESULTS :

(i) $1962 \mathrm{lb} . / \mathrm{ac}$. (ii) $274.0 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1195 | 1969 | 2019 | 2019 | 2181 | 2193 | 2043 | 2330 | 1707 |
|  | S.E./mean | $=$ | $137.0 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |

```
Crop :- Paddy (Abi).
Site :- Agri. Res. Stn., Rudrur.
Ref:- A.P. 55(24).
Type :- ‘'M'.
```

Object :-To find out the optimum time of application of N to Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam (chalka). (b) Refer soil analysis, Rudrur. (iii) N.A./4, 5.7.1955. (iv) (a) N.A. (b) Transplanted. (c) $30 \mathrm{lb} / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-35'(late). (vii) Irrigatef. (viii) 1 hand weeding and 2 with rotary weeder. (ix) $46.09^{\prime \prime}$. (x) 6.12.1955.
2. TREATMENTS :

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At planting | P | N | - | - | ${ }_{2}^{1} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}$ | - | $\frac{1}{3} \mathrm{~N}$ | ${ }_{2}^{1} \mathrm{~N}+\frac{1}{2} \mathrm{P}$ |
| 40 days after planting | - | - | N | - | $\frac{3}{2}$ | - | $\frac{1}{2}$ | 3 N | $\underline{1}+1$ |
| 80 days after planting | - | - | - | N | - | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{2}$ | ${ }_{3} \mathrm{~N}$ | - |
| N applied at 45 lb ./ac. as $\mathrm{A} / \mathrm{S}$ and P applied at $22 \frac{1}{2} \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. |  |  |  |  |  |  |  |  |  |

3. DESIGN :
(i) R.B.D. (ii) 9 . (iii) 4 . (iv) (a) $55^{\prime} \times 14^{\prime}$. (b) $53^{\prime} \times 12^{\prime}$. (v) $6^{\prime \prime} \times 6^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) N.A. (iii, Grain yield. (iv) (a) 1955 -contd. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2481 \mathrm{lb} . / \mathrm{ac}$. (ii) $356 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of grain in lb./ac.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1884 | 2937 | 2346 | 2440 | 2371 | 2689 | 2398 | 2508 | 2757 |
|  |  |  |  |  |  |  |  |  |  |
|  | S.E/mean | $=$ | $178 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |

```
Crop:- Paddy (Kharif).
Ref :- A.P. 56(80).
Site :- Agri. Res. Stn., Rudrur.
Type :- `M'.
```

Object :--To find out the optimum time of application of N to Paddy.

1. BASAL CONDITIONS :
(i) (a) N A. (b) Paddy. (c) As per treatments. (ii) (a) Light clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A./29.6.1956. (iv) (a) 2 dry ploughings and 2 puddings. (b) Transplanting. (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N A. (v) Nil. (vi) $\mathrm{HR}-35$ (late). (vii) Irrigated. (viii) 2 weedings. (ix) $63.97^{\circ}$. (x) 2.12.1956.
2. TREATMENTS :

|  | 1 | 2 | 3 | 4. | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At planting | P | N | - | - | ${ }_{2}^{1} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}$ | - | $\frac{1}{3} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}+\frac{1}{2} \mathrm{P}$ |
| 30 days after planting | - | - | N | - | $\frac{1}{2} \mathrm{~N}$ | - | $\frac{1}{2} \mathrm{~N}$ | ${ }_{3}^{1} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}+\frac{1}{2} \mathrm{P}$ |
| 50 days after planting | - | - | - | N | - | ${ }_{\frac{1}{2}} \mathrm{~N}$ | $\frac{1}{2} \mathrm{~N}$ | $\frac{1}{3} \mathrm{~N}$ | - |
| N applied at $45 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ applied at $22 \frac{1}{2} \mathrm{lb}$./ac. as Super. |  |  |  |  |  |  |  |  |  |

3. DESIGN :
(i) R.B D.
(ii) (a) 9 .
(b) N.A.
i) 4. (iv) (a) $48^{\prime} \times 20^{\prime}$.
(b) $46^{\prime} \times 19^{\prime}$.
(v) $1^{\prime} \times \frac{1}{2}$. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) $1955^{-}$contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi and (vii) Nil.
5. RESULTS :
(i) $3100 \mathrm{lb} . / \mathrm{ac}$. (ii) $391.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

| Treatment | $\mathbf{1}$ | 2 | $\mathbf{2}$ | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2193 | 3364 | 2928 | 3389 | 3028 | 3078 | 3152 | 3190 | 3576 |
|  |  |  |  |  |  |  |  |  |  |
|  | S.E./mean | $=$ | $195.8 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |

## Crop:- Paddy (Kharif).

Site :- Agri. Res. Stn., Rudrur.

Ref:- A.P. 57(69).
Type :- ' $\mathbf{M}$ '.

Object:-To find out the optimum time of application of N to Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A./15.7.1957. (iv) (a) 1 dry ploughing, 3 puddlings and levelling. (b) Transplanting. (c) N.A. (d) $6^{\circ} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-35 (late). (vii) Irrigated. (vlii) 2 weedings. (ix) $28.59^{\prime \prime}$. (x) 30.11 .1957.

## TREATMENTS:

Same as in expt. no. $55(24)$ on page 68.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) $48^{\prime} \times 20^{\prime}$. (b) $46^{\prime} \times 9^{\prime}$. (v) $1^{\prime} \times \frac{1^{\prime}}{}$. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Tiller count and grain field. (iv) (a) 1955-contd. (b) Yes. (c) Nil. (v) (a) Rajendranagar. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
$\therefore$ (i) $2657 \mathrm{lb} . / \mathrm{ac}$. (ii) $257.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

| Treatment | .1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 'Av. yield | 1938 | 2638 | 2712 | 2925 | 2725 | 2950 | 2750 | 2738 | 2625 |

Site :- Agri. Res. Stn., Rudrur.
Type :- ‘M'.
Object :-To study the effect of deep plasemsat of manures through smearing on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A./21.7.1958. (iv) (a) 1 dry ploughing, and 2 puddlings. (b) to (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) Weedings. (ix) $25.98^{\prime \prime}$. (x) 29.10 .1958 .

## 2. TREATMENTS :

$\mathrm{T}_{1}=$ No manure (control); (4 plots)
$\mathrm{T}_{2}=45 \mathrm{lb}$./ac. of N applied in puddle.
$\mathrm{T}_{3}=45 \mathrm{lb}$./ac. of N smeared.
$\mathrm{T}_{4}=22 \mathrm{lb}$. ac. of N smeared $+23 \mathrm{lb} . \mathrm{rac}$. of N dressed at first weeding.
$\mathrm{T}_{5}=22 \mathrm{lb}$./ac. of N in puddle +23 lb ./ac. of N dressed at firstweeding.
$\mathrm{T}_{6}=30 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ in puddle.
$\mathrm{T}_{7}=30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ smeared.
$\mathrm{T}_{8}=\mathrm{T}_{2}+\mathrm{T}_{6}$.
N applied as $\mathrm{A} / \mathrm{S}$ and $\mathrm{P}_{2} \mathrm{O}_{\mathbf{3}}$ as Super.
$\mathrm{T}_{9}=\mathrm{T}_{2}+\mathrm{T}_{7}$.
$\mathrm{T}_{10}=\mathrm{T}_{3}+\mathrm{T}_{6}$.
$\mathrm{T}_{11}=\mathrm{T}_{3}+\mathrm{T}_{7}$.
$\mathrm{T}_{12}=\mathrm{T}_{4}+\mathrm{T}_{6}$.
$\mathrm{T}_{13}=\mathrm{T}_{4}+\mathrm{T}_{7}$.
$\mathrm{T}_{14}=\mathrm{T}_{5}+\mathrm{T}_{6}$.
$\mathrm{T}_{15}=\mathrm{T}_{5}+\mathrm{T}_{7}$.
3. DESIGN:
(i) R.B.D. (ii) (a) 18 . (b) $195^{\prime} \times 100^{\prime}$. (iii) 2. (iv) (a) N.A. (b) $46^{\prime} \times 19^{\prime}$ (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Negligible. (iii) Grain yield. (iv) (a) 1958-1959. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $3006 \mathrm{lb} . / \mathrm{ac}$. (ii) $507 \mathrm{lb} / \mathrm{ac}$. (iii) Treatment differences are significant. $\mathrm{T}_{1}$ vs. rest effect is highly significant. (iv) Av. yield of grain in $\mathbf{l b} . / \mathrm{ac}$.

| Treatment | $\mathrm{T}_{1}$ | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{3}$ | $\mathrm{~T}_{\mathbf{4}}$ | $\mathrm{T}_{5}$ | $\mathrm{~T}_{6}$ | $\mathrm{~T}_{7}$ | $\mathrm{~T}_{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| Av. yield | 2344 | 2725 | 2225 | $3 \mathbf{3 2 5}$ | 3550 | 2725 | 2650 | 3725 |
| Treatment | $\mathrm{T}_{9}$ | $\mathrm{~T}_{10}$ | $\mathrm{~T}_{11}$ | $\mathrm{~T}_{12}$ | $\mathrm{~T}_{13}$ | $\mathrm{~T}_{14}$ | $\mathrm{~T}_{15}$ |  |
| Av. yield | 3475 | 3375 | 3050 | 3550 | 3200 | 3550 | 3350 |  |
|  |  |  |  |  |  |  |  |  |
|  | S.E./mean (excluding $\mathrm{T}_{1}$ ) | $=358.5 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |
|  | S.E./mean (for $\mathrm{T}_{1}$ ) | $=179.2 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |

Crop:- Paddy. (Kharif).
Site :- Agri. Res. Stn., Rudrur.

Ref:- A.P. 59(124).
Type :- ‘M'.

Object :-To study the effe_t of deep placement of manures through smearing on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatment. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 12.6.1959/12.7.1959. (iv) (a) Ploughing, puddling, levelling. (b) Transplanting. (c) 30 lb./ac. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 to 3 seedlings hill. (v) As per treatments. (vl) HR-19. (vii) Irrigated. (viii) Gap filling and weeding. (ix) N.A. (x) 16,19 to 24.10 .1959 .
2. TREATMENTS :

Same as in expt. no. $58 ; 67$ ) above.
3. DESIGN:
(i) R.B.D. (ii) (a) $18 . \quad$ (b) N.A. (iii) $2 . \quad$ (iv) (a) $48^{\prime} \times 20^{\prime}$. (b) $46^{\prime} \times 19^{\prime} . \quad$ (v) $1^{\prime} \times \frac{1}{2}$. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (ii) Grain yield. (iv) (a) 1958-1959. (b) Yes. (c) Nil. (v) (a) and (b) N.A.
(vi) and (vii) Nil.
5. RESULTS :
(i) $1496 \mathrm{lb} . / \mathrm{ac}$. (ii) $289.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatments differences are highly significant. $\mathrm{T}_{1}$ vs. rest effect is highly significant. (iv) Av. yield of grain in lb ./ac.

| Treatment | T1 | $\mathrm{T}_{2}$ | T3 | $\mathrm{T}_{4}$ | $\mathrm{T}_{5}$ | T6 | T7 | T8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 968 | 1238 | 1058 | 1351 | 880 | 1236 | 1285 | 2068 |
| Treatment | $\mathrm{T}_{9}$ | $\mathrm{T}_{10}$ | $\mathrm{T}_{11}$ | $\mathrm{T}_{12}$ | $\mathrm{T}_{13}$ | $\mathrm{T}_{14}$ | $\mathrm{T}_{15}$ |  |
| Av. yield | 1848 | 1909 | 1595 | 1628 | 1726 | 1826 | 1825 |  |


| Grop :- Paddy. (Rabi). | , Ref :- A.P. 59(10). |
| :--- | :---: |
| Site :- Agri. Res. Stn., Rudrur. | Type :- ‘'M’. |

Object :-To study the effect of deep placementof manures through smearing on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A/16, 17.2.1959. (iv) (a) 1 dry ploughing, 2 puddlings and levelling. (b) Transplanting. (c) to (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) Weeding by Japanese weeder and hand weeding. (ix) $0.51^{\prime \prime}$. (x) 17.5.1959.
2. TREATMENTS :

Same as in expt. no. $58(67)$ on page 70.
3. DESIGN :
(i) R.B.D. (ii) (a) 18 (b) $195^{\prime} \times 100^{\circ}$. (iii) 2. (iv) (a) and (b) $46^{\prime} \times 19^{\prime}$. (v) Nil. (vi) Yes
4. GENERAL :
(i) Satisfactory. (ii) Initial effect of stem-borer-controlled by Folidal spray at 10 c.c. in one gallon of water. (iii) Grain yield. (iv) 1958-1959. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) $351 \mathrm{lb} . / \mathrm{ac}$. (ii) $169.7 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. $\mathrm{T}_{1}$ vs. rest effect is highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | T 1 | T2 | T3 | T4 | T ${ }_{5}$ | T ${ }_{6}$ | $\mathrm{T}_{7}$ | $\mathrm{T}_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 121 | 45 | 79 | 91 | 157 | 159 | 340 | 1032 |
| Tieatment | T9 | $\mathrm{T}_{10}$ | T11 | $\mathrm{T}_{12}$ | T 13 | T 14 | $\mathrm{T}_{15}$ |  |
| Av. yield | 896 | 669 | 590 | 261 | 204 | 715 | 601 |  |
|  | S.E./mean (excluding $\mathrm{T}_{1}$ ) <br> S.E./mean (for $T_{1}$ ) |  |  | $\begin{aligned} & =120.0 \mathrm{lb} . / \mathrm{ac} \\ & =60.0 \mathrm{lb} . / \mathrm{ac} \end{aligned}$ |  |  |  |  |

Grop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 56(76).
Type :- ‘M'.

Object:-To study the effect of different fertilizers on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy.
(b) Paddy. (c) N.A.
(ii) (a) Light clay loam.
(b) Refer soil analysis, Rudrur:
(iii) N.A/2j.6.1956. (iv) (a) 2 dry ploughings and puddings. (b) Transplanting. (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$.
(c) N.A. (v) Nil (vi) HR-16 (early). (vii) Irrigated (viii) 1 weeding. (ix) $63.97^{\prime \prime}$ (x) 16.10 .1956.

## 2. TREATMENTS :

$\mathrm{T}_{0}=$ Control (no manure), $\mathrm{T}_{1}=50 \mathrm{lb} . / \mathrm{ac} . \mathrm{N}$ as $\mathrm{A} / \mathrm{S}, \mathrm{T}_{2}=\mathrm{T}_{1}+25 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M., $\mathrm{T}_{3}=\mathrm{T}_{1}+25 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super, $\mathrm{T}_{4}=$ Paddy-Fertilizer-Mixture ( $50 \mathrm{lb} . / \mathrm{ac}$ of $\mathrm{N}+25 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ ), $\mathrm{T}_{5}=25 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) R.B D.
(ii) (a) 6 .
(b) N.A. (iii) 2
(iv) (a) and (b)
(b) $20^{\prime} \times 10^{\prime}$,
(v) Nil. (vi) Yes.
4. GENERAL
(i) Satisfactory. (iii) Grain yield. (iv) (a) 1956. (b) No. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and , vii) Nil.
5. RESULTS:
(i) $1851 \mathrm{lb} . / \mathrm{ac}$. (ii) $832.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not signifizant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathrm{T}_{\mathbf{0}}$ | $\mathrm{T}_{1}$ | $\mathrm{~T}_{\mathbf{2}}$ | $\mathrm{T}_{3}$ | $\mathrm{~T}_{\mathbf{4}}$ | $\mathrm{T}_{5}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1089 | 1525 | 1416 | 2505 | 2723 | 1851 |
|  |  |  |  |  |  |  |
|  | S.E./mean | $=$ | $588.5 \mathrm{ib} . / \mathrm{ac}$. |  |  |  |

$$
\begin{array}{ll}
\text { Crop :- Paddy. (Fharif). } & \text { Ref :- A.P. 54(41). } \\
\text { Site :- Agri. Res. Stn., Rudrur. } & \text { Type :- 'M'. }
\end{array}
$$

Object :- To study the effect of different sources of N in increasing the yield of Paddy.

## 1. BASAL CONDITIONS :

(i! (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Black cotton (regur). (b) Refer soil analysis, Rudrur.(iii) N.A./18. 19.7.1954. (iv) (a) N.A. (b) Transplanting. (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-19 (early). (vii) Irrigated. (viii) 3 intercultures, and 4 with rotary handweeder. (ix) 26.23". (x) 21.10.1954.
2. TREATMENTS :
$\mathrm{T}_{0}=$ Control, $\mathrm{T}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+15 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super, $\mathrm{T}_{2}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{C}+15 \mathrm{lb} . / \mathrm{ac}$. $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super, $\mathrm{T}_{3}=20 \mathrm{lb}$./ac. of N as $\mathrm{C} / \mathrm{N}+15 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ asSuper, $\mathrm{T}_{4}=40 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+30 \mathrm{lb}$./ac. $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super, $\mathrm{T}_{5}=40 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{C}+30 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super and $\mathrm{T}_{6}=40 \mathrm{lb} . / \mathrm{ac}$. as $\mathrm{C} / \mathrm{N}+30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) R.B.D.
(ii) (a) 7.
(b) N.A.
(iii) 6 . (iv) (a) $66^{\prime} \times 14^{\prime}$.
(b) $64^{\prime} \times 12^{\prime}$.
(v) 2 rows on all sides. (vi) Yes.

4, GENERAL :
(i) Fair. (ii) Nil. (iii) Grain and Straw yield, (iv) (a) 1952-1955. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) $1464 \mathrm{lb} . / \mathrm{ac}$. (ii) $296.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of grain in lb ./ac.

| Treatment | $\mathrm{T}_{0}$ | $\mathrm{~T}_{1}$ | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{3}$ | $\mathrm{~T}_{4}$ | $\mathrm{~T}_{5}$ | $\mathrm{~T}_{6}$ |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Av. yeld | 350 | 1408 | 1418 | 1295 | 2108 | 2023 | 1645 |
|  |  |  |  |  |  |  |  |
|  | S.E./rean | $=$ | $121.2 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |

Crop :- Paddy. (Kharif).
Site :- Agri. Res. Stn., Rudrur.
Ref :- A.P. 55(23).
Type :- 'M'.

Object : - To study the effect of different sources of N in increasing the yield of Paddy.

## 1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Black cotton (regur). (b) Refer soil analysis, Rudrur. (iii) N.A.,6.7.195s. (iv (a) 3 ploughings, 2 puddlings and levelling. (b) Transplanting. (c) 30 lb./ac. (d) $6^{\circ} \times 6^{\circ}$. (e) N.A. (v) Nil. (vi) HR-19 (eariy). (vii) Irrigated. (viii) 1 hand weeding and 1 retary weeder. (ix) $45.84^{\prime \prime}$. (x) 20.10.1955.
2. TREATMENTS

Same as in expt. no. 54(41) on page 72.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 6 . (iv) (a) $66^{\prime} \times 14^{\prime}$. (b) $64^{\prime} \times 12^{\prime}$. (v) 2 rows. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) and (iii) Nil. (iv) (a) 1952-1955. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS:
(i) $1375 \mathrm{lb} . / \mathrm{ac}$. (ii) $333.2 \mathrm{lb} / \mathrm{ac}$. (iii Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathrm{T}_{\mathbf{1}}$ | $\mathrm{T}_{\mathbf{2}}$ | $\mathrm{T}_{3}$ | $\mathrm{~T}_{4}$ | $\mathrm{~T}_{5}$ | $\mathrm{~T}_{\mathbf{6}}$ | $\mathrm{T}_{7}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 217 | 1319 | 1408 | 1067 | 2004 | 1928 | 1687 |
|  |  |  |  |  |  |  |  |
|  | S.E./mean | $=$ | $136.0 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |

Crop :- Paddy. (Rabi).
Site :- Agri. Res. Stn,. Rudrur.

## Ref :- A.P. 55(21). <br> Type :- ' $\mathbf{M}$ '.

Object :-To study the effect of different sources of N in increasing the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Black cotton (regur). (b) Refer soil analysis, Rudrur. (iii) 2.2.1955. (iv) (a) 3 ploughings, 1 puddling and levelling. (b) Broadcast. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) HR-19 (early). (vii) Irrigated. (viii) 2 hand weedings. (ix) $0.59^{\prime \prime}$. (x) 21.5.1955.
2. TREATMENTS :

All combinations of (1) and (2)+control
(1) 3 sources of $\mathrm{N}: \quad \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=\mathrm{A} / \mathrm{C}$ and $\mathrm{S}_{3}=\mathrm{C} / \mathrm{N}$.
(2) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.

Time and method of application N.A.
3. DESIGN:
(i) R.B.D.
(ii) (a) 7 .
(b) N.A. (iii)
(iv) (a) $68^{\prime} \times 14^{\prime}$.
(b) $64^{\prime} \times 12^{\prime}$. (v) Two rows. (vi) Yes.
4. GENERAL:
(i) Fair. (ii) and (iii) Nil. (iv) (a) 1952-1955. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) $898 \mathrm{lb} . / \mathrm{ac}$. (ii) $161.6 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of S and N are significant. Interaction $\mathrm{S} \times \mathrm{N}$ is not. significant. 'Control $v$ s. others' effect is highly significant. (iv) Av. yield of grain in Jb ./ac.

$$
\text { Control }=170 \mathrm{lb} . / \mathrm{ac}
$$

|  | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}_{1}$ | 754 | 811 | 573 | 713 |
| $\mathrm{N}_{2}$ | 1520 | 1446 | 1010 | 1325 |
| Mean | 1137 | 1128 | 792 | 1019 |


| S.E. of $S$ marginal mean | $=46.6 \mathrm{lb} / / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $N$ margival mean | $=38.1 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table or control mean | $=65.9 \mathrm{lb} . / \mathrm{a}$. |

```
Crop :- Paddy. (Kha if)
Ref:- A,P. 54(87).
Site :- Agri. Res. Stn., Rudrur.
Type :- `M'
```

Object :-To compare the effects of G.M and A/S on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii, 1.7.1954
(iv) (a) 2 Ploughings, 2 pujalings and formation of bunds. (b) Transplanting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\circ}$.
(e) $2-3$ ssedlingsihill. (v) Nil. (vi) HR-35. (vii) Irrigated. (viii) Gap filling, tilling and weeding. (ix) $39.71^{\circ}$. ( x ) 10.12 .1954
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 doses of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{\mathrm{I}}=30 \mathrm{lb}$; ac. and $\mathrm{N}_{2}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 2 sources of $N: S_{1}=$ G.M. and $S_{2}=A / S$.
(3) 2 doses of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{1}=15 \mathrm{jb} . / \mathrm{ac}$. and $\mathrm{P}_{2}=30 \mathrm{lb} . / \mathrm{ac}$.
G.M. (pillipesara) receiving $\mathrm{P}_{2} \mathrm{O}_{5}$ grown in the site and after hervest adjusted to N dose as required for the treatments, G.M. was broadcast.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 3. (iv) $48^{\prime} \times 20^{\prime}$. (b) $46^{\prime} \times 19^{\prime}$. (v) $1^{\prime} \times \frac{1}{2}^{\prime}$. (vi) Yes.
4. GE\ERAL :
(1) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954 -1958. (b) Yes. (c) Nil. (v) (a) and (b) N A. (vi) and (vii) Nil.
5. RESULTS :
(i) $3191 \mathrm{lb} . / \mathrm{a}=$. (ii) $343.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of N is highly significant, Main effect of S is significant. Main effect of $P$ and interactions $N \times S, P \times S, N \times P$ are not significant. $N_{0} P$ vs. others effect is highly (iv) Av. yield of grain in lb.jac.

| $\mathrm{N}_{\mathrm{u}} \mathrm{P}_{2}=2243 ; \quad \mathrm{N}_{0} \mathrm{P}_{2}=2176$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $S_{1}$ | $S_{2}$ | Mean | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ |
| $\mathrm{N}_{1}$ | 3755 | 3007 | 3381 | 3431 | 3331 |
| $\mathrm{N}_{2}$ | 4195 | 3771 | 3983 | 3879 | 4087 |
| Mean | 3975 | 3389 | 3682 | 3655 | 3709 |
| $\mathrm{P}_{1}$ | 3979 | 3331 |  | 1 |  |
| $\mathrm{P}_{2}$ | 3971 | 2447 |  |  |  |
| S.E. of marginal mean of $S, N$ or $P$ S.E. of $b$ sdy of table |  |  |  | $\begin{aligned} & =99 \cdot 3 \mathrm{lb} . / \mathrm{ac} \\ & =140.4 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$ |  |


| Crop :- Paddy (Kharif) | Ref :- AP. 55(86) |
| :--- | :--- |
| Site :- Agri. Res. Stn. Rudrur. | Type :-‘M |

Object :- To compare the effects of G.M. and A/S on Paddy

1. BASAL CONDITIONS :
(!) (a) Paddy-Paddy. 'b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) $24.5 .1954 / 26.6 .54$. iv) (a) 2 ploughings, puddlings, formation of bunds. (b) Trassplanting (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) $2-3$ seedlings per hill. (v) Nil. (vi) HR-35. (vii) Irrigated. (viii) Gap-filling, tilling, and weeding. (ix) $62 \cdot 71^{\prime \prime}$ ( $x$ ) 16.12.1955.
2. TREATMENTS and 3. DESIGN.

Same as in expt. no. 54.87) above.
4. GENERAL :
(i) Satisfactory (ii) Nil. (iii) Grain yield. (iv) (a) $1954-1958$ (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $3116 \mathrm{lb} . / \mathrm{ac}$. (ii) $398.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of N is highly significanıly. Main effest of S is significant. Main effect of $\mathbf{P}$ and intractions $\mathrm{N} \times \mathrm{S}, \mathrm{N} \times \mathrm{P}$ and $\mathrm{S} \times \mathrm{P}$ are not significant. ' $\mathrm{N}_{0} \mathrm{P}$ vs. rest' effect is highly significant. (iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

$$
\mathrm{N}_{0} \mathrm{P}_{1}=2010 ; \mathrm{N}_{0} \mathrm{P}_{2}=2052
$$

|  | $\mathrm{S}_{1}$ | $S_{2}$ | Mean | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}_{1}$ | 3638 | 3190 | 3414 | 3539 | 3289 |
| $\mathrm{N}_{2}$ | 3995 | 3813 | 3904 | 3838 | 3971 |
| Mean | 3817 | 3501 | 3659 | 3688 | 3630 |
| $\mathrm{P}_{1}$ | 3696 | 3680 |  |  |  |
| $\mathrm{P}_{2}$ | 3937 | 3323 |  |  |  |

$$
\begin{array}{ll}
\text { S.E. of marginal mean of } \mathrm{S}, \mathrm{~N} \text { or } \mathrm{P} & =1.4 .9 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =162.6 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Rudrur.

## Ref :- A.P. 56(78).

Type :- ' $\mathbf{M}$ '.

Object :-To compare the effect of G.M. and A/S on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Black soil (light clay loam). (b) Refer soil analysis, Rudrur. (iii) N.A./30.6.1956. (iv) (a) 3 dry ploughing sand puddling. (b) Transplanting (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-35 (late). (vii) Irrigated. (viii) 2 weedings. (ix) $63.97^{\prime \prime}$. (x) 5.12.1956.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $54(87)$ on page 74.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-1958. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil
5. RESULTS:
(i) $3296 \mathrm{lb} . / \mathrm{ac}$. (ii) $313.7 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of S and N are high ly significant. Main effect of P and interactions $S \times N, S \times P, \quad N \times P$ are not significant. Effect of $N_{0} P$ vs. others is highly significant. (iv) Av. yield of grain in lb./ac.

|  | $\mathrm{N}_{0} \mathrm{P}_{1}=2450 ; \mathrm{N}_{0} \mathrm{P}_{2}=2251$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | Mean | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ |
| $\mathrm{N}_{1}$ | 3854 | 3298 | 3576 | 3522 | 3630 |
| $\mathrm{N}_{2}$ | 4261 | 3664 | 3962 | 3864 | 4060 |
| Mean | 4057 | 3481 | 3769 | 3673 | 3845 |
| $P_{1}$ | 4012 | 3373 |  |  |  |
| $\mathrm{P}_{2}$ | 4102 | 3589 |  |  |  |

$$
\begin{array}{ll}
\text { S.E. of margioal mean of } S, N \text { or } P & =90.6 \mathrm{lb} . / \mathrm{ac} \\
\text { S.E. of body of any table } & =128.1 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Rudrur.

Ref :- A. P. 57(67).
Type :- ' $\mathbf{M}$ '.

Object :-To compare the effect of G.M. and A/S on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A 17.7 1957. (iv) (a) 1 dry ploughing, 3 puddlings and levelling. (b) Transplanted. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-35 (late). (vii) Irrigated. (viii) 2 weedings. (ix' $32.36^{\prime \prime}$. (x) 30.11 .1958 .
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(87) on page 74.
4. GENERAL :
(i) Satisfactory, (ii) Nil. (iii) Tiller counts and grain yield. (iv) (a) 1954-1958. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $3551 \mathrm{lb} . / \mathrm{ac}$. (ii) $353.7 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of N and effect of $\mathrm{N}_{0} \mathrm{P}$ vs. others are highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.


| S.E. of marginal mean of $S, N$ or $P$ | $=102.1 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of body of any table | $=144.4 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Rabi).
Site :- Agri. Res. Stn., Rudrur.

Ref:- A.P. 58(134).
Type :- ' $\mathbf{M}$ '.

Object :-To compare the effect of G.M. and A/S on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As par treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 23.1.1958. (iv) (a) 2 ploughings, 2 puddlings and formation of bunds. (b) Broadcast. (c) 80 lb./ac. (d) N.A. (e) Nil. (v) As per treatments. (vi) RDR-7. (vii) Irrigated. (viii) Weeding. (ix) 2.07 ${ }^{\circ}$. (x) 11, 12.5.1958.
2. TREATMENTS to 3. DESIGN :

Same as in expt. no. 54 (87) on page 74.
4. GENERAL:
(i) Satisfactory.
(ii) Nil.
(iii) Grain yjeld. (iv) (a) 1954-1958.
(b) Yes.
(c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1251 \mathrm{lb} . / \mathrm{ac}$. (ii) $198.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of P alone is significant. (iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

$$
\mathrm{N}_{0} \mathrm{P}_{1}=1105 \mathrm{lb}, / \mathrm{ac} ., \quad \mathrm{N}_{0} \mathrm{P}_{2}=1312 \mathrm{lb} . / \mathrm{ac}
$$

|  | $S_{1}$ | $\mathrm{S}_{2}$ | Mean | $P_{1}$ | $\mathrm{P}_{2}{ }^{-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}_{1}$ | $\cdot 1312$ | 1337 | 1325 | 1279 | 1371 |
| $\mathrm{N}_{2}$ | 1321 | 1121 | 1221 | 1155 | 1287 |
| Mean | 1317 | 12:9 | 1273 | 1217 | 1329 |
| $P_{1}$ | 1213 | 1221 |  | . |  |
| $\mathrm{P}_{2}$ | 1420 | 1238 |  |  |  |

$$
\begin{array}{ll}
\text { S.E. of marginal mean of } \mathrm{S}, \mathrm{~N} \text { or } \mathrm{P} & =573 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of any table } & =81.0 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :- Paddy (Rabi).
Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 55(87).
Type :- ' $\mathbf{M}$ '.

Object:-To study the comparative merits of organic and inorganic manures with and witheut $P$ on Paddy.

1. BASAL CONDITIONS :
(i) Paddy-Paddy, (b) Paddy. (c) As per treatments. (ii) Clay loam. (b) Refer soil analysis, Rudrur.
(iii) 19.1.1955. (iv) (a) 2 ploughings, 2 puddlings and levelling. (b) Broadcasting. (c) 80 lb ./ac. (d) and.
(c) Nil. (v) Nil. (vi) RDR-7. (vii) Irrigated. (viii) Weedings. (ix) 0.90". (x) 7.5.1955.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 5 sources of $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}: \mathrm{S}_{0}=$ Control, $\mathrm{S}_{1}=$ F.Y.M, $\mathrm{S}_{2}=$ G.M., $\mathrm{S}_{3}=$ G.N.C. and $\mathrm{S}_{4}=\mathrm{A} / \mathrm{S}$.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=25 \mathrm{lb}$./ac.
G.M. puddled a week before broadcasting of seed. Other mạnures applied before broadcasting of seeds.
3. DESIGN :
(i) R.B.D.
(ii) (a) 10 .
(b) N.A.
(iii) 2. (iv) (a) and (b) $40^{\prime} \times 20^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Stem-borer attack checked. (iii) Grain yield. (iv) (a) 1954 -contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1572 \mathrm{lb} . / \mathrm{ac}$. (ii) $162.6 \mathrm{lb} / \mathrm{ac}$. (iii) Main effects of $\mathrm{S}, \mathrm{P}$ and interaction $\mathrm{S} \times \mathrm{P}$ are highly significant. (iv) Av. yield of grain in lb ./ac.

|  | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | $\mathrm{S}_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{0}$ | 765 | 708 | 2181 | 2096 | 1048 | 1359 |
| $\mathrm{P}_{1}$ | 878 | 1133 | 2266 | 2379 | 2266 | 1784 |
| Mean | 821 | 921 | 2223 | 2237 | 1657 | 1572 |
| S.E. of P marginal mean S.E. of $S$ marginal mean S.E. of body of table |  |  |  | $\begin{aligned} & =51.4 \mathrm{lb} . / \mathrm{ac} . \\ & =\quad 81.3 \mathrm{lb} . / \mathrm{cc} . \\ & =\quad 115.0 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$ |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

```
Crop:- Paddy (Rabi).
Ref :- A.P. 57(5).
Site :- Agri. Res. Stn., Rudrur.
Type :- 'M'.
```

Object: - To study the comparative merits of organic and inorganic manures with and without $P$ on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b; Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analys.s, Rudrur. (iii) 23.1.1957. (iv; (a) 2 dry ploughings, 3 wet puddlings and levelling. (b) Broadcasting. (c) 80 lb .ac. (d) and (e) N.A. (v) Nil (vi) RDR—7 (eariy). (vii) Irrigated (viii) 2 weedings. (ix) 6.44*. (x) 6.5.1957.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 55(87) on page 77.
4. GENERAL:
(i) Lodged and grain shed due to rains received in April. Had a set back due to hail-storm during last week of February. (ii) Very mild attack of stem-borer. (iii) Tiller count, yield of grain and straw. (iv) (a) 1954-contd. (b) Yes (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 781 lb. , ac. (ii) 243.4 lb ./ac. (iii) S and P effects are highly sigaificant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | $S_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P, | 109 | 599 | 654 | 981 | 41 | 477 |
| $\mathrm{P}_{1}$ | 763 | 790 | 1499 | 1281 | 1090 | 1085 |
| Mean | 435 | 695 | 1076 | 1131 | 565 | 781 |
| S.E. of S marginal mean $\quad=121.7 \mathrm{lb} / \mathrm{ac}$. |  |  |  |  |  |  |
| S.E. of P marginal mean $\quad=77.0 \mathrm{lb} . / \mathrm{c}$ |  |  |  |  |  |  |
| S.E. of bedy of table |  |  |  | $=172.1 \mathrm{lb} . / \mathrm{ac}$. |  |  |

Crop :- Paddy (Rabi).
Ref :- A.P. 58(34).
Site :- Agri. Res. Stn., Rudrur.
Type :- ‘ $\mathbf{M}^{\prime}$.

Object :-To study the comparative merits of organic and inorganic manures with and without $P$ on Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 24.1.1958. (iv) (a) 1 to 2 dry ploughings, 2 to 3 wet ploughings and levellings. (b; Broadcasting. (c) 80 lb ./ac. (d) and (e) N.A. (v) Nil. (vi) RDR-7 (early). (vii) Irrigated. (viii) 2 weedings. (ix) 1.77*. (x) 5.5.1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $55(87)$ on page 77.
4. GENERAL :
(i) Good. (ii; Very mild attack fof stem borer. (iii) Tiller counts, yield of grain and straw. (iv) (a) 1954-contd. (b; Yes. (c) Nii. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(l) $1181 \mathrm{lb} . / \mathrm{ac}$. (ii’: 162.5 lb. ac. (iii) Main effects of $S$ and $P$ are highly significant. Interaction $S \times P$ highly significant. (iv; Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{1}$ | Nean |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{P}_{0}$ <br> $\mathrm{P}_{1}$ | 327 953 708 1225 54 <br> 980 1334 2123 2205 1906 | 653 <br> 1710 |  |  |  |  |
| Mean | 653 | 1143 | 1415 | 1715 | 980 | 1181 |


| S.E. of $S$ marginal mean | $=$ | $81.3 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- | ---: |
| S.E. of P marginal mean | $=$ | $51.4 \mathrm{lb} / \mathrm{ac}$. |
| S.E. of body of table | $=114.9 \mathrm{lb} / / \mathrm{ac}$. |  |

[^3]Object:--To study the comparative merits of organic and inorganic manures with and without $P$ on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) . Paddy. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 31.1.1959. (iv) dry ploughing with victory plough, two puddlings and levelling (b) Broadcastirg (c) to (e) N.A. (v) Nil. (vi) RDR-7. (vii) Irrigated. (viii) 1 hand weeding, (ix) N.A. (x) 6.5.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $55(87)$ on page 77.
4. GENERAL :
(i) Satisfactory. (ii) Negligible. (iii) Grain yield. (iv) (a) 1954-N.A. (b) Yes. (c) Nil. (v) (a) RajendraNagar. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $893 \mathrm{lb} . / \mathrm{a}$. (ii) 140.0 lb ./ac. (iii) Main effects of $\mathrm{S}, \mathrm{P}$ and interaction $\mathrm{S} \times \mathrm{P}$ are highly siginficant. (iv) Av . yield of grain in lb ./ac.


| S.E. of $S$ marginal mean | $=70.0 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $\mathbf{P}$ marginal mean | $=44.3 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=99.0 \mathrm{lb} . / \mathrm{ac}$. |

Crop:- Paddy :- (Kharif).
Site :-Agri. Res. Stn. Rudrur. , Type :- $\mathfrak{M}^{\mathbf{M}}$ '.
Object :-To study the comparative merits of organic and inorganic manures with and without $P$ on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) Às per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 30.6.1954. (iv) (a) Dry ploughing, 2 puddlings and levelling. (b) Transplanting. (c) $33 \mathrm{lb} . / \mathrm{ac}$ (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) $2-3$ seedlings/hill. (v) Nil. (vi) RDR-4. (vii) Irrigated. (viii) Gap filling and weeding. (ix) 39.71". (x) 22, 25.11.1954.

## 2. TREATMENTS :

All combinations of :1) and 2
(1) 5 sources of 50 lb . ac. of $\mathrm{V}: \mathrm{S}_{0}=$ control, $\mathrm{S}_{1}=$ F.Y.M., $\mathrm{S}_{2}=$ G.M., $\mathrm{S}_{3}=$ G.N.C. and $\mathrm{S}_{4}=\mathrm{A} / \mathrm{S}$.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{3}=0$ and $\mathrm{P}_{1}=25 \mathrm{lb} . / \mathrm{ac}$.
G.M. puddled a week before plarting. Other fertilizers applied at planting.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a'. 10 , b) N.A. (iii) 2. (iv) (a) and (b) $40^{\prime} \times 20^{\circ}$ (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954 -contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii, Nil.
5. RESULTS :
(i) 3230 lb . ac. (ii) 368.8 lb ., ac. (iii) Main effect of S is highly significant. Main effect of P and interaction $S \times P$ are not significant. (iv; Av. yield of grain in lb./ac.

|  | $S_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | $\mathrm{S}_{1}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 2295 | 2408 | 3825 | 3513 | 3655 | 3139 |
| $\mathrm{P}_{1}$ | 2550 | 3173 | $3+85$ | 3909 | 3485 | 3320 |
| Mean | 2423 | 2791 | 3655 | 3711 | 3570 | 3230 |
| S.E. of $P$ marginal mean S.E. of $S$ marginal mean S.E. of body of table |  |  |  | $\begin{aligned} & =116.6 \mathrm{lb} . / \mathrm{ac} . \\ & =184.4 \mathrm{lb} . / \mathrm{ac} . \\ & =260.8 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$ |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Crop :- Paddy. (Kharif).
Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 55(88).
Type :- ' $\mathbf{M}^{\prime}$.

Object :-To study the comparative merits of organic and inorganic manures with and without $P$ on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A./30.6.1955. (iv) (a) Dry ploughing, 2 puddlings and levelling. (b) Transplanting. (c) 30 lb .'ac. (d) $6^{\circ} \times 6^{\circ}$. (e) $2-3$ seedlings/hill. (v) Nil. (vi) $R D R-4$. (vii) Irrigated. (viii) Gap filling and weeding. (ix) $62.71^{\prime \prime}$. ( $x ; 23.11 .1955$.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54 (88) on page 79.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954 -contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $2249 \mathrm{lb} . / \mathrm{ac}$. (ii) $287.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of P and S are highly significant. Interaction $\mathrm{S} \times \mathrm{P}$ is not significant. (iv) Av. yield of grain in lb./ac.

|  | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | $S_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 1161 | 1869 | 2068 | 2096 | 1105 | 1660 |
| $\mathrm{P}_{1}$ | 2068 | 2436 | 3399 | 2861 | 3727 | 28.38 |
| Mean | 1615 | 2153 | 2733 | 2479 | 22 ć6 | 2249 |


| S.E. of P marginal mean | $=90.8 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- | ---: |
| S.E. of S marginal mean | $=143.6 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=203.1 \mathrm{lb} / \mathrm{ac}$. |

Crop :- Paddy. (Kharif).
Site :- Agri. Res. Stn., Rudrur.

## Ref :- A.P. 56(77). <br> Type :- ' $M$ '.

Object :-To study the comparative merits of organic and inorganic manures with and without $\mathbf{P}$ on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Light clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A. 276.1956 . (iv) (a) One dry ploughing and3 puddlings. (b) Transplanted. (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$.
(e) N.A. (v) Nil. (vi) RDR-4 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) $63.97^{\prime \prime}$. (x) 19.11 .1956
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $54(88)$ on page 79.
4. GENERAL :
(i) Satifactory. (ii) Nil. (iii) Grain yield. (iv) 1954 -contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2229 \mathrm{lb} . / \mathrm{ac}$. (ii) $538.1 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of S is significant. Main effect of $\mathbf{P}$ and interaction $\mathbf{S} \times \mathbf{P}$ are highly significant. (iv) Av. yield of grain in lb ./ac.

|  | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $S_{2}$ | $S_{3}$ | $\mathrm{S}_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 735 | 2396 | 2732 | 1824 | 327 | 1601 |
| $\mathrm{P}_{1}$ | 2069 | 1851 | 3267 | 3321 | 3784 | 2858 |
| Mean | 1402 | 2123 | 2995 | 2573 | 2055 | 2229 |


| S.E. of $S$ marginal mean | $=269.1 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $P$ marginal mean | $=170.2 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=380.5 \mathrm{lb} . / \mathrm{ac}$. |

## Crop :- Paddy (Kharif). <br> Site :- Agri. Res. Stn., Rudrur.

## Ref :- A. P. 57(66). <br> Type :- ' $\mathbf{M}$ '.

Object :-To study the comparative merits of organic and inorganic manures with and without $P$ on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A./16.7.1957. (iv) (a) 1 dry ploughing, 3 puddlings and levelling. (b) Transplanting. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) RDR-4 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) $27.86^{\prime \prime}$. (x) 30.11 .1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no, 54 (88) on page 79 .
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Tiller count, yield of grain and straw. (iv) (a) 1954-contd. (b) Yes. (c) Nii. (v) (a) Rajendranagar. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 2006 lb ./ac. (ii) 185.4 lb ./ac. (iii) Main effects of $S$ and $P$ and interaction $S \times P$ are high'y significant. (iv? Av. y.eld of grain in lb./ac.

|  | $\mathrm{S}_{0}$ | $S_{1}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{3}$ | $\mathrm{S}_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 694 | 1838 | 1865 | 1702 | 762 | 1372 |
| $\mathrm{P}_{1}$ | 2055 | 2355 | 2750 | 2831 | 3212 | 2641 |
| Mean | 1375 | 2097 | 2307 | 2267 | 1987 | 2006 |


| S.E. of $S$ marginal mean | $=$ | $92.7 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- | ---: |
| S.E. of $P$ marginal mean | $=$ | $58.6 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=131.1 \mathrm{lb} . / \mathrm{ac}$. |  |

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 58(66).
Type :- ' $M$ '.

Object :-To study the comparative merits of organic and inorganic manures with and without $P$ on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A./3.7.1958. (iv) (a) 1 dry ploughing with victory plough, puddling, levelling and cutting bunds. (b) to (e) N.A. (v) Nil. (vi) RDR-4 (late). (vii) Irrigated. (viii) 1 weeding by Japanese weeder and 1 hand weeding. (ix) $41.96^{\prime \prime}$. (x) 4.12 .1958 .
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(88) on page 79.
4. GENERAL :
(i) Satisfactory. (ii) Negligible. (iii) Grain yield. (iv) (a) 1954 -contd. (b) Yes. (c) Nil. (v) (a) Rajendranagar. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $1313 \mathrm{lb} . / \mathrm{ac}$. (ii) 282.6 lb ./ac. (iii) Main effects of S and P and interaction $\mathrm{S} \times \mathrm{P}$ is are highly significant. (iv) Av. yield of grain in lb ./ac.

|  | $S_{0}$ | $S_{1}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{3}$ | $\mathrm{S}_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 177 | 1443 | 817 | 762 | 150 | 670 |
| $\mathrm{P}_{1}$ | 1742 | 1906 | 2178 | 1906 | 2042 | 1955 |
| Mean | 960 | 1675 | 1497 | 1334 | 1096 | 1313 |

S.E. of S marginal mean $\quad=141.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of $P$ marginal mean $\quad=89.4 \mathrm{lb} / \mathrm{ac}$.
S.E. ol body of table $\quad=199.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 59(136).
Type :- ' $\mathbf{M '}^{\prime}$.

1. BASAL CONDITIONS :
(i) (a) Padddy-Paddy. (b) Paddy. (c) As per treatments. (ii) Clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A/June 1959. (iv) (a) 1 ploughing, 3 puddlings and levelling. (b) Transplanting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 to 3. (v) Nil. (vi) RDR-4 (medium). (vii) Irrigated. (viii) Gap filling and wer ding. (ix) N.A. (x) November 1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(88) on page 79.
4. GENERAL:
(i) Satisfactory. (ii) $\mathrm{N}^{1}$. (iii) Grain yield. (iv) (a).1954-contd. (b) Yes. (c) Nil. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1534 \mathrm{lb} . / \mathrm{ac}$. (ii) 174.5 lb ./ac. (iii) Main effects of S and P are highly significant. Interaction $\mathrm{S} \times \mathrm{P}$ is , significant. (iv) Av. yield of grain in lb ./ac.


```
Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Radrar.
Ref::- A.P. 54(89).
Type :- 'M}\mathbf{M
```

Object :-To study the residual effect of $P$ over a period of eight Paddy seasons.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) N.A. (ii) (a) Black soil. (b) Refer soil analysis, Rudrur. (iii) 6.7.1954/6.8.1954. (iv) (a) Plouging, 2 puddlings and levelling. (b) Transplanting. (c) 30 lb ./ac. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 to 3. (v) Nil. (vi) RDR-7. (vii) Irrigated. (viii) Gap-filling and weeding. (ix) $39.71^{\prime \prime}$. (x) 22.10.1954.
$2!$

| TREATMENTS : |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| P as B.D. | 0 | 0 | 0 | 200 | 100 | 0 | 200 | 100 | 0 | 200 | 0 | 0 |
| N every season | 0 | 0 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| P every season | 0 | 37.5 | 25 | 12.5 | 25 | 37.5 | 25 | 37.5 | 50 | 37.5 | 75 | 100 |

N applied as $\mathrm{A} / \mathrm{S}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in lb./ac. P as B.D., as per the levels shown, was applied only initially in the 1st season.

3 DESIGN :
(i) R.B.D (ii) (a) 14 ( 3 control plots in each replication) (b) N.A. (iii) 4 . (iv) (a) $48^{\prime} \times 20^{\prime}$. (b) $1 / 50 \mathrm{ac}$. (v) $I^{\prime} \times \frac{1^{\prime}}{}$. (vi) Yes.

GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-1958. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

## RESULTS :

(i) $1703 \mathrm{lb} . / \mathrm{ac}$. (ii) $464.0 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. Effect of 'control vs. others' is highly significant. (iv) Av. yield of grain in lb./ac.

|  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| Av. yield | 546 | 675 | 1613 | 2575 | 2025 | 1937 | 2223 | 2287 | 2113 | 2500 | 2225 | 2050 |
|  | S.E./mean (excluding control) |  | $=232.0 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |  |  |  |
|  | S.E./control mean |  |  |  | $133.9 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |


| Crop :- Paddy. (Rabi). | Ref :- A.P. 55(89). |
| :--- | :--- |
| Site :- Agri. Res. Stn., Rudrur. | Type :- 'M'. |

Object :-To study the residual effect of $\mathbf{P}$ over a period of eight Paddy seasons.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis. Rudrur. (iii) 24.1.1955. (iv) (a) 2 ploughings, puddlings and levelling. (b) Sprouted seeds broadcast. (c) 80 lb./ac. (d) and (e) -. (v) Nil. (vi) RDR-7. (vii) Irrigated. (viii) Weeding. (ix) $0.98^{\prime \prime}$. (x) 3 to 6.5.1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(89) on page 83.
4. GENERAL :
(i) Normal- (ii) Folidol sprayed as a precaution against stem-borer. (iii) Grain yield. (iv) (a) 1954-1958,
(b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1586 \mathrm{lb} . / \mathrm{ac}$. (ii) $249.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. Effect of 'control vs. others' is highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 279 | 763 | 1750 | 2275 | 1825 | 1825 | 2150 | 2200 | 1887 | 2313 | 2063 | 2325 |

$$
\text { S.E./mean (excluding control) } \quad=124.7 \mathrm{lb} . / \mathrm{ac} .
$$

S.E./control mean $\quad=72.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy. (Kharif).
Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 55(90).
Type :- ‘M’.

Object :-To study the residual effect of $P$ over a period of eight Paddy seasons.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Rudrur. (iii) 22.6.1955/27.7.1955. (iv) (a) 2 ploughings, puddlings and levellings. (b) Transplanting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2-3. (v! Nil. (vi) RDR-7. (vii) Irrigated, (viii) Gaps-filling and weeding. (ix) 62.71". (x) 1.10.1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(89) on page 83
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) $1954-1958$. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nii.
5. RESULTS :
(i) $2266 \mathrm{lb} . / \mathrm{ac}$. (ii) $270.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. Effect of 'control vs . others' is highly significant. (iv) Av . yield of grain in lb.jac.

| Treatment | $\mathrm{T}_{1}$ | T2 | T3 | T4 | $\mathrm{T}_{5}$ | T6 | T7 | $\mathrm{T}_{8}$ | T9 | $\mathrm{T}_{10}$ | $\mathrm{T}_{11}$ | T 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A.v. yield | 277 | 1075 | 2250 | 3163 | 2963 | 2575 | 3175 | 3063 | 3000 | 3575 | 2913 | 3150 |
|  |  | S.E./mean (excluding control) |  |  |  |  | $=$ | 135.3 |  |  |  |  |
|  |  | S.E./control mean |  |  |  |  | = | $78.1{ }^{1 \mathrm{lb}}$ |  |  |  |  |

```
Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Rudrur.
Ref:- A.P. 56(79).
Type : \({ }^{〔} \mathbf{M}\) '.
```

Object:-To study the residual effect of $P$ over a period of 8 Paddy seasons.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A./16.7.1956. (iv) (a) 2 dry ploughings and 2 puddlings. (b) Transplanting. (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) RDR-7 (early'). (vii) Irrigated. (viii) 1 weeding. (ix) $63.97^{\prime \prime}$. (x) 11.10 .1956.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(89) on page 83.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2731 \mathrm{lb} . / \mathrm{ac}$. (ii) 451.9 lb ./ac. (iii) Treatment differences are highly significant. Effect of 'control $v s$. others' is highly significant. (iv) Av. yield of grain in lb./ac.


| Crop :- Paddy (Kharif). | Ref :- A.P. 57(68). |
| :--- | :--- |
| Site :- Agri. Res. Stn., Rudrur. | Type :- $\mathfrak{〔}$ ’. |

Object :-To study the residual effect of $P$ over a period of 8 Paddy seasons.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam, (b) Refer soil analysis, Rudrur. (iii) N.A./16.7.1957. (iv) (a) 1 dry ploughing, 3 puddlings and levellings. (b) Transplanting. (c) N.A. (d) $6^{2} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) RDR-7 (early). (vii) Irrigated. (viii) 2 weedings. (ix) $21.49^{\prime \prime}$. (x) 9.10.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $54(89)$ on page 83.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954 -contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.

## 5. RESULTS :

(i) $1682 \mathrm{lb} . / \mathrm{ac}$. (ii) 396.6 lb ./ac. (iii) Treatment differences are highly significant. Effect of 'control vs. others' is highly significant. (iv) Av. yield of grain in lb ./ac.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Rudrur.

Ref :- A. P. 58(135).
Type :- 'M'.
Object :-To study the residual effect of $P$ over a period of 8 Paddy seasons.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Rudrur., (iii) N.A./18 to 20.7.1958. (iv) (a) Ploughing, 2 puddlings and levelling. (b) Transplanting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) $2-3$ seedlings/hill. (v) Nil. (vi) RDR-7 (early). (vii) Irrigated. (viii) Gapfilling and weeding. (ix) $52.74^{\prime \prime}$. (x) 14.10 .1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54 (89) on page 83.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-1958. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1969 \mathrm{lb} . / \mathrm{ac}$. (ii) $327.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. Effect of 'control vs. others' is highly significant. (iv) Av. yield of grain in lb./ac.

| Treatment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 183 | 1587 | 1975 | 2575 | 2413 | 2700 | 2813 | 2550 | 2663 | 2613 | 2463 | 2663 |
|  | S.E./mean (excluding control) |  |  |  |  |  |  | $\begin{aligned} & 3.7 \mathrm{lb} . \\ & 4.5 \mathrm{lb} . \end{aligned}$ |  |  |  |  |


| Crop :- Paddy (Rabi). | Ref :- A.P. 57(4) |
| :--- | :--- |
| Site :- Agri. Res. Stn. Rudrur. | Type :- $\mathbf{c}^{\mathbf{M}}$, |

Object :-To study the residual effect of $P$ over a period of 8 Paddy seasons.

1. BASAL CONDITIONS :
(i) (a) Paddy_Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 31.1.1957. (iv) (a) 2 ploughings, 2 to 3 wet puddlings, and levelling. (b) Broadcasting. (c) 80 lb./ac. (d) and (e;-. (v) As per treatments. (vi) RDR-7 (early). (vii) Irrigated. (viii) 2 weedings. (ix) $6.44^{\prime}$. (x) 1 st week of May 1957.
2. TREATMENTS and 3. DESIGN:

Same as in expt. No. 54(89) on page 83.
4. GENERAL:
(i) Lodged and grains shed due to rains received in April. (ii) Very mild attack of stem control measure N.A. (iii) Yield of grain and straw. (iv) (a) 1954 and 1958. (b) Yes. (c) Nil. (v) (a) Rajendranagar. (b) N.A. (vi) Crop had set back due to hail-strom during last week of February. (vii) Nil.

## 5. RESULTS:

(i) 1315 Jb ./ac. (ii) $222.0 \mathrm{Jb} / \mathrm{ac}$. (iii) Treatment differences are bighly significant. Effect of 'control vs. others' is highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

.Object :- To study the residual effect of P over a period of 8 Paddy seasons.

1. BASAL CONDITIONS :
(i), (a) Paddy-Paddy. (b) Paddy, (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 24.1.1958. (vi) (a) 2 dry ploughings, 2-3 wet puddlings and levelling. (b) Broadcasting sprouted seed. (c) At $80 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) RDR-7 (early). (vii) Irrigated. (viii) 2 weedings. (ix) $1.51^{\prime \prime}$. (x) $1.5: 1958$.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $54(89)$ on page 83.
4. GENERAL :
(i) Good. (ii) Very mild attack of stem-borer - control measures N.A. (iii) Grain yield. (iv) (a) 1954. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS
(i) $1844 \mathrm{lb} . / \mathrm{ac}$. (ii) 173.8 lb ./ac. (iii) Treatment differences are bighly signifcant. Effect of 'control vs. others' is highly significant. (iv) Av. yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.

| Treatment | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 3421263 | 2300 | 2287 | 2175 | 2400 | 2337 | 2337 | 2437 | 2463 | 2375 | 2413 |
|  | S.E./mean (excluding control) |  |  | trol) | $=86.9 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |  |

```
Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Rudrur.
```

```
Ref :- A.P. 55(24).
Type :- ' \(\mathbf{M}^{\prime}\) '.
```

Object :-Time of application of N to Paddy in Chalka soil.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Chalka. (b) Refer soil avalysis, Rudrur. (iii) 4, 5.7.1955. (iv) (a) Ploughing and puddling. (b) Transplanting. (c) $30 \mathrm{lb} / \mathrm{ac}$. (d) $6^{c} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-35 (late). (vii) Irrigated. (viii) One hand weeding and 2 by rotary weeder. (ix) $4609^{\prime \prime}$. (x) 6.12.1955.
2. TREATMENTS

9 manurial treatments : $M_{1}=$ Full dose at planting, $M_{2}=$ Full dose 40 days after planting, $M_{3}=$ Fuli dose 80 days at planting, $M_{4}=\frac{1}{2}$ dose at planting $+\frac{1}{8}$ dose 40 days later, $M_{5}=\frac{1}{2}$ dose at planting $+\frac{1}{2}$ dose 80 days later, $\mathrm{M}_{6}=\frac{1}{2}$ dose 40 days after planting+1 $\frac{1}{2}$ dose 80 days after planting, $\mathrm{M}_{7}=\frac{1}{3}$ dose at planting $+\frac{1}{3}$ after 40 days $+\frac{1}{3}$ after 80 days after planting, $\mathrm{M}_{8}=\mathrm{P}_{2} \mathrm{O}_{5}$ alone and $\mathrm{M}_{9}=\frac{1}{2} \mathrm{~N}+\frac{1}{2} \mathrm{P}$ at planting and $\frac{1}{2} \mathrm{~N}+\frac{1}{2} \mathrm{P} 40$ days later.
N applied at $45 \mathrm{lb} . / \mathrm{ac}$. as $\mathrm{A} / \mathrm{S}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ applied at $22 \frac{1}{2} \mathrm{lb} / \mathrm{ac}$. as Super.
3. DESIGN :
(i) R.B.D.
(ii) (a) 9 .
(b) N.A.
(iii) 4 .
(iv) (a) $55^{\prime} \times 14^{\prime}$
(b) $53^{\prime} \times 12$
v) 1 row alround,
(b) Yes.
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Yjeld of grain. (iv) (a) $1954-55$. (b) Yes. (c) Nil. (v) (a) and (b) N.A. ${ }^{\text {i }}$ (vi) and (vii) Nil.
5. RESULTS:
(i) $2481 \mathrm{lb} . / \mathrm{ac}$. (ii) 356 lb .fac. (iii) The treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.


| Crop :- Paddy (Saraza). | Ref :- A.P. 54(83). |
| :--- | :--- |
| Site :- Agri. Res. Stn., Samalkot. | Type :- 'M'. |

Object :- To find out the effect of organic manures on the soil and Paddy yield.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Fallow. (c) As per treatments. (ii) (a) Heavy alluvial. (b) Refer soil analysis, Samalkot. (iii) $21.61954 / 3.8 .1954$. (iv) (a) 4 ploughings and levellings. (b) Transplanting. (c) -. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 . (v) $4000 \mathrm{lbs} . / \mathrm{ac}$. of G.L. $100 \mathrm{lb} . / \mathrm{ac}$. of Super and $1 \mathrm{CO} \mathrm{lb} . / \mathrm{ac}$. of A/S. (vi) SLO- 15 (late) (vii) Irrigated. (viii) Weeding one month after planting. (ix) $44.12^{\circ}$. (v) 19.12.1954.
2. TREATMENTS :

All combinations of (1) and (2) and a control.
(1) 3 levels of manure : $\mathrm{L}_{1}=2500, \mathrm{~L}_{2}=5000$ and $\mathrm{L}_{3}=7500 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 sources: $M_{1}=$ C.M., $M_{2}=$ Compost equivalent to C.M. and $M_{3}=$ G.L. equivalent to C.M.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N A. (iii) 4. (iv) (a) and (b) $13.2^{\circ} \times 33^{\circ}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1952-1954. (b) Yes. (c) Nil. (v) (a) Maruteru. (b) N.A. (vi) and (vii) Nil.

## 5. RESULTS :

(i) $3677 \mathrm{lb} . / \mathrm{ac}$. ii) $297.7 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is siginficant. (iv) Av. yield of grain in lb ./ac.

Control $=3912 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{L}_{1}$ | $L_{2}$ | $L_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M}_{1}$ | 3889 | 3722 | 3719 | 3777 |
| $\mathrm{M}_{2}$ | 3714 | 3733 | 3491 | 3646 |
| $\mathrm{M}_{3}$ | 3717 | 3620 | 3250 | 3529 |
| Mean | 3773 | 3692 | 3487 | 3651 |
| S.E. of any marginal mean |  |  | $=$ | $85.9 \mathrm{lb} / \mathrm{/ac}$. |
| S.E. of | f table | ontro |  | lb.lac. |

$$
\begin{array}{ll}
\text { Crop :- Paddy } / \text { Saraia,. } & \text { Ref :- A.P. 55(77). } \\
\text { Site :- Agri. Res. Stn., Samalkot. } & \text { Type :- ‘M’. }
\end{array}
$$

Object:-To find out the relative merits of T.C. as a manure to Paddy against G.L. and F.Y.M. at different levels of N .

1. BASAL CONDITIONS :
(i) (a) Paddy—Paddy. (b) Fallow. (c) As per treatments. (ii) (a) Heavy alluvial. (b) Refer soil analysis, Samalkot. (iii) $26.6 .1955 / 4.8 .1955$. (iv) (a) 4 puddlings and levelling. (b) Transplanting. (c) - . (d) $10^{\prime \prime} \times 6^{\prime \prime}$. (e) 2. (v) 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super at planting. (vi) $\mathrm{SLO}-15$ (late). (vii) Irrigated. (viii) 1 weeding one month after planting. (ix) $34 \cdot 65^{\prime \prime}$. (x) 29.11 .1955.

## 2. TREATMENTS :

All combinations of (1) and (2) and a control
(1) 3 levels of $\mathrm{N}: \mathrm{L}_{1}=40, \mathrm{~L}_{2}=60$ and $\mathrm{L}_{3}=80 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 sources of $\mathrm{N}: \quad \mathrm{M}_{1}=$ T.C., $\mathrm{M}_{2}=$ F.Y.M. and $\mathrm{M}_{3}=$ G.L.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) and (b) $18^{\prime} \times 45^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) $1955-1958$. (b) Yes (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) $2275 \mathrm{lb} . / \mathrm{ac}$. (ii) $252.5 \mathrm{lb} / \mathrm{ac}$. (iii) Main effect of M , interaction $\mathrm{L} \times \mathrm{M}$ and 'control vs . others' are highly significant. (iv) Av. yield of grain in lb./ac.

$$
\text { Control }=1895 \mathrm{lb} . / \mathrm{ac}
$$

|  | $\mathrm{L}_{1}$ | $\mathrm{~L}_{2}$ | $\mathrm{~L}_{3}$ | Mean |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{M}_{1}$ | 2419 | 1902 | 2286 | 2202 |
| $\mathrm{M}_{2}$ | 2245 | 2010 | 2117 | 2124 |
| $\mathrm{M}_{3}$ | 2286 | 2803 | 2783 | 2624 |
| Mean | 2317 | 2238 | 2395 | 2317 |
|  |  |  |  |  |
| S.E. of any marginal mean   <br> S.E. of body of table or control mean  $=126.3 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |

Crop :- Paddy (Sarava).
Site :- Agri. Res. Stm., Samalkot.

Ref:- A.P. 56(7).
Type :- 'M'.

Object: - To find out the relative merits of T.C. as a manure to Paddy against G.L. and F.Y.M at: different levels of N .

1. BASAL CONDITIONS:
(i) (a) Paddy—Paddy. (b) Paddy. (c) Nil. (ii) (a) Heavy alluvial. (b) Refer soil analysis, Samalkot. (iii) $10.6 .1956 / 20.7 .1956$. (iv) (a) 2 ploughings after letting in water. (b) Bulk planting in lines. (c) N.A. (d) $8^{\prime \prime}$ between lines. (e) N.A. (v) Triple Super at $30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ before planting. (vi) SLO-15. (vii) Irrigated. (ix) $39.16^{\prime \prime}$. (x) 1.12 .1956.
2. TREATMENTS :

All combinations of (1) and (2) + a control.
(1) 3 sources of $N: M_{1}=$ Urban compost, $M_{2}=$ F.Y.M. and $M_{3}=G . L$.
(2) 3 levels of $\mathrm{N}: \mathrm{L}_{1}=40, \mathrm{~L}_{2}=60$ and $\mathrm{L}_{3}=80 \mathrm{lb}$./ac.

Manures applied as basal dressing at the time of puddling. .
3. DESIGN :
(i) R.B.D. (ii) (a) 10 .
(b) N.A.
(iii) 4 .
(iv) (a) and (b) $14^{\prime} \times 42^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. Crop lodged. (ii) Moderate attack of gall-fly-control measures N.A. (iii) Yield of grain and straw. (iv) (a) 1955-contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2913 \mathrm{lb} . / \mathrm{ac}$. (ii) 360.4 lb ./ac. (iii) Effect of M is significant and effect of L is highly significant. (iv) Av. yield of grain in lb ./ac.

Control $=2759 \mathrm{lb} . / \mathrm{ac}$.


## Crop :- Paddy (Sarava). <br> Site :- Agri. Res. Stn., Samalkot.

Ref :- A.P. 57(15)
Type :- ' $\mathbf{M}$ '.

Object :-To find out the merits of T.C. as a manure to Paddy against G.L. and F.Y.M. at different levels of N .

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy alluvial soil. (b) Refer soil analysis, Samalkot. (iii) 19.5.1957,4.7.1957. (iv) (a) 2 ploughings and puddling. (b) Bulk planting. (c) to (e) N.A. (v) Bulky organic manures and Triple Super applied to all plots to supply 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ before planting. (vi) SLO-15 (vii) Irrigated (viii) Weeding one month after planting. (ix) 34.37" (x) 25.11.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(7) above.
4. GENERAL:
(i) Crop lodged. (ii) N.l. (iii) Tiller count, height measurement and grain yield. (iv) (a) 1955-contd. (b) Yes. (c) N.A. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 3816 lb ./ac. (ii) $212.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Interaction $\mathrm{M} \times \mathrm{L}$ and 'control vs. others' are highly significant. (iv) Av. yield of grain in lb ./ac.

$$
\text { Control }=3444 \mathrm{lb} . / \mathrm{ac}
$$

|  | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{L}_{1}$ | 3537 | 3722 | 4259 | 3839 |
| L2 | 3852 | 3963 | 3870 | 3895 |
| $\mathrm{L}_{3}$ | 3907 | 3944 | 3666 | 3839 |
| Mean | 3765 | 3876 | 3932 | 3858 |
| S.E. of L or M margnial mean |  |  |  | $61.5 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table or control mean |  |  |  | $106.4 \mathrm{lb} . / \mathrm{ac}$. |

Corp :- Paddy (Sarava).
Site :- Agri. Res. Stn., Samalkot.

Ref :- A.P. 58(9).
Type :- ‘M'.

Object:-To find out the relative merits of T.C. as a manure to Paddy against G.L. and F.Y.M. at different levels of N .

## BASAL CONDITIONS :

(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments and 30 lb ./ac. $\mathrm{P}_{2} \mathrm{O}_{5}$ as Triple Super as B.D. (ii) (a) Heavy alluvial (b).Refer soil analysis, Samalkot. (iii) 7.7.1958. (iv) (a) 2 ploughings and 2 puddlings (b) Bulk planting (c) $21 \mathrm{lb} . / \mathrm{ac}$. (d) N.A. (e) 2 (v) Bulky organic manures applied as B.D. and Triple Super applied to to all plots at 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$. (vi) $\mathrm{SLO}-15$ (vii) Irrigated (viii) Weeding one month after planting. (ix) $57.73^{\prime \prime}$. (x) 3.12 .1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $56(7)$ on page 89.
4. GENERAL :
(i) Due to heavy rain fall pre-lodging was noticed in some plots. (ii) Nil. (iii) Tiller count and height measurment were recorded 48, 90, 120 and 150 days after planting and yield of grain. (iv) (a) 1955-1958. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.

## 5. RESULTS:

(i) $4206 \mathrm{lb} . / \mathrm{ac}$. (ii) $: 96.2 \mathrm{lb}$./ac. (iii) Effect of L is highly significant and 'control vs. others' is significant (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

$$
\text { Control }=4437 \mathrm{lb} \cdot / \mathrm{ac}
$$

|  | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}^{*}$ | $\mathrm{M}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{L}_{1}$ | 4358 | 4583 | 4057 | 4333 |
| $\mathrm{L}_{2}$ | 4420 | 4070 | 3633 | 4041 |
| $\mathrm{L}_{3}$ | 4357 | 4600 | 3548 | 4168 |
| Mean | 4378 | 4418 | 3746 | 4181 |

S.E. of any marginal mean $\quad=85.5 \mathrm{lb} . / \mathrm{ac}$. S.E. of body of table or control mean $=148.1 \mathrm{lb} . / \mathrm{ac}$.

```
Crop:- Paddy (Sarava).
Site :- Agri. Res. Sta., Samalkot.
```

Ref:- A.P. 56(9).
Type :- ' $\mathbf{M}$ '.

Object :-To test the efficiency of $\mathrm{A} / \mathrm{C}$ against $\mathrm{A} / \mathrm{S}$ applied to Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) G.L. at $2000 \mathrm{lb} . / \mathrm{ac} .+$ Super at $100 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{A} / \mathrm{S}$ at $100 \mathrm{lb} . / \mathrm{ac}$. each.
(ii) (a) Heavy alluvial soil. (b) Refer soil anaylsis, Samalkot. (iii) 15.6 1956/26.7.1956. (iv) (a) 2 puddlings.
(b) Transplanting. (c) -. (d) Between lines $8^{\prime \prime}$. (e) N.A. (v) Triple Super to give $30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(vi) GEB-24 (late). (vii) Irrigated. (viii) Weeding one month after planting. (ix) $35.27^{\prime \prime}$. (x) 3.12 .1956.
2. TREATMENTS:

Aill combinations of (1) and (2) and a control
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=30$ and $\mathrm{N}_{2}=45 \mathrm{lb}$./ac.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{2}=A / C$.
3. DESIGN:
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 4 . (iv) (a) and (b) $26^{\prime} \times 36^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Normal ; no lodging. (ii) Slight attack of gall-fly-spraying of BHC $5 \%$. (iii) Grain and straw yield. (iv) (a) 1956-contd. (b) Yes. (c) N.A. (v) (a) Maruteru. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2162 \mathrm{lb} . / \mathrm{ac}$.
(ii) $369.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

92
Control $=2073 \mathrm{lb} . / \mathrm{ac}$.


| S.E. of any marginal mean | $=130.6 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of body of table or control mean | $=184.8 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Saraza).
Site :- Agri. Res. Stn., Samalkot.

## Ref :- A.P. 57(14). <br> Type :- ' $\mathbf{M}^{\prime}$.

Object : - To test the efficiency of $A / C$ against $A / S$ applied to Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy alluvial. (b) Refer soil analysis, Samalkot. (iii) $13.6 .1957 / 11.7 .195 \%$. (iv) (a) 3 puddlings. (b) and (c) N.A. (d) Lines $\mathbb{S}^{\prime \prime}$ apart. (e) N.A. (v) 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Triple Super. (vi) GEB-24 (late). (vii) Irrigated. (viii) Weeding one month after planting. (ix) 34.37 ". ( $x ; 26.11 .1957$.
2. TREATMENTS and 3. DESIGN:

Same asi n expt. no. 56;9; above.
4. GENERAL :
(i) Good; lodged in some plots. (ii) Nil. (iii) Tiller count, height measurement and grain yield. (iv) (a) 1956 -contd. (b) Yes. (c) N.A. (v) (a) Maruteru. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $3644 \mathrm{lb} . / \mathrm{ac}$. (ii) 248.4 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Control $=3437 \mathrm{lb} / \mathrm{ac}$. |  |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | Mean |
| $\mathrm{N}_{1}$ | 3693 | 3518 | 3606 |
| $\mathrm{N}_{2}$ | 3774 | 3797 | 3786 |
| Mean | 3734 | 3658 | 3696 |
| S.E. of any marginal mean |  |  | 87.8 lb./ac. |
| S.E. of body of table or control mean |  |  | $124.2 \mathrm{ib} . / \mathrm{ac}$. |

Crop :- Paddy (Saraza).
Site :- Agri. Res. Stn., Samalkot.
Ref :- A.P. 58(8).
Type :- ' $\mathbf{M}^{\prime}$.

## 1. BASAL CONDITIONS :

(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy alluvial soil. (bi Refer soil analysis, Samalkot. (iii) $10.6 .1958 / 25.7 .1958$. (vi) (a) 2 puddlings. (b) Japanese method of planting. (c) $21 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) 2 . (v) 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as $\mathrm{B} . \mathrm{M}$. broadcast before final puddlings. (vi) GEB-24 (late). (vii) Irrigated. (viii) Weeding one month after planting. (ix) $57.73^{\prime \prime}$. (x) 10.12 .1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $56(9)$ on page 91.
4. GENERAL:
(i) Good ; lodging in some plots. (ii) Nil. (iii) Tiller count, height measurement and grain yield. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) (a) Maruteru. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) 2725 lb ./ac. (ii) 186.7 lb ./ac. (iii) 'Control vs. others' is highly significant. (iv) Av. yield of grain in lb/ac.

Control $=3076 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ | Mean |
| :--- | :--- | :--- | :--- |
| $\mathrm{N}_{1}$ | 2586 | 2898 | 2742 |
| $\mathrm{~N}_{2}$ | 2514 | 2552 | 2533 |
| Mean | 2550 | 2725 | 2638 |

S.E. of any marginal mean $\quad=66.0 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table or controlămean $=93.3 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Samalkot.

Ref :- A,P. 54(84).
Type :- $\mathbf{\epsilon}^{\mathbf{M}}{ }^{\mathbf{\prime}}$.

Object : - To study the effect of $P$ to Paddy, directly and indirectly through a preceding crop of G.M.

1. BASAL CONDITIONS :
(i) (a) Paddy -G.M.-Paddy. (b) G.M. (c) Nil. (ii) (a) Heavy alluvial. (c) Refer soil analysis, Samalkot. (iii) $21.6 .1954 / 22.7 .1954$. (iv) (a) 2 ploughings and levelling. (b) Transplanting. (c) (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) 2 . (v) Nil. (vi) SLO- 13 (medium). (vii) Irrigated (viii) Weeding one month after planting. (ix) $44.12^{\prime \prime}$. (x) 19.11.1954.
2. TREATMENTS:

All combinations of (1) and (2) +a control (no manure)
(1) 3 green manure crop ploughed in situ: $\mathrm{M}_{1}=$ Pillipesara, $\mathrm{M}_{2}=$ Sesbania and $\mathrm{M}_{3}=$ Wild Indigo.
(2) 3 levels of manuring : $\mathrm{L}_{0}=$ No manure to G.M. crop, $\mathrm{L}_{1}=45 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$. to G.M. crop and $\mathrm{L}_{2}=$ 45 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ to paddy crop.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4 . (iv) (a) and (b) $17^{\prime} \times 42.5^{\prime}$. (v) Nil. (vi) Yes.

4 GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-1956. (b) Yes. (c) Nil. (v) (a) Maruteru.
(b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $3305 \mathrm{lb} . / \mathrm{ac}$. (ii) $297.8 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in lb /ac.

Contro: $=3162 \mathrm{lb} . / \mathrm{ac}$.

|  | M ${ }_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{L}_{0}$ | 3554 | 3223 | 3343 | 3373 |
| $\mathrm{L}_{1}$ | 3456 | 3117 | 3208 | 3260 |
| $\mathrm{L}_{2}$ | 3373 | 3359 | 3253 | 3328 |
| Mean | 3461 | 3233 | 3268 | 3321 |
| S E. of any marginal mean |  |  |  | $=86.0 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table or control nean |  |  |  | $=148.9 \mathrm{lb} / \mathrm{iac}$. |

## Crop :- Paddy (Saraza).

Ref :- A.P. 55(80)
Site :- Agri. Res. Stn., Samalkot.
Type :- $\mathbf{~}^{\mathbf{M}} \mathbf{}$.

Object :-To study the effect of $P$ to Paddy directly and indirectly through a preceding crop of G.M.

1. BASAL CONDITIONS :
(i) (a) Paddy-G.M.—Paddy. (b) G.M. (c) Nil. (ii) (a) Heavy alluvial. (b) Refer soil analysis, Samalkot. (iii) 14.6 .1955 30.7.1955. (iv) (a) 2 ploughings and levelling. (b) Transplanting (c) -. (d) $8^{\prime \prime} \times 8^{\prime \prime}\left\langle\mathrm{e}^{\prime} 2\right.$. (v) Nil. (vi: SLO-13 (medium). (vii) Irrigated. (viii) Weeding one month after planting. (ix) $34 \cdot 65^{\prime \prime}$. (x) 17.11 .1955 .
2. TREATMENTS and 3. DESIGN :

Same is in expt. no. 54(84) on page 93.
4. GENERAL :
'i Satisfactory. (ii) Attack of Kodu and stem-borer-Endrine sprayed at the concentration of 1 oz . in 4 gallons of water. (iii, Yield of grain. (iv) , a) 1952-1956. (b) Yes. (c) Nil. (v) (a) Maruteru. b) N.A. (vi) and 'vii) Nil.
5. RESULTS:
(i) 2680 lb. 'ac. (ii) $155.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Effects of M and 'control $v s$. others' are highly significant. (iv) Av. yield of grain in 16. ;ac.

$$
\text { Control }=2453 \mathrm{lb} / \mathrm{ac} .
$$

|  | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{L}_{0}$ | 2887 | 2535 | 2569 | 2664 |
| $L_{1}$ | 2880 | 2770 | 2476 | 2709 |
| $\mathrm{L}_{2}$ | 2990 | 2536 | 2701 | 2742 |
| Mean | 2919 | 2614 | 2582 | 2705 |
| S.E. of any marginal mean |  |  |  | 44.9 lb 77.8 lb |

Crop :- Paddy (Saraza)
Site :- Agri. Res. Stn., Samalkot.
Ref :- A.P. 55(85).
Type :- ' $\mathbf{M}$ '.
Object:-To fod out the direct manurial values of organic and inorganic manures on Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy-Fallow-Paddy. (b) Fallow. (c) Nil. (ii) (a) Heavy alluvial soil. (b) Refer soil analysis, Samalkot. (iii) 26.6.1955/2.8.1955. (iv) (a) 4 ploughings and levelling. (b) Transplanting. (c) - (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) 2. (v) Nil. (vi) SLO-15(late). (vii) Irrigated. (viii) Weeding one month after planting. (ix) $34.65^{\prime \prime}$. (x) 26.11 .1955.
2. TREATMENTS :

Main-plot treatments :
5 sources of $60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}: \mathrm{S}_{0}=$ No nitrogen, $\mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=$ G.L. $\mathrm{S}_{3}=$ C.M. and $\mathrm{S}_{4}=$ Compost.

## Sub-plot treatments :

All combinations of (1), (2) and (3)
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=60 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. : $\mathrm{K}_{0}=0$ and $\mathrm{K}_{1}=60 \mathrm{lb}$./ac.
(3) 2 levels of lime : $\mathrm{L}_{0}=0$ and $\mathrm{L}_{1}=1500 \mathrm{lb}$./ac.
3. DESIGN :
(i) Split-plot.
(ii) (a) 5 main-plots/replication ; 8 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $17.67^{\prime} \times 11.61^{\prime}$ (b) $17^{\prime} \times 11^{\prime}$. (v) $4^{\prime \prime}$ all 1 ound. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (i) Sivere attack of kodir (silver-shoot) and moderate altack of stem-borer-Endrine sprayed at 10 oz . in 4 gallons of water. (iii) Yield of grain. (iv) (a) $1952-1956$. (b) Yes. (c) Nil.(v) (a) Maruteru. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $3147 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $117.7 \mathrm{lb} . / \mathrm{ac}$. (b) 608.1 lb ./ac. (iii) None of the effeets is significant. (iv) Av. yield of grain in lb./ac.

S.E. of difference of two

1. $S$ marginal means


P $=29.4 \mathrm{lb} / \mathrm{ac}$.
$\begin{aligned} \text { 3. } P \text {, K, or } L \text { means at the same level of } S & =96.0 \mathrm{lb} . / \mathrm{ac} . \\ & =214.9 \mathrm{lb} . / \mathrm{ac} .\end{aligned}$
4. $S$ means at the same level of $P, K$ or $L=154.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $\mathrm{P} \times \mathrm{K}, \mathrm{P} \times \mathrm{L}$ or $\mathrm{K} \times \mathrm{L}$ table $=96.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Sarava).
Bite :- Agri. Res. Stn., Samalkot.

Ref :- A.P. 56(70).
Type :- 'M'.

Object:--To find out the manurial value of organic and inorganic fertilizers on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy - Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy alluvial soil. (b) Refer soil analysis, Samalkot. (iii) 21.6.1956/25.7.1956. (iv) (a) 2 ploughings. (b) Planting in lines. (c) N.A. (d) $8^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) SLO-15 (late). (vii) Irrigated. (viii) Weeding one month after planting. (ix) $35.27^{\prime \prime}$. (x) 30.11 .1956 .
2. TREATMENTS

Same as in expt. no. 55;85) on page 94.
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication ; 8 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) and (b) $31 \times 12^{\prime} 6^{\prime \prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Crop lodged in patches on 26.10 .1956 due to cyclonic weather. (ii) Slight attack of gall-fly (pachydiploses oryzae) was seen in all treatments-a general spray of BHC. $5 \%$ was given. (iii) Grain yield. (iv) (a) 1952-1956. (b) Yes. (c) N.A. (v) (a) Maruteru and Anakapalle. (b) Nil. (vi) and (vii) Nil.

## 5. RESULTS :

(i) $2219 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $463.4 \mathrm{lb} . / \mathrm{ac}$. (b) 272.8 lb ./ac. (iii) Effect of S and interactions $\mathrm{S} \times \mathrm{L}$ and $\mathrm{S} \times \mathrm{P} \times \mathrm{L}$ are significant. (iv) Av. yield of grain in lb ./ac.

|  | $S_{0}$ | $\mathrm{S}_{1}$ | S | $\mathrm{S}_{3}$ | $S_{4}$ | Mean | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{L}_{0}$ | 2020 | 2057 | 2500 | 2322 | 2139 | 2208 | 2194 | 2221 | 2229 | 2186 |
| $\mathrm{L}_{1}$ | 2064 | 1868 | 2740 | 2318 | 2164 | 2231 | 2165 | 2296 | 2250 | 2212 |
| Mean | 2042 | 1963 | 2620 | 2321 | 2152 | 2219 | 2180 | 2259 | 2239 | 2199 |
| $\mathrm{K}_{0}$ | 2058 | 2015 | 2693 | 2311 | 2119 | 2239 | 2218 | 2261 |  |  |
| $\mathrm{K}_{1}$ | 2026 | 1910 | 2547 | 2329 | 2184 | 2199 | 2142 | 2257 |  |  |
| $\mathrm{P}_{0}$ | 1981 | 1918 | 2641 | 2206 | 2153 | 2180 |  |  |  |  |
| $\mathrm{P}_{1}{ }^{-}$ | 2102 | 2007 | 2599 | 2434 | 2151 | 2259 |  |  |  |  |

S.E. of difference of two

1. S marginal means $=115.8 \mathrm{lb} . \mathrm{ac}$.
2. $L, P$ or $K$ marginal means $\quad=43.1 \mathrm{lb} . / \mathrm{ac}$.
3. $L, P$ or $K$ means at the same level of $S=96.4 \mathrm{lb} . / \mathrm{ac}$.
4. S means at the same level of $\mathrm{L}, \mathrm{P}$ or $\mathrm{K}=134.4 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $L \times P, L \times K$ or $P \times K$ table $=43.2 \mathrm{lb} . / \mathrm{ac}$.

Grop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Samalkot.
Ref :- A.P. 58(7).
Type :- ' ${ }^{\prime}$ '.
Object:-To find out a suitable source of N for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Paddy—Paddy. (b) Paddy. (c) $4000 \mathrm{lb} . / \mathrm{ac}$. of G.L. $+100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+150 \mathrm{lb} . / \mathrm{ac}$. of Super. (ii) (a) Heavy alluvial soil. (b) Refer soil analysis, Samalkot. :iii) $10.6 .1958 / 26.7 .1958$. (iv) (a) Puddling twice before planting. (b) Japanese method of planting. (c) $21 \mathrm{lb} / \mathrm{ac}$. (d) $8^{*} \times 8^{n}$. (e) 2. (v) B.M. at $30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in the last puddling by broadcasting. (vi) GEB-24 (late). (vii) Irrigated. (viii) Weeding one month after planting. (ix) $57.73^{\prime \prime}$. (x) 10.12 .1958.

## 2. TREATMENTS :

5 sources of 40 lb ./ac. of $\mathrm{N}: \mathrm{S}_{0}=$ No nitrogen, $\mathrm{S}_{1}=\mathrm{C} / \mathrm{A} / \mathrm{N}$ applied 14 days after planting, $\mathrm{S}_{2}=\mathrm{C} / \mathrm{A} / \mathrm{N}$ applied in two equal doses 14 days and one month after planting, $S_{3}=C / A / N$ applied in three doses, $10 \mathrm{lb} / \mathrm{ac} .14$ days after planting, $20 \mathrm{lb} . / \mathrm{ac}$. one month after planting and 10 lb . $/ \mathrm{ac}$. one week before flowering and $\mathrm{S}_{\mathbf{4}}=\mathrm{A} / \mathrm{S}$ in two equal doses at planting and one month after planting.
Basal manuring of 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ was not given to $\mathrm{S}_{0}$.
3. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4 . (iv) (a) and (b) $20^{\circ} \times 30^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Pre-lodging in $S_{4}$ on 24.10.1958. Lodging in other treatmènts also noticed on 3.11.1959. (ii) N.A. (iii) Tiller-count, height measurement and grain yield. (iv) (a) 1958-1960. (b) Yes. (c) Nil. (v) Maruteru, Buchireddipalem, Rudrur, Dindi and Amberpet. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2844 \mathrm{lb} . / \mathrm{ac}$. (ii) $253.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathrm{S}_{0}$ | $\mathrm{~S}_{\mathbf{1}}$ | $\mathrm{S}_{\mathbf{2}}$ | $\mathrm{S}_{3}$ | $\mathrm{~S}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | $\ddots$ | 3031 | 2656 | 3015 | 3054 |
|  |  |  |  |  |  |
|  | S.E./mean | $=$ | $126.7 \mathrm{lb} . / \mathrm{ac}$. |  |  |

```
Crop:- Paddy (Sarava).
Site :- Agri. Res. Stn., Samalkot.
Ref :- A.P. 59(99).
Type :- 'M'.
```

Object :-To find out a suitable source of N for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy alluvial. (b) Refer soil analysis, samalkot. (iii) 23.6.1959./18.7.1959: (iv) (a) 3 puddlings and levelling. (b) Transplanting. (c) - . (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) 2 . (v) 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. (vi) GEB-24 (late). (vii) Irrigated. (viii) Weeding one month after planting. (ix) $43.89^{\prime \prime}$. (x) 13.12.1959.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 58(7) above.
4. GENERAL:
(i) Satisfactory. (ii) Gall-fly attack-no control measures were taken. (iii) Grain yield. (iv) (a) 19581960. (b) Yes.
(c) Nil. (v) (a)Maruteru.
(b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i.) 1918 lb ./ac. (ii) 1174 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathrm{S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{\mathbf{2}}$ | $\mathrm{S}_{3}$ | $\mathrm{~S}_{\mathbf{4}}$ |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Av. yield | 1285 | 2135 | 2302 | 1656 | 2211 |
|  |  |  |  |  |  |


| Crop :- Paddy (Sarava). | Ref :- A.P. 54(82). |
| :--- | :--- |
| Site :- Agri. Res. Stu ., Samalkot. | Type :- 'M'. |

Obje :t:-To find out $N$ and $P$ requirements of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy alluvial. (b) Refer soil analysis, Samalkot. (iii) 21.6.1954/4.7.1958. (iv) (a) 4 ploughings and levelling. (b) Transplanting. (c) Nil. (d) $6^{\circ} \times 6^{\prime \prime}$. (e) 2. (v) $4000 \mathrm{lb} . / \mathrm{ac}$. of G.L. $+100 \mathrm{lb} . / \mathrm{ac}$. of A/S $+100 \mathrm{lb} . / \mathrm{ac}$. of Super. (vi) SLO- 13 (medium). (vii) Irrigated. (viii) Weeding one month after planting. (ix) 44.12". (x) 1.12.1954.

## 2. TREATMENTS:

All combinations of (1) and (2).
(1) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30, \mathrm{P}_{2}=45$ and $\mathrm{P}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=30, \mathrm{~N}_{2}=45$ and $\mathrm{N}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4. (iv) (a) and (b) $25.1^{\prime} \times 15.8^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Grain yield.
(iv) (a) 1952-1957.
(b) Yes.
(c) Nil. (v) (a) Maruteru. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $3875 \mathrm{lb} . / \mathrm{ac}$. (ii) 179.5 lb ./ac. (iii) Effect of N is highly significant and effect of P is significant. (iv) Av. yield of grain in lb. ac .


Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Samalkot.

Ref:- A.P. 55(81).
Type :- ' $\mathbf{M}$ '.

Object:-To find out N and P requirements of Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy alluvial. (b) Refer soil analysis. Samalkot. (iii) $26.6 .1955 / 3.8 .1955$. (iv) (a) A ploughings and levelling. (b) Transplanting. (c) Nil. (d) $6^{\prime \prime} \times 6^{\circ}$. (e) 2 . (v) 4000 lb ./ac. of G.L., 100 lb ./ac. of A/S and 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$. (vi) SLO- 13 (medium). (vii) Irrigated. (viii) Weeding one month after planting. (ix) $34.65^{\circ}$. (x) 2.12.1955.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(82) aobve.
5. RESULTS :
(i) $3029 \mathrm{Jb} . / \mathrm{ac}$. (ii) 174.7 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{N}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 2987 | 3545 | 3128 | 3295 | 3239 |
| $\mathrm{P}_{1}$ | 3111 | 2673 | 2912 | 3098 | 2949 |
| $\mathrm{P}_{2}$ | 2864 | 2786 | 3278 | 2864 | 2948 |
| $\mathrm{P}_{3}$ | 2922 | 2997 | 2778 | 3218 | 2979 |
| Mean | 2971 | 3000 | 3024 | 3119 | 3029 |
| S.E. of marginal mean of N or P |  |  |  | $=43.7 \mathrm{lb} . / \mathrm{ac}$. |  |
| S.E. of body of table |  |  |  | $=87.3 \mathrm{lb} . \mathrm{ac}$. |  |

```
Crop -: Paddy (Sarava). Ref :- A.P. 56(10),
Site :- Agri. Res. Stn., Samalkot. Type :- `M'.
```

Object:-To find out N and P requirements of Paddy.

## 1. BASAL CONDITIONS :

(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy alluvial soil. (b) Refer soil analysis, Samalkot. (iii) 2.6.1956/6.7.1956. (iv) (a) 2 ploughings. (b) Planting in lines. (c) N.A. (d) $8^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) SLO-15 (late). (vii) Irrigated. (viii) Weeding one month after planting. (ix) $42.08^{\prime \prime}$. (x) 30.11 .1956.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $54(82)$ on page 97.
4. GENERAL :
(i) Crop in $\mathrm{N}_{2}$ and $\mathrm{N}_{3}$ plots had pre-lodged on 20.10.1956. Crop in the remaining plots had lodged. Completely on 26.10 .1956 due to cyclonic weather. (ii) slight attack of gall-fly-general spray of $5 \%$ BHC.
(iii) Grain and straw yield.
(iv) (a) 1952-1956.
(b) Yes.
(c) N.A. (v) (a) Maruteru.
(b) Nil. (vi) and (vii) Nil.

RESULTS :
(i) $2672 \mathrm{lb} . / \mathrm{ac}$. (ii) 184.2 lb ./ac. (iii) Main effect of N is high/y significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{~N}_{1}$ | $\mathrm{~N}_{2}$ | $\mathrm{~N}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 2812 | 2782 | 2450 | 2283 | 2582 |
| $\mathrm{P}_{1}$ | 2892 | 2784 | 2717 | 2614 | 2752 |
| $\mathrm{P}_{2}$ | 2930 | 2724 | 2803 | 2408 | 2717 |
| $\mathrm{P}_{3}$ | 2806 | 2806 | 2549 | 2391 | 2638 |
| Mean | 2861 | 2775 | 2631 | 2424 | 2672 |


| S.E. of $N$ or $P$ marginal mean | $=46.0 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of body of table | $=92.1 \mathrm{lb} \cdot / \mathrm{ac}$. |

```
Grop :- Paddy (Sarava).
Ref :- A.P. 56(8).
Site :- Agri. Res. Strn., Samalkot.
Type :- `M'.
```

Object:-To find out the best method of applying $P$ to Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy—G.M.-Paddy (b) G.M. (c) Nil. (ii) (a) Heavy alluvial soil. (b) Refer soil analysis, Samalkot. (iii) $10.6 .1956 / 22.7 .1956$. (iv) (a) 2 ploughings. (b) Planting in lines. (c) 一. (d) $8^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) SLO-13. (vii) Irrigated. (viii) Weeding one month after planting. (ix) 37.28* (x) 20.11.1956.

## 2. TREATMENTS :

4 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=\mathrm{N}_{0} \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{P}_{1}=$ Sesbania grown in situ. $\mathrm{P}_{2}=45 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ to sesbania grown in situ. and $\mathrm{P}_{3}=$ Sesbania grown in situ $+45 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ direct to paddy.
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6 . (iv) (a) and (b) $32^{\prime} \times 28^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Straw and grain yield. (iv) (a) No. (b) and (c) - (v) (a) Maruteru. (b) Nil.
(vi) and (vii) Nil.

## 5. RESULTS :

(i) $2530 \mathrm{lb} . / \mathrm{ac}$. (ii) 192.5 lb /ac. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

| Treatment | $P_{0}$ | $P_{1}$ | $P_{2}$ | $P_{3}$ |
| :--- | :--- | :---: | :---: | :---: |
| Av. yield | 2221 | 2625 | 2625 | 2650 |
|  | S.E./mean | $=$ | $78.6 \mathrm{lb} . / \mathrm{ac}$. |  |


| Crop :- Paddy (Saraza). | Ref :-A.P. 58(120) |
| :--- | :--- |
| Site :- Agri. Res. Stn., Samalkot. | Type :-'M'. |

Object :-To compare different methods of Paddy cultivation.

1. BASAL CONDITIONS :
(i) (a) Rice-Fallow-Rice. (b) Fallow. (c) Nil. (ii) (a) Heavy alluvial. (b) Refer soil analysis, Samalkot. (iii) 9.5.1958/27.6.1958. (iv) (a) As per treatments. (b) Transplanting. (c) --. (d) and (e) As per treatments. (v) As per treatments. (vi) GEB-24 (late). (vii) Irrigated. (viii) As per treatments. (ix) $57.72^{\circ}$. (x) 11.12.1958.
2. TREATMENTS :

5 methods of planting: $M_{1}=$ Ryots method: 5 C.L./ac. of F.Y.M., bulk planting, 2 seedlings, hole and 2 weedings. $\mathrm{M}_{2}=$ Departmental method : 4000 lb ./ac. of G.L. $+100 \mathrm{lb} / \mathrm{a}=$. of Super + $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}$, bulk planting, 2 seedlings $/$ hole and 2 weedings. $\mathrm{M}_{3}=$ Japanese method: 20 C.L./ac. of compost $+100 \mathrm{lb} . / \mathrm{ac}$. of super $+100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}$ applied in puddle, bulk planting, 4 seedlings/hole and 4 intercultures with junior hoe. $M_{4}=M_{3}$ + planting at $10^{*} \times 10^{*}$ spacing, $\mathrm{M}_{5}=\mathrm{M}_{2}+$ planting at $10^{*} \times 10^{* \prime}$ spacing.
3. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b)
(b) N.A
(iii) 5 .
(iv) (a)
and (b) $40^{\prime} \times 22^{\prime}$
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) and (b) N.A. (c) Nil. (iv) Av. yield of grain in lb./ac. (v) (a) Maruteru. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2870 \mathrm{lbs} . / \mathrm{ac}$. (ii) $136.0 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatments | $\mathbf{M}_{1}$ | $\mathbf{M}_{\mathbf{2}}$ | $\mathbf{M}_{\mathbf{3}}$ | $\mathbf{M}_{4}$ | $\mathbf{M}_{\mathbf{5}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 3789 | 2563 | 2866 | 2845 | 2287 |
|  | S.E./mean | $=$ | $60.8 \mathrm{lb} . / \mathrm{ac}$. |  |  |

```
Crop :- Paddy (Kharif).
Ref :- A.P. 57(32).
Site :- Demonstn.-Cum-Res. Farm, Srikakulam.
Type :- ' \(\mathbf{M}\) '.
```

Object :-To work out the suitable manurial schedule for Paddy.

1. BASAL CONDITIONS :


#### Abstract

(i) (a) Paddy-Paddy. (b) Green gram. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) $18.6 .1957 / 1,2$ and 3.8.1957. (iv) (a) 3 puddlings, levelling and digging with mummatties after applying G.L. (b) Transplantation in lines. (c)-. (d) and (e) N.A. (v) $2000 \mathrm{lb} / \mathrm{ac}$ of G.L (vi) MTU-19!late). (vii) Irrigated. (viii) Working push hoe fortnightly one month after transplantation till formation of ear primordia. (ix) N.A. (x) 23 and 24.12.1957.


## TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in single dose : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.
(2; 5 levels of $N$ as A/S : $N_{0}=0, N_{1}=20 \mathrm{lb}$./ac. as single dose, $N_{2}=20 \mathrm{lb} / \mathrm{ac}$. in two doses, $\mathrm{N}_{3}=40$
$\mathrm{lb} . / \mathrm{ac}$. as single dose and $\mathrm{N}_{4}=40 \mathrm{lb}$./ac. in two doses.
3. DESIGN :
(i) Fact. in R B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) $28.7^{\prime} \times 24.3^{\prime}$. (b) $28^{\prime} \times 23.6^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of grain and straw. (iv) (a) 1957 -contd. (b) Yes. (c) Nil. (v) (a) No. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2540 \mathrm{lb} . / \mathrm{ac}$. (ii) $111.7 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of N and P are highly significant. (iv) Av. yield of grain in lb./ac.

|  |
| :--- |
| $\mathrm{P}_{0}$ |
| $\mathrm{P}_{1}$ |
| $\mathrm{P}_{2}$ |

## Grop :- Paddy (Fharif).

Site :- Govt. Main Farm, Warangal.

Ref:- A.P. 54(5).
Type :- ' $\mathbf{M}^{\prime}$.

Object :--To study the iong range effect of P and different sources of N on Paddy.

1. BASAL CONDITIONS
(i) (a) No. (b) Paddy. (c) Paddy-Fertilizer-Mixture at 40 lb ./ac. of N. (ii) (a) Black soil. (b) Refer soil analysis, Warangal. (iii) 24.6 .1956 . (iv) (a) 3 ploughings and levelling. (b) and (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) HR-19(early). (vii) Irrigated. (viii) 1 weeding. (ix) $36.30^{\prime \prime}$. (x) 23.10 .1954.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=25 \mathrm{lb} . / \mathrm{ac}$.
(2) 5 sources of $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}: \mathrm{S}_{0}=$ No nitrogen, $\mathrm{S}_{1}=$ F.Y.M., $\mathrm{S}_{2}=$ G.M., $\mathrm{S}_{3}=$ G.N.C. and $\mathrm{S}_{4}=$ A/S.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 (two plots for $\mathrm{S}_{0}$ ). (b) N.A. (iii) 2. (iv) (a) $30^{\prime} \times 17 \frac{7^{\prime}}{}$. (b) $28^{\circ} \times 15 \frac{2^{\prime}}{}$. (v) $1^{\prime} \times 1^{\prime}$. (vi) Y'es.
4. GENERAL:
(i) Satisfactory, (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1954-N.A. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) $1787 \mathrm{lb} . / \mathrm{ac}$. (ii) 214.0 lb ./ac. (iii) Only S effect is highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

$$
\mathrm{S}_{0} \mathrm{P}_{0}=1263 \mathrm{lb} . / \mathrm{ac} . \text { and } \mathrm{S}_{0} \mathrm{P}_{1}=1419 \mathrm{lb} / \mathrm{ac} .
$$

|  | $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{\mathbf{4}}$ | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}_{0}$ <br> $\mathrm{P}_{1}$ | 1563 | 1975 | 1950 | 2325 | 1953 |
| Mean | 1700 | 2575 | 1937 | 2050 | 2066 |

S.E. of $S$ marginal mean or $S_{0} P$ mean $=107.0 \mathrm{lb} . / \mathrm{ac}$.
S.E. of $P$ marginal mean
$=75.7 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of table
$=151.4 \mathrm{lb} . / \mathrm{ac}$.

| Crop :- Paddy (Rabi). | Ref :- A.P. 55(4). |
| :--- | ---: |
| Site :- Govt. Main Farm, Warangal. | Type :- ' $\mathbf{M '}^{\prime}$. |

Object :-To study the long range effect of P and different sources of N on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) Refer scil analysis, Warangal. (iii) 4.1.1955/4.2.1955. (iv) (a) 3 puddlings and levelling. (b) to (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) Weeder worked once on 7.3.1955. (ix) 1.20". (x) 20.4.1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(5) on page 100.
4. GENERAL :
(i) Plots with $A / S+P_{2} \mathrm{O}_{5}$ showed good growth. But plots without $\mathrm{P}_{2} \mathrm{O}_{5}$ were poor in growth. Other plots were normal. (ii) Attack of stem-borer in the early stages. (iii) Straw and grain yield. (iv) (a) 1954-contd. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) $942 \mathrm{lb} . / \mathrm{ac}$. (ii) $133 \mathrm{lb} . / \mathrm{ac}$. (iii) S effect is highly significant and interaction $\mathrm{S} \times \mathrm{P}$ is significant. (iv) Av . yield of grain in lb ./ac.
$\mathrm{S}_{0} \mathrm{P}_{0}=693 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{S}_{0} \mathrm{~F}_{1}=613 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | $S_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 1087 | 887 | 994 | 1175 | 1036 |
| $\mathrm{P}_{1}$ | 500 | 1319 | 1133 | 1200 | 1138 |
| Mean | 994 | 1103 | 1064 | 1187 | 1087 |

S.E. of $S$ marginal mean or $S_{0} P$ mean $=66.5 \mathrm{lb} / \mathrm{ac}$.
$S . E$ of $P$ marginal mean $=47.0 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of table $=94.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Govt. Main Farm, Warangal.

Ref :- A. P. 55(5).
Type :- ${ }^{\mathbf{M}} \mathbf{M}$ '.

Object:-To study the long range effect of $\mathbf{P}$ and different sources of N on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Warangal. (iii) 11.7.1955/13.8.1955. (iv) (a) 3 ploughings and levelling. (b) to (e) N.A. (v) Nil. (vi) HR-19 (medium). (vii) Irrigated. (viii) 3 weedings. (ix) $39.41^{\prime \prime}$. (x) 7.11.1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(5) on page 100.
4. GENERAL :
(i) Growth normal in all plots except in control plots where it was poor. (ii) The crop was infested with thrips which was controlled to an extent by spraying D.D.T. $50 \%$ on 14.9 .1955 . The crop showed stem-borer attack at the time of flowering upto $20 \%$. There was an attack of gall-fly also. (iii) Grain yield. (iv) (a) 1954-N.A. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) $1233 \mathrm{lb} . / \mathrm{ac}$. (ii) 156.0 lb ./ac. (iii) P effects is significant and S effect is highly significant. (iv) Av. yield of grain in lb ./ac.

$$
\mathrm{S}_{0} \mathrm{P}_{0}=925 \mathrm{lb} . / \mathrm{ac} . \text { and } \mathrm{S}_{0} \mathrm{P}_{1}=1125 \mathrm{lb} . / \mathrm{ac} .
$$

|  | $S_{1}$ | $S_{2}$ | $S_{3}$ | $\mathrm{S}_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 900 | 1250 | 1600 | 1250 | 1250 |
| $\mathrm{P}_{1}$ | 12:0 | 1500 * | 1550 | 1400 | 1425 |
| Mean | 1075 | 1375 | 1575 | 1325 | 1338 |


| S.E. of $S$ marginal mean or $\mathrm{S}_{0} \mathrm{P}$ mean | $=78.0 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $P$ marginal mean | $=55.1 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=110.3 \mathrm{lb} . / \mathrm{ac}$. |

## Crop :- Paddy (Rabi).

- Ref :- A,P. 56(114).

Site :- Govt. Main Farm, Warangal.

Object:-To study the long range effect of P and different sources of N on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Warangal (iii) $20.12 .1956 / 1.2 \cdot 1957$. (iv) (a) Three ploughings, (b) Transplanting. (c) Nil. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi).HR-19 (medium). (vii) Irrigated. (viii) One hand weeding and working puddler twice. (ix) N.A. (x) 10.4.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(5) on page 100.
4. GENERAL :
(i) Poor. (ii) No. (iii) Grain yield. (iv) (a) 1954-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $243 \mathrm{lb} . / \mathrm{ac}$. (ii) $394.2 \mathrm{~b} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in lb./ac.

$$
\mathrm{S}_{0} \mathrm{P}_{0}=65 \mathrm{lb} . / \mathrm{ac} . \text { and } \mathrm{S}_{0} \mathrm{P}_{1}=180 \mathrm{lb} . / \mathrm{ac}
$$

|  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | :---: |
| $P_{0}$ | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | Mean |
| $P_{1}$ | 55 | 228 | 291 | 169 | 186 |
| Mean | 156 | 178 | 150 | 1194 | 419 |
| 105 | 203 | 221 | 681 | 303 |  |


| S.E. of marginal mean of S or $\mathrm{S}_{0} \mathrm{P}$ mean | $=197.1 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of marginal mean of P | $=139.4 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=278.7 \mathrm{lb} . / \mathrm{ac}$. |

```
Crop :- Paddy (Kharif).
Ref :- A.P. 58(74).
Site :- Govt. Main Farm, Warangal.
Type :- 'M'.
```

Object :-To study the long rang e effest of $\mathbf{P}$ and different sources of N on Paddy.

## 1. BASAL CONDITIONS :

(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Warangal. (iii) 22.7.1958. (iv) (a) 3 puddlings and ievelling. (b) Transplanted. (c) Nil. (d; $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (iv) Nil. (v) Nil. (vi) HR-19 (early). (vii) Irrigated. (viii) 2 interculturings and 2 hand weedings. (ix) 19.1". (x) 23.10.1958.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 54 (5) on page 101.
4. GENERAL :
(i) Poor. (ii) Nil. (iii) Grain yield. (iv) (a) 1951 -contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) $4481 \mathrm{lb} . / \mathrm{ac}$. (ii) $282.9 \mathrm{lb} . / \mathrm{ac}$. (iii) S effect is highly significant and P effect and interaction $\mathrm{S} \times \mathrm{P}$ are significant. (iv) Av. yield in grain lb./ac.
$\mathrm{S}_{0} \mathrm{P}_{0}=2664 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{S}_{0} \mathrm{P}_{1}=4830 \mathrm{lb} . / \mathrm{ac}$.

|  | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{\mathbf{4}}$ | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $P_{0}$ | 4931 | 4733 | 4928 | 4874 | 4867 |
| $P_{1}$ | 4626 | 5153 | 4479 | 5160 | 4839 |
| Mean | 4778 | 4943 | 4704 | 4987 | 4853 |


| S.E. of $S$ marginal mean or $S_{0} P$ mean | $=141.4 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $P$ marginal mean | $=100.0 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=200.0 \mathrm{lb} . / \mathrm{ac}$. |


| Grop :- Paddy (Kharif). | Ref :- A.P. 59(22). |
| :--- | :--- |
| Site :- Govt. Main Farm, Warangal. | Type :- 'M'. |

Object:-To determine the long range effect of P and different sources of N on Paddy.

## 1. BASAL CONDITIONS:

(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) Refer scil adalysis, Warangal. (iii) $10.6 .1959 / 21.7 .1959$. (iv) (a) Ploughings, $p$ uddlings and levelling. (b) Transplanted. (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 3. (v) Nil. (vi) HR-19 (early). (vii) Irrigated. (viii) Int ${ }^{\text {eculturing twice by }}$ weeder and hand weeding once. (ix) $18.6^{\circ}$. (x) 21.10.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $54(5)$ on page 101.
4. GENERAL :
(i) Pcor. Crop lodged at the time of flowering. (ii) Slight attack of gull-fly-control measures N.A. $i_{i i}$ Grain yield. iv, (a) 1955-contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2758 \mathrm{lb} . / \mathrm{ac}$.
ii) $372.7 \mathrm{lb} / \mathrm{ac}$.
(iii) Only S effect is highly significant..
(iv) Av. yield in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{3}$ | $\mathrm{S}_{4}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | $3050^{\circ}$ | 2050 | 2350 | 3450 | 2725 |
| $\mathrm{P}_{1}$ | 2450 | 2450 | 3150 | 3800 | 2922 |
| Mean | 2750 | 2250 | 2750 | 3625 | 2844 |
| S.E. of S marginal mean or $\mathrm{S}_{0} \mathrm{P}$ mean $=186.4 \mathrm{lb} . / \mathrm{ac}$. <br>  $=131.8 \mathrm{lb} . / \mathrm{ac}$. <br> S.E. of P marginal mean $=263.6 \mathrm{lb} / \mathrm{ac}$. |  |  |  |  |  |

## Crop :- Paddy.

Site :- Demonstn.-cum-Res. Stn., Yemmiganur.

Ref :- A.P. 57(48).
Type :- 'M'.

Object:-To find out the optimum dose of $\mathbf{N}$ for Paddy.

1. JBASAL CONDITIONS :
(i) (a) Paddy—G.M.—Paddy. (b) Sannhemp. (c) Nil. (ii) (a) Black cotton soil. (b) N.A. (iii) $26.6 .1957 /$ 11 8.1957. (iv) (a) Puddled twice, levelled with pallagorru. (b) to (e) N.A. (v) G.L. at $5000 \mathrm{lb} . / \mathrm{ac}$. and Super at 200 lb ./ac. (vi) GEB-24(medium). (vii) Irrigated. (viii) 1 weeding and working push hoe thrice. (ix) $26.42^{\prime \prime}$. (x) 22.12.1957.
2. TREATMENTS :

5 levels of N as A/S : $\mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=30, \mathrm{~N}_{3}=40$ and $\mathrm{N}_{4}=50 \mathrm{lb}$./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) $40^{\prime} \times 12^{\prime}$. (b) $38^{\prime \prime} 4^{\prime \prime} \times 11^{\prime}$. (v) $10^{\prime \prime}$ along side and $6^{\prime \prime}$ at the ends. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Endrine was sprayed on 23.9 .1957 against a light incidence of stem-borer attack. ' (iii) Grain yield. (iv) (a) 1957-contd. (b) Yes. (c) No. (v) (a) N.A. (b)-. (vi) and (vii) Nil.
5. RESULTS :
(i) $2536 \mathrm{lb} . / \mathrm{ac}$. (ii) $236.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. r(iv) Av. yield of grain in lb ./ac.

| Treatment | $\mathrm{N}_{0}$ | $\mathrm{~N}_{1}$ | $\mathrm{~N}_{2}$ | $\mathrm{~N}_{3}$ | $\mathrm{~N}_{4}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1929 | 2319 | 2583 | 2822 | 3026 |
|  |  |  |  |  |  |
|  | S.E./mean | $=118.2 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |

## Crop :- Padidy (Kharif). <br> Site :- Demonstn.-cum-Res. Stn., Yem miganur.

## Ref:- A.P. 58(41). <br> Type :- ' ${ }^{\mathbf{M}}$ ’.

Object :-To find out the optimum dose of N for Paddy Crop.

1. BASAL CONDITIONS :
(i) (a) Paddy-G.M.-Paddy
(b) Paddy. (c) As per treatments.
(ii) (a) Black cotton soil. (b) N.A. (iii) $29.6 .1958 / 29.7 .1958$. (iv) (a) Three puddings and levelling. (b) to (e) N.A. (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of G.L. and 200 lb ./ac. of Super. (vi) GEB-24 (medium). (vii) Irrigated. (viii) One weeding and three hoeings at periodical intervals. (ix) 18.11". (x) 10.12.1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57(48; on page 105.
5. RESULTS:
(i) $3214 \mathrm{lb} . / \mathrm{ac}$. (ii) 284.9 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathrm{N}_{\mathbf{0}}$ | $\mathrm{N}_{1}$ | $\mathrm{~N}_{\mathbf{2}}$ | $\mathrm{N}_{3}$ | $\mathrm{~N}_{4}$ |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Av. yield | 2873 | 3313 | 3390 | 3209 | 3287 |
|  | S.E./mean |  |  |  |  |
|  | $=$ | $142.4 \mathrm{lb} . \mathrm{ac}$. |  |  |  |

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif). } & \text { Ref :- A.P. 59(48). } \\
\text { Site :- Demonstn.-cum-Res. Stn., Yemmiganur. } & \text { Type :- ‘M’. }
\end{array}
$$

Object:-To find out the optimum dose of $N$ for Paddy.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Paddy. (c) $2000 \mathrm{lb} . / \mathrm{ac}$. of G.L., 200 lb ./ac. of Super, $400 \mathrm{lb} . / \mathrm{ac}$. of G.N.C. and $50 \mathrm{lb} . \mathrm{ac}$. of A/S as basal dressing. A top-dressing of $\mathrm{A} / \mathrm{S}$ at $50 \mathrm{lb} . / \mathrm{ac}$. was applied after a month of transplantation. (ii) (a) Black soil. (b) N.A. (iii) 26.6.1959/2.8.1959. (iv) (a) Three puddlings were given. (b) to (e) N.A. (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of G.L. $+200 \mathrm{lb} . / \mathrm{ac}$. of Super. (vi) GEB-24 (late). (vii) Irrigated. (viii) After one month of transplanting, intercultivation with Japanese hoe was given. Two weedings were also done. (ix) $167^{\prime \prime}$. (x) 3.12 .1959.
2. TREATMENTS :

Same as in expt. no. 57(48) on page 105.
3. DESIGN :
(i) R.B.D. (ii) (a) $S$.
(b) N.A. (iii) 4 .
(iv) (a) $8^{\prime} 6^{\prime \prime} \times 43^{\prime}$.
(b) $8^{\prime} \times 42^{\prime}$.
(v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory.
(ii) Nil. (iii) Grain yield.
(iv) (a) 1957-1959.
(b) No.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 3322 lb ./ac. (ii) 162.6 lb ./ac. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathrm{N}_{0}$ | $\mathrm{~N}_{1}$ | $\mathrm{~N}_{2}$ | $\mathrm{~N}_{3}$ | $\mathrm{~N}_{4}$ |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Av. yield | 2804 | 3128 | 3192 | 3565 | 3922 |
|  | S.E./mean |  |  |  |  |
|  | $=$ | $81.28 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |

```
Crop :- Paddy (Kharif).
Site :- Demonstn.-cum-Res. Stn., Yemmiganur.
Ref :- A.P. 56(89).
Type :- ‘M’.
```

Object:-To study the effect of N and P on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Paddy-G.M. (b) Sannhemp.(c) Nil. (ii) (a) Deep black cotton soil. (b) N.A. (iii) 16.7.1956/6.9.1956. (iv) (a) 2 puddlings and levelling with pallagorru. (b) to (e) N.A. (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of G.L. (vi) GEB- 24 (medium). (vii) Irrigated, (viii) One weeding 20 days after planting. Japenese push hoe was worked twice (ix) $22 \cdot 43^{\prime \prime}$. (x) $18,19121956$.

## 2. TREATMENTS :

3 levels of manures: $M_{0}=$ Control (no manure), $\mathrm{M}_{1}=25 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+30 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} S$ and $\mathrm{M}_{2}=25 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}+15 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+15 \mathrm{lb}$./ac. of N as G.N.C.
Manures applied as basal dressing at the time of planting.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) and (b) $1 / 220$ ac. (v) Nit. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of stem-borer. As the attack was noticed in only later stage, no preventive tneasure was possible. (iii) Grain yield. (iv) (a) 1956-N.A. (b) No. (c) N.A. (v) to (vii) Nil.
5. R.ESULTS :
(i) $1729 \mathrm{lb} . / \mathrm{ac}$. (ii) $21.67 \mathrm{lb} . / \mathrm{ac}$. (iii) Treament differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathbf{M}_{0}$ | $\mathbf{M}_{\mathbf{1}}$ | $\mathbf{M}_{\mathbf{2}}$ |
| :--- | :--- | :--- | ---: |
| Av. yield | 1393 | 1906 | 1887 |
|  |  |  |  |
|  | S.E/mean | $8.85 \mathrm{lb} / \mathrm{ac}$. |  |

## Crop :- Paddy. <br> Ref :- A.P. 57(46). <br> Site :- Demonstn.-cuma-Res. Str., Yemmiganur. , Type :- 'M'.

1
Object :-To study the effect of N and P on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) G.M—Paddy. (b) Sannhemp. (c) Nil. (ii) (a) Deep black cotton soil. (b) N.A. (iii) 26.6.1957/ 6.8.1957. (iv) (a引 Puddled twice and levelled with pallagorru. (b) to (e) N.A. (v) $500 \mathrm{lb} / \mathrm{ac}$ of G.L. was applied as basal dressing a week before transplanting. (vi) GEB-24(medium). (vii) Irrigated. (viii) 1 weeding and push hoe worked thrice. (ix) $26 \cdot 42^{\prime \prime}$. (x) 21.12.57.
2. TREATMENTS

Same as in expt. no. 56(89) on page 106.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) $1 / 84.7 \mathrm{ac}$. (b) $1 / 105 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Endrine was sprayed in all plots in the month of September against light incidence of stem-borer. (iii) Grain yield. (iv). (a) 1956-contd. (b) and (c) ©No. (v) (a) N.A. (b) -. (vi) and (vii) Nil.
5. RESULTS :
(i) $2677 \mathrm{lb} . / \mathrm{ac}$. (ii) $310.0 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb. $/ \mathrm{ac}$.

| Treatment | $\mathrm{M}_{0}$ | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| Av. yield | 2027 | 2960 | 3044 |  |
|  | $\cdot$ |  |  |  |
|  | S.E./mean | $=$ | $126.6 \mathrm{lb} . / \mathrm{ac}$. |  |

1

```
Crop :- Paddy (Kharif).
Site :- Demonstn.-cum-Res. Stm., Yemmiganur. .
```

Ref:- A. P. 58(39).
Type :- ' $\mathbf{M}^{\prime}$ 。

Object :--To study the effects of N and P on Paddy crop.

1. BASAL CONDITIONS:
(i) (a) Paddy—G.M.-Paddy. (b) Indigo. (c) Nil. (ii) (a) Deep black cotton soil. (b) N.A. (iii) $29.6 \cdot 1958 /$ 30.7.1958. (iv) (a) 2 puddlings and levelling. (b) to (e) N.A. (v) 5000 lb ./ac. of G.L. was applied as basal dressing. (vi) GEB-24 (medium). (vii) Irrigated. (viii) One weeding and push hoe was worked thrice. (ix) $18.11^{*}$. (x) 10.12 .1958.

## 2. TREATMENTS :

Same as in expt. no. $56 ; 89$; on paze 106.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii 6. (iv) (a; $52^{\prime} \times 9^{\prime} 2^{\prime \prime}$. (b) $51^{\prime} \times 7^{\prime} 6^{\prime \prime}$. (v) $10^{\prime \prime}$ along the sides and $6^{\prime \prime}$ at the ends. (vi) Yes.
4. GENERAL:
(i) Good. (ii) N 1. (iii) Tiller count, height measurement and grain yield. (iv) (a) 1956 -contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 3353 lb ./ac. (ii) 385.4 lb , ac. (iii) Treatment differences are siguificant. (iv) Av. yield of grain in lb./ac.

| Treatment | $\mathbf{M}_{\mathbf{j}}$ | $\mathbf{M}_{1}$ | $\mathbf{M}_{2}$ |
| :--- | :---: | :---: | :---: |
| Av. yield | 2999 | 3511 | 3549 |
|  |  |  |  |
|  | S.E./mean |  | $157.4 \mathrm{lb} / \mathrm{ac}$. |

```
Crop :- Paddy (Kharif).
Ref :- A. P. 57(MAE).
Site :- M. A. E. Farm, Chinnagonehal.
Type :- ‘'M'.
```

Object:-Type II-To study the long term effect of three levels each of N, P, K and two levels of bu'ky manure on three course rotation crops.

1. BASAL CONDITIOVS:
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Black loam. (b) N.A. (iii) N.A./3rd-4th week of July 1957. (iv) (a) N.A. (b Transplanting. ic) N $A$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) N.A. (vi) GEB-24. (vii) Irrigated. (viii) N.A. (ix) 23'. (x 2nd-3rd week of December 1957.

## 2. TREATMENTS :

All comb nations of (1), (2), (3) and (4)
(1) 3 levels of $N$ as $A / S: N_{0}=0, N_{1}=30$ and $N_{2}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{2}$ as Super : $\mathrm{P}_{\mathbf{1}}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}$.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}$ as Mur. Pot. : $\mathrm{K}_{3}=0, \mathrm{~K}_{1}=30$ and $\mathrm{K}_{2}=60 \mathrm{lb}$. /ac.
(4) 2 levels of F.Y.M. : $F_{G}=0$ and $F_{1}=5000 \mathrm{lb} . / a \mathrm{c}$.
3. DESIGN :
(i) $3^{3} \times 2$ Fact confd. (ii) (a) 9 plots/block; 6 blocks/replication. (b) N.A. (iii) 1. (iv) (a) N.A. (b) $1 / 50 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1956-zontd. (b) Yes. (c) N.A. (v) to (vii) Nal.
5. RESULTS :
(i) $792 \mathrm{lb} . / \mathrm{ac}$. (ii) $288.8 \mathrm{lb} / \mathrm{ac}$. (iii) Main effects of N an P are highly signifizant. Other effects are not significant. (iv) Av. yie'd of grain in lb./ac.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{0}$ | 319 | 596 | 434 | 214 | 464 | 673 | 463 | 498 | 390 | 450 |
| $\mathrm{F}_{1}$ | 831 | 1236 | 1333 | 913 | 1227 | 1261 | 1152 | 1069 | 1180 | 1134 |
| Mean | 576 | 916 | 884 | 564 | 846 | 967 | 808 | 784 | 785 | 792 |
| $\mathrm{K}_{0}$ | 582 | 914 | 926 | 534 | 852 | 1037 |  |  |  |  |
| $\mathrm{K}_{1}$ | 531 | 1134 | 686 | 530 | 816 | 1005 |  |  |  |  |
| $\mathrm{K}_{3}$ | 615 | 700 | 1039 | 627 | 869 | 858 |  |  |  |  |
| $\mathrm{P}_{0}$ | 512 | 537 | 641 |  |  |  |  |  |  |  |
| $\mathrm{P}_{1}$ | 584 | 1069 | 884 |  |  |  |  |  |  |  |
| $\mathrm{P}_{2}$ | 632 | 1143 | 1126 |  |  |  |  |  |  |  |

$$
\begin{array}{ll}
\text { S.E. of } N, P \text { or } K \text { marginal mean } & =68.1 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of } \mathrm{N} \times P, \mathrm{~N} \times \mathrm{K} \text { or } \mathrm{P} \times \mathrm{K} \text { table } & =117.9 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

```
Crop :- Paddy (Kharif).
Site :- M.A.E. Farm, Chinnagouehal.
Ref :- A.P. 58(MAE).
Type :- 'M'.
```

Object :-Type II-To study the long term effect of three levels each of $\mathrm{N}, \mathrm{P}, \mathrm{K}$ and two levels of bulky manure on three course rotation crops.

## 1.' BASAL CONDITIONS :

(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 4.7.1958/1.8.1958. (iv) (a) N.A. (b) Transplanting. (c) $20 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 4^{\prime \prime}$. (e) N.A. (v) Nil. (vi) GEB -24 . (vii) Irrigated. (viii) Weeding. (ix) $23^{\prime \prime}$. (x) 2.12 .1958 .

## 2. TREATMENTS to 4. GENERAL :

Same as in expi. no. 57(MAE) type II conducted at Chinnagonehal on page 108.
5. RESULTS:
(i) $950 \mathrm{lb} . / \mathrm{ac}$. (ii) $331.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of N and P are highly significant. Other effects are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{0}$ | 421 | 695 | 747. | 79 | 704 | 1080 | 579 | 592 | 692 | 621 |
| $\mathrm{F}_{1}$ | 846 | 1338 | 1654 | 762 | 1514 | 1561 | 1412 | 1110 | 1315 | 1279 |
| Mean | 634 | 1016 | 1200 | 421 | 1109 | 1321 | 996 | 851 | 1004 | 950 |
| $\mathrm{K}_{0}$ | 571 | 1204 | 1212 | 419 | 1206 | 1362 |  |  |  |  |
| $\mathrm{K}_{1}$ | 577 | 797 | 1180 | 412 | 862 | 1280 |  |  |  |  |
| $\mathrm{K}_{2}$ | 753 | 1048 | 1208 | 431 | 1259 | 1320 |  |  |  |  |
| $\mathrm{P}_{0}$ | 349 | 380 | 532 |  |  |  |  |  |  |  |
| $\mathrm{P}_{1}$ | 722 | 1230 | 1375 |  |  |  |  |  |  |  |
| $\mathrm{P}_{2}$ | 829 | 1440 | 1693 |  |  |  |  |  |  |  |

S.E. of $\mathrm{N}, \mathrm{P}$ or K marginal mean $=78.1 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $\mathbf{N} \times \mathbf{P}, \mathbf{N} \times \mathrm{K}$ or $\mathrm{P} \times \mathrm{K}$ table $=135.3 \mathrm{lb}$./ac.

Crop :- Paddy (Kharif).
Site :- M.A.E. Farm, Chinnagonehal.

Ref :- A.P. 59(MAE).
Type :- ${ }^{\mathbf{C}} \mathbf{M}^{\prime}$.

Object :-Type II-To study the long term effect of three levels each of N, P, K and two levels of bulky manure on three course rotation crops.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) July/Aug. 1959 . (iv) (a) N.A. (b) Transplating. (c) $20 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 4^{\prime \prime}$. (e) N.A. (v) N.A. (vi) GEB-24. (vii) Irrigated. (viii) N.A. (ix) 13". (x) December, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57(MAE) type II conducted at Chinnagonehal on page 108.
5. RESULTS :
(i) 1658 lb /ac. (ii) $364.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of N and P are highly significant. Other effects are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $N_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{0}$ | 943 | 1527 | 2191 | 1230 | 1685 | 1746 | 1548 | 1607 | 1506 | 1554 |
| $\mathrm{F}_{1}$ | 1174 | 1558 | 2559 | 1553 | 1775 | 1963 | 1756 | 1931 | 1604 | 1763 |
| Mean | 1058 | 1542 | 2375 | 1391 | 1730 | 1855 | 1652 | 1769 | 1555 | 1658 |
| K0 | 1041 | 1598 | 2318 | 1363 | 1814 | 1779 |  |  |  |  |
| $\mathrm{K}_{1}$ | 1247 | 1434 | 2626 | 1441 | 1842 | 2024 |  |  |  |  |
| $\mathrm{K}_{2}$ | 887 | 1595 | 2182 | 1370 | 1533 | 1761 |  |  |  |  |
| $\mathrm{P}_{0}$ | 824 | 1369 | 1982 |  |  |  |  |  |  |  |
| $\mathrm{P}_{1}$ | 1114 | 1736 | 2339 |  |  |  |  |  |  |  |
| $\mathrm{P}_{2}$ | 1237 | 1522 | 2804 |  |  |  |  |  |  |  |

$$
\begin{array}{ll}
\text { S.E. of } N, P \text { or } K \text { marginal mean } & =85.9 \mathrm{ib} . / \mathrm{ac} . \\
\text { S.E. of body of } N \times P, N \times K \text { or } P \times K \text { table } & =148.8 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop:- Paddy (Kharif).
Site :- M A E. Farm, Maruteru.

## Ref :- A.P. 58(MAE).

Type :- ' $\mathbf{M}$ '.
Object:-Type II - To study the long term effect of three levels each of N, P, K and two levels of buiky manure on three course rotation crops.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) and (c) Nıl. (ii) (a) Medium black. (b) N.A. (iii) 3 rd July $1958 /$ N.A. (iv) (a) Puddling. (b) Transplanting. (c) $32 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of F.Y.M. (vi) MTU-1. (vii) Irrigated. (viii) N.A. (ix) $50^{\prime \prime}$. (x) 1.12 .1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57(MAE) type II conducted at Chinnagonehal on page 108.
5. RESULTS :

## Direct Effect

(I) 3055 lb ./ac. (ii) 450.1 lb ./ac. (iii) Main effect of $\mathbf{P}$ alone is highly significant. (iv) Av. yield of grain in lb./ac.

|  | No | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{0}$ | 3065 | 3194 | 2922 | 2666 | 3123 | 3393 | 3094 | 3199 | 2889 | 3061 |
| $F_{1}$ | 3322 | 3015 | 2811 | 2916 | 3011 | 3222 | 3200 | 3083 | 2866 | 3050 |
| Mean | 3194 | 3104 | 2866 | 2791 | 3067 | 3308 | 3147 | 3141 | 2878 | 3055 |
| $\mathrm{K}_{0}$ | 3242 | 3400 | 2799 | 2725 | 3450 | 3265 |  |  |  |  |
| $\mathrm{K}_{1}$ | 3365 | 3140 | 2917 | 3124 | 2999 | 3299 |  |  |  |  |
| $\mathrm{K}_{2}$ | 2974 | 2774 | 2884 | 2525 | 2751 | 3357 |  |  |  |  |
| $\mathrm{P}_{0}$ | 2883 | 2750 | 2741 |  |  |  |  |  |  |  |
| $\mathrm{P}_{1}$ | 3217 | 3275 | $2708{ }^{\text {- }}$ |  |  |  |  |  |  |  |
| $\mathrm{P}_{2}$ | 3482 | 3290 | 3150 |  |  |  |  |  |  |  |

$$
\begin{aligned}
& \text { S.E. of } \mathrm{N}, \mathrm{P} \text { or } \mathrm{K} \text { marginal mean }=106.1 \mathrm{lb} . / \mathrm{ac} . \\
& \text { S.E. of body of } \mathrm{N} \times \mathrm{P}, \mathrm{~N} \times \mathrm{K} \text { or } \mathrm{P} \times \mathrm{K} \text { table }=183.8 \mathrm{lb} / \mathrm{ac} . \\
& \\
& \text { Cummulative Effect }
\end{aligned}
$$

(i) $3090 \mathrm{lb} . / \mathrm{ac}$. (ii) $601.5 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

(i) $2200 \mathrm{lb} . / \mathrm{ac}$. (ii) $294.6 \mathrm{lb} / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.


[^4]Object :-Type II-To study the long term effect of three levels each of $\mathrm{N}, \mathrm{P}, \mathrm{K}$ - and two levels of bulky manure on three course rotation crops.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) and (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 3rd July $1959 /$ N.A. (iv) (a) Puddling. (b) Transplanting. (c) $32 \mathrm{lb} . / \mathrm{ac}$. $\quad$ (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of F.Y.M. (vi) MTU-1. (vii) Irrigated. (viii) N.A. (ix) $50^{\prime \prime}$. (x) 1.12.1959.

## 2. TREATMENTS :

Same as in expt. no. 57(MAE) type II conducted at Chinnagonehal on page 108.
3. DESIGN :
(i) $3^{3} \times 2$ Fact. conff. (ii) (a) 9 plots/block; 6 blocks/replication. (b) N.A. (iii) 1. (iv) (a) N.A. (b) $30^{\circ} \times 141^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii) Nil. (iii, Grain yield.
(iv) (a) 1956 -contd.
(b) Yes.
(c) N.A. (v) to (vii) Nil.
5. RESULTS :

## Direct Effect

(i. 2487 lb /ac. (ii) $189.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of $\mathrm{N}, \mathrm{P}$ and K are highly significant. Others effects are not significant (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $N_{1}$ | N, | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{0}$ | 2276 | 2510 | 2566 | 2294 | 2422 | 2638 | 2084 | 2437 | 2832 | 2451 |
| $\mathrm{F}_{1}$ | 2377 | 2553 | 2638 | 2331 | 2504 | 2733 | 2116 | 2565 | 2886 | 2523 |
| Mean | 2327 | 2532 | 2602 | 2313 | 2463 | 2085 | 2100 | 2501 | 2859 | 2487 |
| $\mathrm{K}_{0}$ | 2057 | 2142 | 2:01 | 1924 | 2016 | 2360 |  |  |  |  |
| $\mathrm{K}_{1}$ | 2257 | 2556 | 2691 | 2249 | 2533 | 2722 |  |  |  |  |
| $\mathrm{K}_{2}$ | 2666 | 2898 | 3014 | 2765 | 2840 | 2973 |  |  |  |  |
| $\mathrm{P}_{\mathbf{J}}$ | 2215 | 2290 | 2433 |  |  |  |  |  |  |  |
| $\mathrm{P}_{1}$ | 2259 | 2556 | 2564 |  |  |  |  |  |  |  |
| $\mathrm{P}_{2}$ | 2507 | 2740 | 2808 |  |  |  |  |  |  |  |

$$
\begin{array}{ll}
\text { S.E. of } N, P \text { or } K \text { marginal mean } & =44.6 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of } N \times P, N \times K \text { or } P \times K \text { table } & =77.2 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Cummulative Effect
(i) 3046 lb ./ac. (ii) $76.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of $\mathrm{N}, \mathrm{P}$ and K are highly significant. Other effects are not significant. (iv) Av. yield of grain in lb ./ac.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{0}$ | 2610 | 3017 | 3176 | 2716 | 2910 | 3177 | 2483 | 2966 | 3354 | 2934 |
| $\mathrm{F}_{1}$ | 2823 | 3237 | 3416 | 2905 | 3111 | 3460 | 2666 | 3188 | 3623 | 3159 |
| Mean | 2716 | 3127 | 3296 | 2811 | 3010 | 3318 | 2574 | 3077 | 3488 | 3046 |
| $\mathrm{K}_{0}$ | 2275 | 2633 | 2815 | 2375 | 2541 | 2807 |  |  |  |  |
| $\mathrm{K}_{1}$ | 2725 | 3181 | 3324 | 2807 | 3058 | 3365 |  |  |  |  |
| $\mathrm{K}_{2}$ | 3150 | 3567 | 3749 | 3250 | 3432 | 3783 |  |  |  |  |
| $P_{0}$ | 2516 | 2866 | 3050 |  |  |  |  |  |  |  |
| $\mathrm{P}_{1}$ | 2633 | 3117 | 3282 |  |  |  |  |  |  |  |
| $\mathrm{P}_{2}$ | 3000 | 3393 | 3557 |  |  |  |  |  |  |  |

S.E. of N, P or K marginal mean $\quad=18.0 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $\mathrm{N} \times \mathrm{P}, \mathrm{N} \times \mathrm{K}$ or $\mathrm{P} \times \mathrm{K}$ table $=31.2 \mathrm{lb}$./ac.

Residual Effect
(i) $3003 \mathrm{lb} . / \mathrm{ac}$. (ii) $105.1 \mathrm{lb} / \mathrm{ac}$. (iii) Main effects of $\mathrm{N}, \mathrm{P}$ and K are highly significant. Other effects are not significant. (iv) Av. yield of grain in lb./ac.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathbf{P}_{2}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{0}$ | 2588 | 2961 | 3117 | 2689 | 2855 | 3122 | 2428 | 2926 | 3311 | 2888 |
| $F_{1}$ | 2727 | 3223 | 3355 | 2849 | 3073 | 3428 | 2623 | 3189 | 3538 | 3117 |
| Mean | 2680 | 3092 | 3236 | 2769 | 2964 | 3275 | 2526 | 3058 | 3424 | 3003 |
| $\mathrm{K}_{0}$ | 2259 | 2593 | 2725 | 2334 | 2500 | 2743 |  |  |  |  |
| $\mathrm{K}_{1}$ | 2700 | 3149 | 3324 | 2815 | 3024 | 3334 |  |  |  |  |
| $\mathrm{K}_{2}$ | 3081 | 3534 | . 3659 | 3157 | 3368 | 3749 |  |  |  |  |
| $\mathrm{P}_{0}$ | 2499 | 2841 | 2966 |  |  |  |  |  |  |  |
| $\mathrm{P}_{1}$ | 2600 | 3033 | 3258 |  |  |  |  |  |  |  |
| $\mathrm{P}_{2}$ | 2942 | 3401 | 3483 |  |  |  |  |  |  |  |
|  |  | S.E. of $\mathrm{N}, \mathrm{P}$ or K marginal mean <br> S.E. of body of $N \times P, N \times K$ or $P \times K$ table |  |  |  |  | $\begin{aligned} & =25.0 \mathrm{lb} . / \mathrm{ac} . \\ & =43.3 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$ |  |  |  |

## Crop :- Paddy (Rabi).

Ref:- A.P. 56(MAE).
Site :- M.A.E. Farm, Marateru.

Object :-Type II-To study the long term effect of three levels each of N, P, K, and two levels of bulky manure on three course rotation crops.

1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 59(MAE) type II conducted at Maruteru on page 111.
5. RESULTS :
(i) $2761 \mathrm{lb} . / \mathrm{ac}$. (ii) 297.0 lb ./ac. (iii) Main effects of $\mathrm{N}, \mathrm{P}$ and interactions $\mathrm{N} \times \mathrm{P} \times \mathrm{F}$ and $\mathrm{P} \times \mathrm{K} \times \mathrm{F}$ are
highly significant. Interactions $\mathrm{N} \times \mathrm{K}, \mathrm{P} \times \mathrm{K}$ and $\mathrm{N} \times \mathrm{K}$ are significant. (iv) Av. yield of grain in lb./ac.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{0}$ | 2370 | 2854 | 3182 | 3026 | 2726 | 2654 | 2848 | 2809 | 2748 | 2802 |
| $\mathrm{F}_{1}$ | 2425 | 2698 | 3037 | 2765 | 2709 | 2687 | 2748 | 2659 | 2754 | 2720 |
| Mean | 2398 | 2776 | 3110 | 2896 | 2718 | 2670 | 2798 | 2734 | 2751 | 2761 |
| $\mathrm{K}_{0}$ | 2278 | 2879 | 3238 | 3029 | 2729 | 2637 |  |  |  |  |
| $\mathrm{K}_{1}$ | 2453 | 2812 | 2937 | 2654 | 2779 | 2770 |  |  |  |  |
| $\mathrm{K}_{2}$ | 2462. | 2637 | 3154 | 3004 | 2645 | 2604 |  |  |  |  |
| $\mathrm{P}_{0}$ | 2478 | 2820 | 3388 |  |  |  |  |  |  |  |
| $\mathrm{P}_{1}$ | 2462 | 2704 | 2987 |  |  |  |  |  |  |  |
| $\mathrm{P}_{2}$ | 2253 | 2804 | 2954 |  |  |  |  |  |  |  |

$\begin{array}{ll}\text { S.E. of } \mathrm{N}, \mathrm{P} \text { or } \mathrm{K} \text { marginal mean } & =49.5 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E of body of } \mathrm{N} \times \mathrm{P}, \mathrm{N} \times \mathrm{K} \text { or } \mathrm{P} \times \mathrm{K} \text { table } & =70.0 \mathrm{bb}\end{array}$

## Crop :- Paddy (Rabi).

Ref :- A.P. 59(MAE).
Type :- ' $\mathbf{M}$ '.
Object:-Type II-To sudy the long term effect of three levels each of $\mathrm{N}, \mathrm{P}, \mathrm{K}$ and two levels of bulk manure on three course rotation crops.

1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 59(MAE) type II conducted at Maruteru on page 111.
5. RESULTS :

## Direct Effect

(i) $3078 \mathrm{lb} . / \mathrm{ac}$. (ii) $641.8 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{0}$ | 2870 | 3119 | 3426 | 2920 | 3159 | 3336 | 3504 | 2852 | 3058 | 3138 |
| $\mathrm{F}_{1}$ | 2836 | $27 ; 7$ | 3470 | 2703 | 3024 | 3326 | 2936 | 3137 | 2980 | 3018 |
| Mean | 2853 | 2933 | 3448 | 2812 | 3092 | 3331 | 3220 | 2994 | 3019 | 3078 |
| $\mathrm{K}_{0}$ | 3070 | 3253 | 3338 | 2803 | 3354 | 3504 |  |  |  |  |
| $\mathrm{K}_{1}$ | 2869 | 2911 | 3203 | 2862 | 3219 | 2903 |  |  |  |  |
| $\mathrm{K}_{2}$ | 2619 | 2636 | 3803 | 2770 | 2702 | 3586 |  |  |  |  |
| $\mathrm{P}_{0}$ | 2652 | 2396 | 3387 |  |  |  |  |  |  |  |
| $\mathrm{P}_{1}$ | 2703 | 3118 | 3453 |  |  |  |  |  |  |  |
| $\mathrm{P}_{2}$ | 3203 | 3286 | 3504 |  |  |  |  |  |  |  |


| S.E. of $\mathrm{N}, \mathrm{P}$ or K marginal mean | $=151.3 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of body of $\mathrm{N} \times \mathrm{P}, \mathrm{N} \times \mathrm{K}$ or $\mathrm{P} \times \mathrm{K}$ table | $=262.0 \mathrm{lb} . / \mathrm{ac}$. |

Cummulative Effect
(i) $3170 \mathrm{lb} . / \mathrm{ac}$. (ii) $641.8 \mathrm{lb} / \mathrm{ac}$. (ili) Main effect of N alone is highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ | Mean 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{0}$ | 2680 | 3670 | 3515 | 3515 | 3136 | 3213 | 3704 | 2924 | 3237 | 3288 |
| $\mathrm{F}_{1}$ | 2698 | 3198 | 3258 | 2981 | 2885 | 3288 | 3152 | 3015 | 2987 | 3051 |
| Mean | 2689 | 3434 | 3386 | 3248 | 3010 | 3250 | 3428 | 2970 | 3112 | 3170 |
| $\mathrm{K}_{0}$ | 2810 | 4054 | 3420 | 3253 | 3368 | 3663 |  |  |  |  |
| $\mathrm{K}_{1}$ | 2503 | 3136 | 3269 | 3220 | 3036 | 2652 |  |  |  |  |
| $\mathrm{K}_{2}$ | 2754 | 3112 | 3471 | 3272 | 2627 | 3437 |  |  |  |  |
| $\mathrm{P}_{0}$ | 2903 | 3371 | 3471 |  |  |  |  |  |  |  |
| $P_{1}$ | 2385 | 3527 | 3120 |  |  |  |  |  |  |  |
| $\mathrm{P}_{2}$ | 2778 | 3404 | 3570 |  |  |  |  |  |  |  |


| S.E. of $\mathrm{N}, \mathrm{P}$ or K marginal mean | $=151.3 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of body of $\mathrm{N} \times \mathrm{P}, \mathrm{N} \times \mathrm{K}$ or $\mathrm{P} \times \mathrm{K}$ table | $=262.0 \mathrm{lb} . / \mathrm{ac}$. |

Residual Effect
(i) $2582 \mathrm{lb} / \mathrm{ac}$. (ii) 641.8 lb , ac. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{K}_{0}$ | $\mathrm{K}_{1}$ | $\mathrm{K}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{0}$ | -2618" | 2686 | 2824 | 2501. | 2891 | 2736 | 2730 | 2618 | 2780 | 2709 |
| $\mathrm{F}_{1}$ | 2359 | 2624. | 2379 | 2324 | 2180 | 2858 | 2392 | 2556 | 2414 | 2454 |
| Mean | 2488 | 2655 | 2602 | 2412 | 2536 | 2797 | 2561 | 2587 | 2597 | 2582 |
| $\mathrm{K}_{0}$ | 2512 | 2736 | 2434 | 2511 | 2419 | 2752 |  |  |  |  |
| $\mathrm{K}_{1}$ | 2534 | 2593 | 2634 | 2377 | 2451 | 2935 |  |  |  |  |
| $\mathrm{K}_{2}$ | 2419 | 2636 | 2736 | 2350 | 2736 | 2704 |  |  |  |  |
| $\mathrm{P}_{0}$ | 2378 | 2643 | 2217 |  |  |  |  | r |  |  |
| $P_{1}$ | 2519 | 2652 | 2434 |  |  |  |  |  |  |  |
| $\mathrm{P}_{2}$ | 2569 | 2670 | 3153 |  |  |  |  |  |  |  |

$$
\begin{array}{ll}
\text { S.E. of } N, P \text { or } K \text { marginal mean } & =151.3 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of } N \times P, N \times K \text { or } P \times K \text { table } & =262.0 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

```
Grop :- Paddy (Kharif).
Site :- M.A.E. Farm, Ghalvai.
Ref :- A.P. }57\mathrm{ (MAE).
Type :- 'M'.
```

Object :-Type IV-To find the effect of application of $P$ to legume on the succeeding Paddy crop.

## 1. BASAL CONDITIONS :

(i) (a) to (c) N.A. (ii) (a) Red loam. (b) N.A. (iii) 1st-2nd week of July, 1957. (iv) Ploughings. (b) Transplanting. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) MTU-19. (vii) Irrigated. (viii) N.A. (ix) $43^{\prime \prime}$. (x) 2nd week of December, 1957.
2. TREATMENTS :

## Main-plot treatments :

All combinations of (1) and (2) + a control ( $\mathrm{L}_{0} \mathrm{P}_{0}$ )
(1) 2 legumes: $\mathrm{L}_{1}=$ Pillipesara and $\mathrm{L}_{2}=$ Cow-pea.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{2}=0, \mathrm{P}_{1}=40$ and $\mathrm{P}_{2}=80 \mathrm{lb}$./ac.

Sub-plot treatments:
3 levels of N as A/S : $\quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15$ and $\mathrm{N}_{2}=30 \mathrm{lb}$./ac.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied to legumes and N applied to Paddy crop broadcast at transplanting.
3. DESIGN :
(i) Split-plot. (ii) 7 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) N.A. (b) $1 / 100$ ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Gall-fly noticed-control measures taken are N.A. (iii) Grain yield. (iv) (a) 1956-N.A. (b) and (c) N.A. (v) to (vii) Nil.
5. RESULTS:
(i) $840 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $207.3 \mathrm{lb} . / \mathrm{ac}$. (b) $263.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of P .and 'control vs. others' arehighly significant. Interactions $\mathrm{L} \times \mathrm{N}$ and $\mathbf{P} \times \mathrm{N}$ are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{L}_{0} \mathrm{P}_{0}$ | $\mathrm{L}_{1} \mathrm{P}_{0}$ | $\mathrm{L}_{2} \mathrm{P}_{0}$ | $L_{1} \mathrm{P}_{1}$ | $\mathrm{L}_{2} \mathrm{P}_{1}$ | $\mathrm{L}_{1} \mathrm{P}_{2}$ | $\mathrm{L}_{2} \mathrm{P}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}_{0}$ | 694 | 853 | 735 | 741 | 837 | 872 | 996 | 818 |
| $\mathrm{N}_{1}$ | 661 | 924 | 708 | 856 | 883 | 1141 | 826 | 857 |
| $\mathrm{N}_{2}$ | 883 | 730 | 584 | 902 | 845 | 826 | 1138 | 844 |
| Mean | 746 | 836 | ... 676 | 833 | 855 | 946 | 987 | 840 |

S.E. of difference of two

1. LP marginal means $\quad=97.7 \mathrm{Jb} . / \mathrm{ac}$.
2. $N$ marginal means $\quad=81.3 \mathrm{lb} . / \mathrm{ac}$.
3. N means at the same level of $\mathrm{LP} \quad=215.0 \mathrm{lb}$./ac.
4. LP means at the same level of $N \quad=200.9 \mathrm{lb} . / a c$.

Crop:- Paddy (Kharif).
Site :- M.A.E. Farm, Chinnagonehal.

Ref :- A.P. 57(MAE).
Type :- ‘ $\mathbf{M}$ ’.

Object :-Type IV—To find the effect of application of $P$ to legume on the succeeding Paddy crop.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Black loam. (b, N.A. (iii) 3rd-4th week of July, 1957. (iv) (a) Ploughing. (b) Transplanting. (c) N.A. (d) $8^{\prime} \times 8^{\prime \prime}$. (e) N.A. (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of F.Y.M. (vi) GEB-24. (vii) Irrigated. (viii) N.A. (ix) 23". (x) 2nd-3rd week of December, 1957.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57(MAE) type IV conducted at Chalvai on page 115.

## 5. RESULTS :

(i) $1007 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $311.0 \mathrm{lb} . / \mathrm{ac}$. (b) $283.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of P and N and 'control vs. others' and interaction $N \times P$ are highly significant. Other effects are not significant. (iv) Av. yield of grain in lb.jac.

|  | $\mathbf{L}_{0} \mathrm{P}_{0}$ | $L_{1} \mathrm{P}_{5}$ | $L_{2} \mathrm{P}_{0}$ | $L_{1} \mathrm{P}_{1}$ | $\mathrm{L}_{2} \mathrm{P}_{1}$ | $\mathbf{L}_{1} \mathrm{P}_{2}$ | $\mathrm{L}_{2} \mathrm{P}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}_{0}$ | 123 | 264 | 353 | 1081 | 1191 | 1232 | 1372 | 802 |
| $\mathrm{N}_{1}$ | 137 | 370 | 515 | 1276 | 1171 | 1725 | 1518 | 959 |
| $\mathrm{N}_{2}$ | 117 | 279 | 344 | 1542 | 1940 | 2147 | 2456 | 1261 |
| Mean | 126 | 304 | 404 | 1300 | 1434 | 1701 | 1782 | 1007 |

S.E. of difference of two

1. LP marginal means
$=146.6 \mathrm{Ib} . / \mathrm{ac}$.
2. N marginal means
$=87.6 \mathrm{lb} . / \mathrm{ac}$.
3. $\mathbf{N}$ means at the same level of LP
$=133.8 \mathrm{lb} / \mathrm{ac}$.
4. LP means at the same level of N
$=239.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- M.A.E. Farm, Chinnagonehal.

Ref :- A.P. 58(MAE).
Type :- ‘M'.

Object:-Type IV-To find the effect of application of $\mathbf{P}$ to legume on the succeeding Paddy crop.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 3.7.1958. (iv) (a) Ploughing. (b) Transplanting. (c) $32 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) $5000 \mathrm{lb} / \mathrm{ac}$. of F.Y.M. (vi) MTU-1. (vii) Irrigated. (viii) N.A. (ix) $50^{\circ}$. (x) 1.12 .1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57 (MAE) type IV conducted at Chalvai on page 115 .
5. RESULTS:


|  | $L_{0} P_{0}$ | $L_{1} P_{0}$ | $L_{2} P_{0}$ | $L_{1} P_{1}$ | $L_{2} P_{1}$ | $\mathbf{L}_{1} P_{2}$ | $L_{2} P_{2}$ | Mean |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{N}_{0}$ | 189 | 708 | 469 | 1185 | 708 | 1539 | 683 | 783 |
| $\mathbf{N}_{1}$ | 263 | 880 | 255 | 1703 | 1053 | 2049 | 905 | 1015 |
| $\mathbf{N}_{2}$ | 173 | 691 | 206 | 1646 | 1168 | 1917 | 1506 | 1044 |
| Mean | 208 | 760 | 310 | 1511 | 976 | 1835 | 1031 | 947 |

S.E. of difference of two
$\begin{array}{ll}\text { 1. LP marginal means } & =188.5 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. } \mathrm{N} \text { marginal mean } & =113.3 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } \mathrm{N} \text { means at the same level of LP } & =299.7 \mathrm{lb} . / \mathrm{ac} .\end{array}$
4. LP means at the same level of $\mathbf{N} \quad=308.9 \mathrm{lb} . / \mathrm{ac}$.

## Crop :- Paddy (Rabi). <br> Site :- MA.E. Farm, Maruteru.

Ref :- A.P. 56(MAE).
Type :- 'M'.

Object:-Type IV-To find the effect of application of $\mathbf{P}$ to legume on the succeeding Paddy crop.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) (a) Coastal alluvial.
(b) Nil. (iii) 12.2.1957.
. (iv) (a) Ploughing and puddling.
(b) Transplanting.
(c) $20 \mathrm{lb} . / \mathrm{ac}$. (d) $\mathrm{s}^{\prime \prime} \times 4^{\prime \prime}$.
(e) N.A.
(v) Nil.
(vi) MTU-20. (vii) Irrigated. (viii)
N.A. (ix) 1.12". (x) 24.5.1957.

## 2. TREATMENTS:

Main-plot treatments :
All combinations of (1) and (2) + a control ( $\mathrm{L}_{0} \mathrm{P}_{0}$ )
(1) 2 legumes: $\mathrm{L}_{1}=$ Sannhemp and $\mathrm{L}_{2}=$ Dhaincha.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=40$ and $\mathrm{P}_{2}=80 \mathrm{lb} . / \mathrm{ac}$.

Sub-plot treatments:
3 levels of $N$ as $A / S: \quad N_{0}=0, N_{1}=15$ and $N_{2}=30 \mathrm{lb} . / a c$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied to legumes at sowing and N applied to Paddy at the time of planting.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 57(MAE) type IV conducted at Chalvai on page 115.
5. RESULTS:
(i) $1903 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) 1086.1 lb ./ac. (b) $453.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of N is highly significant. Main effect of 'control $v s$. others' and interaction $N \times P$ are significant. (iv) Av. vield of grain in lb./ac.

|  | $\mathrm{L}_{0} \mathrm{P}_{0}$ | $\mathbf{L}_{1} \mathrm{P}_{0}$ | $\mathrm{~L}_{1} \mathrm{P}_{1}$ | $\mathbf{L}_{1} \mathrm{P}_{2}$ | $\mathrm{~L}_{2} \mathrm{P}_{0}$ | $\mathbf{L}_{2} \mathrm{P}_{1}$ | $\mathrm{~L}_{2} \mathrm{P}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}_{0}$ | 670 | 1340 | 1641 | 1976 | 1373 | 1641 | 2110 | 1536 |
| $\mathrm{~N}_{1}$ | 904 | 1976 | 2043 | 1875 | 2110 | 2176 | 2176 | 1894 |
| $\mathrm{~N}_{2}$ | 1071 | 3148 | 2612 | 1809 | 2244 | 2645 | 2411 | 2277 |
| Mean | 882 | 2155 | 2099 | 1887 | 1909 | 2154 | 2232 | 1503 |

S.E. of difference of two

1. LP marginal means
$=511.9 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal means
$=139.9 \mathrm{lb} . / \mathrm{ac}$.
3. $\mathbf{N}$ means at the same level of LP $\quad=370.2 \mathrm{lb} . / \mathrm{ac}$.
4. LP means at the same level of $\mathrm{N}=594.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Rabi).
Site :- M.A.E. Farm, Maruteru.

Ref :- A.P. 57(MAE).
Type :- ' $\mathbf{M}$ '.

Object:-Type IV-To find the effect of application of $\mathbf{P}$ to legume on the succeeding Paddy crop.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) $8.1 .1958 / 9.2 .1958$. (iv) (a) 3 puddlings. (b) Transplanting. (c) $32 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 4^{\prime \prime}$. (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) Nil. (x) 10.51958.

## 2. TREATMENTS:

Same as in expt. no. 56(MAE) type IV conducted at Maruteru on page 117.
3. DESIGN :
(i) Split-plot. (ii) (a) 7 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) N.A. (b) $27^{\prime} \times 16^{\prime}$. (v) N.A. (vi) Yes.

## 4. GENERAL :

(i) Satisfactory. (ii) Affected by spodophera maurities-control measures taken are N.A. (iii) Grain yield. (iv) (a) $1956-$ N.A. (b) and (c) N.A. (v) to (vii) Nil-
5. RESULTS :
(i) $2149 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $631.1 \mathrm{lb} . / \mathrm{ac}$. (b) $411.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of N alone is highly significant. (iv) Av. yield of grain in lb ./ac.

|  | $L_{0} \mathrm{P}_{0}$ | $L_{1} \mathrm{P}_{0}$ | $\mathrm{L}_{1} \mathrm{P}_{1}$ | $L_{1} \mathrm{P}_{2}$ | $L_{2} \mathrm{P}_{0}$ | $\mathrm{L}_{2} \mathrm{P}_{1}$ | $\mathrm{L}_{2} \mathrm{P}_{2}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}_{\mathrm{u}}$ | 1580 | 1764 | 1630 | 2084 | 1697 | 2084 | 1714 | 1792 |
| $\mathrm{N}_{1}$ | 1697 | 2084 | 2319 | 2722 | 2067 | 2117 | 1664 | 2096 |
| $\mathrm{N}_{2}$ | 2470 | 2638 | 2285 | 2773 | 2672 | 2722 | 2353 | 2559 |
| Mean | 1916 | 2162 | 2078 | 2526 | 2143 | 2308 | 1910 | 2149 |

S.E. of difference of two

| 1. LP marginal means | $=297.5 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. N marginal means | $=127.0 \mathrm{lb} . / \mathrm{ac}$. |
| 3. N means at the same level of LP | $=335.9 \mathrm{lb} . / \mathrm{ac}$. |
| 4. LP means at the same level of N | $=404.6 \mathrm{lb} . / \mathrm{ac}$. |

## Crop :- Paddy (Lharif).

Site :- M.A.E. Farm, Chalvai.

Ref :- A.P. 55(MAE).
Type :- ' $\mathbf{M}$ '.

Object :-Type V-To study the effect of time of application of N on Paddy.

1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) (a) Red loam. (b) N.A. (iii) Second fortnight of July, 1955. (iv) (a) N.A. (b) Transplanted. (c) N.A. d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) MTU-19. (vii) Irrigated. (viii) N.A. (ix) $55.0^{\prime \prime}$. (x) Second fortnight of December 1955.
2. TREATMENTS:

All combinations of (1) and (2) +a control.
(1) 2 sources of $\mathrm{N}: \mathrm{S}_{1}=$ Urea and $\mathrm{S}_{2}=\mathrm{A} / \mathrm{S}$.
(2) 7 times of application of $\mathrm{N}: \mathrm{T}_{1}=$ Before planting, $\mathrm{T}_{2}=$ At planting, $\mathrm{T}_{3}=$ At tillering, $\mathrm{T}_{4}=$ Half before planting and half at planting, $\mathrm{T}_{5}=$ Half at planting and half at tillering, $\mathrm{T}_{6}=\frac{1}{3}$ before planting, $\frac{1}{3}$ at planting and $\frac{1}{\frac{1}{2}}$ a week before flowering and $\mathrm{T}_{\mathbf{7}}=\frac{1}{3}$ at planting, $\frac{1}{2}$ at tillering and $\frac{1}{\frac{1}{3}}$ a week before flowering.
3. DESIGN :
(i) R.B.D. (ii) (a) 15 . (b) N.A. (iii) 3. (iv) (a) and (b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil." (iii) Grain yield. (iv) (a) 1955-contd. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS:


Object :-Type V-To study the effect of time of application of N on Paddy.

1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. $55(\mathrm{MAE})$ type V conducted at Chalvai on page 118.
5. RESULTS :
(i) $3353 \mathrm{lb} . / \mathrm{ac}$. (ii) 367.0 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$. Control $=3209 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{T}_{1}$ | T2 | $\mathrm{T}_{3}$ | T4 | T ${ }_{5}$ | T6 | $\mathrm{T}_{7}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{1}$ | 3316 | 3168 | 3242 | 3480 | 3110 | 3472 | 3464 | 3322 |
| $\mathrm{S}_{2}$ | 3653 | 3143 | 3192 | 3332 | 3472 | 3415 | 3620 | 3404 |
| Mean | 3484 | 3156 | 3217 | 3405 | 3291 | 3444 | 3542 | 3363 |


| S.E. of $\mathbf{T}$ marginal mean | $=149.8 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $S$ marginal mean | $=80.1 \mathrm{lb} / \mathrm{ac}$. |
| S.E. of body of table or control mean | $=211.9 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Kharif).
Site :- M.A.E. Farm, Chalvai.

Ref :- A.P. 59(MAE).
Type :- ' $\mathbf{M}$ '.

Object :-Type V-To study the effect of time of applications of N on Paddy.

1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 55 (MAE) type $V$ conducted at Chalvai on page 118.
5. RESULTS :
(i) 2097 lb ./ac. (ii) 289.6 lb /ac. (iii) Main effect of T alone is highly significant. (iv) Av. yield of grain in lb ./ac.

Co.itrol $=2032 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{T}_{1}$ | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{3}$ | $\mathrm{~T}_{4}$ | $\mathrm{~T}_{5}$ | $\mathrm{~T}_{6}$ | $\mathrm{~T}_{7}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 1909 | 2180 | 1958 | 2304 | 2073 | 2427 | 2296 | 2164 |
| $\mathrm{~S}_{2}$ | 2008 | 1934 | 1777 | 2370 | 1753 | 1785 | 2658 | 2041 |
| Mean | 1958 | 2057 | 1868 | 2337 | 1913 | 2106 | 2477 | 2102 |


| S.E. of $T$ marginal mean | $=118.2 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | ---: | ---: |
| S.E. of $S$ marginal mean | $=63.2 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table or control mean | $=167.2 \mathrm{lb} . / \mathrm{ac}$. |

## Crop :- Paddy (Kharif).

Site :- M.A.E. Farm, Chinnagonehal.

Ref :- A.P. 57(MAE).
Type :- ' $\mathbf{M}^{\prime}$.

Object:-Type V-To study the effect of time of application of N on Pddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Black loam. (b) N.A. (iii) N.A./3rd-4th week of July, 1957. (iv) (a) N.A. (b) Transplanting. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of F.Y.M. (vi) GEB-24. (vii) Irrigated. (viii) N.A. (ix) $23^{\prime \prime}$. (x) 2nd-3rd week of December, 1957.
2. TREATMENTS :

Same as in expt. no. 55( $\mathrm{M}+\mathrm{E}$ ) type $V$ conducted at Chalvai on page 118.
3. DESIGN :
(i) R.B.D. (ii) (a) 15 . (b) N.A. (iii) 3. (iv) (a) N.A. (b) $1 / 100 \mathrm{ac}$. (v) N.A. (ii) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) 1956 -contd. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS:
(i) $612 \mathrm{lb} . / \mathrm{ac}$. (ii) 348.9 lb . ac. (iii) None of the effec s is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Control $=461 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{T}_{1}$ | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{3}$ | $\mathrm{~T}_{4}$ | $\mathrm{~T}_{5}$ | $\mathrm{~T}_{6}$ | $\mathrm{~T}_{7}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 922 | 1119 | 576 | 403 | 765 | 601 | 346 | 676 |
| $\mathrm{~S}_{2}$ | 461 | 650 | 469 | 354 | 576 | 592 | 897 | 571 |
| Mean | 692 | 884 | 522 | 378 | 670 | 595 | 622 | 623 |


| S.E. of T marginal mean | $=142.4 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of S marginal mean | $=76.1 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table or control mean | $=201.4 \mathrm{lb} . / \mathrm{ac}$. |

```
Crop :-Paddy (Kharif).
Site :- M.A.E. Farm, Chimnagonehal.
```

```
Ref :- A.P. 58(MAE).
```

Ref :- A.P. 58(MAE).
Type :- 'M'.

```
Type :- 'M'.
```

Object : - Type V-To study the effect of time of application of N on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 4th July/lst Aug. 1958. (iv) (a) N.A. (b) Transplanting. (c) $20 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 4^{\prime \prime}$ (e) -. (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of F.Y.M. (vi) GEB-24. (vii) Irrigated. (viii) Weeding. (ix) $23^{\prime \prime}$. (x) 2.12.1958.
2. TREATMENTS :

Same as in expt. No. 55 (MAE) type V conducted at Chalvai on page 118.
3. DESIGN :
(i) R.B.D. (ii) (a) 15. (b) N.A. (iii) 3 (iv) (a) N.A. (b) $1 / 100 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactoly. (ii) N.A. (iii) Grain yield. (iv) (a) 1956 -contd. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) 535 lb ./ac. (ii) $297.9 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Ay. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Control $=527 \mathrm{lb} . / \mathrm{ac}$.

|  | $T_{1}$ | $T_{2}$ | $T_{3}$ | $T_{4}$ | $T_{5}$ | $T_{6}$ | $T_{7}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M. | 300 | 430 | 433 | 420 | 747 | 663 | 590 | 512 |
| $\mathrm{~S}_{2}$ | 510 | 443 | 593 | 607 | 653 | 483 | 637 | 561 |
| Mean | 405 | 436 | 513 | 514 | 700 | 573 | 614 | 536 |


| S.E. of T marginal mean | $=121.6 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of S marginal mean | $=650 \mathrm{Jb} . / \mathrm{ac}$. |
| S.E. of body of table or control mean | $=172.0 \mathrm{lb} . / \mathrm{ac}$. |


| Corp :- Paddy (Kharif). | Ref :- A.P. 58(MAE) |
| :--- | :--- |
| Site :- M.A.E. Farm, Maruteru. | Type :- 'M'. |

Site :- M.A.E. Farm, Maruteru.
Type :- ' $\mathbf{M '}^{\prime}$.

Object :- Type V-To study the effect of time of application of $N$ on paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (b) N.A. (iii) 3rd July, 1958. (iv) (a) Ploughing and Pudding. (b) Transplanting. (c) $32 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of F.Y.M. (vi) MTU -1. (vii) Irrigated. (viii) Weeding. (ix) $50^{\prime \prime}$. (x) i.12.1958.
2. TREATMENTS :

Same as in expt. No. 55 (MAE) type $V$ conducted at Chalvai on page 118.
3. DESIGN :
(i) R B.D. (ii) (a) 15 . (b) N.A. (iii) 3 (iv) (a) N.A. (b) $1 / 100 \mathrm{ac}$. (v) N.A. (vi) Yes.

4, GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) 1956-contd. (b) Yes. (c) N.A. (v) to (vii) Nul.
5. RESULTS:
(i) $3221 \mathrm{lb} . / \mathrm{ac}$. (ii) $509.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of 'control $v s$. others' alone is highly significant. (iv) Av. yield of grain in lb./ac.

Control $=2098 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{T}_{1}$ | $\mathrm{T}_{2}$ | $\mathrm{T}_{3}$ | $\mathrm{T}_{4}$ | $\mathrm{T}_{5}$ | $\mathrm{T}_{6}$ | $\mathrm{T}_{7}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 3513 | 3184 | 3053 | 3579 | 3966 | 3003 | 3036 | 3333 |
| $\mathrm{S}_{2}$ | 2830 | 3818 | 3365 | 3053 | 3168 | 3201 | 3448 | 3269 |
| Mean | 3172 | 3501 | 3209 | 3316 | 3567 | 3102 | 3242 | 3:01 |


| S.E. of T marginal mean | $=207.9 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of S marginal mean | $=111.1 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table or control mean | $=294.1 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Kharif).
Site :- M.A.E. Farm, Maruteru.

Ref :- A.P. 59(MAE).
Type :- ' $\mathbf{M}^{\prime}$.

Object :-Type V-To study the effect of time of application of N on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Madium black. (b) N.A. (iii) July, 1959. (iv) (a) N.A. (b) Transplanting. (c) $20 \mathrm{lb} . / \mathrm{ac} . \quad$ (d) $8^{\prime \prime} \times 4^{\prime \prime} . \quad$ (e) -. $\quad$ (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of F.Y.M. (vi) GEB-24. (vii) Irrigated. (viii) Weeding. (ix) $23^{\prime \prime}$. (x) Dec. 1959.
2. TREATMENTS:

Same as in expt. no. 55 (MAE) type V conducted at Chalvai on page 118.
3. DESIGN :
(i) R.B.D. (ii) (a; 15 . (b) N.A. (iii) 3. (iv) (a) $140^{\prime} \times 250^{\prime}$. (b) $30^{\prime} \times 14 \frac{1^{\prime}}{}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactcry. (ii) N.A. (iii) Grain yield. (iv) (a) 1956 -contd. (b) Yes. (c) N.A. (v) to 'vii) Nil.
5. RESULTS :
(i) $3388 \mathrm{lb} . / \mathrm{ac}$. (ii) $213.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of T and 'control vs. others' are highly significant. Other effects are not significant. (iv) Av. yield of grain in lb./ac.

Control $=2131 \mathrm{lb} / \mathrm{ac}$.

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{1}$ | $T_{1}$ | $T_{2}$ | $T_{3}$ | $T_{4}$ | $T_{5}$ | $T_{6}$ | $T_{7}$ | Mean |
| $\mathbf{S}_{\mathbf{2}}$ | 3299 | 3299 | 3431 | 3703 | 3234 | 3703 | 3604 | 3468 |
| Mean | 3345 | 3332 | 3489 | 3439 | 3234 | 3834 | 3703 | 3489 |


| S.E. of $T$ marginal mean | $=87.3 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $S$ marginal mean | $=46.7 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table or control mean | $=123.5 \mathrm{lb} . / \mathrm{ac}$. |

[^5]> Ref $:-$ A.P. $56($ MAE $) . ~$
> Type :- ‘M'.

Object :-Type V-To study the effest of time of application of N on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N. A. (ii) (a) Medium black. (b). N.A. (iii) 9th to 14th Feb. 1956. (iv) (a) N.A. (b) Transplanting. (c) $25 \mathrm{lb} / \mathrm{ac}$. (d) $8^{\prime \prime} \times 4^{*}$. (e) N.A. v) $2000 \mathrm{lb} . / \mathrm{ac}$. of straw and 5000 lb ./ac. of F Y.M. (vi) N.A. (vii) Irrigated. (vini) N.A. (ix) 1.12". (x) 18th to 21st May, 1956.

## 2. TREATMENTS :

Same as in expt. no. 55 (MAE) type V conducted at Chaivai on page 118.
3. DESIGN :
(i) R.B.D.
(ii) (a) 15 .
(b) N.A.
(iii) 3. (iv) (a) N.A.
(b) $1 / 100 \mathrm{ac}$
(v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory
(ii) N.A. (iii) Grain yield.
(iv) (a) 1956-contd.
(b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS:
(i) $3648 \mathrm{lb} . / \mathrm{ac}$. (ii) $136.6 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of $\mathrm{N}, \mathrm{T}$, 'control $v s$. others' and interaction $\mathrm{N} \times \mathrm{T}$ are highly significant. Other effects are not significant. (iv) Av . yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.

$$
\text { Control }=1533 \mathrm{lb} . / \mathrm{ac}
$$

|  | $\mathrm{T}_{1}$ | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{\mathbf{3}}$ | $\mathrm{T}_{4}$ | $\mathrm{~T}_{\mathbf{5}}$ | $\mathrm{T}_{\mathbf{6}}$ | $\mathrm{T}_{\mathbf{7}}$ | Mean |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{\mathbf{1}}$ | 4032 | 3565 | 6531 | 4399 | 3632 | 2632 | 3760 | 4080 |
| $\mathrm{~S}_{2}$ | 3832 | 2466 | 2999 | 4093 | 4265 | 3632 | 3332 | 3518 |
| Mean | 3932 | 3016 | 4765 | 4248 | 3949 | 3132 | 3549 | 3799. |


| S.E. of T marginal mean | $=55.8 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of S marginal mean | $=29.81 \mathrm{~b} . / \mathrm{ac}$. |
| S.E. of body of table or control mean | $=78.9 \mathrm{lb} . / \mathrm{ac}$. |

## Crop:- Paddy (Rabi). <br> Site :- M.A.E. Farm, Maruteru.

## Ref :- A.P. 57(MAE).

Type := 'M'.
Object :-Type V-To study the effect of time of application of N on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 8.1.1958. (iv) (a) Puddling and levelling. (b) Transplanting. (c) $32 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 4^{\prime \prime}$. (e) N.A. (v) $5000 \mathrm{lb} / \mathrm{ac}$. of F.Y.M. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) Nil. (x) 10.5.1958.
2. TREATMENTS :

Same as in expt. no. $55(\mathrm{MAE})$ type $V$ conducted at Chalvai on page 118.
3. DESIGN :
(i) R.B.D. (ii) (a) 15. (b) N.A. (iii) 3. (iv) (a) N.A. (b) $1 / 100 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii) N.A.
(iii) Grain yield.
(iv) (a) 1956-contd.
(b) Yes.
(c) N.A. (v) to (vii) NiI.
5. RESULTS :
(i) $2727 \mathrm{lb} . / \mathrm{ac}$. (ii) $448.4 \mathrm{ib} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in lb./ac.

Control $=2855 \mathrm{lb} . / \mathrm{ac}$.


| S.E. of $T$ marginal mean | $=183.1 \mathrm{lb} . / \mathrm{ac}$, |
| :--- | :--- |
| S.E. of $S$ marginal mean | $=\cdots 97.8 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table | $=258.9 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Rabi).
Site :- M.A.E. Farm, Maruteru.

Ref :- A.P. 58(MAE)
Type :- ' $\mathbf{M}^{\prime}$.

Object:-Type V-To study the effect of time of application of N on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 2 nd February, 1958. (iv) (a) N.A. (b) Transplanting. (c) 25 lb ./ac. (d) $8^{\circ} \times 4^{\prime \prime}$. (e) N.A. (v) $5000 \mathrm{ib} . / \mathrm{ac}$. of F.Y.M. (vi) MTU-10. (vii), Irrigated. (viii) N.A. (ix) 6.7\%". (x) 1st May, 1958.
2. TREATMENTS:

Same as in expt. no. 55(MAE) type $V$ conducted at Chalvai on page 118.
3. DESIGN :
(i) R.B.D. (ii) (a) 15 . (b) N.A. (iii) 3. (iv) N.A. (b) $1 / 100 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory, (ii) N.A. (iii) Grain yield. (iv) (a) 1956 -contd. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS:
(i) $3026 \mathrm{lb} . / \mathrm{ac}$. (ii) $472.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of 'control $v s$. others' is highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Control $=2103 \mathrm{lb} / \mathrm{ac}$.

|  | $T_{1}$ | $T_{2}$ | $T_{3}$ | $T_{4}$ | $T_{5}$ | $T_{6}$ | $T_{7}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{\mathbf{1}}$ | 3205 | 3288 | 3238 | 3555 | 3221 | 2904 | 3255 | 3238 |
| $\mathrm{~S}_{2}$ | 3455 | 2703 | 3271 | 2537 | 3455 | 2870 | 2336 | 2947 |
| Mean | 3330 | 2996 | 3254 | 3046 | 3338 | 2887 | 2796 | 3092 |


| S.E. of T marginal mean | $=192.8 \mathrm{lb} / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of S marginal mean | $=103.1 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table or control mean | $=272.7 \mathrm{lb} . / \mathrm{ac}$. |

## Crop :- Paddy (Rabi). <br> Site :- M.A.E. Farm, Maruteru.

Ref :- A.P. 59(MAE).
Type :- 'M'.

Object :-Type V-To study the effect of time of application of N on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 2nd Feb. 1959. (iv) (a) N.A. (b) Transplanting. (c) $25 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 4^{\prime \prime}$. (e) N.A. (v) 5000 lb /ac. of F.Y.M. (vi) SLO-16. (vi) Irrigated. (viii) and (ix) N A. (x, 1st May, 1959
2. TREATMENTS

Same as in expt. no 55 (MAE) type V conducted at Chalvai on page 118.
3. DESIGN :
(i) R.B.D. (ii) (a) 15 . (b) N.A. (iii) 3. (iv) (a) N.A. (b) $1 / 100 \mathrm{ac}$ (v) N.A. (vi! Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) 1956 -contd. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) 3068 lb ./ac. (ii) $654.9 \mathrm{lb} / \mathrm{ac}$. (iii) Main effects of 'control $v s$. others' alone is highly significant. (iv) Av. yield of grain in lb ./ac.

Control $=1966 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{T}_{1}$ | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{3}$ | $\mathrm{~T}_{4}$ | $\mathrm{~T}_{5}$ | $\mathrm{~T}_{6}$ | $\mathrm{~T}_{7}$ | Mean |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 2666 | 2765 | 2463 | 3631 | 3733 | 2767 | 3533 | 3080 |
| $\mathrm{~S}_{2}$ | 2534 | 3066 | 2836 | 4265 | 3330 | 3434 | 3031 | 3214 |
| Mean | 2600 | 2916 | 2650 | 3948 | 3532 | 3100 | 3282 | 3147 |


| S.E. of T marginal mean | $=142.9 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of S marginal mean | $=267.4 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of table or control mean | $=378.1 \mathrm{lb} . / \mathrm{ac}$. |

Grop :- Paddy (Kharif).
Site :- M.A.E. Farm, Chalvai.

## Ref :- A.P. 56(MAE).

Type :- 'M'.

Object :--Type VI-To determine the method of placement of fertilizers for Paddy.

1. BASAL CONDITIONS :
(i) (a) Nıl. (b) and (c) N.A. (ii) (a) Red loam. (b) N.A. (iii) Second fortnight of July, 1956. (iv) (a) N A. (b) Transplanted. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) MTU-19. (vii) Irrigated. (viii) N.A. (ix) $55.0^{\prime \prime}$. (x) Second fortnight of December, 1956.

## 2. TREATMENTS :

Ail combinations of (1), (2) and (3) + a control.
(1) 3 sounces of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{1}=$ Super, $\mathrm{S}_{2}=$ Ammo. Phos. and $\mathrm{S}_{3}=$ Dical. Phos.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.
(3) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{M}_{1}=$ Broadcasting at puddling time, $\mathrm{M}_{2}=$ Dipping the seedlings in mud-slush mixed with fertilizers before transplanting and $\mathrm{M}_{3}=$ Application in the form of pellets to be placed near the roots at the time of planting.
A/S applied at planting to make up 30 lb ./ac. of N .
3. DESIGN :
(i) Fact. confd. (ii) (a) 6 plots/block; 3 blocks/replication. (b) N.A. (iii) 2 . (iv) (a) $23^{\prime} \times 24^{\prime}$. (b) $20^{\circ} \times 21.5^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Gall-fly attack noticed. 33 gallons/ac. containing 100 c.c. of Folidol 'sprayed. (iii) Grain yield. (iv) (a) $1956-$ N.A. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS:
(i) $3309 \mathrm{lb} . / \mathrm{ac}$. (ii) $142.5 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Control $=3535 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{3}$ | Mean | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M}_{1}$ | 3449 | 3530 | 3046 | 3342 | 3446 | 3239 |
| $\mathrm{M}_{2}$ | 3452 | 3218 | 3216 | 3295 | 3406 | 3185 |
| $\mathrm{M}_{3}$ | 3383 | 3167 | 3201 | 3250 | 3397 | 3103 |
| Mean | 3428 | 3305 | 3154 | 3296 | 3416 | 3176 |
| $\mathrm{P}_{1}$ | 3489 | 3309 | 3449 |  |  |  |
| $\mathrm{P}_{2}$ | 3356 | 3301 | 2860 |  |  |  |


| S.E. of $S$ or M marginal mean | $=41.1 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $P$ marginal mean | $=33.6 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $S \times M$ or $P \times S$ table | $=70.8 \mathrm{lb} / \mathrm{ac}$. |
| S.E. of body of $\mathrm{M} \times \mathrm{P}$ table | $=58.2 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of control mean | $=100.8 \mathrm{lb} . / \mathrm{ac}$. |

## Crop :- Paddy (Rabi). <br> Site :- M.A.E. Farm, Maruteru.

Ref :- A.P. 58(MAE).
Type :- ' $M$ '.

Object :-Type VI-To determine the method of placement of fertilizers for Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 2nd Feb. 1958. (iv) (a) N.A. (b) Transplanting. (c) $25 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 4^{\prime \prime}$. (e) N.A. (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of F.Y.M. (vi) MTU-10. (vii) Irrigated. (vii) N.A. (ix) $6.77^{\prime \prime}$. (x) 1st May, 1958.

## 2. TREATMENTS:

All combinations of (1), (2) and (3) + a control.
(1) 2 sources of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{1}=$ Super and $\mathrm{S}_{2}=$ Ammo. Phos.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.
(3) 3 metbods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{M}_{1}=$ Broadcasting, $\mathrm{M}_{2}=$ Dipping the seedlings in mud-slush mixed with the fertilizer and $\mathrm{M}_{3}=$ Pellet application.
A/S applied at planting to make up $30 \mathrm{lb} . / \mathrm{ac}$. of N .
3. DESIGN :
(i) $2^{2} \times 3$ Fact. confd. (ii) (a) 5 plots/block; 3 blocks/replication. (b) N.A. (iii) 3. (iv) (a) N.A. (b) $30^{\prime} \times 14 \frac{1}{2}^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Grain yield. (iv) (a) 1956 -contd. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) $2884 \mathrm{lb} . / \mathrm{ac}$. (ii, 309.0 lb ./ac. (iii) Main effect of 'control $v s$. others' is highly significant. Other effects are not significant. (iv; Av. yield of grain in lb./ac.

| Control $=2169 \mathrm{lb} / \mathrm{ac}$. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | Mean |
| $\mathrm{S}_{1}$ | 2745 | 2854 | 2912 | 2820 | 2854 | 2837 |
| S2 | 3088 | 3154 | 2912 | 3082 | 3021 | 3052 |
| Mean | 2917 | 3004 | 2912 | 2951 | 2938 | 2944 |
| $\mathrm{P}_{1}$ | 2871 | 3054 | 2929 |  |  |  |
| $\mathrm{P}_{2}$ | 2962 | 2954 | 2896 |  |  |  |


| S.E. of $S$ or $P$ marginal mean | $=72.8 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of $M$ marginal mean | $=89.2 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $S \times M$ or $\mathbf{P} \times \mathrm{M}$ table | $=126.1 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $S \times P$ table | $=103.0 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of control mean | $=178.4 \mathrm{lb} . / \mathrm{ac}$. |

[^6]Ref :- A.P. 59(MAE).
Type :- ' $\mathbf{M}$ ’.

Object :- Type VI-To determine the method of placement of fertilizers for Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) Feb. 1959 . (iv) (a) N.A. (b) Transplanting. (c) $25 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime} \times 4^{\prime \prime}$. (e) N.A. (v) $5000 \mathrm{lb} . / \mathrm{ac}$. of F.Y.M. (vi) MTU-10. (vii) Irrigated. (ix) N.A. (x) 6.71"
2. TREATMENTS to 4. GENERAL :

Same as in expt. No. 58(MAE) type V conducted at Maruteru on page 124.
5. RESULTS :
(i) $3251 \mathrm{lb} . / \mathrm{ac}$. (ii) $381.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Only main effect of M is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | Control $=2471 \mathrm{lb} . / \mathrm{ac}$. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $P_{1}$ | $\mathrm{P}_{2}$ | Mean |
| $\mathrm{S}_{1}$ | 3522 | 3118 | 3299 | 3347 | 3279 | 3313 |
| $\mathrm{S}_{2}$ | 3554 | 2946 | 3456 | 3269 | 3369 | 3319 |
| Mean | 3538 | 3032 | 3378 | 3308 | 3324 | 3316 |
| $\mathrm{P}_{1}$ | 3614 | 2946 | 3365 |  |  |  |
| $\mathrm{P}_{2}$ | 3464 | 3118 | 3390 |  |  |  |


| S.E. of $S$ or $P$ marginal mean | $=89.9 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | ---: |
| S.E. of $M$ marginal mean | $=110.1 \mathrm{lb} / \mathrm{ac}$. |
| S.E. of body of $S \times M$ or $P \times M$ table | $=155.7 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $S \times P$ table | $=127.1 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of control mean | $=220.2 \mathrm{lb} . / \mathrm{ac}$. |

## Grop:- Paddy (Kharif). <br> Site :- M.A.E. Farm, Chalvai.

## Ref :- A.P. 56(MAE). <br> Type :- ‘ $\mathbf{M}$ '.

Objects :- Type VI (TCM) - To find out the residual value of $P$ on the yield of Paddy crop.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Red loam. (b) N.A. (iii) 2nd fortnight of July, 1956. (iv) (a) Ploughing (b) Transplanted. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) - (v) N.A. (vi) MTU-19. (vii) Irrigated. (viii) N.A. (ix) $55.0^{\prime \prime}$. (x) 2 nd fortnight of December, 1956.

TREATMENTS :

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| First year : | 0 | C | C | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ | 0 | 0 | 0 | 0 | $\mathrm{p}_{\frac{1}{2}}$ | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ |
| Second year : | 0 | C | C | 0 | 0 | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ | 0 | 0 | $\mathrm{p}_{\frac{1}{2}}$ | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ |
| Third year : | 0 | C | C | 0 | 0 | 0 | 0 | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ | $\mathrm{p}_{\frac{1}{2}}$ | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ |

Treatments are three year rotations, there being 11 distinct treatments, plots under treatment $\{(1)$ do not receive any fertilizer $N$ or $P$. Plots under the other ten treatments receive a basal application of N . One of the ten treatments consists of the application of basal dose of N only. This treatment which serves as control is applied to two plots in each block: Various symbols denote : $p_{1}=10 \mathrm{lb} . / \mathrm{ac} . ; \mathrm{p}_{1}=$ $120 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{p}_{2}=40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. DESIGN :
(i) R.B.D. (ii) (a).12. (b) N.A. (iii) 4. (iv) (a) $42^{\prime} \times 22^{\prime}$ (b) $40^{\prime} \times 20^{\prime}$. (v) $1^{\prime} \times 1^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Gall-fly attack-control measures N.A. (iii) Grain yield. (iv) (a) 1953-contd. (b) Yes.
(c) N.A. (v) to (vii) Nil.

## 5. RESULTS :

(i) 3480 lb .'ac. (ii) 432.0 lb .'ac. , iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | 0000 | cacc | $\mathrm{p}_{1} \mathrm{ccp}_{1}$ | $\mathrm{p}_{1} \mathrm{p}_{1} \mathrm{p}_{1} \mathrm{p}_{1}$ | $\mathrm{p}_{2} \mathrm{ccP}_{2}$ | $\mathrm{p}_{2} \mathrm{p}_{2} \mathrm{p}_{2} \mathrm{p}_{2}$ | $\mathrm{ccp}_{2} \mathrm{C}$ | $\mathrm{cpangc}^{\text {c }}$ | $\mathrm{cp}_{1} \mathrm{cc}$ | $\mathrm{ccp}_{1} \mathrm{c}$ | $\mathrm{p}_{\frac{1}{2}} \mathrm{p}_{\frac{1}{2}} \mathrm{p}_{\frac{1}{2}} \mathrm{p}_{\frac{1}{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2987 | 3274 | 3571 | 3581 | 3624 | 3621 | 3467 | 3466 | 3533 | 3713 | 3442 |
|  |  | mean | $\begin{aligned} & \text { ( } \mathrm{cccc} \text { ) } \\ & \text { (others) } \end{aligned}$ |  | $\begin{aligned} & =152 . \\ & =216.0 \end{aligned}$ | $\begin{aligned} & 7 \mathrm{lb} \cdot \mathrm{ac} . \\ & 0 \mathrm{ib} . / \mathrm{ac} . \end{aligned}$ |  |  |  |  |  |

Crop :- Paddy (Kharif).<br>Site :- M.A.E. Farm, Chalvai.

## Ref :- A P. 57(MAE). <br> Type :- ' $\mathbf{M}$ '.

Object :-Type VI (TCM:-To find out the residual value of $P$ on the yield of Paddy crop.

1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 56(MAE) type VI (TCM) conducted at Chalvai on page 127.
5. RESULTS :
(i) $2713 \mathrm{lb} . / \mathrm{ac}$. (ii) $351.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Only 'effect of control vs. others' is highly significant. (iv) Av. yield of grain in !b., ac.

| Truatment | 000 | ccc | $\mathrm{p}_{1} \mathrm{cc}$ | $\mathrm{pa}_{2} \mathrm{Cc}$ | $\mathrm{cp}_{1} \mathrm{C}$ | $\mathrm{cp}_{2} \mathrm{C}$ | $\mathrm{ccp}_{1}$ | $\mathrm{ccp}_{2}$ | $\mathrm{p}_{1} \mathrm{p}_{1} \mathrm{p}_{1}$ | $\mathrm{p}_{2} \mathrm{p}_{2} \mathrm{p}_{2}$ | $\mathrm{p}_{1} \mathrm{p}_{1} \mathrm{p}_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2238 | 2452 | 2904 | 2427 | 2691 | 2715 | 2863 | 3094 | 2913 | 2584 | 2962 |
| S.E.fmean (others) |  |  | S.E.'mean (ccc) |  |  |  | $=124.2 \mathrm{lb} . ; \mathrm{ac}$. |  |  |  |  |

```
Crop :- Paddy (Kharif).
Ref:- A.P. }59\mathrm{ (MAE).
Site :- M.A.E. Farm, Chalvai.
Type :- 'M'.
```

Object :-Type VI (TCM)-To study the residual value of phosphatic manure.
2. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 56 MAE) type V1 (TCM) conducted at Chalvai on page 127.
5. RESULTS:


```
Crop :- Paddy.
Site :- M.A.E. Farm, Chalvai.
Ref:- A.P. 54(TCM).
Site :- M.A.E. Farm, Chalvai.
Type :- ' \(\mathbf{M}^{\prime}\).
```

Object :-Type I $a$ )-To study the effect of dfferent sources and levels of $N$ and $P$ on non-acid soils for Paddy.

## 1. BASAL CONDITIONS :

(i) (a) to (c) N.A. (ii) (a) Red luam. (b) N.A. (iii) June-July. (iv) (a) N.A. (b) Transplanting. (c) (e) N.A. (v) N.A. (vi) N.A. 'vii) Irrigated. (viii) N.A. (ix) N.A. (x) Nov-Dec.
2. TREATMENTS :

All combinations of (1), (2) and (3) +3 extra treatments
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 sources of $\mathrm{N}: \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=\mathrm{A} / \mathrm{N}$ and $\mathrm{S}_{2}=$ Urea.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Triple Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.

3 extra treatments: $T_{1}=60 \mathrm{lb}$./ac. of $\mathrm{N}+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~T}_{2}=40 \mathrm{lb}$./ac. of $\mathrm{N}+80 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{T}_{3}=60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+80 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
N as $\mathrm{A} / \mathrm{S}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Triple Super.
3. DESIGN :
(i) $3^{3}$ confd. factorial with 3 plots for extra treatments in each block. (ii) (a) 12 plots/block and 3 blocks per replication. (b) N.A. (iii) 1 . (iv) (a) N.A. (b) $1 / 62.05 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Crop suffered from gall-fly infestation-control manures N.A. (iii) Yield data. (iv) (a) 1953-1956. (b) No. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) $4479 \mathrm{lb} . / \mathrm{ac}$. (ii) $637.7 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yie/d of grain in $\mathrm{lb} . / \mathrm{ac}$.
$\mathrm{T}_{1}=4938 \mathrm{lb} . / \mathrm{ac} ., \mathrm{T}_{2}=4771 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{T}_{3}=3499 \mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | Mean | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 4418 | 4747 | 4641 | 4602 | 4190 | 4906 | 4711 |
| $\mathrm{P}_{1}$ | 4525 | 4256 | 4565 | 4449 | 4186 | 4492 | 4667 |
| $\mathrm{P}_{2}$ | 4316 | 4532 | 4388 | 4412 | 3848 | 4276 | 5112 |
| Mean | 4420 | 4512 | 4531 | 4488 | 4075 | 4558 | 4830 |
| $\mathrm{S}_{1}$ | - | 4381 | 4100 |  |  |  | * |
| $\mathrm{S}_{2}$ | - | 4316 | 4619 |  |  |  |  |
| $\mathrm{S}_{3}$ | - | 4838 | 4875 |  |  |  | $'$ |

S.E. of any marginal mean in $\mathrm{P} \times \mathrm{N}$ or $\mathrm{P} \times \mathrm{S}$ table
S.E. of $S$ marginal mean in $S \times N$ table
S.E. of body of table or extra treatment mean
$=212.6 \mathrm{lb} . / \mathrm{ac}$.
$=260.3 \mathrm{lb} . / \mathrm{ac}$.
$=367.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy.
Site :- M.A.E. Farm, Chalvai.

Ref :- A.P. 54(TCM).
Type :- ' $\mathbf{M '}^{\prime}$ '

Object :-Type II-To study the most suitable time for application of N on Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Red loam. (b) N.A. (iii) June-July. (iv) (a) N.A. (b) Transplanting. (c) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) Nov.-Dec.
2. TREATMENTS.

All combinations of (1) and (2) +a control
(1) 2 sources of $\mathrm{N}=\mathrm{S}_{1}=\mathrm{A} / \mathrm{S}$ and $\mathrm{S}_{2}=$ Urea
(2) 7 times of application: $\mathrm{T}_{1}=$ before planting, $\mathrm{T}_{2}=$ at planting, $\mathrm{T}_{3}=$ at tillering, $\mathrm{T}_{4}=$ balf kefore planting and half at planting, $\mathrm{T}_{5}=$ half at planting and half at tillering, $\mathrm{T}_{6}=\frac{1}{3}$ before planting, $\frac{1}{3}$ at planting and $\frac{1}{3}$ a week before flowering and $\mathrm{T}_{7}=\frac{1}{3}$ at planting, $\frac{1}{3}$ at tillering and $\frac{1}{3}$ a week before flowering.
N was applied at 30 lb ./ac. with a basal dressing of $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. DESIGN:
(i) R.B.D.
(ii) (a) 15 .
(b) N.A.
(iii) 3. (iv) and (v) N.A.
(vi) Yes.
4. GENERAL:
(i) Normal. (ii) Crop suffered from gall-fly infestation-control manures N.A. (iii) Yield data. (iv) (a)

1953-1956. (b) No. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) $3365 \mathrm{lb} / / \mathrm{ac}$. (ii) $400.7 \mathrm{lb} / \mathrm{ac}$. (iii) None of the efferts is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Control $=3026 \mathrm{lb} . / \mathrm{ac}$.

|  | T | $\mathrm{T}_{2}$ | T3 | $\mathrm{T}_{4}$ | $\mathrm{T}_{5}$ | T6 | $\mathrm{T}_{7}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{1}$ | 3231 | 3517 | 3420 | 3232 | 3657 | 3267 | 3118 | 3349 |
| $S_{2}$ | 3457 | 3663 | 3241 | 2975 | 3059 | 3693 | 3644 | 3390 |
| Mean | 3344 | 3590 | 3330 | 3104 | 3358 | 3480 | 3381 | 3370 |


| S.E. of $T$ marginal mean | $=163.6 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- | ---: |
| S.E. of S marginal mean | $=87.4 \mathrm{lb} . / \mathrm{ac}$ |
| S.E. of body of table | $=231.4 \mathrm{lb} . / \mathrm{ac}$. |

## Crop :- Paddy. <br> Site :- M.A.E. Farm, Chalvai.

## Ref :- A.P. 54(TCM). <br> Type :- 'M'.

Object:-Type IV-To study the effect of sources, levels and method of application of $\mathbf{P}$.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) (a) Red loam.
(b) N.A. (iii) June-July. (iv) (a) N.A. (b)
(b)
Dec.
2. TREATMENTS:

All combinations of (1), (2) and (3) +2 controls (no phosphate)
(1) 2 sources of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{1}=$ Super and $\mathrm{S}_{2}=$ Ammo. Phos.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.
(3) 4 methods of placement: $M_{1}=$ Broadcasting at puddling time, $M_{2}=$ Drilling at puddling time, $\mathrm{M}_{3}=$ Dipping in mud. slush and $\mathrm{M}_{5}=$ Pellet method.
N was equalised to $30 \mathrm{lb} . / \mathrm{ac}$. by broadcasting $\mathrm{A} / \mathrm{S}$.
3. DESIGN :
(i) R.B.D.
(ii) (a) 18 .
(b) N.A.
(iii) 2.
(iv) (a) N.A.
(b) $1 / 73.2 \mathrm{ac}$.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Crop suffered from gall-fiy infestation-control measures N.A. (iii) Yield data. (iv) (a) 19i3-1956. (b) No. (c) N. A. (v) to (vii) Nil.
5. RESULTS:
(i) $3971 \mathrm{lb} . / \mathrm{ac}$. (ii) $370.3 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Control $=3618 \mathrm{lb} . / \mathrm{ac}$.

|  | M ${ }_{1}$ | $\mathrm{M}_{2}$ | $\mathrm{M}_{3}$ | $\mathrm{M}_{4}$ | Mean | $\mathrm{S}_{1}$ | $S_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{1}$ | 4035 | 4186 | 4002 | 4024 | 4062 | 4051 | 4074 |
| $\mathrm{P}_{2}$ | 4017 | 4126 | 3972 | 3754 | 3967 | 3969 | 3965 |
| Mean | 4026 | 4156 | 3987 | 3889 | 4015 | 4010 | 4020 |
| $\mathrm{S}_{1}$ | 4183 | 4239 | 3932 | 3686 |  |  |  |
| $\mathrm{S}_{2}$ | 3869 | 4072 | 4042 | 4093 |  |  |  |
| S.E. of $M$ marginal mean <br> S.E. of $P$ or $S$ marginal mean <br> S.E. of body of $\mathbf{P} \times \mathrm{M}$ or $\mathrm{S} \times \mathrm{M}$ table <br> S.E. of body of $P \times S$ table |  |  |  |  | $=185.2 \mathrm{lb} . \mathrm{ac}$. |  |  |
|  |  |  |  |  | $=130.9 \mathrm{lb} . / \mathrm{ac}$. |  |  |
|  |  |  |  |  | $=261.8 \mathrm{lb} / \mathrm{ac}$. |  |  |
|  |  |  |  |  | $=185.2 \mathrm{lb} / \mathrm{ac}$. |  |  |

Crop :- Paddy.
Ref :- A.P. 54 (TCM)
Site :- M.A.E. Farm, Chalvai.
Type :- ‘M'.

Objcct :-Type VI-To find out the residual effect of $\mathbf{P}$ on the yield of Paddy.

1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) (a) Red loam. (b) N.A. (iii) June-July. '(iv) (a) N.A. (b) Transplantịng (c) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) Nov.-Dec.
2. TREATMENTS:

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| First year : | 0 | C | C | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ | 0 | 0 | 0 | 0 | $\mathrm{p}_{\frac{1}{2}}$ | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ |
| Second year : | 0 | C | C | 0 | 0 | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ | 0 | 9 | $\mathrm{p}_{\frac{1}{2}}$ | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ |
| Third year : | 0 | C | C | 0 | 0 | 0 | 0 | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ | $\mathrm{p}_{\frac{1}{2}}$ | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ |

Treatments are three course rotations there being 9 distinct treatments. Plots under treatment 1 do not receive any fertilizer N or P . Plots under other treatments receive a basal application of N . One of the treatments consists of the application of basal dose of N only. This treatment which serves as control is applied to two plots in each block. Various symbols denote- $p_{12}=10 \mathrm{lb} . / \mathrm{ac} . \mathrm{p}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{p}_{2}=40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4. (iv) (a) $54^{\prime} \times 10^{\prime}$. (b) $52^{\prime} \times 8^{\prime}$. (v) $1^{\prime} \times 1^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Normal, (ii), Crop suffered from gall-fly ipfestation-control measures N.A. (iii) Yield data. (iv) (a) 1953-1956. (b) No. (c) N.A. (v) to (viii) Nil.
5. RESULTS .
(i) $803 \mathrm{lb} . / \mathrm{ac}$. (ii) 239.0 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | C0 | cc | $\mathrm{p}_{1} \mathrm{C}$ | $\mathrm{p}_{2} \mathrm{C}$ | $\mathrm{cp}_{1}$ | $\mathrm{cp}_{2}$ | $\mathrm{p}_{\frac{1}{2}} \mathrm{p}_{\frac{1}{2}}$ | $\mathrm{p}_{1} \mathrm{p}_{1}$ | $\mathrm{p}_{2} \mathbf{P}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 707 | 810 | 763 | 873 | 900 | 709 | 922 | 787 | 753 |
|  |  | (cc) |  | $\begin{aligned} & = \\ & = \end{aligned}$ | $1 \mathrm{~b} \cdot \mathrm{a}$ $\mathrm{lb} . / \mathrm{ad}$ |  |  |  |  |

## Crop :- Paddy. <br> Site :- M.A.E. Farm, Chalvai.

Ref -: A.P. 54(TCM).
Type :- ‘ $\mathbf{M}^{\prime}$.

Object :-Type IX—To study the effect of artificial fertilisers in conjunction with organic manures on Paddy:

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Red loam. (b) N.A. (iii) N.A. (iv) (a) N.A. (b) Transplanting. (c) to (e) N.A, (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) Nov.-Dec.

2: TREATMENTS :
All combinations of (1), (2) and (3)
(1) 3 levels of N as $\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super $=\mathrm{P}_{0}=0 \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(3) 3 levels of F.Y.M.: $F_{0}=0, F_{1}=10$ and $F_{2}=20$ C.L./ac.
3. DESIGN :
(i) $3^{3}$ confd. factorial. (ii) (a) 9 plots/block; 3 blocks/replication. (b) N.A. (iii) 1 (iv) (a) N.A. (b)
$1 / 62 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Crop suffered from gall-fly infestation-control measures N.A. (iii) Yield data. (iv) (a) 1953-1956. (b) No. (c) N.A. (v) to (vii) Nii.

## 5. RESULTS :

(i) $3084 \mathrm{lb} . / \mathrm{ac}$. (ii) $129.2 \mathrm{lb} / \mathrm{ac}$. (ii) Main effects of $\mathrm{N}, \mathrm{P}$ and i. teraction $\mathrm{P} \times \mathrm{F}$ are highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.


Crop :- Paddy (1st crop).
Centre :- Bodhan (c.f.).

Ref :- A.P. 54(TCM).
Type :- ' M '.

Object :-Type II-To study the effect of N and P on the yield of Paddy.

## 1. BASAL CONDITIONS :

(i) (a) to (c) N.A. (ii) Medium black. (iii) F.Y.M. in a few trials. (iv) N.A. (v) (a) N.A. (b) Transplanted. (c) to (e) N.A. (vi) June-July. (vii) Irrigated. (viii) N.A. (ix) 35". (x) Nov.-Dec.

## 2. TREATMENTS :

$0=$ Control.
$\mathrm{p}=20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$n_{1} p=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{n}_{2} \mathrm{p}=40 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$n_{1}^{\prime} p=20 \mathrm{lb} . / \mathrm{ac}$. of N as Urea $+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$n_{2} \mathrm{p}=40 \mathrm{lb}$./ac. of N as Urea +20 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as $S$ uper.
Fertilizers broadcast before puddling.
3. DESIGN :
(i) and (ii) Eleven community project centres, representing the entire paddy growing tract of the country were selected. From each community project centre, one development block was selected. Villages were selected at random from the selected block and a list of cultivators growing paddy for each selected village was prepared. From this list two cultivators were selected at random and one field each belonging to them was taken for trial. In each selected field an unreplicated trial was lard out. (iii) N.A. (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1953-1956. (b) No. (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :

| Treatment | 0 | p | $\mathrm{n}_{1} \mathrm{p}$ | $\mathrm{n}_{2} \mathrm{p}$ | $\mathrm{n}_{1}{ }^{\prime} \mathrm{p}$ | $\mathrm{n}_{2}{ }^{\prime} \mathrm{p}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2413 | 2724 | 2946 | 3076 | 3001 | 2944 |
|  |  |  |  |  |  |  |
|  | G.M. $=$ | $2851 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. | $=$ | $87.0 \mathrm{lb} . / \mathrm{ac}$. and no. of trials | $=22$. |  |

## Crop :- Paddy (2nd crop). <br> Centre :- Bodhan (c.f.). <br> Ref :- A.P. $\mathbf{5 4 ( T C M ) .}$ Type :- ' ${ }^{\prime}$ '.

Object:-Type II - To study the effect of N and P on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Medium black. (iii) F.Y.M. in a.few trials. (iv) N.A. (v) (a) N.A. (b) Transplanted. (c) to (e) N.A. (vi) January. (vii) Irrigated. (viii) N.A. (ix) $35^{\prime \prime}$. (x) May.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(TCM) type II conducted at Bodhan (lst crop) on page 132.
5. RESULTS :

| Treatment | 0 | $p$ | $n_{1} p$ | $\boldsymbol{n}_{2} p$ | $n_{1}^{\prime} \mathbf{p}$ | $n_{2}^{\prime} p$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1605 | 1885 | 2085 | 2262 | 2082 | 2129 |
|  |  |  |  |  |  |  |
|  | G.M. $=2008$ | $\mathrm{lb} . / \mathrm{ac}$. | S.E. | $=47.4 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=18$. |  |  |

Crop :- Paddy (2nd crop).
Centre :- Bodhan (c.f.).

Ref:- A.P. 55(TCM).
Type :- 'M'.

Object :--Type II-To study the effect of N and P on the yield of Paddy.

1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 54(TCM) conducted at Bodhan type II (2nd crop) above.
5. RESULTS :

| Treatment | 0 | p | $\mathrm{n}_{1} \mathrm{p}$ | $\mathrm{n}_{2} \mathrm{p}$ | $\mathrm{n}_{1}{ }^{\prime} \mathrm{p}$ | $\mathrm{n}_{2}{ }^{\prime} \mathrm{p}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2456 | 2730 | 2903 | 3147 | 2983 | 3138 |

$$
\text { G.M. }=2893 \mathrm{lb} . / \mathrm{ac} . ; \text { S.E. }=77.1 \mathrm{lb} . / \mathrm{ac} . \text { and no. of trials }=21 .
$$

## Crop :- Paddy (1st crop). <br> Ref :- A.P. 54(TCM). <br> Centre :- Bodhan (c.f.). <br> Type :- ‘M'.

Object:-Type III-To study the effect of different levels and sources of P along with N on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Medium black. (iii) F.Y.M. in a few trials. (iv) N.A. (v) (a) N.A. (b) Transplanted.
(c) to (e) N.A. (vi) June-July. (vii) Irrigated. (viii) N.A. (ix) $35^{\prime \prime}$. (x) Nov.-Dec.
2. TREATMENTS:
$0=$ Control.
$\mathrm{n}=20 \mathrm{lb} . / \mathrm{ac}$. of N as A/S.
$\mathrm{np}_{1}=20 \mathrm{ib} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$. $/ \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{np}_{2}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{np}_{1}{ }^{\prime \prime}=20 \mathrm{lb} / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Dical. Phos.
$\mathrm{np}_{2}{ }^{\prime \prime}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Dical. Phos.
Fertilizers broadcast before puddling.
3. DESIGN and 4. GENERAL :

Same as in expt. no. $54(\mathrm{TCM})$ type II conducted at Bodhan (1st crop) on page 132.
5. RESULTS :

| Treatment | 0 | n | $\mathrm{np}_{1}$ | $\mathrm{np}_{2}$ | $\mathrm{np}_{1}{ }^{\prime}$ | $\mathrm{np}_{2}{ }^{\prime \prime}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2390 | 2770 | 2901 | 3020 | 2955 | 3291 |

G.M. $=2888 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $=71.9 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=2.2$

## Crop :- Paddy (2nd crop).

Ref:- A.P. 54(TCM).
Centre :- Bodhan (c.f.).
Type :- ' ${ }^{\prime}$ '.
Object :-Type III-To study the effect of different levels and sources of $P$ along with $N$ on the yield of Paddy.

1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) Medium black. (iii, F.Y.M. in a few trials. (iv) N.A. (v) (a) N.A. (b) Transplanted. (c) to (e) N.A. (vi) January. (vii) Irrigated. (viii) N.A. (ix) $35^{\circ}$. (x) May.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(TCM) type III conducted at Bodhan (1st crop) on page 133.
5. RESULTS :

| Treatment | 0 | n | $\mathrm{np}_{1}$ | $\mathrm{np}_{2}$ | $\mathrm{np}_{1}{ }^{*}$ | $\mathrm{np}_{2}{ }^{*}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1620 | 1888 | 2015 | 2183 | 1997 | 2133 |

$$
\text { G.M. }=1973 \mathrm{lb} . / \mathrm{ac} . ; \text { S.E. }=61.6 \mathrm{lb} / \mathrm{ac} . \text { and no. of trials }=18 .
$$

```
Grop :- Paddy (2nd crop). Ref:- A.P. 55(TCM).
Centre :- Bodhan (c.f.). Type := 'M'.
```

Object:-Type III - To study the effect of different levels and sources of $P$ along with $N$ on the yield of Paddy.

1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 54(TCM) type III (2nd crop) conducted at Bodhan above.
5. RESULTS :

| Treatment | 0 | n | np ${ }_{1}$ | $\mathrm{np}{ }_{2}$ | $n p_{1}{ }^{\prime \prime}$ | $\mathrm{np}_{2}{ }^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2252 | 2679 | 2774 | 2979 | 2852 | 2908 |

```
Crop :- Paddy (1st crop).
Ref :- A.P. 54(TCM).
Centre :- Bodhan (c.f.).
Type :- 'M'.
```

Object :-Type IV-To study the effect of N, P and K on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Medium black. (iii) F.Y.M. in few trials. (iv) N.A. (v) (a) N.A. (b) Transplanted. (c) to (e) N.A. (vi) June-July. (vii) Irrigated. (viii) N.A. (ix) $35^{*}$. (x) Nov.—Dec.

## 2. TREATMENTS :

$0=$ Control.
n $\quad=20 \mathrm{lb}$./ac. of N as A/S.
$n p_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$n p_{2}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$n_{p_{1}} k_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +20 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul.
$n p_{1} k_{2}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +40 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul.
Fertilizers broadcast before puddling.
3. DESIGN and 4. GENERAL:

Same as in expt. no. 54 (TCM) (1st crop) type II conducted at Bodhan on page 132.

## 5. RESULTS

| Treatment | 0 | n | $\mathrm{np}_{1}$ | $\mathrm{np}_{\mathbf{2}}$ | $\mathrm{np}_{1} \mathrm{k}_{\mathbf{1}}$ | $\mathrm{np}_{\mathbf{1}} \mathrm{k}_{\mathbf{2}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2401 | 2700 | 2812 | 2805 | 3013 | 2856 |

G.M. $=2764 \mathrm{lb} . / \mathrm{ac}$. S.E. $=70.5 \mathrm{lb} . / \mathrm{ac}$. and no, of trials $=20$

## Crop :- Paddy (2nd crop). <br> Centre :- Bodhan (c.f.). <br> Ref :- A.P. 54(TCM). <br> Type :- ' $\mathbf{M}$ '.

- Object :-Type IV-To study the effect of N, P and K on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Medium black.
(iii) F.Y.M. in a few trials
(iv) (a) N.A.
(b) Transplanted.
(c) to (e) N.A. (vi) January. (vii) Irrigated. (viii) N.A., (ix) $35^{\prime \prime}$. (x) May.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(TCM) type IV conducted at Bodhan (1st crop) on page 134.
5. RESULTS :

| Treatment | 0 | n | $\mathrm{np}_{1}$ | $\mathrm{np}_{2}$ | $\mathrm{npk}_{1}$ | $\mathrm{np}_{1} \mathrm{k}_{\mathbf{2}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1754 | 1870 | 1988 | 2155 | 2143 | 2185 |

$$
\text { G.M. }=2016 \mathrm{lb} . / \mathrm{ac} . ; \text { S.E. }=50.6 \mathrm{lb} . / \mathrm{ac} . \text { and no. of trials }=19
$$

## Crop :- Paddy (2nd crop). Centre :- Bodhan (c.f.). <br> Ref :- A.P. 55(TCM). <br> Type :- ' $\mathbf{M}^{\prime}$.

Object :-Type IV-To study the effect of N, P and K on the yield of Paddy.

1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 54 (TCM) type IV (2nd crop) conducted at Bodhan above.
5. RESULTS:

| Treatment | 0 | n | $\mathrm{np}_{1}$ | $\mathrm{np}_{2}$ | $\mathrm{np}_{1} \mathrm{k}_{1}$ | $\mathrm{np}_{1} \mathrm{k}_{\mathbf{2}}$ |
| :--- | :---: | :---: | :---: | :---: | ---: | ---: |
| Av. yield | 2312 | 2575 | 2796 | 2865 | 2741 | 2789 |

$\sim$ G.M. $=2680 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $/$ mean $=73.6 \mathrm{lb} . / \mathrm{ac}$. and no. of trials N.A.

## Crop :- Paddy (1st crop). <br> Ref :- A.P. 54 (TCM). <br> Centre :- Samalkot (c.f.). <br> Type :- ' $\mathbf{M}$ '.

Object:-Type I-To study the effect of different sources and levels of N on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal alluvium. (iii) Compost or G.L. (iv)(a) N.A. (b) Transplanted. (c) to (e) N.A.
(vi) May-June. (vii) Irrigated. (viii) N.A. (ix) $44^{\prime \prime}$. (x) Oct.-Nov.
2. TREATMENTS:
$0=$ Control.
$\mathrm{n}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$.
$\mathrm{n}_{2}=40 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$.
$\mathrm{n}_{1}{ }^{\prime}=20 \mathrm{lb} . / \mathrm{ac}$. of N as Urea.
$\mathrm{n}_{2}{ }^{\prime}=40 \mathrm{lb} . / \mathrm{ac}$. of N as Urea.
All fertilizers applied before planting.
3. DESIGN :
(i) and (ii) Eleven community project centres representing the entire paddy growing tract of the country were selected. From each community project centre, one development block was selected. Villages were selected at random from the selected block and a list of cultivators growing paddy for each selected village was prepared. From this list two cultivators were selected at random and one field each belonging to them was taken for trial. In each selected field an unreplicated trial was laid out. (iii) N.A. (iv) Yes.

4 GENERAL :
(i) Normal.
(ii) Nil.
(iii) Grain yield
(iv) (a) 1953-1956
(b) :No. (c) N.A.
(v) N.A.
(vi) and
(vii) Nil.
5. RESULTS :

| Treatment | 0 | $n_{1}$ | $n_{2}$ | $n_{1}^{\prime}$ | $n_{2}^{\prime}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2611 | 2902 | 3132 | 2963 | 3099 |
|  |  |  |  |  |  |
|  | G.M. $=2941 \mathrm{lb} . / \mathrm{ac} .$, | S.E. $=34.6 \mathrm{lb} . / \mathrm{ac}$. | and no. of trials $=26$. |  |  |


| Crop :- Paddy (1st crop). | Ref :- A.P. 55(TCM). |
| :--- | :--- |
| Centre :- Samalkot (c.f.). | Type :- ‘M'. |

Object :-Type I-To study the effect of different sources and levels of N on yield of Paddy.

1. B ASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 54(TCM) type I conducted at Samalkot on page 135.
5. RESULTS:

| Treatment | 0 | $n_{1}$ | $n_{2}$ | $n_{1}{ }^{\prime}$ | $n_{2}{ }^{\prime}$ |
| :--- | :---: | :---: | :---: | :---: | ---: |
| Av. yield | 2812 | 3095 | 3291 | 3083 | 3193 |

$$
\text { G.M. }=3095 \mathrm{lb} . / \mathrm{ac} . ; \text { S.E. }=82.3 \mathrm{lb} . / \mathrm{ac} . \text { and no. of trials }=15 .
$$

```
Crop :- Paddy (1st crop).
Centre :- Samalkot (c.f.).
Ref:- A.P.54(TCM).
Type :- 'M'.
```

Object :-Type II-To study the effect of $\mathbf{N}$ and P on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Coastal alluvium.
(iii) Compost or G.
L. (iv) N.A. (v) (a) N. $\dot{A}$.
(b) Transplanted.
(c) to (e) N.A. (vi) May-June. (vii) Irrigated. (viii) N.A. (ix) $44^{*}$. (x) Oct.-Nov.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(TCM) type II condncted at Bodhan (1st crop) on page 132.
5. RESULTS :

| Treatment | 0 | p | $\mathrm{n}_{1} \mathrm{p}$ | $\mathrm{n}_{2} \mathrm{p}$ | $\mathrm{n}_{1}{ }^{\prime} \mathrm{p}$ | $\mathrm{n}_{2}{ }^{\prime} \mathrm{p}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2608 | 2829 | 3154 | 3306 | 3146 | 3406 |

$$
\text { G.M. }=3075 \mathrm{lb} . / \mathrm{ac} ., \text { S.E. }=51.8 \mathrm{lb} . / \mathrm{ac} . \text { and no. of trials }=26 .
$$

| Crop :- Paddy (1st crop). | Ref :- A.P. 55(TCM). |
| :--- | :--- |
| Centre :- Samalkot (c.f.). | Type :- ' $\mathbf{M}^{\prime}$. |

Object :-Type II-To study the effect of $\mathbf{N}$ and $\mathbf{P}$ on the yield of Paddy.

1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 54(TCM) type II conducted at Samalkot above.
5. RESULTS:

| Treatment | 0 | p | $\mathrm{n}_{1} \mathrm{p}$ | $\mathrm{n}_{2} \mathrm{p}$ | $\mathrm{n}_{1}^{\prime} \mathrm{p}$ | $\mathrm{n}_{2} \mathrm{p}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2890 | 2997 | 3305 | 3548 | 3255 | 3543 |

G.M. $=3256 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $=86.4 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=15$.

## Crop :- Paddy(1st crop). <br> Centre :- Samalkot (c.f.). <br> Ref :- A.P. 55(TCM). <br> Type :- ' $M$ '.

Object :-Type III-To study the effect of different levels and sources of P along with N on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal alluvium. (iii) Compost or G.L. (iv) N.A. (v) (a) N.A. (b) Transplanted.
(c) to (e) N.A. (vi) May-June, 1955. (vii) Irrigated. (viii) N.A. (ix) $44^{\prime \prime} . ~(x)$ Oct.-Nov. 1955.
2. TREATMENTS :
$0=$ Control.
$\mathrm{n} .=20 \mathrm{lb} / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$.
$\mathrm{np}_{1}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{np}_{2}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$n p_{1}{ }^{\prime \prime}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Dical. Phos.
$\mathrm{np}_{2}{ }^{\prime \prime}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Dical. Phos.
All fertilizers applied before planting.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 54(TCM) type I conducted at Samalkot on page 135.
5. RESULTS :

| Treatment | 0 | n | $\mathrm{np}_{1}$ | $\mathrm{np}_{2}$ | $\mathrm{np}_{1}{ }^{\prime \prime}$ | $\mathrm{np}_{2}{ }^{\prime \prime}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2880 | 3216 | 3605 | 3675 | 3541 | 3571 |

Crop :- Paddy (1st crop).
Centre :- Samalkot (c.f.).

Ref:- A.P. 55(TCM).
Type :- ‘M'.

Object :-Type IV--To study the effect of N, P and K on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal alluvium. (iii) Compost or G.L. (iv) N.A. (v) (a) N.A. (b) Transplanted.
(c) to (e) N.A. (vi) May-June, 1955. (vii) Irrigated. (viii) N.A. (ix) $44^{\prime \prime}$. (x) Oct-Nov. 1955.
2. TREATMENTS :

## $0=$ Control.

$\mathrm{n}=20 \mathrm{lb}$. /ac. of N as $\mathrm{A} / \mathrm{S}$.
$n p_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$n p_{2}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{np}_{1} \mathrm{k}_{1}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +20 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. $\mathrm{np}_{1} \mathrm{k}_{2}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +40 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. All fertilizers applied before planting.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 54(TCM) type I conducted at Samalkot on page 135.
5. RESULTS:

| Treatment | 0 | n | $\mathrm{np}_{1}$ | $\mathrm{np} \mathrm{m}_{2}$ | $n p_{1} k_{1}$ | $\mathrm{np}_{1} \mathrm{k}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2706 | 3048 | 3339 | 3235 | 3355 | 3352 |

Crop :- Paddy (Kharif).
Centre :- Chittoor (c.f.).

## Ref :- A.P. 59(SFT). <br> Type :- ${ }^{\mathbf{C}} \mathbf{M}$ '.

Object:-Type A-To study the response of Paddy to levels of $\mathrm{N}, \mathrm{P}$ and K , applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and black. (iii) Nil. (iv) June-July 1959. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) Octobor 1959.
2. TREATMENTS :
$0=$ Control (no manure).
n $=20 \mathrm{lb} / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$.
p $=20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{np}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$k=20 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul.
$\mathrm{nk}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul.
$\mathrm{pk}=20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +20 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul.
$n p k=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as $\mathrm{Super}+20 \mathrm{lb}$. /ac. of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Pul.
3. DESIGN:
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circlefthara is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type $A$ and the other half of type $B$ on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosphate application are studied on type $C$ trials in two out of the four zones.in cach district every year. The experiments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) $1 / 40 \mathrm{ac}$. (b) $1 / 80 \mathrm{ac}$. (iv) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (ii) Grain yield. (iv) (a) 1958 -contd. (b) No. (c) N.A. (v) As per design. (vi) and (vii) Nil.
5. RESULTS:

| Effect | n | p | k | S.E. | np | nk | pk | npk | S.E. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. response | 510 | 296 | 165 | $32.9^{,}$ | 58 | 33 | -8 | 41 | 21.4 |
|  |  |  |  |  |  |  |  |  |  |
|  | Control yield | $=$ | $2732 \mathrm{lb} . / \mathrm{ac}$. and no. of trials | $=$ | 8. |  |  |  |  |

Crop :- Paddy (Khaif).
Ref:- A.P. 59(SFT)
Centre :- Guntur (c.f.).

Object:-Type A-To study the response of Paddy to levels of $N, P$ and $K$ applied individually and in combinations.

1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 59(SFT) type A above conducted at chittoor.

3 RESULTS:

| Effect | n | p | k | S.E. | np | nk | pk | npk | S.E. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. response | 115 | 115 | 148 | 64.2 | -41 | -16 | 8 | 115 | 50.2 |
|  | Control yield $=2164 \mathrm{lb} . / \mathrm{ac}$. no. of |  |  |  |  |  |  |  |  |

$$
\begin{array}{ll}
\text { Crop :- Paddy }(R a b i) . & \text { Ref :- A.P. 58(SFT). } \\
\text { Centre :- Hyderabad (c.f.). } & \text { Type :-' ‘M'. }
\end{array}
$$

Object:-Type A-To study the response of Paddy to levels of $N, P$ and $K$ applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red. (iii) Nil. (iv) December 1958. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N:A. (x) April 1959.
2. TREATMENTS to 4. GENERAL:

Same as in experiment No. 59(SFI) type A on page 138 conducted at chittoor.
5. RESULTS :

| Effect | n | p | k | S.E. | np | nk | pk | npk | S.E. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av, respoase | 165 | 49 | 91 | 28.8 | -91 | 0 | -16 | 25 | 26.3 |
|  | Control yield $=1913 \mathrm{lb} . / \mathrm{ac}$, and no. of trials $=14$. |  |  |  |  |  |  |  |  |

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif, Rabi). } & \text { Ref:- A.P. } 59(\text { SFT }) . \\
\text { Centre :- Hyderabad (c.f.). } & \text { Type :- } ‘ \mathbf{M} .
\end{array}
$$

Object:-Type A-To study the response of Paddy to levels of N, P and K applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and black (iii) Nil. (iv). Kharif-June-July 1959. Rabi-December 1959. (v). to (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) Kharif-October 1959. Rabi-March-April 1960.
2. TREATMENTS to 4. GENERAL:

Same as in expt. No, 59(SFT) type A on page 138 conducted at Chittoor.
5. RESULTS:


Control yield : $=2304 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=11$.

## Crop :- Paddy (Rabi). <br> Centre :- Karim Nagar (c.f.).

Object:-Type A-To study the response of Paddy to levels of $\mathrm{N}, \mathrm{P}$ and K applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to (c) iN.A. (ii) Red. (iii) Nil. (iv' December 1958. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix, N.A. (x) April 1959.
2. TREATMENTS to 4. GENERAL :

Same as in experiment No. 59(SFT) type A on page 138 conducted at chittoor.
5. RESULTS :

| Effect | n | p | k | S.E. | np | nk | pk | npk | $\mathrm{SE}$. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. response | 527 | 461 | 181 | $60 \cdot 1$ | 49 | 33 | -8 | 16 | $65 \cdot 0$ |

Control yield $=1819 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=15$.

```
Grop :- Paddy (Rabi).
Centre :- KarimNagar (c.f.).
Ref :- A.P. 59(SFT)
Type :- 'M'.
```

Object :-Type A-To study the response of Paddy to levels of N, P and K applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red. (iii) Nil. (iv) December 1959. (v) and (vi) N.A. (vii) Irrigated (viii) and (ix; N.A. (x) April 1960.
2. TREATMENTS to 4. GENERAL:

Same as in experiment No. 59'SFT) type A on page 138 conducted at chittoor.
5. RESULTS:

| Effect | n | p | k | S.E. | np | nk | pk | npk | S.E. |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| Av. response | 165 | 225 | 25 | 43.6 | 58 | -25 | 0 | 49 | $35.4^{\prime}$ |

$$
\text { Control yield }=1744 \mathrm{lb} . / \mathrm{ac} . \text { and no. of trials }=19
$$

```
Crop :- Paddy (Kharif).
Ref :- A.P. 59(SFT).
Centre :- Krishna Dt. (c.f.).
Type :- ' \(\mathbf{M}^{\prime}\).
```

Object:-Type A-To study the response of paddy to levels of $N, P$ and $K$ applied individually and in combinations.

## 1. BASAL CONDITIONS:

(i) 'a' to 'c) N.A. (ii) Black and coastal. (iii) Nil. (iv) June-July. (v) and (vi) N.A. (vii) Irrigated. ${ }^{\prime}$ viii) and (ix' N.A. (x) Ostober, 1959.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59 (SFT) type A on page 138 conducted at Chittoor.
5. RESULTS :


```
Crop :- Paddy (Rabi).
Centre :- Mahboobnagar (c.f.).
Ref :- A.P. 58(SFT).
Type:- 'M'.
```

Object:-Type A-To study the response of paddy to levels of $N, P$ and $K$ applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red. (iii) Nil. (iv) December, 1958. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) April, 1959.
2. TREATMENTS to. 4. GENERAL:

Same as in expt. no. 59 (SFT) type A on page 138 conducted at Chittoor.
5. RESULTS:

| Effect | n | p | k | S.E. | np | nk | pk | npk | S.E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. response | 205 | 74 | 58 | 14.0 | -33 | -25 | 8 | 0 | 11.5 |
|  | Control mean $=2074 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=24$. |  |  |  |  |  |  |  |  |

Crop :- Paddy (Rabi).
Centre :- Mabboobnagar (c.f.).
Object :--Type A-To study the response of paddy to levels of N, P and K applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to ic) N.A. (ii) Red. (iii) Nil. (iv) (a) December, 1959. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) April, 1960.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59(SFT) type A on page 138 conducted at Chittoor.
5. RESULTS :

| Effect | n | p | k | S.E. | np | nk | pk | npk | S.E. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. response | 296 | 247 | 16 | 65.0 | -58 | --16 | -49 | -8 | 64.2 |

$$
\begin{array}{ll}
\text { Crop :- Paddy }(R a b i) . & \text { Ref }:- \text { A.P. } 58(\text { SFT ). } \\
\text { Centre : }, \text { Nellore (c.f. }) & \text { Type :- 'M'. }
\end{array}
$$

Object:-Type A-To study the response of paddy to levels of $N, P$ and $K$ applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red. (iii) Nil. (iv) December, 1958. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) April, 1959.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. $59(\mathrm{SFT})$ type A on page 138 conducted at Chittoor.
5. RESULTS:


```
Crop :- Paddy (Kharif, Rabi).
Centre :- Nellore (c.f.).
Ref:- A.P. 59(SFT).
Type :- 'M'.
```

Object :-Type A-To study the response of Paddy to levels of $\mathrm{N}, \mathrm{P}$ and K applied individuaily and in combinations.

1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) Deep black and coastal. (iii) Nil. (iv) Kharif: June-July 1959, and Rabi December, 1959. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) Kharif in October, 1959 while Rabi in April, 1960.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59(SFT) type A on page 138 conducted at Chittoor.
5. RESULTS:


```
Crop :- Paddy (Kharif).
Ref :- A.P. 59(SFT).
Centre :- Srikakulam (c.f.).
Type :- ‘'M’.
```

Object : - Type A-To study the response of Paddy to levels of $N, P$ and $K$ applied individually and in combinations.

## 1. BASAL CONDITIONS :

(i) (a) to (c) N.A. (ii) Red and coastal. (iii) Nil. (iv) June-July, 1959. (v) and (vi) N.A. (vii, Irrigated. (viii) and (ix) N.A. (x) October, 1959.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59(SFT) type A on page 133 conducted at Chittoor.
5. RESULTS:

| Effect | n | p | k | S.E. | np | nk | pk | npk | S.E. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. response | 304 | 173 | 107 | 21.4 | 33 | -16 | 49 | 58 | 156 |
|  | Control yield $=1728 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=19$. |  |  |  |  |  |  |  |  |


| Crop :- Paddy (Khorif). | Ref :- A.P. 59(SFT). |
| :--- | :--- |
| Centre :- Visakhapatnam (c.f.). | Type:- 'M'. |

Object:-Type A-To study the response of Paddy to levels of $N, P$ and $K$ applied individually and in combinations.

1. BASAL CONDITIONS:
(i) (a) to 'c> N.A. (ii) Coastal. (iii) Nil. (iv’ June-July, 1959. (v) and (vi' N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) October, 1959.
2. TREATMFNTS to 4. GENERAL :

Same as in expt no. 59 (SFT) type A on page 138 conducted at Cbittoor.
5. RESULTS :

| Effect | n | p | k | S.E. | np | nk | pk | npk | S.E. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. response | 156 | 66 | 66 | 18.1 | -25 | -16 | -8 | 25 | 11.5 |

Control yield $=2362 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=19$.

```
Grop :- Paddy (Rabi).
Centre':- Warangal (c.f.).
```

Ref :- A.P. 58(SFT).
Type :- 'M'.

Object:-Type A-To study the response of Paddy to different levels of $N, P$ and $K$ applied individually and in combinations.

## BASAL CONDITIONS :

(i) (a) to (c) N.A. (ii) Red soil. (iii) Nil. (iv) December, 1958. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) April, 1959.
2. TREATMENTS to 4. GENERAL:

Sarne as in expt. no. 59(SFT) type A on page 138 conducted at Chittoor. I
5. RESULTS :

| Effect | n | p | k | S.E. | np | nk | pk | npk | S.E. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av: response | $\bigcirc 197$ | 197 | 58 | 29.6 | 25 | 25 | 8 | 41 | 24.7 |
|  | Control yield $=1284 \mathrm{lb}$./ac, and no. of trials $=20$. |  |  |  |  |  |  |  |  |

```
Crop :- Paddy (Kharif). Ref :- A.P. 59(SFT).
Gentre :- Warangal (c.f.). Type :- 'M'.
```

Object :-Type A-To study the response of Paddy to different levels of $\mathrm{N}, \mathrm{P}$ and K , applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and black soils. (iii) Nil. (iv) June-July, 1956. (v) and (vi) Nil. (vii) Irrigated. (viii) and (ix) N.A. (x) October, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59 (SFT) type A on page 138 conducted at Chittoor.
5. RESU'LTS :

| Effect | n | p | k | S.E. | np | nk | pk | npk | S.E. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. response | 206 | 82 | 25 | 49.4 | 74 | 49 | 8 | 99 | 63.4 |
| 1 | Control yield $=2798 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=12$. |  |  |  |  |  |  |  |  |

Crop :- Paddy (Kharif).
Centre :- Chittoor (c.f.).

## Ref:- A.P. 59(SFT). <br> Type :- ' ${ }^{\mathbf{M} \text { '. }}$

Object: - Type B-To investigate thè relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS ;
(i) (a) to (c) N.A. (ii) Red and'black soils. (iii) Nil. (iv) June-July, 1959. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) October, 1959.
2. TREATMENTS :
$0=$ Control ino manure).
$n_{1}=20$.b./ac. of $N$ as $A, S$.
$\mathrm{n}_{2}=4 \mathrm{lb}$.'ac. of N as $\mathrm{A}, \mathrm{S}$.
$\mathrm{n}_{1}^{\prime}=20 \mathrm{lb}$. ac . of N as Ur:a.
$\mathrm{n}_{\mathbf{2}^{\prime}}=40 \mathrm{lb}$. ac. of N as L'rea.
$\mathrm{n}_{1}{ }^{\prime \prime}=20 \mathrm{lo} . \mathrm{fac}$. of N as $\mathrm{A}, \mathrm{S}, \mathrm{N}$.
$\mathrm{n}_{2}{ }^{\prime \prime}=40 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogenous zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle thana is changed ence in two years within the same zone. Each fied assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal. 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type $A$ and the other haif of type B on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosphate application are studied on type $C$ trials in two out of the four zones in each district every year. The experiments are laid out in randomly loctated fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a; $1,40 \mathrm{ac}$. (b) 1 !' 60 ac . (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) $1958-c o n t d . \quad$ (b) No. (c) N.A. (v) As per Cesign. (vi) and (vis) Nil.
5. RESLLTS:

| Treatment | 0 | $\mathrm{n}_{1}$ | $n_{2}$ | $\mathrm{n}_{1}{ }^{\prime}$ | $\mathrm{n}_{2}{ }^{\prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | n. ${ }^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2617 | 2913 | 3407 | 2962 | 3505 | 2938 | $3 \div 31$ |

$$
\begin{aligned}
& \text { Crop :- Paddy } \quad R a b i) . \\
& \text { Centre :- Hyderabad (c.f.). }
\end{aligned}
$$

Ref :- A.P. 58(SFT).
Type :- ' $\mathbf{M '}^{\prime}$.

Object:-Type E -To investigate the relative efficiency of different nitrogenous fertioizers at diffurent doses.

## 1. BASAL CONDITIONS :

(i) (a) to (c) N.A. (ii) Red soil. (iii) Nil. (iv) December, 1958. (v) and (vi, N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) April, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59, SFI) type B on page 143 vondated at Ca ttoor,
5. RESULTS:

| Treatment | 0 | $\mathrm{n}_{1}$ | $\mathrm{n}_{2}$ | $\mathrm{n}_{1}^{\prime}$ | $\mathrm{n}_{2}^{\prime}$ | $\mathrm{n}_{1}^{\prime \prime}$ | $\mathrm{n}_{2}^{\prime \prime}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| Av. yield | 2757 | 2987 | 3152 | 2872 | 2913 | 2929 | 3020 |
|  | G.M. | $=$ | $2947 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. | $=$ | $41.3 \mathrm{lb} . / \mathrm{ac}$. and no. of tria's l | $=12$. |  |

[^7]Object:-Type B-To investigate the relative effciency of different nitrogenous fertilizers at differendoses.

1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 59(SFT) type B on page 143 conducted at Chittoor.
5. RESULTS :

| Treatment | 0 | $\mathrm{n}_{1}$ | $\mathrm{n}_{2}$ | $\mathrm{n}_{1}{ }^{\prime}$ | $\mathrm{n}_{2}{ }^{\prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | $\mathrm{n}_{2}{ }^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2065 | 2419 | 2650 | 2312 | 2452 | 2345 | 2419 |
| = $2380 \mathrm{lb} . / \mathrm{ac}$. S.E. $=59.3 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=12$. |  |  |  |  |  |  |  |


| Crop :- Paddy (Kharif and Rabi). | Ref :- A.P. 59(SFT). |
| :--- | :--- |
| Centre :- Hyderabad (c.f.). | Type :- ‘M’. |

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red soil. (iii) Nil. (iv) Kharif: June-July, 1959 and Rabi : December, 1959. (v) and
(vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) Kharif in October, 1959 and Rabi in April, 1960.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59(SFI) type B on page 143 conducted at Chittoor.
5. RESULTS:


## Crop:- Paddy (Ra $\dot{b} i)$. <br> Centre :- Karimnagar (c.f.).

Ref :- A.P. 58(SFT).
Type: : ‘M?

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS :
(i) (a) to (c) N A. (ii) Red soil. (iii) Nil. (iv) December, 1958. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) April, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in experiment no. 59(SFT) type B on page 143 conducted at Chittoor.
!
5. RESULTS :

| Treatment | 0 | $\mathrm{n}_{1}$ | $\mathrm{n}_{2}$ | $\mathrm{n}_{1}{ }^{\prime}$ | $\mathrm{n}_{2}{ }^{\prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | $\mathrm{n}_{2}{ }^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1613 | 2065 | 2419 | 2016 | 2765 | 2238 | 2592 |


| Grop :- Paddy $(R a b i)$. | Ref :- A.P. 59(SFT). |
| :--- | :--- |
| Centre :- Karimnagar (c.f.). | Type :- ©M'. |

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and black soils. (iii) Nil. (iv) December, 1959. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix') N.A. (x) April 1060.
2. TREATMENTS :
3. Control (no manure).
4. $20 \mathrm{lb} / \mathrm{ac}$. of $\dot{\mathrm{N}}$ as $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
5. $20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$.
6. $40 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
7. $40 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$.
8. 20 lb ., ac . of N as $\mathrm{C} / \mathrm{A} / \mathrm{N}$.
9. 20 lb ./ac. of N as Urea.
10. 40 lb ./ac. of N as $\mathrm{C} / \mathrm{A} / \mathrm{N}$.
11. 40 lb ./ac. of N as Urea.
12. DESIGN and 4. GENERAL :

Same as in experiment no. 59 (SFT) type B on page 143 conducted at Chittoor.
5. RESULTS:

| Treatment | 0 | $\mathrm{n}_{1}$ | $\mathrm{n}_{2}$ | $\mathrm{n}_{1}{ }^{\prime}$ | $\mathrm{n}_{2}^{\prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | $\mathrm{n}_{2}{ }^{\prime \prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | $\mathrm{n}_{2}^{\prime \prime \prime}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1991 | 2156 | 2485 | 2205 | 2378 | 2271 | 2320 | 2156 | 2469 |

G.M. $=2270 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $=51.1 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=19$.

```
Crop :- Paddy (Kharif).
Centre :- Krishna Dt. (c.f.).
Ref :- A.P. \({ }^{59(S F T)}\).
Type :- 'M'.
```

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS :
(i) (a) to(c) N.A. (ii) Black and coastal soils. (iii) Nil. (iv) June-July, 1959. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) October, 1959.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59(SFT) type B on page 143 conducted at Chittoor.
5. RESULTS :

| Treatment | 0 | $\mathrm{n}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{n}_{1}{ }^{\prime}$ | $\mathrm{D}_{2}{ }^{\prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | $\mathrm{n}_{2}{ }^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2288 | 2485 | 2608 | 3403 | 2658 | 2444 | 2526 |

```
Grop :- Paddy (Rabi).
Ref:- A.P. 58(SFT).
Centre :- Mahboobnagar (c.f.).
Type :- ‘M'.
```

Object :-Type B-To investigate the relative effisiency of different nitrogenous fertilizer at different doses.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red soil. (iii) Nil. (iv) December, 1958. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) April, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in experiment no. 59 (SFT) type B on page 143 conducted at Chittoor.
5. RESULTS :

| Treatment | 0 | $\mathrm{n}_{1}$ | $\mathrm{n}_{2}$ | $\mathrm{n}_{1}{ }^{\prime}$ | $\mathrm{n}_{2}{ }^{\prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | $\mathrm{n}_{2}{ }^{\prime \prime}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2246 | 2436 | 2633 | 2419 | 2551 | 2452 | 2625 |

G.M. $=2480 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $=20.9 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=24$.

Crop :- Paddy (Rabi).
Centre :- Mahboobnagar (c.f.).

Ref :- A.P. 59(SFT).
Type :- 'M'.

Object:-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Deep black soil. (iii) N.A. (iv) December, 1959. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) April, 1960.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59(SFT) type B on page 143 conducted at Chittoor.
5. RESULTS :

| Treatment | 0 | $\mathrm{n}_{1}$ | $\mathrm{n}_{2}$ | $\mathrm{n}_{1}{ }^{\prime}$ | $\mathrm{n}_{2}{ }^{\prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | $\mathrm{n}_{2}{ }^{\prime \prime}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2041 | 2329 | 2501 | .2419 | 2674 | 2353 | 2592 |

G.M. $=2416 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $=79.7 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=6$.
Crop :- Paddy (Rabi).
Ref:- A.P. 58(SFT).
Centre :- Nellore (c.f.).
Type :- ' $\mathbf{M}$ '.

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red soil. (iii) Nil. (iv) December, 1958. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) April 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. $59(\mathrm{SFT})$ type B on page 143 conducted at Chittoor.
$\cdot \stackrel{+}{1}$
5. RESULTS :

| Treatment | 0 | $\mathrm{n}_{1}$ | $\mathrm{n}_{2}$ | $\mathrm{n}_{1}{ }^{\prime}$ | $\mathrm{n}_{2}{ }^{\prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | $\mathrm{n}_{2}{ }^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1473 . | 1843 | 2065 | 1851 | 2222 | 1819 | 2238 |
|  | G.M. | 1930 | ac. ; | $=3$ | ./ac. | of tr | $=16$ |

Crop :- Paddy (Kharif and Rabi).
Ref:- A.P. 59(SFT).
Centre :- Nellore (c.f.).
Type :- 'M'.

Object:-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red soil. (iii) Nil. (iv) Kharif : June-July, 1959 ; Rabi: December, 1959. (v) and (vi) N.A., (vii) Irrigated. (viii) and (ix) N.A: (x) Kharif: October, 1959 ; Rabi: April, 1960.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59 (SFT) type B on page 143 conducted at Chittoor.
5. RESULTS:


```
Crop :- Paddy (Kharif).
Ref :- A.P. 59(SFT).
Centre :- Srikakulam (c.f.).
Type :- ' \(\mathbf{M}\) '
```

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and coastal soils. (iii) Nil. (iv) June-July, 1959. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) October, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59 (SFT) type B on page 143 conducted at Chittoor.
5. RESULTS :

| Treatment | 0 | $\mathrm{n}_{1}$ | $\mathrm{n}_{2}$ | $\mathrm{n}_{1}{ }^{\prime}$ | $\mathrm{n}_{2}{ }^{\prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | $\mathrm{n}_{2}{ }^{\prime \prime}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 1514 | 1769 | 2041 | 1769 | 1983 | 1802 | 1991 |
|  | G.M. | $=$ | $1838 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. | $=$ | $40.1 \mathrm{lb} . / \mathrm{ac}$. and no. of trials | $=18$. |  |

## Crop :- Paddy (Kharif). <br> Centre :- Visakhapatnam (c.f.). <br> Ref :- A.P. 59(SFT). Type :- 'M'.

Object :—Type B -To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A.' (ii) Coastal soil. (iii) Nil. (iv) June-July, 1959. (v) and (vi) N.A. (vii) Irrigated. (viii', and (ix) N.A. (x) October, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59(SFT) type B on page 143 conducted at Chittoor.
5. RESULTS :

| Treatment | 0 | $\mathrm{n}_{1}$ | $\mathrm{n}_{2}$ | $\mathrm{n}_{1}{ }^{\prime}$ | $\mathrm{n}_{2}{ }^{\prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | $\mathrm{n}_{2}{ }^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2246 | 2518 | 2789 | 2501 | 2567 | 2510 | 2600 |

```
Crop :- Paddy (Rabi).
Ref:- A.P. 58(SFT).
Centre :- Warangal (c.f.).
Type :- ' \(\mathbf{M}\) '.
```

Object :-Type B-To investigate the reletive efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 59(SFT) type B on page 143 conducted at Chittoor.
5. RESULTS:

| Treatment | 0 | $n_{1}$ | $n_{2}$ | $n_{1}^{\prime}$ | $n_{2}^{\prime}$ | $n_{1}{ }^{\prime \prime}$ | $n_{2}{ }^{\prime \prime}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 963 | 1234 | 1382 | 1201 | 1259 | 1259 | 1292 |
|  | G.M. | $=$ | $1227 \mathrm{lb} . / \mathrm{ac}$. | S.E. | $=$ | $41.3 \mathrm{lb} . / \mathrm{ac}$. and no. of trials | $=12$. |

```
Crop :- Paddy (Kharif).
Ref :- A.P. 59(SFT).
Centre :- Warangal (c.f.).
Type :- \({ }^{6} \mathbf{M}\).
```

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 59 (SFT) type B on page 143 conducted at Chittoor.
5. RESULTS:

| Treatment | 0 | $\mathrm{n}_{1}$ | $\mathrm{n}_{2}$ | $\mathrm{n}_{1}{ }^{\prime}$ | $\mathrm{n}_{2}{ }^{\prime}$ | $\mathrm{n}_{1}{ }^{\prime \prime}$ | $\mathrm{n}_{2}{ }^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Av. yield | 2115 | 2279 | 2403 | 2197 | 2271 | 2320 | 2370 |
|  | G.M. $=2279 \mathrm{lb} . / \mathrm{ac} . ; \mathrm{S} . \mathrm{E} .=45.4 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=12$ |  |  |  |  |  |  |

Crop:- Paddy (Sarava).
Site :- Agri. Res. Stn., Maruteru.

## Ref :- A.P. 55(62). <br> Type :- 'MV'.

Object:-To find out the requirements of organic manures for different varieties of Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy black clay. (b) Refer soil analysis Maruteru. (iii) 31.5.1955/20.7.1955. (iv) (a) Puddling thrice and levelled. (b) Bulk planting. (c) to (e) N.A. (vi) 60 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super before transplanting and $45 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$ top-dressed. (vi) As per treatments. (vii) Irrigated. (viii) Weeding twice. (ix) $43.61^{\prime \prime}$. (x) 21.11.1955/27.11.1955.
2. TREATMENTS :

Main-plot treatments:

* All combinations of (1) and (2) + a control ( $\mathrm{N}_{0} \mathrm{~S}_{0} \cdot$ no manure)
(1) 3 sources of $\mathrm{N}: \mathrm{S}_{1}=$ F.Y.M., $\mathrm{S}_{2}=$ G.M. and $\mathrm{S}_{3}=$ Compost.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=\mathrm{N}, \mathrm{N}_{2}=2 \mathrm{~N}$ and $\mathrm{N}_{3}=3 \mathrm{~N}$.

Sub-plot treatments :
2 varieties: $\mathrm{V}_{1}=$ MTU- 1 (medium) and $\mathrm{V}_{2}=$ MTU- 10 (late).
N applied at Nitrogen equivalent of 500 lb ./ac. of $\mathrm{F}: \mathrm{Y} . \mathrm{M}$.
3. DESIGN :
(i) Split-plot.' (ii) (a) 10 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) and (b) $38^{\prime} \times 12^{\prime}$. (v) $1 \frac{1}{2}^{\prime}$ between plots. (vi) Yes.
4. GENERAL :
(i) MTU-1 prelodged. (ii) Nil. (iii) Biometric observations and grain yield. (iv) (a) to (c) No. (v) (a) Samalkot. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2298 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $145.2 \mathrm{lb} . / \mathrm{ac}$. (b) $331.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Effects of V and $\mathrm{N} \times \mathrm{S}$ are significant. No other effect is significant. (iv) Av. yield of grain in lb ./ac.

| ; | $\mathrm{N}_{0} \mathrm{~S}_{0}$ | $\mathrm{N}_{1} \mathrm{~S}_{1}$ | $\mathrm{N}_{2} \mathrm{~S}_{1}$ | $\mathrm{N}_{3} \mathrm{~S}_{1}$ | $\mathrm{N}_{1} \mathrm{~S}_{2}$ | $\mathrm{N}_{2} \mathrm{~S}_{2}$ | $\mathrm{N}_{3} \mathrm{~S}_{2}$ | $\mathrm{N}_{1} \mathrm{~S}_{3}$ | $\mathrm{N}_{2} \mathrm{~S} 3$ | $\mathrm{N}_{3} \mathrm{~S}_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | 2161 | 2284 | 2269 | 2174 | 2042 | 1776 | 1946 | 2105 | 1399 | 12108 | 2026 |
| $\mathrm{V}_{2}$ | 2836 | 2708 | 2869 | 2818 | 2206 | 2209 | 2137 | 2588 | 2731 | 2609 | 2571 |
| Mean ${ }^{\prime}$ | 2498 | 2496 | 2568 | 2496 | 2123 | 1992 | 2041 | 2345 | 2067 | 2358 | 2298 |

S.E. of difference of two

| 1. NS marginal means | $=72.6 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. $V$ marginal means | $=74.1 \mathrm{lb} . / \mathrm{ac}$. |
| 3. $V$ means at the same level of NS |  |
| 4. NS means at the same level of $V$ |  |
|  | $=184.4 \mathrm{lb} . / \mathrm{ac}$. |
|  |  |
|  |  |

Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Maruteru.

Ref:- A.P. 54(63).
Type :- ' $\mathbf{M V}$ '.

Object :-To find out the optimum dose of N and P for different varieties of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy black clay. (b) Refer scil aralysis, Maruteru. (iii) 30.4 .1954 for $\mathrm{V}_{1}$ and $12.5 .1954 / 6.7 .1954$ for $\mathrm{V}_{2}$. (iv) (a) 3 puddlings and levelling. (b) to (e) N.A. (v) Nit. (vi) As per treatments. (vii) lrrigated. (viii) 2 weedings. (ix) $55.4^{\prime \prime}$. (x) 30.10 .1954 for $V_{1}$ and29.11.1954. for $V_{2}$.

## 2. TREATMENTS:

## Main-plot treatments :

All combinations of (1) and (2)
(1) 4 levels of $N$ as A/S : $N_{0}=0, N_{1}=30, N_{2}=45$ and $N_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=30, \mathrm{P}_{2}=45$ and $\mathrm{P}_{3}=60 \mathrm{lo} / \mathrm{ac}$.

Sub-plot treatments :
2 varieties: $\mathrm{V}_{1}=\mathrm{MTU}-3$ (early) and $\mathrm{V}_{2}=\mathrm{MTU}-10$ (late).
3. DESIGN:
(i) Split-plot. (ii) (a) 16 main-plots','replication; 2 sub-plots/main-plot. (b) N.A. (iii) 4. 'iv) (a) and (b) $6.5^{\prime} \times 38^{\prime}$. (v) No. (vi) Yes.
4. GENERAL :
(i) $\mathrm{V}_{2}$ lodged in October. (ii) Nil. (iii) Biometric observations and grain yield. (iv) (a) 1953-1956. (b) Yes. (c) Nil. (v) (a) Samalkot. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $3101 \mathrm{lb} . / \mathrm{ac}$. (ii) $\mathrm{a}^{\circ} 758.4 \mathrm{lb} / \mathrm{ac}$. (b) 493.8 lb ./ac. (iii) Main effects of $\mathrm{N}, \mathrm{P}$ and V are significant. Interactions are not siznificant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{N}_{3}$ | Mean | $V_{1}$ | $\mathrm{V}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 3477 | 2993 | 2852 | 2589 | 2978 | 3658 | 2300 |
| $\mathrm{P}_{1}$ | 3654 | 3171 | 3219 | 2259 | 3076 | 3758 | 2544 |
| $\mathrm{P}_{2}$ | 4275 | 3:49 | 2429 | 2729 | 3145 | 3700 | 2589 |
| $\mathrm{P}_{3}$ | 3693 | 3086 | 2790 | 2955 | 3131 | 3750 | 2514 |
| Mean | 3775 | 3100 | 2822 | 2533 | 3101 | 3716 | 2457 |
| $\mathrm{V}_{1}$ | 4455 | 3770 | 3356 | 3284 |  |  |  |
| $\mathrm{V}_{2}$ | 3095 | 2430 | - 2290 | 2132 |  |  |  |

S.E. of difference of two

| 1. N or P marginal means | $=134.0 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. V marginal means | $=61.7 \mathrm{lb} / \mathrm{ac}$. |
| 3. V means at the same levei of N or P | $=174.6 \mathrm{lb} . / \mathrm{ac}$. |
| 4. N or P means at the same level of V | $=226.2 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $\mathrm{N} \times \mathrm{P}$ table | $=265.2 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Sarava).
Ref :- A.P. 55(57).
Site :- Agri. Res. Stn., Maruteru.
Type:- 'MV'.

Object :-To find out the optimum dose of N and for different varieties of Paddy.

1. BASAL CONDITIONS : .
(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii)(a) Heavy black clay. (b) Refer soil analysis, Marueru. (iii) 4.5 .1955 for $V_{1}$ and 4.4.1955/15.7.1955 for $V_{2}$. (iv) (a) 3 puddlings and levelling. (b) to 'e) N.A. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 3 weedings. (ix) $43.61^{\circ}$. ( $x$ ) $\mathrm{V}_{1}=21.11 .195_{5}$ and $V_{2}=26.11 .1955$.
2. TREATMENTS:

Main-plot treatments :
Same as in expt. no. 54(63) on page 149.
Sub-plot treatments:
$\mathrm{V}_{1}=$ MTU-1 (medium) and $\mathrm{V}_{2}=\mathrm{MTU}-10$ (late).
3. DESIGN :

Same as in expt. no. $54(63)$ on page 149.
4. GENERAL :
(i) $\mathrm{V}_{1}$ lodged during October. (ii) Nil. (iii) Biometric observations and yield of grain. (iv) (a) 1953-1956.
(b) Yes. (c) Nil (v) (a) Samalkot. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1907 \mathrm{lb} . / \mathrm{ac}$. . (ii) (a) 356.2 lb ./ac. (b) $504.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of $\mathrm{N}, \mathrm{P}$ and V are significant. Other effects are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{N}_{3}$ | Mean | $\mathrm{V}_{1}$ | $\mathrm{V}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{0}$ | 2240 | 1875 | 1718 | 1685 | 1879 | 1426 | 2380 |
| $P_{1}$ | 2158 | 1957 | 1794 | 1528 | 1859 | 1380 | 2363 |
| $\mathrm{P}_{2}$ | 2207 | 2184 | 1867 | 1892 | 2038 | 1582 | 2524 |
| $\mathrm{P}_{3}$ | 1793 | 1801 | 1684 | 1624 | 1803 | 1323 | 2284 |
| Mean | 2100 | 1954 | - 1766 | 1682 | 1907 | 1427 | 2387 |
| $\mathrm{V}_{1}$ | 1541 | 1418 | 1382 | 1369 |  |  |  |
| $\mathrm{V}_{2}$ | 2821 | 2509 | 2204 | 2017 |  |  |  |

S.E. of difference of two

| 1. N or P marginal m. ans | $=62.9 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| 2. V marginal means | $=63.0 \mathrm{lb} . / \mathrm{ac}$. |
| $3 . ~ V$ means at the same level of N or P | $=178.3 \mathrm{lb} . / \mathrm{ac}$. |
| 4. N or P means at the same level of V | $=154.5 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $\mathrm{N} \times \mathrm{P}$ table. | $=125.9 \mathrm{lb} . / \mathrm{ac}$. |

Crop :- Paddy (Sarava).
Site :- Agri. Res. Stn., Maruteru.

Ref :- A.P. 56(62).
Type :- ${ }^{\mathbf{C}} \mathbf{M V}{ }^{\prime}$.

Object:-To find out the optimum dose of N and P for varieties of Paddy.

## 1. BASAL CONDITIONS :

(i (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii). (a) Heavy clay. (b) Refer şoil analysis Maruteru. (iii) 8.5.1956/8.6.1956; (iv) (a) 3 puddings and levelling. (b) Bulk planting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) As per treatments. (vii) Irriœated. (viii) 2 weedings. (ix) $53.36^{\prime \prime}$. (x) $\mathrm{V}_{1}=21.11 .1956$ and $1 \mathrm{~V}_{2}=28.11 .1956$.
2. IREATMENTS:

Same as in expt. no. 55(57) on page 150.
3. DESIGN :
(i) Split-plot. (ii) (a) 16 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) and (b) $6 \frac{1}{2}^{\prime} \times 38^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL:
(i) $\mathrm{V}_{2}$ was affected by continuous rain in October. (ii) Nil. (iii) Biometric observations and yield of grain.
(iv) (a) 1953-1956. (b) Yes. (c) Nil. (v) (a) Samalkot. (b) Nil. (vi) and (vii) Nil.

## 5. RESULTS :

(i) $3601 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $534.0 \mathrm{lb} . / \mathrm{ac}$. (b) 346.5 lb ./ac. (iii) Only V effect is highly significant. (iv)-Av. yield of grain in lb./ac.

S.E. of the difference of two

1. N or P marginal means $=94.4 \mathrm{lb} . / \mathrm{ac}$.
2. $V$ marginal means $\quad=43.3 \mathrm{lb} . / \mathrm{ac}$.
3. $V$ means at the same level of $N$ or $\mathbf{P}=122.5 \mathrm{lb} / \mathrm{ac}$.
4. N or P means at the same level of $\mathrm{V}=159.1 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $\mathrm{N} \times \mathrm{P}$ table $=202.8 \mathrm{lb} . / \mathrm{ac}$.

| Crop :- Paddy (Sarava). | Ref :- A.P. 58(22). |
| :--- | :--- |
| Site :- Agri. Res. Stn., Maruteru. | Type :- 'MV'. |

Object:-To find out the response of Japonica Indica hybrid Paddy to high fertilization.

1. BASAL CONDITIONS :
(i) (a) Paddy-paddy. (b) Paddy. (c) 2000 lb ./ac. of G.M. and 35 lb ./ac. of A/S. (ii) (a) Heavy black clay. (b) Refer soil analysis Maruteru. (iii) 28.6.1958/28.7.1958. (iv) (a) 3 puddlings and levelling. (b) Dibbling and transplanting. (c)一. (d) $6^{\circ} \times 6^{\circ}$. (e) 2. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) Gap-filling and weeding, Japanese push hee was worked thrice at the interval of 15 days. (ix) 29.02* ( x ) 13.11.1958.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 varieties: $\mathrm{V}_{1}=\mathrm{MTU}-3, \mathrm{~V}_{2}=\lceil\times \mathrm{J}-170\rfloor$ and $\mathrm{V}_{3}=\mathrm{HR}-104$.
(2) 3 levels of N as $\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=40$ and $\mathrm{N}_{2}=80 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb} . j \mathrm{ac}$.
3. DESIGN :
(i) $3^{3}$ confd. (ii) (a) 3 . (b) N.A. (iii) 2 . (iv) (a) and (b) $14^{\prime} \times 31^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Height measurements and yield of grein. (iv) (a) 1958-1959. (b) and (c) N.A. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $2560 \mathrm{lb} . / \mathrm{ac}$. (ii) $205.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Only V effect is highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | Mean | $\mathrm{P}_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | 2861 | 2735 | 2677 | 2757 | 2785 | 2660 | 2827 |
| $\mathrm{V}_{2}$ | 2844 | 2819 | 2660 | 2774 | 2743 | 2760 | 2819 |
| $\mathrm{V}_{3}$ | 2124 | 2258 | 2066 | 2150 | 2200 | 2141 | 2108 |
| Mean | 2610 | 2604 | 2467 | 2560 | 2576 | 2520 | 2585 |
| $\mathrm{P}_{0}$ | 2643 | 2601 | 2484 |  |  |  |  |
| $\mathrm{P}_{1}$ | 2593 | 2600 | 2367 |  |  |  |  |
| $\mathrm{P}_{2}$ | 2593 | 2611 | 2551 |  |  |  |  |


| S.E. of any marginal mean | $=48.4 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- |
| S.E. of body of table | $=83.8 \mathrm{lb} . / \mathrm{ac}$. |

## Crop :- Paddy (Sarava). <br> Site :- Agri. Res. Stn., Maruteru.

## Ref :- A.P. 59(90).

Type :- ${ }^{6} \mathbf{M V}$ '.
Object :-To find out the response of Japonica Indica hybrid Paddy to high fertilization.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clayey. (b) Refer soil analysis, Maruteru.
(iii) 24 to 26.6.1959. (iv) (a) Puddling and levelling. (b) Transpanting. (c)-. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2. (v) and
(vi) As per treatments. (vii) Irrigated. (viii) Weeding one month after transplanting. (ix) $42.28^{\prime \prime}$. (x) 23 , 24.10.1959.

## 2. TREATMENIS:

All combinations of (1), (2) and (3)
(1) 3 varieties: $\mathrm{V}_{1}=\mathrm{MTU}-3, \mathrm{~V}_{2}=\mathrm{I} \times \mathrm{J}-1701$ and $\mathrm{V}_{3}=\mathrm{HR}-104$.
(2) 3 levels of N as $\mathrm{A} / \mathrm{s}: \mathrm{N}_{J} \doteq 0, \mathrm{~N}_{1} \doteq 40$ and $\mathrm{N}_{2}=60 \mathrm{lb} / \mathrm{ac}$.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.

Super applied before planting. A/S applied half before planting and half a month after planting.
3. DESIGN :
(i) $3^{3}$ confd. (ii) (a) $27^{\prime}$. (b) $150^{\prime} \times 108^{\prime}$. (iii) 2 . (iv) (a) $15^{\prime} \times 32^{\prime}$. (b) $14^{\prime} \times 31^{\prime}$. (v) One row left. (vi). Yes.
4. GENERAL:
(i) Satisfactory. (ii) Slight earhead-bug attack and rat damage-zcntrol measures-N.A. (iii) Grain yield.
(iv) (a) 1958-1960.
(b) Yes.
(c) N.A.
(v) (a) N A.
(b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $3115 \mathrm{lb} . / \mathrm{ac}$. (ii) $456.1 \mathrm{lb} / \mathrm{ac}$. (iii) Only V effect is highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{N}_{0}$ | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | Mean | $P_{0}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | 3697 | 3789 | 3449 | 3644 | 3789 | 3605 | 3538 |
| $\mathrm{V}_{2}$ | 3471 | 3304 | 2969 | 3248 | 3387 | $3103{ }^{\circ}$ | 3254 |
| $\mathrm{V}_{3}$ | 2501 | 2601 | 2258 | 2453 | 2426 | 2476 | 24:9 |
| Mean | 3223 : | 3231 | 2891 | 3115 | 3200 | 3061 | 3083 |
| $\mathrm{P}_{0}$ | '3245 | 3329 | ¢ 3028 |  |  |  |  |
| $\mathrm{P}_{1}$ | 3170 | 3287 | 2727 |  |  |  |  |
| $\mathrm{F}_{2}$ | 3254 | 3078 | 2919 |  |  |  |  |
| 1 | S.E. of any marginal mean S.E. of body of any table |  |  |  | $\begin{aligned} & =107.5 \mathrm{lb} . / \mathrm{ac} \\ & =186.2 \mathrm{lb} \cdot / \mathrm{ac} \end{aligned}$ |  |  |

;
1 ——
Crop :- Paddy (Kharif).
Ref :- A.P. 57(108).,
Site :- Agri. Res. Stn., Rudrur.
Type :- 'MV'.
Object :-To find the best method of applying N to different varieties of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 29.5.1957/10.7.1957. (iv) (a) Ploughing, puddlings and levelling. (b) Translanting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 to 3 . (v) $4000 \mathrm{lb} . / \mathrm{ac}$ of G.M. $+30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. (vi) As per treatments. (vii) Irrigated. (viii) Gap filling and weeding. (ix) N.A. (x) 27.9.1957 (RDR-7), 9.12.1957 (HR-35) and 11.12.1957 (RDR-4 and HR-38).

## 2. TREATMENTS :

## Main-plot treatments :

3 methods of applying $45 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S} .: \mathrm{M}_{1}=$ All N at puddle. $\mathrm{M}_{2}=\frac{1}{2} \mathrm{~N}$ at puddle+1 at flowering of $\mathrm{RDR}-7, \mathrm{M}_{3}=\frac{1}{2} \mathrm{~N}$ at puddle $+\frac{1}{2} \mathrm{~N}$ at harvesting of RDR-7.
Sub-plot treatments :
7 comb:nations of varieties: $\quad V_{1}=R D R-4, \quad V_{2}=R D R-7, V_{3}=H R-35, V_{4}=H R-38, V_{5}=R D R-4$ and RDR $-7, \mathrm{~V}_{6}=\mathrm{HR}-35$ and $\mathrm{RDR}-7$ and $\mathrm{V}_{7}=\mathrm{HR}-38$ and $\mathrm{RDR}-7$.
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/block.; 7 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) and (b) 1,3025 ac. (v; Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1957-1958. (b) Yes, (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i: 33301 h. 'ac, (ii) (a) $669.1 \mathrm{lb} . / \mathrm{ac}$. (b) $337.4 \mathrm{lb} . / \mathrm{ac}$. (iii) M effect is significant and V effect is highly s gnificart. Interaction is not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{V}_{1}$ | $\mathrm{V}_{2}$ | $\mathrm{V}_{3}$ | $\mathrm{V}_{4}$ | $\mathrm{V}_{5}$ | $\mathrm{V}_{6}$ | $\mathrm{V}_{7}$ | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M}_{1}$ | 425) | 2774 | 3724 | 3980 | 3512 | 3200 | 3441 | 3556 |
| $\mathrm{M}_{2}$ | 3474 | 2373 | 2798 | 3370 | 2789 | 2590 | 3058 | 2922 |
| $\mathrm{M}_{3}$ | 4455 | 2401 | 3389 | 4259 | 3436 | 3271 | 3384 | 3513 |
| Me:n | 4063 | 2516 | 3304 | 3870 | 3246 | 30こ0 | 3294 | 3330 |

S.E. of difference of two

1. $\mathbf{M}$ marginal means $\quad=178.8 \mathrm{lb} / \mathrm{a}$.
2. $V$ marginal means $\quad=137.7 \mathrm{lb} . / \mathrm{ac}$.
3. V means at the same level of $\mathbf{M}=238.6 \mathrm{lb}^{\prime},{ }^{\prime} \mathrm{ac}$.
4. M means at the same level of $\mathrm{V}=284.2 \mathrm{lb} \cdot / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif). } & \text { Ref :- A.P: 58(136). } \\
\text { Site :- Agri. Res. Stn., Rudrur. } & \text { Type :- ¢MV'. }
\end{array}
$$

Object :-To find the b-st methed of applying N to different varieties of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy -Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b' Refer soil analysis, Rudrur. (iii' 29.5.1958.15.7.1958. (iv) (a) Ploughing, puddlings and levelling. (b) Transp'aning. (c) $30 \mathrm{lb} . / \mathrm{ac}$. 'd) $6^{\prime \prime} \times 6^{\prime \prime}$. e' 2 to 3 . (v) $4000 \mathrm{lb} . / \mathrm{ac}$. of G.M. $+30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super. (vi) As per treatments. (vii) Irrigated. (viii) Gap-fillirg and weeding. (ix) $52.74^{\prime \prime}$. (x) 27.9.58. for RDR-7 and 9.12.58. (other varieties).
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57 (108) on page 152.
5. RESULTS:
(i) $3212 \mathrm{lb} . \mathrm{fac}$. (ii) (a) $767.2 \mathrm{lb} . / \mathrm{ac}$. (b) 947.5 lb ./ac. (iii) Only V effect in highly significant. (iv) Av. yield of grain in $\mathrm{lb} . \mathrm{ac}$.

|  | $\mathrm{V}_{1}$ | $\mathrm{V}_{2}$ | $\mathrm{V}_{3}$ | $\mathrm{V}_{4}$ | $\mathrm{V}_{5}$ | $\mathrm{V}_{6}$ | $V_{7}$ | \| | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | 3592 | 1541 | 3441 | 4575 | 3044 | 2770 | 3450 |  | 3202 |
| $\mathrm{M}_{2}$ | 3015 | 1947 | 3377 | 4348 | 3129 | 2420 | 4372 | ' | 3273 |
| $\mathrm{M}_{3}$ | 3630 | 1895 | 3261 | 4055 | 3715 | 2613 | 2959 | I | 3161 |
| Mean | 3412 | 1794 | 3460 | 4326 | 3296 | 2601 | 3594 |  | 3212 |

```
 155
 S.E. of difference of two
1. \(M\) marginal means
\(=205.0 \mathrm{lb} / \mathrm{ac}\).
2. V margninal means
3. \(V\) means at the same level of \(M\)
\(=386.8 \mathrm{lb} . / \mathrm{ac}\).
4. \(\mathbf{M}\) means at the same ievel of \(V\)
```

$=670.0 \mathrm{lb} . / \mathrm{ac}$.
$=653.3 \mathrm{lb} . / \mathrm{ac}$.

## Crop :- Paddy.

```
Site :- M.A.E. Farm, Chalvai.
Ref:- A.P. 54(TCM).
Type :- 'MV'.
Cbject :-Type VIII-To study the effect of N and P along with varieties.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) (a) Red loam. (b) N.A. (iii) June-July, 1954. (iv) (a) N.A. (b) Transplanting. (c) to (e) N.A. (v) and (vi) N.A. (vii) Irrigated. (viii) and (ix) N.A. (x) Nov.-Dec. 1954.
2. TREATMENTS:
All combinations of (1), (2) and (3)
(1) 3 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lb}\)./ac.
(3) 3 varieties: \(\dot{\mathrm{V}}_{1}=\) Local, \(\mathrm{V}_{2}=\) R.D.R. and \(\mathrm{V}_{3}=U R-5\).
```

3. DESIGN :
(i) $3^{3}$ confd. fact.
(ii) (a) 9 plots/block; 3 blocks/replication.
(b) N.A. (iii) 1. (iv) (a) N.A. (b) $1 / 62$ ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Norma1. (ii) Crop suffered from gall-fly infestation-control measures N.A. (iii) Yield data. (iv) (a) 1953-1956. (b) No. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) $3061 \mathrm{lb} . / \mathrm{ac}$. (ii) $178.9 \mathrm{lb} . / \mathrm{ac}$. : (iii) Main effect of V is highly significant. Interacticn $\mathrm{N} \times \mathrm{V}$ is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.


$$
\begin{array}{ll}
\text { S.E. of any marginal mean } & =59.6 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of tody of any table } & =103.3 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

## Crop :- Paddy.

Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 55(49).
Type:- ‘C'.

1. BASAL CONDITIONS :
(i) (a) Sugarcane—Paddy (b) Sugarcane. (c) $100 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}$. (ii) (a) Loamy. (b) Refer soil analysis, Anakapalle. (iii) 11.7 .1955 for $\mathrm{T}_{1}$ and 15.8 .1955 for $\mathrm{T}_{2}$ (iv) (a) 3 ploughings. (b) As per treatments. (c) N.A. (d) As per treatments. (e) NA. (v) 40 lb ./ac. of N as $\mathrm{A} / \mathrm{S}$. for $\mathrm{T}_{1}$, 支 dose at 1st earthing and ' dose at 2 ad earthing. For $T_{2}, \frac{1}{2}$ dose at planting and $\frac{1}{2}$ dose one month later. (vi) $B A M-3$. (vii) Irrigated. (viii) Earthing and weeding. (ix) N.A. (x) 12.12.1955.
2. TREATMENTS :
$\mathrm{T}_{1}=$ Dry sowing; seeds dibbled in lines $1^{\circ}$ apart.
$\mathrm{T}_{2}=$ Transplanting seedlings at $6^{\prime \prime} \times 6^{\prime \prime}$ spacing.
3. DESIGN :
(i) R B.D. (ii) (a) 2 . (b) N.A. (iii) 12 . (iv) (a) $10^{\prime} \times 30^{\circ}$. (b) $8^{\prime} \times 27 \frac{1}{\prime}^{\prime}$. (v) 2 rows alround for $T_{1}$ and 4 rous airound for $T_{2}$. vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (ii) Grain yield. (iv) (a) 1955 -contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) $2706 \mathrm{lb} . / \mathrm{ac}$. (ii) $268.0 \mathrm{lb} / \mathrm{ac}$. (iii) Treatment difference is significant. (iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

| Treatment | $\mathrm{T}_{1}$ | $\mathrm{~T}_{2}$ |
| :--- | :--- | :--- |
| Av. yield | 2867 | 2544 |
|  |  |  |
|  | S.E./mean | $=77.3 \mathrm{lb} . / \mathrm{ac}$. |

## Crop:- Paddy <br> Site :- Agri. College Farm, Bapatla.

> Ref :- A.P. $54(38)$.
> Type :- ${ }^{〔} C^{\prime}$.

Object :-To study the influence of different spacings and number of seedlings per hole on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Bapatla. (iii) 16.6.1954., 8.8.1954.
(iv) (a) 2 to 3 ploughings, working adda and trimming bunds.(b) and (c) N.A. (d) and (e) As per treatments. (v) G.L. at $4000 \mathrm{lb} . / \mathrm{ac}$. applied as Gliricidia and Super at $150 \mathrm{lb} . / \mathrm{ac}$. (vi) MTU-7 (late). (vii) Irrigated (viii) 2 weedings. (ix) $39.83^{\circ}$. (x) 31.12 .1954 .

## 2. TREATMENTS:

## Main plot treatments:

3 spacings: $S_{1}=4^{\prime \prime} \times 4^{\prime \prime}, S_{2}=8^{\prime \prime} \times 8^{\prime \prime}$ and $S_{3}=12^{\prime \prime} \times 12^{\prime \prime}$.
Sub-plot treatments:
No. of s:edlings/hole : $\mathrm{R}_{1}=1, \mathrm{R}_{2}=2$ and $\mathrm{R}_{3}=3$.

## 3. DESIGN :

(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main piot. (b) N.A. (iii) 6. (iv) (a) Sub-plot: $15.8^{\prime} \times 7.9^{\prime}$. (b) $14.5^{\prime} \times 6.6^{\prime}$. (v) 3 rows alround. (vi) Yes.
4. GENERAL :
(i) The crop was lodged due to floods. (ii) Nil. (iii) Tiller counts, height and grain yield. (iv) (a) 19531955. (b) No. (c) Nil. (v) (a) and (b) Nil. (v)) to (vii) Nil.
5. RESULTS :
(i) 2787. (ii) N.A. (iii) None of the effects is significant. (iv) Av. yieid of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $S_{3}$ | Mean |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{1}$ | 2814 | 2739 | 2897 | 2817 |
| $\mathrm{R}_{2}$ | 2939 | 2826 | 2537 | 2767 |
| $\mathrm{R}_{3}$ | 293! | 2710 | 2690 | 2777 |
| Mean | 2895 | 2758 | 2708 | 2787 |

Crop :- Paddy.
Site :- Agri. College Farm, Bapatla.

Ref :- A.P. 56(2).
Type :- ${ }^{6}$ ' ${ }^{\prime}$.

Object:-To study the influence of different spacings and number of seedlings per hole on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy -Fallow-Paddy. (b) Paddy. (c) $4000 \mathrm{lb} . / \mathrm{ac}$. of Gliricidia +Super at $150 \mathrm{lb} . / \mathrm{ac}$. and A/S at 100 lb./ac. (ii) (a) Sandy loam. (b) Refer soil analysis, Bapatla. (iii) 11.6.1956/2.9.1956. (iv) (a) 2, 3 ploughings. (b) and (c) N.A. (d) and (e) As per treatments. (v) G.L. at $4000 \mathrm{lb} . / \mathrm{ac}$. and $150 \mathrm{lb} . / \mathrm{ac}$. of Super. (vi) MTU-7 (late) (vii) Irrigated. (viii) 2 weedings. (ix) $41 \cdot 49^{\prime \prime}$. (x) 20.12.1956.
2. TREATMENTS :

Same as in expt. no. 54(38) on page 156.
3. DESIGN :
(i) Split-Plot. (ii) (a) 3 main plots/replication ; 3 Sub-plots/main-plot. (b) N.A. (iii) 6 . (iv) (a) $15.8^{\prime} \times 7.9^{\prime}$. (b) $14.5^{\prime} \times 6.6^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1952-Contd. (b) Yes. (c) Nil. (v) to (vii) Nil.

## 5: RESULTS:

(i) $3150 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $672.7 \mathrm{lb} . / \mathrm{ac}$. (b) $336.3 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

|  | $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | Mean |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{R}_{1}$ | 2963 | 2822 | 3286 | 3022 |
| $\mathrm{R}_{2}$ | 2918 | 3145 | 3436 | 3168 |
| $\mathrm{R}_{3}$ | 2991 | 3127 | 3677 | 3263 |
| Mean | 2959 | 3032 | 3468 | 3150 |

S.E. of difference of two

1. S marginal means $\quad=224.2 \mathrm{lb} . \mathrm{lac}$.
2. R marginal means $\quad=112.1 \mathrm{lb} . / \mathrm{ac}$.
3. $R$ means at the same level of $\mathbf{S} \quad=194.2 \mathrm{lb} . / \mathrm{ac}$.
4. $S$ meansiat the same level of $R \quad=274.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Main crop).
Site :- Rice Res. Stn., Buchireddipalem.

Ref :- A.P. 57(18).
Type:- ' $C$ '.

Obj

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) 10 C.L./ac. of F.Y.M., $75 \mathrm{lb} . / \mathrm{ac}$. of Triple Super and $50 \mathrm{lb} . / \mathrm{ac}$. of A/S as B.D. + $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}$ at top dressing. (ii) (a) Sandy loam. (b) N.A. (iii) 27.7.1957/2.9.1957. (iv) (a) Dry ploughing and puddling. (b) and (c) As per treatments. (d) and (e) N.A. (v) 10 C.L./ac. of F.Y.M. before ploughing+G.L. at 4000 lb ./ac. in last puddle. (vi) $B C P-1$ (late). (vii) Irrigated. (viii) 4 weedings, gap-filling and working push-hoe. (ix) $26.66^{\prime \prime}$. (x) 1.2.1958.
2. TREATMENTS :
$T_{1}=$ Broadcasting with seed rate of $30 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{T}_{2}=$ Dibbling sprouted seed.
$T_{3}=$ Dibbling sprouted seed treated with cowdung solution.
$\mathrm{T}_{4}=$ Transplanting.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6 . (iv) (a) and (b) $20^{\prime} \times 8^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii), Mealy-bug and jassids-sprayed DDT. $50 \%$. (iii) Biometric observations and grain yield. (iv) (a) 1957-contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS
(i) $2690 \mathrm{lb} / \mathrm{ac}$. (ii) $683.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of arain in $\mathrm{lb} / \mathrm{ac}$.

| Treatment | $\mathrm{T}_{1}$ | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{\mathbf{3}}$ | $\mathrm{T}_{\underline{1}}$ |
| :--- | :---: | :---: | :---: | :---: |
| Av. yield | 2042 | 2995 | 3131 | 2586 |
|  |  |  |  |  |
|  | S.E./mean | $=$ | $279.0 \mathrm{lb} . / \mathrm{ac}$. |  |

## Crop :- Paddy (Second crop). <br> Site :- Rice Res. Stn., Buchireddipalem. <br> ```Ref :- A.P. 57(2). \\ Type :- 'C'.```

Object:-To find out the relative merits of different methods of planting Paddy.

1. BASAL CONDITIONS :
(i) (a) No. ib) Paddy. (c) 8 C.L./ac, of C.M. $+75 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}+100 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii) (a) Sandy loam. (b) N.A. (iii) $14.2 .1957 / 21.3 .1957$. (iv) (a) 2 to 3 ploughings and 2 puddlings with country plough followed by one puddling. (b) and (c) As per treatments. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) 3 . (v) 10 C.L. of C.M. +75 $\mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ and 100 lb ./ac. of $\mathrm{A} / \mathrm{S}$. (vi) $\mathrm{PLA}-1$ (early). (vii) Irrigated. (viii) 3 weedings. (ix) N.A. (x) 13.6.1957.
2. TREATMENTS :
$T_{1}=$ Broadcasting with seed rate of $80 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{T}_{2}=$ Dibbling sprouted seed.
$\mathrm{T}_{3}=$ Dibbling sprouted seed treated with cowdung solution.
$\mathrm{T}_{4}=$ Transplanting.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) and (b) $4.8^{\prime} \times 20^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Slight attack of stem-borer-control measures N.A. (iii) Yield of grain. (iv) (a) 1957-contd, (b) No. (c) Nil. (v) (a) to (vii) Nil.
5. RESULTS :
(i) $2209 \mathrm{lb} . / \mathrm{ac}$. (ii) $247.7 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathrm{T}_{1}$ | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{3}$ | $\mathrm{~T}_{4}$ |
| :--- | :--- | :---: | :---: | :---: |
| Av. yield | 1636 | 2628 | 2242 | 2326 |
|  |  |  |  |  |
|  | S.E./mean | $=$ | $101.4 \mathrm{lb} . / \mathrm{ac}$. |  |

```
Crop :- Paddy (Kharif). Ref :- A.P. 58(2).
Site :- Rice Res. Stn., Buchireddipalem. Type := ''C'.
```

Object :-To find out the relative merits of different methods of planting Paddy.

## 1. BASAL CONDITIONS :

(i) (a) Paddy—Paddy. (b) Paddy. (c) G.L. at $4000 \mathrm{lb} . / \mathrm{ac} \cdot+30 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}+30 \mathrm{lb} . / \mathrm{ac}$. of N . (ii) (a) Sandy loam. (b) N.A. (iii) 7.9.1958/8.10.195s. (iv) (a) 3 dry ploughings, puddlings, working wet-land pudder and levelling. (b) As per treaiments. (c) for $T_{1}: 80 \mathrm{lb} / \mathrm{ac}$. (d) $10^{\prime \prime} \times 6^{\prime \prime}$ for all except $T_{1}$. (e) 3 seeds hole for $T_{2}, T_{3}, T_{4}$. (v) G.L. at $4000 \mathrm{lb} . / \mathrm{ac}$. and $\mathrm{A} / \mathrm{S}$ at $30 \mathrm{lb} . / \mathrm{ac}$. of N in split dose. (vi) BCP-1 (late). (vii) Irrigated. (viii) 2 weedings and working push hoe. (ix) $46.98^{\prime \prime}$. (x) 11.2.1959.
2. TREATMENTS :
$\mathrm{T}_{1}=$ Broadcasting.
$\mathrm{T}_{2}=$ Dibbling sprouted seeds.
$\mathrm{T}_{3}=$ Dibbling sprouted seeds treated with cowdung solution.
$\mathrm{T}_{4}=$ Transplanting.
3. DESIGN :
(i) R.B.D.
(ii) (a) 4 .
(b) $22^{\prime} \times 39.5^{\prime}$
(iii) 6 .
(iv) (a) and (b) $20^{\prime} \times 8^{\prime}$.
(v) No. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of leaf-roller, stem-borer and jassids-BHC $10 \%$ dustings and Endrine sprayings given. (iii) Height measurement, tiller coucts and grain yield. (iv) (a) 1956 -contd. (b) and (c) No. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. 'RESULTS :
(i) $1105 \mathrm{lb} / \mathrm{ac}$. (ii) $255.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

| Treatment | $\mathrm{T}_{1}$ | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{\mathbf{3}}$ | $\mathrm{T}_{4}$ |
| :--- | :---: | :---: | :---: | :---: |
| Av. yield | 1230 | 1014 | 1337 | 838 |
|  |  |  |  |  |
|  | S.E./mean | $=$ | $104.4 \mathrm{lb} . / \mathrm{ac}$. |  |

```
Crop:- Paddy (Kharif).
Site :- Rice Res. Stn., Buchireddipalem.
```

```
Ref:- A.P. 59(1).
```

Ref:- A.P. 59(1).
Type :- ${ }^{6}$ ' .

```

Object:-To assess the relative merits of dibbling Paddy as against transplanting and broadcasting.
1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) G.L. at \(4000 \mathrm{lb} \cdot / \mathrm{ac} .+30 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\). (ii) (a) Sandy loam.
(b) N.A. (iii) 18.2.1959/16.3.1959. (iv) (a) 3 ploughings, 2 puddlings and leveling. (b) As per treatments. (c) \(80 \mathrm{lb} . / \mathrm{ac}\). for \(\mathrm{T}_{1} \cdot\) (d) \(8^{\prime \prime} \times 4^{\prime \prime}\) for all except \(\mathrm{T}_{1}\). (e) 3 seeds \(/\) bole for all except \(\mathrm{T}_{1}\). (v) Nil. (vi) PLA -1 (eally). (vii) Irrigated. (viii) 2 hand weedings. Rotary weeder worked upto shot blade stage. (ix) \(46.98^{\prime \prime}\). (x) N.A.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 57(2) on page 158.
4. GENERAL:
(i) Good. (ii) Attaçk of blast disease-Spraying of Cupravit and Endrine." (iii) Height measurement, tiller count and grain yield. (iv) (a) 1956 -contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(2104 \mathrm{lb} . / \mathrm{ac}\). (ii) \(312.0 \mathrm{lb} / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline Treatment & T & T & T3 & T4 \\
\hline Av. yield & 1905 & 2325 & 1996 & 2189 \\
\hline & S.E./ & \(=\) & \(4 \mathrm{lb} . /\) & \\
\hline
\end{tabular}

\footnotetext{
Crop :- Paddy (Rabi).
Site :- Govt. Agri. Farm, Dindi.
}

Ref :- A.P. 57(106).
Type :- 'C'.
Object :-To find out optimum spacing and no. of seedlings/hole for Padd \(\mathbf{y}\).,

\section*{1. BASAL CONDITIONS}
(i) (a) No. (b) Paddy. (c) \(45 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+22.5 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (ii) (a) Sandy chalka. (b) N.A. (iii) (iii) 25.12.1957. (iv) (a) 5 Puddlings. (b) Transplating by Japanese method. (c) N.A. (d) and (e) As per treatments. (v) \(45 \mathrm{lb} . / \mathrm{ac} . \mathrm{N}, 22 \mathrm{lb} . / \mathrm{ac} . \mathrm{P}_{2} \mathrm{O}_{5}\). (vi) \(\mathrm{HR}-5\) (medium). (vii) Irrigated. (viii) Hand weeding and working Japanese weeder. (ix) N.A. (x) 16.5.1958.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) No. of seedlings: \(\mathrm{R}_{1}=1, \mathrm{R}_{2}=2, \mathrm{R}_{3}=3\) and \(\mathrm{R}_{4}=4\) seedlings/hill.
(2) 4 spacings: \(\mathrm{S}_{1}=6^{\prime \prime} \times 6^{\prime \prime}, \mathrm{S}_{2}=8^{\prime \prime} \times 8^{\prime \prime}, \mathrm{S}_{3}=10^{\prime \prime} \times 10^{\prime \prime}\) and \(\mathrm{S}_{4}=12^{\prime \prime} \times 12^{\prime \prime}\).
3. DESIGN :
(i) Fact. in R.B D. (ii) (a) 16. (b) \(170^{\prime} \times 45^{\prime}\). (iii) 4 . (iv) (a) and (b) \(20^{\prime} \times 10^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory (ii) Nil. (iii) Yield of grain. (iv) (a) 1957-contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 1645 lb ./ac. (ii) \(291 \mathrm{lb} . / \mathrm{ac}\). (iii) Only S effect is highly significant. (iv) Av. yield of grain in lb ./ac.

\section*{Crop:- Paddy (Kharif). \\ Site :- Govt. Agri. Farm, Dindi.}

Ref :- A.P. 58(129).
Type :- \({ }^{6} \mathbf{C}\).

Object :-To find out optimum spacing and no. of seedlings/hole for Paddy.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) \(45 \mathrm{lb} . / \mathrm{ac} . \mathrm{N}+22 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (ii) (a) Sandy chalka. (b) N.A. (iii) 3.7.1958. (iv) (a) 5 puddlings. (b) Transplanting by Japanese method. (c) N.A. (d) and (e) As per treatments. (v) 45 \(\mathrm{lb} / \mathrm{ac}\). of N and \(22 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (vi) HR-35 (late). (vii) Irrigated. (viii) Hand weeding and working of Japanese weeder. (ix) \(26.74^{\prime \prime}\). (x) \(4.12,1958\).
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. \(57(106)\) on pape 159.
5. RESULTS :
(i) \(1667 \mathrm{lb} . / \mathrm{ac}\). (ii) 121.6 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|llll|l}
& \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & \(\mathbf{R}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{S}_{\mathbf{1}}\) & 1661 & 1579 & 1579 & 1661 & 1620 \\
\(\mathrm{~S}_{\mathbf{2}}\) & 1579 & 1797 & 1633 & 1552 & 1640 \\
\(\mathrm{~S}_{\mathbf{3}}\) & 1688 & 1606 & 1742 & 1688 & 1681 \\
\(\mathrm{~S}_{\mathbf{4}}\) & 1770 & 1688 & 1633 & 1824 & 1729 \\
\hline Mean & 1674 & 1668 & 1647 & 1681 & 1607
\end{tabular}

\section*{Crop :- Paddy (Kharif).}

\section*{Site :- Govt. Agri. Farm, Dindi.}

Ref :- A.P. 59(105).
Type :- 'C'.

Object :-To find out optimum spacing and no. of seedlings/hole for Paddy.
1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) \(45 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+22 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (ii) (a) Sandy chalka. (b) N.A. (iii) 25.5.1959. (iv) (a) 5 puddlings. (b)' Transplanting by Japanese method. (c) N.A. (d) and (e) As per treatments. (v) \(45 \mathrm{lb} . / \mathrm{ac}\). of N and \(22 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (vi) \(\mathrm{HR}-35\) (late). (vii) Irrigated. (viii) Hand weeding and working Japanese weeders. (ix) \(24.37^{\prime \prime}\). (x) 30.11 .1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57 (106) on page 159.
5. RESULTS:
(i) \(3765 \mathrm{lb} / \mathrm{ac}\). (ii) 468.2 lb ./ac. (iii) None of the effects is significant. (iv) Av. yjeld of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|cccc|c}
& \(\mathbf{R}_{1}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & \(\mathbf{R}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{S}_{\mathbf{1}}\) & 3654 & 4070 & 3566 & 3648 & 3734 \\
\(\mathrm{~S}_{\mathbf{2}}\) & 3552 & 3620 & 3662 & 4431 & 3816 \\
\(\mathrm{~S}_{\mathbf{3}}\) & 3784 & 3824 & 3818 & 4056 & 3870 \\
\(\mathrm{~S}_{\mathbf{4}}\) & 3143 & 3416 & 4049 & 3640 & 3637 \\
\hline Mean & 3608 & 3732 & 3774 & 3044 & 3755
\end{tabular}
\(\begin{array}{ll}\text { S.E. of } R \text { or } S \text { marginal mean } & =117.04 \mathrm{lb} / \mathrm{ac} . \\ \text { S.E. of body of table } & =234.09 \mathrm{lb} . / \mathrm{ac} .\end{array}\)

Crop :- Paddy (Rabi).
Ref:- A.P. 59(106).
Site :- Govt, Agri, Farm, Dindi.
Type:- \({ }^{\prime} \mathrm{C}\) '

Object :-To find out optimum spacing and no. of seedlings/hole for Paddy.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) 45 lb ./ac. of \(\mathrm{N}+22 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (ii) (a) Sandy chalka. (b) N.A. (iii) 7.1.1959. (iv) (a) 5 puddlings. (b) Tränsplanting by Japanese method. (c) N.A. (d) and (e) As per treatments. (v) \(45 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{N}+22 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (vi) \(\mathrm{HR}-5\) (medium). (vii) Irrigated. (viii) Hand weedings and working Japanese weeder. (ix) \(4.11^{\prime \prime}\). (x) 20.5.1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. \(57(106)\) on page 158.
5. RESULTS :
(i) \(1103 \mathrm{lb} . / \mathrm{ac}\). (ii) 219.4 lb ./ac. (iii) R effect is highly significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

162
\begin{tabular}{c:ccccc:c}
& \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & \(\mathbf{R}_{\mathbf{4}}\) & Mean \\
\hdashline \(\mathrm{S}_{\mathbf{1}}\) & 1150 & 1157 & 1156 & 946 & 1102 \\
\(\mathrm{~S}_{\mathbf{2}}\) & 946 & 1157 & 1184 & 1368 & 1164 \\
\(\mathrm{~S}_{\mathbf{3}}\) & 796 & 1300 & 1204 & 1211 & 1128 \\
\(\mathbf{S}_{\mathbf{4}}\) & 694 & 1041 & 1184 & 1157 & 1019 \\
\hline Mean & 896 & 1164 & 1182 & 1170 & 1103
\end{tabular}
\[
\begin{array}{rlr}
\text { S.E of } R \text { or } S \text { marginal mean } & =54.8 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of the body of the table } & =109.7 \mathrm{lb} / \mathrm{ac} .
\end{array}
\]

\section*{Crop:- Paddy. \\ Ref:- A.P. 57(8). \\ Site :- Deep Water Paddy Res. Stn., Palla. \\ Type :- ' C '.}

Object:-To determine the optimum spacing for Paddy.

\section*{1. BASAL CONDITIONS :}
(i) (a) Paddy-Paddy. (b) Paddy. (c) \(100 \mathrm{lb} . / \mathrm{ac}\). of Super and \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) at pudding and \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) at first weeding. (ii) (a) Clayey. (b) Refer soil analysis, Pulla. (iii) 3.1.1957/10.2.1957. (iv) (a) 3 ploughings. (b) Transplanting. (c) \(25 \mathrm{lb} . / \mathrm{ac}\). (d) As per treatments. (e) N.A. (v) \(25 \mathrm{lb} . / \mathrm{ac}\). (vi) PLA-1 (early). (vii) Irrigated. (viii) One hand weeding and two rotary weedings. (ix) Nil. (x) 30.4.1958.
2. TREATMENTS:

3 spacings : \(\mathrm{D}_{1}=\) Local, \(\mathrm{D}_{2}=8^{\prime \prime} \times 4^{\prime \prime}\) and \(\mathrm{D}_{3}=8^{\prime \prime} \times 8^{\prime \prime}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) and (b) \(50^{\prime} \times 36^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Plant height, tiller count and grain yield. (iv) (a) 1957-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(2749 \mathrm{lb} . / \mathrm{ac}\). (ii) \(124.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv, Av. vee. \(\rfloor\) of grain in lb./ac.
\begin{tabular}{lllr}
Treatment & \(D_{1}\) & \(D_{2}\) & \(D_{3}\) \\
Av. yield & 2597 & 2957 & 2694 \\
& S.E./mean & \(=50.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Paddy (Dalua).
Ref :- A.P. 58(1).
Site :- Deep Water Paddy Res. Stn., Pulla.
Type :- 'C'.

```

Object :-To determine the best spacing for Paddy.
1. BASAL CONDITIONS:
(i) (a) Paddy—Paddy. (b) Paddy. (c) \(100 \mathrm{lb} . / \mathrm{ac}\). of Super \(+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) at puddle \(+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) at first weeding. (ii) (a) Clay. (b) Refer soil analysis, Pulla. (iii) 4.1.1958/9.2.1958. (iv) (a) 3 pough'ngs. (b) and (c) N.A. (d) As per treatmerts. (e) N.A. (v) Same as in (i) (c) above. (vi) PLA-1 (early). (vii) Irrigated. (viii) Hand weeding and weeding by rotary weeder. (ix) \(0.25^{\prime \prime}\). (x) 2.5.1958.
2. TREATMENTS :

Same as in expt. no. 57(8) above.
3. DESIGN :
(i) R.B.D. (ii) (a)' 3 . (b) N.A. (iii) 6. (iv) (a) and (b) \(48^{\prime} \times 36^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAIL:
(i) Satisfactory ; no lodging. (ii) Nil. (iii) Plant height, tiller count and grain yield. (iv) (a) 1957-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(2003 \mathrm{lb} / \mathrm{ac}\). (ii) 125.8 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of grain in lb ./ac.

\section*{Crop :- Paddy (Rabi).}

Site :- Deep Water Paddy Res. Stm., Pūlla.
Object :-To determine the best spacing for Paddy crop.
- BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) \(100 \mathrm{lb} . / \mathrm{ac}\). of Super and \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{C} / \mathrm{A} / \mathrm{N}\) at puddle and \(50 \mathrm{lb} . / \mathrm{ac}\). of \(C / A / N\) at first weeding. (ii) (a) Clay. (b) Refer soil analysis, Pulla. (iii) 6.1.1959/12.2.1959. (iv) (a) 3 puddlings. (b) N.A. (c) \(30 \mathrm{lb} . / \mathrm{ac}\). (d) As per treatments. (e) 2 to 3. (v) Same as in (i) (c) above. (vi) PLA-1 (early). (vii) Irrigated. (viii) Hand weeding and weeding with rotary push hoe. (ix) N.A. (x) \(5.5,1959\).
2. TREATMENTS:

Same as in expt. no. \(57(8)\) on page 162.
3. DESIGN :
(i) R.B.D.
(ii) (a) 3 .
(b) \(144^{\prime} \times 36^{\prime}\).
(iii) 6 . (iv) (a) \(48^{\prime} \times 36^{\prime}\).
(b) \(47^{\prime} \times 35^{\circ}\). (v) N.A. (vi) Yes.

GENERAL:
(i) Satisfactory; no lodging. (ii) Nil. (iii) Grain yield. (iv) (a) 1957--contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTTS:
(i) \(1945 \mathrm{lb} . / \mathrm{ac}\). (ii) 88.5 lb ./ac. (iii) Treatment differences are, highly significant. (iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|}
\hline Treatment & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) \\
\hline Av. yield & 1867 & 2079 & 1889 \\
\hline 1 & S.E. & & /ac. \\
\hline
\end{tabular}

Grop:- Paddy (Kharif).

\section*{Site :- Agri. Res. Sta., Rudrur.}

Object :--To find the best spacing for Paddy.
1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) 4000 lb ./ac. of G.M. and \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (ii) (a) Clay loam.
(b) Refer soil analysis, Rudrur. (iii) \(1.6 .1956 / 4.7 .1956\). (iv) (a) 2 ploughings, 2 puddlings and levelling.
(b) Transplanting. (c) \(30 \mathrm{lb} . / \mathrm{ac}\). (d) As per treatments. (e) 2 to 3. (v) \(4000 \mathrm{lb} . / \mathrm{ac}\). of G.M. and \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) RDR-2. (vii) Irrigated. (viii) Gap filling and weeding. (ix) 64.02". .(x) 17.10.1956.
2. TREATMENTS :

5 spacings : \(S_{1}=4^{\prime \prime} \times 4^{\prime \prime}, S_{2}=6^{\prime \prime} \times 6^{\prime \prime}, S_{3}=8^{\prime \prime} \times 8^{\prime \prime}, S_{4}=10^{\prime \prime} \times 10^{\prime \prime}\) and \(S_{5}=12^{\prime \prime} \times 12^{\prime \prime}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 5. 'b) N.A. (iii) 4. (iv) (a) and (b) \(1 / 435.6 \mathrm{ac}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) to (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(3813 \mathrm{lb} . / \mathrm{ac}\). (ii) \(493.2 \mathrm{lb} . / \mathrm{ac}\). (iii) The treatment differences are not significant. (iv) Av. yie:d of grain in Ib./ac.
\begin{tabular}{lllccc}
Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{\mathbf{2}}\) & \(\mathrm{S}_{\mathbf{3}}\) & \(\mathrm{S}_{4}\) & \(\mathrm{~S}_{5}\) \\
Av. yield & 4043 & 3879 & 3791 & 3757 & 3595 \\
& S.E.jmean & \(=\) & \(246.6 \mathrm{lb} . / \mathrm{ac}\). \\
& & &
\end{tabular}
```

Crop:- Paddy. (Kharif).
Site :- Agri. Res. Stn., Rudrur.

```
```

Ref :- A.P. 57(109).

```
Type :- 'C'.

Object:-To find the best spacing for Paddy.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) G.M. and Super. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 29.5.1957/6.7.1957. (iv) (a) Ploughing, puddling and levelling. (b) Transplanting. (c) \(30 \mathrm{lb} / \mathrm{ac}\). (d) As per treatments. (e) 2 to 3 . (v) \(4000 \mathrm{lb} . / \mathrm{ac}\). of G.M. and \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) RDR-4 and HR-35. (vii) Irrigated. (viii) Gap filling and weedisg. (ix) N.A. (x) 5.12.1957.
2. TREATMENTS :

4 spacings: \(S_{1}=6^{\prime \prime} \times 6^{\prime \prime}, S_{2}=8^{\prime \prime} \times 8^{\prime \prime}, S_{3}=10^{\prime \prime} \times 10^{\prime \prime}\) and \(S_{4}=12^{\prime \prime} \times 12^{\prime \prime}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4 (for each variety). (iv) (a) and (b) \(1 / 435.6\) ac. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) and (v) N.A. (vi) and (vii) Nil.
5. RESULTS :

> I Variety HR-35
(i) \(2711 \mathrm{lb} . / \mathrm{ac}\). (ii) \(197.9 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. (iv; Av. y.eld of grair in lb./ac.
\begin{tabular}{lcccc}
Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{\mathbf{2}}\) & \(\mathrm{S}_{3}\) & \(\mathrm{~S}_{\mathbf{4}}\) \\
Av. yield & 2831 & 2988 & 2539 & 2484 \\
& & & & \\
& S.E./mean & \(=\) & \(99.0 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\section*{II Variety RDR-4}
(i) \(3206 \mathrm{lb} . / \mathrm{ac}\). (ii) \(484.9 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{lllll}
Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{\mathbf{2}}\) & \(\mathrm{S}_{\mathbf{3}}\) & \(\mathrm{S}_{4}\) \\
Av. y.eld & 3131 & 3274 & 3049 & 3369 \\
& S.E./mean & \(=\) & \(242.5 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Paddy (Kharif).
Ref :- A.P. 57(110).
Site :- Agri. Res. Stn., Rudrur.
Type :- 'C'.
O bject :-To find the best spacing for Paddy.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) G.M. and Super. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 29.5.1957/8.7.1957. (iv) (a) 2 dry ploughings, puddlings and levelling. (b) Transplanting. (c) \(30 \mathrm{lb} / \mathrm{ac}\). (d) As per treatments. (c) 2 to 3 . (v) \(4000 \mathrm{lb} . / \mathrm{ac}\). of G.M. and \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) RDR-7. (vii) Irrigated. (viii) Gap filling and weeding. (ix) N.A. (x) 17.10.1957.
2. TRFATMENTS to 4. GENERAL:
\(\int\) Same as' in expt no. 56(108) on page 163.
5. RESULTS:

1
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58(137) on page 165.
5. RESULTS :
(i) \(2167 \mathrm{lb} / \mathrm{ac}\). (ii) 580.8 lb ./ac. (iii) Treatment differences are significant. (ix) Av. yield of grain in lb . ac.
\begin{tabular}{llcccc}
Treatments & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{4}\) & \(\mathrm{~S}_{5}\) \\
Av. yield & 2877 & 2527 & 2183 & 1647 & 1602 \\
& \multicolumn{5}{l}{} \\
& S.E./mean & \(=\) & \(237.11 \mathrm{lb} . / \mathrm{ac}\). & &
\end{tabular}
Crop :- Paddy (Kharif).
Ref:- A.P. 58(139).
Site :- Agri. Res. Stn., Rudrur.
Type :- 'C'.

Object:-To find the best spacing for Paddy.
1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy, (b) Paddy. (c) G.M. + Super at 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (ii) (a) Clay loam. (b Refer soil analysis, Rudrur. (iii) 29.5.1958/12.7.1958 (iv) (a) Ploughing, puddlings, levellings and formation of bunds. (b) Transplanting. (c) \(30 \mathrm{bb} / \mathrm{ac}\). (d) As per treatments. (e) 2 to 3 . (v) \(4000 \mathrm{lb} . / \mathrm{ac}\). of G. M. \(+30 \mathrm{~b} . \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) RDR -4. (vii) Irrigated. (viii) Gap filling and weeding. (ix) \(52.74^{\prime \prime}\). (x) 10.12 .1958 .
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58.137) on page 165.
5. RESULTS.
(i) 4200 lb .'ac. (ii) \(823.5 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lccccc}
Treatment & \(\mathrm{S}_{\mathbf{1}}\) & \(\mathrm{S}_{\mathbf{2}}\) & \(\mathrm{S}_{3}\) & \(\mathrm{~S}_{\mathbf{4}}\) & \(\mathrm{S}_{5}\) \\
Av. yield & 4361 & 4323 & 4443 & 4269 & 3605 \\
& & & & &
\end{tabular}

Crop :- Paddy (Rabi).
Site :- Agri. Res. Stn., Rudrur.
```

Ref :- A.P. 58(140).
Type :- 'C'.

```

Object :-To find the best spacing for Faddy.
1. BASAL CONDITIONS :
(i) 'a'Nil. (b) Paddy. (c) G.M. and Super. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 30.1.1958/28.2.1958. (iv) (a) Ploughing, puddling and levelling. (b) Transplantirg. (c) 30 lb 3 c . (d) As per treatments. (e) 2 to 3 . (v) 4000 lb ./ac. of G.M. \(+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) RDR -7 ear'y'. (vii) Irrigated. (viii) Gap filling and wee ing. (ix) \(2.07^{\prime \prime}\). (x) 23.5.1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58 137) on page 165.
5. RESULTS:
(i) \(727 \mathrm{lb} . / \mathrm{ac}\). (ii) \(244.9 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lccccc}
Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{4}\) & \(\mathrm{~S}_{5}\) \\
Av. yield & 721 & 690 & 1066 & 644 & 513 \\
& & & & &
\end{tabular}
```

Grop :- Paddy (Kharif).
Ref :- A.P. 59(91).
Site :- Agri. Res. Stn.; Rudrur.
Type:- ' $\mathbf{M}$ '.

```

Object:-To determine the best spacing for Paddy.
1. BASAL CONDITIONS .
(i) (a) Paddy-Paddy (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A./3rd week of July, 1959. (iv) (a) Dry ploughing, three puddlings and leveling. (b) Transplanting. (c) N.A. (d) As per treatment. (e) N.A. (v) \(50 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M. and G.N.C., 25 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) RDR -7. (early). (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 2nd week of Oct. 1959.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 58 (137) on page 165.
5. RESULTS :
(i) \(1116 \mathrm{lb} . / \mathrm{ac}\). (ii) \(327 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb. Fac .
\begin{tabular}{rccccc}
Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{\mathbf{2}}\) & \(\mathrm{S}_{3}\) & \(\mathrm{~S}_{4}\) & \(\mathrm{~S}_{5}\) \\
Av. yield. & 1165 & 1315 & 1176 & 1043 & 879 \\
, & \multicolumn{5}{l}{ S.E./mean } \\
& \(=\) & \(133.6 \mathrm{lb} . / \mathrm{ac}\). & &
\end{tabular}

\section*{Crop :- Paddy (Kharif). \\ Site :- Agri. Res. Stn., Rudrux.}

Ref :- A.P. 59(92).
Type :- 'C'.
Object :-To determine the best spaeing for Paddy.
1. BASAL CONDITIONS :
(i) (a). Paddy -Paddy (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) N.A./ 3rd week of July, 1959. (iv) 1 dry ploughing, 3 puddlings and levelling. (b) Transplanting (c)-. (d) As per treatments. (e) N.A (v) \(50 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M. and G.N.C. 25 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) RDR-4 (late). (vii) Irrigated. (vi.i) 2 weedings. (ix) N.A. (x) 4 th week of Nov., 1959.
2. TREATMENTS :

Same as in expt. no. 57(109) on page 164.
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) and (b) \(1 / 435.6\) ac. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain [yield. (iv) (a) and (b) No. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2255 \mathrm{lb} . / \mathrm{ac}\). (ii) 338.5 lb ./ac. (iii) The treatment differences are not significant. \({ }^{(0)}\) (vi) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline Treatment & \(S_{1}\) & \(S_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{4}\) \\
\hline Av. yield & 2450 & 2260 & 2088 & 2224 \\
\hline & S.E./ & \(=\) & lb./a & \\
\hline
\end{tabular}

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Rudrur.

Ref:-A.P. 59(93).
Type :- \({ }^{6}{ }^{\prime}\) : \({ }^{\prime \prime}\)

Object:-To determine the best spacing for Paddy
1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 3rd week of July, 1959. (iv) (a) Dry ploughing, three puddlings and levelling. (b) Transplanied. 'c) -. (d) As per treatments. (e) N.A. (v) \(50 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M. and G.N.C. \(+25 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{3}\) as Super (vi) RDR-2 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 4th w.ek of Oct. 1959.
2. TREATMENTS to 4. GENERAL ;

Same as in expt. no. 58(137) on page 165.
5. RESULTS:
(i) \(1975 \mathrm{lb} . / \mathrm{ac}\). (ii) 419.0 lb ./ac. (iii) Treatment differences are not significant. (iv) Av yield of grain in lb.jac.
\begin{tabular}{lccccc}
Treaiment & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{4}\) & \(\mathrm{~S}_{5}\) \\
Av. yield & 2006 & 2110 & 2115 & 1865 & 1778
\end{tabular}
\begin{tabular}{ll}
Crop:- Paddy (Kharif): & Ref :- A.P. 56(64). \\
Site :- Agri. Res. Stn., Rudrur. & Type :- ‘CV'.
\end{tabular}

Object:-To determine the optimum sowing date for different varieties to reduse borer infestation.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Clay loam. '(b) Refer ssil analysis, Rudrur. (iii) N.A.'As per treatments. (iv) (a) 2 dry ploughings +2 wet ploughings and leveling. (b) Transplanted. (c: \(30 \mathrm{lb} / \mathrm{ac}\). (d) and (e) N.A. (v) 60 lb ./ac. of \(\mathrm{N}+60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as on Nitro. Phos. broadsast at wet ploughing and levelling. (vi) As per treatments. (vii) Irrigated. (viii) 2 weedings. (ix) \(63.97^{\prime \prime}\). (x) 26 th Sept. 1956 to 29th November, 1956.
2. TREATMENTS :

Main-plot treatments :
6 dates of transplanting: \(D_{1}=\) Last week of June, \(D_{2}=1\) st week of July, \(D_{3}=2\) nd week of July, \(D_{4}=\) 3rd week of July, \(D_{5}=4\) th week of July and \(D_{6}=1\) st week of August.

\section*{Sub-plot treatments :}

6 varieties \(V_{1}=R D R-7, V_{2}=C H-45\). (both of short duration) \(V_{3}=R D R-2\) and \(V_{4}=H R-19\). both of medium duration). \(V_{5}=R D R-4\) and \(V_{6}=H R-35\);both of long duration).
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/replication. 6 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(50^{\prime} \times 44^{\prime}\) (main-plot). \(50^{\prime} \times 6^{\prime}\) (sub-plot). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of gall-fly and stem-borer-control measures N.A. (iii) Biometric observations and grain yield. (iv) (a) 1955-1957. (b) Yes. (c) Nil. (v) (a) Bapatla. (b) N.A. (vi) and (vii; Nil.

\section*{5. RESULTS :}
(i) \(1679 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(710.0 \mathrm{lb} . / \mathrm{ac}\). (b) 429.8 lb ./ac. (iii) D and V effect and interaction \(\mathrm{D} \times \mathrm{V}\) are highly significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & \(\mathrm{D}_{5}\) & \(\mathrm{D}_{6}\) & & Mean \\
\hline \(\mathrm{V}_{1}\) & 780 & 1398 & 1180 & 1361 & 944 & 1198 & & \(11: 3\) \\
\hline \(\mathrm{V}_{2}\) & 1561 & 1851 & 1561 & 1343 & 1089 & 1525 & , & 1488 \\
\hline \(V_{3}\) & 1978 & 2759 & 1379 & 1997 & 1579 & 1:61 & & 1876 \\
\hline \(V_{4}\) & 2051 & 2940 & 1343 & 1561 & 1089 & 1888 & & 1812 \\
\hline \(V_{5}\) & 3104 & 3158 & 1851 & 2087 & 1597 & 1851 & & 2275 \\
\hline \(\mathrm{V}_{6}\) & 1597 & 1879 & 1162 & 1080 & 917 & 1833 & & 1478 \\
\hline Mean & 1912 & 2331 & 1413 & 1571 & 1202 & 1643 & & 1679 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{lr}
1. D marginal means & \(=144.9 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(V\) marginal means & \(=87.7 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(V\) means at the same level of D & \(=303.9 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(D\) means at the same level of V & \(=344.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Croṕ: :- Paddy (Rabi).
Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 56(65).
Type :- 'CV'

Object :-To determine the optimum sowing date for different varieties to reduce borer infestation.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) Paddy. (c) 60 lb ./ac. of \(\mathrm{N}+60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Nitro. Phos. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) As per treatments. (iv) (a) 2 dry ploughings, 2 wet ploughings and levelling. (b) Broadcasting. (c) \(80 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) \(45 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+45 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied at final puddling. (vi) As per treatments. (vii) Irrigated. (viii) Two weedings. (ix) \(7.48^{\prime \prime}\). (x) April to Juane, 1957.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

5 dates of sowing: \(D_{1}=3\) rd week of Dec. 1956, \(D_{2}=1\) st week of Jan. 1957, \(D_{3}=2\) nd week of Jan., \(\mathrm{D}_{4}=3\) rd week of Jan., and \(\mathrm{D}_{5}=4\) th week of Jan.

\section*{- Sub-plot treatments :}

6 varieties: \(\mathrm{V}_{1}=\mathrm{RDR}-7\) and \(\mathrm{V}_{2}=\mathrm{CH}-45\) (both of short duration) \(\mathrm{V}_{3}=\mathrm{RDR}-2, \mathrm{~V}_{4}=\mathrm{HR}-19\) (both of medium duration) \(\mathrm{V}_{5}=\mathrm{CH}-47\), (125 days) and \(\mathrm{V}_{6}=\) MTU-15 (both of long duration).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication, 6 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) Main-plot: \(50^{\prime} \times 44^{\prime}\). (b) Sub-plot : \(50^{\prime} \times 6^{\prime}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Satisfactory. .(ii) Heavy incidence of paddy stem borer ; control measures N.A. (iii) Biometric observations and grain yield. (iv) (a) 1955-1957. (b) Yes. (c) Nil. (v) (a) Bapatla. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1298 \mathrm{lb} / \mathrm{ac}\). (ii) (a) \(509.6 \mathrm{lb} . / \mathrm{ac}\). (b) \(229.4 \mathrm{lb} / \mathrm{ac}\), (iii) D and V effects as well as interaction \(\mathrm{D} \times \mathrm{V}\) are highly significant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{l|rrrrrr|c}
& \(V_{1}\) & \(V_{2}\) & \(V_{3}\) &.\(V_{4}\) & \(V_{5}\) & \(\mathrm{~V}_{6}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 355 & 698 & 473 & 406 & 1356 & 2383 & 945 \\
\(\mathrm{D}_{2}\) & 213 & 469 & 164 & 221 & 1161 & 2013 & 707 \\
\(\mathrm{D}_{3}\) & 384 & 800 & 220 & 426 & 1175 & 1980 & 831 \\
\(\mathrm{D}_{4}\) & 2227 & 2292 & 2227 & 2163 & 2104 & 2451 & 2244 \\
\(\mathrm{D}_{5}^{-}\) & 1613 & 1717 & 1868 & 1376 & 2003 & 1984 & 1760 \\
\hline Mean & 958 & 1195 & 990 & 918 & 1560 & 2162 & 1298
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll}
D marginal means & \(=104.1 \mathrm{lb} . / \mathrm{ac}\). \\
V marginal means & \(=51.3 \mathrm{lb} . / \mathrm{ac}\). \\
V means at the same level of D & \(=162.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

D means at the same level of V \(\quad=208.7 \mathrm{lb} / \mathrm{ac}\).

Crop :- Paddy.
Site :- Sugarcane Res. Stn., Anakapalle.

Ref:- A.P. 54(55).
Type :- ‘CM'.

Object :-To compare the modified Japanese method of Paddy cultivation with Farm Method.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-G.M.-Paddy. (b) Ganti. (c) Nil. (ii) (a) Loamy. (b) Refer soil analysis, Asakapalle. (iii) \(16.8 .1,54\). (iv) (a. 4 puddlings with country plough and levelling with board. (b) Transplanted. (c) to :a; N.A. (v, Nil. (vi) AKP-4 (medium). (vii) Irrigated. (viii) As per treatments. , (x) 27.47". (x) 6, 7.12.1954.

\section*{2. TREATMENTS:}

2 me:hods of cultivation: \(\mathrm{M}_{1}=\) Modified Japanese method: \(45 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+15 \mathrm{lb}\). ac. of \(\mathrm{N}+10\) ton/ac. of F.Y.M. in puddle; \(15 \mathrm{lb} . / \mathrm{ac}\). of N a fortnight after planting and \(15 \mathrm{lb} . / \mathrm{ac}\). of N one month after planting. Working rotary hoe 4 times. \(\mathrm{M}_{2}=\) Farm method : \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(5000 \mathrm{lb} . / \mathrm{ac}\). of Glyricidia leaf in puddle; 30 lb , ac. of N one month after planting. One weeding was given.
N applied as \(\mathrm{A}_{1} \mathrm{~S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN:
(i) R.B D. (ii) (a) 2 . (b) N.A.
(iii) 12 .
(iv) (a) \(35^{\prime} \times 20^{\prime}\).
(b) \(32^{\prime} \times 15^{\prime}\). (v; \(2 a_{a}^{\prime \prime} \times 11^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal. Slight lodging. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-contd. (b) No. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(3793 \mathrm{lb} / \mathrm{ac}\). (ii) \(235.0 \mathrm{lb} . / \mathrm{a}\). (iii) Treatment difference is significant. (iv) Av. yield of gra: in \(\mathrm{lb} . \mathrm{lar}\).
\begin{tabular}{lcl}
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
Av. yjeld & 4183 & .3403 \\
& & \\
& S.E./mean & \(=67.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll}
Crop :- Paddy. & Ref :- A.P. \(55(51)\). \\
Site :- Sugarcane Res. Stn., Anakapalle. & Type :- \({ }^{6} \mathrm{CM}\),
\end{tabular}

Site :- Sugarcane Res. Stn., Anakapalle.
Type:- 'CM'.
Object :--To study the merits of Japanese method of Paddy cultivation as compared to other methods.

\section*{1. BASAL CONDITIONS :}
(i) (a) Paddy-Sugarcane. (b) Sweet potatos. (c) N.A. (ii) (a) Loamy. (b) Refer soil analysis, Anakapalle. (iii) 15.8.1955. (iv) (a) 3 ploughing and puddlings with country plough. (b) As per treatmen:s. 'c) to (e) N.A. (v) Nil. (vi) AKP-4. (vii) Irrigated. (viii) 3 intercultures with rotary hoe in \(\mathrm{M}_{4}, \mathrm{M}_{5}\) plots and hand weeding twice in others. (ix) N.A. (x) 13.12.1955.
2. TREATMENTS:

5 methods of cultivation : \(M_{1}=\) Control 'bulk planting', \(M_{2}=\) Ryot's method : manured with 40 lb .jac. of \(N\) as \(A / S+112 \mathrm{lb} . / \mathrm{ac}\). of Super \(+5000 \mathrm{lb} . / \mathrm{ac}\). of G.L. in puddle, \(\mathrm{M}_{3}=\) Ryot's method with \(6000 \mathrm{lb} .!\mathrm{ac}\). of G.L. +100 ib . ac each of \(A / S\) and Super in puddle; \(M_{4}=\) Japanese method: manuring as in \(\mathrm{M}_{3}\) with line planting and innerculture, and \(\mathbf{M}_{\mathbf{5}}=\) Japanese method : manuring as in \(\mathbf{M}_{2}\) with line planting and :iterculture.
3. DESIGN :
(i) R.B.D.
(ii) (a) 5. (b) N.A.
(iii) 6 . (iv) (a) \(35^{\prime} \times 20^{\prime}\).
(b) \(32^{\prime} \times 15^{\prime}\)
(v) 2 rows alround.
(vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1955-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 3369 lb ./ac. (ii) 277.9 lb ./ac. (iii) Treatment differences are significant. (iv; Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) \\
\hline \multirow[t]{2}{*}{Av. yield} & 2825 & 3583 & 3456 & 3323 & 3667 \\
\hline & S.E.I & \(=\) & lb./ac. & & \\
\hline
\end{tabular}
```

Crop :- Paddy.
Site :- Sugarcane Res. Stn., Anakapalle.
Ref :- A.P. 56(44).
Type :- 'CM'.

```

Object :-To study the merits of Japanese method of Paddy cultivation as compared to other methods.

\section*{1, BASAL CONDITIONS :}
(i) (a) Sugarcane-G.M.-Paddy. (b) Fallow. (c) Nil. (ii) (a) Loamy. (b) Refer soil analysis, Ánakapalle. (iii) 31.8.1956. (iv) (a) Puddling with country plough and levelling. (b) As per treatments. (c) to (e) N.A. (v) Nil. (vi) AKP-4 (medium). (vii) Irrigated. (viii) Interculture thrice with rotary hoes and hand weeding twice. (ix) \(28.81^{\prime \prime}\). (x) 7.12.1956.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. \(55(51)\) on page 170.
5. RESULTS:
(i) 2745 lb ./ac. (ii) 319.4 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) \\
\hline Av. yield & 2583 & 2703 & 2870 & 2745 & 2828 \\
\hline & S.E./m & \(=1\) & b./ac. & & \\
\hline
\end{tabular}

\section*{Crop :- Paddy.}

Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 56(43).
Type :- 'CM'.

Object : - To assess the merits of modified Japanese method of Paddy cultivation as compareá to Farm method.

\section*{1 BASAL CONDITION:}
(i) (a) Sugarcane-Paddy. (b) Sugarcane. (c) 10 tons/ac, of F.Y.M. and \(100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\). (ii) (a) Loamy. (b) Refer soil analysis, Anakapalle.' (iii) K.A./31.8.1956. (iv) (a) Pudd!ing with country pleugh and levelling. (b) As per treatments. (c) to (e) N.A. (v) As per treatments. (vi) AKP -4 (medium). (vii) Irrigated. (viii) 3 intercultures with rotary hee in \(\mathrm{M}_{1}\) and weeding twice in \(\mathrm{M}_{2}\). (ix) \(28.81^{\circ}\). (x) 10.12 .1956.
2. TREATMENTS :

Two methods of cultivation : \(\mathrm{M}_{1}=\) Japanese method \(: 10\) ton/ac. of C.M. \(+2000 \mathrm{lb} . / \mathrm{ac}\). of ash +2000 \(\mathrm{lb} . / \mathrm{ac}\). of compost. 1 lb . of \(1: 1\) mixture of \(A / S\) and Super per lb . of seed in seed bed. 5 tons/ac. of F.Y.M. and \(15 \mathrm{lb} . / \mathrm{ac}\). of N as A/S applied at planting, \(15 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) applied 15 and 30 days after planting and 45 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in one dose in puddle applied in field and \(\mathrm{M}_{2}=\) Farm method: No manure in seed bed. \(5000 \mathrm{lb} . / \mathrm{ac}\). of G.L. +30 \(\mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) one month after planting and 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}\), as Super in puddle.
3. DESIGN :
(i) R.B.D.
(ii) (a) 2 .
(b) N.A. (iii) 12 .
(iv) (a) \(35^{\prime} \times 20^{\prime}\).
(b) \(32^{\prime} \times 15^{\prime}\).
(v) 2 rows alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii) Nil.
(iii) Grain yield.
(iv) (a) 1953-1956.
(b) No.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(2645 \mathrm{lb} \cdot / \mathrm{ac}\).
(ii) \(392.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment difference is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{lcl}
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
Av. yield & 3002 & 2288 \\
& S E.jmean & \(=113.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Paddy. \\ Site :- Rice Res. Stn., Buchireddipalem.}

Ref :- A.P. 54(49).
Type :- 'CM'.
Object : - To compare dry ploughing against puddling in paddy cultivation.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 28.7.1954/2.9.1954.
(iv) (a) As per treatments. (b) N A. (c) \(30 \mathrm{lb} . / \mathrm{ac}\). (d) \(6^{\circ} \times 6^{\prime \prime}\). (e) 2 . (v) Nil. (vi) BCP-1 (late). (vii) Irrigated. (viii) Weeding, (ix) \(30.21^{\prime \prime}\). (x) \(25,26.1 .1955\).
2. TREATMENTS :
1. Dry ploughing 2 to 3 times.
2. Dry ploughing +4000 lb ./ac. of G.L. applied.
3. G.M. raised and puddled.
4. Puddling after giving water.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 6 . (iv) (a) and (b) \(55^{\prime} \times 22^{\prime}\). (v) NII. (vi) Yes.
4. GENERAL:
(i) Fair. (ii) and (iii) Nil. (iv) (a) 1952-contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii, Nil.
5. RESULTS :
(i) \(2093 \mathrm{lb} . / \mathrm{ac}\). (ii) \(216.7 \mathrm{lb} / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{llccc}
Treatment & 1 & 2 & 3 & 4 \\
Av. yield & 1921 & 2266 & 2189 & 2013 \\
& S E./mean & \(=\) & \(88.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Grop :- Paddy (Kharif).
Site :- Rice Res. Stn., Buchireddipalem.
Ref:- A.P. 55(95).
Type :- 'CM'.

```

Object:-To compare dry ploughing against puddling in Paddy cultivation.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Paddy. (c) N A. (ii) (a) Sandy loam. (b) N.A. (iii) 9.7.1955/30.7.195s. (iv) (a) 3 puddlings and levelling. (b) Transplanting. (c) \(30 \mathrm{lb} . / \mathrm{ac}\). (d) \(10^{\circ} \times 6^{\circ}\) (e) 2 . (v) As par treatments. (vi) BCP -1 (late). (vii) Irrigated. (viiii) Weeding and gap filling. (xi) \(26.01^{\prime \prime}\). (x) 28.1.1956.
2. TREATMENTS :

Same as in expt. no. 54(49) above.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) \(230^{\prime} \times 22^{\prime}\). (iii) 6 . (iv) (a) \(55^{\prime} \times 22^{\prime}\). (b) \(53^{\prime} \times 21^{\prime}\) (v) \(1^{\prime} \times \frac{1}{2}^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) N.A. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 2563 ib. /ac. (ii) \(282.6 \mathrm{lb} / \mathrm{ac}\). (iii) The treatment differences are significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lcccc}
Treatment & 1 & 2 & 3 & 4 \\
Av. yield & 2599 & 2717 & 2177 & 2759 \\
& \multicolumn{5}{c}{} \\
& S.E. mean \(=\) & \(115.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Paddy. \\ Site :- Rice Res. Stn., Buchireddipalem.}

Ref :-A.P: 56(29).
Type:- 'CM'.
Object:-To compare dry ploughing against puddling in Paddy cultivation
1. BASAL CONDITIONS :
(i) (a) No. (b) Fallow-Sannhemp. (c) 100 lb ./ac. of A/S : \(\frac{1}{2}\) at planting and \(\frac{1}{2}\) as top dressing 30 days after planting \(+75 \mathrm{lb} . / \mathrm{ac}\). of Triple Super. (ii) (a) Sandy loam. (b) N.A. (iii) 4.7.1956/23, 24.8.1956. (iv) (a) As per treatments (b) N.A. (c) \(25 \cdot\) ib./ac. (d) \(10^{\circ} \times 6^{\circ}\). (e) 2 . (v) Same as in (i) (c). (vi) BCP-1 (late) (vii) Irrigated. (viii) 3 hand weedings (ix) \(60.92^{\prime \prime}\). (x) 22.1.1957.
2. TREATMENTS:

Same as in expt. no. 54(49) on page 172.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 6 . (iv) (a) and (b) \(55^{\circ} \times 22^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Slight attack of stem-borer ; dusting B.H.C. \(10 \%\). (iii) Yield of grain. (iv) (a) 1952-1956. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS:
(i) \(2326 \mathrm{lb} . / \mathrm{ac}\). (ii) \(280.8 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{lcccc}
Treatment & 1 & 2 & 3 & 4 \\
Av. yield & 2290 & 2450 & 2226 & 2336.
\end{tabular}

\section*{Crop :- Paddy (Second crop). \\ Site :- Rice Res. Stn., Buchireddipalem.}

Ref :- A.P. 54(39).

Object :-To find out the relative merits of Japanese and Farm methods of Paddy cultivation.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy, (c) \(8000 \mathrm{lb} . / \mathrm{ac}\). of G.L. +2000 lb ./ac. of lime and \(112 \mathrm{lb} . / \mathrm{ac}\). of Super. (ii) (a) Sandy loam. (b) N.A. (iii) 7.2.1954/9 to 12.3.1954. (iv) (a) 2 to 3 ploughings. (b) As per treatments. (c) N.A. (d) and (e) As per treatments. (v) 5000 lb ./ac. of G.L. and \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) SLO-19 (early). (vii) Irrigated. (viii) As per treatments. (ix) 0.73". (x) 8.6.1954.
2. TREATMENTS :

All combination of (1) and (2)
(1) 2 levels of manure : \(N_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{N}_{2}=45 \mathrm{lb} / \mathrm{ac}\). of N as \(A / \mathrm{S}\).
(2) 2 methods of cultivation: \(M_{1}=\) Japanese method: Application of \(\frac{1}{2} \mathrm{~N}\) at planting. \(\frac{1}{4} \mathrm{~N} 15\) days later and \(\frac{1}{4} \mathrm{~N}\) one month after planting. Planting in line at \(10^{\prime \prime} \times 4^{\prime \prime}\) with 2 or 3 seedlings. First weeding 15 days after planting and intercultivating with rotary hoe at fortnightly intervals till a month before flowering, and \(\mathrm{M}_{2}=\) Farm method: \(\frac{1}{2} \mathrm{~N}\) at planting and \(\frac{1}{2} \mathrm{~N} 3\) to 4 weeks later with weeding.
3. DESIGN :
(i) Fact.i n R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) and (b) \(9^{\prime} 11^{\prime \prime} \times 44^{\prime \prime}\). (v) Nil: (vi) Yes.
4. GENERAL:
(i) Fair. (ii) Nil. (iii) Height measurements, tiller count and grain yield. (iv) (a) 1954-contd. (b) and (c) N.A. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2325 \mathrm{lb} . / \mathrm{ac}\). (ii) 94.8 lb ./ac. (iii) Main effect of M is highly significant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{l|ll|l}
& \(\mathbf{M}_{1}\) & \(\mathbf{M}_{2}\) & Mean \\
\hline \(\mathbf{N}_{1}\) & 2363 & 2196 & 2279 \\
\(\mathbf{N}_{\mathbf{a}}\) & 2478 & 2263 & 2371 \\
\hline Mean & 2420 & 2230 & 2325
\end{tabular}
\(\begin{array}{ll}\text { S.E. of any marginal mean } & =27.4 \mathrm{lb} / / \mathrm{ac} \\ \text { S.E. of body of table } & =38.3 \mathrm{lb} . / \mathrm{ac} .\end{array}\)

\section*{Crop :- Paddy. \\ Site :- Rice Res. Stn., Buchireddipalem.}

\section*{Ref :- A.P. 54(44).}

Type :- ‘CM'.
Object:-To find out the relative merits of Japanese and Farm methods of Paddy cultivation.

\section*{(453)}
1. BĀSAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 5.8.1954/23.9.1954. (iv) (a) 2 to 3 ploughings. (b) As per treatments. (c) N.A. (d) and (e) As per treatments. (v) As per treatments. (vi) \(\mathrm{BCP}-1\) (late). (vii) Irrigated. (viii) 5000 ib ./ac. of G.I. and \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (ix) 29.4". (x) 29.1.1955.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 54(39) on page 173.
4. GENERAL :
(i) Fair. (ii) Attack of blast-control measures N.A. (iii) Height measurement, tiller count and grain yield. (iv) (a) 1954 -zontd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1821 \mathrm{ib} . / \mathrm{ac}\). (ii) 243.5 lb ./ae. (iii) Main effect of M is highly significant. (iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 1782 & 1770 & 1777 \\
\hline \(\mathrm{N}_{2}\) & 1950 & 1781 & 1866 \\
\hline Mean & 1865 & 1776 & 1821 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{S.E. of N or M marginal mean S.E. of body of table}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& =70.3 \mathrm{lb} \cdot . \mathrm{ac} \\
& =99.4 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
\]} \\
\hline & & & \\
\hline
\end{tabular}

\footnotetext{
Crop :- Paddy (Kharif).
Site :- Rice Res. Stn., Buchireddipalem.
Ref:- A.P. 55(96).
Type :- 'CM'.
}

Object :-To compare the Japanese method of Paddy cultivation with the Farm method.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) 29.6.1955/6.8.1955. (iv) (a) 3 puddlings and levelling.
(b) Transplanting. (c) N.A.(d) As per treatments. (e) 2 to 3 . (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of G.L. and 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
(vi) BCP-1 (late). (vii) Irrigated. (viii) As per treatments. (ix) 26.01". (x) 28.1.1956.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 methods of cultivation: \(\mathrm{M}_{1}=\) Japanese method : Transplanted at spacing \(10^{\prime \prime} \times 10^{\prime \prime}\) and working push hoe upto shot-blade stage and \(\mathrm{M}_{2}=\) Farm method: spacing \(6^{\prime \prime} \times 6^{\prime \prime}\) and 3 weedings.
(2) 2 levels of manuring: \(\mathrm{N}_{1}=30\) and \(\mathrm{N}_{2}=45 \mathrm{lb}\)./ac. of N .
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 4. (b) \(186^{\prime} \times 10^{\prime}\). (iii) 6 . (iv) (a) \(44^{\prime} \times 10^{\prime}\). (b) \(40^{\prime} 10^{\prime \prime} \times 8^{\prime} 4^{\prime \prime}\) for \(\mathrm{M}_{1}\) and \(43^{\prime} \times 9^{\prime}\) for M \(_{2}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. '(iii) Yield of grain. (iv) (a) 1954-55 and 1958-59. (b) Yes.' (c) Nil.' (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2376 \mathrm{lb} / \mathrm{ac}\). (ii) \(311.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of M is highly significant. Effect of N is significant and interaction \(\mathrm{N} \times \mathrm{M}\) is not significant. (iv) Av. yield of grain in lb./ac.

\begin{tabular}{llr}
S.E. of N or M marginal mean & \(=89.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=127.1 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

Crop:- Paddy (Rabi).
Site :- Rice Res. Stn., Buchireddipalem.

Ref :- A. P. 56(110).
Type :- 'CM'.

Object :-To compare Japanese method of Paddy cultivation with the Farm method.
1, BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) \(9.2 .1956 / 11\) and 12.3.1956. (iv) (a) 3 puddlings and levelling. (b) Transplanting. (c) N.A. (d) As per treatments. (e) 2 to 3 . (v) As per treatments. (vi) SLO -19 (early), (vii) Irrigated. (viii) 5000 lb ./ac. of G.L. and \(30 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (ix) 4.18 \({ }^{\prime \prime}\) (x) 1.6.1956.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 methods of cultivation : \(M_{1}=\) Japanese method: spacing \(10^{\prime \prime} \times 4^{\prime \prime}\), working push hoe upto shot blade stage and \(\mathrm{M}_{2}=\) Farm method : spacing \(4^{\prime \prime} \times 4^{\prime \prime}\) and 2 weedings.
(2) 2 manurial doses : \(\mathrm{N}_{1}=30\) and \(\mathrm{N}_{2}=45 \mathrm{lb}\)./ac. of N .
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 4. (b) \(186^{\prime} \times 10^{\prime}\). (iii) 6 . (iv) (a) \(44^{\prime} \times 10^{\prime}\) : (b) \(40^{\prime} 10^{\prime \prime} \times 9^{\prime} 4^{\prime \prime}\) for \(M_{1}\) and \(43^{\prime \prime} 4^{\prime \prime} \times 9^{\prime} 4^{\prime \prime}\) for \(M_{2}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1954-1958. (b) Yes. (c) Nil. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1872 \mathrm{lb} . / \mathrm{ac}\). (ii) 318.7 lb /ac. (iii) No effect is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c:cc:c}
& \(\mathrm{M}_{1}\) & \(\mathrm{M}_{\mathbf{2}}\) & Mean \\
\hline \(\mathrm{N}_{\mathbf{1}}\) & 1933 & 1967 & 1950 \\
\(\mathrm{~N}_{\mathbf{2}}\) & 1779 & 1809 & 1794 \\
\hline Mean & 1856 & 1888 & 1872
\end{tabular}
\begin{tabular}{llc}
S.E. of \(N\) or \(M\) marginal mean & \(=92.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=130.1 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll}
Crop :- Paddy (1st crop). & Ref :- A.P. 56(28). \\
Site :- Rice Res. Stn., Buchireddipalem. & Type :- \(\mathbf{C M M}^{\prime}\).
\end{tabular}

Object :-To determine the relative merits of Japanese and Farm methods of Paddy cultivation.
1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. 'c', N.A. ,ii, 'a, Sandy loam. (b) N.A. (iii', 25.7.1956/2 and 3.9.1956. (iv) 'a', 2 to 3 dry ploughings, 2 pudaings whith coun ry plough. and one with mecbanical puddler. (b) to (e) As per treatments. \(v ; 5000 \mathrm{lb}\). ac. of G.L. and 30 lb . ac. \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Jriple Super applied before transplanting. (vi) (vi) \(\mathrm{BCP}-1\) (late). (vii, Irrigated. (viii) 3 hand weedings. (ix) \(60.92^{\prime \prime}\). (x) 23.1.1957.
2. TREATMENTS :

A 1 combinations of (1) and (2)
(1) 2 leveis of \(N\) as A.S: \(N_{1}=30 \mathrm{lb} . / \mathrm{ac}\). , and \(\mathrm{N}_{2}=45 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 methods of cultivation: \(\mathrm{M}_{1}=\) Japanese method : application of \(\frac{1}{2} \mathrm{~N}\) at planting and \({ }_{2}^{1}\) : one month later. Line planting at \(10^{*} \times 4^{\prime \prime}\) spacing with 3 to 4 seedlings hole. 1st weeding 15 days after planting and interculture in fortnightly intervals with rotary weedet till one month before flowering. \(\mathrm{M}_{2}=\) Farm method : application of \(\frac{1}{2} \mathrm{~N}\) at planting and \(\frac{1}{2} \mathrm{~N} 4\) days later. Weeding every 3 weeks; 2 to 3 seedlings/hole with spacing \(4^{\prime \prime} \times 4^{\prime \prime}\).
3. DESIGN:
(i) Fact. in R.B.D. (i) (a) \(4^{\prime}\).b) N A. (iii) 6. (iv) (a) \(44^{\prime} \times 10^{\prime}\). (b) \(43^{\prime} 6^{\prime \prime} \times 9^{\prime} 2^{\prime \prime}\) for \(\mathrm{M}_{1}\) and \(43^{\prime \prime} 6^{\prime \prime} \times 9^{\prime \prime}\) for \(\mathbf{M}_{2}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Slight attack of stem-borer ; dusting of BHC \(10 \%\). (iii) Yield of grain. (iv) (a) 1953contd. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(2188 \mathrm{lb} . / \mathrm{ac}\). (ii) \(221.3 \mathrm{lb} . / \mathrm{ac}\). (iii), No effect is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 2222 & 2158 & 2190 \\
\hline \(\mathrm{N}_{2}\) & 2309 & 2064 & 2:86 \\
\hline Mean & 2265 & 2111 & 2188 \\
\hline \multicolumn{3}{|l|}{S.E. of M or N marginal mean} & . \(9 \mathrm{lb} . / \mathrm{ac}\) \\
\hline \multicolumn{3}{|l|}{S.E. of bcdy of table} & \(3 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}

\section*{Crop :- Paddy (2nd crop). \\ Site :- Rice Res. Stn., Buchireddipalem. \\ Ref :- A.P. 57(7). \\ Type :- 'CM'.}

Object:-To ascertain the relative merits of Japanese and Farm methods of Paddy cultivation.
1. BASAL CONDITIONS:
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 5.2.1957/11, 12.3.1957.
(iv) (a) 2 to 3 dry ploughings and 2 puddlings with country plough followed by one puddle with mechanical puddler. (b) to (e) As per treatanents. (v) 5000 lb ./ac. of G.L. and \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Triple Super. G.L. ploughed in situ before sowing. Super applied at puddling time. (vi) SLO-19 (early). (vii) Irrigated. (viii) 3 weedings. (ix) N.A. (x) 30.5.1957.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of manure: \(N_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of N and \(\mathrm{N}_{2}=45 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
(2) 2 methods of cultivation: \(\mathrm{M}_{1}=\) Japanese method: Transplanting in lines at \(10^{\prime \prime} \times 4^{\prime \prime}\) spacing with 3 to 4 seedlings/hole. First weeding 15 days after planting and intercultivation with rotary weeder every 15 days till one month before flowering. Application of \(\frac{1}{2} \mathrm{~N}\). at planting and \(\frac{1}{2} \mathrm{~N}\) a month later, \(\mathrm{M}_{2}=\) Farm method: Transplanting at \(4^{\prime \prime} \times 4^{\prime \prime}\) spacing with 2 to 3 seedlings/hole. Application of \(\frac{1}{2} N\) at planting and \(\frac{1}{2} N 4\) days later. Weeding every 3 weeks.

\section*{3. DESIGN :}
(i) Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) \(44^{\prime} \times 10^{\prime}\). (b) \(43^{\prime} 8^{\prime \prime} \times 9^{\prime} 2^{\prime \prime}\) for \(M_{1}, 43^{\prime \prime} 8^{\prime \prime} \times 9^{\prime} 8^{\prime \prime}\) for \(M_{2}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Normal. (ii) Slight attack of stem borer-Control measure N.A. (iii) Yie.d of grain. (iv) (a)
1953-contd. (b) No. (c) Nit. (v) to (vii) Nil.
5. RESULTS :
(1) \(2397 \mathrm{lb} / \mathrm{ac}\)
(ii) \(139.1 \mathrm{lb} / \mathrm{ac}\)
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|ll|l}
& \(\mathrm{M}_{1}\) & \(\mathrm{M}_{\mathbf{2}}\) & Mean \\
\hline \begin{tabular}{l}
\(\mathrm{L}_{1}\) \\
\(\mathrm{~L}_{2}\)
\end{tabular} & \begin{tabular}{ll}
2318 & 2391 \\
2404 & 2476
\end{tabular} & \begin{tabular}{l}
2354 \\
2440
\end{tabular} & \begin{tabular}{l}
Mean \\
2361
\end{tabular} \\
\hline 2433. & 2397
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of } \mathrm{N} \text { or M marginal mean } & =40.2 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of tables } & =56.7 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

Crop :- Paddy (1st crop).
Site :- Rice Res. Stn., Buchireddipalem.

Ref:- A.P. 57(19).
Type:- ‘CM'.

Objects :-To find out the relative merits of Japanse meihod of Paddy cultivation and Farm method at different levels of fertilizers.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) \(177.57 / 31.8 .57\) and 19.1957 . (iv) (a) 3 dry ploughings and 3 puddlings. (b) to (e) As per treatments. (v) 5000 lb ./ac. of G.L. and 30 lb ./ac. of \(\mathrm{P}_{9} \mathrm{O}_{5}\). (vi) \(\mathrm{BCP}-1\) (late). (vii) Irrigated. (viii) As per treatments. (ix) \(26 \cdot 66^{\circ}\).(x) 30.1.19'8.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) 2 levels of \(N\) as \(A / S: N_{1}=30\) and \(N_{2}=45 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 methods of cultivatjons: \(M_{1}=\) Japanese method: Transplanting at \(10^{\prime \prime} \times 6^{\prime \prime}\) spacing with 4 seedlings/hole. \(\frac{1}{2} \mathrm{~N}\) at planting and \(\frac{1}{2} \mathrm{~N}\) a month later befcre weeding; intercultivation with rotary weeder. \(\mathbf{M}_{\mathbf{2}}=\) Farm method : Transplasting at \(6^{\prime \prime} \times 6^{\prime \prime}\) with 2 seedlings/hole; \(\frac{1}{2} \mathrm{~N}\) at planting and \(\frac{1}{2} \mathrm{~N}\) one month later, before weeding.

\section*{4. DESIGN :}
(i) Fact. in R.B.D. (ii) (a) 4 . (b) N.A. (iii) 6. (iv) (a) \(44^{\prime} \times 10^{\prime}\). (b) \(43^{\prime \prime} 4^{\prime \prime} \times 9^{\prime} 2^{\prime \prime}\) for \(M_{1}\) and \(43^{\prime} 6^{\prime \prime} \times 9^{\prime} 6^{\prime \prime}\) for \(\mathrm{M}_{2}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good ; lodged at pre-harvest stage. (ii) Attack of mealy bugs and jassids-dusted DDT- \(50 \%\). (iii) Height measurement and tiller count were recorded twice : at pre-flowering stage and after flowering and grain yield. (iv) (a) 1955 -contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 2950 lb ./ac. (ii) 254.0 lb ./ac. (iii) N and M effects are not significant, interaction \(\mathrm{N} \times \mathrm{M}\) is significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|ll|l}
& \(\mathbf{M}_{1}\) & \(\mathbf{M}_{2}\) & Mean \\
\hline \begin{tabular}{l}
\(\mathbf{N}_{1}\), \\
\(\mathrm{N}_{2}\)
\end{tabular} & 2783 & 3003 & 2893 \\
\(\cdots\) Mean & 2984 & 2829 & 3007 \\
\hline 2916 & 2950
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal mean & \(=73.3 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=103.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Paddy (Kharif).

> Ref :- A.P. 58(3).

Site :- Rice Res. Stn., Buchireddipalem.
Type :- 'CM'.
Object :-To fird out the relative merits of the Japanese \(a _d\) Farm methods of Paddy cultivation.
1. BASAL CONDITIONS :
(i) (a) Paddy after Paddy. (b) Paddy. (c) As per experimental schedule. (ii) (a) Sandy loam. (b) N.A.
(iii) \(16.7 .1958 / 4.9 .1958\). (iv) (a) 2 dry ploughings and 3 wet puddlings. (b) As per treatments. (c) \(21 \mathrm{lb} . / \mathrm{ac}\).
(d) and (e) As per treatments. (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of G.L. and 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (vi) BCP-1 (late). (vii) Irrigated. (viii) As per treatments (ix) \(46.98^{\prime \prime}\). (x) 25.1.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 57(19) on page 177.
4. GENERAL :
(i) Good, lodging at pre-flowering stage. (ii) Attack of leaf-roller and stem borer noticed. Brushwood was dragged over the crop and B.H.C. \(10 \%\) dusted, Endrine sprayed. (iii) Tiller count, height measurement, and grain yield. (iv) (a) 1954-1958. (b) Yes. (c) Nil. (v) (a)'N.A. (b) Mil. (vi) and (vii) Nıl.
5. RESULTS :
(i) 1401 lb ./ac. (ii) \(301.7 \mathrm{lb} / \mathrm{ac}\). (iii) None of the effects is signigficant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|ll|l}
& \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & Mean \\
\hline \begin{tabular}{c|cc}
\(\mathrm{N}_{1}\) & 1496 & 1573 \\
\(\mathrm{~N}_{2}\) & 1155 & 1379
\end{tabular} & \begin{tabular}{l}
1534 \\
Mean
\end{tabular} & 1325 & 1476
\end{tabular}

\section*{Crop :- Paddy (Rabi). \\ Site :- Rice Res. Stn., Buchireddipalem.}

Ref :- A.P. 59(2).
Type :- 'GM'.
Object :-To find out the relative merits of Jipanese and Farm methods of Paddy cultivation.
1. BASAL CONDITIONS :
(i) (a) Pad.ly-Paddy. (b) and (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 31.1.1959/1.3.1959. (iv) (a) 3 dry ploughings and 3 wet puddlings. (b) Transplanted. (c) \(21 \mathrm{lb} / \mathrm{ac}\). (d) and (e) As per treatments. (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of G.L. \(1 \mathrm{~b} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (vi) SLO-19 (early). (vii) Irrigated. (viii) As per treatments. (iv) \(46.98^{\prime \prime}\). (x) \(16.5 .1 \div 59\).
2. 'TREATMENTS :

Same as in expt. no. \(57(19)\) on page 177.
3. DESIGN :

I (i) Fact. in R B.D. (ii) (a) 4. (b) \(50^{\prime} \times 46^{\prime}\). (iii) 6 . (iv) (a) \(44^{\prime} \times 10^{\prime}\). (b) \(43^{\prime} 8^{\prime \prime} \times 9^{\prime} 2^{\prime \prime}\) for \(\mathrm{M}_{1}\) and \(43^{\prime \prime}\) \(8^{\prime \prime} \times 9^{\prime} 8^{\prime \prime}\) for \(\mathrm{M}_{2}\). (v) One row alround the plot. (vi) Yes.
4. GENERAL :
(i) 'Good. (ii) Rice stem borer occurred-Endrine sprayed. (iii) Height measurement, tiller count and yield. (iv) (a) \(1954-1959\). (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.。
5. RESULTS:
(i) \(1892 \mathrm{lb} . / \mathrm{ac}\). (ii) \(181.0 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|ll}
\(\mathrm{N}_{1}\) \\
\(\mathrm{~N}_{2}\)
\end{tabular}\(\left|\begin{array}{ll}\mathrm{M}_{1} & \mathrm{M}_{2} \\
1750 & 1864 \\
1973 & 1981\end{array}\right|\)\begin{tabular}{l}
1807 \\
\hline Mean Mean \\
1977 \\
\hline 1862 \\
\hline 1922
\end{tabular}
S.E. of any marginal mean \(\quad=52.3 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table \(\quad=73.9 \mathrm{lb} . / \mathrm{ac}\).
```

Grop:- Paddy (Kharif).
Site :- Govt. Agri. Farm, Dindi.

```

\section*{Ref:- A.P. 56(106).}
```

Site :- Govt. Agri. Farm, Dindi.
Type :- ${ }^{6} \mathrm{CM}{ }^{\prime}$.

```

Object:-To study the effect of spacing, manuring and interculturing as under the Japanese method of Paddy cultivation.
1. BASAL CONDITIONS:
(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii) (ạ) Sandy loam. (b) N.A. (iii) 14.9.1956. (iv) (a) Two puddlings and levelling. (b) Transplanting. (c) N.A. (d) As per treatments. (e) 2 . (v) No. (vi) HR-35 (late). (vii) Irrigated. (viii) As per treatments. (ix) 17.70". (x) 22.12.1956.
2. TREATMENTS:

All combinations of (1), (2) and (3).
(1) 3 levels of manuring: \(\mathrm{M}_{1}=64 \mathrm{lb}\). ac. of \(\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied at last puddle, \(\mathrm{M}_{2}=22\) lb. \(/ \mathrm{ac}\). of \(\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) at last puddle \(+42 \mathrm{lb} / \mathrm{ac}\). of N top-dressed 40 and 80 days later and \(\mathrm{M}_{3}=22 \mathrm{lb}\)./ac. of \(\mathrm{N}+11 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{8} \mathrm{O}_{5}\) applied at last puddle. '.
(2) 2 spacings: \(\mathrm{S}_{1}=10^{\prime \prime} \times 10^{\prime \prime}\) and \(\mathrm{S}_{2}=6^{\prime \prime} \times 6^{\prime \prime}\).
(3) 2 methods of interculture: \(I_{1}=4\) intercultures with Japanese weeder and \(I_{2}=2\) hand weedings.
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 12.
(b) N.A. (iii) 4.
(iv) (a) and (b) \(12^{\prime} \times 60^{\prime}\).
(v) No. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Yield of grain an 1 straw. (iv) (a) 1955 -contd. (b) Yes. (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2431 \mathrm{lb} . / \mathrm{ac}\). (ii) \(227.8 \mathrm{lb} . / \mathrm{ac}\). (iii) M effect is highly significant and S effect is significant. Interactions are not significant. (iv) Av. yield of grain in \(\mathrm{lb} . ; \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & Mean & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) \\
\hline \(\mathrm{M}_{1}\) & 2193 & 2420 & 2:07 & 2284 & 2329 \\
\hline \(\mathrm{M}_{2}\) & 2465 & 2738 & 2602 & 2602 & 2602 \\
\hline \(\mathrm{M}_{3}\) & 2435 & 2337 & 2386 & 2352 & 2420 \\
\hline Mean & 2364 & 2498 & 2431 & 2412 & 2450 \\
\hline \(\mathrm{I}_{1}\) & 2334 & 2491 & & & \\
\hline \(\mathrm{I}_{2}\) & 2395 & 206 & & & \\
\hline \multicolumn{3}{|r|}{S.E. of M marginal mean} & & \(=5\) & \\
\hline \multicolumn{4}{|c|}{S.E. of S or I marginal mean} & \(=4\) & \\
\hline \multicolumn{4}{|r|}{S.E. of body of \(\mathrm{M} \times \mathrm{S}\) and \(\mathrm{M} \times \mathrm{I}\) tables} & \(=80\) & \\
\hline \multicolumn{4}{|c|}{S.E. of body of S \(\times I\) table} & \(=6\) & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { Crop :- Paddy (Rabi). } & \text { Ref := A.P. 57(105). } \\
\text { Site :- Govt. Agri. Farm, Dindi. } & \text { Type :- ‘CM'. }
\end{array}
\]

Object:-To study the effect of spacing, manuring and interculturing as under the Japanese method of Paddy cultivation.
1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 2.2.1957. (iv) (a) 2 dry ploughings, 2 puddlings and levelling. (b) Transplanting. (c) \(50 \mathrm{lb} . / \mathrm{ac}\). (d) As per ureatments. (e) 2 to 3. (v) No. (vi) HR-19(medium). (vii) Irrigated. (viii) As per treatments. (ix) \(4.0^{\circ}\). (x) 4.5.1957.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 56(106) on page 179.
5. RESULTS :
(i) \(1835 \mathrm{lb} . / \mathrm{ac}\). (ii) \(636.1 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of grain in lb . ac .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(S_{1}\) & \(S_{2}\) & Mean & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) \\
\hline \(\mathrm{M}_{1}\) & 1717 & 1951 & 1834 & 1777 & 1891 \\
\hline \(\mathrm{M}_{2}\) & 1978 & 1678 & 1838 & 1962 & 1713 \\
\hline \(\mathrm{M}_{3}\) & 1872 & 1796 & 1834 & 2000 & 1668 \\
\hline Mean & 1855 & 1815 & 1835 & 1913 & 1757 \\
\hline \(\mathrm{I}_{1}\) & 1906 & 1921 & & & \\
\hline \(\mathrm{I}_{2}\) & 1805 & 1709 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of \(M\) marginal mean & \(=159.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(S\) or \(I\) marginal mean & \(=129.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(M \times S\) or \(M \times I\) table & \(=224.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(S \times I\) table & \(=183.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Paddy (Kharif).
Site :- Govt. Agri. Farm, Dindi.

\section*{Ref:- A.P. 58(128).}

Type :- \({ }^{6} \mathbf{C M}^{9}\).

Object :-To study the effect of spacing, manuring and interculturing as under Japanese method of Paddy cultivation.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 22.8.1958. (iv) (a) Two puddlings and levelling. (b) Transplanting. (c) N.A. (d) As per treatments. (e) 2. (v) Nil. (vi) HR - 35 (late). (vii) Irrigated. (viii) As per treatments. (ix) 17.29". (x) 10.12.1958.
2. TREATMENTS :

Same as in expt. no. 56(106) on page 179.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) and (b) \(30^{\prime} \times 24^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1956 -contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1597 \mathrm{lb} . / \mathrm{ac}\). (ii) \(422.7 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yidid of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(S_{2}\) & Mean & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) \\
\hline \(\mathrm{M}_{1}\) & 1399 & 1671 & 1535 & 1437 & 1633 \\
\hline \(\mathrm{M}_{2}\) & 1641 & 1883 & 1762 & 1505 & 2079 \\
\hline \(\mathrm{M}_{3}\) & 1414 & 1573 & 1494 & 1308 & 1679 \\
\hline Mean & 1485 & 1709 & 1597 & 1417 & 1777 \\
\hline \(\mathrm{I}_{1}\) & 1346 & 1487 & & & \\
\hline \(\mathrm{I}_{2}\) & 1623 & 1931 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrr}
S.E. of \(M\) marginal mean & \(=105.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(S\) or I marginal mean & \(=86.3 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{M} \times \mathrm{S}\) or \(\mathrm{M} \times I\) table & \(=149.5 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(S \times I\) table & \(=122.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop :- (Kharif).
Site :- Govt. Agri. Farm, Dindi.

Ref :- A.P. 59(12).
Type :- \({ }^{6} \mathbf{C M}\) '.

Object :-To study the effect of spacing, manuring and interculturing as under the Japanese method of Paddy cultivation:
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Chalka soil. (b) N.A. (iii) 29.7.1959. (iv) (a) 3 puddlings. (b) and (c) N•A. (d) As per treatments. (e) N.A. (v) Nil. (vi) HR-35. (vii) Irrigated. (viii) As per treatments. (ix) \(22.43^{\prime \prime}\). (x) 7.12.1959.

\section*{2. TREATMENTS}

Same as in expt no. 56(106) on page 179.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) and (b) \(30^{\circ} \times 24^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1956 -contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2040 \mathrm{lb} . / \mathrm{ac}\). (ii) \(501.9 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is sigaifcant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

```

Grop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Maruteru. Type :- 'CM'.

```

Object :-To find out the effect of interculture with spacing and manuring on Paddy.
1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy clay. (b) N.A. (ii) \(26.5 .1957 /\) 3.7.1957. (iv) (a) 3 puddlings and levelling. (b) Transplanting. (c) N.A. (d) and (e) As p treatments. (v) As per treatments. (vi) MTU-10 (medium). (vii) Irrigated. (viii) As per treatments. (ix) \(3003^{\prime \prime}\). (x) 20.11.19:7.

\section*{2. TREATMENTS}

All combination of (1), (2) and (3)
(1) 3 levels of manuring : \(\mathrm{M}_{0}=\) No manure ; \(\mathrm{M}_{1}=5000 \mathrm{lb}\)./ac. of G.L. and 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{M}_{2}=\) \(\mathrm{M}_{1}+20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) in 2 doses.
(2) 2 spacings : \(S_{1}=10^{\prime \prime} \times 8^{\prime \prime}\) with 4 seedlings/hole and \(S_{2}=10^{\prime \prime} \times 6^{\prime \prime}\) with 3 seedlings/hole.
(3) 2 levels of interculture : \(\mathrm{I}_{0}=\) No interculture and \(\mathrm{I}_{1}=\) Interculture.
3. DESIGN :
(i) Fact. in R. plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Tiller count, height measurement and yield of grain. (iv, (a) 1955-contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(3798 \mathrm{lb} . / \mathrm{ac}\). (ii) \(187.9 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of grain in 1 b ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & Mean & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) \\
\hline \(\mathrm{I}_{0}\) & 3731 & 3731 & 3912 & 3791 & 3764 & 3818 \\
\hline I & 3731 & 3832 & 3852 & 3805 & 3805 & 3805 \\
\hline Mean & 3731 & 3781 & 3882 & 3798 & 3785 & 3811 \\
\hline \(\mathrm{S}_{1}\) & 3711 & 3811 & . 3832 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \(\mathrm{S}_{2}\) & 3751 & 3751 & - 3933 & & & \\
\hline
\end{tabular}
\begin{tabular}{lr}
S.E. of M marginal mean & \(=47.0 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of \(S\) or I marginal mean & \(=43.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(M \times I\) or \(M \times S\) table & \(=66.4 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(S \times I\) table & \(=54.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Paddy (Rabi).
Site :- Agri. Res. Stn., Mariteru.

Ref :-A.P. 57(57).
Type :- 'CM'.

Object :-To find cut the effect of interculture with spacing and manuring on Paddy.
1. BASAL CONDITIONS :
(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Heavy clay. (b) N.A. (iii) 30.12.1957./17, 18.2.1958. (iv) (a) 3 puddlings and levelling. (b) Transplanting. (c) N.A. (d) and (e) As per treatments. (v) As per treatments. (vi) MTU゙-15 (early). (vii) Irrigated. (viii) As per treatments. (ix) Nil. (x) 16, 17.4.1958.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of manure : \(\mathrm{M}_{0}=\) No manure, \(\mathrm{M}_{1}=4000 \mathrm{lb} . / \mathrm{ac}\). of G.L. \(+30 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{M}_{2}=\mathrm{M}_{1}+\) \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) in 2 doses.
(2) 2 spacings : \(S_{1}=8^{\prime \prime} \times 8^{\prime \prime}\) with 4 seedlings/holefand \(S_{2}=6^{\prime \prime} \times 6^{\prime \prime}\), with 3 seedlings/hole.
(3) 2 levels of interculture: \(I_{0}=\) No interculture, and \(I_{1}=\) Interculture.

DESIGN and 4. GENERAL:
Same as in expt. no. 57(53) on page 182.
RESULTS :
(i) \(2152 \mathrm{lb} . / \mathrm{ac}\). (ii) \(260.6 \mathrm{lb} . / \mathrm{ac}\). (iii) Only M effect is highly significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

S.E. of \(M\) marginal mean
S.E. of \(I\) or \(S\) marginal mean
\(S . E\). of body of \(M \times I\) and \(M \times S\) tables
S.E. of body of \(I \times S\) table
\(=65.2 \mathrm{lb} / \mathrm{ac}\).
\(=53.3 \mathrm{lb} . / \mathrm{ac}\).
\(=92.2 \mathrm{lb} . / \mathrm{ac}\).
\(=75.2 \mathrm{lb} . / \mathrm{ac}\).

\section*{Grop :- Paddy (Kharif).}

> Ref :- A.P. \(57(54)\).
> Type :- ‘CM'.

Site :- Agri. Res. Stn., Maruteru.
Object:-To compare Japanese method of Paddy cultivaters with departmental and Ryot's methods.
1. BASAL CONDITIGNS:
(i) (a) Padd—Paddy (b; Paddy. (c) As per treatment. (ii) (a) (b) Heavy clays. (iii) \(4.6 \cdot 1957 / 21.7\) 1957. (iv) (a) 3 puddlings, levelling, trimming bunds and digging corners. (b) to (e) As per treatment. (v; As per treatments. (vi) MTU-19 (late:. (vii) Irrigated. (viii) Interculting. (ix) \(36.03^{*}\). (x) 6, 7.12.1957.
2. TREATMENTS :

5 different methods of cultivation : \(\mathrm{M}_{1}=\) Ryot's method \(=10\) C.L./ac. of F.Y.M. with bulk planting, \(\mathrm{M}_{2}=\) Local method of planting at \(6^{\circ} \times 6^{\circ}\) spacing and 2 seedings \(/\) hole. Manuring at \(4000 \mathrm{lb} . / \mathrm{ac}\). of G.L. +10 C.L./ac. of F.Y.M. \(+100 \mathrm{ib} . / \mathrm{ac}\). of Super \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) before planting and \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) as top dressing before weeding, \(\mathrm{M}_{3}=\) Local method with \(1000 \mathrm{lb} / \mathrm{ac}\). of G.L. +10 C.L./ac. of C.M. +100 lb ./ac. of Super +100 lb ./ac of A/S in puddle, \(\mathrm{M}_{4}==\) Japanese method with \(13^{\prime \prime} \times 10^{\prime \prime}\) spacirg and manuring as in \(M_{3}\) and \(M_{5}=\) Japanese method with manuring as in \(M_{2}\).
3. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6 . (iv) (a) N.A. (b) \(30^{\prime} \times 20^{\prime}\). (v) One row around net plot. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Stem-borer attacked-sprayed Edrine at \(0.037 \%\). (iii) Tileer count, height measurements and yield of grain. (iv) (a) 19:5-con:d. (b) Yes. (c) No. (v) (a) N.A. (b) Nil. (vi) and (vii' Nil.
5. RESULTS:
(i) \(3446 \mathrm{lb} . / \mathrm{ac}\). (ii) \(211.0 \mathrm{lb} . / \mathrm{ac}\). (iii) The treatment differences are not significant. (iv) Av. yield of grain in lb. \(/ \mathrm{ac}\).
\begin{tabular}{lccccc}
Treatment & \(\mathbf{M}_{1}\) & \(\mathbf{M}_{2}\) & \(\mathbf{M}_{3}\) & \(\mathbf{M}_{4}\) & \(\mathbf{M}_{5}\) \\
Av. yield & 3557 & 3388 & 3352 & 3449 & 3485 \\
& & & & & \\
& S.E./mean & \(=\) & 86.2 & \(\mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}
\begin{tabular}{ll}
Crop :- Paddy (Second crop). & Ref :- A.P. 54(69). \\
Site :- Agri. Res. Stn., Maruteru. & Type :- ‘CM’.
\end{tabular}

Object:-To compare the Japanese and farm methods of Paddy cultivation.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Heavy black clay. (b) N.A. (iii) \(9.1 .1954 / 8\) and 9.2.1954. (iv) a) 3 puddles and levelling. (b) As per treatments. (c) N.A. (d) As per treatments. (e) N.A. (v) \(5000 \mathrm{lb} . \mathrm{lac}\). of G.L. \(+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5} . \quad\) (vi) MTU—15. (vii) Irrigated. (viii) 2 weedings. (ix) \(0.22^{\circ}\). (x) 7.5 .1954 .
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of manure: \(\mathrm{N}_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of N and \(\mathrm{N}_{2}=45 \mathrm{lb} . / \mathrm{ac}\). of N .
(2) 2 methods of cultivation: \(M_{1}=\) Japanese method: with transplanting at \(10^{\prime \prime} \times 10^{\prime \prime}\) spacing. \(\frac{1}{2} \mathrm{~N}\) applied as B.D., \(\frac{1}{4} \mathrm{~N} 15\) days and \(\frac{1}{2}\) one month later and \(\mathrm{M}_{2}=\) Farm method: Transplanting at \(6^{*} \times 6^{n}\) spacing. \& N applied as B.D. and \(\frac{1}{2} \mathrm{~N}\) 21 days later.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 4 . (b) N.A. (iii) 8. (iv) (a) and (b) \(15^{\prime} \times 90^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and straw yield. (iv) (a) and (b) N.A. (c) Nil (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 3461 lb ./ac. (ii) 158.7 lb ./ac. (iii) None of the effects is significant. '(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|cc|c}
\(\ddots\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & \begin{tabular}{cc}
.3409 & 3503 \\
\(\mathrm{~N}_{2}\) & 3449
\end{tabular} & \begin{tabular}{l}
3483 \\
Miean
\end{tabular} & \begin{tabular}{l}
3456 \\
3466
\end{tabular} \\
\hline 3493 & 3461.
\end{tabular}
\(\begin{array}{ll}\text { S.E. of } \mathrm{M} \text { or } \mathrm{N} \text { marginal mean } & =39.6 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of tabe } & =56.1 \mathrm{lb} / \mathrm{ac} .\end{array}\)

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Maruteru.
Ref:- A.P. 57(65). Type :- 'CM'.

Object :-To study the effect of organic manures and inorganic fertilizers on the yield and quality of Paddy.
1. BASAL CONDITIONS :
(i). (a) Paddy-Padiy. (b) Paddy. (c) Sannhemp at \(3200 \mathrm{lb} . / \mathrm{ac} .+50 \mathrm{lb} . / \mathrm{ac} . \mathrm{A} / \mathrm{S}\) as B.D., 40 lb . of A/s as top-dressings. (ii) (a) Heavy clay. (b) N.A. (iii) \(25.5 .1957 / 6,7.7 .1957\). (iv) (a) 3 puddlings and levelling. (b) 'apanese method. (c) N.A. (d) \(10^{\prime \prime} \times 6^{r}\) double śpacing. (e) 2 to 3. (v) Nil. (vi) MTU-1 (medium). (vii) Irrigated. (viii) 2 intercultivations with Japanese push hoe. (ix) \(3603^{\circ}\). (x) 27.11.1957.

\section*{2. TREATMENTS :}

Main-piot treatments :
\(2^{\prime}\) dates of harvest : \(M_{1}=\) Just when ready for harvest and \(M_{2}=\) At fully mature stage.
Sub-plot treatments :
12 manurial dose : \(\mathrm{L}_{1}=\) No manure (control), \(\mathrm{L}_{2}=30 \mathrm{lb}\)./ac. of \(\grave{\mathrm{N}}\) as G.M., \(\mathrm{L}_{3}=30 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M., \(\mathrm{L}_{4}=30 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}, \mathrm{L}_{5}==30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super, \(\mathrm{L}_{6}=30 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul., \(\mathrm{L}_{7}=30 \mathrm{lb}\)./ac. of N as G.M. \(+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~L}_{8}=30 \mathrm{lb}\)./ac. of N as G.M. \(+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}, \quad \mathrm{L}_{9}=30 \mathrm{lb} / \mathrm{ac}\). N as F.Y.M. \(+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\), \(\mathrm{L}_{10}=30 \mathrm{lb} . / \mathrm{ac}\). of N as F Y.M. \(+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}, \mathrm{L}_{11}=3 \mathrm{Clb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+30\) \(\mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{L}_{12}=30 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+30 \mathrm{lb}\)./ac. of K . O .

\section*{3. DESIGN:}
(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot.
(b) N.A.
(iii) 4.
(iv) (a) N.A.
(b) \(5 \times 24^{\prime}\). (v) One row alround the plot. (vi) Yes.
4. GENERAL:
(i) Normal growth, lodged on 16.10.1957. (ii) N.A. (iii) Tiller counts and yield of grain. (iv) (a) 1957contd. (b) Yes. (c) N.A. (v) (a) No. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(4163 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(633.7 \mathrm{lb} . / \mathrm{ac}\). (b) \(252.6 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects or interaction is significant. (iv) Av. yield of grain in 1b./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{L}_{1}\) & \(\mathrm{L}_{2}\) & \(\mathrm{L}_{3}\) & \(\mathrm{L}_{4}\) & \(\mathbf{L}_{5}\) & \(\mathrm{L}_{6}\) & \(\mathrm{L}_{7}\) & \(\mathrm{L}_{8}\) & \(\mathrm{L}_{9}\) & \(\mathrm{L}_{10}{ }^{\text {a }}\) & \(\mathrm{L}_{11}\) & \(\mathrm{L}_{12}\) & Mean \\
\hline \(\mathrm{M}_{1}\) & 4333 & 4338 & 4157 & 3987 & 4293. & 4066 & 4169 & 4032 & 4173 & 4423 & 4315 & 4389 & 4223 \\
\hline \(\mathrm{M}_{2}\) & 4.281 & 4106 & 4123 & 4162 & 3908 & 3987 & 3981 & 4168 & 4156 & 4044 & 4203 & 4105 & 4102 \\
\hline Mean & 4307 & 4222 & 4140 & 4075 & 4101 & 4027 & 4075 & 4100 & \(4165^{\circ}\) & 4233 & 4259 & 4247 & 4163 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll}
1. M marginal means & \(=129.4 \mathrm{lb} . / \mathrm{ac}\). \\
2. L marginal means & \(=126.3 \mathrm{lb} . / \mathrm{ac}\). \\
3. L means at the same level of \(M\) & \(=178.6 \mathrm{lb} . / \mathrm{ac}\). \\
4. M means at the same level of \(L\) & \(=214.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Maruteru.

Ref:- A. P. 58(33).
Type :- ‘CM'.

Object :-To test the effect of different organic and inorganic manures on Paddy.
1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) P ddy. (c) As per treatments. (ii) (a) Heavy black clay. (b) N.A. (iii) 8.6.1958/ 16.7.1958. (iv) (a) 3 puddiings. (b) Transplanted. (c) N.A. (d) \(10^{\prime \prime} \times 6^{\prime \prime}\). (e) 2 . (v) As per treatments. (vi) MTU-1 (medium). (vii) Irrigated. (viii) Gap filling and weeding. Japanese push hoe was worked four times at 15 days intervals. (ix) \(37.62^{\prime \prime}\). (x) \(2,10.12 .1958\).
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 57,65) on page 185.
4. GENERAL :
(i) Satisfactory; lodged after flowering. (ii) Nil. (iii) Height measurement and yield of grain. (iv) (a) 1957-contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(3989 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(1092.8 \mathrm{lb} . / \mathrm{ac}\). (b) \(479.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Only L effect is significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{L}_{1}\) & \(\mathrm{L}_{2}\) & L3 & \(\mathrm{L}_{4}\) & \(\mathrm{L}_{5}\) & \(L_{6}\) & \(L_{7}\) & \(L_{s}\) & \(\mathrm{L}_{9}\) & \(L_{10}\) & \(L_{11}\) & \(\mathrm{L}_{12}\) & Mean \\
\hline \(\mathrm{M}_{1}\) & 4401 & 3902 & 4084 & 4129 & 4038 & 3948 & 3494 & 4175 & 4175 & 4129 & 4447 & 4175 & 4091 \\
\hline \(\mathrm{M}_{2}\) & 4628 & 3675 & 4175 & 3902 & 3811 & 3811 & 3494 & 3530 & 4038 & 3857 & 3902 & 3721 & 3887 \\
\hline Mean & 4515 & 3789 & 4129 & 4015 & 3925 & 3879 & 3494 & 3903 & 4107 & 3993 & 4175 & 3948 & 3989 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{rl}
1. M marginal means & \(=223.1 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(\mathbf{L}\) marginal means & \(=239.6 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(\mathbf{L}\) means at the same level of \(M\) & \\
4. \(M\) means at the same level of \(L\) & \\
& \(=338.8 \mathrm{lb} . / \mathrm{ac}\). \\
\end{tabular}
```

Grop :- Paddy.
Site :- Deep Water Rice Res. Stn., Pulla.

```
```

Ref:- A.P. 54(61).

```
Ref:- A.P. 54(61).
Type :- 'CM'.
```

Type :- 'CM'.

```

Object :-To determine the efficacy of Japanese method of paddy cultivation over the Farm method.
1. BASAL CONDITIONS :
(i) (a) Paddy—Paddy. (b) Paddy. (c) 100 lb ./ac. of Super \(+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) in puddle \(+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) at first weeding +10 C.L./ac. of C.M. (ii) (a) Clayey. (b) Refer soil analysis, Pulla. (iii) 14.1.1954/14.2.1954. (iv) (a) 3 ploughings. (1) to (e) As per treatments. (v) Nil. (vi) SLO.-19. (vii) Irrigated. (viii) 1 hand weeding and 2 weedings by rotary weeder. (ix) Nil. (x) 28.4.1954.
2. TREATMENTS :

2 different methods of cultivation : \(\mathrm{M}_{1}=\mathrm{J}\) apanese method : \(5000 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{G} . \mathrm{L} .,+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{\mathbf{3}}\) as Super, 30 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}, \frac{1}{2} \mathrm{~N}\) at planting, \(\frac{1}{2} \mathrm{~N} 15\) days and \(\frac{1}{4} \mathrm{~N}\) a month after planting. Transplanting at \(10^{\prime \prime} \times 4^{\prime \prime}\) spacing and 2 seedlings,'hole ; 2 hand weedings 15 days and a month after planting and once with rotary weeder 45 days after planting. \(\mathrm{M}_{2}=\) Farm method: Bulk plantiag with 2 seedlings/hole. 5000 lb ./ac. of G.L. +30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +30 ib ./ac. of N as \(\mathrm{A} / \mathrm{S}\), \(\frac{1}{2} \mathrm{~N}\) at planting and \(\frac{1}{2} \mathrm{~N}\) a month after planting.
3. DESIGN:
(i) R B.D. (ii) (a) 2. (b) N.A. (iii) 6. (iv) (a) and (b) \(48 \frac{1}{2}^{\prime} \times 9^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) A mild attack of Piricularia; seed treated with Agrosan before sowing. (iii) Plant height, tiller counts and yield of grain. (iv) (a) to (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) 2268 lb ./ac. (ii) 230.0 lb . ac. (iii) Treatment difference is highly significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{ccc}
Treatment & \(\mathbf{M}_{1}\) & \(\mathbf{M}_{2}\) \\
A.v. yield & 2600 & 1937 \\
- & S.E. \(/\) mean \(=94.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

        Grop :- Paddy.
    , Site:-- Deep water Rice Res. Stn., Pulla.
Ref:- A.P. 54(62).
Type :- 'CM'.

```

Object :-To determine the effcacy of Japanese method of paddy cultivation over the Farm method.
1. BASAL CONDITIONS :
(i) (a) Paddy -PPaddy. (b) Paddy. (c) \(100 \mathrm{lb} / \mathrm{ac}\). of Super \(+50 \mathrm{lb} . / \mathrm{ac}\). of A/S +10 C.L./ac. of C.M. in puddle and \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) at first weeding. (ii) (a) Clayey. (b) Refer soil analysis, Pulla. (ili) 25.12.1953/ 14.2.1954. (iv) (a) 3 ploughings. (b) to (e) As per treatments: (v) Nil. (vi) MTU—15. (vii) Irrigated. I(viii) One weeding by hand and two by rotary weeder. (ix) Nil. (x) 10.5.1954.
2. TREATMENTS to 4. GENERAL:
'Same as in expt in 54 (61) on page 186.
5. 'RESULTS:
(i) \(2433 \mathrm{lb} . / \mathrm{ac}\). (ii) \(124 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment difference is highly significant. (iv) Av. yield of grain in
lb./ac.
\begin{tabular}{lcc}
Treatment & \(\cdot \mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
Av. yield & 2667 & 2200 \\
& S.E. \(/\) mean \(=\) & 51.0 lb ./ac.
\end{tabular}
```

Crop :- Paddy (Abi). .Ref :- A.P.54(13).
Site :- Agri. Res. Inst. Rajendranagar. Type :- 'CM'.

```

Object :-To determine the different factors which affect the yield of paddy in Japanese and local methods of Paddy cultivation.

\section*{BASAL CONDITIONS :}
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay Joam. (b) N.A. (iii) N.A./25.6.1954. (iv) (a)
\(!\) Ploughing and harrowing. (b) Transplantings. (c) N.A. (d) As per treatments (e) N.A. (v) Nil. (vi) HR-35 (late). (vii) Irrigated. (viii) As per treatments. (ix) 27.64". (x) 20.12.1954.

\section*{TREATMENTS :}

All combination of (1), (2) and (3)
(I) 3 levels of mavoring: \(\mathrm{M}_{1}=\mathrm{J}\) apanese method: 64 lb ./ac. of \(\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in puddle. \(\mathrm{M}_{2}=\) Japanese method, split application : \(22 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+32 \mathrm{lb}\)./ac. of \(\mathrm{P}_{5} \mathrm{O}_{5}\) in puddle and 2 top dressing of 21 lb ./ac. of N each and \(\mathrm{M}_{3}=\) Local method :
\(1 \quad 22 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+12 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in Puddle. N as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super.
(2) 2 spacings: \(\mathrm{S}_{1}=10^{\prime \prime} \times 10^{\prime \prime}\) (Japancse method) and \(\mathrm{S}_{2}=6^{\prime \prime} \times 4^{\prime \prime}\) (local method).
(3) 2 levels of interculture : \(\mathrm{I}_{1}=4\) intercultures (Japanese method), \(\mathrm{I}_{2}=2\) weedings (local method).
3. DESIGN:
(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) and (b) \(1 / 57.5 \mathrm{ac}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of paddy blast ; Perenox sprayed twice. (iii) Yield of grain cand straw. (iv) (a) 1953-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 2355 lb ., ac. 'ii; 359.4 lb ./ac. (iii) Only M effect is significant. (iv) Av. yield of grain in lb ./ac.

\begin{tabular}{ll}
Crop :- Paddy (Tabi). & Ref:- A.P. 54(14). \\
Site :- Agri. Res. Instt., Kajendranagar. & Type :- 'CM'.
\end{tabular}

Site :- Agri. Res. Instt., Kajendranagar.
Type :- ‘CM'.
Object :-To determine the different factors which affect the yield of paddy in Japanese and local methods of Paddy cultivation.
1. BASAL CONDITIONS:
(i) (a) Nit. (b) Paddy. (c's As per treatments. (ii) (a) Cfyy loam. (b) N.A. (iii) N.A./25.1.1954. (iv)
(d) Ploughing and harrowings. (b) Transplanting. (c) N.A. (d) As per treatments. (e) N.A. (v) Nil.
(vi) HR-19 (mədium). (vii) Irrigated. (viii) As per treatments. (ix) 0.82". (x) 1.5.1954.
2. TREATMENTS to 4. GENERAL:
- Same as in expt. no. 54(13) on page 187.
5. RESULTS :
(i) \(1807 \mathrm{lb} . / \mathrm{ac}\). (ii) \(492.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Only S and M effests are signifcant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

```

Crop:- Paddy (Abi).
Site :- Agri. Res. Instt., Rajendranagar.

```

Ref :- A.P. 55(10).
Type:- 'CM'.
Object:-To determine the different factors which affect the yield of padiy in Japanese and local methods of Paddy cultivation.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) N.A. (iii) 21.7.1955. (iv)(a) 4 puddlings and levelling. (b) As per treatments. (c) N.A. (d) As per treatments. (e) 2 to 3. (v) Nil. (ii) HR-35 (late). (vii) Iriigated. (viii) As per treatments. (ix) 23.27". . (x) 8.12.1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(13) on page 187.
4. GENERAL:
(i) Normal. (ii) Slight attack of paddy Hispa. Gammexane dusted and sprayed with Bordeaux mixture twice to prevent paddyblast. (iii) Grain and straw?yield. (iv) (a) 1953-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(2331 \mathrm{lb} . / \mathrm{ac}\). (ii) \(358.8 \mathrm{lb} . / \mathrm{ac}\) : (iii) Only M effect is significant. (iv) Av . yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) \\
\hline : \(\mathrm{S}_{1}\) & 2798 & 2536 & 1954 & 2429 & 2397 & 2462 \\
\hline \(1 \mathrm{~S}_{2}\) & 2582 & 2223 & 1893 & 2233 & 2217 & 2248 \\
\hline Mean & 2690 & 2380 & 1923 & . 2331 & 2307 & 2355 \\
\hline \(\mathrm{I}_{1}\) & 2604 & 2414 & 1904 & & & , \\
\hline \(\mathrm{I}_{2}\) & 2776 & 2345 & 1943 & & & \\
\hline
\end{tabular}
\begin{tabular}{lr}
S.E. of \(S\) or \(I\) marginal mean & \(=73.2 \mathrm{lb} . / \mathrm{ac}\), \\
S.E. of \(M\) marginal mean & \(=89.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(S \times M\) or \(M \times I\) table & \(=126.9 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of \(S \times I\) table & \(=103.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Grop :- Paddy (Tabi),
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 55(11).
Type :- 'GM'.

Object :-To determine the different factors which affect the yield of paddy under the Japanese and local methods of paddy cultivations.
1. BASAL CONDITIONS :
(i) (a) Ni). (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) N.A. (iii) 142.1955 . (iv) (a) to (e) As per treatments. (v) Nil. (vi) HR-19(medium). (vii) Irrigated. (viii) As per treatments. (ix) \(2.72^{\prime \prime}\). (x) 30.5 .1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(13) on page 187.
4. GENERAL :
(i) N.A. (ii) Severe stem-borer attack. Light traps were set up and subsequently the attacked plants were destroyed. (iii) Grain and straw yield. (iv) (a) 1953-contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(985 \mathrm{lb} . / \mathrm{ac}\). (ii) 368.6 lb ./ac. (iii) M and S effects are significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

S.E. of \(S\) or \(I\) marginal mean
S.E. of \(M\) marginal mean
S.E. of body of \(\mathrm{M} \times \mathrm{I}\) or \(\mathrm{M} \times \mathrm{S}\) table
S.E. of I \(\times\) S table
\(=75.2 \mathrm{lb} . / \mathrm{ac}\)
\(=92.1 \mathrm{Ib} . / \mathrm{ac}\)
\(=130.3 \mathrm{lb} . / \mathrm{ac}\).
\(=106.4 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Paddy (Abi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref:- A.P. 56(39).
Type :- 'CM'.

Object :-To find out the efficacy of dibbling over broadcasting under manuring.
1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) \(60 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) and \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (ii), (a) Chalka. (b) N.A. (iii) 9.7 .1956 for \(T_{1}\) and 11.7.1956 for \(T_{2}\). (iv) (a) 2 ploughings ard levelling. (b) and (c) As per treatments. (d) \(8^{\prime \prime} \times \delta^{\prime \prime}\). (e) N.A. (v) Nil. (vi) RDR -2 (early). vii) Irrigated. (viii) Weeding twice, thinning and gap filling. (ix) \(33.77^{\circ}\). (x) 8.11.1956.
2. TREATMENTS:

A! l combinations of (1), (2) and (3)
(1) 2 seed treatments: \(T_{1}=\) Soaked seed and \(T_{2}=\) Sprouted seed.
(2) 2 levels of manure: \(\mathrm{L}_{1}=30 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{N}+15 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{L}_{2}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+30 \mathrm{lb}\), ac. of \(\mathrm{P}_{5} \mathrm{O}_{5}\).
(3) 2 methods of planting: \(\mathrm{M}_{1}=\) Broadcasting with seed rate of \(80 \mathrm{ib} / \mathrm{ac}\). and \(\mathrm{M}_{2}=\) Dibbling with seed rate of 20 lt ., ac.
N as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. Half the dose of N and full dose of \(\mathrm{P}_{2} \mathrm{O}_{3}\) broadcast before sowing. Secend dose of N on 23.8.1956.
3. DESIGN :
(i) Fact. in R B.D. (ii) (a) 8 . (b) N.A. (iii) 4 . (iv) (a) \(25^{\prime \prime} 4^{\prime \prime} \times 13^{\prime} 4^{\prime \prime}\). (b) \(22^{\prime} 8^{\prime \prime} \times 10^{\prime} 8^{\prime \prime}\). (v) 2 rows alround the plot. (vi) Yes.
4. GENERAL :
(i) Normal, crop lodged after flowering. (ii) Hsipa attack in July and August. Dusting of gammexane. Rat damage in \(M_{1}\) plots. (iii) Height, tiller count and grain yield. (iv) (a) 1956-contd. (b) Yes. (c) Nil. (v) (a) Dindj and Rudrur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(3042 \mathrm{lb} . / \mathrm{ac}\). (ii) \(342.0 \mathrm{lb} / \mathrm{ac}\). (iii) Only M effect is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & Mean & \(\mathrm{L}_{1}\) & \(\mathrm{L}_{2}\) \\
\hline T 1 & 2570 & 3688 & 3129 & 3211 & 3047 \\
\hline \(\mathrm{T}_{2}\) & 2430 & 3481 & 2955 & 2957 & 2954 \\
\hline - Mean & 2500 & 3584 & 3042 & 3084 & 3000 \\
\hline \(\mathrm{L}_{1}\) & 2644 & 3524 & & & \\
\hline \(L_{2}\) & 2356 & 3645 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal mean & \(=120.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=171.0 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

Crop. :- Paddy (Tabi).
Ref:- A.P. 56(40).
Site :- Agri. Res. Instt., Rajendranagar.
Type ' CM '.
Object:-To find out the efficacy of dibbling over broadcasting under manuring.
1: BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Chalka. (b) N.A. (iii) 24th Dec. 1956 for \(\mathrm{T}_{1}\) and 26th Dec. 1956 for \(\mathrm{T}_{2}\). (vi) (a) 3 ploughings and levelling. (b) and (c) As per treatments: (d) \(8^{\prime \prime} \times \overline{8}^{\prime \prime}\). (e) N.A. (v) Nil. (v) RDR-2 (early). (vii) Irrigated. (viii) 2 weedings, thinoing and gap-filling. (ix) \(1 \cdot 63^{\prime \prime}\). (x) 30.4 .1957 .

\section*{TREATMENTS}

Same as in expt no. 56(39) on page 190.
DESIGN :
(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) \(25^{\prime} 4^{\prime \prime} \times 13^{\prime} 4^{\prime \prime}\). (b) \(24^{\prime} 0^{\prime \prime} \times 12^{\prime} 0^{\prime \prime}\). (v) 1 row alround the plot. (vi) Yes.
4. GENERAL ;
(1) Normal. Crop lodged in April 1957. (iii) Nil. (iii) Grain yield. '(iv) (a) 1956 -contd. (b) Yes. (c) Nil. (v) (a) Dinidi, Nalgonda and Rudrur. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 3602 lb ./ac. (ii) 325.5 lb . ac. (iii) Only \(\dot{L}\) effect is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & Mean & \(\mathrm{L}_{1}\) & \(\mathrm{L}_{2}\) \\
\hline T1 & 3532 & 3435 & 3483 & 3175 & 3792 \\
\hline T2 & 3692 & 3749 & 3721 & 3291 & 4150 \\
\hline Mean & 3612 & 3592 & 3602 & 3233 & 3971 \\
\hline \(\mathrm{L}_{1}\) & 3315 & 3152 & & & \\
\hline \(L_{2}\) & 3908 & 4033 & & & \\
\hline
\end{tabular}
S.E. of any marginal mean,\(\quad=115.1 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of any table \(=162.7 \mathrm{lb} . / \mathrm{ac}\).

Crop-: Paddy (Abi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref:- A.P. 57(9).
Type :- 'CM'.

Object:-To find out the efficacy of dibbling over broadcasting under manuring.
1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Chalka. (b) N.A. (iii) 2.7 .1957 for \(T_{1}\) and 47.1957 for \(T_{2}\). (iv) (a) Two ploughings and levelling. (b) and (c) As per treatments. (d) \(8^{\prime \prime} \times 8^{\prime \prime}\). (e) N.A. (v) Nil. (vi) RDR-2 (early). (vii) Irrigated. (viii) 2 weedings, thinning and gap-filling. (ix) \(24.44^{\prime \prime}\). (x) 26 to 29.10.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt., no. 56(40) above.

\section*{4. GENERAL :}
(i) Good; crop lodged in Sept.-Oct. (ii) Rat damage was noticed. (iii) Height and tiller count, length of panicles and grain yield. (iv) (a) 1956-contd. (b) Yes. (c) Nil. (v) (a) Dindı, Nalgonda and Rudrur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(3330 \mathrm{lb} / \mathrm{ac}\). (ii) \(282 \mathrm{lb} . / \mathrm{ac}\). (iii. Only M effect is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & Mean & \(\mathrm{L}_{1}\) & \(L_{2}\) \\
\hline T1 & 3069 & 3657 & 3363 & 3205 & 3521 \\
\hline T \({ }_{2}\) & 3143 & 3450 & 3296 & 3261 & 3332 \\
\hline Mean & 3106 & 3553 & 3330 & 3233 & 3426 \\
\hline \(\mathrm{L}_{1}\) & 3040 & 3426 & & & \\
\hline \(\mathbf{L}_{2}\) & 3172 & 3682 & & & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =99.7 \mathrm{ib} . \mathrm{ac} . \\
\text { S.E. of body of any table } & =141.0 \mathrm{lb} \cdot / \mathrm{ac} .
\end{array}
\]

Crop :- Paddy (Tabi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 57(45).
Type :- \({ }^{〔} \mathbf{C M}{ }^{\prime}\).

Object :-To find out the effiacy of dibbling over broadcasting under manuring.
1. BASAL CONDITIONS :
(i) (a; Nil. (b) Paddy. (c) As per treatments. (ii) (a) Chalka. (b) N.A. (iii) 10.12 .1957 , for \(\mathrm{T}_{1}\) and 12.12.1957 for \(\mathrm{T}_{2}\). (iv) (a) N.A. (b) and (c) As per treatments. (d) \(8^{\prime \prime} \times 8^{\prime \prime}\). (e) N.A. (v) Nil. (vi) RDR-2 (early). (vii) Irrigated. (viii) 2 weedings ard gap filling. (ix) N.A. (x) 14.4.1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(40) on page 191.
4. GENERAL :
(i) Good; crop lodged 2 to 3 weeks after flowering. (ii) Rat damage. (iii) Yield of grain, height, tiller count, length of panicle and grain yield. (iv) (a) 1955-contd. (b) Yes. Since Abi 1956-1957. (c) Nil. (v) (a) Dindi and Rudrur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(3314 \mathrm{lb} / \mathrm{ac}\). (ii) 298.0 lb ./ac. (iii) Only M and L effects are significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & Mean & \(L_{1}\) & \(\mathrm{L}_{2}\) \\
\hline T1 & 3094 & 3508 & 3299 & 2999 & 3599 \\
\hline T \({ }_{2}\) & 3263 & 3397 & 3329 & 2969 & 3689 \\
\hline Mean & 3177 & 3451 & 3314 & 2984 & 3644 \\
\hline \(L_{1}\) & 2874 & 3094 & & & \\
\hline \(L_{2}\) & 3480 & 3808 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal mean & \(=105.4 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=149.0 \mathrm{lb} . \mathrm{ac}\).
\end{tabular}

Crop :- Paddy (Kharif).
Site :- Agri. Res. Instt., Rajendranagar.
Ref :- A.P. 58(58).
Type :- 'CM'.
Object:-To find out the efficiency of dibbling over broadcasting under manuring.
1. BASAL CONDITIONS:
(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Chalka. (b) N.A. (iii) 17.6.1958. (iv) (a) 6 puddings and levelling. (b) As per treatments. (c) 80 lb ./ac.for \(\mathrm{M}_{1}\) and \(16-17 \mathrm{lb}\)./ac. for \(\mathrm{M}_{2}\). (d) \(8^{\prime \prime} \times 8^{\prime \prime}\) in dibbling. (e) \(3-5\) seeds/hill for \(M_{2}\). (v) As per treatments. (vi) RDR-2 (early). (vii) Irrigated. (viii) 3 weedings. (ix) N.A. (i) 3.11.1958.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 2 seed treatments: \(\mathrm{T}_{1}=\) Soaked seeds, and \(\mathrm{T}_{2}=\) sprouted seeds.
(2) 2 leve's of manure: \(\mathrm{L}_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+15 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~L}_{2}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
(3) 2 methods of \(\mathrm{p}^{\prime}\) anting: \(\mathrm{M}_{1}=\) broadcasting and \(\mathrm{M}_{2}=\) dibbling.

Half dose of N and full dose of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied before sowing and remaining half dose of N applied after sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4 . (iv) (a) \(25^{\prime} 4^{\prime \prime} \times 13^{\prime \prime} 4^{\prime \prime}\). (b) \(24^{\prime} \times 12^{\prime}\). (v) \(8^{\prime \prime} \times 8^{\prime \prime}\). (vi) Yes.

GENERAL :
(i) Good ; lodged after flowering. (ii) Nil. (iii) Yield of grain. (iv) (a) 1955-Contd. modified in 1956. (b) Yes. (c) Nil. (v) (a) Dindi. and Rudrur. (b) N.A, (vi) and (vii) Nil.
5. RESULTS :
(i). \(2999 \mathrm{lb} . / \mathrm{ac}\). (ii) \(280.1 \mathrm{lb} . / \mathrm{ac}\). (iii) L and M effects are highly significant. (iv) Av. yield of grain in \(1 \mathrm{~b} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & Mean & \(\mathrm{L}_{1}\) & \(\mathrm{L}_{2}\) \\
\hline \(\mathrm{T}_{1}\) & 2756 & 3217 & 2986 & 2810 & 3162 \\
\hline T2 & 2727 & 3296 & 3012 & 2875 & 3149 \\
\hline Mean & 2742 & 3256 & 2999 & 2843 & 3155 \\
\hline \(L_{1}\) & 2693 & 2992 & & & \\
\hline \(\mathrm{L}_{2}\) & 2790 & 3521 & & & \\
\hline - & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{S.E. of any marginal mean S E. of body of any table}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& =700 \mathrm{lb} . / \mathrm{ac} . \\
& =99.0 \mathrm{lb} / \mathrm{ac} .
\end{aligned}
\]} & & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
Crop :- Paddy (Rabi). & \\
Site :- Agri. Res. Instt., Rajendranagar. & \\
A.P. 58(64).
\end{tabular}

Object :-To find out the effiziency of dibbling over broadcasting under 'manuring.
1. BASAL CONDITIONS :
(i) (a) Paddy._Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Chalka. (b) N.A. (iii) 25.12 .1958 . (iv)
(a) 6 puddlings and levelling. (b) As per treatments. (c) \(80 \mathrm{lb} . / \mathrm{ac}\). for \(\mathrm{M}_{1}\) and \(j 6-17 \mathrm{lb}\)./ac. for \(\mathrm{M}_{2}\).
(d) \(8^{\prime \prime} \times 8^{\prime \prime}\) for \(\mathbf{M}_{2}\). (e) 3 to 5 for \(\mathbf{M}_{2}\). (v) As per treatments. (vi) RDR-2 (early). (vii) Irrigated. (viii)

3 weedings. (ix) N.A. (x) April 1959.
2. TREATMENTS:

Same as in expt. no. 58(58) above.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) \(1 / 130\) ac. (b) \(1 / 150\) ac. (v) \(8^{\prime \prime} \times 8^{\prime \prime}\). (vi) Yes.
4. GENERAL :

Good; crop lodged 3 weeks after flowering. (ii) No. (iii) Yield of grain. (iv) 1955-Contd. (modifed in 1956). (b) Yes. (c) Nil. (v, (a) Dindi, Rudrur. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2609 \mathrm{lb} . / \mathrm{ac}\). (ii) \(280.7 \mathrm{lb} . / \mathrm{ac}\). (iii) L effezt is highly significant, M effect is significant. Other effects are not significant. (iv) Av. yield of grain in lb./ac.

\[
\begin{array}{ll}
\text { S.E. for any marginal mean } & =70.2 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of the tody of any table } & =99.2 \mathrm{lb} . / \mathrm{ac}
\end{array}
\]

Crop :- Paddy (Abi).
Site :- Agri. Res. Stn., Rudrur.

Ref:- A.P. 58(72).
Type :- 'CM'.

Object:-To find out the effect of different factors under the Japanesa method of Paddy cultivation.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) N.A. (ii) (a) Regur. (b) Refer soil analysis, Rudrur. (iii) 22.7.1958. (iv) (a) Ploughing, pudding and levelling. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) N.A. (vii) Irrigated. (viii) As per treatments. (ix) \(50^{\prime \prime}\). (x) 24.12 .1958.
2. TREATMENTS:

All combination of (1), (2) ar.d (3)
(1) 3 levels of manuring: \(\mathrm{M}_{1}=64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in last puddle, \(\mathrm{M}_{2}=22 \mathrm{lb}\)./ac. of N \(+32 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in last puddle and 2 top dressings of 21 lb ./ac. of N and \(\mathrm{M}_{3}=22 \mathrm{lb}\)./ac. of \(\mathrm{N}+11 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in last puddle.
(2) 2 spacings: \(\mathrm{S}_{1}=10^{\circ} \times 10^{\prime \prime}\) and \(\mathrm{S}_{2}=6^{\prime \prime} \times 4^{\prime \prime}\).
(3) 2 levels of interculture : \(\mathrm{I}_{1}=4\) intercultures with weeder and \(\mathrm{I}_{2}=2\) hand weedings.

N applied as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}\), as Super.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4 . (iv) (a) and (b) \(48^{\prime} \times 20^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Partial lodging. (ii) Nil. (iii) Yield of grain. (iv) (a) 1956 -contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) 2423 lb .'ac. (ii) 305.2 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Crop :- Paddy (Rabi).
Site :- Agri. Res; Stn., Rudrur.

Ref :- A.P. 59(18).
Type :- \(\mathbf{6 M}^{\prime}\).

Object :-To find out the effect of different factors under the Japanese method of Paddy cultivation.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) N.A. (ii) (a) Regır. (b) Refer soil analysis, Rudrur. (iii) N.A. (iv) (a) Ploughing, puddling and levelling. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) N.A. (vi) HR-19 (early). (vii) Irrigated. (viii) As per treatments. (ix) and (x) N.A.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 58(72) on page 194.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1956 -contd. (b) Yes. (c) Nil: (v) to (vii) Nil.
5. RESULTS :
(i) \(734 \mathrm{lb} . / \mathrm{ac}\). (ii) \(328.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effects of M and S are highly significant. (iv) Av. yield of grain in Ib ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean & \(S_{1}\) & \(\mathrm{S}_{2}\) \\
\hline \(\mathrm{I}_{1}\) & 1140 & 788 & 431 & 786 & 592 & 981 \\
\hline \(\mathrm{I}_{2}\) & 1001 & 635 & 405 & 681 & 595 & 766 \\
\hline Mean & - 1070 & 712 & 418 & 734 . & 594 & 873 \\
\hline \({ }^{1}\) & 828 & 561 & 391 & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{,}} \\
\hline \(\mathrm{S}_{2}\) & 1313 & 862 & 445 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of \(M\) marginal mean & \(=82.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(S\) or I marginal mean & \(=67.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E of body of \(M \times S\) or \(M \times I\) table & \(=16.0 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of \(S \times I\) table & \(=94.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Samalkot.

Ref:- A.P. 54(81).
Type :- 'CM'。
'Object:-To study the efficiency of Japanese method against other methods of cultivation.
1. BASAL CONDITIONS :

\footnotetext{
(i) (a) Paddy - Fallow-Paddy. (b) Fallow. (c) Nil. (ii) (a) Heavy alluvial (b) Refer soil analysis, Samalkot. (iii) \(21.6 \cdot 1954 / 7.7 .1954\). (iv) (a) N.A. (b) As per treatments. (c) N.A. (d) As per treatments. (e) 4 seedlings/hill for treatment \(M_{3}, M_{4}\) and \(M_{5}\) and 2 seedlings/hill for others. (v) As per treatments. (vi) GEB-24 (late). (vii) 1rrigated. (viii) 4 intercultures with push hoe for treatments \(\mathrm{M}_{3}, \mathrm{M}_{4}\) and \(\mathrm{M}_{5}\) and 2 weedings for others. (ix) \(44.11^{\prime \prime}\). (x) 14.12.1954.
}

\section*{2. TREATMENTS :}

5 methods of cultivation : \(\mathrm{M}_{1}=\) Ryot's method : Manuring at 5 C.L./ac. of F.Y.M. and bulk planting. \(\mathrm{M}_{2}=\) Departmental method : Manuring at \(4000 \mathrm{lb} . / \mathrm{ac}\). of G.L. \(+100 \mathrm{lb} . / \mathrm{ac}\). of Super \(+100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) and bulk planting., \(\mathrm{M}_{3}=\) Japarese method: Manuring at \(20 \mathrm{C} . \mathrm{L} . / \mathrm{ac}\). of compost \(+100 \mathrm{lb} . / \mathrm{ac}\). of Super \(+10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) in pudd!e and bulk planting. \(\mathrm{M}_{4}=\) Japanese method: Manuring as in (3) above transplanting at \(1^{n^{*}} \times 10^{\circ}\) spacing and intercultivation. \(\mathrm{M}_{5}=\) Japanese method: manuring as in (2) above, transplanting at \(10^{\prime \prime} \times 10^{\prime \prime}\) spacing and intercu'tivation.
3. DESIGN :
(i) R.B.D.
(ii) (a) 5 .
(b) N.A. (iii) 5 .
(iv) (a, and (b) \(40^{\prime} \times 22^{\prime}\).
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1954-1958. (b) Yes. (c) Nil. (v) (a) Maruteru. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 3910 lb ./ac. (ii) \(164.2 \mathrm{lb} . / \mathrm{ac}\). (iii) The treatment differences are not significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{llrrrr}
Treatment & \multicolumn{1}{c}{\(\mathbf{M}_{\mathbf{1}}\)} & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{M}_{\mathbf{4}}\) & \(\mathbf{M}_{\mathbf{5}}\) \\
Av. yield & 3817 & 3976 & 3912 & 3912 & 3936 \\
& & & & & \\
& S.E./mean & \(=\) & \(73.4 \mathrm{lb} . / \mathrm{ac}\). & &
\end{tabular}

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Samalkot.
Ref:- A.P. 55(78).
Type :- 'CM'.
Object:-To study the efficiency of Japavese method of Paddy cultivation over other methods.
1. BASAL CONDITIONS :
(i) (a) Paddy-Fallow-Paddy. (b) Fallow. (c) Nil. (ii) (a) Heavy alluvial. (b) Refer soil analysis, Samalkot. (iii) 28.6.1955/22.7.1955. (iv) (a) N.A. (b) Transplanting. (c) N A. (d) As per treatments. (e) 4 seedlings/hill for treatments \(\mathrm{M}_{3}, \mathrm{M}_{4}\) and \(\mathrm{M}_{5}\) and 2 seedlings/hill for others. (v) As per treatments. (vi) GEB-24 (late). (vii) Irrigated. (viii) 2 weedings for treatments \(\mathrm{M}_{1}\) and \(\mathrm{M}_{2}\) an 14 intercultures with junior hoe for others. (ix) \(34.6^{\circ}\). (x) 7.12.1955.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(81) on page 195.
5. RESULTS :
(i) \(3050 \mathrm{lb} . / \mathrm{ac}\). (ii) 97.5 lb ./ac. (iii) The treatment differences are significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{lccccl}
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) \\
Av. yield & 2974 & 2969 & 2993 & 3390 & 2922 \\
& & & & & \\
& S.E./mean & \(=\) & \(43.6 \mathrm{lb} . / \mathrm{ac}\). & &
\end{tabular}

\footnotetext{
Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Samalkot.
}

Ref :- A.P. 56(98).
Type :- 'CM'.
Object :-To study the efficiency of Japanese method of Paddy cultivation over other methods.

\section*{1. BASAL CONDITIONS :}
(i) (a) Paddy-Fallow-Paddy. (b) Fallow. (c) Nil. (ii) (a) Heavy alluvial. (b) Refer soil analysis, Samalkot. (iii) \(10.6 .1956 / 19.7 .1956\). (iv) (a) N.A. (b) Transplanting. (c) N.A. (d) As per treatments. (e) 4 seedlings/hill for \(\mathrm{M}_{3}, \mathrm{M}_{4}, \mathrm{M}_{5}\) and 2 seedlings/hill. for others. (v) As per treatments. (vi) GEB-24 (late). (vii) Irrigated. (viii) 2 weedings for \(\mathrm{M}_{1}\) and \(\mathrm{M}_{2}\) and 4 intercultures with Junior hoe for others. (ix) \(54.17^{\prime \prime}\). (x) 2.12.1956.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(81) on page 195.

\section*{5. RESULTS :}
(i) \(2314 \mathrm{lb} . / \mathrm{ac}\). (ii) \(244.6 \mathrm{lb} . / \mathrm{ac}\). (iii) The treatment differences are not significant. (iv) Av. yield of grain in lb ./ac.

\begin{tabular}{ll}
Crop :- Paddy (Kharif). & Ref :- A.P. \(59(98)\) \\
Site :- Agri. Res. Stn., Samalkot.. & Type :- 'CM'
\end{tabular}

Object :-To test the Chinese method of Paddy cultivation against the Japanese and local methods.
1. BASAL CONDITIONS :

3. DESIGN :
(i) R.B.D. (ii)
i) (a) 3. (b) N.A.
(iii) 6 . (iv) (a) \(30^{\prime} \times 30^{\prime}\).
(b) \(27 \frac{1}{3}^{\prime} \times 27 \frac{1}{3}^{\prime}\) for \(M_{1}, 26_{3}^{2^{\prime}} \times 26_{3}^{2^{\prime}}\) for \(M_{2}\) and \(28^{\prime} \times 28^{\prime}\) for \(M_{3}\) (v) Yes ; dimensions vary. (vi) Yes.
4. ' GENERAL:
. (i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) to (c) N.A. (v) to (vii) Nil.
5. 'RESULTS :
(i) \(3900 \mathrm{lb} . / \mathrm{ac}\). (ii) \(580.9 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment \({ }^{3}\) [differences are not significant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cccc}
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
Av. Yield & 3665 & 4481 & 3555 \\
& & & \\
& S.E./mean & \(=\) & \(237.1 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

\footnotetext{
1

Crop :- Paddy (Rabi). \(\quad\) Ref :- A. P. 55(98),
Site :- Govt. Main Farm, Warangal Type :- 'CM'.
i
Objent :-To evaluate the effect of different factors under the Japanese meitod of Paddy cultivation. !
}

\section*{1. BASAL CONDITIONS :}
(i) (a) Paddy-Paddy. (b) Paddy. (c) N.A. (ii) (a) Chalka. (b) Refer soil analysis, Warangal. (iii) 27.12.1955/5.2.1956. (iv) (a) 3 ploughings and thrice puddling and levelling. (b) Transplanting. (c) N.A. (d) As per treatments. (e) N.A. (v) As per treatments. (vi) HR-19. (vii) Irrigated. (viii) Ar per treatments. (xi) N.A. (x) 24.4.1956.
2. TREATMENTS :

Same as in expt. no. 58(72) on page 194.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 12. (b; N.A. (iii) 4 . (iv) (a) and (b) \(30^{\prime} \times 30^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Incidence of stem borer-Control measures N.A. (iii) Yield of grain. (iv) and (v) N.A. (vi and (vii) Nil.
5. RESULTS :
(i) \(661 \mathrm{lb} . / \mathrm{ac}\). (ii) \(211.1 \mathrm{lb} / \mathrm{ac}\). (iii) Only S effect is highly significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

\begin{tabular}{ll}
S.E. of M marginal mean & \(=52.8 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of \(S\) or \(I\) margiual mean & \(=43.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(S \times I\) table & \(=60.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body \(\mathrm{M} \times S\) or \(\mathrm{M} \times I\) table & \(=74.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Paddy (Kharif). \\ Site :- Govt. Main Farm, Warangal.}

\section*{Ref:- A.P. 56(115).}

Type :- 'CM'.
Object :-To evaluate the effect of different factors under the Japanese method of Paddy cultivation.
1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) N.A. (ii) (a) Chalka. (b) Refer soil analysis, Warangal. (iii) 28.5 1956/9.7.1956. (iv) (a) Ploughing and levelling. (b) Transplanting. (c) N.A. (d) As per treatmen's. (e) N.A. (v) As per treatments. (vi) HR-35 (long duration). (vii) Irrigated. (viii) As per treatments. (ix) N.A. (x) 28.11.1956.

\section*{2. TREATMENTS :}

Same as in expt. no. 58(72) on page 194.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 12 (b) N.A. (iii) 4. (iv) (a) and (b) \(30^{\prime} \times 29^{\prime} 6^{\prime \prime}\). (v) One row alround.
(vi) Yes.
4. G NERAL:
(i) Fair, no lodging. (ii) There was an attack of gall-fly-control measures N.A. (iii) Yield of grain. (iv) (a) 1955-contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(3555 \mathrm{lb} . / \mathrm{ac}\). (ii) \(505.3 \mathrm{lb} . / \mathrm{ac}\). (iii) M effect is highly significant. S effect and interactions \(\mathrm{M} \times \mathrm{S}, \mathrm{M} \times \mathbf{I}\) are significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & M \({ }_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean & \(I_{1}\) & \(\mathrm{I}_{2}\) \\
\hline \(\mathrm{S}_{1}\) & 2953 & 3538 & 3699 & 3397 & 3262 & 3532 \\
\hline \(\mathrm{S}_{2}\) & 3416 & 3938 & 3783 & 3712 & 3670 & 3755 \\
\hline Mean & 3185 & 3738 & 3741 & 3555 & 3466 & 3643 \\
\hline \(\mathrm{I}_{1}\) & 2946 & 3741 & 3711 & & & \\
\hline \(\mathrm{I}_{2}\) & 3424 & 3735 & . 3771 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of \(M\) marginal mean & \(=126.3 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(S\) or I marginal mean & \(=103.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(M \times I\) or \(M \times S\) table & \(=178.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(S \times I\) table & \(=145.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Paddy (Kharif).
Site :- Govt. Main Farm, Warangal.

Ref :- A.P. 58(75). Type :- 'CM'.

Object:-To evaluate the effect of different factors under the Japanese method of Paddy cultivation.
1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Warangal. (iii) N.A./16.7.1958. (iv) (a) 3 puddlings and levelling. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) As per treatments. (vi) HR-35 (late). (vii) Irrigated. (viii) As per treatments. (ix) \(35.58^{\prime \prime}\). (x) 10.12 .1958 .
2. TREATMENTS :

Same as in expt. no. 58(72) on page 194.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(30^{\circ} \times 29^{\prime} 6^{\prime \prime}\). (v) N:A. (vi) Yes.
4. GENERAL:
(i) Gcod. (ii) Nil. (iii) Yield of grain. (iv) (a) 1956 -contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(3916 \mathrm{lb} . / \mathrm{ac}\). (ii) \(332.1 \mathrm{lb} . / \mathrm{ac}\). (iii) Only M effect is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\) :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) \\
\hline \(S_{1}\) & 4003 & 4096 & 3722 & 3940 & 4005 & 3875 \\
\hline \(\mathrm{S}_{2}\) & 3899 & 4053 & 3722 & 3891 & 3941 & 3843 \\
\hline Mean & 3951 & 4075 & 3722 & 3916 & 3973 & 3859 \\
\hline \(\mathrm{I}_{1}\) & 4113 & 4047 & 3758 & & & \\
\hline \(\mathrm{I}_{2}\) & 3789 & 4103 & 3686 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of M marginal mean & \(=83.0 \mathrm{lb} / \mathrm{ac}\). \\
S E. of \(S\) or I marginal mean & \(=67.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{M} \times \mathrm{I}\) or \(\mathrm{M} \times \mathrm{S}\) table & \(=117.4 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{S} \times \mathrm{I}\) table & \(=96.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop:- Paddy (Kharif).}

Site :- Govt. Main Farm, Warangal.
\[
\text { Ref. :- A.P. } 59(20)
\]

Type :- 'CM'.
Object :-To evaluate the effect of different factors under the Japanese method of Paddy cultivation.
1. BASAL CONDITIONS:
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Warangal. (iii) 10.6 .195915.8.1959. (iv) (a) 3 ploughings, puddling and levelling. (b) Transplanted. (c) N.A. (d) As per treatments. (e) 3. (v) As per treatments. (vi) HR-35 (late). (vii) Irrigated. (viii) As per treatments. (ix) 19.1*. (x) 4.12.1959.
2. TREATMENTS :

Same as in expt. no. 58(72) on page 194.

\section*{3. DESIGN :}
(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(30^{\prime} \times 29^{\prime} 6^{\prime \prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Affected by gall-fly-Endrine was sprayed 3 to 4 times. (iii) Yield of grain. (iv) (a) 1956-contd. (b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(2875 \mathrm{lb} . / \mathrm{ac}\). (ii) \(182.4 \mathrm{lb} . / \mathrm{ac}\). (iii) M and I effects are highly significant. S effect is significant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) \\
\hline \(\mathrm{S}_{1}\) & 3078 & 2931 & 2563 & 2857 & 2971 & 2742 \\
\hline \(\mathrm{S}_{2}\) & 3017 & 2679 & 2446 & 2714 & 2819 & 2600 \\
\hline Mean & 3047 & 2805 & 2504 & 2785 & 2900 & 2671 \\
\hline \(\mathrm{I}_{1}\) & 3219 & 2912 & 2569 & & & \\
\hline \(\mathrm{I}_{2}\) & 2875 & 2698 & 2440 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of M marginal mean & \(=45.6 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(S\) or I marginal mean & \(=37.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{M} \times \mathrm{S}\) or \(\mathrm{M} \times \mathrm{I}\) table & \(=64.5 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{S} \times I\) table & \(=52.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Paddy (Kharif). \\ Site :- M.A.E. Farm, Chalvai.}

Ref :- A.P. 56(MAE).
Type :- 'CM'.

Object:-Type VII-To determine the optimum spacing, suitable dates of transplanting and the optimum no. of seedlings per ho'e, when fertilizers in the form of \(N\) and \(P\) are applied to Paddy.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Red loam. (b) N.A. (iii) As per treatments. (iv) (a) Ploughing. (b) Transplanted. (c) N.A. (d) and (e) As per treatments. (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. (vi) MTU-19. (vii) Irrigated. (viii) N.A. (ix) \(55.0^{\prime \prime}\). (x) 2 nd fortright of December.

\section*{2. TREATMENTS :}

Main-plot treatments :
All combinations of (1), (2) and (3)
(1) 3 times of planting: \(D_{1}=15\) days before normal, \(D_{2}=\) Normal and \(D_{3}=15\) days after normal transplanting.
(2) No. of seedlings per hole : \(\mathrm{R}_{1}=2, \mathrm{R}_{2}=4\) and \(\mathrm{R}_{3}=6\).
(3) 3 spacings : \(\mathrm{S}_{1}=6^{\prime \prime} \times 6^{\prime \prime}, \mathrm{S}_{2}=8^{\prime \prime} \times 8^{\prime \prime}\) and \(\mathrm{S}_{3}=10^{\prime \prime} \times 10^{\prime \prime}\).

\section*{Sub-plot treatments :}

All combinations of (1) and (2)
(1) 2 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=40 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=40 \mathrm{lb} / / \mathrm{ac}\).

N applied at the time of planting and \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied at final puddling.
3. DESIGN :
(i) Sp it-plot-cum-confd. (ii) (a) 9 plots/block; 3 blocks/replication and 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) \(19^{\prime} \times 29^{\prime}\). (b) \(16^{\prime} \times 27^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Gall-fly attack-Control measures N.A. (iii) Grain yield. (iv) (a) 1956 -contd. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) \(3652 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(655.8 \mathrm{lb} . / \mathrm{ac}\). (b) 224.6 lb ./ac. (iii) Main effect of N is highly significant. Main effect of \(P\) and interactions \(N \times P \times S\) and \(P \times S \times R\) are significant. (iv) Av. yield of grain in \(l b / a c\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathrm{R}_{3}\) & & - \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 3851 & 3817 & 3427 & 3679 & 3787 & 3629 & 3551 & 3846 & 3651 & 3746 & 3698 \\
\hline \(\mathrm{D}_{2}\) & 3738 & 3535 & 3357 & 3490 & 3531 & 3609 & 3461 & 3626 & 3484 & 3603 & 3543. \\
\hline \(\mathrm{D}_{3}\) & 3669 & 3676 & 3801 & 3628 & 3784 & 3735 & 3651 & 3779 & 3663 & 3768 & 3715 \\
\hline Mean & 3753 & 3676 & 3528 & 3599 & 3701 & 3658 & 3554 & 3750 & 3:99 & 3706 & 3652 \\
\hline \(\mathrm{P}_{0}^{\prime}\). & 3724 & 3623 & 3450 & 3573 & 3605 & 3620 & 3493 & 3705 & & & \\
\hline \(\mathrm{P}_{1}\) & 3781 & 3729 & 3607. & 3524 & 3797 & 3696 & 3616 & 3796 & & & \\
\hline \(\mathrm{N}_{0}\) & 3581 & 3619 & 3464 & 3521 & 3634 & 3508 & & & & & \\
\hline \(\mathrm{N}_{1}\) & 3925 & 3733 & 3593 & 3677 & 3767 & 3807 & & & & & \\
\hline \(\mathrm{S}_{1}\) & 3604 & 3737 & 3456 & & & & & & & & \\
\hline \(\mathrm{S}_{2}{ }^{\prime}\) & 3832 & 3742 & 3527 & & & & & & & & \\
\hline \(\mathrm{S}_{3}\) & 3822 & 3549 & 3602 & & & & & & & & \\
\hline \multirow[t]{6}{*}{-} & \multicolumn{6}{|l|}{S.E. of differense of two} & - & & . & & \\
\hline & \multicolumn{6}{|c|}{1. \(D, R\) or \(S\) marginal means} & & & \[
=154 .
\] & ./ac. & \\
\hline & \multicolumn{8}{|c|}{3. \(N\) or \(P\) means at the same level of \(D, R\) or \(S\)} & \(=74\). & /ac. & \\
\hline & \multicolumn{8}{|c|}{4. D, R or S means at the same level of \(\mathbf{N}\) or \(\mathbf{P}\)} & \(=163\). & /ac. & \\
\hline & \multicolumn{8}{|r|}{5. Means in the body of \(\mathbf{D} \times \mathrm{R}, \mathrm{D} \times \mathrm{S}\) or \(\mathrm{R} \times \mathrm{S}\) table} & - 267. & /ac. & \\
\hline & \multicolumn{3}{|r|}{6. Means in} & e bod & of \(\mathrm{N} \times\) & \(\times \mathrm{P}\) tab & & & 61. & ./ac. & \\
\hline
\end{tabular}

Crop:- Paddy (Kharif).
Site :- M.A.E. Farm, Chalvai. Type :- 'CM'.

Object:-Type VII-To determine the optimum spacing, suitable dates of transplanting and the optimum no. of seedlings per hole, when fertilizers in the form of N and P are applied to Paddy.
1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 56 (MAE) type VII conducted at Chalvai on page 200.

\section*{5. RESULTS:}
(i) \(3723 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(493.7 \mathrm{lb} . / \mathrm{ac}\). (b) 423.7 lb ./ac. (iii) Main effect of N is highly significant. Main effects of \(D, S\) and interaction \(D \times R\) are significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & Rı & \(\mathrm{R}_{3}\) & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 3982 & 3819 & 4099 & 3674 & 3916 & 4309 & 4016 & 3917 & 3923 & 4010 & 3967 \\
\hline \(\mathrm{D}_{2}\) & 4101 & 3665 & 3154 & 3401 & 3522 & 3997 & 3905 & 3375 & 3675 & 3605 & 3640 \\
\hline \(\mathrm{D}_{3}\) & 3571 & 3440 & 3671 & 3506 & 3458 & 3718 & 3687 & 3434 & 3471 & 3650 & 3561 \\
\hline Mean & 3885 & 3641 & 3t41 & 3527 & 3632 & 4008 & 3869 & 3575 & 3690 & 3755 & 3723 \\
\hline \(\mathrm{P}_{0}\) & 3744 & 3623 & 3702 & 3533 & 3521 & 4015 & 3777 & 3602 & & & \\
\hline \(\mathrm{P}_{1}\) & 4025 & 3659 & 3580 & 3522 & 3742 & 4000 & 3962 & 3548 & & & \\
\hline \(\mathrm{N}_{0}\) & 4007 & 3806 & 3795 & 3749 & 3797 & 4062 & & & & & \\
\hline \(\mathrm{N}_{1}\) & 3762 & 3476 & 3488 & 3305 & 3467 & 3954 & & & & & \\
\hline \(\mathrm{S}_{1}\) & 3831 & 3349 & 3401 & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & 3742 & 3639 & 3515 & & & & & & & & \\
\hline \(\mathrm{S}_{3}\) & 4081 & 3935 & 4007 & & & & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll}
1. \(\mathrm{D}, \mathrm{R}\) or S marginal means & \(=116.4 \mathrm{lb} / \mathrm{ac}\). \\
2. \(N\) or \(P\) marginal means & \(=81.5 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(N\) or \(P\) means at the same level of \(\mathrm{D}, \mathrm{R}\) or S & \(=141.2 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(D, R\) or \(S\) means at the same level of N or P & \(=153.3 \mathrm{lb} . / \mathrm{ac}\). \\
5. Means in the tody of \(\mathrm{D} \times \mathrm{R}, \mathrm{D} \times \mathrm{S}\), or \(\mathrm{R} \times \mathrm{S}\) table & \(=201.6 \mathrm{lb} . / \mathrm{ac}\). \\
6. Means in the tody of \(\mathrm{N} \times \mathrm{P}\) table & \(=115.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Paddy (Kharif).
Site :- M.A.E. Farm, Chalvai.

\section*{Ref :- A.P. 58(MAE).}

Type :- 'CM'.

Object:-Type VII-To determine the optimum spacing, suitable dates of transplanting and the optimum no. of seedings per hole, when fertilizers in the form of N and P are applied to Paddy.
1. BASAL CONDITIONS:

Same as in expt. no. 56(MAE) type VII conducted at Chaivai on page 200.

\section*{2. TREATMENTS :}

Main-plot treatments :
All combinations of (1;, (2) and (3)
(1) 3 dates of transplanting: \(D_{1}=7.7 .1958, D_{2}=16.7 .1958\) and \(D_{3}=30.7 .1958\).
(2) No. of seedlings per hole: \(\mathrm{R}_{1}=2, \mathrm{R}_{2}=4\) and \(\mathrm{R}_{3}=6\).
(3) 3 sp icings: \(\mathrm{S}_{1}=6^{*} \times 6^{\prime \prime}, \mathrm{S}_{2}=\mathrm{S}^{* \prime} \times 8^{\prime \prime}\) and \(\mathrm{S}_{3}=10^{\circ} \times 10^{*}\).

\section*{Sub-plot treatmen's :}

All combinations of (1) and (2;
(1) 2 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=40 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=40 \mathrm{lb}\)./ac.

N applied at the time of planting and \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied at final puddling.
3. DESIGN :
(i) Split-plot-cum-confd. (ii) (a) 9 plots/block; 3 blocks/replication and 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv, (a) N.A. (b) \(1 / 80.7 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal.
(ii) N.A.
(iii) Grain yield.
(iv) (a) 1956-contd.
(b) Yes.
(c) N.A. (v) to (vii) Nil.
5. RESULTS:
(i) \(2380 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(386.7 \mathrm{lb} / \mathrm{ac}\). (b) 238.6 lb ./ac. (iii) Main effects of D and P and interaction \(\mathrm{N} \times \mathbf{P}\) are highly significant. Main effect of N and interaction \(\mathrm{S} \times \mathrm{P}\) are significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathrm{R}_{3}\) & \(\mathrm{S}_{1}\) & & \(\mathrm{S}_{3}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 2629 & 2827 & 2741 & 2673 & 2811 & 2714 & 2636 & 2829 & 2602 & 2863. & 2733 \\
\hline \(\mathrm{D}_{2}\) & 2381 & 2236 & 2455 & 2564 & 2102 & 2406 & 2364 & 2350 & 2164 & 2551 & 2357 \\
\hline \(\mathrm{D}_{3}\) & 1995 & 2005 & 2151 & 2121 & 1937 & 2094 & 1969 & 2133 & 1852 & 2249 & 2051 \\
\hline Mean & 2335 & 2356 & 2449 & 2453 & 2283 & 2405 & 2323 & 2437 & 2206 & 2554 & 2380 \\
\hline \(\mathrm{P}_{0}\) & 2130 & 2185 & 2304 & 2368 & 2095 & 2155 & 2085 & 2327 & & & \\
\hline \(\mathrm{P}_{1}\) & 2541 & 2527 & 2594 & 2537 & 2472 & 2654 & 2561 & 2547 & & & \\
\hline \(\mathrm{N}_{0}\) & 2282 & 2247 & 2439 & 2427 & 2236 & 2306 & & & & & \\
\hline \(\mathrm{N}_{1}\) & 2388 & 2464 & 2459 & 2478 & 2330 & 2503 & & & & & \\
\hline \(\mathrm{S}_{1}\) & 2407 & 2395 & 2556 & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & 2241 & 2245 & 2365 & & & - & & & & & \\
\hline \(\mathrm{S}_{3}\) & 2358 & 2428 & 2427 & & & & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(\mathrm{D}, \mathrm{R}\) or S marginal means
2. \(N\) or \(P\) marginal means
3. \(N\) or \(P\) means at the same level of \(D, R\) or \(S\)
4. \(D, R\) or \(S\) means at the same level of \(N\) or \(P\)
5. Means in body of \(D \times R, D \times S\) or \(R \times S\) table
6. Means in body of \(\mathrm{N} \times \mathrm{P}\) table
\(=91.1 \mathrm{Jb} / \mathrm{ac}\).
\(=45.9^{\prime} \mathrm{bb} / \mathrm{ac}\).
\(=79.5 \mathrm{lb} / \mathrm{ac}\)
\(=107.1 \mathrm{lb} . / \mathrm{ac}\).
\(=157.9 \mathrm{lb} . / \mathrm{ac}\).
\(=64.9 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Paddy (Kharif).
Site :- M.A.E. Farm, Chalvai.

Ref :- A.P. 59(MAE).
Type :- 'CM'.

Object:-Type VII-To determine the optimum spacing, suitable dates of transplanting and the optimum no. of seedlings per hole, when fertilizers in the form of \(N\) and \(\mathbf{P}\) are applied to Paddy.
1. BASAL CONDITIONS and 2. TREATMENTS :

Same as in expt. no. 56(MAE) type VII conducted at Chalvai on page 200.
3. DESIGN :
(i) Split-plot-cum-confd. (ii) (a) 9 plots/block; 3 blocks/replication and 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) \(31^{\prime} \times 21^{\prime}\). (b) \(29^{\prime} \times 19^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i). Good. (ii) N.A. (iii) Grain yield. (iv) (a) 1956-contd. (b) Yes. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) \(2238 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(594.9 \mathrm{lb} . / \mathrm{ac}\). (b) \(384.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of P is highly significant. Main effects of \(D\) and \(N\) and interaction \(S \times P\) are significant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \[
\mathrm{R}_{3}
\] & \[
S_{1}
\] & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(P_{1}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 2792 & 2311 & 2340 & 2602 & 2479 & 2362 & 2489 & 2473 & 2254 & 2708 & 2481 \\
\hline \(\mathrm{D}_{2}\) & 2088 & 2374 & 2529 & 2480 & 2476 & 2035 & 2243 & 2418 & 2036 & 2624 & 2330 \\
\hline \(\mathrm{D}_{3}\) & 1757 & 2006 & 1946 & 2042 & 1807 & 1861 & 1695 & 2112 & 1686 & 2120 & 1903 \\
\hline Mean & 2212 & 2230 & 2272 & 2375 & 2254 & 2086 & 2142 & 2334 & 1992 & 2484 & 2238 \\
\hline \(\mathrm{P}_{0}\) & 1911 & 2020 & 2045 & 2052 & 2148 & 1776 & 1969 & 2015 & & & \\
\hline \(\mathrm{P}_{1}\) & 2514 & 2440 & 2499 & 2697 & 2360 & 2396 & 2315 & 2654 & & & \\
\hline \(\mathrm{N}_{0}\) & 2104 & 2041 & 2282 & 2235 & 2232 & 1960 & & & & & \\
\hline \(\mathrm{N}_{1}\) & 2321 & 2420 & 2261 & 2515 & 2275 & 2212 & & & & & \\
\hline \(S_{1}\) & 2422 & 2210 & 2492 & & & & & & & & \\
\hline \(S_{2}\) & 2287 & 2346 & 2128 & , & & & & & & & \\
\hline \(S_{3}\) & 1928 & 2137 & 2196 & & & & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. D, R or S marginal means \(\quad=140.2 \mathrm{lb} . / \mathrm{ac}\).
2. \(N\) or \(P\) marginal means \(\quad=739 \mathrm{lb} . / \mathrm{ac}\).
3. \(N\) or \(P\) means at the same level of \(D, R\) or \(S \quad=128.1 \mathrm{lb} . / \mathrm{ac}\).
4. \(\mathrm{D}, \mathrm{R}\) or S means at the same level of N or \(\mathrm{P}=166.9 \mathrm{lb} . / \mathrm{ac}\).
5. Means in body of \(\mathrm{D} \times \mathrm{R}, \mathrm{D} \times \mathrm{S}\) or \(\mathrm{R} \times \mathrm{S}\) table \(=242.9 \mathrm{lb} . / \mathrm{ac}\).
6. Means in body of \(\mathrm{N} \times \mathrm{P}\) table \(=104.5 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Paddy (Kharif).
Site :- M.A.E. Farm, Chinnagonehal.

Ref :- A.P. 57(MAE).
Type :- 'CM'.

Object :-Type VII-To determine the optimum spacing, suitable dates of transplanting and the optimum no. of seedlings per hole, when fertilizers in the form of \(N\) and \(P\) are applied to Paddy.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Black loam. (b) N.A. (iii) As per treatments. (iv) (a) N.A. (b) Transplantirg. (c) N.A. (d) and (e) As per treatments. (v) 5000 lb ./ac. of F.Y.M. (vi) GEB-24. (vii) Irrigated. (viii) N.A. (ix) \(23^{\prime \prime}\). (x) 2nd-3rd week of December.
2. TREATMENTS :

Main-plot treatments :
All combinations of (1), (2) and (3)
(1) 3 times of planting : \(D_{1}=15\) days before normal, \(D_{2}=\) Normal and \(D_{3}=15\) days after normal transplanting.
(2) No. of seedlings per hole : \(\mathrm{R}_{1}=2, \mathrm{R}_{2}=4\) and \(\mathrm{R}_{3}=6\).
(3) 3 spacings: \(\mathrm{S}_{1}=6^{\prime \prime} \times 6^{\prime \prime}, \mathrm{S}_{2}=8^{\prime \prime} \times 8^{\prime \prime}\) and \(\mathrm{S}_{3}=10^{*} \times 10^{\prime \prime}\).

\section*{.Sub-plot treatments :}

All combinations of (1) and (2)
(1) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=40 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=40 \mathrm{lb} . / \mathrm{ac}\).

N applied at the time of planting and \(\mathrm{P}_{4} \mathrm{O}_{5}\) applied at final puddling.
3. DESIGN :
(i) Split-plot-cum-confd. (ii) (a) 9 plots/block; 3 blocks/replication and 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) N.A. (b) \(1 / 100 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii) Nil. (iii) Grain yield. (iv) (a) 1956-contd.
(b) Yes.
(c) N.A. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(672 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(520.0 \mathrm{lb} . / \mathrm{ac}\). (b) 278.9 lb ./ac. (iii) Main effects of P and N and interactions \(\mathrm{N} \times \mathrm{P}\), \(S \times N\) and \(S \times P\) are highly significant. Main effect of \(S\) and interaction \(R \times S \times N\) are significant. (iv) Av. yield of grain in lb.jac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathbf{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathrm{R}_{3}\) & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(S_{3}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 680 & 642 & 972 & 857 & 1021 & 415 & 601 & 928 & 546 & 982 & 764 \\
\hline \(\mathrm{D}_{2}\) & 801 & 359 & 714 & 958 & 509 & 407 & 526 & 724 & 438 & 811 & 625 \\
\hline \(\mathrm{D}_{3}\) & 563 & 448 & 872 & 768 & 756 & 359 & 473 & 783 & 351 & 905 & 628 \\
\hline Mean & 682 & 483 & 853 & 861 & 762 & 394 & -533 & 812 & 445 & 899 & 672 \\
\hline \(\mathrm{P}_{0}\) & 496 & 266 & 574 & 550 & 494 & 292 & 413 & 478 & & & \\
\hline \(\mathrm{P}_{1}\) & 867 & 699 & 1132 & 1173 & 1030 & 496 & 653 & 1145 & , & & \\
\hline \(\mathrm{N}_{0}\) & 587 & 348 & 665 & 629 & 584 & 387 & & & & & . \\
\hline \(\mathrm{N}_{1}\) & 777 & 617 & 1041 & 1094 & 940 & 401 & & & & & \\
\hline \(\mathrm{S}_{1}\) & . 965 & 586 & 1033 & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & . 774 & 500 & 1012 & & & & & & & & \\
\hline \(S_{3}\) & 306 & 362 & 513 & & & & & & , & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(\mathrm{D}, \mathrm{R}\) or S marginal means \(=122.6 \mathrm{lb} . / \mathrm{ac}\).
2. N or P marginal means \(=53.7 \mathrm{lb} . / \mathrm{ac}\).
3. \(N\) or \(\mathbf{P}\) means at the same level of \(\mathrm{D}, \mathrm{R}\) or \(\mathrm{S}=93.0 \mathrm{lb} / \mathrm{ac}\).
4. \(D, R\) or \(S\) means at the same level of \(N\) or \(P=139.2 \mathrm{lb} . / \mathrm{ac}\).
5. Means in body of \(\mathrm{D} \times \mathrm{R}, \mathrm{D} \times \mathrm{S}\) or \(\mathrm{R} \times \mathrm{S}\) table \(=212.3 \mathrm{lb} . / \mathrm{ac}\).
6. Means in body of \(N \times P\) table \(=75.9 \mathrm{lb} . / \mathrm{ac}\).

Grop :- Paddy (Kharif).
Site :- M.A.E. Farm, Chinnagonehal.

Ref :- A.P. 58(MAE).
Type :- 'CM'.

Object:-Type VII-To determine the optimum spacing, suitable dates of transplanting and the optimum no. of seedlings per hole when fertilizers in the form of \(N\) and \(P\) are applied to Paddy.

\section*{1. BASAL CONDITIONS :}
(i) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) As per treatments. (iv) (a) Ploughing.
(b) Transplanting. (c) N.A. (d) and (e) As per treatments. (v) 5000 lb ./ac. of F.Y.M. (vi) GEB-24.
(vii) Irrigated. (viii) Weeding and puddling. (ix) \(23^{\prime \prime}\). (x) 2nd December.
2. TREATMENTS:

Main-plot treatments :
All combinations of (1), (2) and (3)
(1) 3 dates of transplanting: \(D_{1}=15.7 .1958, D_{2}=30.7 .1958\) and \(D_{3}=15.8 .1958\).
(2) No. of seedlings per holes: \(\mathrm{R}_{1}=2, \mathrm{R}_{2}=4\), and \(\mathrm{R}_{3}=6\).
(3) 3 spacings: \(S_{1}=6^{\prime \prime} \times 6^{\prime \prime}, S_{2}=8^{\prime \prime} \times 8^{\prime \prime}\) and \(S_{3}=10^{\prime \prime} \times 10^{\prime \prime}\).

\section*{Sub-plot treatments :}

All combinations of (1) and (2)
(2) 2 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=40 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=40 \mathrm{lb}\)./ac.

N applied at the time of planting and \(\mathrm{P}_{2} \mathrm{O}_{5}\) at the time of final puddling.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 57(MAE) type VII conducted at Chinalgouehal on pige 204.
5. RESULTS :
(i) \(1282 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(4394 \mathrm{lb} . / \mathrm{ac}\). (b) \(418.0 \mathrm{lb} . / \mathrm{ac}\). (iit) Main effects of N and P and interaction \(\mathbf{N} \times \mathbf{P}\) are highly significant. Other effects are not significant. (iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathbf{R}_{3}\) & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 1321 & 1500 & 1306 & 1379 & 1411 & 1337 & 944 & 1807 & 1074 & 1677 & 1376 \\
\hline - \(\mathrm{D}_{2}\) & 1272 & 1223 & 1429 & 1428 & 1260 & 1235 & 801 & 1815 & 959 & 1657 & 1308 \\
\hline D3 & 1215 & 1174 & 1102 & \(11^{11}\) & 1192 & 1188 & 880 & 1448 & 866 & 1462 & 1164 \\
\hline Mean & 1269 & 1299 & 1279 & 1306 & 1288 & 1253 & 875 & 1690 & 966 & 1599 & 1282 \\
\hline \(\mathrm{P}_{0}\) & 1029 & 985 & 885 & 1010 & 1006 & 883 & 725 & 1207 & & & \\
\hline \(\mathrm{P}_{1}\) & 1509 & 1613 & 1673 & 1602 & 1569 & 1623 & 1025 & 2172 & & & \\
\hline \(\mathrm{N}_{0}\) & \(9: 3\) & 854 & 848 & 848 & 904 & 872 & & & & & \\
\hline \(\mathrm{N}_{1}\) & 1616 & 1743 & 1711 & 1764 & 1671 & 1636 & & & & & \\
\hline \(\mathrm{S}_{1}\) & 1208 & 1214 & 1496 & & & & & & & & \\
\hline \(S_{2}\) & 1277 & 1395 & 1191 & & & & & & & & \\
\hline \(\mathrm{S}_{3}\) & 1322 & 1288 & 1150 & & & & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(\mathrm{D}, \mathrm{R}\) or S marginal means
\(=103.6 \mathrm{lb} . / \mathrm{ac}\).
2. N or P marginal means
\(=80.4 \mathrm{lb} . / \mathrm{ac}\).
3. \(N\) or \(P\) means at the same level of \(D, R\) or \(S\)
\(=139.3 \mathrm{lb} . / \mathrm{ac}\).
4. \(D, R\) or \(S\) means at the same level of \(N\) or \(P\)
\(=142.9 \mathrm{lb} . / \mathrm{ac}\).
5. Means in the body of \(D \times R, D \times S\) or \(R \times S\) tab'e \(=179.4 \mathrm{lb} . / \mathrm{ac}\).
5. Means in the body of \(N \times P\) table \(\quad=113.7 \mathrm{lb} . / \mathrm{ac}\).

Paddy (Kharif).
Site :- M.A.E. Farm, Chinnagonehal,

Ref:- A.P. 59(MAE).
Type ' CM '.

Object:-Type VII-To determine the optimum spacing, suitable dates of transplanting and the optimum no. of seedlings per hole, when fertilizers in the form of \(N\) and \(P\) are applied to Paddy.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) As per treatments. (iv) (a) Ploughing
(b) Transplanting. (c) -. (d) and (e) As per treatments. (v) 5000 lb ./ac. of F.Y.M. (vi) GEB-24.
(vii) Irrigated. (vl:i) Weeding and puddling. (ix) \(23^{\prime \prime}\). (x) 2nd December.
2. TREATMENTS to 4. GENERAL:

Same as expt. no. 57(MAE) type VII conducted at Chinnagonehal on page 204.
5. RESULTS :
(i) 1173 lb ./ac. (ii) (a) 548.0 lb ./ac. (b) \(358.7 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effects of N and P are highly significant. Main effect of \(D\) is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathrm{R}_{3}\) & \[
S_{1}
\] & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 1311 & 1417 & 1540 & 1565 & 1442 & 1260 & 1063 : & 1782 & 1290 & 1555 . & 1423 \\
\hline \(\mathrm{D}_{2}\) & 1162 & 907. & 1279 & 1155 & 1208 & 985 & 789 & 1443 & 989 & 1243 & 1116 \\
\hline - \(\mathrm{D}_{3}\) & 1038 & 1022 & 882 & 936 & 957 & 1049 & 696 & 1266 & 884 & 1078 & 981. \\
\hline Mean & 1170 & 1115 & 1234 & 1219 & 1202 & 1098 & '849 & 1497 & 1054 & 1292 & 1173 \\
\hline \(\mathrm{P}_{0}\) & 1029 & 988 & 1146 & 1065 & 1097 & 1002 & 775 & & & & \\
\hline - \(\mathrm{P}_{1}\) & 1312 & 1242 & 1321 & 1373 & 1308 & 1194 & 924 & 1660 & & & \\
\hline \(\mathrm{N}_{0}\) & 858 & 790 & 900 & 912 & & 791 & * & & & & \\
\hline \({ }^{\cdot} \mathrm{N}_{1}\) & 1482 & 1441 & 1567 & 1525 & & 1405 & & & & & \\
\hline \(S_{1}\) & 1041 & 1121 & 1495 & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & 1308 & 1170 & 1129 & & & & , & & & & \\
\hline \(\mathrm{S}_{3}\) & 1162 & 1055 & 1077 & . & & & * & & . & & \\
\hline
\end{tabular}

Grop :- Paddy (Kharif).
Site :- M.A.E. Farm, Maruteru.

Ref :- A.P. 58(MAE).
Type 'CM'.

Object:-Type VII-To determine the optimum spacing, suitable, dates of transplanting and the optimum no. of seedlings per hole, when fertilizers in the form of \(N\) and \(P\) are applied to Paddy.
1! BASAL CONDITIONS:
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) As per treatments. (iv) (a) Ploughing
(b) Transplanting. (c) N.A. (d) and (e) As per treatments. (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. (vi) MTU-1 and SLO-13. (vii) Irrigated. (viii) Weeding and puddling. (ix) \(50^{\circ}\). (x) 1st December.

TREATMENTS :
Main-plot treatments:
All combinations of (1), (2) and (3)
(1) 3 dates of transplanting: \(\mathrm{D}_{1}=1.7 .1958 . \mathrm{D}_{2}=16.7 .1958\) and \(\mathrm{D}_{3}=31.7 .1958\).
(2) No. of seedlings per hole: \(R_{1}=2, R_{2}=4\) and \(R_{3}=6\).
(3) 3 spacings: \(S_{1}=6^{\prime \prime} \times 6^{\prime \prime}, S_{2}=8^{\prime \prime} \times 8^{\prime \prime}\) and \(S_{3}=10^{\prime \prime} \times 10^{\prime \prime}\).

Sub-plot treatments :
All combinations of (1) and (2)
((1) 2 levels of \(N\) as \({ }^{*} \mathrm{~A} / \mathrm{S}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=40 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=40 \mathrm{lb}\)./ac.

N applied at the time of planting and \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied at the time of final pudding,
3. DESIGN and 4. GENERAL:

Same as in expt. no. 57(MAE) type VII conducted at Chinnagonehal on page 204.
5. RESULTS:
(i) 2933 lb . /ac. (ii) (a) 413.9 lb ./ac. (b) \(371.9 \mathrm{lb} . / \mathrm{ac}\). (ili) Main effects of N and P and interaction \(\mathrm{N} \times \mathrm{P}\) are highiy significant. (iii) Main effect of \({ }^{\prime} D\) is significant. Other effects are not significant. (vi) Av. yield of grain in lb,/ac.

S.E. of difference of two
\begin{tabular}{ll}
1. \(\mathrm{D}, \mathrm{R}\) or S marginal means & \(=97.6 \mathrm{lb} . / \mathrm{ac}\). \\
2. N or P marginal means & \(=71.6 \mathrm{lb} . / \mathrm{ac}\). \\
3. N or P means at the same level of \(\mathrm{D}, \mathrm{R}\) or S & \(=124.0 \mathrm{lb} / \mathrm{ac}\). \\
4. \(\mathrm{D}, \mathrm{R}\) or S mears at the same level of N or P & \(=131.2 \mathrm{lb} / \mathrm{ac}\). \\
5. Means in the body of \(\mathrm{D} \times \mathrm{R}, \mathrm{D} \times \mathrm{S}\) or \(\mathrm{R} \times \mathrm{S}\) table & \(=167.0 \mathrm{lb} . / \mathrm{ac}\). \\
6. Means in the body of \(\mathrm{N} \times \mathrm{P}\) table & \(=101.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Paddy (Kharif).
Site :- M.A.E. Farm, Maruteru.

Ref :- A.P. 59(MAE).
Type :-‘CM'.

Object :-Typ: VII-To determine the optimum spacing, suitable dates of transplanting and the optimum no. seedlings per hole, when fertilizers in the form of N and P are applied to Paddy.
1. BASAL CONDITIONS :
(i) (a) Nil. (b; and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) As per treatments. (iv) (a) Ploughing (b) Transpanting. (c) N.A. (d) and (c) As per treatments. (v) 5000 lb ./ac. of F.Y.M. (vi) SLO-13 MTU-10. (vii) Irrigated. (viii) Weeding and puddling. (ix) N.A. (x) December.

\section*{2. TREATMENTS:}

Main-plot treatments :
All combinations of (1), (2) and (3)
(1) 3 dates of planting: \(D_{1}=25.61959: D_{2}=9.7 .1959\) and \(D_{3}=24.7 .1959\)
(2) No. of seedlings per hole: \(R_{1}=2, R_{2}=4\) and \(R_{3}=6\).
(3) 3 sp cings: \(\mathrm{S}_{1}=6^{\prime \prime} \times 6^{\prime \prime}, \mathrm{S}_{2}=8^{\prime \prime} \times 8^{\prime \prime}\) and \(\mathrm{S}_{3}=10^{\prime \prime} \times 10^{\prime \prime}\).

\section*{Sub-plot treatments :}

All combiations of (1) and (2)
(1) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super: \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).

N applied at the time of planting and \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied at the time of final puddling.
3. DESIGN and 4. GENERAL:

Same as in expt. no. 57. MAE) type VII conducted at Chinnagonehal on page 204.
5. RESLLTS :
(i) \(3162 \mathrm{lb} . \mathrm{ac}\). (ii) (a'; 291.7 lb .'ac. (b) \(131.6 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effects of \(\mathrm{D}, \mathrm{N}\) and P are highly significant. Other effects are not significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \(\mathrm{R}_{1}\) & \(\mathbf{R}_{2}\) & \(\mathbf{R}_{3}\) & \(\mathrm{S}_{1}\) & \(S_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & \[
3371
\] & 3550 & 3454 & 3550 & 3655 & 3170 & 3158 & 3759 & 3317 & 3600 & 3458 \\
\hline \(\mathrm{D}_{2}\) & 3073 & 3083 & 3287 & 3125 & 3398 & 2920 & 2899 & 3396 & 2979 & 3316 & 3148 \\
\hline \(\mathrm{D}_{3}\) & 2833 & 2883 & 2928 & 2916 & 3003 & 2725 & 2641 & 3122 & 2774 & 2989 & 2881 \\
\hline Mean & 3092 & 3172 & 3223 & ,3197 & 3352 & 2938 & 2899 & 3426 & 3023 & 3302 & 3162 \\
\hline \(\mathrm{P}_{0}\) & 2958 & 3033 & 3080 & 3055 & 3239 & 2776 & 2766 & 3281 & & & \\
\hline \(\mathrm{P}_{1}\) & 3227 & 3311 & 3367 & 3339 & 3465 & 3100 & 3032 & 3570 & . & & \\
\hline \(\mathrm{N}_{0}\) & 2821 & 2877 & 3000 & 2944 & 3077 & 2677 & & & & & \\
\hline \(\mathrm{N}_{1}\) & 3363 & 3467 & 3447 & 3450 & 3627 & 3200 & & & & & , \\
\hline \(\mathrm{S}_{1}\) & 3116 & 3271 & 3204 & & & & & & & . & \\
\hline \(\mathrm{S}_{2}\) & 3203 & 3328 & 3524 & & & . & & & & & \\
\hline \(\mathrm{S}_{3}\) & 2957 & 2916 & 2942 & & & & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll}
1. \(\mathrm{D}, \mathrm{R}\) or S marginal means & \(=68.8 \mathrm{lb} . / \mathrm{ac}\). \\
2. N or P marginal means & \(=25.3 \mathrm{lb} . / \mathrm{ac}\). \\
3. N or P means at the same level of \(\mathrm{D}, \mathrm{R}\) or S & \(=43.9 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(\mathrm{D}, \mathrm{R}\) or S means at the same level of N or P & \(=75.4 \mathrm{lb} . / \mathrm{ac}\). \\
5. Means in the body of \(\mathrm{D} \times \mathrm{R}, \mathrm{D} \times \mathrm{S}\) or \(\mathrm{R} \times \mathrm{S}\) table & \(=119.1 \mathrm{lb} . / \mathrm{ac}\). \\
6. Means in the body of \(\mathrm{N} \times \mathrm{P}\) table & \(=35.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Paddy (Rabi).
Site :- M.A.E. Farm, Maruteru.

\section*{Ref:- A.P. 59(MAE). \\ Type :- 'CM'.}

Object:-Type VII-To determine the optimum spacing, suitable dates of transplanting and the optimum no. of seedlings per hole, when fertilizers in the form of N and P are applied to Paddy.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) As per treatments. (iv) (a) Ploughing.
(b) Transplanting. (c) N.A. (d) and (e) As per treatments. (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. (vi) MTU-10.
(vii) Trrigated. (viii) Weeding and puddling. (ix) 6.77". (x) May.

\section*{2. TREATMENTS:}

Main-plot treatments :
All combinations of (1), (2) and (3)
(1) 3 dates of transplanting: \(\mathrm{D}_{1}=27.1 .1960, \mathrm{D}_{2}=11.2 .1960\) and \(\mathrm{D}_{3}=26.2 .1960\).
(2) No. of seedlings per hole: \(\mathrm{R}_{1}^{\prime}=2, \mathrm{R}_{2}=4\) and \(\mathrm{R}_{3}=6\).
(3) 3 spacings: \(\mathrm{S}_{1}=6^{\prime \prime} \times 6^{\prime \prime}, \mathrm{S}_{2}=8^{\prime \prime} \times 8^{\prime \prime}\) and \(\mathrm{S}_{3}=10^{\prime \prime} \times 10^{\prime \prime}\) 。

\section*{Sub-plot treatments :}

All combinations of (1) and (2)
(1) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=40 \mathrm{lb}\)./ac.

N applied at the time of planting and \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied at the time of final puddling.
3. DESIGN :
(i) Split-plot confd. (ii) (a) 9 plots/block; 3 blocks/replication and 4 sub-plots/main-plot. (b) N.A. (iii) 1 .
(iv) (a) \(32^{\prime} \times 16 \frac{1}{2}^{\prime}\).
(b) \(30^{\prime} \times 14 \frac{\Sigma^{\prime}}{}\).
4. GENERAL :
(i) Good. (ii) Stem borer attack-control measures N.A. (iii) Grain yield. (iv) (a) 1956-contd. (b) and (c) N.A. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(3045 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(723.2 \mathrm{lb} . / \mathrm{ac}\). (b) 791.5 lb ./ac. (iii) Main effect of N is highly significant. Main effect of \(D\) is significant. (iv) \(A v\). yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathrm{R}_{3}\) & \(\mathrm{S}_{1}\) & S \(\mathbf{g}^{1}\) & \(\mathrm{S}_{3}\) & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 3388 & 3224 & 3302 & 3353 & 3579 & 2983 & 2978 & 3631 & 3256 & 3354 & 3305 \\
\hline \(\mathrm{D}_{2}\) & 3161 & 3102 & 3203 & 3052 & 3178 & 3236 & 2681 & 3632 & 3070 & 3242 & 3155 \\
\hline \(\mathrm{D}_{3}\) & 2737 & 2620 & 2659 & 2907 & 2611 & 2511 & 2564 & 2786 & 2720 & 2631 & 2675 \\
\hline Mean & 3095 & 2982 & 3058 & 3103 & 3123 & 2910 & 2741 & 3350 & 3015 & 3076 & 3045 \\
\hline \(\mathrm{P}_{0}\) & 3048 & 2934 & 3064 & 3226 & 3059 & 2761 & 2656 & 3374 & & & \\
\hline \(\mathrm{P}_{1}\) & 3142 & 3031 & 3053 & 2981 & 3187 & 3059 & 2825 & 3326 & & & \\
\hline \(\mathrm{N}_{0}\) & 2825 & 2583 & 2814 & 2853 & 2820 & 2550 & & & & & \\
\hline \(\mathrm{N}_{1}\) & 3365 & 3382 & 3304 & 3354 & 3426 & 3270 & & & & & \\
\hline \(S_{1}\) & 3220 & 2945 & 3144 & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & 3196 & 3202 & 2970 & & & & & & & & \\
\hline \(S_{3}\) & 2870 & 2799 & 3060 & & & & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(\mathrm{D}, \mathrm{R}\) or S marginal means
\(=170.5 \mathrm{lb} . / \mathrm{ac}\).
2. N or P marginal means
\(=152.3 \mathrm{lb} . / \mathrm{ac}\).
3. \(N\) or \(P\) means at the same level of \(D, R\) or \(S\)
\(=263.8 \mathrm{lb} . / \mathrm{ac}\).
4. \(D, R\) or \(S\) means at the same level of \(N\) or \(P\)
\(=252.7 \mathrm{lb} . / \mathrm{ac}\).
5. Means in the body of \(D \times R, D \times S\) or \(R \times S\) table
\(=295.2 \mathrm{lb} . / \mathrm{ac}\).
6. Means in the body of \(N \times P\) table
\(=215.4 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Paddy.}

Site :- Rice Res. Stn., Buchireddipalem.

Ref:- A.P. 54(48).
Type :- 'I'.

Object:-To study the incidence of blast under different irrigational treatments.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Horse gram and wild indigo. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 9.8.1954/17.9.1954. (iv) (a) 1 dry ploughing with tractor, during the summer and subsequently with the country plough. 1 puddling before transplanting and levelling. (b) Transplanting. (c) - . (d) \(6^{\prime \prime} \times 6^{\prime \prime}\). (e) 2 . (v) 4000 lb ./ac. of G.L. \(+150 \mathrm{lb} . / \mathrm{ac}\). of Supar and \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) applied before planting. (vi) \(\mathrm{BCP}-2\) (late). (vii) As per treatments. (viii) Weeding. (ix) \(29.4^{*}\). (x) 17.9.1954/28.1.1955.
2. TREATMENTS :

4 irrigational treatments : \(I_{1}=\) Irrigated as and when required (\(1_{2}{ }^{\prime \prime}\) level maintained throughout), \(I_{2}=\) As in \(I_{1}\), upto shot-blade stage and then at one week interval, \(J_{3}=A s\) in \(I_{1}\), upto full flowering and then at one week interval and \(I_{4}=A s\) in \(I_{1}\), upto milk stage and then at one week intervals.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 6 . (iv) (a) and (b) \(12^{\prime} \times 16^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Height measurement, tiller count and yield. (iv) (a) 1949 -contd. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(1969 \mathrm{lb} . / \mathrm{ac}\). (ii) \(140.5 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb.jac.
\begin{tabular}{lcccc}
Treatment & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{\mathbf{2}}\) & \(\mathrm{I}_{3}\) & \(\mathrm{I}_{4}\) \\
Av. yield & 1958 & 1914 & 1965 & 2032 \\
& S.E. \(/\) mean & \(=\) & \(57.4 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\section*{Crop :- Paddy (Kharif). \\ Site :- Rice Res, Stn., Buchireddipalem.}

\section*{Ref :- A.P. 55(92).}

Type :- 'I'.
Object :-To study the incidence of blast under different irrigational treatments.
BASAL CONDITIONS :
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Sandy Joam. (b) N.A. (iii) 12.7.1955/8.8.1955. (iv) (a) \\
3 puddlings and levelling. (b) Transplanting. (c) \(30 \mathrm{lb} . / \mathrm{ac}\). (d) \(10^{\prime \prime} \times 6^{\prime \prime}\). (e) 2 . (v) \(4000 \mathrm{lb} . / \mathrm{ac}\). of G.L. + 150 lb ./ac. of Super \(+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\). (vi) \(\mathrm{BCP}-1\) (late). (vii) As per treatments. (viii) 2 weedings and
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline
\end{tabular} 150 lb /ac. of Super +50 lb ./ac. of A/S. (vi) BCP-1 (late). (vii) As per treatments. (viii) 2 weedings and gap filling. (ix) \(2601^{\circ}\). (x) 28.1.1956.
2. TREATMENTS :

Same as in expt. no. \(54(48)\) on page 210.
DESIGN :
(i) R.B.D. (ii) (a) 4. (b) \(60^{\prime} \times 16^{\prime}\). (iii) 6. (iv) (a) \(12 \frac{1}{2}^{\prime} \times 16^{\prime}\). (b) \(10^{\prime} 10^{\prime \prime} \times 15^{\prime}\). (v) \(10^{\prime \prime} \times 6^{\prime \prime}\). (vi) Yes. GENERAL :
(i) and (ii) N.A. (iii) Neck infection count. (iv) (a) 1949-1956. (b) and (c) N.A. (v) to (vii) Nil.

RESULTS :
(i) 17.9 degrees. (ii) 7.59 degrees. (iii) Treatment differences are not significant.' (iv) Percentage of neck infection converted into degrees.
\begin{tabular}{ccccc}
Treatment & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) & \(\mathrm{I}_{4}\) \\
Áv. value & 18.3 & 17.9 & 19.5 & 15.7 \\
\(\ldots\) & S.E. \(/\) mean & \(=\) & 3.09 degrees. &
\end{tabular}

\footnotetext{
Crop :- Paddy.
Site :-Rice Res. Stn., Buchireddipalem.
Ref :- A.P. 56(30).
Type :- ‘I'.
Object:-To study the incidence of blast under different irrigational treatments.
1. BASAL CONDITIONS :
(i) (a) No.' (b) Paddy. (c) \(10 \mathrm{C} \mathrm{L./ac} .\mathrm{of} \mathrm{C.M} .\mathrm{and} 75 \mathrm{lb} . / \mathrm{ac}\). of triple Super. Top dressing of \(100 \mathrm{lb} . / \mathrm{ac}\). of \(A / S\) in two doses : one at planting and second one month later. (ii) (a) Sandy loam. (b). N.A. (iii) 30.6.1956/4.8.1956. (iv) (a) 2 to 3 ploughings, 2 puddlings with country plough followed by one puddling with mechanical puddler. (b) N.A. (c) 25 lb ./ac. (d) \(10^{\prime \prime} \times 6^{\prime \prime}\). (e) 3 . (v) E As in (i) (c) above. (vi) BCP-1 (late). (vii) İrrigated. (viii) 3 hand weedings and working push hoe. (ix) 60.90". (x) 11.1.1957.
}
2. TREATMENTS :

Same as in expt. no. 54 (48) on page 210.
DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) and (b) \(12 \frac{1^{\prime}}{}{ }^{\prime} \times 16^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Normal, lodging in Dec. 1956. (ii) Stem borer and leaf roller attack. Spraying endrine and dusting of B.H.C. \(10 \%\). (iii) Neck infection, straw and grain yield. (iv) (a) 1949-1956. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 2557 lb ./ac. (ii) \(524.9 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{lcccc}
Treatment & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) & \(\mathbf{I}_{4}\) \\
Av. vield & 2455 & 2715 & 2632 & 2425 \\
& & & & \\
& S.E./mean & \(=\) & \(214.2 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\section*{Crop :- Paddy (Abi). \\ Site :- Maize Breeding Stn., Amberpet.}
Ref :- A.P. 58(47).
Type :- 'D'.

Object :-To find out a suitable seed treatment against Paddy blast.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) Sewage effluent water. (ii) (a) N.A. (b) Refer soil analysis, Amberpet. (iii) N.A./12.7.1958. (iv) (a) Japanese method. (b) and (c) N.A. (d) \(10^{*} \times 10^{\circ}\). (e) 2. (v) No manure. Sewage effluent water was given to supply \(70 \mathrm{lb} / \mathrm{ac}\). of N and 45 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (vi) \(\mathrm{CH}-45\) (early). (vii) Irrigated. (viii) Weeding by hand and by Japanese weeder. (ix) 31.5". (x) 24.10.1958.
2. TREATMENTS :
\(\mathrm{T}_{0}=\) Control \(\quad \mathrm{T}_{4}=\) ESD \(/ A M\)
\(\mathrm{T}_{1}=\) Agrosan \(\quad \mathrm{T}_{5}=\) ESD \(/ \mathrm{HS}\)
\(\mathrm{T}_{2}=\) Harvesan \(\quad \mathrm{T}_{6}=\) Tillex
\(\mathrm{T}_{3}=\) Flit-406 \(\quad \mathrm{T}_{7}=\) Ceresan (dry)
All chemicals applied at the rate of \(5 \mathrm{oz} . / \mathrm{cwt}\) of seed.
3. DESIGN :
(i) R B.D. (ii) (a) 8. (b) N.A. (iii) 3. (iv) (a) and (b) \(16^{\prime} \times 14^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good; crop lodged at the time of harvest (ii) Nil. (iii) Grain yield. (iv) (a) 1954-contd. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) Nil. (vii) The data of the expt. for the years 1954 to 1957 are N.A.
5. RESULTS :
(i) \(5421 \mathrm{lb} . / \mathrm{ac}\) (ii) \(814.2 \mathrm{lb} . / \mathrm{ac}\). (iii) The treatment differences are significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{lcccccccc}
Treatment & \(\mathbf{T}_{\mathbf{0}}\) & \(\mathbf{T}_{\mathbf{1}}\) & \(\mathrm{T}_{\mathbf{2}}\) & \(\mathrm{T}_{3}\) & \(\mathbf{T}_{\mathbf{4}}\) & \(\mathrm{T}_{\mathbf{5}}\) & \(\mathrm{T}_{\mathbf{6}}\) & \(\mathbf{T}_{\mathbf{7}}\) \\
Av. yield & 3564 & 6806 & 5575 & 6353 & 4797 & 6287 & 4603 & 5381
\end{tabular}
```

Crop :- Paddy (Abi).
Site :- Maize Breeding Stn., Amberpet.

$$
\text { Ref :- A.P. } 58(46)
$$

Type :- ‘D'.

```

Object:-To test the efficacy of spraying and dusting chemicals on Paddy blast.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Sewage effluent water. (ii) (a) N.A. (b) Refer soil analys:s, Amberpet. (iii) N.A./12.7.1958. (iv) (a) Japanese method. (b) and (c) N.A. (d) \(10^{\prime \prime} \times 10^{\prime \prime}\). (e) 2. (v) Sewage effluent to supply \(70 \mathrm{lb} . / \mathrm{ac}\). of N and \(45 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) was given. (vi) \(\mathrm{CH}-45\) (early). (vii) Irrigated. (viii) Weeding by hand and Japanese weeder. (ix) 31.5". (x) 24.10.1958.

\section*{2. TREATMENTS:}

8 szed trestments : \(\mathrm{T}_{0}=\) Control, \(\mathrm{T}_{1}=\) Bordeaux mixture (\(55-50\)), \(\mathrm{T}_{2}=\) Parrycop (1 in 30), \(\mathrm{T}_{3}=\) Perenox (\(.32 \%\)) \(\mathrm{T}_{4}=\) Wetcol -15 (1 in 25), \(\mathrm{T}_{5}=\) Copper sandoz (1 in 40), \(\mathrm{T}_{6}=\) Blitox (1 in 40) and \(\mathrm{T}_{7}=\) Sulphur (dusted).
Treatments were applied twice 3 and 6 weeks after transplanting.
3. DESIGN :
(i) R.B.D.
(ii) (a) 8 .
(b) N.A.
(iii) 3
(iv) (a) and (b) \(29^{\circ} \times 15\)
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Good but crop lodged at the time of harvest.
(ii) Nil. (iii) Grain yield.
(iv) (a) and (b) N.A.
(c) Nil.
(v) to (vii) Nil.
5. RESULTS :
(i) 2307 lb ./ac. (ii) 562.9 lb ./ac. , (iii) The treatment differences are not significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{c}\).
\begin{tabular}{llccccccc}
Treatment & \(\mathrm{T}_{0}\) & \(\mathrm{~T}_{\mathbf{1}}\) & \(\mathrm{T}_{\mathbf{2}}\) & \(\mathrm{T}_{\mathbf{3}}\) & \(\mathrm{T}_{\mathbf{4}}\) & \(\mathrm{T}_{\mathbf{5}}\) & \(\mathrm{T}_{\mathbf{6}}\) & \(\mathbf{T}_{\mathbf{7}}\) \\
Av. yield & 2070 & 2804 & 2136 & 2771 & 2837 & 2036 & 1535 & 2270 \\
& & & & & & & & \\
& S.E./mean & \(=\) & \(325.0 \mathrm{lb} . / \mathrm{ac}\). & & & & &
\end{tabular}

\section*{Crop :- Paddy (Abi). \\ Site :- Maize Breeding Sta., Amberpet.}

Ref :- A.P. 58(45).
Type :- 'D'.

Object :-To test the efficacy of seed dressings against sprays on the blast disease of Paddy.
. BASAL CONDITIONS :
' (i) (a) Nil. (b) Paddy. (c) Sewage effluent water. (ii) (a) N.A. (b) Refer soil analysis, Amberpet. (iii) 12.7.1958. (iv) (a) Japanese method. (b) and (c) N.A. (d) \(10^{x} \times 10^{\prime \prime}\). (e) 2. (v) No manure. Sewage effluent water to supply 70 lb ./ac. of N and 45 lb . of \(\mathrm{P}_{2} \mathrm{O}_{5}\) was given. (vi) \(\mathrm{CH}-45\) (early). (vii) Irrigated. (viii) Weeding by hand and by Japanese weeder. (ix) 31.5". (x) 24.10.1958.

\section*{2. TREATMENTS :}

All combinations of (1) and (2) + a control (no treatment)
(1) Seed dressings: \(T_{1}=\) Agrosan, \(T_{2}=\) Harvesan, \(T_{3}=\) Tillex and \(T_{4}=\) Flit-406. ,
(2) 4 sprays: \(\mathrm{S}_{1}=\) Bordeaux mixture \(10 \%, \mathrm{~S}_{2}=\) Wetcol (1 in 25), \(\mathrm{S}_{3}=\) Parry cop (1 in 40) and \(\mathrm{S}_{4}=\) Sulphur dusting.
Sprayed were given 3 and 6 weeks after planting.
3. DESIGN:
(i) R.B.D. (ii) (a) 17. (b) N.A. (iii) 2 . (iv) (a) and (b) \(68^{\prime} \times 6^{\prime}\). (v) Nil. •(vi) Yes.
4. GENERAL :
(i) Good: crop lodged at the time of harvest. (ii) Nil. (iii) Grain yield. (iv) (a) and (b) N.A. (c) Nil. (v) to (vii) Nil.
5. REESULTS :
(i) \(2590 \mathrm{lb} . / \mathrm{ac}\). (ii) \(675.3 \mathrm{lb} . / \mathrm{ac}\). (iii) \(\dot{\text { N }}\) N one the effects is significant. (iv) Av. yield of grain in lb./ac.
\[
\text { Control }=2402 \mathrm{lb} . / \mathrm{ac}
\]
\begin{tabular}{c|cccc}
& \(T_{1}\) & \(T_{2}\) & \(T_{3}\) & \(T_{4}\) \\
\hline \(\mathrm{~S}_{1}\) & 2829 & 2242 & 2189 & 4270 \\
\(\mathrm{~S}_{2}\) & 2509 & 2295 & 1868 & 2776 \\
\(\mathrm{~S}_{3}\) & 2455 & 2669 & 2295 & 3256 \\
\(\mathrm{~S}_{4}\) & 2722 & 2776 & 2349 & 2135 \\
\hline Mean & 2627 & 2495 & 2175 & 3109
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal means & \(=238.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table or control mean & \(=477.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll}
Crop :- Paddy. & Ref :- A.P. 57(62). \\
Site :- Sugarcane Res. Stn., Anakapalle. & Type :- ‘D'.
\end{tabular}

Object :-To study the effect of soaking seeds in nutrient solutions prior to sowing.
1. BASAL CONDITIONS :
(i) (a) G.M.-Paddy-Sugarcane. (b) Sugarcane-Fallow. (c) \(100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\). (ii) (a) Loamy.
(b) Refer soil analysis, Anakapalie. (iii) \(3.8 .1957 /\) N.A. (iv) (a) 4 puddlings and then levelling. (b) N.A.
(c) \(30 \mathrm{lb} . / \mathrm{ac}\). (d) \(6^{\prime \prime} \times 6^{\prime \prime}\). (e) 2 to 3 . (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of G.L. in pudde+A/S at \(40 \mathrm{lb} . / \mathrm{ac}\). of N one month after planting.(vi) GEB-24 (medium). (vii) Irrigated. (viii) Working rotary hoe twice. (ix) N.A. (x) 19.12.1957.
2. TREATMENTS :

6 seed soaking chemicals: \(\mathrm{M}_{0}=\) Control (no soaking), \(\mathrm{M}_{1}=10 \%\) solution of Pot. Phos., \(\mathrm{M}_{2}=10 \%\) solution of Ammo. Phos., \(\mathrm{M}_{3}=10 \%\) solution of complete nutrients, \(\mathrm{M}_{4}=\) Solution of Ethyl Alcohol and \(\mathrm{M}_{5}=10 \%\) solution of \(\mathrm{KMnO}_{4}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) \(30^{\prime} \times 10^{\prime}\). (b) \(27^{\prime} 3^{\prime \prime} \times 8^{\prime}\). (v) Two rows on either side. (vi) Yes.
4. GENERAL :
. (i) Good. (ii) Nil. (iii) Height, tiller counts and grain yield. (iv) (a) 1957-1959. (b) and (c) No. (vi) to (vii) Nil.

\section*{5. RESULTS:}
(i) \(2465 \mathrm{lb} . / \mathrm{ac}\). (ii) \(43.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lt./ac.
\begin{tabular}{lllcccc}
Treatment & \(\mathbf{M}_{\mathbf{0}}\) & \(\mathbf{M}_{\mathbf{1}}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{M}_{\mathbf{4}}\) & \(\mathbf{M}_{\mathbf{5}}\) \\
Av yield & 2357 & 2545 & 2535 & 2567 & 2420 & 2367 \\
& \multicolumn{7}{l}{} & & & & & &
\end{tabular}
Crop :-Paddy.
Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 58(32).
Type :- 'D'.

Object :-To study the effect of soaking seeds in nutrient solutions prior to sowing.
1. BASAL CONDITIONS :
(i) (a) G.M.-Paddy-Sugarcane. (b) G.M. (c) \(100 \mathrm{lb} . / \mathrm{ac}\). of N as A/S. (ii) Loamy. (b) Refer soil analysis, Anakapalle. (iii) N.A./13.8.1958. (iv)(a) 4 puddlings and then, levelling. (b) N.A. (c) \(30 \mathrm{lb} . / \mathrm{ac}\). (d) \(6^{\prime \prime} \times 6^{\prime \prime}\). (e) 2 to 3 (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of G.L. puddied +40 . \(\mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) applied one month after plantigg. (vi) GEB-24 (medium). (vii) Irrigated. (viii) Working rotary hoe. (ix) N.A. (x) 29.12.1958.
2. TREATMENTS :

Same as in expt. no. 57(62) above.
3. DESIGN:
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) \(25^{\prime} \times 21^{\prime}\). (b) \(21^{\prime} 10^{\circ} \times 10^{\prime}\). (v) \(1^{\prime} 7^{\prime \prime} \times 5 \frac{1}{\prime}^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Good, no lodging. (ii) No. (iii) Height, tiller count and yield of grain. (iv) (a) 1957-19§9. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS}
(i) \(2518 \mathrm{lb} . / \mathrm{ac}\). (ii) \(195.8 \mathrm{lb} . / \mathrm{ac}\). (iii) The treatment differences are not significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{lcrrrrr}
Treatments & \(M_{0}\) & \(M_{1}\) & \(\mathbf{M}_{2}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{M}_{\mathbf{4}}\) & \(\mathbf{M}_{\mathbf{5}}\) \\
Av. yield & 2502 & 2568 & 2402 & 2602 & 2508 & 2524 \\
& & & & & &
\end{tabular}
```

Crop :- Paddy.
Site :- Sugarcane Res. Stn., Anakapalle.

```

Ref :- A.P. 57(64).
Type: :- 'D'.

Object :-To study the effect of mechanical weeding and spraying weedicides.
BASAL CONDITIONS :
```

(i) (a) Sugarcane-Fallow-Paddy. (b) Sugarcane-Fallow (c) $100 \mathrm{lb} . / \mathrm{ac}$. of N, (ii) (a) Loamy. (b)
Refer soil analysis, Anakapalle. (iii) 4.8.1957. (iv) (a) Four puddlings and passing patti for levelling. (b)
Transplanting. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 to 3 . (v) 5000 lb ./ac. of G L. in puddle $+40 \mathrm{lb} . / \mathrm{ac}$. of N
as A/S one month after planting. (vi) GEB-24(medium). (vii) Irrigated. (viii) As per tueatments. (ix)
N.A. (x) 19.12.1957.

```

\section*{TREATMENTS :}

9 weed control treatments: \(\mathrm{T}_{0}=\) No weeding. \(\mathrm{T}_{1}=\) Fernoxone \(0.25 \%\) at 6 th week. \(T_{2}=\) Fernoxone \(0.50 \%\) at 6 th week. \(\mathrm{T}_{3}=\) Malic hydroxide \(0.125 \%\) at 6 th week. \(\mathrm{T}_{4}=\) Malic hydroxide \(0.250 \%\) at 6 th week. \(T_{5}=\) Phenoxylene \(0.25 \%\) at 6 th week, \(T_{6}=\) Phenoxylene \(0.50 \%\) at 6 th week. \(T_{7}=\) Hand weeding when necessary and \(T_{8}=\) Working with rotary hoe thrice at fortnightly intervals, one month after planting.

DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) \(30^{\prime} \times 10^{\prime}\).(b) \(27^{\prime} \times 8^{\prime}\). (v) \(1 \frac{1^{\prime}}{} \times 1^{\prime}\). (vi) Yes.
4.' GENERAL :
(i) Good. (ii) No. (iii) Height, tiller counts and yield of grain. (iv) (a) 1957-1958. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 2339 lb. /ac. (ii) 34.8 lb ./ac. (iii) Treatment differences are highly significant. (iv). Av, yield of grain in lb.jac.
\begin{tabular}{lccccccccc}
Treatment & \(\mathrm{T}_{\mathbf{0}}\) & \(\mathrm{T}_{\mathbf{1}}\) & \(\mathrm{T}_{\mathbf{2}}\) & \(\mathrm{T}_{3}\) & \(\mathrm{~T}_{\mathbf{4}}\) & \(\mathrm{T}_{\mathbf{5}}\) & \(\mathrm{T}_{\mathbf{6}}\) & \(\mathrm{T}_{\mathbf{7}}\) & \(\mathrm{T}_{\mathbf{8}}\) \\
Av. yield & 2317 & 2401 & 2367 & 2233 & 2198 & 2195 & 2170 & 2557 & 2617 \\
& & & & & & & & &
\end{tabular}
```

Crop:- Padidy.
Site :- Sugarcane Res. Stmo, Anakapalle.

```
Ref :- A.P. 58(29).
Type ' \({ }^{\text {D }}\) '.

Object:-To study the effect of mechanical weeding and spraying weedicides.
1. BASAL CONDITIONS :

2, TREATMENTS :
9 weed control treatments: \(T_{0}=\) No weeding, \(T_{1}=\) Fernoxone \(0.25 \%\) at 6 th week. \(T_{2}=\) Fernoxone \(0.50 \%\) at 6th week, \(\mathrm{T}_{3}=\) Malic hydroxide \(0.125 \%\) at 6 th week, \(\mathrm{T}_{4}=\) Malic hyeroxide \(0.25 \%\) at 6 th week, \(\mathrm{T}_{5}=\) Coronox \(0.25 \%\) at 6 th week, \(\mathrm{T}_{6}=\) Coronox \(0.50 \%\) at 6 th week. \(T_{7}=\) Hand weeding and \(T_{8}=\) Weeding with rotary hoe thrice at fortnightly intervals, from one month after planting.
3. DESIGN :
(i) R.B.D. (ii) (a) 9 .
(b) N.A.
(iii) 4. (iv) (a) \(25^{\circ} \times 12^{\prime}\).
(b) \(21^{\prime} \times 10^{\prime}\).
(v) \(2^{\prime} \times 1^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Good. (ii) No. (iii) Height, tiller counts and yield of grain. (iv) (a) 1957-1959. (b) No. (c) Ni; (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(2563 \mathrm{lb} / \mathrm{ac}\). (ii) 158.6 lb ./ac. (lii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{lccccccccc}
Treatment & \(\mathrm{T}_{0}\) & \(\mathrm{~T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) & \(\mathrm{~T}_{5}\) & \(\mathrm{~T}_{6}\) & \(\mathrm{~T}_{7}\) & \(\mathrm{~T}_{8}\) \\
Av. yield & 2482 & 2637 & 2585 & 2631 & 2566 & 2631 & 2482 & 2615 & 2440 \\
& & & & & & & & & \\
& S.E./mean & \(=\) & \(79.3 \mathrm{lb} . / \mathrm{ac}\). & & & & &
\end{tabular}

\section*{Crop:- Paddy (Kharif). \\ Site :- Agri. College Farm, Bapatla.}

> Ref :- A.P. 59(69).

Type :- ‘D'.
Object :-To assess the usefulness of herbicides sprayed on Paddy crop.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) F.Y.M. at ton/ac. Super at 100 lb ./ac, both as B.D. \(+\mathrm{A} / \mathrm{S}\) at \(100 \mathrm{lb} . / \mathrm{lac}\). applied 20 days after planting. (ii) (a) Black clayey. (b) Refer soil analysis, Bapatla. (iii) 8.7.1959/N.A. (iv) (a) Puddling with spades. (b) to (e) N.A. (v) N.A. (vi) MTU-7 (late). (vii) Irrigated. (viii) Nil. (ix) 32.50". (x) 10.12.1959.
2. TREATMENTS :

7 harbicides sprays : \(\mathrm{T}_{0}=\) Control, \(\mathrm{T}_{1}=\) Hand weeding, \(\mathrm{T}_{2}=\) Fernoxone (20 lb .), \(\mathrm{T}_{3}=\) Fernoxone (10 lb.), \(\mathrm{T}_{4}=\) Tribution (2 gal.), \(\mathrm{T}_{5}=\) Tributon (1.0 gal) and \(\mathrm{T}_{6}=\) Spontox (2.0 gal .).
3. DESIGN :
(i) R.B.D. (ii) (a) 7.
(b) N.A. (iii) 4. (iv)
(a) \(25.6^{\prime} \times 19.6^{\prime}\)
(b) \(24^{\prime} \times 18^{\prime}\).
(v) 2 rows on all sides. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii) Nil.
(iii) Yield of grain.
(iv) (a) and (b) NJ.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(1843 \mathrm{lb} . / \mathrm{ac}\). (ii) \(603 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grainin lb./ac.
\begin{tabular}{lclccccc}
Treatment & \(\mathrm{T}_{0}\) & \(\mathrm{~T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) & \(\mathrm{~T}_{5}\) & \(\mathrm{~T}_{6}\) \\
Av. yield & 17 CO & 2000 & 2100 & 2500 & 1300 & 2100 & 1200 \\
& & & & & & & \\
& S.E./mean & \(=\) & \(301.5 \mathrm{lb} . / \mathrm{ac}\). & & & &
\end{tabular}

Crop:- Paddy.
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 54(23).
Type :- ‘D’.

Object :-To test whether Maieic hydroxide has any hormonal effect on Paddy.
1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) 30 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\) and \(15 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (ii) Sandy clay. (b) N.A. (iii) \(21.7 .1954 / \mathrm{N} . A\). (iv) (a) 4 to 5 times puddling and levelling. (b) and (c) N.A. (d) \(6^{\prime \prime} \times 4^{\prime \prime}\). (e) N.A. (v) \(30 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+15 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) H.R. -19 (medium). (vii) Irrigated. (viii) 2 weedings and working the Japanese weeder. (ix) \(27.64^{\prime \prime}\). (x) 2nd week of Dec.. 1954.
2. TREATMENTS :

11 concentration of Maleic hydroxide : \(\mathrm{T}_{0}=0, \mathrm{~T}_{1}=0.1 \%, \mathrm{~T}_{2}=0.2 \%, \mathrm{~T}_{3}=0.3 \%, \mathrm{~T}_{4}=0.4 \%, \mathrm{~T}_{5}=0.5 \%, \mathrm{~T}_{6}=\) \(0.6 \% \mathrm{~T}_{7}=0.7 \%, \mathrm{~T}_{8}=0.8 \%, \mathrm{~T}_{9}=0.9 \%\) and \(\mathrm{T}_{10}=1.0 \%\).
3. DESTIGN :
(i) R.B.D. (ii) (a) 11. (b) N.A. (iii) 4. (iv) (a) and (b) \(4^{\prime} \times 3^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-N.A. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(2350 \mathrm{lb} . / \mathrm{ac}\). (ii) 577.0 lb /ac. (iii) Treatment differences are significant. (iv) Av. yield of grain in lb./ac.

```

Grop :- Paddy.
Ref :- A.P. 54(36).

```
Site :- Agri. Res، Instt., Rajendranagar.
Type :- ' \(\mathbf{D}^{\prime}\).

Object :-To find out the effect of seed dressings on the incidence of Helminthosporium Oryzal.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. Fertiliser mixture to give \(40 \mathrm{lb} . / \mathrm{ac}\). of N and 25 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) was broadcast at puddling. (ii) (a) Light black soil. (b) N.A. (iii) \(18.6 .1954 /\)-. (iv) (a) Levelling and puddling. (b) and (c) N.A. (d) \(6^{\prime \prime} \times 4^{\prime \prime}\). (e) N.A. (v) Same as in (i) (c) above. (vi) H.R. -19 (early). (vii) Irrigated. (viii) 2 weedings. (ix) \(31.15^{\prime \prime}\). (x) 11.11.1954.
2. TREATMENTS :

7 seed treatment : \(T_{0}=\) Control, \(T_{1}=\) Agroan, G. N., \(T_{2}=\) Landisan \(T_{3}=\) Ceresan (dry), \(T_{4}=\) Perenox (\(0.35 \%\)), \(\mathrm{T}_{5}=\) Bordeaux Mixture (\(1 \%\)). \(\mathrm{T}_{6}=\) Ceresan (wet) (1 lb . in 100 gal .). \(\mathrm{T}_{1}\) to \(\mathrm{T}_{3}\) applied at the rate of 6 oz . cwt. of seed. Seeds were dipped for 2 hours and dried under treatments \(\mathrm{T}_{4}, \mathrm{~T}_{5}\) and \(\mathrm{T}_{6}\).
3. DESIGN:
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 6 . (iv) (a) \(41^{\prime} \times 32^{\prime}\). (b) \(39^{\prime} \times 31^{\prime}\). (v) \(1^{\prime} \times 6^{\prime \prime}\). (6) Yes.
4. GENERAL :
(i) Normal. (ii) Paddy Hispa and blast were noticed. BHC dusted. (iii) Intensity of \% infection and grain yield. (iv) (a) 1951-1954. (b) and (c) Yes. (v) to (vii) Nil.
5. RESULTS:
(i) \(1540 \mathrm{lb} . / \mathrm{ac}\). (ii) \(169.3 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significaat. (iv) Av. yield of grain in \(1 \mathrm{~b} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatmeat & \(\mathrm{T}_{0}\) & \(\mathrm{T}_{1}\) & T \({ }_{2}\) & T3 & T4 & \(\mathrm{T}_{5}\) & T6 \\
\hline Av. yield & 1596 & 1638 & 1452 & 1440 & . 1566 & 1596 & 1494 \\
\hline & S.E. & nean & \(=69\) & 1 lb ./ & & & \\
\hline
\end{tabular}
```

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Rudrar.

```
```

Ref :- A.P. 56(66).
Type :- 'D'.

```

Object:-To test the effizien:y of Folidol and emulsified Endrine against Paddy stem borer.
1. BASAL CONDITIONS :
(i) (a) Nil (b) Fallow. (c) Nil. (ii) (a) Sandy clay. (b) Refer soil analysis, Rudrur. (iii) 14.7.1956. (iv) (a) 2 dry ploughings and 2 wet ploughings with levelling. (b) Transplanting. (c) \(30 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) \(60 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{N}+60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Nitro. Phos. broadcast and ploughed during final ploughing. (vi) H.R.—19 (medium). (vii) Irrigated. (viii) 2 hand weedings. (ix) 63.97*. (x) 24.10.1956.

\section*{2. TREATMENTS :}

7 sprayings: \(\mathrm{T}_{0}=\) Control (spraying of water), \(\mathrm{T}_{1}=\) Folidol (\(0.03 \%\)), \(\mathrm{T}_{2}=\) Folidol (\(006 \%\)), \(\mathrm{T}_{3}=\) Foiidol \((0.12 \%), T_{4}=\) Endrine \((0.0215 \%), T_{5}=\) Endrine \((0.031 \%)\) and \(T_{6}=\) Endrine (\(0.043 \%\)).
Spraying given at 40 gallons per acre of fluid.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4- (iv) (a) and (b) \(33^{\prime} \times 33^{\prime}\). (v) Nil. (vi) Yes.

\section*{4. GENERAL:}
(i) Satisfactory. (ii) Little incidence of Paddy stem borer and gall-fly-control measures, as per treatments. (iii) No. of moths, egg-masses and dead heart counts before and after the sprayings. No. of healthy ear \(h_{e a}\) ds and grain yield. (iv) (a) 1956-1957. (b) Yes. (c) Nil. (v) (a) Bapatla. (b) Nil. (vi) and (vii) Nil.

RES ULTS :
(i) \(2174 \mathrm{lb} . / \mathrm{ac}\). (ii) \(336.0 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differeases are \(n\) วt sigaifizant. (iv) Av. yield of grain in \(\mathrm{lb} ., \mathrm{ac}\).
\begin{tabular}{llllllll}
Treatment & \(\mathrm{T}_{0}\) & \(\mathrm{~T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) & \(\mathrm{~T}_{5}\) & \(\mathrm{~T}_{6}\) \\
Av. yield & 2230 & 2000 & 2350 & 2160 & 1955 & 2210 & 2310 \\
& & & & & & &
\end{tabular}
```

Crop :- Paddy (Tabi). Ref:- A.P. 57(11).
Site :- Agri. Res. Stn., Rudrur.
Type :- 'D'.

```

Object :-To test the efficiency of Folidol and emulsified Endrine against Paddy stem borer.

\section*{1. BASAL CONDITIONS :}
(i) (a) Paddy-Paddy. (b) Paddy, (c) 60 lb ./ac. of \(\mathrm{N}+60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Nitro. Phos. (ii) (a) Sandy clay. (b) Refer soil analysis, Rudrur. (iii) 29.1.1957. (iv) (a) 2 dry ploughings and 2 wet ploughings with levelling. (b) Broadcasting. (c) \(80 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+25 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as A/S and Super broadcast at last puddle. (vi) HR-19 (medium). (vii) Irrigated. (viii) 2 hand weedings. (ix) 7.48*. (x) 13.5.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 5ó(66) above.
4. GENERAL :
(i) Satisfactory. (ii) Heavy incidence of stem-borer by moth. Control measures as per treatments. (iii) No. of moths, dead hearts and egg-masses were counted before and after treatments, count of affected ear heads and yield of grain. (iv) (a) 1956-1957. (b) Yes. (c) Nil. (v) (a) Bapatla. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1766 \mathrm{lb} . / \mathrm{ac}\). (ii) \(225.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of grain in \(1 \mathrm{~b} . / \mathrm{ac}\).
\begin{tabular}{lccccccr}
Treatment & \(\mathrm{T}_{0}\) & \(\mathrm{~T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) & \(\mathrm{~T}_{5}\) & \(\mathrm{~T}_{6}\) \\
Av. yield & 1391 & 1742 & 1900 & 2064 & 1562 & 1761 & 1938 \\
& & & & & & & \\
& S.E./mean & \(=\) & \(112.6 \mathrm{lb} / \mathrm{ac}\). & & & &
\end{tabular}

Grop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Samalkot.

Ref:- A.P. 55(79).
Type :- 'D'.
i Object:-To test the efficacy of different insecticides against stemborer.
1. BASAL CONDITIONS :
(i) '(a) Paddy-Fallow-Paddy. (b) Fallow. (c) Nil.' (ii) (a). Heavy alluvial. '(b) N.A. (iii) 28.6 1955/ 1.8.1955. (ív) (a) 4 ploughings and levelling. (b) Transplanting. (c) N.A. (d) \(8^{\prime \prime} \times 8^{\prime \prime}\). (e) 2 . (v) \(40: 0 \mathrm{lb} . / \mathrm{ac}\). of G.L. and \(200 \mathrm{lb} . / \mathrm{ac}\). of Super. (vi) MFU-19 (late). (vii) Irrigated. (viii) 1 weeding one month after planting. (ix) \(37.65^{\prime \prime}\). (x) 11.12.1955.

\section*{2. TREATMENTS :}

1 10 insecticidal sprays: \(\mathrm{T}_{1}=\) Control-(no treatment), \(\mathrm{T}_{2}=\) Endrine oil emulsion sprayed in nursery arone, \(\mathrm{T}_{3}=\) Endrine dust sprayed in nur:ery alone, \(\mathrm{T}_{4}=\) Paraihion sprayed in nursery alone, \(T_{5}=\) Endrine o.l emulsion sprayed in nursery and in field, \(T_{6}=\) Endrine dust sprayed in nursery and in field, \(\mathrm{T}_{7}=\) Parathion sprayed in nursery and in field, \(\mathrm{T}_{8}=\) Endrine oil emulsion sprayed in the field only, \(\mathrm{T}_{9}=\) Endrine dust sprayed in field only and \(\mathrm{T}_{\mathrm{j} 0}=\) Parathion sprayed in field only.
3. DESIGN :
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4 . (iv) (a) \(30^{\prime} \times 15^{\circ}\). (b) N.A. (v) N.A. (vi) Yes.

GENERAL :
(i) Satisfactory. (ii) Silver shoot attack; Treatments could not check the infection. (iii) Yield of grain. (iv) (a) and (b) No. (c) Nil. (v) to (vii) Nil.

RESULTS:
(i). \(3362 \mathrm{lb} . / \mathrm{ac}\). (ii) \(2.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\(1 \begin{array}{llllllllllllll}\text { Treatment } & \mathrm{T}_{1} & \mathrm{~T}_{2} & \mathrm{~T}_{3} & \mathrm{~T}_{\mathbf{4}} & \mathrm{T}_{5} & \mathrm{~T}_{6} & \mathrm{~T}_{\mathbf{7}} & \mathrm{T}_{\mathbf{3}} & \mathrm{T}_{\boldsymbol{9}} & \mathrm{T}_{10}\end{array}\)
\(\begin{array}{llllllllllllll}\text { Av. yield } & 3466 & 3497 & 3401 & 3425 & 3255 & 3621 & 3141 & 3202 & 3376 & 3237\end{array}\)
S.E./mean \(=116 \mathrm{lb} . / \mathrm{ac}\).

Grop :- Paddy (Kharif).
Site :- Agri. Res. Stn. Samalkot.

\section*{Ref :- A.P. 59(85).}

Type :- 'D'.
Object :-To assess the usefulness of Fernoxone, sprayed one month after planting.
BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) 1 ton/ac. of F.Y.M. and \(100 \mathrm{lb} . / \mathrm{ac}\). of. Super as B.D. \(100 \mathrm{lb} . / \mathrm{ac}\). of A/S applied 20 days after planting, (ii) (a) Black clayey. (b) Nil. (iii) 28.7.1959. (iv) (a) Pudding with country plough.
(b) to (e) N.A. (v) N.A. (vi) \(\mathrm{SLO}=13\) (medium). (vii) Irrigated. (viii) Working push hoe in between the lines in some plots. (ix) \(80.00^{\circ}\). (x) 27.11 .1959.
2. TREATMENTS :

5 treatments: \(T_{0}=\) Control, \(T_{1}=\) Hand weeding, \(T_{2}=\) Hand and cultural method of weeding; \(T_{3}=\) One spraying of Femox one and \(\mathrm{T}_{4}=2\) sprayings of Fernoxone.
Fernoxone used at 1 lb . acid equivalent.

DESIGN :
(i) R:B.D. (ii) (a) 5 . (b) \(125^{\prime} \times 95^{\prime}\). (iii) 4 . (iv) (a) \(25^{\prime} \times 20^{\prime}\) (b) \(21^{\prime} \times 16^{\prime}\). (v) \(2^{\prime} \times 2^{\prime \prime}\). (vi) Yes.

GENERAL :
(i) Satisfactory. (ii) No. (iii) Grain yield. (iv) (a) 1959-1961. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(2240 \mathrm{lb} . / \mathrm{ac}\). (ii) \(710 \mathrm{lb} . / \mathrm{ac}\). (iii) The treatment differences are signifcant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{lccccc}
Trearment & \(T_{0}\) & \(T_{1}\) & \(T_{2}\) & \(T_{3}\) & \(T_{4}\) \\
Av. yield & 1700 & 2690 & 2800 & 2100 & 2000 \\
& & & & & \\
& SE./mean & \(=\) & \(355 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop:- Wheat (Rabi).
Site :- Agri. Res. Farm, Yemmiganur.
Ref:- A.P. 56(90).
Type :- ‘M'.

```

Objest :-To find out the manurial requirements of Wheat and the best method of application of manures.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) Sannhemp. (c) Nil. (ii) (a) Deep black cotton. (b) Refer soil analysis, Yemmiganur. (iii) 7.i1.1956. (iv) (a) 2 ploughings, working pedda guntaka; beds formed. (b) Sown through akkadis behind gorru. (c) \(7 \mathrm{Jb} . / \mathrm{ac}\). (d) and (e) N.A. (v) \(50 \div 0 \mathrm{lb} . / \mathrm{ac}\). of G.L. (vi) Glumed wheat (medium). (vii) Irrigated. (viii) Dantulu worked 5 times. (ix) 1.27". (x) 14 to 16.3.1957.

\section*{2. TREATMENTS:}

All combinations of (1) and (2) + a control.
(1) 2 levels of manures : \(\mathrm{M}_{1}=10 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+15 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\), and \(\mathrm{M}_{2}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
(2) 2 methods of manuring: \(\mathrm{B}_{1}=\) Drilled and \(\mathrm{B}_{2}=\) Broadcast.
3. DESIGN :
(i) R B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) and (b) \(1 / 77.76 \mathrm{ac}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory; no lodging. (ii) Severe attack of pest-no control measures taken. (iii) Yieid of grain. (iv) (a) to (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) \(626 \mathrm{lb} . / \mathrm{ac}\). (ii) \(19.9 \mathrm{lb} . / \mathrm{ac}\). (iii) All the main effects and their interactions are highly significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(=432 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & Mean \\
\hline \(\mathrm{B}_{1}\) & 612 & 739 & 670 \\
\hline \(\mathrm{B}_{2}\) & 639 & 676 & 658 \\
\hline Mean & 640 & 708 & 674 \\
\hline
\end{tabular}
S.E. of any marginal mean \(\quad=7.0 \mathrm{lb} . / \mathrm{ac}\).

Grop :- Wheat.
Ref :- A.P. 57(47).
Site :- Agri. Res. Farm, Yemmiganur.
Type :- ' \({ }^{\prime}\) '.

Object :-To find out the manurial requirements of Wheat and the best method of application of manure.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) Sesbania speciosa. (c) Nil. (ii) (a) Mixed soil. (b). Refer soil analysis, Yemmiganur. (iii) 1.11.1957. (iv) (a) Ploughing twice and working pedda guntaka. (b) to (e) N.A. (v). Sesbania was ploughed in the site at 5000 lb ./ac. (vi) Glumed wheat. (vii) Irrigated. (vii) Interculture with dantulu and weeding. (ix) Nil. (x) 27.2.1958.
2. TREATMENTS :

All combinations of (1) and (2)+a control
(1) 2 methods of application of manure : \(\mathrm{B}_{1}=\) Drilling and \(\mathrm{B}_{2}=\) Broadcasting.
(2) 3 manurial doses: \(\mathrm{M}_{1}=10 \mathrm{lb}\)./ac. of \(\mathrm{N}+15 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{2}=20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{M}_{3}=30 \mathrm{lb}\)./ac. of \(\mathrm{N}+45 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
N applied as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied as Super.
3. DESIGN :
(i) R.B.D.
(ii) (a) 7.' (b) N.A
(iii) 4 .
(iv) (a) and (b) \(1 / 77.8 \mathrm{ac}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Med um growth. (ii) Incidence of rust - no control measures taken. (iii) Yield of grain. (iv) (a) 1956 -contd. (b) No. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
i
5, 1 RESULTS :
(i) \(267 \mathrm{lb} . / \mathrm{ac}\). (ii) \(83.8 \mathrm{lb} . / \mathrm{ac}\). (iii) Only B effect is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(=262 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll|l}
& \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \begin{tabular}{l|lll}
\(\mathrm{B}_{1}\) & 206 & 222 & 234 \\
\(\mathrm{~B}_{2}\) & 315 & 341 & 287
\end{tabular} & \begin{tabular}{l}
221 \\
314
\end{tabular} \\
\hline Mean & 260 & 282 & 260 & 267
\end{tabular}
\begin{tabular}{ll}
S.E. of \(M\) marginal mean & \(=24.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(B\) marginal mean & \(=29.6 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table or control mean & \(=41.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Grop :- Wheat (Rabi). \\ Site :- Agri. Res. Farm, Yemmiganur.}
\[
\begin{aligned}
& \text { Ref :- A.P. } 58(\mathbf{4 0}) . \\
& \text { Type :- ‘M'. }
\end{aligned}
\]

Object:-To find out the manurial requirements of Wheat and the best method of application of manure.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Sesbania Speciosa. (c) Nil. (ii) (a) Black cotton. (b) Refer soil analysis, Yemmiganur. (iii) 18.11.1952. (iv) (a) Sesbania ploughed in, ploughing twice, weeding guntaka. (b) to (e) N.A. (v) 5000 lb ./ac. of G L. (vi) Glumed wheat. (vii) Irrigated. (viii) Gaps filled. Two weedings and intercultivated with dantulu. (ix) 2.07". (x) 3.3.1959.
2. TREATMEN IS :

Same as in expt. no. \(57(47)\) on page 220.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) \(11^{\prime} 6^{\prime \prime} \times 44^{\prime} 0^{\prime \prime}\). (b) \(10^{\prime} \times 40^{\prime}\). (v) \(9^{\prime \prime} \times 24^{\prime \prime}\). (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) Replications 3 and 4 resown due to excessive rain after irrigations. (vii) Nil.
5. RESULTS :
(i) \(545 \mathrm{lb} . / \mathrm{ac}\). (ii) \(153.3 \mathrm{lb} . / \mathrm{ac}\). (iii) No effect is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(=619 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & M \({ }_{3}\) & Mean \\
\hline \(\mathrm{B}_{1}\) & 558 & 640 & 600 & 599 \\
\hline \(\mathrm{B}_{2}\) & 715 & 749 & 633 & 699 \\
\hline Mean & 636 & 695 & 616 & 649 \\
\hline \multicolumn{3}{|l|}{S.E. of M marginal mean} & \(=54.2 \mathrm{lb} . / \mathrm{ac}\). & \\
\hline \multicolumn{3}{|l|}{S.E. of B marginal mean} & \(=44\) & \\
\hline S.E. of bo & or & 1 me & 76.7 & \\
\hline
\end{tabular}
```

Crop:- Wheat (Rabi).
Site :- Agri. Res. Farm, Yemmiganur.

```

Ref :- A.P. 59(53).
Type :- ' \(\mathbf{M '}^{\prime}\).

Object :-To find out the manurial requirements of Wheat and method of application of manures.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Groundnut-Redgram. (c) 5 ton/ac. of F.Y.M. (ii) (a) Red soil. (b) Refer soil analysis, Yammiganur. (iii) 19.10.1959. (iv) (a) to (c) N.A. (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of G.L. (vi) Glumed wheat. (vi) Irrigated. (viii) Thinning and two intercultivations with Dantulu. (ix) Nil. (x) 18.2.1960.
2. TREATMENTS :

Same as in expt. no. 57(47) on page 220.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) \(11^{\prime} 6^{\prime \prime} \times 25^{\prime}\). (b) \(11^{\prime} \times 20^{\prime}\). (v) \(0.25^{\prime} \times 2.5^{\prime}\). (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1957 -contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(380 \mathrm{lb} / \mathrm{ac}\). (ii) 101.8 lb ./ac. (iii) Main effect of M alone is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(=321 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathbf{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \(\mathrm{B}_{1}\) & 290 & 526 & 408 & 408 \\
\hline \(\mathrm{B}_{2}\) & 334 & 362 & 420 & 372 \\
\hline Mean & 312 & 444 & 414 & 390 \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of M marginal mean } & =36.0 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of B marginal mean } & =29.4 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table or control mean } & =50.9 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]
```

Crop :- Wheat (Rabi).
Site :- M.A.E. Farm, Chalvai.

```

\section*{Ref :- A.P. 58(MAE).}
```

Type :- ' $\mathbf{M}$ '.

```

Object:-Type IV-To find the effect of application of \(\mathbf{P}\) to legume on the succeeding Wheat crop
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 4.10 .58 . (iv) (a) to (c) N.A. (d) \(10^{\circ} \times 10^{\circ}\).
(e) N.A: (v) Nil. (vi) NP—797. (vii) Irrigated. (viii) and (ix) N.A. (x) January 1959.
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2) + a control (\(\mathrm{L}_{0} \mathrm{P}_{0}\))
(1) 2 legumes : \(\mathrm{L}_{1}=\) Moong and \(\mathrm{L}_{2}=\) Urd:
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac.

\section*{Sub-plot treatments :}
(1) 3 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{2}=15\) and \(\mathrm{N}_{2}=30 \mathrm{lb}\)./ac.
\(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to legumes at the time of sowing and N applied to wheat at the time of planting.
3. DESIGN :
(i) Split-plot. (ii) (a) 7 main-plots/replication; 3 sub-plots/main-plot. (b) N:A. (iii) 3. (iv) (a) N.A. (b) \(32^{\prime} \times 17^{\prime}\). (v) N.A. (vi) Yes.
4. \({ }^{+}\)GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) 1956 -N.A. (b) and (c) N.A. (v) to (vii) Nil.
5. RESULTS:
(i) \(69.7 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(66.7 \mathrm{lb} . / \mathrm{ac}\). (b) \(60.1 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of L alone is significant. (iv) Av. yield of grain in \(1 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar.
Site :- Agri. Res. Stn., Lam.

Ref :- A.P. 57(38).
Type :- 'M'.

Object :-To compare the effects of different sources of N on Jowar.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Black soil. (b) Refer soil analysis, Lam. (iii) 24.10.1957. (iv) (a) 6 ploughings. (b) to (e) N.A. (v) Nil. (vi) G-2. (vii) Unirrigated. (viii) Intercultivation with papatam in one month crop. (ix) \(2.28^{\prime \prime}\) (x) 9.2.1958.
2. TREATMENTS :

5 scurces of N at \(20 \mathrm{lb} . / \mathrm{ac} .: S_{0}=\mathrm{N}_{0} \mathrm{~N}, \mathrm{~S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=\) Urea, \(\mathrm{S}_{3}=\mathrm{C} / \mathrm{A} / \mathrm{N}\) and \(\mathrm{S}_{4}=\mathrm{G} . \mathrm{N} . C\).
3. DESIGN :
(i) R.J3.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) \(1 / 51 \mathrm{ac}\). (b) \(1 / 66.7 \mathrm{ac}\). (v) One. row on either side. (vi) Yes.
4. GENERAL :
(i) No lodging, poor growth. (ii) Nil. (iii) Growth measurement and yield of grain and straw. (iv) (a) 1957-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 756 lb /ac. (ii) \(17.9 \mathrm{lb} . / \mathrm{ac}\). iii) Treatment differences are not significant (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{S}_{1}\) & S & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{4}\) \\
\hline Av. yield & 685 & 808 & 783 & 764 & 738 \\
\hline & \multicolumn{5}{|l|}{S.E./mean \(=7.4 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

\section*{Crop :- Jowar.}

Ref:- A.P. 55(47).
Site :- Agri. Res. Stn., Lam.
Type :- ' \(\mathbf{M}\) '.
Object :-To study the response of different treatments of organic manures on the dry land crop of Jowar.
1. BASAL CONDITIONS :
(i) (a) Chillies-Jowar. (b) Chillies. (c) N.A. (ii) (a) Black soil. (b) Refer soil analysis, Lam. (iii) 5.11.1955. (iv) (a) 5 ploughings. (b) to (e) N.A. (v) Nii. (vi) Jonna (late). (vii) Unirrigated. (viii) Papatam worked in one month crop. (ix) \(1.12^{\circ}\). (x) 23.2.1956.
2. TREATMENTS:

All combinations of (1), (2) and a control.
(1) 3 sources of \(N: S_{1}=\) Urban compost, \(S_{2}=\) F.Y.M. and \(S_{3}=\) G.L.
(2) 3 levels of \(\mathrm{N}: \mathrm{N}_{1}=40, \mathrm{~N}_{2}=60\) and \(\mathrm{N}_{3}=80 \mathrm{lb}\). \(/ \mathrm{ac}\).

Manures applied a month before sowing.
3. DESIGN :
(i) R.B.D.
(ii) (a) 10 .
(b) N.A.
(iii) 4. (iv) (a) \(56^{\prime} \times 23^{\prime}\).
(b) \(50^{\prime} \times 19^{\prime}\).
(v) \(3^{\prime} \times 2^{\prime}\). (vi) Yes.
4. GENER \(4 L\) :
(i) Good. (ii) Nil. (iii) Yield of grain and straw. (iv) (a) \(1955-1957\). (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(473 \mathrm{lb} . / \mathrm{ac}\). (ii) \(176.0 \mathrm{lo} . / \mathrm{ac}\). (iii) Main effects of \(S\) and 'control \(v s\). others' effect are highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{a}\).
\[
\text { Control }=238 \mathrm{lb} . / \mathrm{ac}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline & \(S_{1}\) & \(S_{2}\) & \(S_{3}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 390 & 371 & 627 & 463 \\
\hline \(\mathrm{N}_{2}\) & 406 & 485 & 617 & 503 \\
\hline \(\lambda_{3}\) & 437 & 38. & 779 & 532 \\
\hline Mean & 411 & 412 & 674 & 499 \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal mean & \(=51.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=88.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Jowar.}

Site :- Agri. Res. Stn., Lam.

Ref:- A.P. 56(37).
Type :- ' \(\mathbf{M}^{\prime}\) '.

Object :-To study the effect of organic manures on the yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) Chillies-Jowar. (b) Chillies. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Lam. (lii 20.10.1956. (iv) (a) 5 ploughings. (b) Line sowing. (c) N A. (d) \(3^{\prime}\) between rows. (e) N.A. (v) Nil. (vi) G-2 (early). (vii) Unirrigated, (viii) Papatam is worked in one month crop as intercultivation. (ix) 4.32*. (x) 282.1957 to 1.3.1957.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 55(47) on page 224. .
5. RESULTS :
(i) \(1370 \mathrm{lb} . / \mathrm{ac} .{ }^{\text {(ii) }} 96.0 \mathrm{lb}\)./ac. (iii) All effects are highly significant. (iv) Av. yield of grain in lb./ac.

Control \(=1050 \mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{l|ccc|c}
\\
\hline \(\mathrm{N}_{1}\) & \(\mathrm{~S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & Mean \\
\(\mathrm{N}_{2}\) & 990 & 1425 & 1450 & 1288 \\
\(\mathrm{~N}_{3}\) & 1475 & 1350 & 1590 & 1472 \\
\hline 1319 & 1400 & 1578 & 1432 \\
\hline Mean & 1261 & 1392 & 1539 & 1397
\end{tabular}
S.E. of any marginal mean
\(=27.7 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table
\(=48.0 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Jowar.
Site :- Agri. Res. Stn., Lam.

Ref :- A.P. 57(36).
Type :- ‘M'.

Object:-To study the effect of organic manures on the yield of Jowar.
1. BASAL CONDITIONS:
(i) (a) Chillies-Jonna. (b) Chillies. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Lam. (iii) 25.10 .1957 . (iv) (a) 5 ploughings. (b) to (e) N.A. (v) Nil. (vi) G-2. (vii) Unirrigated. (viii) Intercultivation papatam in one month crop. (ix) \(2.27^{\prime \prime}\). (x) 12.2.1958.
2. TREATMENTS to 4. GENERAL.

Same as in expt. no. 55(47) on page 224.
5. FESULTS :
(i) \(434 \mathrm{lb} . / \mathrm{ac}\). (ii) \(87.0 \mathrm{lb} . / \mathrm{ac}\). (iii) 'Control vs. others' effect are highly significant. Effect of N is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(=295 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 425 & 470 & 425 & 440 \\
\hline \(\mathrm{N}_{2}\) & 405 & 405 & 405 & 405 \\
\hline \(\mathrm{N}_{3}\) & 520 & 520 & 475 & 505 \\
\hline Mean & 450 & 465 & 435 & 450 \\
\hline
\end{tabular}
S.E. of any marginal mean
\(=25.1 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table \(\quad=43.5 \mathrm{lb} . / \mathrm{ac}\).
\[
\begin{array}{ll}
\text { Crop :- Jowar. } & \text { Ref :- A.P. 54(9). } \\
\text { Site :- Agri. Res. Stn., Lam. } & \text { Type :- ‘M'. }
\end{array}
\]

Object :-To study the effect of N and G.N.C. with and without P and K.
1. BASAL CONDITIONS :
(i) (a) Jowar-Red gram+Grouadnut. (b) Chillies+Cotton. (c) F.Y.M. at 10 C.L./ac. (ii) (a) Black soil. (b) Refer soil analysis, Lam. (iii) 30.10 .1954 . (iv) (a) 6 ploughings. (b) to (e) N.A. (v) Glyricedia at 3000 lb ./ac. incorporated two months before sowing. (vi) G-2 (Jonna). (vii) Unirrigated. (viii) Interculturing with Papatam in one month old crop. (ix) 0.63". (x) 25.2.1955.
2. TREATMENTS:

Main-plot treatments:
3 sources of 30 lb ./ac. of \(\mathrm{N}: \mathrm{S}_{0}=\) No manure, \(\mathrm{S}_{1}=\mathrm{A} / \mathrm{S}\) and \(\mathrm{S}_{2}=G . \mathrm{N} . C\).
Sub-plot treatments :
3 combinations of \(P\) and \(K: M_{1}=20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super, \(\mathrm{M}_{2}=30 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. and \(\mathrm{M}_{3}=20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +30 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(82.5^{\prime} \times 13.2^{\prime}\). (b) \(69.3^{\prime} \times 11.2^{\prime}\). (v) \(6.6^{\prime} \times 1.0^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Good ; no lodging. (ii) Nil. (iii) Growth at different intervals of grain and straw yield. (iv) (a) 1954N.A. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(1584 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(397.8 \mathrm{lb} . / \mathrm{az}\). (b) \(124.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Interaction \(\mathrm{S} \times \mathrm{M}\) alone is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll}
& \(M_{1}\) & \(\mathbf{M}_{2}\) & \(\mathbf{M}_{3}\) \\
\hline \(\mathbf{S}_{0}\) & 1397 & 1470 & 1511 \\
\(\mathrm{~S}_{1}\) & 1805 & 1538 & 1779 \\
\(\mathrm{~S}_{2}\) & 1615 & 1638 & 1507 \\
\hline Mean & 1609 & 1549 & 1599
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll}
1. S marginal means & \(=162.7 \mathrm{lb} . / \mathrm{ac}\). \\
2. M marginal means & \(=50.5 \mathrm{lb} . / \mathrm{ac}\). \\
3. M means at the same level of S & \(=87.9 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(S\) means at the same level of M & \(=1775 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Jowar.
Site :- Agri. Res. Stn., Lam.

Ref :- A.P. 55(61).
Type :- ' \(\mathbf{M}\) '.

Object :-To study the effect of \(N\) and G.N.C. with and without \(P\) and \(K\).
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jonna. (c) N.A. (ii) (a) Black soil. (b) Refer soil analysis, Lam. (iii) 30.10.1955. (iv) (a) 6 ploughings. (b) to (e) N.A. (v) Nil. (vi) G-2. (vii) Unirrigated. (viii) Interculture with papatam in ene month crop. (ix) 13.09". (x) 30.2.1956.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(9) on page 225.
5. RESULTS:
(i) \(1571 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) 1378.9 lb ./ac. (b) 280.8 lb ./ac. (iii) Interaction \(\mathrm{S} \times \mathrm{M}\) alone is significant. (iv) Av. yield of grain in lb /ac.

\section*{Crop :- Jowar.}

Sité :- Tobacco. Res. Stn., Madira.

Ref :- A.P. 57(28).
Type :- \(\mathbf{C M}_{\mathbf{M}}\).

Obiect :-To determine the manurial requirements of Jowar.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Virginia tobacco. (c) 20 . 1 b ./ac. of N as \(\mathrm{A} / \mathrm{S}\). (ii) (a) Black cotton. (b) N.A. (iii) 9.9.1957. (iv) (a) to (e) N.A. (v) Nil. (vi) PJ-22K (Maghi-Jowar), (vii) Rainfed: (viii) Thinning , done. (ix) \(450^{\circ}\). (x) 6.1.1958.
2.;TREATMENTS:

6 manurial treatments : \(\mathrm{M}_{0}=\) Control, \(\mathrm{M}_{1}=20 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{N}+10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{2}=40 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{N}+20\) \(\mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{3}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{4}=80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+40\) lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{M}_{5}=100 \mathrm{lb}\)./ac. of \(\mathrm{N}+50 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
N applied as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN :
(i) R.B.D.
(ii) (a) 6
(b) N.A. (iii)
6. (iv)
(a) \(12^{\prime} \times 100^{\prime}\). (b) \(9^{\prime} \times 100^{\prime}\). (v) One row on either side. (vi) Yes.
4. 'GENERAL:
(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) \(1957-\underset{\substack{\text { (contd. } \\ \text { (b) }}}{\text { (b) and (c) Nil. (v) to (vii) Nil. }}\)

RESULTS :
(i) \(1389 \mathrm{lb} . / \mathrm{ac}\). (ii) \(227.8 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of grain in \(1 \mathrm{~b} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{M}_{0}{ }^{\text {' }}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) \\
\hline Ay yield & 1130 & 1317 & 1296 & 1515 & 1446 & 1628 \\
\hline
\end{tabular}

\section*{Crop :- Maghi Jowar.}

Sité :- Tobacco Res. Sta., Madira.

Ref :- A.P. 58(11).
Type :- ' \(\mathbf{M}\) '.

Object:-To determine the manurial requirements of Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Green gram. (c) Super at \(60 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) Black cotton. (b) N.A. (iii) 23.10.1958. (iv) (a) to (e) N.A. (v) Nil. (vi) PJ-22 K (Maghi-Jowar). (vii) Unirrigated. (viii) Thinning ; cultivator worked. (ix) \(1.7^{\prime \prime}\). (X) 5.2 .1959.
2. TREATMENTS :

Same as in expt. no. 57(28) above.
3. DESIGN :
(i) R.B.D. (ii) (a) 6 . (b) N.A. (iii) 5. (iv) (a) \(13 \frac{1}{\prime}^{\prime} \times 200^{\prime}\). (b) \(10 \frac{1}{2}^{\prime} \times 200^{\prime}\). (v) One row on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of grain (iv) (a) \(1957-\) contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(561 \mathrm{lb} . / \mathrm{ac}\). (ii) \(62.6 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{lclcrrr}
Treatment & \(\mathrm{M}_{\mathbf{0}}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{\mathbf{4}}\) & \(\mathrm{M}_{5}\) \\
Av. yield & 207 & 398 & 514 & 689 & 705 & 726 \\
& S.E. \(/\) mean & \(=\) & \(28.0 \mathrm{lb} . / \mathrm{ac}\). & & &
\end{tabular}
```

Crop :- Jowar (Rabil.
Site :- Tobacco Res. Stn., Madira.
Ref :- A.P. 59(40).
Type :- ' $\mathbf{M}$ '.

```

Object :-To determine the manurial requirements of Jowar.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Green gram. (c) Super at 60 lb /ac. (ii) (a) Black cotton. (b) N.A. (iii) 25.9.1959. (iv) (a) Cultivator worked. (b) to (e) N.A. (v) Nil. (vi) PJ-22 K (Maghi-Jowar). (vii) Unirrigated. (viii) Thinning done, interculturing by cultivator and guntaka. (ix) \(7.63^{*}\). (x) 27.1.1960.

\section*{2. TREATMENTS :}

Same as in expt. no. 57(28) on page 227.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) \(13 \frac{1}{2}^{\prime \prime} \times 200^{\prime}\). (b) \(100^{\prime \prime} \times 200^{\prime}\). (v) One row on either side, (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N l. (iii) Yield of grain. (iv) (a) 1957 -contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi, and (vii) Nil.

\section*{5. RESULTS :}
(i) \(699 \mathrm{lb} . / \mathrm{ac}\). (ii) \(73.8 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) \\
\hline Av. yield & 389 & 583 & 611 & 812 & 896 & 903 \\
\hline & & \multicolumn{4}{|l|}{S.E./mean \(=30.2 \mathrm{lb} . / \mathrm{ac}\).} & \\
\hline
\end{tabular}

\section*{Crop :- Jowar.}

Site :- Agri. Res. Stn., Nandyal.

Ref :- A.P. 54(29).
Type:- ' \(\mathbf{M}\) '.

Object:-To find out a suitable legume crop grown with Jowar with and without \(\mathrm{P}_{2} \mathrm{O}_{5}\).
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Groundnut and Redgram. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nandyal. (iii) 4.10.1954. (iv) (a) Workirg gorru and guntaka. (b) to (e) N.A. (v) Nil. (vi) NI. Jonna (medium;. (vii) Unirrigated. (viii) One interculture with guntaka and weeding. (ix) \(16.27^{\prime \prime}\). (x) 25.1.1955.

\section*{2. TREATMENTS:}

Main-plot treatments
2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
Suit-plot treatments :
5 legumes crops: \(\mathbf{M}_{0}=\) No G.M., \(\mathrm{M}_{1}=\) Cow pea, \(\mathrm{M}_{2}=\) Dhaincha, \(\mathrm{M}_{3}=\) Sanvhemp, and \(\dot{M}_{4}=\mathrm{G} . \mathrm{M}\). grown in situ and ploughed in.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(26.4^{\prime} \times 46.2^{\prime}\) (b) \(21.1^{\prime} \times 41.2^{\prime}\). (v) \(2.6^{\prime} \times 2.5^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1953-1954. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(1083 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) 196.0 lb ./ac. (iii) Main effect of M alone is highly significant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & & 1075 & 963 & 1000 & 875 & 1413 & . 1065 \\
\hline \(\mathrm{P}_{1}\) & & 1088 & 1100 & 1088 & 863 & 1363 & 1120 \\
\hline Mean & & 1081 & 1031 & 1044 & 869 & 1388 & - 1083 \\
\hline
\end{tabular}
S.E. of difference of two
(1) \(P\) marginal means \(\quad=63.5 \mathrm{lb} . / \mathrm{ac}\).
(2) M marginal means \(\quad=65.0 \mathrm{lb} \cdot / \mathrm{ac}\).
(3) M means at the same level of \(\mathrm{P}=92.0 \mathrm{lb} / \mathrm{ac}\).
(4) P. means at the same level of \(\mathrm{M}=103.0 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Jowar.
Site :- Agri. Res. Stn., Nandyal.

Ref :- A.P. 54 (28).
Type :- ' \({ }^{\mathbf{M}}\) ’.

Object :-To study the efficacy of G.M. as soil amendment as compared to F.Y.M. and compost.
1. BASAL CONDITIONS:
(i) (a) No. (b) Jomna. (c) As per treatments. (ii) (a) Black cotton. (b) Refer soil analysis, Nandyal. (iii) 4.10.1954. (iv) (a) Working gorru and guntaka altervately. (b) Line sowing with gorru. (c) 5 lb. .ac. (d) Between rows \(10 \frac{11}{\prime \prime}\) (e) N.A. (v) 45 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\) and 30 lb ./ac. of . \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. A/S broadcasted and Super drilled. (vi) N-1. (medium). (vii) Unirrigated. (viii) one interculture with Metla guntaka and weedings. (ix) \(7.18^{\prime \prime}\). (x) 27.1.1955.
2. TREATMENTS:

All combinations of (1) and (2) +control (2 plots)
(1) 3 manures: \(\mathrm{M}_{1}=\) G.L, \(\mathrm{M}_{2}=\) F.Y.M. and \(\mathrm{M}_{3}=\) Compost.
(2) 3 levels of manures : \(\mathrm{L}_{1}=2500, \mathrm{~L}_{2}=5000\) and \(\mathrm{L}_{3}=7500 \mathrm{lb}\)./ac.
G.L. applied on 30.8.1954. F Y.M. and compost on 10.9.1954.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N A. (iii) 4 . (iv) (a) \(26.4^{\prime} \times 46.2^{\prime}\). (b) \(21.1^{\prime}-41.2^{\prime}\). (v) \(2.6^{\prime} \times 2.5^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Ni!. (iii) Grain and straw yield. (iv) (a) 1953-1954. (b). and (c) Nil. (v) (a) N.A: (b) Nil. (vi) and (vii) Nil.
5. RESULTS
(i) \(1265 \mathrm{lb} . / \mathrm{ac}\). (ii) 116.0 lb ./ac. (iii) No. effect is significant. (iv) Av, yield of grain in lb, 'ac.

Control \(=1275 \mathrm{lb} . / \mathrm{ac}\).

\(\begin{array}{ll}\text { S.E. of any marginal mean } & =33.5 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of table } & =58.0 \mathrm{lb} . / \mathrm{ac} .\end{array}\)

Crop :- Jowar.
Ref :- A.P. 54(20).
Site :- Agri. Res. Stn., Nandyal.
Type :- 'M'.
Object:-To find out the optimum dose of organic matter as soil amendment for Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jonna. (c) N.A. (ii) (a) Black cotton. (b) Refer ssil analysis, Nandyal. - (iii) 4.10.1954. (iv) (a) Working gorru and guntaka alternatelv. (b) Line sowing with gorru. (c) \(5 \mathrm{lb} . / \mathrm{ac}\). (d) Between rows \(1 \frac{10}{}{ }^{\prime \prime}\). (e) N.A. (v) 45 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\) and 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. A/S broadcast and Super drilled. (vi) N.I. (medium). (vii) Unirrigated. (viii) One interculture with metla guntaka and weeding. (ix) 7.18". (x) 24.1.1955.
2. TREATMENTS:

4 levels of G.L. : \(\mathrm{L}_{0}=0, \mathrm{~L}_{1}=2500, \mathrm{~L}_{2}=5000\) and \(\mathrm{L}_{3}=7500 \mathrm{lb} . / \mathrm{ac}\).
G.L. as gliricidia incorporated on 28.8.1954.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 4 . (iv) (a) \(26.4^{\prime} \times 46.2^{\prime}\). (b) \(21.1^{\prime} \times 41.2^{\prime}\). (v) \(2.6^{\prime} \times 2.5^{\prime}\). (v' Yes.
4. GENERAL: -
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1953-1954. (b) No. 'c) Nit. (v) to (vii) N...
5. RESULTS :
(1) 1313 lb .'ac. (ii) \(138.5 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grain in ! b./ac.
\begin{tabular}{llccc}
Treatment & \(\mathrm{L}_{\mathbf{0}}\) & \(\mathrm{L}_{1}\) & \(\mathrm{~L}_{2}\) & \(\mathrm{~L}_{3}\) \\
Av. yield & 1238 & 1275 & 1400 & 1338 \\
& & & & \\
& S.E./mean & \(=\) & \(69.3 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}
\begin{tabular}{ll}
Crop :- Jowar. & Ref :- A.P. 55(66). \\
Site :- Agri. Res. Stn., Nandyal. & Type :- 'M'.
\end{tabular}

Object:-To study the effect of urban compost as compared to F.Y.M. and G.L. on the yield of Jowar.
1. BASAL CONOITIONS :
(i) (a) Nil. (b) Jonna. (c) F.Y.M. at \(2 \frac{1}{2}\) tons/ac. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nandyal. (iii) 14.9 1955. (iv) (a) Cultivation with gorru and guntaka. (b) Line sowing. (c) \(5 \mathrm{lb} / \mathrm{ac}\). (d \(10 \mathbf{1}^{\text {n }}\) between rows. (e) N.A. (v) Nil. (vi) N.1. (vii) Unirrigated. (viii) One interculture with guntaka and one weeding. (ix) N.A. (x) 25.1.1956.

\section*{2. TREATMENTS :}

All combinations of (1) and (2) + a control
(1) 3 manures: \(\mathrm{M}_{1}=\) G.L., \(\mathrm{M}_{2}=\) F.Y.M. and \(\mathrm{M}_{3}=\) Urban compost.
(2) 3 levels of manures: \(\mathrm{L}_{1}=2000, \mathrm{~L}_{2}=3000\) and \(\mathrm{L}_{3}=4000 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D.
(ii) (a) 10 .
(b) N.A.
(iii) 4. (ivi) (a) \(26.4^{\prime} \times 46.2^{\prime}\),
(b) \(21.1^{\prime} \times 41.2^{\prime}\). (v) \(2.6^{\prime} \times 2.5^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal. (ii Nil.
(iii) Yield of straw.
(iv) (a) 1955-contd.
(b) No.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(947 \mathrm{lb} . / \mathrm{ac}\). (ii) \(192.5 \mathrm{lb} . / \mathrm{ac}\). (iii) No effect is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\(i\)
Control \(=1013 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \(\mathrm{L}_{1}\) & 850 & 1600 & 838 & 896 \\
\hline \(\mathrm{L}_{2}\) & 1013 & 988 & 850 & 950 \\
\hline \({ }^{\prime} L_{3}\) & 1088 & . 913 & 913 & 971 \\
\hline Mean & 984 & 967 & 867 & 939 \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal mean & \(=55.4 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=560^{\circ} \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Jowar. \\ Site :- Agri. Res. Stn., Nandyal. \\ Ref:- A.P. 56(60). \\ Type :- ‘ \(\mathbf{M}\) '.}

Object :-To study the effect of urban compost as compared to F.Y.M. and G.L. on the yield of Jowar.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Jowar: (c) F.Y.M. at \(2 \frac{1}{2}\) tons/ac. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nandyal. (iii) 26.9.1956. (iv) (a) Working gorru and guntaka twice. (b) By seed drill. (c) to (e) N.A. (v) Nil. (vi) N-1 Jonna (late). (vii) Irrigated. (viii) Interculture with glontaka once. (ix) 7.80". (x) 9.2.1957.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 55(66) on page 230.
5. RESULTS:
(i) \(262 \mathrm{lb} . / \mathrm{ac}\). (ii) 105.0 lb /ac. (iii) Nc effect is significant. (iv) Av. yield of grain in \(1 \mathrm{c} . / \mathrm{ac}\). Control \(=234 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll|l}
& \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \(\mathrm{L}_{1}\) & 298 & 331 & 293 & 207 \\
\(\mathrm{~L}_{2}\) & 342 & 205 & 153 \\
\(\mathrm{~L}_{3}\) & 323 & 240 & 201 & 233 \\
\hline Mean & 321 & 259 & 216 & 265 \\
\hline
\end{tabular}
S.E. of any marginal mean \(\quad=\quad 30.6 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table \(=53.0 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Kharif).
Ref :- A.P. 57(50).
Site :- Agri. Res. Farm, Yemmiganur.
Type :- ' \(M\) '.
Object:-To find the effect of N applied with and without P on Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Jowar-Cotton-Groundnut. (b) Groundnut. (c) FA.M. at 5 tons'ac. (ii) (a) Red soil. (b) N.A. (iii) 5.8.1957. (iv) (a) Ploughing, working guntaka and dantulu. (b) to (e) N.A. (v) F.Y.M. at 5 tons/ac. (vi) (Early) variety. (vii) Irrigated. (viii) Weeding twice and intercultivation twice. (ix) \(15.69^{\prime \prime}\). (x) 14 , 15.11.1957.
2. TREATMENTS :

All combinations of (1) and (2) + a control
(1) 3 levels if \(\mathrm{N}: \mathrm{N}_{1}=15, \mathrm{~N}_{\mathrm{z}}=30\) and \(\mathrm{N}_{3}=45 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{22} \mathrm{O}_{3}: \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=20 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 7 . (b) N.A. (iii) 4 . (iv) (a) \(1 / 77.5 \mathrm{ac}\). (b) \(1 / 96.1 \mathrm{ac}\). (v) 1 row on all sides. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) to (c) No. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(802 \mathrm{lb} . / \mathrm{ac}\). (ii) \(\mathrm{i} 6.6 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effects of \(\mathrm{N}, \mathrm{P}\) and 'control ws. others' effect are highly significant. (iv) Av. yie!d of grain in lb./ac.

Control \(=489 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 646 & 913 & 973 & 844 \\
\hline \(\mathrm{P}_{1}\) & 692 & 919 & 980 & 864 \\
\hline Mean & 669 & 916 & 977 & 854 \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of N marginal mean & \(=5.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of P marginal mean & \(=4.8 \mathrm{lb} . \mathrm{ac}\). \\
S.E. of body of the table & \(=8.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Kharif).
Site :- Agri. Res. Farm, Yemmiganur.

Ref :- A.P. 58(43).
Type :- ' \(M\) '.

Object:-To find out the optimum manurial doses for Jowar under irrigated conditions.
1. BASAL CONDITIONS :
(i) (a) Jonna-Cotton. (b) Cotton. (c) N.A. (ii) (a) Red soil. (b) Refer soil analysis, Yemmiganur. (iii) 15.8.1958. (iv) (a) Ploughing. (b) to (e) N.A. - (v) F.Y.M. at 5 tons/ac. (vi) CO—Jonna (early). (vii) Irrigated. (viii) Intercultivation done 4 times, 20 days after sowing with 10 days interval. Weeding done. (ix) N.A. (x) 14.11.1959.
2. TREATMENTS:

Same as in expt. no. 57,50) above.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) \(1 / 77.5 \mathrm{ac}\). (b) \(1 / 96.1 \mathrm{ac}\). (v) 4 rows. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) 1957. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(2111 \mathrm{lb} . / \mathrm{ac}\). (ii) 28.3 lb ./ac. (iii) Effect of N is highly significant. 'Control \(v s\). others' effect is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\(i\)
Control \(=1956 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{N}_{1}\), & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 1956 & 2129 & 2248 & 2111 \\
\hline \(\mathrm{P}_{1}\) & 1977 & 2224 & 2288 & 21.63 \\
\hline Mear & 1966 & 2176 & 268 & 2137 \\
\hline
\end{tabular}
S.E. of N marginal mean \(\quad=10.0 \mathrm{lb} . / \mathrm{ac}\).
S.E. of \(P\) marginal mean \(\quad \cdots=8.2 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table
\(=14.3 \mathrm{lb} / \mathrm{ac}\).

Crop :- Jowar (Kharif).
Ref:- A.P. 59(54).
Site :- Agri. Res. Farm, Yemmiganur.
Type :- ' \(\mathbf{M}\) '.
Object:--To find out the optimum dose of manure for obtaining maximum yield of Jowar under irrigated conditions.
1. BASAL CONDITIONS:
(i) (a) Cotton-Jawar. (b) Cotton. (c) F.Y.M. at 5 tons/ac. (ii) (a) Black soil. (b) Refer soil analysis, Yemmiganur. (iii) 37.1959 . (iv) (a) Ploughing and working guntaka. (b) to (e) N.A. (v) 5 tons/ac. of F.Y.M. broadcast after ploughing. \(100 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) applied at sowing. (vi) N.A. (vii) Irrigated. (viii) Weeding and intercultivation with dantulu. (ix) \(9.22^{\prime \prime}\). (x) 5.11.1959.
2. 'TREATMENTS':

Same as in expt. no. \(57(50)\) on page 232.
3. DESIGN :
(i) R.B.D. (ii) (a) 7.
(b) N.A. (iii) 4 .
(iv) (a) \(56^{\prime} \times 11^{\prime}\)
(b) \(54^{\prime} \times 8\)
(v) \(1 \times 1 \frac{1}{2}\)
(vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1957-1959. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESUTS :
(i) \(1392 \mathrm{lb} . / \mathrm{ac}\). (ii) \(308.1 \mathrm{lb} / \mathrm{ac}\). (iii) 'Control vs. others' effect alone is highly significant. (iv) Av. yield of grain in lb./ac.

Control \(=777 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll|l}
& \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{3}\) & Mean \\
\hline \begin{tabular}{l}
\(\mathbf{P}_{0}\) \\
\(\mathbf{P}_{1,}\)
\end{tabular} & \begin{tabular}{lll}
1233 & 1388 & 1627 \\
1389 & 1577 & 1754
\end{tabular} & \begin{tabular}{l}
1416 \\
1573
\end{tabular} \\
\hline 1311 & 1483 & 1691 & 1495
\end{tabular}
S.E. of N marginal mean \(\quad=108.9 \mathrm{lb} . / \mathrm{ac}\).
S.E. of \(P\) marginal mean \(=89.0 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table
\(=154 \mathrm{llb} . / \mathrm{ac}\).
Grop :- Jowar (Kharif).
Ref:- A.P. 59(SFT).
Centre :- Guntur (c.f.).
Type:- ‘M'.

Object :-Type A—To study the response of Jowar to levels of \(N, P\) and \(K\) applied individually and in combirations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and black soil. (iii) Nıl. (iv) June-July. (v) to (ix) N.A. (x) October.
2. TREATMENTS :
\(0=\) Control (no manure).
\(\mathrm{n}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{p}=20 \mathrm{lb} . \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Surer.
\(\mathrm{np}=20 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(k=20 \mathrm{lb}\)./ac.of \(\mathrm{K}_{2} \mathrm{O}\) as Mur Pot.
\(\mathrm{nk}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
\(\mathrm{pk}=20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +20 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
\(n \mathrm{nk}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{3}\) as \(\operatorname{Super}+20 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur._Pot.
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type \(A\) and the other half of type \(B\) on crops other than the legumes. The three trials on legumes are of type \(C\). Residual effects of phospinate application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly located fields in randomly selected villages in each of the 4 z Jnes at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL :
(i) Normal. (ii, Nil. (iii) Grain yield (iv) (a) 1959-contd. (b) No (v) As per design. (vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & & S.E. \\
\hline Av. response in lb./ac. & 197 & 148 & 115 & 121.8 & 33 & 49. & 33 & 82 & & 2.4 \\
\hline \multicolumn{11}{|c|}{Control yield \(=806 \mathrm{lb} . / \mathrm{ac}\). and no. of trial} \\
\hline
\end{tabular}
\begin{tabular}{ll}
Crop :- Jowar (Kharif). & Ref :- A.P. 59(SFT). \\
Centre :- Hyderabad (c.f.). & Type :- 'M'.
\end{tabular}

Object:-Type A-To study the response of Jowar to leveis of N. P and K applied individually and n combinations.
1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. \({ }^{59}\) (SFT) type A above condusted at Guntur.
5. RESULTS :

Crop 1- Jowar (Kharif).
Centre :- Krimnagar (c.f.).

Ref:- A.P. 59(SFT).
Type :- ‘M'.

Object:-Type A-To study the response of Jowar to levels of N, P and \(K\) applied individvally and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red soil. (iii) Nil. (iv) June-July. (v) to (ix) N.A. (x) October.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59 (SFT) type A on page 234 conducted at Guntur.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in \(\mathrm{lb} . / \mathrm{ac}\). & 165 & 140 & 82 & 58.4 & 0 & 0 & 33 & 33 & 28.8 \\
\hline & \multicolumn{3}{|r|}{Control yield} & \multicolumn{5}{|l|}{\(=411 \mathrm{lb} . / \mathrm{ac}\). and no. of trials} & \\
\hline
\end{tabular}

\section*{Crop :- Jowar (Kharif). \\ Site :- Krishna Dist. (c.f.).}

Ref:- A.P. 59(SFT).
Type:- ' \(\mathbf{M}^{\prime}\).
Object :-Type A-To study the response of Jowar to levels of \(\dot{N}, \mathrm{P}\) and K applied individually and in combinations.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) Black coastal. (iii) Nil. (iv June-July. (v) to (ix) N.A. (x) October. TREATMENTS to 4. GENERAL:
Same as in expt. no. 59 (SET) type A on page 234 conducted at Guntur.
RESULTS :
\(\begin{array}{lccccccccc}\text { Effect } & \mathrm{n} & \mathrm{p} & \mathrm{k} & \text { S.E. } & \mathrm{np} & \mathrm{nk} & \mathrm{pk} & \mathrm{npk} & \text { S.E. }\end{array}\)
Av. response in \(\mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Kharif). Ref:- A.P. 59(SFT).
Centre :- Mahboobnagar (c.f.).
Type :- 'M'.
Object:-Type A-To study the response of Jowar to levels of \(\mathrm{N}, \mathrm{P}\) and K applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to
(c) N.A.
(ii) Black soil.
(iii) Nil. (iv) June-July
(v) to (ix) N.A.
(x) October.
2., TREATMENTS to 4. GENERAL :

Same as in expt. no. 59 (SFT) type A on page 234 conducted at Guntur.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S E. \\
\hline Av. response in lb./ác. & 99 & 58 & -66 & 48.5 & -33 & -16 & 25 & 33 & 40.3 \\
\hline & \multicolumn{9}{|l|}{Control yield \(=247 \mathrm{lb} . / \mathrm{ac}\). and no. of trials} \\
\hline
\end{tabular}

Crop :- Jowar (Kharif).
Ref :- A.P. 59(SFT).
Centre :- Warangal (c.f.).
Type :- ' \(\mathbf{M}\) '.
Object:-Type A-To study the response of Jowar to levels of \(N, P\) and \(K\) applied individually and in combinations.
1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 59 'SFT) type A on page 234 conducted at Guntur.
RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in lb.jac. & 58 & 41 & 0 & 35.4 & -25 & 0 & 16 & 16 & 12.3 \\
\hline & \multicolumn{7}{|l|}{Control yield \(=214 \mathrm{lb} . / \mathrm{ac}\). and no. of trials} & & \\
\hline
\end{tabular}
Crop:- Jowar (Kharif).
Ref :- A.P. 59(SFT).
Centre -- Guntur (c.f.).
Type :- ' \(\mathbf{M}\) '.

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1, BASAL CONDITIONS:
(i) (a) to (c) N.A.
(ii) Red and black soil.
(iii) Nil.
(iv) June-July.
(v) to (ix) N.A. (x) October.
2. TREATMENTS :

0 =Control (no manure).
\(n_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A}: \mathrm{S}\).
\(n_{2}=40 \mathrm{lb} . \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{n}_{1}^{\prime}=20 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{2}{ }^{\prime}=40 \mathrm{lb}\).;ac. of N as Urea.
\(\mathrm{n}_{1}{ }^{\prime \prime}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
\(\mathrm{n}_{2}{ }^{*}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogoneous zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thara in the zone and the circle/thana is changed once in two years within the same zone. Each fizld assistant is required to conduct 31 tria's in a ye \(\geq \mathrm{r}, 8\) on kharif cereal, 8 on rabi cereal. 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type \(A\) and the other half of type \(B\) on craps other than the legumes. The three trials on legumes are of type C. Residual effects of phospkate appication are studied on type \(C\) trials in two out of the four zones in each district every year. The experi-
- ments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) \(1 / 40\) ac. (b) \(1 / 80\) ac. (ivj Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1959—oontd. (b) No. (c) N.A. (v) As per design. (vi) and 'vii': Nil.
5. RESULTS:
\begin{tabular}{lccccccc}
Treatment & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}{ }^{\prime}\) & \(n_{2}{ }^{\prime}\) & \(n_{1}{ }^{\prime \prime}\) & \(n_{2}{ }^{*}\) \\
Av. yieid & 510 & 815 & 1053 & 823 & 1004 & 930 & 1012 \\
& & & & & & & \\
& G.M. & \(=\) & \(818 \mathrm{lb} . / \mathrm{ac}\). & ; S.E. & \(=\) & \(25.6 \mathrm{lb} . / \mathrm{ac}\). and no. of trials & \(=6\).
\end{tabular}

Crop:- Jowar (Kharif).
Centre :- Guntur (c.f.).

Ref :- A.P. \(59(\mathrm{SFT})\).
Type :- 'M'.

Object :-Type B-To investigate the relative efficiency of diferent nitroyenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and black soil. (iii) NiI. (iv) June-July., (v) to (ix) N.A. (x) October. 1959.
2. TREATMENTS :

0 = Control (no mannre).
\(\mathrm{n}_{1}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{n}_{2}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(n_{1}^{\prime}=20 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{2}^{\prime}=40 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{1}{ }^{\prime \prime \prime}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{C} / \mathrm{A} / \mathrm{N}\).
\(\mathrm{n}_{2}{ }^{\prime \prime \prime}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{C} / \mathrm{A} / \mathrm{N}\).
3. DESIGN and 4. GENERAL:

Same as in expt. no. 59 (SFT) type B on page 236 conducted at Guntur.
5. RESULTS:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime \prime}\) & \(\mathrm{n}_{2}{ }^{\prime \prime}\) \\
\hline Av. yield & 1531 & 1563 & 1399 & 1399 & 1234 & 1455 & 1366 \\
\hline & G.M. & 1422 & c. ; & \(=` 37\) & ./ac. a & of tria & 8. \\
\hline
\end{tabular}

Crop :- Jowar (Kharif).
Centre :- Karimmagar (c.f.).

Ref :- A.P. 59(SFT).
Type :- ' \(\mathbf{M}\) '.

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A.
(ii) Black soil.
(iii) Nil. (iv) June-July.
(v) to (ix) N.A.
(x) Octobèr.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59 (SFT) type B on page 236 conducted at Guntur.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}^{\prime \prime}\) & \(\mathrm{n}_{2}{ }^{\prime \prime}\) \\
\hline Av. yield & 403 & 716 & 732. & 708 & 650 & 5.3 & 601 \\
\hline & G.M & & c. S & 53 & c. an & f tria & 3. \\
\hline
\end{tabular}
\begin{tabular}{ll}
Crop:- Jowar (Kharif). & Ref:- A.P. 59(SFT). \\
Centre :- Krishna Dist. (c.f.). & Type :- 'M'.
\end{tabular}

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Black coastal. (iii) Nil. (iv) June-July. (v)
(v) to (ix) N.A. (x)
(x) October, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59 (SFT) type B on page 236 conducted at Guntur.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime}\) \\
\hline Av. yield & 568 & 658 & 732 & 683 & 823 & 732 & 716 \\
\hline : & G.M & 702 & c. ; & \(=3\) & ac. & of tr & 11 \\
\hline
\end{tabular}
```

Crop :- Jowar (Kharif).
Ref :- A.P. 59(SFT).
Centre :- Mahboobnagar (c.f.).
Type :- ‘'M'.

```

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Black ssil.
(iii) Nil. (iv) Junz-July, 1959.
(v) to (ix) N.A. (x) October.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59(SFT) type B on page 236 conducted at Guntur.
5. RESULTS:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{*}\) & \(\mathrm{n}_{2}{ }^{*}\) \\
\hline Av. yield & 239 & 239 & 403 & 280 & 280 & 288 & 304 \\
\hline
\end{tabular}
```

Crop :- Jowar ( $\check{K} h a r i f$ ).
Ref :- A.P. 59(SFT).
Centre :- Warangal (c.f.).
Type :- ' $\mathbf{M}$ '.

```

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 59(SFT) type B on page 236 conducted at Guntur.
5. RESULTS :
\begin{tabular}{lclllllll}
Treatment & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}{ }^{\prime}\) & \(n_{2}{ }^{\prime}\) & \(n_{1}{ }^{\prime \prime}\) & \(n_{2}{ }^{\prime \prime}\) \\
Av. yield & 173 & 272 & 280 & 255 & 263 & 247 & 296 \\
& G.M. \(=\) & \(255 \mathrm{lb} . / \mathrm{ac} . ;\) S.E. & \(=\) & \(11.6 \mathrm{lb} . / \mathrm{ac}\). and no: of trials & \(=12\).
\end{tabular}

Crop :- Jowar (Kharif).
Centre :- Warangal (c.f.).

Re! :- A.P. 59 (SFT).
Type :- \({ }^{6} \mathbf{M}\) '.

Object:-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and black soil. (iii) Nit. (iv) June-July, 1959. (v) to (ix) N.A. (x) October, 1959.
2. TREATMENTS :

0 = Control (no manure).
\(\mathrm{n}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(r_{z}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{n}_{\mathrm{I}^{\prime}}=20 \mathrm{lb} / \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{\mathbf{2}}{ }^{\prime}=40 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{n}_{1}{ }^{\prime \prime}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{C} / \mathrm{A} / \mathrm{N}\).
\(\mathbf{n}_{\mathbf{2}}{ }^{\prime \prime}=40 \mathrm{lb} / \mathrm{ac}\). of N as C/A/N.
3. DESIGN and 4. GENERAL :

Same as in expt, no. 59(SFT) type B on page 236 conducted as Guntui.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}^{\prime}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime \prime}\) & [12 \({ }^{\text {a }}\) \\
\hline Av. yield & 214 & 321 & 263 & 272 & 283 & 288 & 321 \\
\hline & G.M. & & ; S.E & 41 & a & f \(t\) & 4. \\
\hline
\end{tabular}

\section*{Crop :- Jowar.}

Site :- Tobacco Res. Stri, Madira.

Ref:- A.P. 57(29).
Type :- 'CM'.

Object :-To compare improved method of cultivation with the ordinary method.
I
1. EASAL CONDITIONS :
(i) (a) Nil (b) Jowar. (c) As per treatments. (ii), (a) Black soil. (b) N.A. (iii) 10.9.1957. (iv) (a) 2 Floughings and 3 buckarings. (b) As per treatments. (c) \(10 \mathrm{lb} / \mathrm{ac}\). (d) As per treatments (e) N.A. (v) As per treatments. (vi) \(\mathrm{PJ}-22 \mathrm{~K}\) (Maghi Jowar). (vii). Unirrigated. (viii) As per treatments. (ix) \(4.50^{\circ}\) (x) 5.1.1958.
2. TREATMENTS :

2 methods of cultivation: \(M_{1}=\) Improved : 5 C.L./ac. of F.Y.M. \(+100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}+60 \mathrm{lb}\)./ac. of Super F.Y.M. and 1 lb ./ac. of A/S and Super applied tefore sowing and the rest to one month old crop; spacing \(18^{\prime \prime} \times 9^{\prime \prime}\), hand weeding twice thinning hoeing and earthing up sowing with drill and \(M_{2}=\) no manure, spacing \(12^{\prime \prime} \times 4^{\prime \prime}\), hand weeding and hoeing.
3. DESIGN:
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 3. (tv) (a) and (b) \(1 / 6\) ac. (v) No. (vi) Yes. 1
. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1956-contd. (b) Yes. (c) Nil.'(v) to (vii) Nil.'
5. FESULTS :
(i) \(1273 \mathrm{lb} . / \mathrm{ac}\). (ii) 97.3 lb /ac. (iii) Treatment difference is significant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{lcl}
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
Av. yield & 1446 & 1100 \\
& & \\
& S.E./mean & \(=57 \mathrm{Ib} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{lll}
Crop :- Jowar. & Ref \(:-\) A.P. 58(10). \\
Site :- Tobacco Res. Str., Madira. &
\end{tabular}

Object:-To compare improved method of cultivation with the ordinary method. !
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Jowar. (c) As per treatments. (ii) (a) Black soil, 3' deep. (b) N.A. (iii) 6.10.1958. (iv) (a) 2 ploughings and 3 buckarings. (b) As per treatments. (c) 10 lb ./ac. (d) As per treatments. (e) N.A. (v) As per treatments. (vi) PJ \(-22 \mathrm{~K}^{\prime}\) (Maghi Jowar). (vii) Unirrigated. (viii) As per treatment. (ix) \(0.14^{\text {r }}\). (x) 8.2.1959.
2. TREATMENTS :

Same as in expt. no. \(57^{(29)}\)) above.
4. DESIGN :
(i) R.B D. (ii) (a) 2. (b) N.A. (iii) 3. (iv) (a) and (b) \(1 / 6\) acre. (v) N.A. (vi) Yes.

GENERAL:
(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1956-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.

RESULTS :
(i) 1226 lb /ac. (ii) 207.8 lb ./ac. (iii) Treatment difference is significant. (iv) Av. yield of gräin in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lll}
freatment & \multicolumn{1}{l}{\(\mathrm{M}_{1}\)} & \multicolumn{1}{l}{\(\mathrm{M}_{2}\)} \\
Av. yield in lb./ac. & 1545 & 906 \\
& & \\
& S.E./mean & \(=120.0 \mathrm{lb}\)./ac.
\end{tabular}

Crop :-Jowar (Kharif).
Ref:- A.P. 59(74).
Site :- Tobacco Res. Stn., Madira.
Type :- 'CM'.
Object:-To compare improved method of cultivation with the ordinary method.
1. BASAL CONDITIONS:
(i) (a) N.A. (b) Jowar. (c) N.A. (ii) (a) Black sticky soil. (b) N.A. (iii) 17.9.1959. (iv) (a) N.A. (b) As per treatments. (c) N.A. (d) As per treatments. (e) N.A. (v) As per treatments. (vi) PJ-22K. (Maghi Jowar). (vii) Unirrigated. (viii) Interculture by cultivator and guntaka. (ix) 7.63". (x) 27.1.1960.
1. TREATMENTS:

Same as in expt no. 57:29) on page 239.
3. DESIGN :
(1) R.B.D. (ii) (a; 2. (b) N.A. (iii) 3. (iv) (a) and (b) \(1 / 6\) acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) \(1956-\) N.A. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 647 lb ./ac. (ii) \(70.6 \mathrm{lb} / \mathrm{ac}\). (iii) Treatment difference is not significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{lcc}
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
Av. yield & 744 & 544
\end{tabular}
Crop :- Jowar (Rabi).
Ret :- A.P. 56(92).

Site :- Agri. Res. Farm, Yemmiganur.
Type :- 'I'.

Object.-To find out the best irrigation interval for Jowar.
1. BASAL CONDITIONS:
(i) (a) Sannhemp-Jonna-Cotton-Groundnut. (b) Samnemp. (c) F.Y.M. at 10 C.L./ac. (ii) (a) Black soil. (b) Refer soil analysis, Yemmiganur. (iii) 5.11 .1956 . (iv) (a) Ploughing. (b) to (e) N.A. v) Sannhemp at \(4970 \mathrm{lb} . / \mathrm{ac}+100 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{A}_{/} \mathrm{S}\) at sowing. (vi) Hingari jonna (late). (vii) Irrigated. (viii) 2 intercultivations with guntaka and dantulu and 2 weedings. (ix) \(1.23^{\prime \prime}\). (x) 6.3.1957.
2. TREATMENTS :

4 intervals of irrigation: \(\mathrm{I}_{1}=\) After every 15 days, \(\mathrm{I}_{2}=20\) days, \(\mathrm{I}_{3}=25\) days and \(\mathrm{I}_{4}=30\) days.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 4 . (iv) (a) \(1 / 99\) ac. cents. (b) \(1 / 135\) ac. cents. (v) 1 row alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) 1956 -contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 3266 lb ./ac. (ii) \(505.5 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are rot significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{llccc}
Treatment & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) & \(\mathrm{I}_{4}\) \\
Av. yield & 3243 & 3311 & 3401 & 3108 \\
& \multicolumn{4}{l}{ S.E./mean } \\
& & \(206.4 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agri. Res. Farm, Yemmiganur.
Ref:- A.P. 57(84)
Type :- ‘' \({ }^{\prime}\).

Object :-To find out the best irrigation interval for Jowar.
1. BASAL CONDITIONS :
(i) (a) Jonna-Cutton-Groundnut. '(b) Sesbania. (c) F.Y.M. at 10 C.L./ac. (ii) (a) Black soil. (b) Refer soil analysis, Yemmiganur. (iii) 8.10.1957. (iv) (a) Ploughing. (b) to (e) N.A. (v) 10 C.L./ac. of F.Y.M. (vi) Hingari-Jonna (late). (vii) Irrigated. (viii) 3 weedings and 2 intercultivations whth guntaka and dantulu. (ix) \(2.40^{\prime \prime}\). (x) 14.2.1958.
2. TREATMENTS:

4 intervals of Irrigation + a conirol \(I_{0}: I_{1}=\) Afier every 15 days, \(I_{2}=20\) days, \(I_{3}=25\) days and \(I_{4}=30\) days.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) \(1 / 99 \mathrm{ac}\) (b) 1/135.1 ac. (v) One row alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) to (vii) Nil. \({ }^{1}\) RESULTS:
(i) 29 J \(1 \mathrm{lb} /\) /ac. (ii) 15.1 lb /ac. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{lccccc}
Treatment & \(I_{0}\) & \(I_{1}\) & \(I_{2}\) & \(I_{3}\) & \(\mathbf{I}_{\mathbf{4}}\) \\
Av. yield & 169 & 281 & 441 & 366 & 192 \\
& S.E./mean & \(=\) & \(7.6 \mathrm{lb} . / \mathrm{ac}\). & &
\end{tabular}
\begin{tabular}{ll}
Crop :- Jowar. & Ref:- A.P. 59(49). \\
Site :- Demonstn.-Cum-Res.Faim, Yemmiganur. & Type :- ‘I'.
\end{tabular}

Object :-To find out the best irrigation interval for Jowar.
1. BASAL CONDITIONS:
(i) (a) Jowar-Cotton. (b) N.A. (c) 5 tons/ac. of F.Y.M. (ii) (a) Black soil. (b) Refer soil analysis, Yemmiganur. (iii) 4.10 .1959 . (iv) (a) Ploughing. (b) to (e) N.A. (v) 5 tons/ac. of F.Y.M. broadcasted after ploughing and 100 lb /ac. of \(\mathrm{A} / \mathrm{S}\) broadcast at sowing. (vi) N.A. (vii) Irrigated. (viii) Line weeding, removing diseased leaves and intercultivations with guntaka and dantulu. (ix) N.A. (x) 15.3.1960.
2. TREATMENTS:

Same as in expt. no. 57(84) above.
DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) \(1 / 79.4 \mathrm{ac}\). (b) \(1 / 97 \mathrm{ac}\). (v) Two rows. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1956 -contd. (b) No. (c)-. (v) to (vii) Nil.
5. RESULTS:
(i) 80 lb ./ac. (ii) \(20.1 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yyield of grain in lb ./ac.
\begin{tabular}{lccccc}
Treatment & \(\mathrm{I}_{0}\) & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) & \(\mathrm{I}_{4}\) \\
Av. yield & 74 & 94 & 95 & 60 & 80 \\
& & & & \\
& S.E./mean & \(=\) & \(5.0 \mathrm{lb} . / \mathrm{ac}\). & &
\end{tabular}
```

Crop :- Ragi (Kharif).
Ref:- A.P. 54(91).
Site :- Sugarcane Res. Stn., Anakapalle.
Type :- 'M'.

```

Object :-To study the long range effect of continuous application of N on the soil composition and fer:ility as affecting crop performance of Sugarcane and rotational crops of Ragi and Padidy.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ragi-Paddy. (b) Sugarcane. (c) 100 lb ./ac. of N in the forms as shown in the treatmerts.
(ii) (a) Clay loam. (b, N.A. (iii) 29.5.1954. (iv) (a) Dry ploughing with victory and country plough.
(b) Transplanting seedling in rows. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) \(4^{\prime \prime}\) between rows. (e) 2 to 3 . (\(v\); Nil. (vi) AKP-2.
(vii) Irrigated. (viii) Hoeiog and weeding. (ix) 10.03*. (x, 2.8.1954.
2. TREATMENTS :

5 sources of \(N 40\) at lb./ac. : \(S_{0}=0, S_{1}=A / S, S_{2}=\) G.N.C., \(S_{3}=\) F.Y.M. and \(S_{4}=\frac{2}{3}\) G.N.C. \(+\frac{1}{3} A^{\prime} S\).
3. DESIGN :
(i) L. Sq. (ii) (a) 5 .
(b) N.A.
(iii) 5
(iv) (a) \(39.6^{\prime} \times 36^{\prime} .3^{\prime}\).
(b) \(33.0^{\prime} \times 26.4^{\prime}\).
(v) \(4.95^{\prime}\) on either sides. (vi) Yes.
4. GENERAL:
(i) Normal
(ii) Nil. (iii) Grain yield.
(iv) (a) 1951-contd.
(b) Ycs.
(c) Nil. (v) to (vii) Nil
5. RESULTS :
(i) \(1322 \mathrm{lb} . / \mathrm{ac}\). (ii) \(145.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{lccccr}
Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{~S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{4}\) \\
Av. yield & 753 & 1745 & 1403 & 1053 & 1655 \\
& & & & &
\end{tabular}
```

Crop :- Ragi (Kharif).
Site :- Sugarcane Res. Stn., Anakapalle.

```
Ref :- A.P. \(\mathbf{5 0}^{\mathbf{5}}(100)\).
Type :- 'M'.

Object:-To study the long range effect of continuous application of \(N\) on the soil composition and fertility as affecting crop performance of Sugarcane and rotational crops of Ragi and Paddy.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ragi-paddy. (b) Sugarcane. (c) 100 lb ./ac. of N in the forms as shown in treatments. (ii) Cl y loam. (b; N.A. (iii) 4.6 .1955 . (iv) (a) Dry ploughing with country plough. (b) Transplanting. (c) 40 lb ./ac. (d) \(4^{*}\) between rows. (e) 2 to 3. (v) Nil. (vi) AKP-2. (vii) frrigated. (viii) Hoeing and weeding. (ix) \(12.49^{\prime \prime}\). (x) 4.c. 1955 .
2. TREATMENTS to 4. GENER AL:

Same as in expt. no. 54 (91) above.
5. RESLLTS:
(i) \(717 \mathrm{lb} . / \mathrm{ac}\). (ii) \(145.6 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly sigaificant. (iv; Av. yield of grain in \(\mathrm{lb}, \mathrm{ac}\).
\begin{tabular}{lcrcrr}
Treatments & \(\mathrm{S}_{0}\) & \(\mathrm{~S}_{1}\) & \(\mathrm{~S}_{\mathbf{2}}\) & \(\mathrm{S}_{\mathbf{3}}\) & \(\mathrm{S}_{\mathbf{4}}\) \\
Av. yield & 401 & 814 & 811 & 679 & 880 \\
& & & & & \\
& S.E./mean & & \(65.1 \mathrm{lb} . / \mathrm{ac}\). & &
\end{tabular}

Site :- Sugarcane Res. Stn., Anakapalle.
- Type :- ' \(\mathbf{M}\) '.

Object :- To study the long range effect of continuous application of N on the soil composition and fertility as affecting crop performance of Sugarcane and rotational crops of Ragi and Paddy.
1. BASAL CONDITIONS :
(i) (a) Sugar-ane-Ragi-Paddy. (b) Sugarcane. (c) \(100 \mathrm{lb} . / \mathrm{ac}\). of N as per treatments. (ii) (a) Clay loam. (b) N.A. (iii) 20.8.1956. (iv) (a) 3 to 4 ploughings with country plough. (b) Transplanted. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) \(4^{\prime \prime}\) between rows. (e) 2 to 3 . (v) Nil. (vi) AKP—2. (vii) Irrigated. (viii) Hoeing. (ix) \(20.86^{\circ}\). (x) 2.12.1956.
2. TREATMENTS :

Same as in expt. no \(54(91)\) on page 242 . (N applied 15 days after planting).
3. DESIGN :
```

(i) L. Sq. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) 0.033 ac. (b) $1 / 50 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GIENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) $1951-1960$. (b) ${ }^{\text {TY K S. ( }}$ (c) No. (v) (a) N.A. (b) No.
(vi) and (vii) Nil.

```
5. RESULTS :
(i) \(981 \mathrm{lb} . / \mathrm{ac}\). (ii) \(145.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av, vield of grain in lb./ac.
\begin{tabular}{cccccc}
Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{~S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{\mathbf{4}}\) \\
Av. yield & 475 & 1170 & 1000 & 900 & 1360 \\
& & & & \\
& S.E./mean & \(=\) & 65.0 & lb.lac.
\end{tabular}
\begin{tabular}{ll}
Crop :- Ragi (Kharif). & Ref :- A.P. 57(117). \\
Site :- Sugarcane Res. Stn., Anakapalle. & Type :- 'M'.
\end{tabular}

Object :-To study the long range effect-of centinuous application of N on the soil composition and fertility as affecting crop performance of Sugarcane and rotational crops of Ragı and Paddy.
1. BASAL CONBITIONŚ :
(i) (a) Sugarcane—Ragi-Paddy. (b) Sugarcane. (c) \(100 \mathrm{lb} . / \mathrm{ac}\). of N in the forms as mentioned in treatments. (ii) (a) Clay loam. (b) N.A. (iii) 28.5.1957. (iv) (a) Dry ploughing with country plough. (b) Transplanting. (i2 \(40 \mathrm{lb} . / \mathrm{ac}\). (d) \(4^{\prime \prime}\) between rows. (e) 2 to 3. (v) Nil. (vi) AKP-2. (vii) Irrigated. (viii) Hoeing and \(\begin{array}{ll}\text { weeding. (ix) } 8.68^{\prime \prime} \text {. } & \text { (x) 28.7.1957. }\end{array}\) \(\stackrel{\rightharpoonup}{i}\)
2. TREATMENTS to 4. GENERAL:

Same as in expt. no: 54(91) on page 242.
5. RESULTS :
(i) \(910 \mathrm{lb} . / \mathrm{ac}\). . (ii) \(314.0 \mathrm{lb} . / \mathrm{ac}\). (iii). Treatment differences are significant. (iv) Av. yield of grain in \(\mathrm{ib} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{4}\) \\
\hline A.v. yield & 460 & 1030 & 910 & 920 & 1230 \\
\hline
\end{tabular}

Crop :- Ragi (Kharif).
Ref:- A.P. 58(146)
Site :- Sugarcane Res. Stn, Anakapalle.
```

Type :- 'M'.

```

Object:-To study the long range effect of continuous application of \(N\) on the soil composition and fertilisy as affecting c:op performance of sugarcane and rotational crops of Ragi and Paddy.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ragi-Paddy. (b) Sugarcane. (c) 100 Jb ./ac. of N in the form as mentioned in treatmerts.
(ii) (a) Clay loam. (b) NA. (iii) 24.5.1958. (iv) (a) Dry ploughing with victory and country plougks.
(b) Transplanting (c) \(40 \mathrm{lb} . / \mathrm{ac}\) (d) \(4^{\prime \prime}\) between rows. (e) 2 to 3 (v) Nil. (vi) AKP-2. (vii) Irrgated.
(viii) Hoeing and weeding. (ix) \(7.66^{\prime \prime}\) (x) 28.1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54/91) on page 242.
5, RESULTS :
(i) 1267 lb ./ac. (ii) 119.9 lb ./ac. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{lccccc}
Treatment & \(\mathrm{S}_{\mathbf{0}}\) & \(\mathrm{S}_{\mathbf{1}}\) & \(\mathrm{S}_{\mathbf{2}}\) & \(\mathrm{S}_{\mathbf{3}}\) & \(\mathrm{S}_{\mathbf{4}}\) \\
Av. yield & 865 & 1550 & 1260 & 1245 & 1415 \\
& & & & & \\
& 3.E./mean & & \(53.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Ragi (Kharif).
Ref :- A.P. 59(135).
Site :- Sugarcane Res. Stn. Anakapalle.
Type :- ' $\mathbf{M}$ '.

```

Objects:-To find out the effect of different nitrogenous manures on the yield of Ragi.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ragi-Paddy. (b) Sugarcane. (c) As per treatments with \(100 \mathrm{lb} / \mathrm{ac}\) of N instead of 40 lb.'ac. (ii) (a) Clay loam. (b) Refer soil Analysis, Anakapalle. (iii) 28, 29.5.1959. (iv) (a) Dry ploughing with victory and county pioughs. (b) Transplanting. (c) \(10 \mathrm{lb} / \mathrm{ac}\). (d) \(4^{*}\) between rons. (e) 2 to 3. (v) Nil. (vi) AKP-2. (vii) Irrigated. (viii) 2 Hoeings and 2 weedings. (ix) \(39.0^{*}\). (x) 2, 3.8.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(91) on page 242.
4. GENERAL :
(i) Good. (ii) Nit. (iii) Yield of grain. (iv) (a) to (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) \(1656 \mathrm{lb} . / \mathrm{ac}\). (ii) 147.4 lb ./ac. (iii) The treatment differences are significant. (iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{s}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{4}\) \\
\hline Av. yield & 868 & 2048 & 1885 & 1525 & 1953 \\
\hline & & ean & 65.9 & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
Crop:- Ragi \(/\) Rabi). & Ref :- A.P. 54(51). \\
Site :- Agri. College Farm, Bapatla. & Type :- ‘M'.
\end{tabular}

Object:-To study the effect of Glyribidia G.L., N and P on the yield of Ragi.
1. BASAL CONDITIONS :
| (i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Sandy. (b) N.A. (iii) 30.10.1954/25.11.1954. (iv) (a) 2 Ploughings and guntaka worked. (b) Transplanted. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) \(4^{\prime \prime} \times 4^{\prime \prime}\). (e) N.A. (v) Nil. (vi) AKP-6. (vii) Irrigated. (viii) Nil. (ix) N.A. (x) 10 to 11.1.1955.

1
2. TREATMENTS :

3 manurial treatments : \(\mathrm{M}_{1}=200 \mathrm{lb}\)./ac. of N as A/S 1 week after planting and \(100 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} 4\) weeks after planting. \(\mathrm{M}_{2}=\mathrm{M}_{1}+100 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super applied at planting and \(\mathrm{M}_{3}=\mathrm{M}_{2}+5\) tons/ac. of Glyricidia G.L. as B.D., 15 tons/ac. of C.M. as B.D. given to \(\mathrm{M}_{1}\) and \(\mathrm{M}_{2}\).
3. DESIGN :
(i). R.B.D. (ii)
(a) 3. (b) N.A. (iii) 8 . (iv)
(a) \(1 / 132.3\) ac. (b) \(1 / 2 \mathrm{CO}\) ac. (v) N.A.
(vi) Yes.
4. GENERAL:
(i) Satisfactory; no lodging. (ii) Attack of Piricularia-Perenox sprayed. (iii) Grain yield. (iv) (a) to (c) No (v) (a) and (b) N.A..(vi) and (vii) Nil.
(i) 1829 lb ./ac. (ii) 248.0 ib ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lccc}
Treatment & \(\mathbf{M}_{1}\) & \(\mathbf{M}_{2}\) & \(\mathbf{M}_{3}\) \\
Av. yield & 1739 & 1803 & 1944 \\
& & & \\
& S.E. \(/\) mean & \(=\) & \(87.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop:-Ragi.}

Site :- Sugarcane Res. Stin. Anakapalle.

Ref :- A.P. 54(54).
Type :- ' \(\mathrm{M}^{\prime}\).

Object :-To find out the optimum dose of organiz and inorganic fertilizers for Ragi.
1. BASAL CONDITIONS :
(i) (a) Ganti-Ragi-Failow. (b) Ganti. (c) F.Y.M. at 5 tons/ac. (ii) (a) Sandy loam. (b) Refer soil analysis, Anakapalle. (iii) \(11.9 .1954 /\) N A: (iv) (a) Ploughing with country plough 3 to 4 times and passing patti. (b) Transplanting. (c) N.A. (d) \(6^{\prime \prime}\) between rows. (e) N.A. (v) Nil.(vi) AKP—7(late). (vii) Unirrigated. (viii) Weeding and hoeing. (ix) \(26.57^{\prime \prime}\). (x) 15.11.1954.
2. TREATMENTS:

All combination of (1) and (2)
(1) 2 leveis of inorganic fertilzers : \(\mathrm{M}_{0}=\mathrm{No}\) manure and \(\mathrm{M}_{1}=45 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
(2) 4 B.Ds : \(B_{0}=N_{0}\) B.D., \(B_{1}=\) Glyricidia leaf at \(5000 \mathrm{lb} . / \mathrm{ac} . \mathrm{B}_{2}=\) C.M. at \(11510 \mathrm{lb} . / \mathrm{ac} . \mathrm{B}_{3}=\mathrm{M} . \mathrm{C}\). at \(10130 \mathrm{lb} . / \mathrm{ac}\).

3 DESIGN :
(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (ii) 4. (iv) (a) \(87.12^{\prime} \times 11.88^{\prime}\). (b) \(85.14^{\prime} \times 9.90^{\prime}\). (v) \(1^{\prime} \times 1^{\prime}\) (vi) Yes.
4. GENERAL:
(i) Lodging. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-1956. (b) No. (c) (c) Nil. (v) to (vii) Nil.

RESULTS :
(i) \(1529 \mathrm{lb} . / \mathrm{ac}\). (ii) 127.2 lb ./ac. (iii) Main effect of M alone is highly significant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{B}_{0}\) & \(\mathrm{B}_{1}\) & \(\mathrm{B}_{2}\) & \(\mathrm{B}_{3}\) & Mean \\
\hline \(\mathrm{M}_{0}\) & 1056 & 1111 & 1114 & 1214 & 1124 \\
\hline \(\mathrm{M}_{1}\) & 1932 & 1841 & 1906 & 2061 & 1935 \\
\hline Mean & 1494 & 1476 & 1510 & 1638 & 1529 \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of \(M\) marginal mean & \(=31.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(B\) marginal mean & \(=45.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. body of table & \(=63.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Cxop :- Ragi.
Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 55(9).
Type :- ‘M'.
Object :-To find out the effect of applying G.L. in combination with A/S to irrigated Ragi.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Fodder Jonna. (c) 5 tons/ac. of F.Y.M. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) \(7.1 .1255 / \mathrm{N} . A\). (iv) (a) Ploughing with iron and country plough. (b) Transplanting. (c) N.A. (d) \(6^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) AKP-6 (medium). (vii) Irrigated, (viii) Hoeing and weeding with hand rakes. (ix) \(2.36^{\circ}\). (x) 31.3.1955.
2. TREATMENTS :

3 manurial treatments : \(\mathrm{T}_{\mathbf{0}}=\) No manure (control), \(\mathrm{T}_{1}=\mathrm{G} . \mathrm{L}\). at \(4000 \mathrm{lb} . / \mathrm{ac} .+20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{T}_{2}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 3 . (b) N.A. (iii) 10 . (iv) (a) \(33^{\prime} \times 13.20^{\prime}\). (b) \(30.36^{\prime} \times 10.56^{\prime}\). (v) 2 rows on all sides. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-1955. (b) No. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2233 \mathrm{lb} . / \mathrm{ac}\). (ii) \(207.9 \mathrm{lb} / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of grain in lb ./ac.
\begin{tabular}{lccc}
Treatment & \(T_{0}\) & \(T_{1}\) & \(T_{2}\) \\
Av. yield & 1690 & 2640 & 2370 \\
& & & \\
& S.E./mean & \(=\) & \(66 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\footnotetext{
Crop :- Ragi.
Site :- Sugarcane Res. Stn., Anakapalle.
}

Ref :- A.P. 55(19).
Type :- ' \(\mathbf{M}\) '.

Object :-To find out the best method of manuring to Ragi crop.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Fodder Jonnc. (c) 5 tons/ac. of F.Y.M. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) N.A.p7.1.1955. (iv) (a) Ploughing with iron and country plough. (b) Transplanting. (c) N.A. (d) \(6^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) AKP-6 (medium). (vii) Irrigated. (viii) Hoeing and weeding with hand rakes. (ix) \(2.36^{\circ}\). (x) 31.3.1955.
2. TREATMENTS :

2 methods of application of \(40 \mathrm{lb} . / \mathrm{ac}\). of N as A/S: \(\mathrm{M}_{1}=\) Placement and \(\mathrm{M}_{2}=\mathrm{T}^{\circ}\) op dressing by broadcasting.
3. DESIGN :
(i) R.B.D.
(vi) Yes.

GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1955-1957. (b) No. (c) Nil. (v) to (vii). Nil.
5. RESULTS :
(i) 2710 lb ./ac. (ii) 127.7 lb ./ac. (iii) Treatment difference is significant., (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lll}
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
Av. yield & 2850 & 2570 \\
& \\
& S.E./mean & \(=36.9 \mathrm{ib} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Ragi (Kharif). \\ Site :- Agxi, Res. Stn., Araku.}

\section*{Ref :- A.P. 56(107). \\ Type :- ' \(\mathbf{M}\) '.}

Object :-To study the efficacy of lime on Ragi crop.
1. BASAL CONDITIONS :
(i). (a) Nil. (b) and (c) N.A. (ii) (a) Brown clay loan. (b) Refer soil analysis, Araku. (iii) N.A.15.9.1956. (iv) (a) 3 ploughings. (b) Transplanting. (c) N.A. (d) \(9^{\prime \prime} \times 6^{\prime \prime}\). (e) 1. (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. (vi) Jagaralamandya ragi (vii) Irrigated. (viii) Weeding. (ix) 13.19". (x) Nov. and Dec., 1956.

\section*{TREATMENTS :}

Main-plot treatments :
2 levels of lime : \(\mathrm{L}_{0}=0\) and \(\mathrm{L}_{1}=1120 \mathrm{lb} . / \mathrm{ac}\).
Sub-plot treatments :
4 manurial treatments : \(\mathrm{M}_{0}=\) Control, \(\mathrm{M}_{1}=30 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}, \mathrm{M}_{2}=\mathrm{M}_{1}+30 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super and \(M_{3}=M_{2}+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN :

Split-plot. (ii) (a) 2 main-plots/replication; 4 süb-plots/main-plot. (b) N.A. (iii) ó. (iv) (a) and (b) \(16.5^{\circ} \times 13.2^{\prime}\), (v) Nii. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii) Nil. (iii) Grain yield. (iv) (a) 1955-1)53.
(b) No.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(659 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(157.5 \mathrm{lb} . / \mathrm{ac}\). (b) \(323.1 \mathrm{lb} . / \mathrm{ac}\). (iii) Only L 'effect , is highly significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

S.E. of difference of two
\begin{tabular}{ll}
1. L marginal mean & \(=45.5 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(M\) marginal mean & \(=131.9 \mathrm{ib} . / \mathrm{ac}\). \\
3. \(M\) means at the same level of \(L\) & \(=186.5 \mathrm{lb} / \mathrm{ac}\). \\
4. \(L\) means at the same level of M & \(=167.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Ragi (Kharif).}

Site :- Agri. Res. Stn., Araku.

Ref :- A.P. 58(52).
Type :- ' \(M\) '.

Object :-To study the effi: 2 ay of lime on Ragi crop.
1. BASAL CONDITIONS:
(i) (a) Nil. (b; Jowar (fodder). (c) 5 C.L./ac. of F.Y.M. (ii) (a) Red clayey loam. (b) Refer soil anaıysis, Araku. (iii) June \(1958 /\) N.A. (iv) (a) Ploughing and leveling. (b) Transplanted. (c) N.A. (d) \(9^{\prime \prime} \times 9^{\circ}\). (e) 1. (v) 5 C.L./ac. of compost. (vi) Local Jagaralamandya (late). (vii) Unirrigated. (viii) Weeding and hoeing. (ix) \(54.38^{\circ}\). (x) Nov. 1958.
2. TREATMENTS :

\section*{Main-plot treatments :}

2 levels of lime : \(\mathrm{L}_{0}=0\) and \(\mathrm{L}_{1}=1120 \mathrm{Ib} . / \mathrm{ac}\).

\section*{Sub-plot treatments :}

4 manurial treatments: \(\mathrm{M}_{0}=\) Control, \(\mathrm{M}_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{C} / \mathrm{A} / \mathrm{N}, \quad \mathrm{M}_{2}=\mathrm{M}_{1}+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}\) as Super and \(\mathrm{M}_{3}=\mathrm{M}_{2}+30 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) \(27.06^{\prime} \times 17.16^{\prime}\). (b) \(26.40^{\circ} \times 16.50^{\prime}\). (v) Oae row on all sides. (vi) Yes.
4. GENERAL :

Same as in expt. no. 56'107) on page 147.
5. RESULTS :
(i) 2479 lb ./ac. (ii) (a) \(232.0 \mathrm{lb} . / \mathrm{ac}\). (b) \(332.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of M alone is significant. (iv) Av. yield of graia in \(\mathrm{lb} . / \mathrm{ac}\).

S.E. of difference of two
\(\begin{array}{ll}\text { 1. L marginal means } & =67.0 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. M marginal means } & =135.6 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. M means at the same level of } \mathrm{L} & =191.8 \mathrm{lb} . / \mathrm{ac} .\end{array}\)
4. L means at the same level of \(\mathrm{M}=179.1 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Ragi.
Site :- Agri. College Farm, Bapatla.

Ref :- A.P. 54(32).
Type :- ' \(\mathbf{M}\) '.

Object:-To test the response of Ragi to the application of manures in the form of \(\mathrm{C} / \mathrm{N}\) and \(\mathrm{A} / \mathrm{S}\) at different levels of N and at different times.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Ragi. (a) As per treatment. (ii) (a) Sandy. (b) N:A. (iii) \(14.6 .1954 / 7\) to 9.7 .1954 . (iv) (a) Digging the individual plots with mammaties. (b) N.A. (c) 6 lb ./ac. (d) \(4^{\prime \prime} \times 4^{\prime \prime}\). (e) 1 . (v) Lime at \(675 \mathrm{lb} . / \mathrm{ac}\). F.Y.M. at 3 tons/ac. + Super at 300 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). Lime to be applied 9 days after preparatory cultivation. F.Y.M. to be applied 3 davs after lime. Super to be applied on the following days. (vi) APK-6 (Medium) (vii) Irrigated. (viii) Gap-filling. (ix) 35.8". (x) 29.9.1954.
2. TREATMENTS .

All combinatians of (1), (2) and (3) +1 extra treatment.
(1) 2 B.D. : \(B_{0}=N_{0}\) B.D. and \(B_{1}=675 \mathrm{lb} . / \mathrm{ac}\). of Lime +3 tons/ac. of F.Y.M. \(+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
(2) 2 sources of \(\mathrm{N}: \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}\) and \(\mathrm{S}_{2}=\mathrm{C} / \mathrm{N}\).
(3) 4 manurial treatments: \(\mathrm{M}_{1}=40 \mathrm{lb} . / \mathrm{ac}\). of N in single dose, \(\mathrm{M}_{2}=60 \mathrm{lb} . / \mathrm{ac}\). of N in single dose, \(\mathrm{M}_{3}=60 \mathrm{lb} . / \mathrm{ac}\). of N in two equal doses, 10,20 days after transplanting and \(\mathrm{M}_{4}=60 \mathrm{lb}\)./ac. of N in 3 equal doses. 10,20 and 30 days afier transplanting.
Extra treatment, E=B.D. as in (1) above.
3. DESIGN :
(i) R.B.D. (ii) (a) 17. (b) N.A. (iii) 4. (iv) (a) \(15.84^{\prime} \times 29.54^{\prime}\). (b) \(13.20^{\prime} \times 26.40^{\prime}\). (v) 3 rows. (vi) Yes.
4.) GENERAL :
(i) Good. (ii) Nil. (iii) Tiller count, height of plant and grain yields. (iv) (a) 1952-1955. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(762 \mathrm{lb} . / \mathrm{ac}\). (ii) \(244.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Main cffect of S is highly significant and that of M is significant Other effects are not significant. (iv) Av. yield of grain in lb ./ac.
\[
\mathrm{E}=267 \mathrm{lb} . / \mathrm{ac}
\]

\section*{Crop :- Ragi (2nd crop). \\ Ref:- A.P. 54(33) \\ }

Object:-To test the response of Ragi to the application of manures in the form of \(\mathrm{C} / \mathrm{N}\) and \(\mathrm{A} / \mathrm{S}\) at different levels of N and at different times.

BASAL CONDITIONS :

\footnotetext{
(i) (a) Nil. (b) Ragi. (c) As per treatment. (ii) (a) Sandy. (b) Refer soil analysis, Bapatla. (iii) 30.10.1954. (iv) (a) Digging the individual plots with mammaties. (b) N.A. (c) \(6 \mathrm{lb} . / \mathrm{a}=\). (d) \(4^{\prime \prime} \times 4^{\prime \prime}\). (e) 1 .
(v) Lime-at \(675 \mathrm{lb} . / \mathrm{ac}\). applied 9 days after pre cultivation. F.Y.M. at 3 tons/ac. 3 days after lime, super at \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). the following day. (vi) AKP-6 (medium). (vii) Irrigated. (vii) Gap-filling. (iv) \(10.04^{*}\). (ix) 25.11.1954 to 1.12.1954. 23.2.1955.
}

2: TREATMENTS to 4. GENERAL:
Same as in expt. no. 54 (32; on page 248 .
5. RESULTS ;
(i) \(13^{\circ} 1 \mathrm{lb} . / \mathrm{ac}\). (ii) \(203.8 \mathrm{lh} / \mathrm{ac}\). (iii) Main effect of S is highly significant while that of B and N are signifizant. Other efficts are'not significant. (iv) Av. yield of grain in lb.ac.
\(\mathrm{E}=594 \mathrm{lb} . / \mathrm{ac}\).

\begin{tabular}{ll}
S.E. of marginal mean of M & \(=75.9 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of marginal mean of \(B\) or \(S\) & \(=53.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(B \times M\) or \(S \times M\) table & \(=107.4 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}
\(S . E\). of body of \(B \times M\) or \(S \times M\) table \(\quad=107.4 \mathrm{lb} / \mathrm{ac}\).
S.E. of body of \(B \times S\) table \(\quad=75.9 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Ragi. \\ Site :- Agri. College Farm, Bapatla.}

\section*{Ref :- A.P. \(\mathbf{~ 5 4 (3 1) .}\)}

Type :- \({ }^{6} \mathbf{M}^{\prime}\).
Object:-To find out the influence of G.M. on the yield of Ragi.
1. BASAL CONDITIONS :
(i) (a) NiI. (b) Ragi. (c) As per treatments. (ii) (a) Sandy. (b) Refer soil analysis, Bapatla. (iii) 30.12.1954/4.2.1955. (iv) (a) Ploughing, removal of weeds (b) to (e) N.A. (v) As per treatments. (vi) AKP-6(late). (vii) Irrigated. (viii) 2 weedings. (ix) 10.04". (x) 18.4.1955.
2. TREATMENTS:

4 levels of \(G . L .: ~ G_{0}=0 . G_{1}=2500, G_{2}=5000\) and \(G_{3}=7500 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 8. (iv) (a) \(33.00^{\prime} \times 16.50^{\prime}\) (b) \(31.68^{\prime} \times 15.18^{\prime}\). (v) \(00.66^{\prime} \times 0.66^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yields. (iv) (a) 1953-1955. (b) Yes (c) Nil (v) to (vii) Nil.
5. RESULTS :
(i) 480 lb ./ac. (ii) \(47.7 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are sıgnificant. (iv) Av. yield of graia in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{clccc}
- Treatment & \(G_{0}\) & \(G_{1}\) & \(G_{2}\) & \(G_{3}\) \\
Av. yield & 357 & 395 & 494 & 673 \\
& & & & \\
& S.E./mean & \(=\) & \(16.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Ragi.}

Site :-Agri. College Farm, Bapatla.

Ref :- A.P. 54(51).
Type :- ' \(\mathbf{M}^{\prime}\).

Object :-To study the effect of Glyricidia G.L. and Super on irrigated Ragi.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Sandy. (b) Refer soil analysis, Bapatla. (iii) 30.10.1954/25.11.1954. (iv) (a) 2 ploughings guntaka was worked. (b) N.A.' (c) \(6 \mathrm{lb} . / \mathrm{ac}\). . (d) \(4^{\prime \prime \prime} \times 4^{\prime \prime}\). (e) N.A. (v) Nil. (vi) AKP—6. (vii) Irrigated. (viii) Nil. (ix) \(6.5^{\prime \prime}\). (x) \(10 / 11.1 .1955\).
2. TREATMENTS :

3 manurial treatments : \(T_{1}=5\) tons/ac. of compost as B.D. \(+300 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) in 2 doses \((200,100 \mathrm{lb}\).) 1st dose a week after planting and 2 nd 4 weeks after the \(1 \mathrm{st}, \mathrm{T}_{2}=\mathrm{T}_{1}+100 \mathrm{lb}\)./ac. of Super at planting and \(T_{3}=5\) tons of glyricidia G.L. as B.D. + Super and \(A / S\) as in \(\mathrm{T}_{1}\) and \(\mathrm{T}_{2}\)
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8 . (iv) (a) \(35.64^{\prime} \times 9.24^{\prime}\). (b) \(33.00^{\prime} \times 6.60^{\prime}\) (v) \(1.32^{\prime}\) on all sides. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Piricularia attacked-Spraying of Perenox. (iii) Grain and straw yield. (iv) (a) 1954-1955. (b) Yes. (c) Nil. (v) to (vii) Nil.
(5. RESULTS :
(i) 1828 lb ./ac. (ii) \(248.0 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grain. in 1 b ./ac.
\begin{tabular}{lccc}
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) \\
Av. yield & 1739 & 1802 & 1944 \\
& & & \\
& S.E./mean & \(=87.6 \mathrm{lb} . \mathrm{iac}\).
\end{tabular}
Crop :- Ragi.
Site :- Agri. College, Bapatla.

> Ref :- A.P. 55(8)

Type :- 'M'.
Object :-To study the effect of glyricidia G.L. and Super on irrigated Ragi.
(1. BASAL CONDITIONS :
(i) (a) Nil. (b) Ragi. (c) As per treatments. (ii) (a) Sandy. (b) Refer soil analysis, Bapatla. (iii) 4.11.1955/15.12.1955. (iv) (a) 2 ploughings. Guntaka was worked. (b)N.A. (c) \(6 \mathrm{lb} / \mathrm{ac}\). (d) \(4^{\prime \prime} \times 4^{\prime \prime} . \quad\) (e) N.A. (v) Nil. (vi) AKP-6. (vii) Irrigated. (viii) 1 weeding. (ix) \(10.8^{\prime \prime} . \quad\) (x) 7, 8.3.19j6.
2. TRFATMENTS and 3. DESIGN :

Same as in expt. no. 54(51) above.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1954-1955s (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(1310 \mathrm{lb} / \mathrm{ac}\). (ii) 187.0 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of
grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{llcc}
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) \\
Av. yield & \(1: 43\) & 1343 & 1345 \\
& & & \\
& S.E./mean & \(=\) & \(73.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll}
Crop :- Ragi (Kharif . & Ref:- A.P. 57(197). \\
Site :- Millet Res. Stn., Peddapuram. & Type :- 'M'.
\end{tabular}

Object:-To study the effect of different fertilizers on the yield of Ragi.
1. BASAL CONDITIONS :
(i) (a) Nil. 'b'Horse gram. 'c' 5 tons ac. of compost. (ii) 'a' Red sandy loam. (b) Refer soil analysis, Peddapuram. (iii) 22.8.1957/22.9.1957. (iv) (a) 3 ploughings with country ploughs. (b) Trarsplanting. (c) 50 to 6) :b. ac. d' \(99^{\prime} \times .66^{\prime}\). (e) 1 to 2 . (v) As per treatments. (vi) AKP-7. (vii) Unirrigated. (viii) Weeding and hoeng. (ix, 11.93". (x) 20.12.1957.

\section*{2. TREATMENTS :}

Main-plot treatments :
2 levels of B.D. : \(\mathrm{B}_{0}=\) No. C.M. and \(\mathrm{B}_{1}=\) C.M.
Sub-plot treatments :
4 doses of manures: \(\mathrm{M}_{3}=\mathrm{N}\), manure, \(\mathrm{M}_{1}=45 \mathrm{lb} .^{\prime}\) ac. of N as \(\mathrm{A} / \mathrm{S}, \mathrm{M}_{2}=\mathrm{M}_{1}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super and \(\mathrm{M}_{3}=\mathrm{M}_{2}+45 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
3. DESIGN :
(i, Split-plot. (ii) al 2 min-plots'repli=ation and 4 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) \(15.84^{\prime} \times 29.70^{\prime}\). (b) \(13.86^{\prime} \times 28.38^{\prime}\). (v, \(0.99^{\prime} \times 0.66^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1957-1959. (b, Yes. (c) Nil. (v) (a), and (b) N.A. (vi) and (vii; Nil.
5. RESULTS :
(i) 1091 lb ./ac. (ii) (a) 20.6 lb. ac. (b) 62.3 lb ./ac. (iii) B and M effects are highly significant. (iv) Av. yield of grain in \(\mathrm{lb} . \mathrm{ac}\).

S.E. of difference of two
1. B marginal mearis \(\quad=6.0 \mathrm{lb} . / \mathrm{ac}\).
2. M marsinal means
\(=25.4 \mathrm{lb} . / \mathrm{ac}\).
3. \(M\) means at the same level of \(B\)
\(=36.0 \mathrm{lb} . / \mathrm{ac}\).
4. \(B\) means at the same level of \(M \quad=31.7 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Ragi (Kharif).
Site :- Millet Res. Stn., Peddapuram.

Ref :- A.P. 58(84).
Type :- ‘M’.

Object:-To find out the effect of fertilizers on grain yield of dry Rasi.

\section*{1. BASAL CONDITIONS :}
(i) (a) Gingelly-Dry Ragi. (b) Gingelly. (c) 5 tons/ac. of F.Y.M. (ii) (a) Sandy loam. (b) N.A. (iii) 23.8.1958/3.10.1958. (iv) (a) 3 ploughings with country plough. '(b) Dibbling seed'ings by har.d. (c) 5 \(\mathrm{lb} . / \mathrm{ac}\). (d) \(.99^{\prime} \times 0.66^{\prime \prime}\). (e) N.A. (v) Nil. (vi) AKP-7 (early). (vii) Unirrigated. (viii) 1 weeding and hoeing. (ix) \(34.00^{\prime \prime}\). (x) 19.12 .1958 .
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57(107) on page 252.
5. RESULTS :
(i) \(696 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(108.8 \mathrm{lb} . / \mathrm{ac}\). (b) 76.8 lb ./ac. (iii) The main effect of M alone is highly significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \(\mathrm{B}_{0}\) & 406 & 751 & 783 & 731 & 668 \\
\hline \(\mathrm{B}_{1}\) & 396 & 780 & 847 & 874 & 724 \\
\hline Mean & 401 & 765 & 815 & 803 & 696 \\
\hline
\end{tabular}
S.E. of difference of two
1. \(\mathbf{B}\) marginal means \(\quad=31.4 \mathrm{lb} . / \mathrm{ac}\).
2. \(M\) marginal means. \(\quad=31.3 \mathrm{Ib} . / \mathrm{ac}\).
3. \(M\) means at the same level of \(\mathbf{B} \quad=44.3 \mathrm{lb} / \mathrm{ac}\).
4. \(B\) means at the same level of \(M \quad=49.6 \mathrm{lb} . / \mathrm{ac}\).
```

Crop :- Ragi (Kharif).
Site :- Millet Res, Stn., Peddapuram.

```
Ref :- A.P. 59(119).
 Type :- 'M'.

Object :-To study the effect of different fertilizers on the yield of Ragi crop.
1. BASAL CONDITIONS:
(i) (a) N.A. (b) Horse gram. (c) Nil. (ii) (a) Red sandy loam. (b) Refer soil analysis, Peddapuram. (iii) 20.8.1959/27.9.1959. (iv) (a) 3 ploughings with couttry plough. (b) Transplanting. (c) 50 to \(60 / \mathrm{b} . / \mathrm{ac}\). (d) \(0.99^{\prime} \times 0.66^{\prime}\). (e) 1 to 2 . (v) As per treatments. (vi) AKP-7. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) \(16.17^{\prime \prime}\). (x) 22.12 .1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57(107) on page 252.
5. RESULTS :
(i) \(972 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(219.8 \mathrm{lb} . \mathrm{ac}\). (b) \(168.9 \mathrm{lb} . / \mathrm{ac}\). (iii) Only M effect is highly significant (iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \(\mathrm{B}_{0}\) & 449 & 1026 & 1067 & 1162 & 926 \\
\hline \(\mathrm{B}_{1}\) & 572 & 1186 & 1145 & 1170 & 1018 \\
\hline Mean & 510 & 1106 & 1106 & 1166 & 972 \\
\hline
\end{tabular}
S.E. of difference of \(t\) wo

\section*{Crop:- Ragi. \\ Ref :- A.P. 56(11). \\ Site :- Govt. Millet Farm, Vizianagaram. \\ Type :- ' \({ }^{\mathbf{M}}\) '.}

Object :- To find out the optimum manurial dose for the rainfed Ragi crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Gingells. (c) 4 tons/ac. of F.Y.M. (ii) (a) Red loam. (b) Refer soil analysis Vizianagaram. (iii) 14.9.1956/5.10.1956. iv, (a; 6 ploughings before planting. (b) Planted in lines. (c) N.A. (d) Rows \(8^{\prime \prime}\) to \(9^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) AKP-7 (medium). (vii) Unirrigated. (viii) One weeding and hoearg. (ix) \(18.40^{*}\). (x) 2.1.1957.
2. TREATMENTS :
\(\mathrm{T}_{1}=\) Control \(\quad \mathrm{T}_{5}=100 \mathrm{lb} . / \mathrm{ac}\). of Super \(+10 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{T}_{2}=5\) tons/c. of F.Y.M.
\(T_{6}=100 \mathrm{lb} . / \mathrm{ac}\). of Super \(+20 \mathrm{lb} . / \mathrm{ac}\). of N as \(A / S\).
\(\mathrm{T}_{3}=10 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{T}_{7}=145 \mathrm{lb}\). G.N.C./ac.
\(\mathrm{T}_{4}=20 \mathrm{lb}\). ac. of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{T}_{8}=290 \mathrm{lb}\). G.N.C \(/ \mathrm{ac}\).
F.Y.M. applied a week before planting and mixed up. Super applied one day before planting. A/S applied one month after planting.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) \(1 / 90.9\) ac. (b) \(1 / 113.6 \mathrm{ac}\). (v) 2 rows on either side (\(\mathrm{v}_{1}\)) Yes.
4. GENERAL :
(i) Growth not normal owing to lack of rain after the application of manures. (ii) Seedling weres dipped in wetcol solution before planting. (iii) Height of plants, no. of tillers per plant, yield of grain. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) Lack of rains after the application of manures effected crop. (vii) Nil.
5. RESULTS :
(i) \(482 \mathrm{lb} . / \mathrm{ac}\). (ii) \(101.1 \mathrm{lb} / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of grain in lb. .ac.

Crop :- Ragi.
Site :- Govt. Millet Farm, Vizianagaram.

Ref :- A.P. 57(16).
Type :- ‘ \(\mathbf{M}^{\prime}\).

Object :-To find out the optimum manurial dose to the rainfed Ragi crop.
1. BASAL CON ITIONS :
(i) (a) Punasa Gingelly-Mani Ragi-Fallow. (b) Punasa gingelly. (c) 5 tons/ac. of F.Y.M. (ii) (a) Red sandy loam. (b) Refer soll analysis, Vizianagaram. (iii) 14.8.1957/19.9.1957. (iv) (a) Ploughed rapeatedly. (r) Ir nsplanted. (c) N.A. (d) \(9^{\prime \prime} \times 9^{n}\). (e) N.A. (v) Nil. (vi) AKP -7 (medium). (vii) Unirrigated. (viii) 2 hand hoeings and weedings. (ix) \(28.15^{\prime \prime}\). (x) 25.11 .1957.

\section*{2. TREATMENTS :}

Same as :n expt. no. 56(11) above.
3. DESIGN :
(i) R B D. (ii) (a) 8 . (b) \(46.2^{\prime} \times 79.2^{\prime}\). (iii) 4 (iv) (a) \(1 / 95.24 \mathrm{ac}\). (b) \(1 / 109.9 \mathrm{ac}\). (v) One row on each side. (vi) Yes.

4 GENERAL :
(i) No lodging. (ii) Nil. (iii) Number of tillers, height of plant. (iv) (a) 1956-1958. (b) Yes (from 1957). (c) Nil. (v) to (vii \({ }^{\prime}\) Nıl.
5. RESULTS:
(i) \(852 \mathrm{lb} . / \mathrm{ac}\). (ii) \(107.3 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lllcccccc}
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) & \(\mathrm{~T}_{5}\) & \(\mathrm{~T}_{6}\) & \(\mathrm{~T}_{7}\) & \(\mathrm{~T}_{8}\) \\
Av. yield & 579 & 634 & 878 & 1232 & 963 & 1127 & \(656^{\prime}\) & 746 \\
& & & & & & & &
\end{tabular}
Crop :- Ragi (Kharif).
Site :- Govt. Millet Farm, Vizianagaram.

Ref:- A.P. 58(73).
Site :- Govt. Millet Farm, Vizianagaram.
Type :- ' \(\mathbf{M}\) '.
Object :-To find out the optimum manurial dose for rainfed Ragi crop.

\section*{BASAL CONDITIONS :}
(i) (a) Nil: (b) Gingelly. (c) 5 tons/ac. of tank silt. (ii) (a) Red loam. (b) Refer soil analysis, Vizianagaram. (iii) \(9.8 .1958 / 4.9 .1958\). (iv) (a) 6 ploughings and levelling. (b) Transplanted. (c) \(5 \mathrm{lb} . / \mathrm{ac}\). (d) \(9^{\prime \prime} \times 9^{\prime \prime}\). (e) 1. (v) Nil. (vi) AKP-7 (medium). (vii) Unirrigated. (viii) 1 weeding and hand hoeing. (ix) \(59.83^{x}\). (x) 18.11.1958.
2. TREATMENTS :

Same as in expt. no. 56(11) on page 254.
3. DESIGN :

Same as in expt: no. 57(16) on page 254.
1
4. GENERAL :
(i) Stunted due to very heavy rains after planting. (ii) Piricularia noticed. \(1 \%\) Bordeaux mixture sprayed. (iii). Grain yield. (iv) (a) \(1956-1958\). (b) Yes. \({ }^{\text {' (c) }}\) (il. (v) to (vii) Ni1.
5. RESULTS :
(i) \(381 \mathrm{lb} . / \mathrm{ac}\). (ii) \(60.6 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of grain \({ }_{1}\) in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline , Treatment & T & \(\mathrm{T}_{2}\) & \(\mathrm{T}_{3}\) & T4 & \(\mathrm{T}_{5}\) & T \({ }_{6}\) & T7 & \(T_{8}\) \\
\hline Av. yield & 255 & 290 & 361 & 515 & 524 & 485 & . 255 & 363 \\
\hline , & S.E. & = & lb./a & & & & & \\
\hline
\end{tabular}

\section*{Crop :- Ragi. \\ 1 Site :- Govt. Millet Farm, Vizianagram.}

Ref :- A.P. 56(12).
Type :- ' \(\mathbf{M}^{\prime}\) '.

Object : - To study the effect of different fertilizers on the yield of Ragi.

\section*{1. BASAL CONDITIONS :}
(i) (a) Punasa Gingelly-Fallow-Ragi. (b) Gingelly. (c) 4 tonsfac. of F.Y.M. (ii) (a) Red loam. (b) Refer soil analysis, Vizianagaram. (iii) \(19.11 .1956 / 16\) to 18.12 .1956 . (iv) (a) 8 ploughings. (b) Transplanted. (c) N.A. (d) Lines \(9^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) AKP-6 (medium). (vii) Irrigated. (viii) 2 weedings and hoeings. (ix) \(0.10^{\prime \prime}\). (x). 1, 2.3.1957.
2. TREATMENTS:

Main-plot treatments :
- 2 levels ©f F.Y.M. : \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{\mathrm{I}}=3\) tons/ac.

\section*{Sub-plot treatments :}

14 manurial treatments: \(\mathrm{M}_{0}=\) No manure, \(\mathrm{M}_{1}=45 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) in 2 doses, \(\mathrm{M}_{2}=\mathrm{M}_{1}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super, and \(\mathrm{M}_{3}=\mathrm{M}_{2}+45 \mathrm{lb}\),/ac. of \(\mathrm{K}_{0} \mathrm{O}\) as Mur. Pot.
1
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication ; 4 sub-plots/main-plot. (iii) 6 . (iv) (a) \(1 / 87.72\) ac. (b) \(1 / 109.65 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Very good. (ii) Nil. (iii) Tiller count, ear length, plant height and grain yield. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 2135 lb ./ac. (ii) (a) \(283 . \div \mathrm{lb}\).'ac. (b; \(214.8 \mathrm{lb} . ; \mathrm{ac}\). (iii) Main effect of M alone is highly significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \(F_{0}\) & 2446 & 1586 & 2336 & 2296 & 2166 \\
\hline \(\mathrm{F}_{1}\) & 2318 & 1604 & 2234 & 2260 & 2104 \\
\hline Mean & 2382 & 1595 & 2285 & 2278 & 2135 \\
\hline
\end{tabular}
S.E. of difference of two
1. F marginal means
\(=81.9 \mathrm{lb} / \mathrm{ac}\).
2. \(\mathbf{M}\) marginal means
\(=87.7 \mathrm{lb} . / \mathrm{ac}\).
3. \(M\) means at the same level of \(F \quad=124.0 \mathrm{lb} . / \mathrm{ac}\).
4. F means at the same level of \(\mathrm{M} \quad=135.1 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{ll}
Crop :- Ragi. & Ref :- A.P. 57(17). \\
Site :- Govt. Millet Farm, Vizianagaram. & Type :- 'M'.
\end{tabular}

Site :- Govt. Millet Farm, Vizianagaram. Type :- 'M'.
Object:-To study the effect of different fertilizers on the yield of Ragi.
1. BASAL CONDITIONS :
(i) (a) Punasa gingelly-Fallow-Pyrı-Ragi (Trial). (b) Punasa gingelly. (c) 3 tons/ac. of F.Y.M. (ii) (a) Red sandy loam. (b) Refer soil analysis, Vizianagaram. (iii) \(8.11 .1957 / 2,5.12 .1957\). (iv) (a) Ploughed 10 times before planting till a fine tiller was obtained. (b) and (c) N.A. (d) \(.66^{\prime} \times .66^{\prime}\). (e) N.A. (v) Nil. (vi) AKP-6 (medium). (vii) Irrigated. (viii) 2 hceings and weeding. (ix) \(0.20^{\circ}\). (x) \(18,19.2 .1958\).
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. : \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{1}=3\) tons/ac.
(2) 4 manurial treatments : \(M_{0}=N\) fertilizer, \(M_{1}=45 \mathrm{lb} . / \mathrm{ac}\). of \(N\) as \(A / S, M_{2}=M_{1}+20 \mathrm{lb} . ; \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super and \(\mathrm{M}_{3}=\mathrm{M}_{2}+45 \mathrm{lb}\). ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) \(1 / 94.34 \mathrm{ac}\). (b) \(1 / 125 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :

Same as in expt. no. 56(12) on page 255.
5. RESULTS :
(i) \(2126 \mathrm{lb} / \mathrm{ac}\). (ii) \(192.5 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of M alone is highly significant. Other effects are not significant. (iv) Av. vield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \(\mathrm{F}_{0}\) & 1569 & 1990 & 2279 & 2575 & 2103 \\
\hline \(\mathrm{F}_{1}\) & 1544 & 2173. & 2344 & 2533 & 2149 \\
\hline Mean & 1557 & 2081 & 2311 & 2554 & 2126 \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of \(F\) marginal mean & \(=39.3 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(M\) marginal mean & \(=55.5 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=78.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop :- Ragi (Rabi). \\ Ref:- A.P. 58(83). \\ Site :- Govt. Millet Farm, Vizianagaram. \\ Type :- \({ }^{\prime} \mathbf{M}^{\prime}\).
}

Object: - To find out the optimum manurial dose for the irrigated Ragi for the tract.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Gingelly (č) 5 tons/ac. of tank silt. (ii) (a) Red loam. (b) Refer soil analysis, Vizianagaram. (iii) \(17.11 .1958 / 12,13.12 . i 958\). (iv) (a) 6 ploughings (b) Transplanted. (c) \(5 \mathrm{lb} . / \mathrm{ac}\). (d) \(9^{\prime \prime} \times 9^{\prime \prime}\). (e) 1. (v) Nil. (vi) AKP-6 (medium). (vii) Irrigated. (viii) 2 weedings and hand hoeings. (ix) 1.93". (x) 10, 11.3.1959.
2. TREATMENTS :

Same as in expt. no. 56(12) on page 255 :
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication ; 4 sub-plots/main-plot. (b) \(69.96^{\prime} \times 52.80^{\prime}\). (iii) 6 . (iv) (a) \(1 / 94.3 \mathrm{ac}\). (b) \(1 / 125 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Piricularia attack; 1\% Bordeaux mixture sprayed. (iii) Grain yield. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(2562 \mathrm{lb} / \mathrm{ac}\). (ii) (a) \(174.1 \mathrm{lb} . / \mathrm{ac}\). (b) \(253.5 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of M alone is highly significant.
(iv) Av . yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\). & Mean \\
\hline \(\mathrm{F}_{0}\) & 1888 & 2669 & 2818 & 2876. & 2563 \\
\hline \(F_{1}\) & 1901 & 2579 & 2779 & 2984 & 2561 \\
\hline Mean & - 1895 & 2624 & 2799 & 2930 & 2562 \\
\hline
\end{tabular}
S.E. of difference of two
1. F marginal means \(=50.3 \mathrm{lb} . / \mathrm{ac}\).
2. M marginal means \(\quad=103.5 \mathrm{lb} . / \mathrm{ac}\).
3. \(M\) means at the same level of \(F \quad=146.3 \mathrm{lb} . / \mathrm{ac}\).
4. F means at the same level of \(M \quad=136.4 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Ragi (Rabi).
Site :- Govt. Millet Farm, Vizianagaram.

Ref :- A.P. 59(44).
Type :- ' \(M\) '.

Object :-To study the effect of different sources of N on the yield of Ragi.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Gingelly. (c) 5 tons/ac. of tank silt. (ii) (a) Red loam. (b) Refer scil analysis, Vizianagaram. (iii) \(20.11 .1959 / 21,22.12 .1959\). (iv) (a) 6 ploughings. (b) Transplanting. (c! 5 lb. 'ac. (d) \(9^{\prime \prime} \times 9^{\prime \prime}\). (e’ 1. (v; Nil. (vi) VZM-2 (medium). (vii) Irrigated. (viii) 3 weedings and 2 hand hoeings. (ix) N.A. (x) 16.3 .1560 .
2. TREATMENTS :

7 sources of \(\mathrm{N}: \mathrm{N}_{0}=\) No \(\mathrm{N}, \mathrm{N}_{1}=45 \mathrm{lb} . / \mathrm{ac}\). as \(\mathrm{A} / \mathrm{S}, \mathrm{N}_{2}=45 \mathrm{lb} . / \mathrm{ac}\). as \(\mathrm{A} / \mathrm{S} / \mathrm{N}, \mathrm{N}_{3}=45 \mathrm{lb} . / \mathrm{ac}\). as \(\mathrm{C}_{1} / \mathrm{A} / \mathrm{N}, \mathrm{N}_{4}=\) \(45 \mathrm{lb} / \mathrm{ac}\). as Urea, \(\mathrm{N}_{5}=10,000 \mathrm{lb} . \mathrm{ac}\). of G.L. and \(\mathrm{N}_{6}=10\) tons/ac. of F.Y.M.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) \(66^{\prime} \times 46.2^{\prime}\). (iii) 6 . (iv) (a) \(1 / 100 \mathrm{ac}\). (b) \(1 / 125 \mathrm{ac}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of Piricularia. 1\% Bordeaux mixture was sprayed. (iii) Grain yield. (iv) (a) 1959-1961. b) Yes. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2445 \mathrm{lb} / \mathrm{ac}\). (ii) \(197.8 \mathrm{lb} / \mathrm{ac}\). (iii) The treatment differences are highly significant. (iv) Av. vield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & \(\mathrm{N}_{4}\) & \(\mathrm{N}_{5}\) & \(\mathrm{N}_{6}\) \\
\hline \multirow[t]{2}{*}{Av. yield} & 2062 & 2531 & 2536 & 2624 & 2567 & 2385 & 2394 \\
\hline & \multicolumn{7}{|l|}{S.E./mean \(=80.75 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}
```

Crop :- Ragi (Rabi). Ref :- A.P. 58(SFT).
Centre :- Chittoor (c.f.). Type :- $\mathbf{M}$.

```

Object :-Type A-To study the response of Ragi to levels of N, P ano \(K\) applied indwidaally and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and black soil. (iii) Nil. (iv) December. (v, to (ix) N.A. (x) April.
2. TREATMENTS:
o = Control 'no manure).
\(n=20 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
p \(=20 \mathrm{lb} . / \mathrm{ac}\) of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{np}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A}!\mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{k}=20 \mathrm{lb} . / \mathrm{ac}\). of K O as Pot. Sul.
\(n k=20 \mathrm{lb}\).jac. of N as \(\mathrm{A} / \hat{S}+20 \mathrm{lb}\)./a a . of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
\(\mathrm{pk}=20 \mathrm{l}^{\mathrm{h}}\).'ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +20 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
\(\mathrm{npk}=20 \mathrm{lb} . \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as \(\mathrm{Super}+20 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.
3. DESIGN :
(i) (ii) The district has been divited into four agriculturally bomogeneous zores and ore fe!d assistant posted in each zone. The field assistant conducts the trials in one revenue circle or thana in the zone and the circlethana is changed once in two years within the same zone. Each field assistant is required to concuct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type \(A\) and the other half of type B on crops other than the legumes. The three triais on legumes are of type C. Residual effects of phosphate application are studied on lype \(C\) trinls in two out of the four zones in each district every year. The experiments are laid out in randomiy located fieids in randomly selected villages in each of the 4 zones at the rate of oze experiment per village. iii, (a) \(1 / 40 \mathrm{a}\) : (b) 1 , 80 ac . (iv) Yes.
4. DESIGN :
(i) Normal. (ii) Nil. (iii) Grain yeld. (iv) (a) \(19 j 8-20 n t d\). (b) No. (c; N.A. (v, As per design. 'vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline \multirow[t]{2}{*}{Av.' response in \(\mathrm{lb} . / \mathrm{ac}\).} & 222 & 181 & 82 & 28.8 & -16 & \(-16\) & 0 & 33 & 9.9 \\
\hline & \multicolumn{8}{|l|}{Control yield} & \\
\hline
\end{tabular}
;

\section*{Crop:- Ragi (Rabi).}

\section*{Centre :- Guntur (c.f.).}

Object:-Type A-To study the response of Ragi to levels of \(N, P\) and \(K\) applied individually and 1. in combinations.
1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 58(SFT) type A on page 258 condu:ted at Chittror 25.8.
5. RESUULTS
\begin{tabular}{lccccccccc}
Effect & \multicolumn{1}{l}{} & p & k & \(\cdots\) & S.E. & np & nk & pk & npk \\
Av! response in ib./ac. & 502 & 107 & 123 & 53.5 & 25 & -25 & -25 & 41 & 24.7
\end{tabular}

Control yield \(=1333 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=3\).
!

Crop:- Ragi (Rabi).
Centre :- Srikakularn (c.f.).

Ref:- A.P. 59(SFT).
Type :- 'M'.

Object :-Type A-To study the response of Ragi to levels of \(\mathrm{N}, \mathrm{P}\) and K applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and coastal
(iii) N.A.
(iv) December.
(v) to (ix) N.A.
(x) April.
2. TREATMENTS to 4. GENERAL:

Same as in Expt. no. \(58(\mathrm{SFT})\) type A on page 258 conducted at Chittoor.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E., & np & nk & pk & npk & S.E. \\
\hline Av, respense in \(1 \mathrm{lb}, / \mathrm{ac}\). & 592 & 255 & 230 & 48.5 & -107 & -107 & -8 & 82 & 45.3 \\
\hline & & & & & & & & & \\
\hline & \multicolumn{9}{|l|}{Control yield \(=1588 \mathrm{lb} / \mathrm{ac}\). and no. of trials \(=\)} \\
\hline
\end{tabular}
;

Crop :- Ragi (Rabi).
Centre :- Srikakulam (c.f.).

Ref:- A.P. 59(SFT).
Type :- 'M'.

Object:-Type A-To study the response of Ragi to levels of \(\mathrm{N}, \mathrm{P}\) and K applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Ref and others. (iii) Nil. (iv) Devember. (v) to (ix) N.A. (x) April.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 58 (SFT) type A on page 258 conducted at chittoor.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in lb. ac. & 222 & 123 & 181 & 8.2 & -33 & 16 & 33 & -33 & 8.2 \\
\hline & \multicolumn{8}{|l|}{Control yield \(=1127 \mathrm{lb} . / \mathrm{ac}\). and no. of tris} & \\
\hline
\end{tabular}
```

Crop :- Ragi (Rabi).
Ref :- A.P. 58(SFT).
Centre :- Visakhapatnam (c.f.).
Type :- 'M'.

```

Object:-Type A-To study the response of Ragi to levels of \(\mathrm{N}, \mathrm{P}\) and K applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii' Coastal sandy. (iii) N.A. (iv) December. (v) to (ix) N.A. (x) April.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58 (SFT) on page type A on page 258 condusted at Chittoor.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in \(\mathrm{lb} . / \mathrm{ac}\). & 395 & 181 & 304 & 56.0 & -74 & -107 & -222 & 140 & 55.1 \\
\hline & Cont & yield & & lb./ac & d no. & trials & 8. & & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { Crop :- Ragi }(\text { Rabi }) . & \text { Ref :- A.P. 59(SFT). } \\
\text { Centre :- Visakhapatnam (c.f.). } & \text { Type :- ‘'M'. }
\end{array}
\]

Object:-Type A-To study the response of Ragi to levels of N, P and K applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal. (iii) Nil. (iv) December. (v) to (ix) N.A. (x) April.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58 (SFT) type A un page 258 conducted at Chittoor.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. resporse in lb./ac. & 115 & 58 & 33 & 19.7 & -8 & -16 & -16 & 8 & 11.5 \\
\hline
\end{tabular}

Control yield \(=1086 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=12\).
```

Crop:- Ragi (Rabi).
Centre :- Chittoor (c.f.).
Ref:- A P. 58(SFT).
Type :- 'M'.

```

Object :-Type B-To investigate the relative efficienzy of different nitrogenous fertilizers at different doses
1: BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii; Red and black soil. (iii) Nil. (iv) December. (v; to (ix; N.A. (x) April.
2. TREATMENTS:
\(0=\) Control.
\(\mathrm{n}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(n_{2}=40 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(\mathrm{n}_{1}^{\prime}=20 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{n}_{2}^{\prime}=40 \mathrm{lk} . / \mathrm{ac}\) of N as Urea.
\(\mathrm{n}_{1}{ }^{\prime \prime}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
\(\mathrm{n}_{2}^{\prime \prime}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} \cdot \mathrm{S}^{\prime} \mathrm{N}\).

\section*{3. DESIGN :}
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant posted in each zone. The field assistant conducts the trials in one revenue circle or thana in the zone and the circle/hhana is changed once in two years within the same zone. Each field assistant is required to con-
1 duct 31 trials in a year, 8 on kharif cereal, 8 on rabicereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type \(A\) and the other half of type \(B\) on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosphate application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomiy located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. ' GENERAL :
(i) Normal. (ii) Nil.
(iii) Grain yield.
(iv) (a) 1958-contd.
(b) No. (c) N.A
(v) As per design. (vi) and (vii) Nil.
,
5. RESULTS :
\begin{tabular}{lccccccc}
Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime}\) & \(\mathrm{n}_{2}{ }^{\prime \prime}\) \\
Av. yield & 1506 & 1720 & & 1958 & 1736 & 1983 & 1637 \\
\hline
\end{tabular}
```

Crop :- Ragi (Rabi).
Ref :- A.P. 59(SFT).
Centre :- Guntur (c.f.).
Type :- ' $\mathbf{~ M}$ '.

```

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Red and black soil.
(iii) Nil.
(iv) December.
(v) to (ix) N.A. (x) April.
2. TREATMENTS :
\(0=\) Control.
\(\mathrm{n}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{n}_{2}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{n}_{1}{ }^{\prime}=20 \mathrm{lb} / \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{2}{ }^{\prime}=40 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{1}{ }^{\prime \prime \prime}=20 \mathrm{lb} . / \mathrm{ac}\). of N as C/A/N.
\(\mathrm{n}_{2}{ }^{\prime \prime \prime}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{C} / \mathrm{A} / \mathrm{N}\).
3. DESIGN and 4. GENERAL :

Same as in expt. no. 58 (SFT) type B on page 260 conduited at Chittoor.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime}\) & \(\mathrm{n}_{2}{ }^{\prime \prime}\). \\
\hline Av. yield & 1333 & 1909 & 2312 & 1415 & 1753 & 1670 & 1967 \\
\hline & G.M. & 1766 & ac. ; S & \(=8\) & ./ac. a & of tria & 2. \\
\hline
\end{tabular}

1
```

:Crop :- Ragi (Rabi). . Ref :- A.P. 58(SFT).
Centre :- Srikakulam (c.f.). Type :- `M'.

```

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Red and alluvial. (iii) Nil.
(iv) December.
(v) to (ix) N.A. (x) April.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58 (SFT) type B on page 260 conducted at Chittoor.
5. RESULTS:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\overline{i d}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(n^{*}\) & \(5:\) \\
\hline Av. yield & 1391 & 18.1 & 2008 & 1695 & 1851 & 16.0 & 1843 \\
\hline
\end{tabular}
```

Crop :- Ragi (Rabi). Ref :- A.P. 59(SFT).
Centre :- Srikakulam (c.f.). Type :- 'M'.

```

Object:-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different dose.
1. BASAL CONDITIONS :
(i) (a) to 'c) N.A. ii) Red and alluvial. (iii) Nil. (iv) December. (v) to (ix) N.A. 'x' April.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 58 SFI; type B on page 260 conducted at Chittoor.
5. RESULTS :
\begin{tabular}{lccccccc}
Treatment & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}{ }^{\prime}\) & \(n_{2}{ }^{\prime}\) & \(n_{1}{ }^{\prime \prime}\) & \(n_{2}{ }^{\prime \prime}\) \\
Av, yield & 1333 & 1506 & 1654 & 1547 & 1654 & 1588 & 1703 \\
& & & & & & & \\
& G.M. & \(=\) & \(1569 \mathrm{lb} . / \mathrm{ac} . ;\) S.E. & \(=\) & \(76.8 \mathrm{lb} . / \mathrm{ac}\). and no. of trials & \(=9\).
\end{tabular}
\begin{tabular}{ll}
Crop :- Ragi \(/ R a b i\)). & Ref :- A.P. \(58(S \mathrm{ST})\). \\
Site :- Visakhapatnam (c.f.). & Type :- ‘M'.
\end{tabular}

Object :-Type B-To investigate the relative effisiency of different nitrogenous fertilizers at different doses.

1 BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal sandy. (iii) Nil. (iv) December. (v) to (ix) N.A. (x) April.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. \(58(\mathrm{SFT})\) type B on page 260 conducted at chittoor.
5. RESULTS :
\begin{tabular}{lccccccl}
Treatment & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}^{\prime}\) & \(n_{2}^{\prime}\) & \(n_{1}{ }^{\prime \prime}\) & \(n_{2}^{\prime \prime}\) \\
Av. yield & 1201 & 1637 & 1572 & 1572 & 1505 & 1473 & 1572 \\
& & & & & & & \\
& G.M. & \(=1505 \mathrm{lb} . / \mathrm{ac} .\), S.E. & \(=\) & \(44.2 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=8\).
\end{tabular}

\footnotetext{
Crop:- Ragi (Rabi).
Ref :- A.P. 59(SFT).
Site :-Visakhapatnam (c.f.).
Type 'M.'
}

Object :-Type B—To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal sandy. (iii) Nil, (iv) December. (v) to (ix) N.A. (x) April.

\section*{2. TREATMENTS :}
o \(=\) Control.
\(\mathrm{n}_{1}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{n}_{2}=40 \mathrm{lb}\)./ac. of N as A/S.
\(n_{1}^{\prime}=20 \mathrm{lb} / \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{2}{ }^{\prime}=40 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(n_{1}{ }^{\prime \prime \prime}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{C} / \mathrm{A} / \mathrm{N}\)
\(\mathrm{n}_{2}{ }^{\prime \prime \prime}=40 \mathrm{lb}\). \(/ \mathrm{ac}\). of N as \(\mathrm{C} / \mathrm{A} / \mathrm{N}\).
3. DESIGN and 4. GENERAL:

Same as in expt. no. 58 (SFT) type B on page 260 conducted at chittoo:.
5. RESULTS :
\begin{tabular}{lccccccc}
Treatment & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}{ }^{\prime}\) & \(n_{2}^{\prime}\) & \(n_{2}^{\prime \prime \prime}\) & \(n_{2}^{\prime \prime \prime}\) \\
Av. yield & 1144 & 1292 & 1358 & 1325 & 1325 & 1243 & 1292
\end{tabular}

Crop :- Maize (Rabi).
Site :- Maize Res. Stn., Karimmagar.

Ref :- A.P. 54(4).
Type :- ‘M'.

Object:-To find out the most economi al manurial dose for Maize.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Maize. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 30.11.1954. (iv) (a) Two ploughings, harrowing and levelling. (b) Dibbling by hand. (c) \(12 \mathrm{lb} / \mathrm{ac}\). (d) \(2^{\prime} \times 1^{\prime}\). (e) 1. (v) Nil. (vi) Jounpore (early). (vii) Irrigated. (viii) Twice cultivator run and once hand weeded. (ix) Nil. (x) 17.3.1955.
2. \({ }^{\text {I }}\) TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=50\), and \(\mathrm{N}_{2}=100 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=50\) and \(\mathrm{P}_{2}=100 \mathrm{lb}\)./ac.
(3) 3 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul : \(\mathrm{K}_{0}=0, \mathrm{~K}_{1}=50\) and \(\mathrm{K}_{2}=100 \mathrm{lb}\)./ac.
\(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}\) and half of N applied at sowing and the other half of N one month after sowing.
3. DESIGN :
(i) \(3^{3}\) confd. (ii) (a) 9 plots/block ; 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) \(1 / 70\) ac. (b)

1/109 ac. (v) Two border rows and four end plants in each row. (vi) Yes.
4. GENERAL:
(i) Normal \(20 \%\) lodging at harvest.-(ii) 10 to \(12 \%\) attack of stem borer. Dead hearts removed. burnt and D.D.T. sprayed when the crop was 3 to 4 weeks old. (iii) Dry grain and Kadbi yield. (iv) (a) 1953-1954 (b) Yes. (c) Nil. (v) to (vii) Nil.
5... RESULTS :
(i) \(2216 \mathrm{ib} . / \mathrm{ac}\). (ii) 627.8 lb .'ac. (iii) Main effect of N alone is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

\begin{tabular}{ll}
S.E. of any marginal mean & \(=148 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=256 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop :- Maize (Kharif).
Site :- Maize Res. Stn., Karimnagar.

\section*{Ref :- A.P. 54(6).}

Type :- ' \(\mathbf{M}\) '.
Objeet :-To find out the most economical manurial doses for Maize.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Maize. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 1.7.1954. (iv) (a) Two ploughings, harrowing and levelling. (b) Hand dibbling. (c) 12 srs./ac. (d) \(2^{\prime} \times 1^{\prime}\), (c) 1 . (v) Nil. (vi) Jounpore (early). (vii) Irrigated. (viii) Twice cultivator run and once hand weeded. (ix) \(31.73^{\circ}\). (x) 10.101954.
2. TREATMENTS to 3. DESIGN :

Same as in expt. no. 54(4) on page 263.
4. GENERAL :
(i) Normal. \(20 \%\) lodging at harvest. (ii) 5 to \(7 \%\) attack of stem-borer. Dead hearts removed, burnt and D.D.T. sprayed when the crop was 3 to 4 weeks old. (iii) Dry grain and kadbi yield. (vi) (a) 1953-1954. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(1295 \mathrm{lb} . / \mathrm{zc}\). (ii) \(402.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect af N alone is significant. (iv) Av. yield of grain in Jb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) & Mean & \(\mathbf{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) \\
\hline \(\mathrm{N}_{0}\) & 991 & 931 & 1046 & 990 & 890 & 1006 & 1073 \\
\hline \(\mathrm{N}_{1}\) & 1509 & 1304 & 1399 & 1404 & 1263 & 1444 & 1504 \\
\hline \(\mathrm{N}_{2}\) & 1565 & 1192 & 1720 & 1492 & 1644 & 1292 & 1541 \\
\hline Mean & 1355 & 1142 & 1388 & 1295 & 1266 & 1247 & 1373 \\
\hline \(\mathrm{P}_{0}\) & 1377 & 932 & 1488 & & & & \\
\hline \(\mathrm{P}_{1}\) & 1259 & 1047 & 1436 & & & & \\
\hline \(\mathrm{P}_{2}\) & 1429 & 1448 & 1242 & & & & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =94.7 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of any table } & =164.2 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

\section*{Crop :- Maize (Rabi).}

Site :- Agri. Res. Stn., Amberpet.

Ref :- A.P. 58(48).
Type:- ' \(C\) '.

Object :-To find the optimum spacing for Maize hybrids.

\section*{1. BASAL CONDITIONS :}
(i) (a) Fallow-Maize-Fallow. (b) Fallow. (c) Nil. (ii) (a) Clayey loam (b) N.A. (iii) 2.12.1958. (iv) (a) to (c) N.A. (d) and (e) As per treatments. (v) \(\leq 0 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A}_{1} \mathrm{~S}\) and \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super before sowing \(+25 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} 40\) days after sowing. \(25 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} 70\) days afier sowing. (vi) Hybrid NC-27 (medium). (vii) Irrigated. (viii) Three hand weedings. (ix) Nil. (x) 4.4.1959.
2. TREATMENTS:

5 cultural treatments: \(\mathrm{T}_{1}=1_{\frac{1}{2}_{\prime}^{\prime} \times 1^{1^{\prime}}}\) spacing with 1 plant/hill, \(\mathrm{T}_{2}=2^{\prime} \times 1^{\prime}\) spacing with 1 plant/hill, \(\mathrm{T}_{3}=\) \(2^{\prime} \times 2^{\prime}\) spacing with 2 plants/hill, \(\mathrm{T}_{4}=2 \frac{1}{2}^{\prime} \times 2 \frac{1^{\prime}}{}\) spacing with 3 plants/hill and \(\mathrm{T}_{5}=3^{\prime} \times 3^{\prime}\) spacing with 4 plants/hill.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) \(33^{\prime} \times 33^{\prime}\) for \(T_{1}, 34^{\prime} \times 32^{\prime}\) for \(\mathrm{T}_{2}, 34^{\prime} \times 34^{\prime}\) for \(\mathrm{T}_{3}, 35^{\prime} \times 35^{\prime}\) for \(T_{4}\) and \(36^{\prime} \times 36^{\prime}\) for \(T_{5}\). (b) \(30^{\prime} \times 30^{\prime}\). (v) One row all round, (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Mild attack of stem-borer-Endrin was Sprayed. (iii) Grain yield. (iv) (a) and (b) No. (c) Nil. (v) to (vii) Nil.

5 RESULTS :
(i) \(6301 \mathrm{lb} . / \mathrm{ac}\). (ii) \(1154 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{T}_{1}\) & T \({ }_{2}\) & \(\mathrm{T}_{3}\) & \(\mathrm{T}_{4}\) & T5 \\
\hline Av. yield & 5537 & 6573 & 6577 & 6713 & 6103 \\
\hline & \multicolumn{5}{|l|}{S.E./mean \(=516 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

Crop :- Maize (Rabi).
Site :- Maize Res. Stn., Karimnagar.

Ref:- A.P. 54(3).
Type :- 'C'.

Object :-To find out the optimum spacing and date of sowing for Maize.
1. BASAL CONDITIONS :
(i) (a) Mung-Maize-Mung. (b) Mung. (c) Nil. (ii) (a) Sandy loam (chalka). (b) N.A. (iii) As per treatments. (iv) (a) 2 ploughings. harrowing and levelling. (b) Hand dibbling. (c) N.A. (d) As per treatments. (c) N.A. (v) \(15 \mathrm{C} . \mathrm{L} . / \mathrm{ac}\). of compost +60 lb ./ac. of \(\mathrm{N}+30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as \(\mathrm{A} / \mathrm{S}\) and Super respectively. Half of N and total quantity of \(\mathrm{P}_{2} \mathrm{O}_{5}\) were given at the time of sowing and the remaining half of N cne month later. (vii) Irrigated. (viii) Twice cultivator and one hand ueeding. (ix) Nil. (x) 13, 28.3.1955.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) 4 row spacings : \(R_{0}=\) Broadcast (control). \(R_{1}=1^{\prime}, R_{2}=1 \frac{1}{2}^{\prime}\) and \(R_{3}=2^{\prime}\).
(2) 2 dates of sowing : \(D_{1}=21.11 .1954\) and \(D_{2}=14.12 .1954\).

Spacing between plants was \(1^{\prime}\) uniformly.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) Varying for each treatment. (b) \(6^{\prime} \times 60^{\prime}\). (v) Two rows on either side of each plot and 2 plants from each end of each row. (vi) Yes.
4. GENERAL:
(i) Stand good. Growth normal in \(D_{1}\) and rather poor in \(D_{2} .15\) to \(20 \%\) lodging at harvest. (ii) Attack of stem borer. Dead hearts removed and burnt. D.D.T. sprayed after 3 weeks of sowing. (iii) Dry grain and kadbi yield. (iv) (a) and (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(1180 \mathrm{lb} . / \mathrm{ac}\). (ii) \(480.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of D is significant. (iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|cccc|c}
& \(\mathbf{R}_{\mathbf{0}}\) & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 1482 & 1603 & 1271 & 1603 & 1490 \\
\(\mathrm{D}_{2}\) & 303 & 847 & 1240 & 1089 & 870 \\
\hline Mean & 893 & 1225 & 1256 & 1346 & 1180
\end{tabular}
\begin{tabular}{ll}
S.E. of R marginal mean & \(=169.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of D marginal mean & \(=120.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=240.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Maize (Kharif/. \\ Ref :- A.P. 54(1). \\ Site :- Maize Res. Stn, Karimnagar. \\ Type :- 'C'}

Object :-To find out the optimum spacing and date of sowing for Maize.
1. BASAL CONDITIONS :
(1) Mung-Maize-Mung. (b) Mung. (c) Nil. (ii) (a) Sandy loam (chalka). (b) N.A. (iii) As per treatments. (iv) (a) 2 pluughings, harrowing and levelling. (b) Hand dibbling. (c) N.A. (d) As per treatments. (e) 1. (v) \(15 \mathrm{C} . \mathrm{L} . / \mathrm{ac}\). of compost \(+60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+: 0 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) in the form of \(\mathrm{A} / \mathrm{S}\) and Super respectively. Half of N and total quantity of \(\mathrm{P}_{2} \mathrm{O}_{5}\) were given at the time of sowing and the remaining half one month, later. (vi) HM-1 (medium). (vii) Irrigated. (viii) One hand weeding and twice with cultivator. (ix, 31.73". (x; 21.10 1954 and 8.11.1954.

\section*{2. TREATMENTS:}

All combirations of \((1)\) and \(\{2)\)
(1) 4 spacings: \(\mathrm{R}_{0}=\) Broadcast (control), \(\mathrm{R}_{1}=1^{\prime} \times 1^{\prime}, \mathrm{R}_{2}=1_{2^{\prime}} \times 1^{\prime}\) and \(\mathrm{R}_{3}=2^{\prime} \times 1^{\prime}\).
(2) 2 date of sowing: \(D_{1}=29.6 .1954\) and \(D_{2}=19.7 .1954\).
3. DESIGN :
(i) Fact. in R B.D. (ii) fa) 8 . (b) N.A. (iii) 4. (iv) (a) Varying for each treatment. (b) \(6^{\prime} \times 60^{\prime}\). (v) Two rows on either side of each plet and 2 plants from each end of each row. (vi) Yes.
4. GENERAL:
(i) Stand good. Growth normal in \(\mathrm{D}_{1}\) and rather poor in \(\mathrm{D}_{2} .20\) to \(25 \%\) lodging at harvest, (ii) 5 to \(7 \%\) attack of stem borer. Dead hearts removed and burnt. DDT sprayed after 3 weeks of sowing. (iii) Dry grain and kadli yie'd. (iv) 'a) 1953-1954. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 400 lb ./ac. (ii 157.3 lb ./ac. (lii) Main effects of \(R\) and \(D\) are significant. (iv) Av. vield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{0}\) & \(\mathrm{R}_{1}\) & \(\mathrm{Ra}_{\mathbf{2}}\) & \(\mathbf{R}_{3}\) & Mean \\
\hline \(D_{1}\) & 666 & 575 & 605 & 393 & 560 \\
\hline \(\mathrm{D}_{2}\) & 333 & 219 & 151 & 257 & 240 \\
\hline Mean & 500 & 397 & 378 & 325 & 400 \\
\hline \multicolumn{6}{|c|}{\begin{tabular}{l}
S.E. of \(\mathbf{R}\) marginal mean \\
S.E. of \(D\) marginal mean \\
S.E. of bcdy of table
\[
\begin{aligned}
& =55 \\
& =39 \\
& =78
\end{aligned}
\]
\end{tabular}} \\
\hline
\end{tabular}

> Crop :- Maize (Kharif). Ref :- A.P. 55(35).

Site :- Maize Res. Str., Karimnagar. Type :- 'CM':
Object:-To find out the optimum spacing and dose of manures for Maize.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Fodder maize. (c) Nil. (ii) (a) Sandy loam (chalka). (b) N.A. (iii) 9.7.1955. (iv) (a) 2 ploughings, harrowing and levelling. (b) and (c) N.A. (d) As per treatments (c) N.A. (v) Nil. (vi) HM-1 (medium). vii` Irrigated. (viii) Two hand weedings. (ix) 51.93". (b) 1.11.1955.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 spacings : \(S_{1}=1^{\prime} \times 1^{\prime}, S_{2}=1^{\prime} \times 1^{\prime} ; S_{3}^{\prime}=2^{\prime} \times 1^{\prime}\) and \(S_{4}=3^{\prime} \times 1^{\prime}\).
Sub-plot treatments :
All combinations of (1), (2) and (3)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0 \quad N_{1}=50\) and \(N_{2}=100 \mathrm{lb} / \mathrm{ac}\).
(2) 3 levils of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=50\) and \(\mathrm{P}_{2}=1 \mathrm{Co} \mathrm{lb} . / \mathrm{ac}\).
(3) 3 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0, \mathrm{~K}_{1}=50\) and \(\mathrm{K}_{2}=100 \mathrm{Ib}\).'ac.

Half of N and whole of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{K}_{2} \mathrm{O}\) applied at sowing and the remaining half of N one month after sowing.
3. DESIGN :
(i) Split-plot-cum-confd. (ii) (a) 4 main-plots/replication; 3 blocks/main-plot and 9 sub-plots/block. NPK partially confounded 2 d.f. in each main-plot. (b) N.A. (iii) 1 . (iv) (a) \(26^{\prime} \times 12^{\prime}\). (b) \(22^{\prime} \times 12^{\prime}\). (v) \(2^{\prime}\) on either side of the plot. (vi) Yes.
4. GENERAL :
(i) Normal. \(15 \%\) lodging at maturity. (ill Nil. (iii) Grain yield. (iv) (a) \(1955-1956\). (b) Ye:. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 1569 lb ./ac. (ii) (a) \(786.0 \mathrm{lb} . / \mathrm{ac}\). (b) 406.9 lb ./ac. (iii) Main effect of N is highly significant. Main effect of \(S\), interactions \(S \times N\) and \(S \times N \times P\) are significant. Other effects are not significant. (iv) Av. yield of grain in lb. \(/ \mathrm{ac}\).

S.E. of difference of two

```

|
Grop:- Maize (Kharif).
Site :- Maize Res. Stn., Karimnagar.
Object:-To find out the optimum spacing and dose of NPK for Maize.

```
 Ref:- A.P. 56(81). .
 Type :- 'CM'.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Maize. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 6.7.1956. (iv) (a) Two ploughings, harrowing and levelling. (b) and (c) N.A. (d) As per treatrents. (e) N.A. (v) Nil. (vi) HM-1 (medium). (wij Irrigated. (viii) Two hand weedings. (ix) \(36.72^{\prime \prime}\). (x) 23 to 25.10.1956.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 55(35) on page 266.
4. GENERAL :
\(\mathbf{2 0 \%}\) lodging at maturity. (ii) Nil. (iii) Grain yield. (iv) (a) 1955-1956. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(1228 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(539.4 \mathrm{lo} . / \mathrm{ac}\). (b) \(279.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of S is significant. Effects of N and K are highly significant. Other effects are not significant. (iv) Av. yieid of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(S_{1}\) & S 2 & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{1}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{3}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 436 & 645 & 570 & 612 & 494 & 550 & 655 & 507 & 640 & 550 & 566 \\
\hline \(\mathrm{N}_{1}{ }^{\text {- }}\) & 1157 & 1490 & 1325 & 1027* & 1180 & 1183 & 1387 & 1181 & 1331 & 1238 & 1250 \\
\hline \(\mathrm{N}_{2}\) & 1984 & 2132 & 1870 & 1483 & 1924 & 1629 & 2049 & 1827 & 1757 & 2017 & 1867 \\
\hline Mean & & 1423 & 1256 & 1C41 & 1199 & 1121 & 1364 & 1172 & 1243 & 1268 & 1228 \\
\hline \(\mathrm{P}_{0}\) & 1177 & 1276 & 1239 & 995 & 1223 & 1132 & 1162 & & & & \\
\hline \(\mathrm{P}_{1}\) & 1166 & 1412 & 1325 & 1118 & 1260 & 1071 & 1398 & & & & \\
\hline \(\mathrm{P}_{2}\) & 1283 & 1580 & 1201 & 1008 & 1115 & 1159 & 1530 & & & & \\
\hline \(\mathrm{K}_{0}\) & 1087 & 1428 & 1197 & 1083 & & & & & & & \\
\hline \(\mathrm{K}_{1}\) & 1210 & 1344 & 1005 & 924 & & & & & & & \\
\hline K \({ }_{2}\) & 1280 & 1496 & 1564 & 1115 & & & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll}
1. S marginal means & \(=146.8 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(N, P\) or \(K\) margibal means & \(=65.8 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(N, P\) or \(K\) means at the same level of S & \(=131.5 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(S\) means at tho same level of \(\mathrm{N}, \mathrm{P}\) or K & \(=128.6 \mathrm{lb} . / \mathrm{cc}\). \\
S.E. of body of \(\mathrm{N} \times \mathrm{P}, \mathrm{N} \times \mathrm{K}\) or \(\mathrm{P} \times \mathrm{K}\) table & \(=80.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Maize (Rabi).
Ref:- A.P. 55(36).
Site :- Maize Res. Stn., Karimnagar.
Type :- 'CM'.
Object:-To find out the optimum spacing and dose of NPK for Maize.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Maize. (c) As per treatments. (ii) (a) Sandy loam (chalka). (b) N A. (iii) 8.12.:955 (iv) (a) Two ploughings, harrowing and levelling. (b) and (c) N.A. (d) As per treatments. (c) N.A. (v) Nil. (vi) HM-1 (medium). (vii) Irrigated. (viii) Normal. (ix) Nil. (x) 16.4.1956.
2. TREATMENTS and 3. DESIGN :

Same as in expt no. 55(35; on page 266.
4. GENERAL :
(i) \(5 \%\) lodging at maturity. (ii) Stem-borer and shoot-borer \(15 \%\). (iil) Grain yield. (iv) (a) \(1955-\) 1956. (b) Yes. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(1070 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(254.5 \mathrm{lb} . / \mathrm{ac}\). (b) \(302.0 \mathrm{lb} / \mathrm{ac}\). (iii) Main effect of N is highly signisicant while \(S \times N\) and \(S \times N \times P\) interactions are significant and other effects are not significant. Aivisy yizk of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(S_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{4}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathbf{P}_{2}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 383 & 502 & 480 & 523 & 454 & 498 & 466 & 496 & 441 & 481 & 472 \\
\hline \(\mathrm{N}_{1}\) & 469 & 1174 & 1087 & 1082 & 967 & 1016 & 877 & 899 & 979 & 982 & 953 \\
\hline \(\mathrm{N}_{2}\) & 1482 & 1984 & 2081 & 1599 & 1804 & 1788 & 1767 & 1596 & 1889 & 1873 & 1786 \\
\hline Mean & 778 & 1220 & 1216 & 1058 & 1075 & 1100 & 1037 & 997 & 1003 & 1111 & 1070 \\
\hline \(\mathrm{P}_{0}\) & 735 & 1233 & 1001 & 1019 & 1004 & 1075 & 913 & & & & \\
\hline \(\mathrm{P}_{1}\) & 823 & 1252 & 1246 & 1091 & 1077 & 1177 & 1056 & & & & \\
\hline \(\mathrm{P}_{2}\) & 776 & 1175 & 1399 & 1094 & 1144 & 1049 & 1141 & & & & \\
\hline \(\mathrm{K}_{0}\) & 755 & 1239 & 1259 & 1047 & & & & & & & \\
\hline \(\mathrm{K}_{1}\) & 860 & 1285 & 1199 & 1056 & & & & & & & \\
\hline \(\mathrm{K}_{2}\) & 721 & 1136 & 1190 & 1101 & & & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. S marginal means \(=69.3 \mathrm{lb} . / \mathrm{ac}\).
2. N, P or K marginal means \(\quad \therefore=71.2 \mathrm{lb} . / \mathrm{ac}\).
3. \(\mathrm{N}, \mathrm{P}\) or K means at the same level of \(\mathrm{S}=142.4 \mathrm{lb} . / \mathrm{ac}\).
4. S means at the same level of \(\mathrm{N}, \mathrm{P}\) or \(\mathrm{K} \quad=168.3 \mathrm{lb} . / \mathrm{ac}\).
5. S.E. of body of table of \(N \times P, N \times K\), or \(P \times K=87.2 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Maize (Rabi).
Ref :- A.P. 56(82) --
Type :- ‘CM’.

Object :-To find out the optimum spacing and dose of NPK for Maize.
1. BASAL CONDITIONS ;
 Two ploughings, harrowing and levelling. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) Mon (vi) HM-1 (medium). (vii) Irrigated. (viii) Two hand weedings. (ix) \(0.3 \circ^{\prime \prime}\). (x) \(26.3 .1957_{0}\)
2. TREATMENTS and 3. DESIGN :

Same as in expt no. 55(35) on page 266.
4. GENERAL :
(i). Normal. Lodging \(25 \%\) at maturity. Mostly on 28.2 .1957 due to dust storm. (ii) Attact of sterm-bores \(20 \%\) Endrine was sprayed. (iii) Grain yield. (iv) (a) \(195 j-56\). (b) Yes. (c) NiR. (v) to (vii) Nis.
5. RESULTS:
(i) \(1195 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(799.5 \mathrm{lb} . / \mathrm{ac}\). (b) \(336.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of S is significant and cticet ote highly significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
3. DESIGN Znd 4. GENERAL:

Same as in expt. no. 59; SFT) type A on page 270 conducted at Karimnagar. \({ }^{-}\)
5 RESULTS:
\begin{tabular}{lccccccc}
Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime}\) & \(\mathrm{n}_{2}{ }^{\prime \prime}\) \\
Av. yield & 230 & 329 & 362 & 321 & 337 & 453 & 444
\end{tabular}
\[
\text { G.M. }=354 \mathrm{lb} . / \mathrm{ac} . ; \text { S.E. }=29.1 \mathrm{lb} / \mathrm{ac} . \text { and no. of trials }=7
\]

\section*{Rrop:- Korra.}

Site:- Agri. Res. Farm, Yemmiganur.

Ref :- A.P. 57(49).
Type :- ' \(\mathbf{M}\) '.

Object:-To find the effect of N and P on Korra.

ב. BASAL CONDITIONS :
(i) (a) Korra-Groundnut-Red gram. (b) Groundnut. (c) 5 tons/ac. of F.Y.M. (ii) (a) Black cotton soil. (b) N.A. (iii) 5.7.1956. (iv) (a) Ploughing, working guntaka and dantulu. (b) to (e) N.A. (v) 5 tons'ac, of FY.M. (vi) Early variety. (vii) Irrigated. (viii) Weeding twice and intercultivation twice. (ix) \(20.48^{\circ}\) (x) 2212.1956.
2. TREA TMENTS :

All combinations of (1) and (2) +a control
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{1}=10, \mathrm{~N}_{2}=20, \mathrm{~N}_{3}=30\) and \(\mathrm{N}_{4}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 leve's of \(\mathrm{P}_{2} \mathrm{O}_{3}: \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=20 \mathrm{lb}\). \(/ \mathrm{ac}\).
3. DESIGN:
(i) R.B.D. (ii) (a) 9 . (b) N A. (iii) 4. (iv) (a) \(1 / 78 \mathrm{ac}\). (b) \(1 / 96 \mathrm{ac}\). (v) One row on all sides. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1957-1959. (b) No. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Ni.

5 RESULTS:
(i) \(1100 \mathrm{Ib} / \mathrm{ac}\). (ii) 57.4 lb ./ac. (iii) Main effect of N is significant. 'Control \(v s\). others' is highly significant. (iv) Av- yield of grain in lb ./ac.

Control \(=1013 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|cccc|c}
& \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{3}\) & \(\mathrm{~N}_{4}\) & Mean \\
\cline { 1 - 6 } & \(\mathrm{P}_{0}\) & 1039 & 1112 & 1121 & 1136 \\
\(\mathrm{P}_{1}\) & 1063 & 1119 & 1149 & 1154 & 1102 \\
\hline Mean & 1051 & 1115 & 1135 & 1145 & 1111
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of } \mathrm{N} \text { marginal mean } & =20.3 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of } P \text { marginal mean } & =14.4 \mathrm{lb} . / \mathrm{ac} \\
\text { S.E. of body of table or control mean } & =28.7 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

Crop :- Korra (Kharif).
Site :- Agri. Res. Farm, Yemmiganur.

Ref :- A.P. 58(42).
Type :- ' \(\mathbf{M}\) '.
1. BASAL CONDITIONS :
(i) (a) Korra-Groundnut+Redgram. (b) Grondnut. (c) 5 tons/ac. of F.Y.M. (ii) (a) Red soil. (b) N.A. (iii) 14.7.1958. (iv) (a) Ploughing, working guntaka as intercultivation, operation and working dantulu. (b) to (e) N.A. (v) 5 tons/ac. of F.Y.M. as B.D. and \(100 \mathrm{lb} . / \mathrm{ac}\) of \(\mathrm{A} / \mathrm{S}\) at the time of sowing. (vi) H-2 (medium). (vii) Irrigated. (viii) Intercultivation was done 25 days after sowing and weeding. (ix) N.A. (x) 22.10.1958.

\section*{2. TREATMENTS :}

Same as in expt. no. 57(49) on page 272.
3. DESIGN :
(i) R.B.D.
(ii) (a) 9.
(b) N.A. (iii)
4. (iv) (a) \(1 / 93 \mathrm{ac}\)
(b) \(1 / 114 \mathrm{ac}\).
(v) N.A. (vi) Yes.
4. GENERAL :

Same as in expt. no. 57(49) on page 272.
5. RESULTS :
(i) \(1514 \mathrm{lb} . / \mathrm{ac}\). (ii) \(9.3 \mathrm{lb} . / \mathrm{ac}\). (iii) Effect of N is highly significant. Effect of P , interaction \(\mathrm{N} \times \mathrm{P}\) and 'control vs. others' are significant. (iv) Av. yield of grain in lb./ac.

Control \(=1023 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & \(\mathrm{N}_{4}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 1309 & 1584 & \(1639^{\prime}\) & 1688 & 1555 \\
\hline \(\mathrm{P}_{1}\) & 1372 & 1616 & 1669 & 1724 & 1595 \\
\hline Mean & 1340 & 1600 & 1654 & 1706 & 1575 \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of \(N\) marginal mean & \(=3.3 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of \(P\) marginal mean & \(=2.3 \mathrm{lb} / \mathrm{ac}\) \\
S.E. of body of table or control mean & \(=4.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Grop:- Korra (Kharif).
Site :- Agri. Res., Str., Yemmaiganur.

Ref:- A.P. 59(50).
Type :- ' \(\mathbf{M}\) '.

Object:-To find the effect of N and P on Korra.
1. BASAL CONDI IIONS :
(i) (a) Korra and groundnut. (b) Groundnut. (c) 5 tons/ac. of F.Y.M. (ii) (a) Red soil. (b) N.A. (iii) 21.7.1959. (iv) (a) Ploughing and working guntaka. Intercultivation with dantulu. (b) to (e) N.A. (v) 5 tons/ac. of F.Y.M. after ploughing, \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) broadcasted at the time of sowing. (vi). N.A. (vii) lrrigated. (viii) Weeding. (ix) \(5.4^{*}\). (x) 15.10.1959.
2. TREATMENTS :

Same as in expt. no. \(57(49)\) on page 272.
3. DESIGN :
(i) R.B.D.
(ii) (a) 9 .
(b) N.A. (iii) 4 .
(iv) (a) \(1 / 93 \mathrm{ac}\).
(b) \(1 / 156 \mathrm{ac}\).
(v) N.A.
(vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nii. (iii) Grain yield. (iv) (a) 1957-1959. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 782 lb ./ac. (ii) 256.4 lb ./ac. (iii) Main effect of N is significant and 'control \(v s\). others' is highly significant. (iv) Av. yteld of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(=437 \mathrm{lb} . \mathrm{ac}\).

\begin{tabular}{ll}
S.E. of \(N\) marginal mean & \(=90.65 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(\mathbf{P}\) marginal mean & \(=64.10 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table or control mean & \(=128.2 \mathrm{l} \mathrm{b} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Onion (Summer). \\ Site :- Onion Res. Stn., Anantharajupet.}

Ref :- A.P. 57(27).
Type :- 'C'.

Object:-To find out the optimum spacing for Onion.
1. BASAL CONDITIONS :
(l) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) N.A. (b) Refer soil analysis, Anantharajupet (iii) 21.12 .1957 , 8.2.1958. (iv) (a) Ploughing and preparatory cultivation. (b) and 'c' N.A. (d) As per treatments. ie', 1. (v) F.Y.M. at \(20,000 \mathrm{lb} . \mathrm{fa}\). and Super at 200 lb ./ac. incorporated by ploughing. vi) Bellary Smal. Onion. (vii) Irrigated. (viii) Weeding and hoeings. (ix) \(4.39^{\prime \prime}\). (x) 22.51958.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 row spacings: \(\mathrm{R}_{3}=3^{\prime \prime}, \mathrm{R}_{2}=5^{\prime \prime}\) and \(\mathrm{R}_{3}=7^{\prime \prime}\).
(2) 3 plant spacings : \(\mathrm{S}_{1}=4^{\prime \prime}, \mathrm{S}_{2}=6^{\prime \prime}\) and \(\mathrm{S}_{3}=8^{\prime \prime}\).
3. DESIGN :
(i) Fcat. in R.B.D.
(ii) (a) 9 . (b) N.A.
(iii) 4. (iv) (a) and (b) \(1 / 100\) ac
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Bulb yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) to 'vii) Nil.
5. RESULTS:
(l) \(5749 \mathrm{lb} . / \mathrm{ac}\). (ii) 1879 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of bults in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(S_{3}\) & Mean & \\
\hline \(\mathrm{R}_{1}\) & 6763 & 6037 & 6037 & 6278 & \\
\hline \(\mathrm{R}_{2}\) & 5987 & 5375 & 4813 & 5391 & \\
\hline \(\mathrm{R}_{3}\) & 6227 & 5150 & 5363 & 5579 & \\
\hline Mean & 6325 & 5520 & 5404 & 5749 & \\
\hline \multicolumn{4}{|l|}{S.E. of ary marginal mean} & 542.6 & b./ac. \\
\hline \multicolumn{4}{|l|}{S.E. of body of table} & 939.8 & b./ac. \\
\hline
\end{tabular}

Crop :- Onion.
Site :- Onion Res. Stn. Anantharajupet.

Ref:- A.P. 58(51).
Type :- ' C '.

Object:-To find out the optimum spacing for Onien.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Onion. (c) \(20,050 \mathrm{lb} . / \mathrm{ac}\). of C.M. \(+200 \mathrm{lb} . / \mathrm{ac}\). of Super \(+300 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. and 100 lb./ac. of A/S. (ii) (a) N.A. (b) Refer soil analysis, Anantharajupet. (iii) \(26.6 .1958 / 27.8 .1958\). (v) (a) Ploughing; levelling and breaking up of clods. (b) and (c) N.A. (d) As per treatments. (e) 1. (v) F.Y.M. at \(20,000 \mathrm{lb} . / \mathrm{ac}\). and Super at \(100 \mathrm{lb} / \mathrm{ac}\). at the time of preparing the land for planting. (vi) Bellary Big Onın. (vii) 1rrigated. (viii) Weeding, and hoeing. (ix) \(30.80^{\circ}\). (x) 26.11.1958,
2. TREATMENTS and 3. DESIGN :

Same as in expt: no. \(57(27)\) on page 274.
4. GENERAL:
(i) Due to heavy rain fall and inclement weather, there was no good crop. (ii) \(1 \%\) Bordeaux mixture was sprayed as a preventive measure against leaf blight. \(50 \%\) BHC has been sprayed against thrip attack. (iii) Bulb yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 972 lb . ac . (ii) \(321.1 \mathrm{lb} / \mathrm{ac}\). (iii) None of the effccts is signiflçant. (iv) Av. yield of bulb in \(\mathrm{lb} . / \mathrm{ac}\).

1

1

Crop :- Onion.
Ref :- A.P. 59(9)
Site :- Onion Res., Stn., Anantharajupet.
Type 'G.'
Object :-To find out the optimum spacing for Onion
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Onion. (c) \(20,000 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. \(+100 \mathrm{lb} . / \mathrm{ac}\). of Super \(+300 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. and 100 lb./ac. of A/S.- (ii) N.A. (b) Refer soil analysis, Anantharajupet. (iiii) 1.1.1959/18.2.1959. (iv) Ploughing leveling and breaking up of clods, etc. (b) and (c) N.A. (d) As per treatments. (e) 1. (v) F.Y.M at \(20,000 \mathrm{lb} . / \mathrm{ac}\). and Super at \(100 \mathrm{lb} . / \mathrm{ac}\). at the time of preparing the land for planting. (vi) Bellary big Onion. (viii) Irrigated. (viii) Weeding and hoeing. (ix) 1.13'". (x) 25.5.59.
2. TREATMENTS and 3. DESIGN

Sane as in expt. no. 57 (27) on page 274.
4. GEINERAL :
(i) Good. (ii) \(\mathbf{i} \%\) Bordeaux mixture was sprayed as a preventive measure against leaf blight. \(50 \% \mathrm{BHC}\) has been sprayed to control thrip attack (iii). Bulb yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 5840 lb /ac. (ii) \(1970.3 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of R is highly significant. Main effect of S is significan (iv) Av. yield of bulb in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline \(\checkmark\) & \(S_{i}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & Mean \\
\hline \(\mathrm{R}_{\mathbf{i}}\) & 10350 & 5225 & 7275 & 7616 \\
\hline \(\mathrm{R}_{2}\) & 6500 & 4000 & 5275 & 5258 \\
\hline \(\mathrm{R}_{3}\) & 5150 & 4950 & 3850 & 4649 \\
\hline Mean & 7333 & 4725 & 5466 & 5840 \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal mean & \(=568.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=985.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop :- Onion (Rainy). \\ Ref :- A.P. 59(68). \\ Site :- Onion Res. Stn., Anantharajupet. \\ Type :- 'C'.
}

Object :-To find out the optimum spacing for Onion

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Onion. (c) \(20,000 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. \(+100 \mathrm{lb} . / \mathrm{ac}\). of Super \(+300 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. and \(100 \mathrm{lb} . / \mathrm{ac}\). of A/S. (ii) (a) N.A. (b) Refer soil analysis, Anantharajupet. (iii) June, 1959/N.A. (iv) (a) Ploughing levelling and breaking up of clods. (b) and (c) N.A. (d) As per treatments. (e) 1. (v) F.Y.M. at \(20,000 \mathrm{lb} . / \mathrm{ac}\). and Super at \(100 \mathrm{lb} . / \mathrm{ac}\). at the time of preparing the land for planting. (vi) Bellary big Onion. (vii) Irrigat ed. (viii) Weeding, and hoeing, (ix) N.A. (x) Nov 1959.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 57(27) on page 274.
5. RESULTS :
(i) \(962 \mathrm{lb} . / \mathrm{ac}\). \({ }_{\text {ii) }} 365.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Only main effect of R is significant. (iv) Av . bulb yield in \(\mathrm{lb} . / \mathrm{az}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(S_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & Mean \\
\hline \(\mathrm{R}_{1}\) & 1375 & 1025 & 1013 & 1137 \\
\hline \(\mathrm{R}_{2}\) & 1250 & 1050 & 900 & 1067 \\
\hline \(\mathrm{R}_{3}\) & 875 & 700 & 475 & 683 \\
\hline Mean & 1166 & 925 & 796 & 952 \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal mean & \(=105.5 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=182.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Onion (Rainy).}

Site :. Onion Res. Stn., Anantharajupet.

Ref:- A.P. 58(50).
Type :- \({ }^{\prime} \mathbf{C}\) '.

Object:-To find out the suitable method of growing Onions.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) N.A. (b) Refer soil analysis, Anantharajupet. (iii) \(26.6 .9958 /\) 23.8.1958. (iv) (a) Ploughing, levelling and breaking up clods. (b) As per treatments. (c) N.A. (d) As per treatments. (e) 1 . (v) \(20,000 \mathrm{lb}\) /ac. of F.Y.M. and \(100 \mathrm{lb} . / \mathrm{ac}\). of Super. (vi) Bellary Big osion. (vii) Irrigated. (viii) Weeding and hoeing. (ix) \(30.80^{*}\). (x) 26.11.1958.
2. TREATMENTS :

2 methods of planting: \(\quad M_{1}=\) Ridges formed at one foot apart and seedling planted \(4^{\prime \prime}\) apart on either side of the ridge and \(\mathrm{M}_{2}=\) Seedling planted in beds at a distance of \(6^{\prime \prime} \times 4^{\circ}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 6. (iv) (a) and (b) \(1 / 100 \mathrm{ac}\). (v) Nil. (vi) Yes.

4, GENERAL:
(i) Due to heavy rainfall and inclement weather crop condition was not good. (ii) \(1 \%\) Bordeaux mexture was sprayed as preventive measure against leaf blight. \(50 \%\) of BHC has been sprayed against thrip attack. (iii) Bulb yield. (iv) (a) 1958-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(1792 \mathrm{lb} . / \mathrm{ac}\). (ii) 1132 lb ./ac. (iii) Treatment difference is not significant. (iv) Av. yield of bulb in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lccc}
Treatment & \(\mathrm{M}_{\mathbf{1}}\) & \(\mathrm{M}_{2}\) \\
Av. yield & \(1867 \quad: \quad 1717\) \\
& & \(:\) & \\
& S.E. \(/\) mean & \(=483 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Onion (Summer). \\ Site :- Onion Res. Stn., Anantharajupet.}
Ref :- A.P. 59(8).
Type :- \({ }^{6} \mathrm{C}^{\prime}\).

Object:-To find out the suitable method of growing Onion.
BASAL CONDITIONS :
(i) (a) Nil. (b) Onion. (c) \(20,000 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M., \(100 \mathrm{lb} . / \mathrm{ac}\). of Super, \(100 \mathrm{lb} . / \mathrm{ac}\). of A/S and \(300 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. (ii) (a) N.A. (b) Refer soil analysis, Anantharajupet. (iii) 1.1.1959/21.2.1959. (iv) (a) Ploughing, levelling and breaking up clods. (b) As per treatments. (c) N.A. (d) As per reatments. (e) 1. (v) 100 \(\mathrm{lb} . / \mathrm{ac}\) of Super and \(20,000 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. (vi) Bellery big onion. (vii) Irrigated. (viii) Weeding and hoeing. (ix) \(1.13^{\prime \prime}\). (x) \(25 / 26.5 .1959\).

TREATMENTS and 3. DESIGN :
Same as in expt. no. 58(50) on page 276.
GENERAL:
(i) Good. (ii) \(1 \%\) Bordeaux mixture was sprayed as a preventive measure against leaf blight. \(50 \%\) BHC has been sprayed to control thrips. (iii) Bulb yield. (iv) (a) 1958-sontd. (b) No. (c) Nil. (v) to (vii) Nil. , ha
5. RESULTS :
(i) \(12533 \mathrm{lb} . / \mathrm{ac}\). (ii) \(879.4 \mathrm{lb} / \mathrm{ac}\). (iii) Treatment difference is not significant. (iv) Av. yield of ibulb in lb./ac.
\begin{tabular}{lll}
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
Av. yield & 12750 & 12317 \\
& S E./mean \(=\) & \(621.8 \mathrm{ib} / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Onion (Rainy). \\ Site :- Onion Res. Stn., Anantharajupet.}

Ref:- A.P. 59(66).
Type :- \({ }^{6}\). .
Object:-To find out the suitable method of growing Onion.
1. BASAL CONDITIONS :
(i) (a) Nil. (ii) Onion. (c) \(20,000 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M., 100 lb ./ac. of Super. (ii) (a) N.A. (b) Refer soil analysis, Anantharajupet. (iii) June, \(1958 /\) N.A. (iv) (a) Ploughing, levelling and breaking up of clods. (b), As per treatments. (c) N.A. (d) As per treatments. (e) 1. (v) \(20,000 \mathrm{ib} . / \mathrm{ac}\). of F.Y.M. (vi) Bellary big onion. (vii) Irrigated. (viii) Weeding and hoeing. (ix) N.A. (x) Nov., 1958.
2. TREATMENTS and 3. DESIGN :

Samie as in expt, no. \(58(50)\) on page 276.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Bulb yield. (iv) (a) 1958-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:

\footnotetext{
(i) \(2075 \mathrm{lb} . / \mathrm{ac}\). (ii) \(664.0 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment difference is not significant. (iv) Av. yield of buib in lb ./ac.
}
\begin{tabular}{lll}
Treatment & \(\mathbf{M}_{1}\) & \(\mathbf{M}_{\mathbf{2}}\) \\
Av. yield & 2183 & 1967 \\
& S.E./mean & \(=267.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Onion (Summer). \\ Site :- Onion Res. Stn., Anantharajupet.}

Ref:- A.P. 59(7).
Type :- 'C'.
Object :-To find out the best seed material between seed and bulbs.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Onion. (c) \(20,000 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. \(+100 \mathrm{lb} . / \mathrm{ac}\). of \(S\) Super \(+100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}+300 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. (ii) (a) N.A. (b) Refer soil analysis, An3ntharajupet. (iii) 11.1959/18.2.19 9. (iv) (a) Ploughing, levelling and breaking up of clods. (b) to (e) N.A. (v) F.Y.M. at \(20,000 \mathrm{lb} . / \mathrm{ac} .+\) Super at 100 \(\mathrm{lb} . / \mathrm{ac}\). at the time of preparing the land for planting. (vi) Bellary big onion. (vii) Irrigated. (viii) Weeding, hoeing and top dressing. (ix) \(1.13^{\prime \prime}\). (x) 29.5.1959.
2. TREATMENTS :

2 seed materials : \(S_{1}=\) Bulb planting and \(S_{2}=\) Seed sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 6. (iv) (a) and (b) \(1 / 100 \mathrm{ac}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) \(1 \%\) Bordeaux mixture was sprayed as a preventive measure against leaf blight; \(50 \%\) BHC was sprayed to control thrips. (iii) Bulb yield. (iv) (a) and (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(4133 \mathrm{lb} . / \mathrm{ac}\). (ii) \(719.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment difference is highly significant. (iv) Av. yield of bulb in lb./ac.
\begin{tabular}{llll}
Treatment & & \(\mathbf{S}_{\mathbf{1}}\) & \(\mathbf{S}_{\mathbf{2}}\) \\
Av. yield & 2667 & 5600 \\
& & \\
& & S.E./mean \(=508.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

- Crop :- Onion (Rainy).
Ref :- A.P. 58(49).
Site :- Onion Res. Stn., Anantharajupet.
Type:- 'IM'.

```

Object :-To study the optimum dose of manuring and frequency of irrigation for Onion crop.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) N.A. (b) Refer soil analysis, Anantharajupet. (iii) \(26.6 .1958 /\) 19 8.1958. (iv) (a) Ploughing, level ing and breaking up of clods. (b) to (e) N.A. (v) Nil. (vi) Bellary big onion. (vii) Irrigated. (viii) Weeding and hoeing. (ix) \(30.80^{\prime \prime}\). (x) 27.11.1958.
2. TREATMENTS :

Main-plot treatments :
4 intervals of irrigation: \(I_{1}=5, I_{2}=7, I_{3}=9\) and \(I_{4}=11\) days.

\section*{Sub-plot treatments :}

5 levels of manures: \(\mathrm{M}_{8}=\) Control (no manure), \(\mathrm{M}_{1}=50 \mathrm{lb} . / \mathrm{ac}\). of A/S+150 lb./ac. of G N.C., \(M_{2}=100 \mathrm{lb} . / \mathrm{ac}\). of \(A / S+300 \mathrm{lb} / \mathrm{ac}\). of G.N.C., \(M_{3}=150 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}+450\) lb .'ac. of G.N.C. and \(\mathrm{M}_{4}=\) B.D. of \(20,000 \mathrm{lb}\)./ac. of F.Y.M.
3. DESIGN :
(i) Split-plo
t. (ii)
(a) 4 main-plots/block; 5 sub-plots/main-plot.
(b) N.A.
(iii) 5. (iv) (a) and (b) 1/200 ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Good. (ii) \(1 \%\) Bordeaux mixture sprayed as a preventive measure against Leaf Blight. \(50 \%\) BHC was sprayed to control thrip attack. (iii) Bulb yield. (iv) (a) 1958-contd. (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) As the irrigational levels were not maintained, the expt. was treated as simple randomised block with 5 manurial levels as treatments and 20 replications.

RESULTS :
(i) 1751 lb ./ac.
(ii) \(547.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant. (iv) Av. yield of bulb in lb./ac.
\begin{tabular}{lcccccc}
Treatment & \(\mathbf{M}_{0}\) & \(\mathbf{M}_{1}\) & \(\mathbf{M}_{2}\) & \(\mathbf{M}_{3}\) & \(\mathbf{M}_{4}\) \\
Av. yield & 1110 & 2050 & 1920 & 2110 & 1565 \\
& & & & & \\
& S.E./mean & \(=\) & \(122.3 \mathrm{lb} . / \mathrm{ac}\). & &
\end{tabular}

\section*{Crop :- Onion.}

Ref:- A.P. 59(6).
Site :- Onion Res. Stn., Anantharajupet.
Type :- 'IM'.
Object :- To study the optimum dose of manuring and frequency of irrigation for growing Onion crop.

\section*{1. 'BASAL CONDITIONS:}
(i) (a) Onion-Onion. (b) Onion. (c) As per treatment. (ii) (a) N.A. (b) Refer soil analysis, Anantharajupet. (iii) 1.1.1959/20.2 1959. (iv) (a) Ploughing, levellings and breaking up of clods (b) to (e) N.A. (v) Nil. (vi) Bellary Big Onion. (vii) Irrigated. (viii) Weeding and hoeing. (ix) 1.13". (x) 26.5.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 58(49) on page 278.
4. GENERAL :
(i) Good. (ii) More of thrip attack was noticed and \(50 \%\) BHC was sprayed to keep it under check. (iii) Bulb yield. (iv) (a) 1951-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i). \(7638 \mathrm{ib} . / \mathrm{ac}\). (ii) (a)- \(5511 \mathrm{lb} . / \mathrm{ac}\). (b) \(3387 \mathrm{lb} / \mathrm{ac}\). (iii) Main effect of M alone is highly significant. (iv) Av. yield of bulb in lb ./ac.

S.E. of difference of two
\begin{tabular}{ll}
1. I marginal means & \(=1559 \mathrm{lb} / \mathrm{ac}\). \\
2. M marginal means & \(=1071 \mathrm{lb} . / \mathrm{ac}\). \\
3. M means at the same level of I & \(=2142 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(\cdot\) I means at the same level of M & \(=: 2470 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Grop :- Onion.
Site :- Onion Res. Stn., Anantharajupet.
Ref :- A.P. 59(67).
.Type :- ‘IM'.
Object :- To study the optimum dose of manuring and frequenc \(/\) of irrigation for Onion crop.
1. BASAL CONDITIONS :
(i) (a) Onion-Onion. (b) Onion. (c) As per treatments. (ii) (a) and (b) Refer soil analysis, Anantharajupet. (iii) Aug. 1959/N.A. (iv) (a) Ploughing, levelling and breaking up of clocs. (b) to (d) N.A. (e) 1. (v) Nil. (vi) Big Bellary Onion. (vii) Irrigated. (viii) Weeding and hoeing. (ix) N.A. (x) Dec. 1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 58(49) on page 278.
4. GENERAL :
(i) Fair. (ii) N.A. (iii) Buib yield. (iv) (a) 1958 -zontd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(1742 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(1545 \mathrm{lb} . / \mathrm{ac}\). (b) \(509 \mathrm{lb} . / \mathrm{ac}\). (iii)- Main effect of M is highly signific..nt. (iv) Av. yield of bulb in \(\mathrm{lb} . j \mathrm{ac}\).
\begin{tabular}{c:ccccc:c}
& \(M_{0}\) & \(M_{1}\) & \(M_{2}\) & \(M_{3}\) & \(M_{4}\) & Mean \\
\hline \(\mathbf{I}_{1}\) & 1120 & 1420 & 1420 & 1460 & 1140 & 1312 \\
\(\mathbf{I}_{2}\) & 1640 & 2500 & 2500 & 2520 & 1920 & 2216 \\
\(\mathbf{I}_{3}\) & 1200 & 1840 & 1640 & 1680 & 1760 & 1624 \\
\(\mathbf{I}_{4}\) & 1320 & 2100 & 1620 & 2260 & 1780 & 1816 \\
\hdashline \begin{tabular}{c}
Mean
\end{tabular} & 1390 & 1965 & 1795 & 1980 & 1650 & 1742 \\
& & & & & &
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll}
1. I marginal means & \(=437 \mathrm{lb} . / \mathrm{ac}\). \\
2. M marginal mans & \(=161 \mathrm{lb} . / \mathrm{ac}\). \\
3. M means at the same level of \(\mathbf{I}\) & \(=322 \mathrm{lb} . / \mathrm{ac}\). \\
4. I means at the same level of \(\mathbf{M}\) & \(=524 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll}
Crop :- Onion (Summer). & Ref :- A.P. 59(5). \\
Site :- Onion Res. Stn., Anantharajupet. & Type :- ‘IM'.
\end{tabular}

Obiect :-To find out the individual and combined effect of NPK in general and frequency of irrigation for assessing the optimum cultivation practice.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) and (b) Refer soil analysis, Anantharajupet. (iii) 1.1.19s9/19, 20.2.1959. (iv) (a) Ploughing, levelling and breaking up of clods. (b to (e) N.A. (v'As per treatment. (vi) Bellary Big Onion. (vii) Irrigated. (viii) Weeding and hoeing. (ix) \(1.13^{\prime \prime}\). (x) 23.5.1959.

\section*{2. TREATMENTS}

\section*{Main-plot treatments :}

4 levels of irrigation: \(I_{1}=\) Once in 3 days, \(I_{2}=\) Once in 5 days, \(I_{3}=\) Once in 7 days and \(I_{4}=\) Once in 9 days.

\section*{Sub-plot treatments :}

All combinations of (1), (2) and (3) +2 extra treatments
(1) 2 ievels of \(\mathrm{N}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=30 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=30 \mathrm{lb}\). lac .
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=30 \mathrm{lb} . / \mathrm{ac}\).

Extra treatments: \(T_{1}=\) Basal dressing with compost and \(T_{0}=\) Control (no manure).
All treatments except \(T_{0}\) and \(T_{1}\) received \(20,000 \mathrm{lb}\)./ac. of F.Y.M. as B.D.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main plots/replication; 10 sub-plots/main-plot. (b) N.A. (iii〉 5 . (iv; 〈a) and (b) \(1 / 200\) ac. (v) No. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Thrip attack was controlled by \(50 \% \mathrm{BHC}\). (iii) Yield of bulb. (iv) (a) 1956-icrtd.
(b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(5957 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(4519 \mathrm{lb} . / \mathrm{ac}\). (b) \(2389 \mathrm{lb} . / \mathrm{ac}\). (iii) Sub-plot treatment effect is highly significant. (iv) Av. yield of bulb in lb ./ac.

. Crop :- Bhindi.

\section*{Site :-Agri. Res. Instt., Rajendranagar.}

Ref:- A.P. \(\mathbf{5 6 (3 3) , ~ , ~}\)
Type :- 'CV'。

Object :-To find out the best spacing for different varieties of Bhindi.
1. BASAL CONDITIONS :
(i) (a) No. (b) Brinjal. (c) F.Y.M. at 20 C.L.'ac. as basàl dose. (ii) (a) Silty loam. (b) N.A. (iii) N.A./17.3.19j6. (iv) (a) Two ploughings and two bakharings. (b) and (c) N.A. (d) As pertreatments. (e) N.A. (v) F.Y.M. at 20 C.L./ac. as basal dose. (vi) As per treatments. (vii) Irrigated. (viii) 8 weedings. (ix) \(8.28^{\prime \prime}\). (x) 8.7.1956.

\section*{2. TREATMENTS :}

Main-plot treatments :
3 varieties: \(\mathrm{V}_{1}=\) Rajasthan, \(\mathrm{V}_{2}=\) Red wonder and \(\mathrm{V}_{3}=\) Shankarpally. .
Sub-plot treatments :
3 spacings : \(S_{1}=2^{\prime} \times 1^{\prime}, S_{2}=2^{\prime} \times 1^{\prime} \frac{1}{2}^{\prime}\) and \(S_{3}=2^{\prime} \times 2^{\prime}\).
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) and (b) \(24^{\prime} \times 18^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Yellow leaf worm mosaic-affected leave clipped and burnt. Fruit borer-Endrine sprayed at the rate of 5 c.c. per gallon. (iii) Yield of dry seed. (iv) (a) \(1956-\) N.A. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(445 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(241.0 \mathrm{lb} . / \mathrm{ac}\). (b) \(167.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effects of V and S are significant. (iv) Av. yield of diy seed in \(1 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & Mean \\
\hline \(\mathrm{V}_{1}\) & 33 & 24 & 28 & 28 \\
\hline \(\mathrm{V}_{2}\) & 777 & 706 & 540 & 674. \\
\hline \(\mathrm{V}_{3}\) & 802 & 641 & 458 & 634 \\
\hline Mean & 537 & 457 & 342 & 445 \\
\hline
\end{tabular}

\section*{S.E. of difference of two}
1. V marginal means \(=69.6 \mathrm{lb} . / \mathrm{ac}\).
2. S marginal means \(\quad=48.3 \mathrm{lb} . / \mathrm{ac}\).
3. S means at the same level of \(\mathrm{V}=118.3 \mathrm{lb} . / \mathrm{ac}\).
4. \(V\) means at the same level of \(S \quad=137.9 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Bhindi (Kharif). \\ Site :- Fruit Res. Stn., Sangareddy.}

Ref :- A.P. 57(93).
Type :- 'CV'.
Object :-To find out the best spacing for different varieties of Bhindi.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Chalka. (b) Refer soil analysis, Sangareddy. (iii) 29.6.1957, N.A. (iv) (a) 3 ploughings. (b) Transplanting. (c) N.A. (d) As per treatments. (e) 1. (v) F.Y.M. applied at 15 C L./ac. (vi) As per treatments. (vii) Irrigated. (viii) Weeding and filling the gaps. (ix) N.A. (x) 14.10.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. د6(33) on page 282.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Bhindi yield. (iv) (a) and (b) No. (c) Nil. (v) (a) Rajendranagar. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(161.2 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(123.6 \mathrm{lb} . / \mathrm{ac}\). (b) \(52.1 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of V is significant. (iv) Av. yield of dry seed in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathbf{S}_{1}\) & \(\mathrm{S}_{2}\) & \(S_{3}\) & Mean \\
\hline \(\mathrm{V}_{1}\) & 96 & 74 & 88 & 86 \\
\hline \(\mathrm{V}_{2}\) & 160 & 164 & 161 & 162 \\
\hline \(\mathrm{V}_{3}\) & 271 & 189 & 243 & 234 \\
\hline Mean & 176 & 142 & 164 & 161 \\
\hline
\end{tabular}
S.E. of difference of two
1. V marginal means \(=50.5 \mathrm{lb} . / \mathrm{ac}\).
2. S marginal means \(\quad=21.3 \mathrm{lb} . / \mathrm{ac}\).
3. S means at the same level of \(\mathrm{V}=36.8 \mathrm{lb} . / \mathrm{ac}\).
4. \(V\) means at the same level of \(\mathrm{S}=58.7 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Bhindi (Rainy).
Site :- Vegetable Res. Stn, Kurnool.

Ref :- A.P. 59(116).
Type :-‘CM'.

Object :-To find out the optimum spacing and manurial doses for Bhindi crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Sesbania as G.M. (c) Nil. (ii) (a) Black loam. (b) Refer soil analysis, Kurnool. (iii) \(12,13.7 .1959\). (iv) (a) 2 ploughings and working pedda guntaka and gorru. (b) Dibbling.(c) 1.87 lb ./ac. (d) As per treatment (e) 1 . (v) 10 ton/ac. of F.Y.M. (vi) Green long (early.) (vii) Irrigated. (viii) Gap filling, 2 hand weedings and mumity hoeing. (ix) N.A. (x) 20.8 .1959 to 16.11.1959.

\section*{TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of specing : \(\mathrm{S}_{0}=1^{\prime} \times 2^{\prime}, S_{1}=1 \frac{1}{3}^{\prime} \times 1^{\frac{1}{2}}\), and \(\mathrm{S}_{2}=2^{\prime} \times 2^{\prime}\).
(2) 3 levels of N as A/S: \(\mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\), and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.
(3) 3 levelf of \(P\) as Super : \(P_{0}=0, P_{1}=10\) and \(P_{2}=20 \mathrm{lb}\). \(a \mathrm{ac}\).
3. DESIGN :
(i) \(3^{3}\) partially confd. (ii) 9 plots/block, 3 blocks/replicalion. (b) \(72^{\prime} \times 54^{\prime}\). (iii) 1. (iv) (a) \(24^{\prime} \times 18^{\prime}\) \(20^{\prime} \times 16^{\prime}\) for \(S_{0}, 21^{\prime} \times 15^{\prime}\) for \(S_{1}\) and \(20^{\prime} \times 14^{\prime}\) for \(S_{2}\). (v) One row all round. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Mild attack of Jassid and occurance of mildow. Endrine and Lindane sprayed. (iii) Lady flnger yield. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b N.A. (vi) Nil. (vii) Harvest was made every two days. When insecticides were sprayed it was delayed by a week.
5. RESULTS:
(i) 5846 lb ./ac. (iii) \(1142 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of Bhindi in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \({ }_{1} \mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{S}_{0}\) & \(S_{1}\), & \(\mathrm{S}_{2}\) \\
\hline \(\mathrm{N}_{0}\) & 5398 & 6272 & 5555 & 5742 & 6003 & 6317 & 4906 \\
\hline \(\mathrm{N}_{1}\) & 6832 & 6205 & 5331 & 6123 & 6922 & 5645 & 5802 \\
\hline \(\mathrm{N}_{2}\) & 5914 & 6114 & 4995 & 5674 & 6586 & 6026 & 4410 \\
\hline - Mean & 6048 & 6197 & 5294 & 5846 & -6504 & 5996 & 5039 \\
\hline \(\mathrm{S}_{0}\) & 6541 & 7728 & 5243 & & & & \\
\hline \(\mathrm{S}_{1}\) & 6138 & 6429 & 5421. & & & & . \\
\hline \(\mathrm{S}_{2}\) & 5465 & 4434 & 5218 & & - & & \\
\hline
\end{tabular}
\(!\)
\begin{tabular}{ll}
S.E. of any marginal mean & \(=380.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=659.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\footnotetext{
\(\because-\)

Crop :- Bhindi (Kharif).
Ref :- A.P. 58(116).
Type :- ‘CMV.'
}

Object :- To study the effect of spacing and manures on different varieties of Bhindi yield.
1. BASAL CONDITIONS :
(i) (a) No. (b) Fallow. (c) -. (ii) (a) Red sandy loam. (b) Refer soil analysis, Sangareddy. (iii) 12.7.1958: (iv) (a) 3 ploughings and 2 weedings. (b) Transplanting. (c) N.A. id) As per treatments. (e) 1. (v) As per treatments. (vi) As per treatments, (vii) Irrigated. (viii) Gap-filhng after 15 days, ploughing the area around, weeding and hoeing. (ix) 29.6". (x) 15.10.1958.
2. TREATMENTS :

All the combinations of (1), (2) and (3)
(1) 3 levels of manuring: \(\mathrm{M}_{1}=20 \mathrm{lb} / / \mathrm{ac}: \mathrm{N}+20 \mathrm{lb} / \mathrm{ac} . \mathrm{P}_{2} \mathrm{O}_{5}+10 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}, \mathrm{M}_{2}=40 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{N}+40 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+20 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{M}_{3}=60 \mathrm{lb}\)./ac. of \(\mathrm{N}+60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+30 \mathrm{lb}\). \(/ \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\)
(2). 3 spacings : \(\mathrm{S}_{1}=2^{\prime} \times 2^{\prime}, \mathrm{S}_{2}=2^{\prime} \times 1 \frac{1}{2}^{\prime}\) and \(\mathrm{S}_{3}=2^{\prime} \times 1^{\prime}\).
(3) 3 varieties: \(\mathrm{V}_{1}=\) Shankarpally, \(\mathrm{V}_{2}=\) Red wonder and \(\mathrm{V}_{3}=\) Rajasthan.
3. DESIGN :
(i) \(3^{3}\) confd. (ii) (a) 9 plots/block and 3 blocks/replication. (b) N.A. (iii) 1. (iv) (a) \(24^{\prime \prime} \times 18^{\prime}\) for \(S_{1}, 24^{\prime} \times 17^{\prime}\) for \(S_{2}, 24^{\prime} \times 16^{\prime}\) for \(S_{3}\). (b) \(20^{\prime} \times 14^{\prime}\). (v) One row alround. (vi) Yes. 1

\section*{4. GENERAL:}
(i) Satisfactory. (ii) Attack of Aphids and root rot. Geigy 1250 and Endrine sp:ayed; Red Spider mite observed, spraying. of sulphur 6 oz . and Endrine 3oz. (iii) Bhindi yield. (iv) (a) 1958-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(369 \mathrm{lb} . / \mathrm{ac}\). (ii) \(130.9 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of S alone is significant. (iv) Av. yield of bhindi seed in lb.'ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & S & \(\mathrm{S}_{3}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{3}\) \\
\hline \(\mathrm{M}_{1}\) & 239 & 298 & 409 & 315 & 337 & 315 & 294 \\
\hline \(\mathrm{M}_{2}\) & 271 & 380 & 501 & 384 & 496 & 373 & 283 \\
\hline \(\mathrm{M}_{3}\) & 315 & 327 & 579 & 407 & 572 & 365 & 283 \\
\hline Mean & 275 & \(3: 5\) & 496 & 369 & 468 & 351 & 287 \\
\hline \(\mathrm{V}_{1}\) & 334 & 371 & 700 & & & & \\
\hline \(\mathrm{V}_{2}\) & 283 & 311 & 459 & & & & \\
\hline \(\mathrm{v}_{3}\) & 208 & 322 & 331 & & & & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =43.7 \mathrm{lb} ., \mathrm{ac} . \\
\text { S.E. of body of any table } & =75.6 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

Crop:- Bhindi. (Fharif).
Site :- Fruit Res. Stn., Sangareddy.

Ref :- A.P. 59(95).
Type :- ‘CMV'.

Object : - To study the effest of spacing and manures on different varieties of Bhindi.

\section*{1. BASAL CONDITIONS:}
(i) (a) No. (b) Tomato. 'c) A/S at 1 cwt 'ac. and Super at \(3 \mathrm{cwt} / \mathrm{ac}\). (ii) (a) Red sandy soil. (chaika). (b) Refer soil analysis, Sangareddy. (iii) 23.6.1959. (iv) (a) 2 ploughings, 2 cultivator operations and one blade harrow operation. (b) Transplanting. (c) N.A. (d) As per treatments (e) 1. (v) 5 C.L /ac. of F.Y.M. (vi) As per treatments. (vii) Unirrigated. (viii) Two weedings. (ix) \(24.8^{\prime \prime}\). (x) 23.10.1959.

\section*{2. TREATMENTS:}

All combination of (1), (2) and (3)
(1) 3 levels of manuring : \(\mathrm{M}_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O} . \mathrm{M}_{2}=40 \mathrm{lb}\)./ac. of \(\mathrm{N}+40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{3}+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O} . \mathrm{M}_{3}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+60 \mathrm{lb}\).' ac . of \(\mathrm{P}_{2} \mathrm{O}_{5}+40 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
(2; 3 spacings: \(\mathrm{S}_{1}=2^{\prime} \times 2^{\prime}, \mathrm{S}_{2}=2^{\prime} \times 1^{\prime} \frac{1}{\prime}^{\prime}\) and \(\mathrm{S}_{3}=2^{\prime} \times 1^{\prime}\).
(3) 3 Varieties: \(V_{1}=\) Shankarpally (early). \(\mathrm{V}_{2}=\) Red wonder. (early). \(\mathrm{V}_{3}=\) Hybrid Rajasthan (late).
3. DESIGN :
(i) \(3^{3}\) confd. (ii) (a) 9 plots/block; 3 blocks/replication. (b) \(108^{\prime} \times 18^{\prime}\). (iii) 1 . (iv) (a) \(22^{\prime} \times 16^{\prime}\). (b) \(18^{\prime} \times 12^{\prime}\). (v) \(2^{\prime} \times 2^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Endrin and D.D.T. \(50 \%\), B.H.C. \(50 \%\) used against Aphids, jassids, shoot borers and fruit borers. (iii) Bnindi vield. (iv) (a) 1957 -contd. 'modified in 1958) (b) No. (c) Nil. (v) to (vii Nil.
5. RESULTS:
(i) 328 lb .ac. iii) \(50.8 \mathrm{lb} / \mathrm{ac}\). (iii) Main effects of V and S are highly significant and effect of M is significant. iv; Av. yield of Bhindi seed in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(V_{3}\) \\
\hline \(\mathrm{M}_{1}\) & 231 & 250 & 366 & 282 & 450 & 221 & 177 \\
\hline \(\mathrm{M}_{2}\) & 219 & 319 & 518 & 352 & 555 & 245 & 256 \\
\hline \(\mathrm{M}_{3}\) & 233 & 349 & 466 & 349 & 532 & 225 & 292 \\
\hline Mean & 2.28 & 306 & 450 & 328 & 512 & 230 & 242 \\
\hline \(\mathrm{V}_{1}\) & 361 & 506 & 668 & 512 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{. -}} \\
\hline \(\mathrm{V}_{2}\) & 210 & . 185 & 295 & 230 & & & \\
\hline \(\mathrm{V}_{3}\) & 111 & 227 & 387 & 242 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal mean & \(=16.94 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=29.33 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll}
Crop :- Brinjal (Rabi). & Ref:~ A.P. \(58(98)\). \\
Site :- Agri. Res. Inste., Rajendranagar. & Type :- ‘M'.
\end{tabular}

Object : -To find out the suitable levels of \(N, P\) and \(K\) for Brinjal.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Wheat. (c) 20 C.L./ac. of F.Y.M. applied as basal dose. (ii) (a) Black cotton soils. (b) N.A. (iii) \(12.12 .1958 / 9.1 .1959\). (iv) (a) 4 ploughings with iron mould board plough as preparatory cultivation and levelling with patta. (b) to (e) N.A. (v) 20 C.L./ac. of F.Y.M. before levelling the soil and after 3rd preparatory ploughing. (vi) Purple long. (vii) Irrigated. (viii) Gap-filling and weeding regularly twice a month. (ix) \(0.75^{\prime \prime}\). (x) 21.5.1959.
2. TREATMENTS :

All combinations of (1), (2) and (3)
, (1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=25\) and \(\mathrm{N}_{2}=50 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(P_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=25\) and \(\mathrm{P}_{2}=50 \mathrm{lb}\). \(/ \mathrm{ac}\).
(3) 3 lcvels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=25\) and \(\mathrm{K}_{2}=50 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) \(3^{3}\) confd. (ii) (a) 9 plots/block; 3 blocks/replication. (b) Nil. (iii) 2 . (iv) (a) \(15^{\prime} \times 30^{\prime}\). (b) (b) \(11^{\prime} \times 26^{\prime}\). (v) \(2^{\prime} \times 2^{\prime}\). (vi) Yes.
4. GENERAL:
(i) Growth normal, no. lodging. (ii) Attack of mosaic and little leaf—Sulphur dusted. (iii) Yield of Brinjal. (iv) (a) 1956-1958. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(13149 \mathrm{lb} . / \mathrm{ac}\). (ii) \(3006 \mathrm{lb} . / \mathrm{ac}\). (iii) Only N effect is signif̣cant. (iv) Av. yeld of Brínjal in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) \\
\hline , \(\mathrm{N}_{0}\) & 13084 & 12330 & 10132 & 11849 & 12213 & 10679 & 12655 \\
\hline \(\mathrm{N}_{1}\) & 12867 & 12254 & 14137 & 13086 & 14214. & 12714 & 12330 \\
\hline \(\mathrm{N}_{2}\) & 16260 & 12155 & 15117 & 14511 & 13349 & 13943 & 16240 \\
\hline - Mean & 14070 & 12246 & 13129 & 13149 & 13259 & 12445 & 13742 \\
\hline \(\dot{K}_{0}\) & 13630 & 12049 & 14095 & & & & \\
\hline \(\mathrm{K}_{1}\) & \({ }^{-} 13643\) & 11574 & 12118 & & & & \\
\hline \(\mathrm{K}_{2}\) & 14937 & 13114 & 13173 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of any margina mean \(\quad\) & \(=1002 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=1735 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Brinjal.
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 56(32).
Type :- 'CV'.

Object:-To find out the optimum spacing and variety for Brinjal.
1. BASAL CONDITIONS:
(i) (a) No. (b) Tomato (c) F.Y.M. at 20 C.L./ac. (ii) (a) Black silty loam. (b) N.A. (iii) 27.8.1956. (iv) (a) 2 ploughings and 2 bakharings. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) F.Y.M. at \(20 \mathrm{C} . \mathrm{L} . / \mathrm{ac}\). applied at the time of ploughing and incorporated into the soil. (vi) As per treatments. (vii) Irrigated. (viii), 8 weedings and 2 earthings. (ix) \(11.26^{\prime \prime}\). (x) 6.2.1957.
2. TREATME \TS :

Main-plot treatments :
5 varieties: \(\mathrm{V}_{1}=\) Purple long cluster, \(\mathrm{V}_{2}=\) Green long cluster, \(\mathrm{V}_{3}=\) White long cluster, \(\mathrm{V}_{4}=\) Long purple and \(\mathrm{V}_{5}=\) Local.
Sub-plot treatments :
4 spacings: \(S_{1}=2^{\prime} \times 11^{\prime}, S_{2}=2^{\prime} \times 2^{\prime}, S_{3}=3^{\prime} \times 1 \frac{1^{\prime}}{}\) and \(S_{4}=3^{\prime} \times 2^{\prime}\).
3. DESIGN :
(i) 'Split-plot. (ii) (a) 5 main-plots/replication ; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) and (b) \(1 / 100.8\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Attack of virus, Brinjal leaf spot, Brinjal shoot and fruit borer. Virus affected plants uprooted and burnt. Bordeaux mixture and Endrine sprayed in concentration of 5 c.c. per gallon of water. (iii) Fruit yield. (iv) (a) \(1956-\) N.A. (b) No. (c) Nil. (v) (a) N.A. (b) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(4110^{\circ} \mathrm{lb} / \mathrm{ac}\). (ii) (a) \(1424 \mathrm{lb} . / \mathrm{ac}\). (b) \(988 \mathrm{ib} . / \mathrm{ac}\). (iii) Main effect of V is significant. (iv) Av. yield of Brinjal in lb . \({ }^{\mathrm{a}} \mathrm{ac}\).
\begin{tabular}{llllll|c}
& \(V_{1}\) & \(V_{2}\) & \(V_{3}\) & \(V_{4}\) & \(V_{5}\) & Mean \\
\hline\(S_{1}\) & 4761 & 4709 & 3306 & 5554 & 2428 & 4151 \\
\(S_{2}\) & 5598 & 4515 & 2840 & 7138 & 2388 & 4496 \\
\(S_{3}\) & 3461 & 3865 & 3291 & 5767 & 2703 & 3817 \\
\(S_{4}\) & 3301 & 3879 & 3318 & 6226 & 3145 & 3974 \\
\hline Mean & 4280 & 442 & 3189 & 6171 & 2666 & 4110
\end{tabular}
S.E. of difference of two
1. \(V\) marginal means \(\quad=356 \mathrm{lb} . / \mathrm{ac}\).
2. S marginal means \(\quad=222 \mathrm{ib} . / \mathrm{ac}\).
3. \(S\) means at the same level of \(V=700 \mathrm{lb} / \mathrm{ac}\).
4. \(V\) means at the same level of \(S=787 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Brinjal.
Site :- Agri. Res. Instt., Rajendranagar.

Ref:- A.P. 58(103).
Type :- 'CV'.

Object:-To study the effec: of date of sowing on different varieties of Brinjal.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Wheat. (c) 20 C.L./ac. of F.Y.M. before sowing. (i:) (a) Black cotton soil. (b) N.A. (iii) As per treatments. (iv) (a) 4 ploughings with iron mould plough, levelling with patia and forming ridges and furrows. (b) and (c) N.A. (d) \(2^{\prime} \times 2^{\prime}\). (e) 1 . (v) 20 C.L./ac. of F.Y.M. as basal dose at the time of 3 rd preparatory ploughing. (vi) As per treatments. (vii) Irrigated. (viii) Gap-filling done one week after transplanting, weeding once in every 15 days. (ix) \(29.9^{\prime \prime}\) - (x) Aproximately six months after sowing.

\section*{2. TREATMENTS :}
```

Main-plot treatments :
9 dates of planting : }\mp@subsup{D}{1}{}=10.7.1958, D D =10.8.1958, D D =10.9.1958, D D =10.10.1958, D D = 10.11.1958,
D
Sub-plot treatments:
2 varieties: }\mp@subsup{\textrm{V}}{1}{}=\mathrm{ Purple long and }\mp@subsup{\textrm{V}}{2}{}=\mathrm{ Purple long cluster.

```
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/replication; 2 sub-plots/main-plot
(b) N.A. (iii) 3. (iv) (a) N.A.
(b) \(24^{\prime} \times 12^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
- (i) Satisfactory.
(ii) Nil. (iii) Brinjal yield.
(iv) (a) \(1956-\) N.A.
(b) No. (c) Nil.
(v) to (vij) Nil.
5. RESULTS:
(i) \(2280 \mathrm{lb} . / \mathrm{ac}\). . (ii) (a) \(1520 \mathrm{lb} . / \mathrm{ac}\). (b) 680 lb /ac. (iii) Main effect of D is highly significant. (iv) Av." yield of Brinjal in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & \(\mathrm{D}_{5}\) & \(\mathrm{D}_{6}\) & \(\mathrm{D}_{7}\) & \(\mathrm{D}_{8}\) & \(\mathrm{D}_{9}\) & Mean \\
\hline - \(\mathrm{V}_{1}\) & 4985 & 4849 & . 5020 & 2940 & 1201. & 1225 & 1038 & 224 & 564 & 2450 \\
\hline \(\mathrm{V}_{2}\) & 3892 & 4525 & 4261 & 2940 & 1525 & . 753 & 413 & 73 & 605 & 2110 \\
\hline Mean & 4438 & 4687 & 4640 & 2940 & 1363 & 989 & 725 & 148 & 585 & 2280 \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means \(\quad=878 \mathrm{ib} . / \mathrm{ac}\).
2. V marginal means \(\quad=185 \mathrm{lb} / \mathrm{ac}\).
3. V means at the same level of \(\mathrm{D}=556 \mathrm{lb} . / \mathrm{ac}\).
4. D means at the same level of \(V=962 \mathrm{lb} / / \mathrm{ac}\).

\section*{Crop :- Brinjal (Rabi).}

Site :- Agri. Res. Instt. Rajendranagar.

Ref:- A.P. 58(97).
Type :- 'CMV'.

Objest :-To find out the suitable combisation of variety, sacing and manurial doses for Brinjal crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Wheat. (c) 20 C.L./ac. of F.Y.M. (ii) (a) Black cotton soils. (b) N A. (iii) 27.11 .1958 / 22.12.1958. (iv) (a) 4 ploughings with iron mould plough as preparatory tillage, levelling with patta, forming of ridges and furrows with manual labour. (b) to (e) N.A. (v) -O C.L/ac. of F.Y.M. at the time of thitd preparatory ploughing.' (vi) As per treatments. (vii) Irrigated. (viii) Gap-filing attended after one week of transplantation. Weeding once in 15 days regularly (ix) \(0.83^{\prime \prime}\). (x) 126.1959 .

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3)
(1) 3 varieties: \(\mathrm{V}_{1}=\) Purple long, \(\mathrm{V}_{2}=\) Purple long cluster and \(\dot{\mathrm{V}}_{3}=\) Green long cluster.
(2) 3 spacings: \(\mathrm{S}_{1}=2^{\prime} \times 1^{\prime^{\prime}}, \mathrm{S}_{2}=2^{\prime} \times 2^{\prime}\) and \(\mathrm{S}_{3}=2^{\prime} \times 3^{\prime}\).
(3) 3 levels of manures: \(\mathrm{M}_{1}=20 \mathrm{lb}\) /ac. of \(\mathrm{N}+20 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{2}=40 \mathrm{lb}\)./ac of \(\mathrm{N}+20 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{M}_{3}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+20\) \(\mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN :
(i) \(3^{3}\) confd. 'ii 'a’ 9 plots' 'block ; 3 blocks \(/\) replication. (b) N.A. (iii) 1 . (iv) (a) \(14^{\prime} \times 16^{\prime}\). b) \(10^{\prime} \times 12^{\prime}\) (v) \(2^{\prime} \times 2\). (v) Yes.
4. GENERAL :
(i) Normal. (ii) Epilachna bulls attack in primary stages-Geigy 1250 dusted regularly once a week. Little leaf virus-when the crop was 3 months old. Rouging attended and the diseased material burnt out side the field. (iii) Fruit yie!d. (iv) (a) 1958-1960. (b) and (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 67685 lb . ac. (ii) \(10909 \mathrm{lb} / \mathrm{ac}\). (iii) Main effect of V is significant. (iv) Av. yield of brinjal in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(S_{3}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
\hline \(V_{1}\) & 64291 & 55114 & 53223 & 57543 & 58272 & 53241 & .61118 \\
\hline \(\mathrm{V}_{3}\) & 88035 & 74052 & 77061 & 79716 & 79802 & 81606 & 77744 \\
\hline \(\mathrm{V}_{3}\) & 65968 & 64719 & 66694 & 65794 & 68465 & 63594 & 65325 \\
\hline Mean & 72764 & 64628 & 65659 & 67685 & 68846 & 66147 & 68062 \\
\hline \(\mathrm{M}_{1}\) & 72542 & 68012 & 65986 & & & & \\
\hline M \({ }_{\text {g }}\) & 75580 & 57296 & 65561 & & & & \\
\hline \(\mathrm{M}_{3}\) & 70172 & 68578 & 65434 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S E. of any marginal mean & \(=3636 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=6298 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Brinjal (Rabi).
Site :- Agri. Res. Instt., Rajendranagar.

```

\section*{Ref :- A.P. 59(59). Type :- ‘CMV'.}

Object :-To find the suitable combination of variety, spacing and manurial doses for Brinjal.
1. BASAL CONDITIONS:
(i) (a) No. (b) Wheat. (c) 20 CL./ac, of F.Y.M. before sowing. (ii) (a) Black cotton soil. (b) N.A. (iii) Nov. 1959 Dec. 1959. (iv) (a) 4 ploughings with iron mould plough, preparatory levelling with patta and forming of ridges and furrows with manual labour. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) 20 C.L./ac. of F.Y.M. as basal dose at the time of 3rd preparatory ploughing. (vi) As per treatments. (vii) Irr'gated. (viii Gap-filling after one week of transplantation. Weeding once in every 15 days. (ix) 8.8". (x) June 1960.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 varieties: \(\mathrm{V}_{1}=\) Purple long, \(\mathrm{V}_{2}=\) Purple long ciuster and \(\mathrm{V}_{3}=\) Green long cluster.
(2) 3 spacings: \(\mathrm{S}_{1}=2^{\prime} \times 11^{\prime}, \mathrm{S}_{2}=2^{\prime} \times 2^{\prime}\) and \(\mathrm{S}_{3}=2^{\prime} \times 3^{\prime}\).
(3) 3 evels of manures: \(\mathrm{M}_{1}=20 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{N}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{.} \mathrm{O}_{5}, \mathrm{M}_{2}=40 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{N}+4 \mathrm{~J} \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{M}_{3}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+60 \mathrm{lb}\). \(/ \mathrm{ac}\) of \(\mathrm{P}_{2} \mathrm{O}_{5}+20 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN:
(i) \(3^{3}\) confd. (ii) (a) 9 plots/block; 3 blocks/replication. (b) N.A. (iii) 1. (iv) (a) and (b) \(1 / 201.67\) ac. (v) \(4^{\prime} \times 4\). (\(v_{1}\)) Yes.

\section*{4. GENERAL :}
(i) Normal. (ii) Nil. (iii) Yieiò of Brinjal. (iv) (a) 1958-1960. (b) No. (c) Nil. (v) to (vi, Ni.
5. RESULTS:
(i) 7891 lb ./ac. (ii) 2884 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of Brinjal in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
\hline \(\mathrm{V}_{1}\) & & 5631 & 7080 & 6260 & '6323 & 6937 & 6953 & 7080 \\
\hline \(\mathrm{V}_{2}\) & & 8541 & 9055 & 10803 & 9466 & 8336 & 6895 & 13167 \\
\hline \(\mathrm{V}_{3}\) & & 8571 & 6709 & 8374 & 7884 & 5819 & 9067 & 8768 \\
\hline Mean & & 7581 & 7615 & 8479 & 7891 & 6364 & 7638 & 9672 \\
\hline \(\mathrm{M}_{1}\) & & 4576 & 7319 & 7197 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{,}} \\
\hline \(\mathrm{M}_{2}\) & & 7614 & 6895 & 8407 & & & & \\
\hline \(\mathrm{M}_{3}\) & & 10554 & 8630 & 9832 & - & & & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of any marginal mesn } & =961 \mathrm{lb} . \mathrm{ac} . \\
\text { S.E. of body of any table } & =1665 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

\section*{Crop :- Tomato.}

Site :- Agri. Res. Instt., Rajendranagar.

\section*{Ref :- A.P. 55(44).}

Type :- 'C'.
Object :-To find the optimum spacing for Tomato.
1. BASAL CONDITIONS :
(i) (a) No. (b) The experiment was conducted in citrus interspaces. (c) Nil. (ii) (a) Black silty loam. (b) N.A. (iii) 3012.1955 , N.A. (iv) (a) 3 ploughings and bakharings. (b) and (c) N.A. (d) As per treatments. (c) N.A. (v) 20 C.L./ac. of F.Y.M applied at the time of planting as basal dressing. (vi) Porrdinesa (medium). (vii) Irrigated. (viii) 8 weedings and 2 earthings. (ix) \(5.18^{\prime \prime}\). (x) First week of June, 1956.

\section*{2. TREATMENTS:}

3 spacings: \(S_{1}=2^{\prime} \times 1^{\prime} \stackrel{1}{2}^{\prime}, S_{2}=2^{\prime} \times 2^{\prime}\) and \(S_{2}=3^{\prime} \times 2^{\prime}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 3. .(b) N.A. (iii) 6 . (iv) (a) and (b) \(36^{\prime} \times 80^{\prime}\). (v) Nil. (vi) Yes
4. GENERAL:
(i) Not good. (ii) Attack of Tomato fruit borer-Endrine was sprayed at 5 c.c. per gallon of water. Severe-virus attack. Affected plant uprooted and burnt. (iii) No. of fruits/plot and fruit yield. (iv) (a) 1955-N.A. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(11967 \mathrm{lb} . / \mathrm{ac}\). (ii) \(2060 \mathrm{lb} / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of fruit in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lcccc}
Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) \\
Av. yield & 14408 & 11278 & 10213 \\
& & & & \\
& S.E./mean & \(=\) & \(841 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Grop :- Tomato.
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 56(35).
Type :- ' \(\mathbf{C V}^{\prime}\).

Object:-T'o find the best spacing for different varieties of Tomato.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Bhindi. (c) 20 C.L./ac. of F.Y.M. (ii) (a) Black silty loam. (b) N.A. (iii) 10.12 .1956 / N.A. (iv) (a) 6 weedings and two bakharings. (b) Transplanted. (c) N.A. (d) As per treatments. (e) N.A. (v) F.Y.M. was given at 20 C.L./ac. as B.D. (vi) As per treatments. (vii) Irrigated. (viii) 8 weedings and 2 bakharings. (ix) \(1.86^{\prime \prime}\). (x) 9.3 .1957 to 15.5 .1957.
2. TREATMENTS :

Main-plot treatments :
4 varieties: \(\mathrm{V}_{1}=\) Sioux, \(\mathrm{V}_{2}=\) Marglobe, \(\mathrm{V}_{3}=\) Meeruti and \(\mathrm{V}_{4}=\) Ponderosa.
Sub-plot treatments :
3 spacings : \(S_{1}=2^{\prime} \times 1^{\prime}, S_{2}=2^{\prime} \times 2^{\prime}\) and \(S_{3}=3^{\prime} \times 2^{\prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) and (b) \(24^{\prime} \times 18^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Virus attack-dry rot of fruits-Bordeaux mixture sprayed. Fruit borer-Endrine sprayed at 5 c.c. per gallon. (iii) Yield of tomato. (iv) (a) \(1956-\) N.A. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(20231 \mathrm{lb} . / \mathrm{ac}\). (i) (a) \(7576 \mathrm{lb} . / \mathrm{ac}\). (b) \(3914 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of V is significant and effect of S is highly significant. (iv) Av. yield of fruit in lb./ac.

S.E. of difference of two
\begin{tabular}{ll}
1. \(V\) marginal means & \(=2187 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(S\) marginal means & \(=979 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(S\) means at the same level of \(V\) & \(=2768 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(V\) means at the same level of \(S\) & \(=3831 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Grop :- Tomato.}

Ref :- A.P. 58(102).
Site :- Agri. Res. Instt., Rajendranagar.

Type :- 'CV'.

Object:-To study the effect of date of transplanting on the yield of different varieties of Tomato.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Wheat. (c) 20 C.L./ac. of F Y.M. (ii) (a) Black cotton. (b) N.A. (iii) N.A./As per treatment. (iv) (a) 4 ploughings with iron mould plough, levelling with patta ard forming of ridges and furrows. (b) and (c) N.A. (d) \(2^{\prime} \times 2^{\prime}\). (e) 1. (v) 40 C.L./ac. of F.Y.M. as B.D. at the time of 3rd preparatory ploughing. (vi) As per treatments. (vii) Irrigated. (viii) Gap-filling and weeding (ix) \(29.9^{\prime \prime}\) during the year. (x) Approximately 5 months after planting.

\section*{2. TREATMENTS :}

\footnotetext{
Main-plot treatments :
8 dates of transplanting : \(\mathrm{D}_{1}=10.7 .1958, \quad \mathrm{D}_{2}=108.1958, \quad \mathrm{D}_{3}=10.9 .1958, \quad \mathrm{D}_{4}=10.10 .1958 . \quad \mathrm{D}_{5}=\) 10.11.1958. \(\quad \mathrm{D}_{6}=10.12 .1958, \mathrm{D}_{7}=10.1 .1959\) and \(\mathrm{D}_{8}=102.1959\).

Sub-plot treatments :
2 varieties: \(\mathrm{V}_{1}=\) Marglobe and \(\mathrm{V}_{2}=\) Meeruti.
}
3. DESIGN :
(i) Split-plot. (ii) (a) 8 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) and (b) \(20^{\prime} \times 10^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Fruit yield. (iv) (a) \(1957-\) N.A. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Data of the expt. of 1957 is N.A.
5. RESULTS :
(i) \(1378 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(847 \mathrm{lb} . / \mathrm{ac}\). (b) 706.6 lb ./ac. (iii) Main effects of D and V are highly significant. Interaction \(\mathrm{D} \times \mathrm{V}\) is significant. (iv) Av. yield of fruit in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{1}\) & 727 & 1045 & 1248 & 1185 & 984 & 712 & 305 & 0 & - 776 \\
\hline \(\mathrm{V}_{2}\) & 3049 & 1320 & 3186 & 3853 & 2132 & 1420 & 871 & 9 & 1980 \\
\hline Mean & 1888 & 1183 & 2217 & 2519 & 1558 & \(1066{ }^{\circ}\) & 588 & 5 & 1378 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{lr}
1. D marginal means & \(=489.1 \mathrm{lb} . / \mathrm{ac}\). \\
2. V marginal means & \(=204.0 \mathrm{lb} . / \mathrm{ac}\). \\
3. V means at the same level of D & \\
4. D means at the same level of V & \(=576.9 \mathrm{lb} . / \mathrm{ac}\). \\
& \(=636.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Tomato (winter).
Site :- Vegetable Res. Stn., Kurnool.
Ref:- A.P. 59(115).
Type :- ' CM '.
'Object:-To find out the optimum spacing and manurial doses for Tomato crop.
1. BASAL CONDITION8;
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Black loam. (b) Refer soil aaalysis, Kurnool. (iii) N.A./ 26, 27.9.1959. (iv) (a) 2 ploughings, working gorru and guntaka. (b) Transplanting. (c) 6 to 8 ozs./ac. (d) As per treatments. (e) 1. (v) 10 ton./ac. of F.Y.M. (vi) Red round (medium). (vii) Irrigated. (viii) 2 weedings and hoeings with spade and forming bunds around the plots. (ix) N.A. (x) 7.12.1959 to 7.3.1960.
3. TREATMENTS ;

All combinations of (1), (2) and (3) \({ }^{*}\)
(1) 3 levels of spacing: \(\mathrm{S}_{0}=1^{\prime} \times 2^{\prime}, \mathrm{S}_{1}=1 \frac{1}{2}^{\prime} \times 1 \frac{1}{2}^{\prime}\). and \(\mathrm{S}_{2}=2^{\prime} \times 2^{\prime}\).
(2) 3 levels of \(N\) as \(A / S: N_{0} \doteq 0, N_{1}=20\) and \(N_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(3) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=40\) and \(\mathrm{P}_{2}=80 \mathrm{lb}\)./ac.
3. DESIGN :
(i) \(3^{3}\) partially confd. (ii) (a) 9 plots/block; 3 blocks/replication. (b) \(72^{\prime} \times 54^{\prime}\). (iii) 1 . (iv) (a) \(24^{\prime} \times 18^{\prime \prime}\). (b) \(22^{\prime} \times 14^{\prime}\) for \(S_{0}, 21^{\prime} \times 15^{\prime}\) for \(S_{1}\) and \(20 \times 14^{\prime}\) for \(S_{2}\) (v) One row all round. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Tomato yield. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 11692 lb ./ac. (ii) \(9072 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of Tomato in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{292} & \multirow[b]{2}{*}{\(\mathrm{S}_{2}\)} \\
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mcan & \(\mathrm{S}_{0}\) & \(\mathrm{S}_{1}\) & \\
\hline \(\mathrm{N}_{0}\) & 9878 & 8915 & 9993 & 9594 & 10528 & 7706 & 10548 \\
\hline \(\mathrm{N}_{1}\) & 8064 & 16330 & 15120 & 13171 & 13597 & 11939 & 13977 \\
\hline \(\mathrm{N}_{2}\) & 11804 & 13462 & 11670 & 12312 & 11110 & 11178 & 14648 \\
\hline Mean & 9915 & 12902 & 122 ¢ & 11692 & 11/45 & '10274 & 13058 \\
\hline \(\mathrm{S}_{0}\) & 10595 & 12566 & 12074 & & & & - \\
\hline \(S_{1}\) & 7190 & 12589 & 11043 & & & & \\
\hline \(\mathrm{S}_{2}\) & 11950 & 13551 & 13663 & & & & \\
\hline \multicolumn{4}{|r|}{\begin{tabular}{l}
S.E. of any marginal mean \\
S.E. of body of any table
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =3024 \mathrm{lb} . / \mathrm{ac} . \\
& =5238 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
\]} & & \\
\hline
\end{tabular}

\section*{Crop :- Tomato (Rabi). \\ Site :- Agri. Res. Instt., Rajendranagar.}

Ref :- A.P. 58(101).
Type :- 'CMV'.

Object :-To study the effect of spacings and manures on the yield of different varieties of Tomato.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Wheat. (c) 20 C.L./ac. of F.Y.M. after preparatory cultivation. (ii) (a) Black cotton. (b) N.A. (iii) \(28.10 .1958 / 26.11\).1958. (iv) (a) 4 ploughings with iron mould plough as preparatory cultivation, levelling with patta and forming of ridges and furrows. (b) to (d) N.A. (e) 1. (v) 40 C.L.fac. of F.Y.M as B.D. at the time of 3rd preparatory ploughing. (vi) As per treatments. (vii) Irrigated. (viii) Gap-filling after one week of transplanting. Weeding as and when required. (ix) 3.9". (x) 25.4.1959.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 varieties: \(\mathrm{V}_{1}=\) Muruti, \(\mathrm{V}_{2}=\) Marglobe and \(\mathrm{V}_{3}=\) Sioux.
(2) 3 spacings: \(\mathrm{S}_{1}=2^{\prime} \times 1 \frac{1}{2}^{\prime}, \mathrm{S}_{2}=2^{\prime} \times 2^{\prime}\) and \(\mathrm{S}_{3}=2^{\prime} \times 3^{\prime}\).
(3) 3 manurial levels: \(\mathrm{M}_{1}=10 \mathrm{lb}\)./ac. of \(\mathrm{N}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}, \mathrm{M}_{2}=20 \mathrm{lb}\)./ac. of \(\mathrm{N}+40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+20 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{M}_{3}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+60 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+30 \mathrm{lb}\). \(/ \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).

\section*{3. DESIGN :}
(i) \(3^{3}\) confd. (ii) (a) 9 plots/block; 3 blocks/replication. (b) N.A. (iii) 1. (iv) (a) \(24^{\prime} \times 18^{\prime}\). (b) \(20^{\prime} \times 14^{\prime}\). (v) \(2^{\prime} \times 2^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nit. (iii) Yield of tomato. (iv) (a) 1958-contd. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(8939 \mathrm{lb} . / \mathrm{ac}\). (ii) \(1576 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effects of \(V\) and \(S\) are significant. (iv) Av. yield of tomato in \(\mathrm{lb} . / \mathrm{ac}\).

\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =525 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of any table } & =910 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]
Grop :- Tomato.
Site :- Agri. Res. Instt., Rajindranagar.

Ref:- A.P. 59(60).
Type :- 'CMY'.
Object :-To study the effect of spacings and manures on the yield different varieties of Tomato.
i. BASAL CONDITIONS :
(i) (a) Nil. (b) Wheat. (c) 20 C.L./ac. of F.Y.M. after preparatory cultivation. (ii) (a) Black cotton. (b)
N.A. (iii) October 1959/- (iv) (a) 4 ploughings with iron mould board plough as preparatory cultivation, levelling with patta ridges and furrows were made with manual labour. (b) to (e) N.A. (v) 40 C.L./ac. of F. Y: M. as B.D. at the time of 3rd preparatory ploughing. (vi) As per treatments. (vii) Irrigated. (viii) Gap-filling after one week of transplantation. Weedigg after every 15 days. (ix) 8.8". (x) N.A.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58(101) on page 292.
5. RESULTS:
(i) \(19827 \mathrm{lb} . / \mathrm{ac}\). (ii) \(3300 \mathrm{ib} . / \mathrm{ac}\). (iii) Main effect of V alone is highly significant. (iv) Av. yield of fruit in \(1 \mathrm{~b} . / \mathrm{ac}\).

\begin{tabular}{ll}
S.E. of any marginal mean & \(=1: 00 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=1905 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Grop:- Tomato (Riabi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 58(61)
Type :- 'CMV'.

Object :-To study the effect of spacings and manures on the yield of different varieties of Tomato.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Wheat. (c) 20 C.L./ac. of F.Y.M. after peparatory cultivation. (ii) (a) Black cotton soils. (b) N.A. (iii) 28.10.1958./26 11.1958. (iv) (a) Ploughings with iron mould board plough as preparatory cultivation, levelling with patta, making ridges and furrows. (b) to (e) N.A. (v) 40 C.L./ac. of F.Y.M. as basal dressing at the time of third preparalory ploughing. (vi) As per treatments. (vii) Irrigated. (viii) Gap-filling after one week of transplanting weeding twice a month regularly. (ix) \(0.47^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS and 3. DESIGN :}

Same as in expt. no. 58(101) on page 292.

\section*{Sub-plot treatments :}

2 varieties: \(V_{1}=\) Canadian and \(V_{2}=\) Bountiful.
3. DESIGN :
(i) Split-plot. (ii) (a) 8 main-plots/replication; 2 sub-plots/main-plot. (iii) 3. (iv) (a) \(24^{\prime} \times 12^{\prime}\). (b) \(20^{\prime} \times 12^{\prime}\). (v) \(2^{\prime}\) on either side breadth wise. (vi) Yes.

\section*{4. GENERAL :}
(i) Satisfactory. (ii) Regular dusting with Geigy 1250 to prevent the attack of beetles. (iii) Pod yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(416 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(546.5 \mathrm{lb} . / \mathrm{ac}\). (b) \(283.3 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of D alore is highly significant. (iv) Av. yield of pods in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & , & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & \(\mathrm{D}_{5}\) & \(\mathrm{D}_{6}\) & \(\mathrm{D}_{7}\) & \(\mathrm{D}_{8}\) & Mean \\
\hline \(\mathrm{V}_{1}\) & & 428 & 259 & 628 & 741 & 445 & 410 & 88 & 8 & 376 \\
\hline \(\mathrm{V}_{2}\) & 1 & 907 & 250 & 430 & 617 & 548 & 672 & 175 & 54 & 457 \\
\hline Mean & ; & 667 & 254 & 529 & 679 & 496 & 541 & 132 & 31 & 416 \\
\hline
\end{tabular}

\section*{S.E. of difference of two}
\begin{tabular}{ll}
1. D marginal means & \(=315.5 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(V\) marginal means & \(=81.8 \mathrm{lb} \cdot / \mathrm{ac}\). \\
3. \(V\) means at the same level of D & \(=231.3 \mathrm{lb} . / \mathrm{ac}\). \\
4. D means at the same level of V & \(=355.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- French Beans.}

Site :- Agri. Res. Instt., Rajendranagar.

\section*{Ref:- A.P. 5 8(94). \\ Type :- 'CMV'.}

Object :-To study the effect of spacing and manuring on the yield of different varieties of French Beans.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Black cotton soil. (b) N.A. (iii) 3.01958 . (iv) (a) 6 ploughings with iron mould-board plough as preparatory tillage, levelling with patta, forming of ridges and furrows. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) 20 C.L./ac. of F.Y.M as basal dcse at the tıme of third preparatory ploughing. (vi) As per treatments. (vii) Irrigated. (viii) Gap-filing after one week of sowing. Weeaing once a week regularly. (ix) \(3^{\prime \prime}\). (x) 17.21957.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 varieties: \(V_{1}=\) Canadian Red, \(V_{2}=\) Bountiful and \(V_{3}=\) Bolarum.
(2) 3 spacings: \(\mathrm{S}_{1}=2 \times 1^{\prime}, \mathrm{S}_{2}=2^{\prime} \times 1^{\frac{1}{2}^{\prime}}\) and \(\mathrm{S}_{3}=2^{\prime} \times 2^{\prime}\).
(3) 3 manurial levels: \(\mathrm{M}_{1}=10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+20 \mathrm{lb}\). ac . of \(\mathrm{P}_{2} \mathrm{O}_{5}+10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}, \mathrm{M}_{2}=20 \mathrm{lb} . \mathrm{ac}\). of \(\mathrm{N}+40 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+20 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{M}_{3}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+60 \mathrm{lb}\).;ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN:
(i) \(3^{3}\) confd.
d. (ii) (a) 9 plots/block; 3 blocks/replications. (b)
(b) N.A. (iii) 1
(a) \(20^{\prime} \times 14^{\prime}\).
(b) \(16 \times 10^{\prime}\).
(v) \(2^{\prime} \times 2^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal, (ii) When the crop was \(1 \frac{1}{2}\) months old signs of moisture worms appeared. When it was 2 months old, mist was noted ; sulphur dusting done. After the formation of pods the fruit bcrers preserce was noted. Endrine at sce per gallon of water sprayed. Regular custing with Geigy-1250 dusted to prevent the attack of beetles. (iii) Nil. (iv) (a) \(1958-1960\). (b) No. (c) Nil. (v) to (vii) vil.

\section*{5. RESULTS :}
(i) \(4520 \mathrm{lb} . / \mathrm{ac}\). (ii) \(1243 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effects of \(\mathrm{V}, \mathrm{S}\) and M are significant. (iv) Av. yield of pod inlb./ac.

\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =4144 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of the body of any table } & =717.7 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

Crop :- French Beans (Rabi).
Ref :- A.P. \(59(56)\).
Site :- Agri. Res. Instt., Rajendranagar.
Type :- 'CMV'.
Object :-To study the effcct of spacing. and manuring on the yield of different varieties of French Beans.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c)-. (ii) (a) Black cotton soil. (b) N.A. (iii) October, 1959. (iv) (a) 6 ploughings with iron mould-board plough as preparatory tillage, levelling with patta, forming of ridges and furrows. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) 20 C.L./ac. of F.Y.M. as basal dose at the time of 3 rd ploughing. (vi) As per treatments. (vii) Irrigated. (viii) Gap-filling was done after one week of transplantation. (ix) \(9^{\circ}\). (x) February, 1960.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 58(94) on page 296.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Pod yield. (iv) (a) 1958-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS : .
(i) \(2487 \mathrm{lb} . / \mathrm{ac}\). (ii) \(1106 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) \(\mathrm{A} v\). yield of pod in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(S_{2}\) & \(S_{3}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & M \({ }_{3}\) \\
\hline \(\mathrm{V}_{1}\) & 2483 & 2016 & 1754 & 2084 & 2224 & 1679 & 2350 \\
\hline \(\mathrm{V}_{2}\) & 2557 & 2363 & 1806 & 2242 & 2515 & 1883 & 2327 \\
\hline \(\mathrm{V}_{3}\) & 3678 & 3166 & 2558 & 3134 & 3247 & 2617 & 3539 \\
\hline Mean & 2906 & 2515 & 2039 & 2487 & 2662 & 2059 & 2739 \\
\hline \(\mathrm{M}_{1}\) & 3436 & 2563 & 1987 & & & - & \\
\hline \(\mathrm{M}_{2}\) & 2200 & 2272. & 1705 & & & & \\
\hline \(\mathrm{M}_{3}\) & 3082 & 2709 & 2425 & & & & \\
\hline
\end{tabular}
S.E. of any marginal mean
\(=368.8 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of any table
\(=638.6 \mathrm{lb} . / \mathrm{ac}\).

\section*{S.E. of difference of two}
\begin{tabular}{ll}
1. \(V\) marginal means & \(=129.8 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(S\) marginal means & \(=72.2 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(S\) means at the same level of \(V\) & \(=144.4 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(V\) means at the same level of \(S\) & \(=194.2 \mathrm{ib} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Cluster Beans.}

Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 58(96).
Type :- ‘CMV'.

Object:-To find out a suitable combination of variety, spacing and manurial level for Chuster Beans.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Tomato. (c) 40 C.L./ac. of F.Y.M. as B.D. \(+20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+40 \mathrm{lb}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super \(+20 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. (ii) Black cotton soil. (b) N.A. (iii) 2.7.1958. (iv) (a) Ploughing 4 times as preparatory cultivation, levelling with patia and forming of ridges and furrous with the help of manual labour., (b) and (c) N.A. (d) As per treatme sts, (e) N.A. (v) 20 C.L./ac. of F.Y.M. after preparatory ploughing and before levelling the soil and making ridges and furrows. (vi) As per treatments. (vi) Irrigated. (viii) Gap-filling done after one week of sowing. Crop weeded regulariy with the he!p of manual labour. (ix) \(38^{\prime \prime}\) (x) 2.11.1958.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 varieties: \(\mathrm{V}_{1}=\) Early long, \(\mathrm{V}_{2}=\) Surti long and \(\mathrm{V}_{3}=\) Nadiad.
(2) 3 spacings; \(S_{1}=3^{\prime} \times 1 \frac{1}{2}^{\prime}, S_{2}=2^{\prime} \times 2^{\prime}\) and \(S_{3}=1 \underline{1}^{\prime} \times 1^{\prime}\).
(3) 3 manurial levels: \(\mathrm{M}_{1}=\) No manure, \(\mathrm{M}_{2}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+15 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) and \(\mathrm{M}_{3}=60 \mathrm{lb}\)./ac. of \(\mathrm{N}+60 \mathrm{lb}\). ac . of \(\mathrm{P}_{2} \mathrm{O}_{5}+30 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN :
(i) \(3^{3}\) confd. (ii) (a) 9 plots/block, 3 blocks/replication. (b) \(54^{\prime} \times 36^{\prime}\). (iii) 1 . (iv) (a) \(18^{\prime} \times 12^{\prime}\) (b) \(16^{\prime} \times 10^{\prime}\). (v) \(2^{\prime} \times 2^{\prime}\). (vi) Yes.

\section*{4. GENERAL ;}
(i) The growth was normal. No lodging. (ii) Powdery mildew was noticed when the crop was 5 months old. Sulphur dusting 3 times at an interval of one week. When the crop was 4 months old all the leaves and pods developed black spots. No control measures were taken for this. (iii) Pod yield. (iv) (a) 1938-contd. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) 5260 lb ./ac. (ii) \(1073 \mathrm{lb} . / \mathrm{ac}\). (iii) Effect of \(S\) is highly significant. Other effects are not significant. (iv) Av. yield of pods in lb .; ac .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(S_{3}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
\hline \(\mathrm{V}_{1}\). & 4319 & 4638 & 8390 & 5783 & 5714 & 5:01 & 5932 \\
\hline \(\mathrm{V}_{2}\) & 4265 & 4230 & 6932 & 5142 & 5151 & 4950 & 5327 \\
\hline \(\mathrm{V}_{3}\) & 3545 & 4063 & 6954 & 4854 & 5559 & . 5416 & 3588 \\
\hline Mean & 4043 & 4311 & 7425 & 5260 & 5474 & 5356 & 4949 \\
\hline \(\mathrm{M}_{1}\) & 3813 & 5231 & 7378 & & & & \\
\hline \(\mathrm{M}_{2}\) & 3736 & 4093 & 8239 & & & & \\
\hline \(\mathrm{M}_{3}\) & 4579 & 3609 & 6659 & & & & \\
\hline
\end{tabular}
S.E. of any marginal mean S.E. of body of any table
\(=357.7 \mathrm{lb} . / \mathrm{ac}\).
\(=619.5 \mathrm{lb} . / \mathrm{ac}\).
```

Crop :- Cluster Beans (Kharif).
Site :- Agri. Res. Instt., Rajendranagar.
Ref :- A.P. 59(57).
Type :- ‘CMV'.

```

Object :-To study the effect of spacingssand manurial doses on different varieties of Cluster Beans.
1. BASAL CONDITIONS
(i) (a) Nil. (b) Tomato. (c) 40 C.L./ac. of F.Y.M. as basal dose \(+20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+40 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +20 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. (ii) (a) Black cotton soil. (b) N.A. (iii) July 1959/. (iv) (a) 4 ploughings, levelling with patta, forming of ridges and furrows with the help of manual labour. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) 20 C.L./ac. of F.Y.M. after preparatory ploughing and before levelling the soil and making ridges and furrows. (vi) As per treatments. (vii) Unirrigated. (viii) Gap-filling was done after one week of transplanting. Crop weeded every 15 days with the help of manual labour. (ix) \(26^{\prime \prime}\). (x) Nov. 1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 58 (96) on page 300
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Pod yield, (iv) (a) 1958-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 17983 lb ./ac. (ii) \(4305 \mathrm{lb} / \mathrm{ac}\). (iii) Main effect of S is highly significant while that of V is significant. Other effects are not significant. (iv) Av. yield of pod in \(1 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(S_{1}\) & \(S_{2}\) & \(S_{3}\) & Mean & \(\mathrm{M}_{1}\) & . \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
\hline \(\mathrm{V}_{1}\) & 23111 & 18006 & 24518 & 21878 & 21048 & 22182 & 22404 \\
\hline \(\mathrm{V}_{2}\) & 15232 . & 15360 & 21968 & 17520 & 19620 & 15498 & 17442 \\
\hline \(\mathrm{V}_{3}\) & 11179 & 11747 & 20729 & 14552 & 13734 & 15847 & 14075 \\
\hline ; Mean & 16507 & 15038 & 22405 & 17983 & 18134 & 17842 & 17974 \\
\hline M \({ }_{1}\) & 18137 & 17069 & 19196 & \multicolumn{4}{|c|}{\multirow[b]{3}{*}{-}} \\
\hline \(\mathrm{M}_{2}\) & 15775 & 13675 & 24076 & & & & \\
\hline \(\mathrm{M}_{3}\) & 15609 & 14370 & 23943 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal mean & \(=1435 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=2485 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Cluster beans (Kharif).
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 59(58).
Type :- 'IV'.

Object :-To study the effect of varieties and irrigation on the yield of different varieties of Cluster Beans.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) (a) Black cotton soil. (b) N.A. (iii) July 1959. (a) 4 ploughings, levelling with patia, forming of ridges and furrows with the help of manual labour. (b) to (e) N.A. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) Gap-filling after one week of transplanting crop weeded after every 15 days with the help of manual lakour. (ix) \(26^{\prime \prime}\). (x) Nov. 1959.
2. TREATMENTS :

All combinations of (1) and (2)
2 varieties: \(\mathrm{V}_{1}=\) Nadiad, \(\mathrm{V}_{2}=\) Early long.
3 irrigation levels: \(\mathrm{I}_{0}=\) No irrigation, \(\mathrm{I}_{1}=\) One irrigation, \(\mathrm{I}_{2}=\) Two irrigations.
3. DESIGN :
(i) Fact. in R.B.D. (ii)
(a) 6. (b)
b) N.A. (iii)
(iii) 4 .
(iv) (a)
a) N.A. (b) \(12^{\prime} \times 16^{\prime}\).
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Pod yield. (iv) (a) and (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(10986 \mathrm{lb} / \mathrm{ac}\). (ii) 1607 lb . lac . (iii) Main effect of V alone is highly significant. (iv) Av. yield of pod in lb ./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(I_{0}\) & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & Mean \\
\hline \(\mathrm{V}_{1}\) & 9897 & 9444 & 9451 & 9597 \\
\hline \(\mathrm{V}_{2}\) & 13017 & 11368 & 12736 & 12374 \\
\hline Mean & 11457 & 10406 & 11094 & 10986 \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of I marglnal mean } & =568.2 \mathrm{lb} . / \mathrm{ac}, \\
\text { S.E. of V marginal mean } & =463.9 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =803.5 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

\section*{Grop :- Horsegram. \\ Site :- Agri. College Farm, Bapatla. \\ Ref :- A.P. 55(20). \\ Type :- 'M'}

Object : - To study the effect of \(\mathrm{P}_{2} \mathrm{O}_{3}\) on the yield of Horsegram.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Horsegram. (c) As per treatments. (ii) (a) Sandy. (b) Refer soil analysis, Bapatla. (iii) 21, 22.10.1955. (iv) (a) 3 ploughings. (b) N.A. (c) \(20 \mathrm{lb} . / \mathrm{ac}\). (d) \(6^{\prime \prime} \times 6^{\prime \prime}\). (e) 2 . (v) Nil. (vi) Local. (vii) Unirrigated. (viii) One weeding. (ix) N.A. (x) 11.2.1956.

\section*{2. TREATMENTS :}
1. 5 tons/ac. of F.Y.M.
2. 5 tons/ac. of F.Y.M. \(+20 \mathrm{cwts} / \mathrm{ac}\). of Super.
3. DESIGN :
(i) R.B.D. (ii) (a; 2 . (b) N.A. (iii) 12 . (iv) (a) \(18.5^{\prime} \times 15.2^{\prime}\). (b) \(16.5^{\prime} \times 13.2^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii) Nil.
iii) Grain and straw yie
ield. (iv)
(a) 1954-contd.
(b) Yes.
(c) NiL
(v) to (vii) Nil.
5. RESULTS :
(i) \(122 \mathrm{lb} .{ }^{\prime} \mathrm{ac}\). (ii) \(42.8 \mathrm{lb} . \mathrm{ac}\). (iii) Treatment difference is highly significant. (iv) Av. yield of grain in \(1 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lcc}
Treatment & 1 & 2 \\
Av. yield & 76 & 169
\end{tabular}
S.E./mean \(=12.3 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Bengal Gram.}

Site :- Agri. Res. Instt., Rajendranagar.

Ref:- A.P. 54(15).
Type :- 'D'.

Object :-To study whether artificial introduction of \(N\) fixing bacteria (by the inoculation of legume seed) is necessary for soils at Rajendranagar.
1. BASAL CONDITIONS: :
(i) (a) Nil. (b) Groundout. (c) \(275 \mathrm{lb} / \mathrm{ac}\). of paddy fertilizer mixture. (ii) (a) Clay loam. (b) N.A. (iii) 13.11.1954. (iv) (a) and (b) One ploughing and two harrowings. (c) to (e) N.A. (v) Nil. (vi) Local (medium). (vii) Irrigated. (viii) 2 weedings. (ix) \(09^{\prime \prime}\). (x) 26.2.1955.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 doses of inoculation: \(\mathrm{I}_{0}=\) Control (no inoculation), \(\mathrm{I}_{1}=\) Inoculam and \(\mathrm{I}_{2}\) = Double Inoculam.
(2) 2 levels of \(N\) as \(A / S: N_{0}=0\) and \(N_{1}=30 \mathrm{lb}\)./ac.
(3) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=30 \mathrm{lb} . / \mathrm{ac}\).
3. JESIGN:
(i) Fact. in R.B.D.
(ii) (a) 12.
(b) N.A.
(iii) 3.
(iv) (a) and (b) \(65^{\prime} \times 18^{\prime}\)
(v) Nil. (vi) Yes.
4. GENERAL:
(i) Good.
(ii) No.
(iii) Grain yield.
(iv) (a) and (b) No.
(c) Nil.
(v) to (vii) Nil.
5. RESULTS :
(i) \(621 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(109.5 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

S E. of N or P marginal mean
\(=25.8 \mathrm{lb} . / \mathrm{ac}\).
S.E. of I marginal mean
\(=31.6 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of \(\mathrm{N} \times \mathrm{I}\) or \(\mathrm{P} \times \mathrm{I}\) table
\(=44.7 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of \(\mathrm{N} \times \mathrm{P}\) table
\(=36.5 \mathrm{lb} . / \mathrm{ac}\).

\section*{Grop:- Horsegram.}

Centre :- Karimnagar (c.f.).

Ref :- A.P. 59(SFT)
Type:- \({ }^{\prime} \mathbf{M}^{\prime}\).

Object - Type C-To compare the responses of leguminous crops to alternative sources and levels of phosphate.

\section*{1. BASAL CONDITIONS}
(i) (a) to (c) N.A. (ii) Red and black. (iii) Nil. (iv) July 1959. (v) to (ix), NA. (x) October-November.
2. TREATMENTS:
\(0=\) Control (no manure).
\(\mathrm{p}_{1}=30 \mathrm{lb}\)./ac. of \(\mathrm{F}_{2} \mathrm{O}_{5}\) as Super,
1. \(\mathrm{p}_{2}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{n}_{1} \mathrm{p}_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super + an equal amount of N present in \(\mathrm{p}_{1}{ }^{\prime}\).
\(\mathrm{n}_{2} \mathrm{p}_{2}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +an equad amount of N present in \(\mathrm{p}_{2}{ }^{\prime}\).
\(\mathrm{p}_{1}{ }^{\prime}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono ammonium phosphate.
\(\mathrm{p}_{2}^{\prime}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono ammonium phosphate.
3. DESIGN :

1 (i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field , assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is
ir required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of Type A and the other
! half of Type B on crops other than the legumes. The three trials on legumes are of Type C. Residual
1 effects of phosphate application are studied on Type \(C\) trials in two out of the four zones in each district every year. The experiments are iaid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.

\section*{4. GENERAL :}
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1959 -contd. (b) No. (c) N.A. (v) As per design. (vi) and (vii) Nil.
5. RESULTS :

\section*{Crop :- Horsegram. \\ Ref :- A.P. 59(SFT). \\ Centre :- Karimnagar (c.f.). \\ Type :- ‘ \(\mathbf{M}\) ’.}

Object :-Type C-To compare the response of leguminous crops to alternative sources and levels of phosphate.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and black. (iii) Nil. (iv) July 1959. (v) to (ix) N.A. (x) OctoberNovember.
2. TREATMENTS :
\(0=\) Control (no manure).
\(p_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{p}_{7} \quad=60 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{n} \mathrm{p}_{1}=30 \mathrm{lo}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super + an equal amount of N present in \(\mathrm{p}_{1}{ }^{\prime}\).
\(\mathrm{n}_{2} \mathrm{p}_{2}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super + an equal amount of N present in \(\mathrm{p}_{2^{\prime}}\).
\(\mathrm{p}_{1}{ }^{\prime}=30 \mathrm{lb}\).;ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono ammonium phospbate.
\(\mathrm{p}_{2}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono ammonum phosphate.
3. DESIGN and 4. GENERAL :

Same as in experiment no. 59(SFT) type C on page 303 conducted at Karimnagar.
5. RESULTS :
\begin{tabular}{lclccccc}
Treatment & 0 & \(p_{1}\) & \(p_{2}\) & \(n_{1} p_{1}\) & \(n_{2} p_{2}\) & \(p_{1}{ }^{\prime}\) & \(p_{2}{ }^{\prime}\) \\
Av. yie!d & 304 & 346 & 411 & 420 & 469 & 321 & 411
\end{tabular}
G.M. \(=383 \mathrm{lb} . / \mathrm{ac}\). S.E. \(=69.8 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=5\).
```

Crop :- Horsegram.
Ref :- A.P. 58(SFT).
Site :- Krishna.
Type :- 'M'.

```

Object:-Type C-To compare the response of leguminous crops to alternative sources and levels of phosphate.

1 BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal. (iii) Nil. (iv) July. (v) to (ix) N.A. (x) October-November.
2. TREATMENTS :
\(0=\) Control (no manure).
\(\mathrm{P}_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{p}_{2}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{C}_{5}\) as Super.
DESIGN and 4. GENERAL:
Same as in expt. no. 59(SFT) Type \(C\) on page 303 conducted at Karimnagar.
5. RESULTS :
\(\begin{array}{llll}\text { Treatment } & 0 & p_{1} & p_{2}\end{array}\)
\(\begin{array}{llll}\text { Av. yield } & 123.4 & 139.9 & 148.1\end{array}\)
G.M. \(=137.1 \mathrm{lb} . / \mathrm{ac}, \mathrm{S} . \mathrm{E} .=2.91 \mathrm{lb} . / \mathrm{ac}\). and no of tria's \(=12\).

\section*{Crop :- Black gram.}

Ref :- A.P. 58(SFT).
Centre :- Guntur (c.f.).
Object :-Type \(\mathrm{C}-\) To compare the response of leguminous crops to different sources and levels of \(\mathbf{P}\).
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Red and black.
(iii) Nil.
(iv) June-July, 1958.
(v) to (ix̀) N.A.
x) September-

October, 1958.
2. TREATMENTS:
\(0=\) Control (no manure).
\(\mathrm{p}_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{p}_{2}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant prosted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type A and the other half of type B on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosph:te application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village.' (iii) (a) \(1 / 40\) ac. (b) \(1 / 80 \mathrm{ac}\). (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1958-contd. (b) No. (c) N.A. (v) As per treatments. (vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{lccc}
Treatment & 0 & \(\mathrm{p}_{\mathbf{1}}\) & \(\mathrm{p}_{\mathbf{2}}\) \\
Av. yield & 370 & 436 & 436
\end{tabular}
```

Crop :- Black gram.
Centre :- Guntur (c.f.).
Ref :- A.P. 59(SFT).
Tyре :- ' $\mathbf{M}^{\prime}$.

```

Object :-Type C-To compare the response of leguminous crops to different sources and levels of P .
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii).Red and black. (iii) Nil. (iv) June-July, 1959. (v) to (ix) N.A. (x) SeptemberOctober, 1959.
2. TREATMENTS:
\(0=\) Control (no manure).
\(\mathrm{p}_{1}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{p}_{2}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.'
\(n_{1} p_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super + an equal amount of N present in \(\mathrm{p}_{1}{ }^{\prime}\).
\(\mathrm{n}_{2} \mathrm{p}_{2}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super+ an equal amount of N present in \(\mathrm{p}_{2}{ }^{\prime}\).
\(\mathrm{p}_{1}{ }^{\prime}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono Ammonium phosphate.
\(\mathrm{p}_{2}{ }^{\prime}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono Ammonium phosphate.
DESIGN and 4. GENERAL :
Same as in expt. no. 58(SFT) type C above conducted at Guntur.
RESULTS:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\mathrm{p}_{1}\) & \(\mathrm{p}_{2}\) & \(\mathrm{n}_{1} \mathrm{p}_{1}\) & \(\mathrm{n}_{2} \mathrm{p}_{2}\) & \(\mathrm{p}_{1}^{\prime}\) & \(\mathrm{p}_{2}^{\prime}\) \\
\hline Av. yield & 354. & 494 & . 592 & 502 & 568 & 494 & 543 \\
\hline 1 & G.M. & 507 & ac. ; & 26. & c. an & trials & \\
\hline
\end{tabular}

Crop :- Black gram.
Centre :- Krishna. (c,f.).

Ref :- A.P. 58(SFT).
Type :- 'M'.

Object :- Type C-To compare the responses of leguminous crops to different sources and levels of \(P\).
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (iii) Black coastal. (iii) Nil. (iv) June-July, 1958 . (v) to (ix) N.A. (x) SeptemberOctober, 1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58 (SFT) type \(C\) on page 305 conducted at Guntur.
5. RESULTS :
\begin{tabular}{lccc}
Treatment & 0 & \(\mathrm{p}_{1}\) & \(\mathrm{p}_{2}\) \\
Av. yieid & 107 & 123 & 99 \\
& G.M. \(=\) & \(110 \mathrm{lb} . / \mathrm{ac} . ; \mathrm{S} E .=9.3\) and no. of trials \(=5\).
\end{tabular}
```

Crop :- Black gram.
Centre :- Krishna. (c.f.).
Ref :- A.P. 59(SFT).
Type:- 'M'.

```

Object :-Type C-To compare the responses of leguminous crops to different sources and levels of \(P\).
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Black coastal. (iii) Nil. (iv) June-July 1959. (v) to (ix) N.A. (x) SeptemberOctober, 1959.

\section*{2. TREATMENTS :}
\(0=\) Control (no manure).
\(\mathrm{p}_{1}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathbf{p}_{2}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(n_{1} p_{1}=30 \mathrm{Ib} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super + an equal amount of N present in \(p_{1}\).
\(\mathrm{n}_{2} \mathrm{p}_{2}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super + an equal amount of N present in \(\mathrm{p}_{2}{ }^{\prime}\).
\(\mathrm{p}_{1}^{\prime}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono Ammonium phosphate.
\(\mathrm{p}_{2}{ }^{\prime}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono Ammonium phosphate.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 58 (SFT) type \(C\) on page 305 conducted at Guntur.
5. RESULTS:
\begin{tabular}{lclccccc}
Treatment & 0 & \(p_{1}\) & \(p_{2}\) & \(n_{1} p_{1}\) & \(n_{2} p_{2}\) & \(p_{1}^{\prime}\) & \(p_{2}^{\prime}\) \\
Av. yield & 607 & 667 & 708 & 732 & 806 & 634 & 691
\end{tabular}
\[
\text { G.M. }=692 \mathrm{lb} . / \mathrm{ac} . ; \text { S.E. }=2.9 \mathrm{lb} . / \mathrm{ac} . \text { and no. of trials }=15 .
\]
```

Crop :- Bengalgram.
Centre :- Krishna (c.f.).
Ref:- A.P. 59(SFT).
Type :- 'M'.

```

Object:-Type C-To compare the responses of leguminous crops to different sources and levels of P .
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Coastal.
(iii) Nil.
(iv) October-November, 1959. (v) to (ix) N.A. (x)
March 1960.
2. TREATMENTS :
\(0=\) Control (no manure).
\(\mathrm{p}_{1}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{p}_{2}=60^{\circ} \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(n_{1} p_{1}=30 \mathrm{lb} . \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super + an equal amount of N present in \(\mathrm{p}_{1}{ }^{\prime}\).
\(n_{2} \mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super + an equal amount of N present in \(\mathrm{p}_{2}{ }^{\prime}\).
\(\mathrm{p}_{1}{ }^{\prime}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono Ammonium phosphate.
\(\mathrm{p}_{2}{ }^{\prime}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono Ammonium phosphate.

\section*{DESIGN:}
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year. 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of Type \(A\) and the other half of Type \(\mathbf{B}\) on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosphate application are studied on type \(C\) trials in two out of the four zones in each district "every year. The experiments are laid out in randomly located fields in randomly located villages in each of the 4 zones at the rate of one experiment per village (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1958 -contd. (b) No. (c) N.A. (v) As per design.
(vi) and (vii) Nil. (vi) and (vii) Nil.
5. RESULTS:
\begin{tabular}{llllrrrr}
Treatment & 0 & \(\mathrm{p}_{1}\) & \(\mathrm{p}_{2}\) & \(\mathrm{n}_{1} \mathrm{p}_{1}\) & \(\mathrm{n}_{2} \mathrm{p}_{2}\) & \(\mathrm{p}_{1}{ }^{\prime}{ }^{\prime}\) & \(\mathrm{p}_{2}{ }^{\prime}\) \\
A.v. yield & 132 & 255 & 272 & 272 & 321 & 230 & 239
\end{tabular}
G.M. \(=246 \mathrm{lb} . / \mathrm{ac}\). S.E. \(=9.9 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=3\).

\section*{Crop :- Bengalgram. \\ Centre :- Warangal (c.f.). \({ }^{\text {© }}\)}

Ref:- A.P. 58(SĖT).
Type :- 'M'.

Object :-Type C-To compare the responses of leguminous crops to different sources and levels of \(P\).
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) Red and deep black. (iii) Nil. (iv) October-November 1958. (v) to (ix) N.A.
(x) March 1959.
2. TREATMENTS :
\(0 \doteq\) Control (no manure).
\(\mathrm{p}_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathbf{p}_{2}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{p}_{1}{ }^{\prime}=30 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono Ammonium phosphate.
\(\mathrm{p}_{2}{ }^{\prime}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono Ammonium phosphate.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 59 (SFT) type C on page 306 conducted at Krishna.
5. RESULTS:

```

Crop :- Bengalgram.
Centre :- Warangal. (c.f.).
Ref:- A.P. 59(SFT).
Type:- `M'.

```

Object :-Type C-To compare the responses of leguminous crops to different sources and levels of P .

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) Red and black. (iii) Nil. (iv) October-November, 1959. (v) to (ix) N.A. (x) March 1960.
2. TREATMENTS to 4. GENERAL ;

Same as in expt. no. 59 (SFT) type \(C\) on page 306 conducted at Krishna.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & - & \(\mathrm{p}_{1}\) & \(\mathrm{p}_{2}\) & \(\mathrm{n}_{1} \mathrm{p}_{1}\) & \(\mathrm{n}_{2} \mathrm{p}_{2}\) & \(\mathrm{p}_{1}{ }^{\prime}\) & \(\mathbf{p}_{2}{ }^{\text {b }}\) \\
\hline Av. yield & 181 & 222 & 214 & 280 & 263 & 230 & 255 \\
\hline
\end{tabular}
Crop :- Mung.
Centre :- Srikakulam. (c.f.).

\section*{Ref :- A P. 58(SFT). \\ Type :- 'M'.}

Object:-Type C-To compare the responses of leguminous crops to different sources and levels of P .
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and others. (iii) Nil. (iv) N.A. (v) to (x) N.A.
2. TREATMENTS :
\(0=\) Control (no manure).
\(\mathrm{p}_{1}=30 \mathrm{lb} . / \mathrm{lac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(p_{2}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in tee zone and the circle/thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on a oilsed crop and 3 on a leguminous crop. Half the number of trials conducted are of type A and the other half of type B on the crops otber than the legumes. The three trials on legumes are of type C. Residual effects of phesphs:e application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are 'aid out in randomly located fields in randomly selested villages in each of the zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1958 -contd. (b) No. (c) N.A. (v) As per design. (vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{lccc}
Treatrent & 0 & \(p_{1}\) & \(p_{2}\) \\
Av. yield & 280 & 387 & 502
\end{tabular}
G.M. \(=390 \mathrm{lb} . / \mathrm{ac} . ;\) S.E. \(=19.2 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=12\).

Crop :- Greengram.
Centre :- Srikakulam. (c.f.).

Ref:- A.P. 59(SFT).
Type :- ' \({ }^{\mathbf{M}}\) '.

Object :-Type C-To compare the response of leguminous crops to different sources and levels of \(\mathbf{P}\).
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Red and others.
(iii) Nil.
(iv) to (x) N.A.
2. TREATMENTS :
\(0=\) Control (no manure).
\(\mathrm{p}_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(p_{i}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{n}_{1} \dot{p}_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super + an equal amount of N present in \(\mathrm{p}_{1}{ }^{\prime}\).
\(\mathrm{n}_{2} \mathrm{p}_{2}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super+an equal amount of N present in \(\mathrm{p}_{2}{ }^{\prime}\).
\(\mathrm{p}_{1}^{\prime}=30 \mathrm{lb}\)./ac: of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono Ammonium phosphate.
\(\mathrm{p}_{2}{ }^{\prime}=60 \mathrm{l} \mathrm{b} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono Ammoninm phosphate.
3. DESIGN and 4. GENERAL

Same as in expt. no. 58(SFT) type C on page 308 conducted at Srikakulam.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\mathrm{p}_{1}\) & p, & \(\mathrm{n}_{1} \mathrm{p}_{1}\) & \(\mathrm{n}_{2} \mathrm{p}_{2}\) & \(\mathrm{p}_{1}{ }^{\prime}\) & \(\mathrm{p}^{\prime}\) \\
\hline Av. yield & 255 & 321 & 337 & 370 & 411 & 346 & 354 \\
\hline & G.M & 342 & ; & 33. & . and & trials & 9. \\
\hline
\end{tabular}
Crop :- Mung.
Centre :- Visakhapatnam (c.f.).

Ref :- A.P. 58(SFT).
Type :- \({ }^{\mathbf{C}} \mathrm{M}\) '.

Object :-Type \(\mathbf{C}-\) To compare the responses of leguminous crops to different sources and levels of \(\mathbf{P}\).
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) Coastal. (iii) Nil. (iv) to (x) N.A.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58 (SFT) type \(C\) on page 308 conducted at Srikakulam.
5. RESULTS :
\begin{tabular}{rccc}
\begin{tabular}{rll}
Treatment & 0 & \(\mathrm{p}_{1}\)
\end{tabular} \(\mathrm{p}_{2}\) \\
Av. yield & 230 & 321 & 485 \\
& G.M. \(=345 \mathrm{lb} . / \mathrm{ac} . ;\) S.E. \(=36.1 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=9\).
\end{tabular}

Crop :- Greengram.
Centre :- Visalkhapatnam (c.f.).
Ref :- A.P. 59(SFT).
Type :- ' \(\mathbf{M}\) '.

Object :-Type C-To compare the responses of leguminous crops to_different sources and levels of \(\mathbf{P}\).
1. EASAL CONDITIONS :
(i) (a) to (c) N.A.
2. TREATMENTS:

0 =Control (no manure).
\(p_{1}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{p}_{2}=60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{n}_{1} \mathrm{p}_{1}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super+an equal amount of N present in \(\mathrm{p}_{\mathrm{a}}{ }^{\prime}\).
\(\mathrm{n}_{2} \mathrm{p}_{2} \stackrel{1}{=} 60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super + an equal amount of N present in \(\mathrm{p}_{2}^{\prime}\).
\(\mathrm{p}_{\mathrm{i}}{ }^{\prime}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mon A Amoninm phosphate.
\(\mathrm{p}_{2^{\prime}}^{\prime}=60 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Mono Ammonium phosphate.
3. DESIGN and 4. GENERAL :

Same as in experiment no. 58 (SFT) typa \(C\) on page 308 conducted at Srikakulam.
5. RESULTS :
\begin{tabular}{lcllclclc}
Treatment & 0 & \(p_{1}\) & \(p_{2}\) & \(n_{1} p_{1}\) & \(n_{2} p_{2}\) & \(p_{1}^{\prime}\) & \(p_{2}{ }^{\prime}\) \\
Av. yield & 609 & 741 & 765 & 773 & 806 & 699 & 732 \\
& G.M. & \(=\) & \(732 \mathrm{lb} . / \mathrm{ac} . ;\) S.E. & \(=\) & \(15.1 \mathrm{lb} . / \mathrm{ac}\). & and no. of trials & \(=12\).
\end{tabular}

\section*{Grop :-Tur. \\ Site :-Agri. Expt. Farm, Dindi. \\ Ref :-A.P. 56(105). \\ Type :- \({ }^{M}\) '.}

Object:-To study the effect of N and P on Tur.
1. BASAL CONDIIIONS:
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Sandy. (b) N.A. (iii) 7.7.1956. (iv) (a) Ploughing. (b) Behind the plough. (c) \(8 \mathrm{lb} . / \mathrm{ac}\). (d) \(3^{\prime}\) between rows. (e) -. (v) Nil. (vi) \(\mathrm{C}-11\). (vii) Unirrigated. (viii) Harrowing. (ix) \(35 \cdot 40^{\prime \prime}\). (x) 22.2 .1957.
2. TREATMENTS :

All combinations of (1) and (2).
(1) 3 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15\) and \(\mathrm{N}_{2}=30 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=15\) and \(\mathrm{P}_{2}=30 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 9 .
(b) N.A.
(iii) 2 .
v) (a) and (b) \(33^{\prime} \times 33^{\prime}\).
(v) Nil. (vi) Yes.
4. GENARAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of Tur. (iv) (a) 1955-contd. (expt. failed in 1955). (b) Yes. (c) Nil. (v) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(154 \mathrm{lb} . / \mathrm{ac}\). (ii) 50.6 lb ./ac. (iii) \(\mathrm{N} \times \mathrm{P}\) interaction alone is significant. (iv) Av . yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Me \\
\hline \(\mathrm{P}_{0}\) & 100 & 150 & 170 & 140 \\
\hline \(\mathrm{P}_{1}\) & 200 & 200 & 150 & 18 \\
\hline \(\mathrm{P}_{2}\) & 140 & 90 & 190 & 14 \\
\hline Mean & 147 & 147 & 170 & 15 \\
\hline \multicolumn{3}{|r|}{S.E. of any marginal mean} & \multicolumn{2}{|l|}{\(=20.6 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

\section*{Crop :-Tur.}

Site :-Agri. Expt. Farm, Dindi.

Ref :-A.P. 58(127).
Type :-‘M’.

Object :-To study the effect of \(N\) and \(P\) on Tur.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Tur. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (ii) 5.7.1958. (iv) (a) Ploughing. (b) Sowing behind the plough. (c) 8 lb ./ac. (d) \(3^{\prime}\) between rows. (e) 一. (v) Nil. (vi) C-11. (vii) Unirrigated. (vii) Harrowing. (ix) \(21.04^{\circ}\). (x) 19.1.1959.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. \(56(105)\) on page 310.
5. RESULTS :
(i) \(256 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(112.4 \mathrm{lb} . / \mathrm{ac}\)
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|lll|l}
& \(\mathbf{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathbf{N}_{2}\) & Mean \\
\hline \(\mathbf{P}_{0}\) & 220 & 300 & 300 & .273 \\
\(\mathbf{P}_{1}\) & 260 & 260 & 220 & 247 \\
\(\mathbf{P}_{2}\) & 300 & 220 & 220 & 247 \\
\hline Mean & 260 & 260 & 247 & 256
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal mean & \(=45.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=79.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :-Tur.}

Site :-Agri. Expt. Farm, Dindi.

Ref. :-A.P. 59(13).
Type : \(\boldsymbol{\sim}^{〔} \mathbf{M}\) '.

Object:-To study the effect of N and P on Tur.
1. \({ }^{\text {BASAL CONDITIONS : }}\)
(i) (a) Nil. (b) Groundnut. (c) N.A. (ii) (a) Red chalka soil. (b) N.A. (iii) 4.7.1959. (iv) (a) 4 buckerings before sowing. (b) to (e) N.A. (v) Nil. (vi) C-11. (vii) Unirrigated. (viii) 4 buckerings. (ix) \(22.43^{\prime \prime}\). (x) 12.12 .1959 .
2. TREATMENTS to 4. GENERAL :
(Same as in expt.no. 56(105) on page 310. .
5. RESULTS:
(i) \(372 \mathrm{lb} . / \mathrm{ac}\). (ii) \(81.7 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean \\
\hline & \(\mathrm{P}_{0}\) & 377 & 356 & 354 & 362 \\
\hline & \(\mathrm{P}_{1}\) & 390 & \(387^{\circ}\) & 240 & 339 \\
\hline & \(\mathrm{P}_{2}\) & 369 & 486 & 387 & 414 \\
\hline & Mean & 379 & 410 & 327 & 372 \\
\hline ; & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{S.E. of any marginal mean \(\quad=.3\)}} \\
\hline & & & & & S.E. of body of table \\
\hline
\end{tabular}

\section*{Grop :- Tur.}

Site :- Govt. Main Agri. Farm, Warangal.
Ref:- A.F. 55(6).
Type :- 'M'.
Object :-To study the effect of \(N\) and \(P\) on Tur.
I
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Fallow. (c) Nil. (ii) (a) Sandy soil. (b) Refer soil analysis, Warangal. , (iii) 23.6.1955. (iv) (a) to (e) N.A. (v) Nil. (vi) C-11 (medium). (vii) Unirrigated. (viii) Hand weeding twice and intercuituring twice. (ix) \(39.41^{\prime \prime}\). (x) 9.2 .1956.

\section*{2. TREATMENTS:}

Same as in expt. no. \(56(105)\) on page 310.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(36^{\circ} 4^{\prime \prime} \times 60^{\circ}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Light attack of pod-borer observed. (iii) Grain yield. (iv) (a) 1955-contd. (b)

No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(662 \mathrm{lb} . / \mathrm{ac}\). (ii) \(14.8 \mathrm{lb} . / \mathrm{a}\). (iii) Main effects of N and P are highly significant. (iv) Av. yield of grair in lb./ac.
\begin{tabular}{l|lll|l}
& \(\mathrm{N}_{0}\) & \(\mathrm{~N}_{1}\) & \(\mathrm{~N}_{\mathbf{2}}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 605 & 640 & 645 & 630 \\
\(\mathrm{P}_{1}\) & 620 & 655 & 685 & 653 \\
\(\mathrm{P}_{2}\) & 650 & 695 & 765 & 703 \\
\hline Mean & 625 & 663 & 698 & 662
\end{tabular}
\(\begin{array}{ll}\text { S.E. of any marginal mean } & =* 60 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of table } & =, 10.5 \mathrm{lb} . / \mathrm{ac} .\end{array}\)

Crop :- Tur (Kharif).
Site :- Govt. Main Agri. Farm, Warangal.

Ref:- A.P. 57(113).
Type :- ' \(\mathbf{M}\) '.

Object :-To study the effect of N and P on Tur.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) \(20 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) and \(10 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (ii) (a) Chalka. (b) Refer soil analysis, Warangal. (iii) 26.6.1957. (iv) (a) Ploughing twice. (b) Sowing behind the seed drill. (c) N.A. (d) \(3^{\prime}\) between rows. (e) -. (v) Nil. (vi) C-l1 (S.T.I). (vii) Unirrigated. (viii) Hand weeding . (ix) N.A. (x) 20.1.1958.
2. TREATMENTS :

Same as in expt. no. 56(105) on page 310.
3. DESIGN :
(i) 1 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 2. (iv) (a) and (b) \(66^{\prime} \times 33^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1955—contd. (expt. failed in 1956). (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(592 \mathrm{lb} / \mathrm{ac}\).
(ii) \(157.1 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the efects is significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll:c}
& \(\mathrm{N}_{0}\) & \(\mathrm{~N}_{1}\) & \(\mathrm{~N}_{2}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 620 & 555 & 465 & 547 \\
\(\mathrm{P}_{1}\) & 645 & 655 & 577 & 626 \\
\(\mathrm{P}_{2}\) & 520 & 680 & 610 & 603 \\
\hline Mean & 595 & 630 & 551 & 592 \\
& & & \\
S.E. of any marginal mean & & \(=111.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Tur (Kharif).
Site :- Govt. Main Agri. Farm, Warangal.

Ref. :- A.P. 59(19).
Type :- ' \(\mathbf{M}^{\prime}\).

Object :-To study the effect of \(\mathbf{N}\) and \(\mathbf{P}\) on Tur.
1. BASAL CONDITIONS
(i) (a) Nil. (b) Sunhemp and kulthi. (c) Nil. (ii) (a) Chalka soil. (b) Refer soil analysis, Warangal.
(iii) 9.6.1959. (iv) (a) Three ploughings. (b) Drilling by seed drill. (c) N.A. (d) \(3^{\prime}\) between rows. (e) -
(v) Nil. (vi) \(\mathrm{C}-11\) (late). (vii) Unirrigated. (viii) Interculturing twice and one hand weeding (ix) \(37^{\prime \prime}\).
(x) 13.1.1960.
2. TREATMENTS :

Same as in expt. no. \(56(105)\) on page 310.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 2. (iv) (a) and (b) \(60^{\prime} \times 36^{\prime} 4^{\prime \prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Slight incidence of pod borer. (iii) Grain yield. (iv) (a) 1955-contd. (expt. failed in 1956). (b) No. (c) Nil. (v) (a) Dindi. (b) Nil. (vi) Due to heavy rains the crop was not healthy. (vii) Nil.
5. RESULTS :
(i) \(147 \mathrm{lb} . / \mathrm{ac}\). (ii) 24.17 lb ./ac. (iii) Main effects of N and P and interaction \(\mathrm{N} \times \mathrm{P}\) are highly significant. (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 110 & 360 & 85 & 185 \\
\hline \(\mathrm{P}_{1}\) & 45 & 230 & 170 & 148 \\
\hline \(\mathrm{P}_{2}\) & 110 & 180 & 30 & 107 \\
\hline Mean & 88 & 257 & 95 & 147. \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{S.E. of any marginal mean S.E. of body of table}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& =9.86 \mathrm{lb} / \mathrm{ac} \\
& =17.09 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]}} \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Crop :- Sugarcane.}

Ref :- A.P. 54(56).
Sité :- Sugarcane Res. Stn., Anakapalle.

Type :- ' \(\mathbf{M}\) '.

Object :-To study the effect of N on the yield and juice quaity of cane.
1. BASAL CONDITIONS :
(i) (a) Ragi-Paddy-Sugarcane. (b) Paddy. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). of N as A/S. (ii) (a) Sandy to clay loam. (b) Refer soil analysis. Anakapalle. (iii) 24, 25.3.1954. (iv) (a) N.A. (b) Planting in trenches. (c) 15,000 three budded setts./ac. (d) Rows 3.3' apart. (e) 一, (v) Nil. (vi) \(45.62^{\prime \prime}\). (vii) Irrigated. (viii) Weeding, earthing up, propping up of cane. (ix) \(45.62^{\prime \prime}\). (x) 18.4.1955.
2. TREATMENTS :

All combinations of (1) and (2).
(1) 2 levels of \(N\) as \(A / S: \quad N_{1}=100\) and \(N_{2}=200 \mathrm{lb}\)./ac.
(2) 7 split applications of \(\mathrm{N}: \mathrm{T}_{1}=\frac{1}{2}\) dose at \(1 \frac{1}{2}\) months (a) and the other \(\frac{1}{2}\) dose at 3 months. \(\mathrm{T}_{2}=(\mathrm{a})+\) other half at \(4 \frac{1}{2}\) months. \(\mathrm{T}_{3}=(\mathrm{a})+\) other half at 6 months after sowing. \(T_{4}=\frac{1}{2}\) dose at 3 months (b) + other half at \(4 \frac{1}{2}\) months. \(T_{5}=(b)+\) other half 6 months after sowing. \(T_{6}=\frac{1}{2}\) dose at \(4 \frac{1}{2}\) months and the other 6 months after sowing. and \(T_{7}=F\) ull dose at 6 months after sowing.
3. DESIGN:
(i) Fact. in R.B.D. (ii) (a) 14. (b) N.A. (iii) 4 . (iv) (a) \(36.96^{\prime} \times 29.70^{\prime}\). (b) \(33^{\prime} \times 19.80^{\prime}\). (v) \(1.02^{\circ} \times 4.95^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Good. (ii) Slight incidence of white fly B.H.C. sprayed. (iii) Biometric observations and cane yield. (iv) (a) 1953-1954. (b) Yes. (c) Nil. (vi) to (vii) Nil.
5. RESULTS :
(i) 40.88 tons/ac. (ii) 5.34 tons'ac. (iii) Main effect of N alone is high!y significant. (iv) Av. yield of cave in tons/ac.
\begin{tabular}{c|ccccccc|c}
& \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{\mathbf{2}}\) & \(\mathrm{T}_{\mathbf{3}}\) & \(\mathrm{T}_{\mathbf{4}}\) & \(\mathrm{T}_{\mathbf{5}}\) & \(\mathrm{T}_{6}\) & \(\mathrm{~T}_{7}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 42.96 & 41.70 & 37.35 & 38.18 & 37.31 & 34.00 & 39.96 & 38.78 \\
\(\mathrm{~N}_{\mathbf{2}}\) & 44.63 & 43.68 & 48.36 & 40.65 & 43.15 & 39.96 & 40.38 & 42.97 \\
\hline Mean & 43.80 & 42.69 & 42.85 & 39.42 & 44.23 & 36.98 & 40.17 & 40.88
\end{tabular}
\begin{tabular}{ll}
S.E. of N marginal mean & \(=1.01\) tons/ac. \\
S.E. of \(T\) margital mean & \(=1.89\) tons/ac. \\
S.E. of body of table & \(=2.67\) tons/ac.
\end{tabular}

\section*{Crop:- Sugarcane.}

Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 54(85).
Type :- 'M'.

Object :-To study the effect of N on the yield of cane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Paddy -Sugarcane. (b) Paddy. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). of N. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) 16.2.1954. (iv) (a) Trench Digging, (b) Trench planting. (c) 15,000 three budded setts/ac. (d) 3.3 between rows. (e) -. (v) Nil. (vi) CO-419. (vii) Irrigated. (viii) Trash twist propping and earthing up. (ix) \(58.14^{\prime \prime}\). (x) 7 and 8.1.1955.
2. TREATMENTS:

2 levels of \(\mathrm{N}: \mathrm{N}_{1}=10\)), and \(\mathrm{N}_{\mathbf{z}}=200 \mathrm{lb} . / a c\)., N applied \(\frac{1}{2}\) as G.N.C. and \(2 / 3\) as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 6. (iv) (a) \(42.24^{\prime} \times 26.4^{\prime}\) (b) \(33.00^{\prime} \times 19.8^{\prime}\). (v) \(4.62^{\prime} \times 3.3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Very mild attack of early shoot borer. (iii) Cane yield. (iv) (a) 1954-1957. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 52.2 tons/ac. (ii) 7.47 tons/ac. (iii) Treatment difference is not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lll}
Treatment & \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{2}\) \\
Av. yield & 49.7 & 54.7
\end{tabular}
S.E./mean \(\quad=3.04\) tons/ac.

\section*{Crop :- Sugarcane. \\ Site :- Sugarcane Res. Stn., Ankapalle. \\ Ref :- A.P. 54(80). \\ Type :- 'M'.}

Object :-To study the effect of continuous application of N to Sugarcane and its rotational crops.

\section*{1. BASAL CONDITIONS}
(i) (a) Sugarcane-Paddy-Ragi-Sugarcane. (b) Paddy-Ragi. (c) As per treatments (ii) (a) Loam.
(b) \(\cdot\) Refer soil analysis Anakapalle. (iii) - 111.3.1954. (iv) (a) Digging trenches, (b) Trench planting. (c) 15,000 three búdded setts/ac. (d) \(3^{\prime} 4^{\prime \prime} \times 3^{\prime} 4^{\prime \prime}\). (e) -. (v) As per treatments. (vi) \(\mathrm{CN}-419\). (vii) Irrigated. (viii) Three weedings. , Two trash twist proppings. (ix) \(44.10^{\prime \prime}\). (x) 16 to 19.3.195s:
2. TREATMENTS:

5 manurial treatments : \(\mathrm{M}_{0}=\) No manure, \(\mathrm{M}_{1}=100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) in two equal dcses-11/2 months after planting and in June. \(\mathrm{M}_{2}=100 \mathrm{lb}\)./ac. of N as G.N.C. in two equal doses \(1 \frac{1}{2}\) months after planting and in June, \(\mathrm{M}_{3}=100 \mathrm{lb}\)./ac. of N as F.Y.M. as B.D. and \(\mathrm{M}_{4}=\) \(100 \mathrm{lb} . / \mathrm{ac}\) of N as \(\mathrm{G} . \mathrm{N} . C\). and \(\mathrm{A} / \mathrm{S}\) in \(2: 1\) ratio of N .
3. DESIGN :
(i) L.sq.
(ii) (a) 5 .
) N.A.
(iii) 5. (iv)
(a) \(39.6^{\prime} \times 36.3^{\prime}\). (b) \(33.0^{\prime} \times 26.4^{\prime}\).
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Incidence of white fly-Parathion sprayrd. (iii) Care yield. (iv) (a) 1951-61 (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 42.16 tons/ac. (ii) 1.04 tens/ac. (iii) Treatment 'differences are significant.' (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & M \({ }_{2}{ }^{\text {² }}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) \\
\hline Av. yield & 25.73 & 49.06 & 46.62 & 39.79 & 49.60 \\
\hline & & mean & \(=\) & 47 ton & \\
\hline
\end{tabular}
\begin{tabular}{ll}
Crop :- Sugarcane. & Ref :- A P. 55(75). \\
Site :- Sugarcane Res. Stn, Anakapalle. & Type :- 'M'.t
\end{tabular}

Site : Sugarcane Res, Stn, Alakalle.
Type :- ‘M’.
Object :-To study the effect of continuous application of \(N\) to Sugarcane and its rotational crops.
1. BASAL CONDITIONS :
(i) Sugarcane Paddy-Ragi-Sugarcane. (b) Paddy—Ragi. (c) As per treatments (ii) (a) Loam. (b) Refer soil analysis, Anakapalle. (iii) 18.3.1955. (iv) (a) Digging trenches. (b) Trench planting (c) 15,000 three budded setts/ac. (d) \(3^{\prime} 4^{\prime \prime}\) between rows. (e) - . (v) As per treatments. (vi) CO-419. (vii) Irrigated. (viii) Weeding, hoeing and earthing up. (ix) \({ }^{-6}\) 64.29". (x) 15.3.1956.
2. TREATMENTS and 3. DESIGN :

Same as in expt. No. \(54(80)\) on page 314.
4. GENERAL :
(i) Satisfactory. (ii) Attack of white mite-control measure N.A. (iii) Cane yield. (iv) (a) 1951-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS}
(i) 28.17 tons/ac. (ii) 0.92 tons/ac. (iii) Treatment differences are significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{cccccc}
Treatment & \(\mathrm{M}_{\mathbf{0}}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathbf{M}_{4}\) \\
Av. y eld & 18.94 & 31.76 & 30.29 & 27.67 & 32.17 \\
& & & & \\
& S.E./mean & \(=\) & 0.41 tons/ac.
\end{tabular}

\footnotetext{
Crop :- Sugarcane.
Ref :- A.P. 56(45).
Site :- Sugarcane Res. Stn., Anakapalle.
Tỳpe :- ' \(\mathbf{M}\) '.
}

Object :-To study the effect of continuous application of \(N\) to Sugarcane and its rotational crop.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ragi-Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) 13.3.1956. (iv) (a) Digging trenches. (b) In trenches. (c) 15000 three budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e)-. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) Two weedings. (ix) \(56.31^{\prime}\). (x) 13 to 16.3.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. \(54(80)\) on page 314.
4. GENERAL :
(i) Normal. (ii) D.D.T. was sprayed to prevent incidence of early shoot borer. (iii) Biometric observations and cane yield. (iv) (a) 1951 -contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 32.06 tons/ac. (ii) 2.6 tons/ac. (iii) Treatment differences are highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lllccc}
Treatment & \(\mathbf{M}_{0}\) & \(\mathbf{M}_{\mathbf{1}}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{M}_{\mathbf{4}}\) \\
Av. yield & 20.27 & 36.50 & 33.87 & 29.85 & 39.82 \\
& S.E./mean & \(=\) & 1.17 & tons/ac. & \\
& & & &
\end{tabular}

\section*{Crop :- Sugarcane.}

Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 57(63).
Type :- ' \(\mathbf{M}\) '.

Object:-To study the effect of continuous application of \(N\) to Sugarcane and its rotational crop.
1. BASAL CONDITIONS:
(i) (a) Paddy-Ragi-Sugarcane. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) 13.3.1957. (iv) (a) Digging trenches. (b) Planting in trenches. (c) 15000 three budded setts/ac. (d) \(3.3^{\prime}\) between lines. (e)-. (v) Nil. (vi) \(\mathrm{CO}-419\) (late). (vii) Irrigated. (viii) Two weedings, hoeing and two earthing up. (ix) N.A. (x) 9, 10.3.1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. \(54(80)\) on page 314.
4. GENERAL:
(i) Satisfactory. (ii) Earlv shoot borer noticed-D.D.T. sprayed. (iii) Cane yield. (iv) (a) 1951-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 27.08 tons/ac. (ii) 4.03 tons/ac. (iii) Treatment differences are highly significant. (iv) Av, yield of cane in tons/ac.
\begin{tabular}{lllccc}
Treatment & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) \\
Av. yield & 17.12 & 31.38 & 30.46 & 23.76 & 32.69 \\
& & & & &
\end{tabular}
\[
\begin{array}{ll}
\text { Crop :- Sugarcane. } & \text { Ref :- A.P. 58(26). } \\
\text { Site :- Sugarcane Res. Stn., Anakapalle. } & \text { Type :- ‘M’. }
\end{array}
\]

Object :-To study the effect of continuous application of N to Sugarcane and its rotational crops.
1. BASAL CONDITIONS :
(i) (a) Rice-Ragi-Sugarcare. (b) Rice. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) 13.31958 . (iv) (a) N.A. (b) In trenches. (c) 15000 three budded setts/ac. (d) 3.3 ' between trenches. (e) -. (v) Nil (vi) \(\mathrm{CO}-419\) (late). (vii) Irrigated. (viii) Two weedings and hoeings and two culturings. (ix) N.A. (x) 12.3.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(80) on page 314.
4. GENERAL :
(i) Good. (ii) Attack of early shoot borer.-D.D.T. sprayed. (iii) Yield of cane. (iv) (a) 1951-contd. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 32.86 tons/ac. (ii) 3.93 tons/ac. (iii) Treatment differences are significant. (iv) Av. yield of
cane in lb ./ac.
\begin{tabular}{lllccc}
Treatment & \(\mathbf{M}_{0}\) & \(\mathbf{M}_{1}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{3}\) & \(\mathbf{M}_{4}\) \\
Av. yield & 23.05 & 39.97 & 36.28 & 26.09 & 38.90 \\
& & & & &
\end{tabular}
\begin{tabular}{|c|c|}
\hline Crop :- Sugarcane. & Ref :- A P. 59(96). \\
\hline Site :- Sugarcane Res. Str., Anakapalle. & Type :- 'M'. \\
\hline
\end{tabular}

Object :-To study the effect of continuous application of N to Sugarcane and its rotational crops. i
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Paddy and Ragi-Sugarcane. (b) Paddy and Ragi.. (c) As per treatments. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) 13.3.1959. (iv) (a) Digging trenches. (b) Trench planting. (c) 15,000 three budded setts/ac. (d) \(3^{\prime} 4^{\prime \prime}\) between rows. (e)-. (v) As per treatments. (vi) CO-419. (vii) Irrigated. (viii) Weeding, hoeing and earthing up. (ix) \(41.24^{\prime \prime}\). (x) 2 nd fortnight of March, 1960.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(80) on page 314.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Cane yield. (iv) (a) 1951-1961. (b) Yes. (c) ,Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 35.66 tons/ac. (ii) 3.76 tons/ac. (iii) Treatment differences are significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lllccc}
Treatment & \(\mathrm{M}_{\mathfrak{0}}\) & \(\mathrm{M}_{1}\), & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) \\
Av. yield & 27.32 & 39.46 & 36.89 & 37.39 & 37.27 \\
& & & & & \\
& S.E. \(/\) mean & \(=\) & 1.68 tons/ac. & &
\end{tabular}
\begin{tabular}{|c|c|}
\hline Crop :- Sugarcane. & Ref :- A.P. 55(76). \\
\hline Site :- Sugarcane Res. Stn, Anakapalle. & Type :- ' \(\mathbf{M}^{\prime}\) '. \\
\hline
\end{tabular}

Object :-To find out the effects of different methods of application of \(N\) on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jonna for fodder. (c) Nil. (ii) (a) Loam. (b) Refer soil analysis, Anakapalle. (iii) 3.2.1955. (iv) (a) Digging trenches. (b) Trench planting. (c) 15,000 three budded setts/ac. (d) \(3^{\prime} 4^{\prime \prime}\) between rows. (e) -. (v) Nil.' (vi) \(\mathrm{CO}-419\). (vii) Irrigated. (viii) Hoeing, weeding and earthing up. Propping by trash twist. (ix) 64.29". (x) Jan, 1956.

\section*{2. TREATMENTS :}

8 methods of application of \(N\) as Urea : \(M_{1}=100 \mathrm{lb} / \mathrm{ac}\). in 2 equal doses by pocketing, \(\mathrm{M}_{2}=100 \mathrm{lb}\)./ac. in 2 equal doses by cuperficial application, \(\mathrm{M}_{3}=1\) st dose of 50 lb ./ac. by pocketing +2 nd dose of \(20 \mathrm{lb} . / \mathrm{ac}\). by spraying, \(\mathrm{M}_{4}=1 \mathrm{st}\) dose of \(20 \mathrm{lb} . / \mathrm{ac}\). by spraying \(+50 \mathrm{lb} . / \mathrm{ac}\). by pocketing, \(M_{5}=40 \mathrm{lb} . / \mathrm{ac}\). by spray in 2 equal doses, \(\mathrm{M}_{6}=1\) st dose of \(20 \mathrm{lb} / \mathrm{ac} .+2 \mathrm{nd}\) dose of 40 lb ./ac. by spraying, \(M_{7}=1\) st dose of \(40 \mathrm{lb} . / \mathrm{ac} .+2 \mathrm{nd}\) dose of 20 lb ./ac. by spraying, and \(\mathrm{M}_{8}=80 \mathrm{lb}\)./ac. by spraying in 2 equal doses.
The quantity of water used for spray is at the rate of 75 galls. for \(20 \mathrm{lb} . \mathrm{N}\).
Ist and Ind doses are given 45 and 90 days after planting respectively.
3. DESIGN:
(i) R.B.D. (ii) (a) 8. (b) N A. (iii) \(4 . \quad\) (iv) (a) \(40.92^{\prime} \times 26.40^{\prime}\). (b) \(33.00^{\circ} \times 19.80^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Cane yield. (iv) (a) \(1955-1957\). (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 44.09 tons/ac. (ii) 2.69 tons/ac. (iii) Treatment differences are significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{llccccccc}
Treatment & \(\mathbf{M}_{1}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{M}_{\mathbf{4}}\) & \(\mathbf{M}_{\mathbf{5}}\) & \(\mathbf{M}_{6}\) & \(\mathbf{M}_{\mathbf{7}}\) & \(\mathbf{M}_{8}\) \\
Av. yield & 50.63 & 45.79 & 45.16 & 45.79 & 36.78 & 39.32 & 43.21 & 45.03 \\
& & & & & & & & \\
& & &
\end{tabular}

\section*{Crop :- Sugarcane.}

Site :- Sugarcane Res. Stn., Anakapalle.

\section*{Ref :- A.P. 56(47).}

Type :- ' \(\mathbf{M}^{\prime}\).

Object:-To find out the effect of different methods of application of N on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jonna for fodder. (c) Nil. (ii) (a) Sandy loam. (b) Refer soil analysis, Anakapalle. (iii) 16.2.1956. (iv, (a) Digging trenches. (b) Planting in trenches. (c) 15,000 three-budded setts/ac. (d) \(3^{\prime} 4^{\prime \prime}\) between rows. (e) Nil. (v) Nil. (vi) CO-419. (vii) Irrigated. (viii) Crop kept erect by trash twist propping. (ix) \(56.21^{\circ}\). (x) \(9,10.2 .1957\).
2. TREATMENTS :

Same as in expt. no. 55(76) on page 317.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) \(47.52^{\prime} \times 26.40^{\prime}\). (b) \(33.00^{\prime} \times 19.80^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Very satisfactory. (ii) D.D.T. was sprayed te prevent the incidence of early shoot-borer. (iii) Biometric observations and yield of cane. (iv) 'a) 1955-1957. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 41.44 tons/ac. (ii) 4.01 tons/ac. (iii) Treatment differences are significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lcccccccc}
Treatments & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{\mathbf{2}}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) & \(\mathrm{M}_{6}\) & \(\mathrm{M}_{7}\) & \(\mathrm{M}_{8}\) \\
Av. yield & 46.16 & 41.56 & 40.90 & 45.76 & 36.34 & 36.80 & 42.32 & 41.67 \\
& & & & & & & &
\end{tabular}

Crop :- Sugarcane.
Site :- Sugarcane Res. Stn., Anakapalle.

Ref:- A.P. 57(97).
Type :-‘M’.

Object :-To find out the effect of different methods of application of \(N\) on the yield of sugarcane.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Jonna for fọdder. (c) Nil: (ii) (a) Loam. (b) Refer soil analysis Anakapale (iii) 10.2.1957. (iv) (a) Diggin Trenches. (b) Trench planting. (c) 15,000 three bưded' setts/ac. (d) \(3^{\prime} 4^{\prime \prime}\) between rows. (e) - (v) Nil. (vi) CO-419. (vii) Irrigated., (viii) Hoeing, weeding, earthing up and propping by trash twist. (ix) \(44.70^{\prime \prime}\). (x) 18.2.1958.
2. TREATMENTS to 4. GENERAL :

Same as in expt. No. \(55(76)\) on page 317.
5. RESULTS :
(i) 39.49 tons/ac. (ii) 2.33 tons/ac. (iii) Ttreatment differences are highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ; Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}{ }^{\text {a }}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) & \(\mathrm{M}_{6}\) & \(\mathrm{M}_{7}\) & \(\mathrm{M}_{8}\) \\
\hline Av. yield & 47.11 & 44.08 & 42.49 & 40.02 & 32.09 & 38.43 & 32.29 & 39.39 \\
\hline ! & & & & & & & & \\
\hline , & S.E./m & an \(=\) & 17 ton/ & & & & & \\
\hline
\end{tabular}

\section*{Crop :- Sugarcane. . \(\quad\) Ref :- A.P. 56(54). \\ Site :- Sugarcane Res. Stn., Anakapalle. \\ Type :. \({ }^{〔} \mathbf{M}\) '.}

Object :- To study the effect of different levels of \(N, P\) and \(K\) and their combinations on the yield of. sugarcane.
1. BASAL CONDITIONS :
(i) \({ }^{-}\)(a) Paddy-Sugarcane. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle \({ }_{\sigma}\) (iii) 15, 16.3.1956. (iv) (a) N.A. (b) In trenches. (c) 15000 three budded setts/ac. (d) Between trenches \(3^{\prime} 4^{\prime \prime}\). (e) N.A. (v) Nil. (vi) \(\mathrm{CO}-419\) (late). (vii) Irrigated. (viii) 4 weedings, 2 earthing up. Crop was given trash twist propping twice. (ix) \(56.21^{\prime \prime}\), (x) 25.3.1957 to 7.4.1957.
12. TREATMENTS:

All comb nations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=100\) and \(\mathrm{N}_{2}=200 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=100\) and \(\mathrm{P}_{2}=200 \mathrm{lb}\)./ac.
(3) 3 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=200\) and \(\mathrm{K}_{2}=400 \mathrm{lb}\)./ac.

Manures applied in two doses, 45 and 90 days after sowing.
\(-1\)
3. DESIGN :
(i) \(3^{3}\) partially confd. (ii) (a) 9 plots/block; 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) \(1 / 32.9 \mathrm{ac}\). (b) \(1 / 606\) ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Biometric observations and cane yield. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS:}
(i) 35.31 tons/ac. (ii) 2.84 tons/ac. (iii) Main effects of \(\mathrm{N}, \mathrm{P}\) and K are highly significant. Other effects are not significant. (iv) Av. yield of cane in tons/ac.

\section*{Crop :- Sugarcane. \\ Site :- Sugarcane Res. Stn., Anaka palle. \\ Ref:- A.P. 57(76). \\ Type:-‘M'.}

Object :-To study the effect of different levels of \(\mathrm{N}, \mathrm{P}\) and K and their combinations on the yield of sugarcane.
1. BASAL CONDITIONS:
(i) (a) Paddy-Sugarcane. (b) Paddy. (c) 60 lb ./ac. of N (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) -/22, 23.3.1957. (iv) (a) Treaching and hoeing in trenches. (b) Planting in trenches. (c) to (e) N.A. (v) Nil. (vi) \(\mathrm{CO}-419\) (late). (vii) Irrigated. (viii) 2 weedings and earthing up twice, trash twist propping-2 times. (ix) \(42.74^{\prime \prime}\). (x) March 1958.
2. TREATMENTS :

Same as in expt. No. 56(54) on page 319.
3. DESIGN:
(i) \(3^{3}\) Partially confd. (ii) (a) 9 plots/block; 3 blocks/replication. (b) N.A. (iii) 2 . (iv) (a) \(44.68^{\prime} \times 26.40^{\circ}\). (b) \(39.6^{\prime} \times 16.5^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :

Same as in expt. no. \(56(54)\) on page 319.
5. RESULTS :
(i) 33.12 tons/ac. (iii) 3.66 tons/ac. (iii) Main effects of N and K and interaction \(\mathrm{N} \times \mathrm{K}\) are significant. Other effects are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) \\
\hline \(\mathbf{N}_{0}\) & 24.41 & 23.61 & 26.51 & 24.84 & 24.61 & 25.49 & 24.42 \\
\hline \(\mathrm{N}_{1}\) & 36.93 & 37.71 & 37.09 & 37.24 & . 34.23 & 38.48 & 39.01 \\
\hline \(\mathrm{N}_{2}\) & 37.87 & 37.18 & 3683 & 37.29 & 29.98 & 41.51 & 40.38 \\
\hline - Mean & 33.07 & 32.83 & 33.48 & 33.12 & 29.61 & 35.16 & 34.59 \\
\hline \(\mathrm{K}_{0}\) & 28.45 & 29.69 & 30.69 & & & & \\
\hline \(\mathrm{K}_{1}\) & 35.31 & 35.25 & 34.92 & & & & \\
\hline \(\mathrm{K}_{2}\) & 35.45 & 33.55 & 34.83 & & & & \\
\hline & \multicolumn{3}{|l|}{S.E. of any marginal mean S.E. of body of any table} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =0.86 \text { tons } / \mathrm{ac} . \\
& =1.50 \text { tons/ac. }
\end{aligned}
\]} & & \\
\hline
\end{tabular}

\section*{Crop :- Sugarcane.}

\section*{Ref:- A.P. 58(68).}

\section*{Site :- Sugarcane Res. Stn., Anakapalle.}

\section*{Type :-‘M'.}

Object:-To study the effect of different levels of N, P and K and their combination on the yield of Sugarcane.
1. BASAL CONDITIONS:
(i) (a) Paddy-Sugarcane. (b) Paddy. (c) \(60 \mathrm{lb} . / \mathrm{ac}\). of N. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) \(25,26.3\).1958. (iv) (a) Trenching. (b) Plantlng in trenches. (c) to (e) N.A. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) 2 weedings, 2 earthings and 2 trash twist proppings. (ix) \(49.76^{\prime \prime}\).
(x) March, 1959.
2. TREATMENTS:

Same as in expt. no. 56(54) on page 319.
- 3 DESIGN:
(i) \(3^{3}\) partially confd. (ii) (a) 9 plots/blocks; 3 blocks/replication. (b) \(39.60^{\prime} \times 297.00^{\circ}\). (iii) 2 . (iv) (a) - 39.60: \(\times 33.00^{\circ}\). (b) \(36.30^{\prime} \times 19.80^{\circ}\) (v) N.A. (vi) Yes.
4. GENERAL :

Same as in expt. no. \(56(54)\) on page 319.
5. RESULTS :
(i) 32.42 tons/ac. (ii) 3.14 tons/ac. (iii) Main effeets of \(N\) and \(P\) and interactions \(N \times P\) and \(P \times K\) are significant. Other effects are not significant. (iv) Ar. cane yield in tons/ac.

1. BASAL CONDITIONS: Fin \(_{2}^{*}\)
(i) (a) Sugarcane-Jonna-Sugarcane. (b) Jonna. (c) N.A. (ii) (a) Sandy loam. (b) Refer soil analysis, Anakapalle. (iii) -14:3.1957. (iv) (a) Digging trenches. (b) Trench planting. (c) 15,000 three-budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e) -. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) Weeding, hoeing, earthing up and trash twist propping. (ix) \(45.11^{\prime \prime}\). (x) 31.3.1958.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels and methods of application of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=25 \mathrm{lb} . / \mathrm{ac}\). applied by spraying 90 days after planting and \(P_{2}=100 \mathrm{lb} / \mathrm{ac}\). applied by placement 90 days after planting.
(2) 2 levels of G.L. : \(G_{0}=0\) and \(G_{1}=5000 \mathrm{lb} \cdot / \mathrm{ac}\).
3. DESIGN :
(i) Fact in R.B.D. (ii) (a) 6. (b) N.A. (iii) 4 . (iv) (a) \(39.60^{\circ} \times 26.40^{\prime}\). (b) \(33.00^{\circ} \times 19.8^{\prime}\). (v) \(3.3^{\prime} \times 3.3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Cane yield. (iv) (a) 1957-1960. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 45.19 tons/ac. (ii) 3.85 tons/ac. (iii) No effect is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{c:ccc|c}
& \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & Mean \\
\hline \(\mathrm{G}_{0}\) & 44.31 & 46.82 & 44.39 & 45.17 \\
\(\mathrm{G}_{1}\) & 43.70 & 48.29 & 43.60 & 45.20 \\
\hline Mean & 44.01 & 47.56 & 44.00 & 45.19
\end{tabular}
S.E. of \(P\) marginal mean \(=1.36\) tons/ac,
S.E. of G marginal mean \(=1.11\) tons \(/ \mathrm{ac}\).
S.E. of body of table
\(=1.93\) tons/ac.

\section*{Crop :- Sugarcane. \\ Site :- Sugarcane Res. Stn., Anakapalle.}

> Ref :- A.P. \(58(118)\).
> Type :- ‘M’.

Object :-To study the effect of application of \(P\) by different methods.
1. BASAL CONDITIONS:
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
(a) Sugarcane-Paddy-Sugarcane. (b) Paddy. \\
(c) \(40 \mathrm{lb} . / \mathrm{ac}\). of N . \\
(ii) (a) Sandy loam. \\
(b) Refer \\
il analysis, Anakapalle. \\
(iii) -114.3 .1958 . \\
(iv) (a) Digging trenches. \\
(b) Trench planting. \\
(c) 15,000 \\
ree budded setts/ac. \\
(d) \(3.3^{\prime}\) between rows. \\
(e) 一. \\
(v) Nil. (vi) CO-419 (late). (vii) Irrigated. \\
iii) Weeding, hoeing, earthing up and trash twist propping. \\
(ix) \(61.14^{\prime \prime}\). \\
(x) 31.3.1959.
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 57(95) on page 321.
5. RESULTS :
(i) 48.00 tons/ac. (ii) 7.04 tons/ac. (iii) No effect is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{c|ccc|c}
& \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & Mean \\
\hline \(\mathrm{G}_{0}\) & 45.66 & 46.76 & 47.93 & \begin{tabular}{l}
46.78 \\
\(\mathrm{G}_{1}\)
\end{tabular} \\
\hline Mean & 50.22 & 48.04 & 49.38 & 49.21 \\
\hline & 47.94 & 47.40 & 48.65 & 48.00
\end{tabular}
S.E. of \(P\) marginal mean \(\quad=2.48\) tons/ac.
S.E. of \(G\) marginal mean \(=2.03\) tons/ac.
S.E. of body of the table \(=3.52\) tons/ac. .

Crop :- Sugarcane.
Site :- Sugarcane Res. Stn., Anakapalle.

Ref. :- A.P. 59(97).
Type :- ' \(\mathbf{M}\) '.

Object :-To study the effect of application of \(P\) by different methods.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Paddy-Sugarcane. (b) Paddy. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). of N as A/S. (ii) (a) Sandy loam. (b) N.A. (iii) -14.3 .1959 . (iv) (a) Digging trenches. (b) Trench planting. (c) 15,000 three-budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e) -. (v) Nil. (vi) CO -419 (late). (vii) Irrigated. (viii) Earthing up, weeding, hoeing and trash twist propping. (ix) \(35.04^{\prime \prime}\). (x) 29.3.1960.
2. TREATMENTS to 4. GENERAL :

Same as in expf. no. 57(95) on page 321.
5. RESULTS :
(i) 45.36 tons/ac. (ii) 2.59 tons/ac. (iii) No effect is signifieant. '(iv) Av. yield of cane in tons/ac.
\begin{tabular}{c|ccc}
& \(P_{0}\) & & \(P_{1}\) \\
\(\mathrm{G}_{0}\) & \(P_{2}\) & Mean \\
\(\mathrm{G}_{1}\) & 44.22 & 46.31 & 46.15 \\
46.05 & 43.12 & 46.32 & 45.56 \\
\hline Mean & 45.13 & 44.71 & 46.23
\end{tabular}
\begin{tabular}{ll}
S.E. of \(P\) marginal mean & \(=0.91\) tons/ać. \\
S.E. of G marginal mean & \(=0.75\) tons/ac. \\
S.E. of body of the table & \(=1.29\) tons/ac.
\end{tabular}

\section*{Crop:- Sugarcane.}

Site :- Sugarcane Res. Stn., Anakapalle.

\section*{Ref. :- A.P. 57(96).}

Type :- ' \(\mathbf{M}^{\prime}\).

Object :-To find out the best time of application of \(\mathbf{N}\) to Sugarcane under swamp conditions.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Paddy-Sugarcane. (b) Paddy. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). of N. '(ii) (a) Clay loam. (b) Refer soil analysis, Avakapalle. (iii) \(-/ 10.2 .1957\). (iv) (a) Digging trenches. (b) Trench planting. (c) 15,000 three-budded setts/ac. (d) \(3^{\prime} \times 4^{\prime \prime}\) between rows. (e) 一. (v) Nil. (vi) CO-419(late). (vii) Irrigated. (viii) Hoeing, weeding and earthing up. Propping by trash twist. (ix) \(44.70^{\prime \prime}\). (x) 28.2.1958.

\section*{2. TREATMENTS :}
- All combinations of (1) and (2).
\[
\begin{aligned}
\text { (1) } 2 \text { levels of } N \text { as } A / S: & N_{1}=100 \text { and } N_{2}=200 \mathrm{lb} . / \mathrm{ac} . \\
\text { (2) } 2 \text { times of application: } & T_{1}=\mathrm{In} \text { two equal doses } 45 \text { and } 90 \text { days after planting. } \mathrm{T}_{2}=30 \% \text { of } \mathrm{N} \\
& \text { at planting and } 70 \% \text { during the } 8 \text { th week after planting. }
\end{aligned}
\]
3. DESIGN
(i) L. Sq. (vi) Yes.
4. GENERAL:
(i) Satisfactory.
(ii) Nil. (iii) Cane yield.
(iv) (a) 1957-1958.
(b) No.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 38.97 tons/ac. (ii) 2.34 tons/ac. (iii) Effect of \(T\) alone is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|}
\hline & \(\dot{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean \\
\hline T \({ }_{1}\) & 40.28 & 41.33 & 40.81 \\
\hline \(\mathrm{T}_{2}\) & 39.16 & 35.10 & 37.13 \\
\hline Mean & 39.72 & 38.21 & 38.97 \\
\hline
\end{tabular}

\title{
S.E. of any marginal mean \(\quad=0.83\) tons/ac. \\ S.E. of body of table \(=1.17\) tons/ac.
}

\section*{Crop :- Sugarcane.}

Site :- Sugarcane Res. Stn., Anakapalle.
Ref. :- A.P. 58(119).
Type :- ' \(\mathbf{M}\) '.
Object :-To find out the best time of application of N to Sugarcane under swamp conditions.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Paddy-Sugarcane. (b) Paddy. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). of N as A/S. (ii) Clayey loam. (b) N.A. (iii) 16.2.1958. (iv) (a) Digging trenches. (b) Trench planting. (c) 15,000 three-budded setts/ac, (e) -. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) Hoeing, weeding and earthing up. Trash tuist propping. (ix) 61.14". (x) \(22,23.2 .1959\).
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 57(96) on page 323.
4. GENERAL :
(i) Satisfactory. (ii) Mild attack of Phythium. Control Measures-N.A. (iii) Cane yield. (iv) (a) 19571958. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) 43.49 tons/ac. (ii) 3.58 tons/ac. (iii) No effect is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{c|cc:c}
& \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{2}\) & Mean \\
\hline \(\mathrm{T}_{1}\) & \begin{tabular}{ll}
42.71 & 42.84 \\
\(\mathrm{~T}_{2}\) & 43.00 \\
Mean & 45.40
\end{tabular} & 42.77 \\
\hline 42.85 & 44.12 & 43.49
\end{tabular}
S.E. of any marginal mean \(\quad=1.27\) tons/ac.
S.E. of body of the table \(\quad=1.79\) tons/ac.

\section*{Crop:-Sugarcane.}

Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 59(130).
Type :- ' \(\mathbf{M}\) '.

Object:-To find out best method of application of nitrogenous fertilizers when manuring is delayed unduly.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Paddy-Sugarcane. (b) Paddy. (c) 5000 lb ./ac. of G.L. and \(40 \mathrm{lb} . / \mathrm{ac}\). of N as A/S. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) 15.3.1959. (iv) (a) Trench digging. (b) Trench planting. (c) \(15000 \mathrm{lb} . / \mathrm{ac}\). three-budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e) —. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) Hoeing, weeding and earthing up. trash-twist-propping. (ix) \(41.97^{\circ}\). (x) 1 to 4.4.1960.
2. TREATMENTS :

7 fevels-cum-methods of application of \(N\) as Urea : \(M_{1}=50 \mathrm{lb}\)./ac. at \(t_{1}\) and \(t_{2}\) each to soil, \(M_{2}=50\) \(\mathrm{lb} . / \mathrm{ac}\). at \(\mathrm{t}_{1}\) and \(\mathrm{t}_{3}\) each to soil, \(\mathrm{M}_{3}: 50 \mathrm{lb} / \mathrm{ac}\). at \(t_{1}\) to soil \(+50 \mathrm{lb} . / \mathrm{ac}\). at \(\mathrm{t}_{3}\) as foliar spray. \(\mathrm{M}_{4}=\) \(50 \mathrm{lb} . / \mathrm{ac}\). at \(\mathrm{t}_{2}\) and \(\mathrm{t}_{3}\) each, to soil, \(\mathrm{M}_{5}=50 \mathrm{lb} / \mathrm{ac}\). at \(\mathrm{t}_{2}\) to soil \(+50 \mathrm{lb} . / \mathrm{ac}\). at \(\mathrm{t}_{3}\) as foliar spray, \(\mathrm{M}_{6}=50\) \(\mathrm{lb} . / \mathrm{ac}\). at \(\mathrm{t}_{1}\) to soil +25 lb ./ac. at \(\mathrm{t}_{3}\) to soil and \(\mathrm{M}_{7}=\) \(50 \mathrm{lb} . / \mathrm{ac}\). at \(\mathrm{t}_{1}\) to soil \(+25 \mathrm{lb} . / \mathrm{ac}\). at \(\mathrm{t}_{3}\) as foliar spray. \(t_{1}=45\) th day, \(t_{2}=90\) th day and \(t_{3}=180\) th day after planting.
3. DESIGN :
(i) R.B.D. (ii) (a) 7
(b) \(39.6^{\prime} \times 171.6^{\prime}\). (iii)
4. (iv) (a) \(39.6^{\prime} \times 26.4^{\prime}\).
(b) \(33.0^{\prime} \times 19.8^{\prime}\).
(v) \(3.3^{\prime} \times 3.3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of early shoot borer. Endrine sprayed. (iii) Sugarcane yield. (iv) (a) and (b) No. (c) Nil. (v) (a) and 孔b) N.A. (vi) and (vii) Nil.

RESULTS:
(i) 4823 tons/ac. (ii) 4.23 tons/ac. (iii) The treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lcccccccc}
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) & \(\mathrm{M}_{6}\) & \(\mathrm{M}_{7}\) \\
Av. yield & 50.85 & 49.72 & 47.14 & 46.84 & 46.49 & 48.65 & 47.91 \\
& & & & & & & \\
& S.E./mean & \(=\) & 2.12 tons/ac. & & & &
\end{tabular}

1

\section*{Crop:- Sugarcame \\ Site :- Sugarcane Res. Stn., Analkapalle.}

Object :-To study the effect of different forms of nitrogen on yield and juice quality of cane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ragi-Sugarcane. (b) Ragi. (c) \(4400 \mathrm{lb} . / \mathrm{ac}\). of G.L. and \(40 \mathrm{lb} / \mathrm{ac}\). of N as A/S. (ii) (a) Sandy loam. (b) Refer soil analysis, Anakapalle. (iii) 12.3.1959. (iv) (a) Trenching. (b) In trenches. (c) 15,000 setts/ac. (d) \(3.3^{\prime}\) between rows. (e) \(3 \mathrm{buds} / \mathrm{sett}\). (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) Hoeing, weeding, earthing up and trash twist propping. (ix) \(41.97^{\prime \prime}\). (x) 20 to 23.3.1960.

TFEATMENTS :
6 sources of N at 100 lb ./ac.: \(\quad \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \quad \mathrm{S}_{2}=\) Urea, \(\mathrm{S}_{3}=\) Nitro phoska (blue), \(\mathrm{S}_{4}=\) Nitrophoska (green), \(S_{5}=A / S / N\) and \(S_{6}=C / A / N\).
\(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{K}_{2} \mathrm{O}\) were applied to all plots at 150 lb ./ac. each.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) \(46.20^{\prime} \times 138.60^{\prime}\). (iii) 4 . (iv) (a) \(46.2^{\prime} \times 23.1^{\prime}\). (b) \(39.6^{\prime} \times 16.5^{\prime}\). (v) \(3.3^{\prime} \times 3.3^{\prime}\). (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii, Spraying of Endrine. (iii) Sugarcane yield. (iv) (a) 1959-ccntd. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 57.39 tons/ac. (ii) 3.36 tons/ac. (iii) Treatment differences are not sign ficant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{ccccccc}
Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{4}\) & \(\mathrm{~S}_{5}\) & \(\mathrm{~S}_{6}\) \\
Av. yield & 57.54 & 58.73 & 56.59 & 56.90 & 55.47 & 58.70 \\
& \multicolumn{6}{l}{} \\
& S.E./mean & \(=\) & 1.68 tonslac. & & &
\end{tabular}

\footnotetext{
Crop:- Sugarcane.
Site :- Sugarcane Liaison Farm, Bobbili.
```

Ref :- A.P. 59(38).
Type :- ‘ $\mathbf{M}^{\prime}$.

```
}

Object:-To find out the optimum dose of N for Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sugarcane-Paddy. (b) Paddy. (c) 10 C.L./ac. of F.Y.M. and \(100 \mathrm{lb} . / \mathrm{ac}\). of A/S as top dressing. (ii) (a) Red loam to clay loam. (b) N.A. (iii) 2.3.1959. (iv) (a) Light hoeing, trash-t wist propping. (b) Planting in trenches. (c) to (e) N.A. (v) 10 C.L./ac. of F.Y.M. (vi) CO-449 (mid season variety). (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 123.9". (x) 20.1.1960.
2. TREATMENTS:

6 levels of \(N\) as A/S : \(N_{0}=0, N_{1}=25, N_{2}=50, N_{3}=75, N_{4}=100\) and \(N_{5}=125 \mathrm{lb}\)./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) \(66.00^{\prime} \times 118.80^{\prime}\). (iii) 4 . (iv) (a) \(66.00^{\prime} \times 19.80^{\prime}\). (b) \(66.00^{\prime} \times 13.20^{\prime}\). (v) \(3.3^{\prime \prime}\). on either side lengthwise. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of early shoot borer; spraying with Endrine 0.02\%. (iii) Cane .yield. (iv) (a) 1958-1960. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 17.29 tons/ac. (ii) 5.20 tons/ac. (iii) The treatment differences are not signiffcant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lllcccc}
Treatment & \(\mathrm{N}_{0}\) & \(\mathrm{~N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{3}\) & \(\mathrm{~N}_{4}\) & \(\mathrm{~N}_{5}\) \\
Av. yield & 14.84 & 16.75 & 17.16 & 20.34 & 16.01 & 18.67 \\
& & & & & &
\end{tabular}
\begin{tabular}{ll}
Crop :- Sugarcane. & Ref :- A.P. 59(39). \\
Site :- Sugarcane Liaison Farm, Bobbili. & Type :- ' \(\mathbf{M}\) '.
\end{tabular}

Object :-To study the effect of different levels of \(N\) and \(P\) on the yield of Sugarcane.
1. BASAL CONDITIONS:
(i) (a) Sugarcane-Sugarcane-Paddy. (b) Paddy (c) \(100 \mathrm{lb} . / \mathrm{ac}\). of A/S. (ii) (a) Clay loam. (b) N.A. (iii) 4.3.1959. (iv) (a) Digging trenches. (b) Deep trench planting. (c) to (e) N.A. (v) 10 C.L./ac. of F.Y.M. (vi) CO-449 (mid seasno variety). (vii) Ucirrigated. (viii) Weeding. (ix) 123.9". (x) 28.1.1960.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 leve's of \(N\) as A/S : \(N_{0}=0, N_{1}=60, N_{2}=120\) and \(N_{3}=180 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0\), and \(\mathrm{P}_{1}=100 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Fact in R.B.D. (ii) (a) 8. (b) \(158.40^{\prime} \times 59.40^{\prime}\). (iii) 3 . (iv) (a) \(19.80^{\prime} \times 59.40^{\prime}\). (b) \(13.20^{\prime} \times 59.40^{\prime}\). (v) 3.3 length wise on either side of the plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory, (ii) 3 sprayings with Endrine. (iii) Cane yield. (iv) (a) 1958-1959. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 21.31 ton/ac. (ii) 3.45 ton/ac. (iii) Only N effect is highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{c|cccc|c}
& \(\mathrm{N}_{0}\) & \(\mathrm{~N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{3}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 12.19 & 17.79 & 25.07 & 25.96 & \begin{tabular}{c}
20.25 \\
\(\mathrm{P}_{1}\)
\end{tabular} \\
\hline 12.48 & 22.59 & 27.37 & 27.04 & 22.37 \\
\hline Mean & 12.34 & 20.19 & 26.22 & 26.50 & 21.31
\end{tabular}
\begin{tabular}{ll}
S.E. of P marginal mean & \(=0.99\) tons/ac. \\
S.E. of \(N\) marginal mean & \(=1.41\) tons/ac. \\
S.E. of body of table & \(=1.99\) tons/ac.
\end{tabular}

\section*{Crop :- Sugarcane (Rabi). \\ Site :- Sugarcane Liaison Farm, Bobbili.}

Ref :- A.P. 59(70).
Type :-' 'M'.
Object :-To study the effect of different levels and methods of application of N on the yie'd of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Paddy. (b) Paddy. (c) 20 ib./ac. of N. (ii) (a) Loamy to clay soil. (b) N.A. (iii) 9.3.1959. (iv) (a) Deep trenching. (b) Trench planting. (c) to (e) N.A. (v) 10 C.L./ac. of F.Y.M. (vi) CO-449 (mid season variety). (vii) Unirrigated. (viii) 3 hoeings. Trash-iwist propping and weeding (ix) Nil. (x) 25.1.1960.
2. TREATMENTS:

All combinations of (1) and (2) +control (2 plots)
(1) 2 levels of \(\mathrm{N}: \mathrm{N}_{\mathrm{I}}=50\) and \(\mathrm{N}_{2}=100 \mathrm{lb}\)./ac.
(2) 4 methods of application of N in 2 equal doses : \(\mathrm{M}_{1}=\mathrm{T}\) o soil in June and to soil in July, \(\mathrm{M}_{2}=\) To foliage in June and to foliage in July, \(\mathrm{M}_{3}=\) To soil in June and to foliage in July and \(\mathbf{M}_{4}=\) To foliage in June and to soil in July.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 10 . (b) \(66^{\prime} \times 165^{\prime}\). (iii) 3. (iv) (a) \(1 / 40\) ac. (b) \(1 / 66.7\) ac. (v). One row on all sides. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) 3 sprayings with Endrine (iii) Cane yield. (iv) (a) 1958-1960. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) The yields in replication II and III were poor due to flooding in rainy season and lack of proper drainage facilities. (vii) Nil.

\section*{5. RESULTS:}
(i) \(\mathbf{1 0 . 2 3}\) tons/ac. (ii) 2.35 tons/ac. (iii) Only N effect is highly significant. (iv) Av. yield of cane in tons/ac.

Control \(=9.04\) tons/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 10.67 & 9.45 & 9.84 & 8.09 & 9.51 \\
\hline \(\mathrm{N}_{2}\) & 11.64 & 11.06 & 10.99 & 12.53. & 11.55 \\
\hline Mean & 11.15 & 10.25 & 10.41 & 10.31 & 10.53 \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of \(N\) marginal mean, & \(=0.68\) tons/ac. \\
S.E. of \(M\) marginal mean & \(=0.96\) tons/ac. \\
S.E. of body of table & \(=1.35\) tons/ac. \\
S.E. of control mean & \(=0.96\) tons/ac.
\end{tabular}

\section*{Crop :- Sugarcane. \\ Site :- Agri. Res. Stn., Rudrur. \\ Ref:- A.P. 56(97). \\ Type :- 'M'.}

Object :-To find the optimum N, P and K requirement of Eksali Sugarcane crop in the tract.
1. BASAL̄ CONDITIONS:
(i) (a) No. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 10.12.1956. (iv) (a) Ploughing. (b) In ridges. (c) \(10-12\) thousand 3 budded-setts/ac. (d) \(3^{\prime}\) between rows. (e) -. (v) Nil. (vi) CO-419 ,medium). (vii) Irrigated. (viii) 2 earthing up and weedings. (ix) \(42.72^{\circ}\). (x) Feb. 1958.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=150\) and \(N_{2}=300 \mathrm{jb} / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=100\) and \(\mathrm{P}_{2}=200 \mathrm{lb} . / \mathrm{ac}\).
(3) 3 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0, \mathrm{~K}_{1}=100\) and \(\mathrm{K}_{2}=200 \mathrm{lb}\)./ac.
3. DESIGN :
(i) (a) \(3^{3}\) partially confd. (ii) (a) 9 plots,'block; 3 blocks/replication. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(26^{\prime} \times 21^{\prime}\). (v) One row on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) No. (iii) Cane yield. (iv) (a) 1956-contd. (b) Yes; in alternate years. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) 19.42 tons/ac. (ii) 3.89 tons/ac. (iii) The main effects of \(N\) and \(P\) are highly significant and \(N \times P\) interaction is significant. (iv) Av. yield of cane in tons/ac.

\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =0.65 \text { tons/ac. } \\
\text { S.E. of body of any table } & =1.12 \text { tons/ac. }
\end{array}
\]

\section*{Crop :- Sugarcane. \\ Site :- Agri. Res. Stn., Rudrur.}

Ref:- A.P. 57(92). .
Type :- ' \(\mathbf{M}^{\prime}\).

Object :-To find the optimum N, P, K requirement of Eksali sugarcane crop in the tract.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Fallow. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 8.12.1957. (iv) (a) Plouging. (b) In ridges. (c) 10 to 12 thousand three-budded setts/ac. (d) \(3^{\circ}\) between rows. (e) -. (v) Nil. (vi) \(\mathrm{CO}-419\) (medium). (vii) Irrigated. (viii) 2 earthing up and weedings. (ix) 40.50". (x) February 1957.
2. TREATMENTS to 4. GENERAL:

Same as in Expt. no. 56(97) on page 327.
5. RESULTS :
(i) 15.58 tons/ac. (ii) 3.02 tons/ac. (iii) The main effects of N and P are highly significant and \(\mathrm{N} \times \mathrm{P}\) interaction is significant. (iv) Average yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
\dot{P_{0}}
\] & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) \\
\hline \(\mathrm{N}_{0}\) & 4.46 & 6.88 & 6.81 & 6.05 & 6.45 & 5.15 & 6.55 \\
\hline \(\mathrm{N}_{1}\) & 9.41 & 22.18 & 21.98 & 17.85 & 19.18 & 16.52 & 17.87 \\
\hline \(\mathrm{N}_{2}\) & 15.43 & 26.18 & 26.97 & 22.86 & 22.38 & 22.41 & 23.79 \\
\hline Mean & 9.76 & 18.41 & 18.59 & 15.58 & 16.00 & 14.69 & 16.07 \\
\hline \(\mathrm{K}_{0}\) & 9.83 & 18.60 & 19.58 & & & \(\cdot\) & \\
\hline \(\mathrm{K}_{1}\) & 7.91 & 18.99 & 17.18 & & & . & \\
\hline \(\mathrm{K}_{2}\) & 11.55 & 17.65 & - 19.01 & & & & ! \\
\hline
\end{tabular}
\begin{tabular}{lll}
S.E. of any marginal mean & \(=0.50 \mathrm{ton} / \mathrm{ac}\). \\
S.E. of body of any table & \(=0.87 \mathrm{ton} / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Sugarcane.}

Ref :- A.P: 58(112)
Site :- Agri. Res. Stn., Rudrur.
Type :- ' \(\mathbf{M}\) '.

Object :-To find the optimum \(\mathrm{N}, \mathrm{P}, \mathrm{K}\) requirement of Eksali sugarcane crop in the tract.
1. BASAL CONDITIONS
(i) (a) Sugarcane-Fallow. (b) Fallow. (c) Nii. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (ili) 12.12.1958. (iv) (a) Ploughing and forming the ridges. (b) In ridges. (c) 10 to 12 thousand three-budded setts/ac. (d) \(3^{\prime}\) between rows. (e) -. (v) Nil. (vi) CO-419 (medium). (vii) Irrigated. (viii) 2 Earthing up and weedings. (ix) 43.25". (x) Jan, Féb. 1960.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 56(97) on page 327.

\section*{5. RESULTS :}
(i) 18.62 tons/ac. (ii) 3.91 tons/ac. (iii) N and P effects are highly significant and \(\mathrm{N} \times \mathrm{P}\) interaction is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) \\
\hline \(\mathrm{N}_{0}\) & 2.95 & 5.41 & 5.88 & 4.74 & 4.50 & 5.05 & 4.68 \\
\hline \(\mathrm{N}_{1}\). & 12.91 & 23.92 & 24.74 & 20.52 & \(21: 03\) & 20.46 & 20.08 \\
\hline \(\mathrm{N}_{2}\) & 20.11 & 34.36 & 37.41 & 30.62 & 28.71 & 31.17 & 31.99 . \\
\hline Mean & 11.99 & 21.22 & 2267 & 18.62 & 18.08 & 18.89 & 18.91 \\
\hline \(\mathrm{K}_{0}\) & 11.99 & 20.20 & 22.06 & \multicolumn{4}{|c|}{\multirow{3}{*}{\(\cdots\).}} \\
\hline \(\mathrm{K}_{1}\) & 11.41 & 22.14 & 23.12 & & & & \\
\hline \(\mathrm{K}_{2}\) & 12.57 . & 21.34 & 22.84 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal means & \(=0.65 \mathrm{ton} / \mathrm{ac}\). \\
S.E. of body of any table & \(=1.13\) tons/ac.
\end{tabular}

\section*{Crop:- Sugarcane.}

Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 57(112).
Type :- ' \(\mathbf{M}^{\prime}\) '.

Object :-To study the effect of N in different forms on Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (e) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) Last week of November, 1957. (iv) (a) Ploughing, levelling, formation of furrows and ridges. (b) Planting. (c) 10,000 setts/ac. (d) \(4 \frac{1}{}^{\prime}\) between rows. (e) 3 eye budded sett/hill. (v) N.A. (vi) CO-467 (eksali). (vii Irrigated. (viii) Multching, weeding and earthing up. (ix) \(31.70^{\prime \prime}\), (x) Last week of December and ist week of January 1959.
2. TREATMENTS :

8 manurial treatments: \(M_{0}=0, M_{1}=N\) as A/S, \(M_{2}=N\) as G.N.C., \(M_{3}=N\) as A/S+G.N.C in \(1: 2\) ratio, \(\mathrm{M}_{4}=\mathrm{N}\) as \(\mathrm{A} / \mathrm{S}\) and G.N.C. in 1:1 ratio. \(\mathrm{M}_{5}=\mathrm{N}\) as G.M. and \(\mathrm{A} / \mathrm{S}\) in 2:7 ratio, \(\mathrm{M}_{6}=\mathrm{N}\) as Compost and \(\mathrm{A} / \mathrm{S}\) in 2:7 ratio and \(\mathrm{M}_{7}=100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+100 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).
In treatments \(\mathrm{M}_{1}\) to \(\mathrm{M}_{6}\), N was applied at \(225 \mathrm{lb} . / \mathrm{ac}\). and these treatments received \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and 100 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) at planting.
3. DESIGN :
(i) R.B.D. (ii) (a) 8.
(b) N.A. (iii) 4.
(iv) (a) \(28^{\prime} \times 48^{\prime}\).
(b) \(25^{\prime} \times 39^{\prime}\)
(v) \(1 \frac{1_{2}^{\prime}}{} \times 4 \frac{1^{\prime}}{}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil.
(iii) Cane yield.
(iv) (a) 1957-1960.
(b) Yes.
(c) N.A.
(v) (a) and (b) N.A.
(vi) and (vii) Nil.
5. RESULTS:
(i) 18.50 tons/ac. (ii) 4.72 tons/ac. (iii) Treatment differences are highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) & \(\mathrm{M}_{6}\) & \(\mathrm{M}_{7}\) \\
\hline \multirow[t]{2}{*}{Av. yield} & 6.74 & 26.14 & 22.07 & 16.38 & 17.08 & 28.18 & 25.50 & 5.90 \\
\hline & \multicolumn{7}{|l|}{S.E./mean \(=2.36\) tons/ac.} & \\
\hline
\end{tabular}

\section*{Crop :- Sugarcane.}

Site :- Agri. Res. Stn., Rudrur.

Ref. :- A.P. 58(143).
Type :- ' \(\mathbf{M '}^{\prime}\).

Object :-To study the effect of N in different forms on Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 1st week of Decemter, 1958. (iv) (a) Ploughing levelling, formation of furrows and ridges. (b) Planting. (c) 10,000 setts/ac. (d) \(4 \frac{1^{\prime}}{}\) between rows. (e) 3 eye buded sett/hill. (v) N.A. (vi) CO-467 (eksali) (vii) Irrigatcd. (viii) Multching, weeding and earthing up. (ix) \(55.57^{\prime \prime}\). (x) 2nd week of January, 1960.
2. TREATMENTS to 4 GENERAL:

Same as in expt. no. 57(112) above

\section*{5. RESULTS :}
(i) 24.70 tois/ac. (ii) 5.74 tons/ac. (iii) Treatment differences are highly significant. (iv) Av. yield of cane in tons/ac.

\section*{Crop:- Sugarcane.}

Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 59(126).
Type \({ }^{6} \mathbf{M}^{\text {. }}\)

Object :-To study the effect of N in different forms on Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) N.A. (ii) (a) Clay loàm. (b) Refer soil analysis, Rudrur. (iii) Last week of Nov. and I week of Dec: 1950. (iv) (a) plough:ng, levelling, formation of ridges and furrows. (b) Planting. (c) 10,000 setts/ac. (d) \(4 \frac{1}{2}{ }^{\prime}\) between rows. (e) 3 eye budded set/hill. (v) N.A. (vi) CO-467 (eksali). (vii) Irrigated. (viii) Multching, weeding and earth ng up. (ix) \(55.11^{\prime \prime}\). (x) 2nd week of Jań. 1961.
2. TREATMENTS to 4. GENERAL:

Same as in expt. No. 57(112) on page 330.
5. RESULTS :
(i) 27.69 tons/ac. (ii) 4.23 tons/ac. (iii) Treatment differences are highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & - \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) & \(\mathrm{M}_{6}\) & \(\mathrm{M}_{7}\) \\
\hline Av. y:eld & 6.28 & 35.25 & 31.57 & 36.37 & 33.29 & 37.22 & 33.97 & 7.55 \\
\hline
\end{tabular}

\section*{Grop :- Sugarcane. \\ Site :- Agri. Res. Stn., Rudrur.}
Ref :- A.P. 59(127).
Type :- 'M'.

Object:-To study the effect of Nitrophoska (green) on Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) End of Nov, and beginning of Dec. 1959. (iv) (a) Ploughing, levelling, formation of furrows, and ridges. (b) Planting. (c) 10,000 setts/ac. (d) \(3^{\prime}\) between rows. (e) 3 budded sets. (v) Nil. (vi) CO -419 (eksali). (vii) Irrigated. (viii) Weeding, multching and earthing. (ix) 55.1!'". (x) End of Dec. 1960.
2. TREATMENTS:

4 manurial treatments : \(\mathrm{M}_{0}=\) Control, \(\mathrm{M}_{1}=225 \mathrm{lb} . / \mathrm{ac} . \mathrm{N}\) as \(\mathrm{A} / \mathrm{S}, \mathrm{M}_{2}=\mathrm{M}_{1}+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super and \(\mathrm{M}_{3}=225 \mathrm{lb} . / \mathrm{ac}\). of N as Nitrophoska (green).
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) \(24^{\prime} \times 24^{\prime}\). (b) \(24^{\prime} \times 18^{\prime}\). (v) One row on either side of the plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Cane yield. (iv) (a) 1959-contd. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) (vii) Nil.
5. RESULTS :
(i) 13.52 tons/ac. (ii) 2.42 tons/ac. (iii) Treatment differenes are highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|}
\hline Treatment & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
\hline Av. yield & 5.56 & 5.14 & 18.73 & 24.65 \\
\hline
\end{tabular}

Grop:- Sugarcane.
Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 59(128).
Type :- ' \(\mathbf{M}\) '.

Object :-To study the effect of nitrophoska (Blue) on cane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) N.A. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) End of Nov. and beginning of Dec., 1959. (iv) (a) Ploughing, levelling and formation of furrows and ridges. (b) Planting. (c) \(1(0 C 0\) setts/ac. (d) 3 ' between rows. (e) 3 budded set/hill. (v) Nil. (vi) CO-419 (eksali). (vii) Irrigated. (viii) Weeding, multching, earthing, (ix) 55.11". (x) End of Dec. 1960.
2. TREAT.MENTS:

4 manurial treatments: \(\mathrm{M}_{0}=\) Control, \(\mathrm{M}_{1}=225 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} . \mathrm{M}_{2}=\mathrm{M}_{1}+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. \(\mathrm{M}_{3}=225 \mathrm{lb}\). ac. of N as Nitrophoska (blue).
3. DESIGN and 4. GENERAL:

Same as in expt. no. 59(127) on page 331.
5. RESULTS:
(i) 11.15 tons/ac. (ii) 1.46 tons/ac. (iii) The treatment differences are highly siguificant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{llccc}
Treatments & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
Av. yield & 3.38 & 5.01 & 17.13 & 19.10 \\
& \multicolumn{5}{l}{} \\
& S.E. mean & \(=\) & 0.73 ton'ac.
\end{tabular}

Crop :- Sugarcane.
Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 57(83).
Type:- ' \(\mathbf{M}\) '.

Object:-To study the effect of different levels and sources of \(N\) with and without \(P\) on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) a) Nil. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) - /17.2.1957. (iv) (a) Ploughings. (b) In ridges. (c) to (e) N.A. (v) Nıl. (vi) CO -467 (mid season to late). (vii) Irrisated. (viii) Weeding. (ix) 42.72". (\(x\), February, 1958.
2. TREATMENTS:

All combinations of \((1),(2)\) and (3) +2 extra treatments.
(1) 2 level of \(\mathrm{P}_{.} \mathrm{O}_{5}: \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=100 \mathrm{tb} . / \mathrm{ac}\).
(2) 2 levels of \(N: N_{1}=200\) and \(N_{2}=300 \mathrm{lb}\).'ac.
(3; 2 sources of \(N: S_{1}=A / S\), and \(S_{2}=A C\).
Extra treatments: \(\mathrm{E}_{1}=\) No manure and \(\mathrm{E}_{2}=100 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) R.B.D.
(ii) (a) 10 .
(b) N.A.
(iii) 3. (iv) (a) and (b)
b) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iil) Biometric observations and cane yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 18.91 tons/ac. (ii) 3.85 tons/ac. (iii) Extra treatments \(v s\). others and main effect of \(P\) are highly significant. Other effects are not significant. (iv) Av. yield of cane in tons/ac.

\begin{tabular}{lr}
S.E. of any marginal mean & \(=1.11\) tons/ac. \\
S.E. of body of any table & \(=1.57\) tons/ac. \\
S.E. of \(E_{1}\) or \(E_{2}\) mean & \(=2.22\) tons/ac.
\end{tabular}

\section*{Crop :- Sugarcane.}

Site :- Agri. Res. Stn., Rudrur.

\section*{Ref':- A.P. 58(106).}

Type :- ‘'M’.

Object:-To study the effect of different levels, and sources of N with and without P on the yield of Sugarcane.

\section*{1. BASAL CONDIJIONS:}
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) February, 1958. (iv) (a) Deep trenching and hoeing \(4^{\prime \prime}\) deep in trenches. (b) Trench planting. (c) 10 to 12 thousand setts/ac. (d) \(3^{\prime}\) beetween rows. (e) 3 buds/sett. (v) Nil. (vi) \(\mathrm{CO}-457\) (medium). (vii) Irrigated. (viii) Weeding and hoeing. (1x) N.A. (x) March, 1959.
2. TREATMENTS:

Same as in expt. no. 57(83) on page 332.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(34^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :

Same as in expt. no. 57(83) on page 332.
5. RESULTS :
(i) 15.12 tons/ac. (ii) 3.97 tons/ac. (iii) Extra treatments \(v s\). others and main effects of N and P and \(\mathrm{N} \times \mathrm{P}\) interaction are highly significant. Other effects are not significant. (iv) Av. yield of cane in tons/ac.
\[
\mathrm{E}_{1}=3.49 \text { tons } / \mathrm{ac} . \text { and } \mathrm{E}_{2}=4.23 \text { tons } / \mathrm{ac} .
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) \\
\hline \(\mathrm{N}_{1}\) & 7.06 & 23.53 & 15.29 & 14.82 & 15.76 \\
\hline \(\mathrm{N}_{2}\) & 7.67 & 33.05 & 20.35 & 20.90 & 19.81 \\
\hline & 7.36 & 28.29 & 17.82 & 17.86 & 17.79 \\
\hline \(S_{1}\) & 7.26 & 28.46 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{- .}} \\
\hline \(\mathrm{S}_{2}\) & 7.46 & 28.12 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
S.E. of any marginal mean & \(=0.99\) tons/ac. \\
S.E. of body of any table & \(=1.40\) tons/ac. \\
S.E. of \(E_{1}\) or \(E_{2}\) mean & \(=1.99\) tors/ac.
\end{tabular}

\section*{Crop :- Sugarcane.}

Site :- Agri. Res. Stn., Rudrur.

Object :-To study the effect of different levels and sources of \(N\) with and without \(P\) on the yield of Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) February, 1959. (iv) (a) Deep trenching, hoeing \(4^{\prime \prime}\) deep in trenches. (b) Trench planting. (c) 10 to 12 thousand three budded setts/ac. (d) \(3^{\prime}\) between rows. (e) -. (v) Nil. (vi) \(\mathrm{CO}-467\) (medium). (vii) Irrigated. (viii) Weeding and hoeing. (ix) N.A. (x) March, 1960.
2. TREATMENTS:

Same as in expt. no. 57(83) on page 332.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4 . (iv) (a) and (b) \(34^{\prime} \times 18^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Cane yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 21.99 tons/ac. (ii) 3.81 tons/ac. (iii) Extra treatments \(v s\) others and main effect of \(P\) and \(P \times S\) interactions are highly significant. Other effects are not significant. (iv) Av. yield of cane in tons/ac.

\section*{Crop :- Sugarcane. \\ Site :- Sugarcane Liaison Farm, Samalkot.}

Ref. :- A.P. 56(68).
Type :- ' \(\mathbf{M}^{\prime}\).

Object :-To study the effect of different doses of N on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Paddy-Sugarcane-Paddy, (b) Paddy. (c) N.A. (ii) (a) Alluvial soils. (b) N.A. (iii) Last week of January and 2nd week of February, 1956. (iv) (a) Ploughing and formation of trenches. (b) Trench planting. (c) to (e) N.A. (v) Nil. (vi) \(\mathrm{CO}-527\) (early) and \(\mathrm{CO}-419\) (late). (vii) Irrigated. (viii) 2 weedings and propping. (ix) 61.01". (x) 2nd week of February, 1957.

TREATMEVTS:
4 levels of \(\mathrm{N}: \mathrm{N}_{1}=100, \mathrm{~N}_{2}=150, \mathrm{~N}_{3}=200\) and \(\mathrm{N}_{4}=250 \mathrm{lb}\)./ac.
N was applied in one dose in June, 1956,
3. DESIGN :
(i) R.B.D.
(ii) (a) 4.
(b) N.A.
(iii) 6. (iv) (a) \(33.0^{\prime} \times 39.6^{\circ}\).
(b) \(19.8^{\prime} \times 33.0^{\prime}\).
(v) \(6.6^{\prime} \times 3.3^{\prime}\).
(vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Spraying Guesaral 550 was done to prevent early shoot borer. (iii) Yield of cane. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) N.A. (vi) Nil. (vii) The same expt. was conducted on the two varieties CO-527 and CO-419 separately.
5. RESULTS :

CO-527
(i) 25.95 tons/ac. (ii) 4.06 tons/ac. (iii) Treatment differences are not significant. '(iv) Av. yield of.cane in tons/ac.
\begin{tabular}{ccccc}
Treatment & \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{3}\) & \(\mathrm{~N}_{4}\) \\
Av. yield & 24.84 & 26.12 & 25.43 & \(27.41-\) \\
& & \\
& S.E. mean & \(=\) & 1.65 tons/ac. \\
& \(;\) & & \(\vdots\) \\
& & & \\
& & & \\
& & &
\end{tabular}
(i) 30.88 tons/ac. (ii) 4.93 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lcccc}
Treatment & \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{3}\) & \(\mathrm{~N}_{4}\) \\
Av. yield & 28.28 & 31.21 & 31.76 & 32.27 \\
& & & & \\
& S.E./mean & \(=\) & 2.01 tons/ac.
\end{tabular}

\section*{Crop:- Sugarcane. \\ Site :- Sugarcane Liaison Farm, Samalkot. \\ Ref. :- A.P. 56(99). \\ Type :- ' \(\mathbf{M}\) '.}

Object :-To study the effect of different doses of \(N\) on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy (c) Nil. (ii) Clay loam. (b) N.A.' (iii) 31.3.1956 and 1.4 1956. (iv) (a) Trenching. (b) Trench planting. (c) \(15 ; 000\) three-budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e) -. (v) Nil. (vi) CO419 (late). (vii) Irrigated. (viii) Hoeing, weeding, trash-twist propping and earthing up. (ix) \(61.01^{\prime \prime}\). (x) 28.2.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(68) on page 334.
4. GENERAL :
(i) Good. (ii) Early shoot borer attack-Endrine sprayed. (iii) Cane yield. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) 30.95 tons/ac. (ii) 4.94 tons/ac, (iii) The treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lllcr}
Treatment & \(\cdot \mathrm{N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{3}\) & \(\mathrm{~N}_{4}\) \\
Av. yield & 28.34 & 31.28 & 31.83 & 32.34 \\
& & & & \\
& S.E./mean & \(=\) & 2.02 tons/ac. &
\end{tabular}

\section*{Crop :- Sugarcane. \\ Ref. :- A.P. 57(101). \\ Site :- Sugarcane Liaison Farm, Samalkot. \\ Type : \(=\) ' \(\mathbf{M}^{\prime}\).}

Object :-To study the effect of different doses of N on the yield of Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Pa ddy. (c) Nil. (ii) Clay loam. (b) N.A. (iii) 10.2 .1957 and 11.2.1957. (iv) (a) Trenching. (b) Trench planting. (c) 15,000 three-budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e) -. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) Hoeing, weeding, trash twist propping and earthing up. (ix) \(34.54^{\circ}\). (x) 31.31958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(68) on page 334.

\section*{4. GENERAL:}
(i) Good. (ii) Nil. (iii) Cane yield. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 42.39 tons'ac. (ii) 2.45 tons,ac. (iii) The treatment differences are not significant. (iv) Av, yield of cane in tons.ac.
\begin{tabular}{lcccc}
Treatment & \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{3}\) & \(\mathrm{~N}_{4}\) \\
Av. yield & 40.31 & 42.57 & 43.01 & 43.68 \\
& S.E./mean & \(=\) & 1.00 ton/ac. &
\end{tabular}

\section*{Crop:- Sugarcane. \\ Site :- Sugarcane Liaison Farm, Samalkot. \\ Ref :- A.P. 58(122). \\ Type :- ' \(\mathbf{M}\) '.}

Object :-To study the effect of different doses of N on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a, Nil. (b) Paddy (c) N.A. (ii) (a) Clay loam. (b) N.A. (iii) 28.2.1958. (iv) (a) Trenching.
(b) Treach planting. (c) 15,000 three-budded setts/ac. (d) \(3.3^{\prime}\) between rows (e) -. (v)

Nil. (vi) CO-419. (late). (vii) Irrigated. (viii) Hoeing, weeding, Earthing up, trash twist propping. (ix) \(60.11^{\prime \prime}\), (x) 17 to 27.2.1959.
2. TREATMENTS and DESIGN :

Same as in expt. no. 56(68) on page 334.
4. GENERAL:
(i) Good. ii' Nil. (iii) Cane yield. (iv) (a) 1955-1958. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 31.92 tons/ac. (ii) 2.96 tons/ac. (iii) The treatment differences are not significant. (iv) Av. yield of cane in tons 'ac.
\begin{tabular}{lccll}
Trestment & \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{3}\) & \(\mathrm{~N}_{4}\) \\
Av. yield & 29.52 & 32.12 & 32.77 & 33.27
\end{tabular}
S.E./mean \(=1.21\) tons/ac.

\section*{Crop :- Sugarcané. \\ Site :- Sugarcane Liaison Farm, Samalkot. \\ ```
Ref:- A.P. 56(100). \\ Type :- 'M'.
```}

Obj ct:-To study the effec: of different doses of \(N\) the yield of Sugarcare.
1. BASAL CONDITIONS :
(i) Nil. (a) (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) N.A. (iii) 28, 29.3.1956. (iv) (a) Trenching. (b) Trench planting. (c) 15,000 three-budded setts/ac. (d) 3.3 between rows. (e) N.A. (v) (vi) Co-527 (early). (vii) Irrigated (viii) Hoeing, weeding, earthing up and trash twist propping. (ix) \(61.0 .^{\circ}\). (x) 28.2.1957.
2. TREATMENTS and 3 DESIGN :

Same as in expt. no. 56(68) on page 334.
4. GENERAL:
(i) Good. (ii) Early shoot borer attack-Endrine sprayed. (iii) Cane yield. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 26.00 tons/ac. (ii) 4.07 tons'ac. (iii) The treatment differences are not signiffcant. (iv) Av. yield of cane in tons'ac.
\begin{tabular}{|c|c|c|c|c|}
\hline Treatment & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & \(\mathrm{N}_{4}\) \\
\hline Av. yjeld & 24.89 & 26.17 & 25.48 & 27.47 \\
\hline & \multicolumn{2}{|l|}{S.E./mean} & \multicolumn{2}{|l|}{\(=1.66\) tons/ac.} \\
\hline
\end{tabular}

\section*{Crop :- Sugarcane. \\ Site :- Sugarcane Liaison Farm, Samalkot. \\ Ref :- A.P. 57(100). \\ Type :- © \(\mathbf{M}\) ’.}

Object :-To study the effect of different doses of N on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) N.A. (iii) 14.2.1957. (iv) (a) Trenching.
(b) Trench planting. (c) 15,000 three budded setts/ac. (d) \(3.3^{\prime}\). (e) -. (v) Nil. (vi) CO-527 (early). (vii) Irrigated. (viii) Horing, weeding, Earthing up and trash twist propping. (ix) 34.54". (x) 7.31958
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. \(56(68)\) on page 334.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Cane yield, (iv) (a) 1956-1958. (b) No. (c) 'Nil. (v) to (vii) Nil.
6. RESULTS :
(i) 39.75 tons/ac. (ii) 265 tons/ac. (iii) The treatment differences are significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lccccc} 
Treatment & \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{\mathbf{2}}\) & \(\mathrm{N}_{3}\) & \(\mathrm{~N}_{4}\) \\
Av. yield & 37.34 & 38.63 & 41.24 & 41.78 \\
& & & & & \\
& S.E & & & & \\
& & & & &
\end{tabular}

\section*{Crop :- Sugarcane.}

Site :- Sugarcane Liaison Farm, Samalkot.

Ref :- A.P. 58(121).
'Туре :- ' \({ }^{\mathbf{M}}\) '.

Object :-To study the effect of different doses of \(N\) on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) N.A. (iii) 5.2.1958. (iv) (a) Trenching. (b) Trench planting. (c) 15,000 three budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e)-. (v) Nil. (vi) CO-527 (early). (vii) Irrigated. (viii) Hceing, weeding, earthing up and trash twist propping. (ix) \(60.11^{\text {a }}\) (x) 14.2.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(68) on page 334.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Cane yield. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 29.22 tons/ac. (ii) 2.12 tons/ac. (iii) The treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lccccc} 
Treatment & \(\mathrm{N}_{1}{ }^{\circ}\) & \(\mathrm{N}_{2}\) & \(\mathrm{~N}_{3}\) & \(\mathrm{~N}_{4}\) \\
Av. yield & 27.18 & 29.16 & 30.19 & 30.35 \\
& & & & \\
& S.E.mean & \(=\) & 0.87 tons/ac. &
\end{tabular}

\section*{Crop :- Sugarcane.}

Site :- Sugarcane Liaison Farm, Samalkot.

Ref :- A.P. 57(98).
Type :- 'M'.
Object:-To find out the effect of applisation of \(\mathbf{P}\) on the yield of Sugarcane،
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) N.A. (iii) 12 to 14.2 .1957 . (iv) (a) Trenćh digging. (b) Trench planting. (c) 15,000 three budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e)-- (v) 150 lb./ac. of N as \(\mathrm{A} / \mathrm{S}\). (vi) \(\mathrm{CO}-419\) (late). (vii) Irrigated. (vili) Hoeing, weeding and earthing up. (ix) 34.54'. (x) 31.3.1958.
2. TREATMENTS :

4 levels cum methods of application of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=100 \mathrm{lb}\)./ac. by placement, \(\mathrm{P}_{2}=200 \mathrm{lb} . / \mathrm{ac}\). by placement and \(P_{3}=25 \mathrm{lb}\)./ac. by spray.
3. DESIGN :
(i) R.B.D.
(ii) (a) 4 .
(b) N.A.
(iii) 6.
(iv) (a) \(33.0^{\circ} \times 39.6^{\prime}\).
(b) \(19.8^{\prime} \times 33.0^{\prime}\). (v) \(6.6^{\prime} \times 3.3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Cane yield. (iv) (a) 195i-1959. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 36.56 tons/ac. (ii) 2.96 tons/ac. (iii) The treatment differences are not significant. "(iv) Av. yield of cane in tons!ac.
\begin{tabular}{llccc} 
Treatment & \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) \\
Av. yjeld & 35.89 & 36.84 & 37.20 & 36.31 \\
& S.E \(/\) mean & \(=\) & 1.21 tons/ac. &
\end{tabular}
\begin{tabular}{ll} 
Crop :- Sugarcane. & Ref :- A.P. 58(123). \\
Site :- Sugarcane Liaison Farm, Samalkot. & Type :- ‘M’.
\end{tabular}

Object :-To find out the effest of application of \(P\) on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c N.A. (ii) (a) Clay loam. (b) N.A. (iii) 16.2.1958. (iv) (a) Trench diggıng.
(b) Trench planting. (c) 15,000 three budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e)-. (v) Nil. (vi) \(\mathrm{CO}-\)

419 (late). (vii) Irrigated. (viii) Hoeing, weeding and earthing up. (ix) 60.11". (x) 6.3.1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57(98) as above.
5. RESULTS:
(i) 29.87 tons'ac. (ii) 3.40 tons/ac. (iii) The treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lcccc} 
Treatment & \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) \\
Av. yield & 28.84 & 30.56 & 30.65 & 29.43 \\
& S.E./mean & \(=\) & 1.39 tons/ac. &
\end{tabular}

\section*{Crop :- Sugarcane. \\ Site :- Sugarcane Liaison Farm, Samalkot.}

> Ref :- A.P. \(59(101)\).
> Type :- 'M'.

Object:-To find out the effect of application of \(P\) on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Clay oam. (b) N.A. (iii) 11.2.1959. (iv) (a) Trench digging. (b) Trench planting. (c) 15,000 three budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e)-. (v) Nil. (vi) CO419 (late). (vii) Irrigated. (viii) Hoeing, weeding and earthing up. (ix) 49.09". (x) 6.3.1960.
2. TREATMENTS to 4. GENERAL:

Same ás in expt. no. 57(98) on page 338.
5. RESULTS :
(i) 32.22 tons.ac. (ii) 4.66 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lcccc} 
Treatment & \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) \\
Av. yield & 34.05 & 32.38 & 33.81 & \(\mathbf{3 2 . 6 5}\) \\
& & & \\
& & & \\
& S.E./mean & \(=\) & 1.90 tons/ac. &
\end{tabular}
\[
\begin{aligned}
& \text { Crop :- Sugarcane. } \\
& \text { Site :- Sugarcane Liaison Farm, Samalkot. }
\end{aligned}
\]

Object:-To find out the effect of application of \(P\) on the yield of Sugarcane.
1. BAŚAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) N.A. (iii) 15, 16.2.1957. (iv) (a) Trenching. (b):Trench planting. (c) 15,000 three budded setts/ac. (d) 3.3 between rows. (e)-. (v) Nil. (vi) CO527 (early). (vii) Irrigated. (viii) Hoeing, weeding, earthing up and trash twist propping. (ix) \(34.54^{\prime \prime}\). (x)' 28.2.1958.
\(i\)
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. \(57(98)\) on page 338.
5. RESULTS :
(i) 34.84 tons/ac. (ii) 3.94 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{ccccc} 
Treatment & \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) \\
Av. yield & 34.55 & 35.65 & 33.93 & 35.24 \\
\(\cdot\) & & & & \\
& \multicolumn{4}{l}{ S.E./mean } \\
& \(=\) & 1.61 tons/ac.
\end{tabular}

\section*{Crop :- Sugarcane. \\ Site :- Sugarcane Liaison Farm, Samalkot.}
Ref :- A.P. 58(124).
Type :- ' M '.

Object :-To find out the effect of application of \(P\) on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) N.A. (iii) 15.2.1958. (iv) (a) Trench digging and trash twist propping. (b) Trench planting. (c) 15,000 three budded setts/ac. (d) \(3.3^{\prime}\) between rows. (c) 一.(v) Nil. (vi) CO-527 (early). (vii) Irrigated. (viii) Hoeing, weeding and earthing up. (ix) \(49.09^{\prime \prime}\). (x) 22.2.1959.

TREATMENTS to 4.' GENERAL:
Same as in expt. no. \(57(98)\) on page 338.
5. RESULTS :
(i) 28.93 tons/ac. (ii) 4.65 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of sugarcane in tons/ac.
\begin{tabular}{lcccc} 
Treatment & \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) \\
Av. yield & 27.68 & 29.22 & 29.88 & 28.93 \\
& & & & \\
& S.E./mean & \(=\) & 1.89 tons/ac. &
\end{tabular}
\begin{tabular}{ll} 
Crop :- Sugarcane. & Ref :- A.P. 59(100). \\
Site :- Sugarcane Liaison Farm, Samalkot. & Type :- 'M'.
\end{tabular}

Site :- Sugarcane Liaison Farm, Samalkot.
Type :- ' \(M\) '.
Object :-To find out the effect of application of P on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 15.2.1959. (iv) (a) Trench digging.
(b) Treach planting. (c) 15,000 three budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e)-. (v) Nil. (vi) CO-

527 (early). (vii) Irrigated. (viii) Hoeing, weeding and earthing up. (ix) 49.09*. (x) 28.2.1960.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 57(98) on page 338.

\section*{5. RESULTS :}
(i) 30.38 tons/ac. (ii) 2.55 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yieid of cane in tons/ac.
\begin{tabular}{lcccc} 
Treatment & \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) \\
Av. yield & 29.13 & 30.83 & 31.46 & 30.09 \\
& & & & \\
& S.E./mean & \\
& & & 1.04 tons/ac. &
\end{tabular}

\section*{Crop :- Sugarcane. \\ Ref:- A.P. 55(37). \\ Site :- Belal Farm, Shakkarnagar (Nizam Sugar Factory). Type :- ' \(\mathbf{M}\) : .}

Object :-To study the effect of different levels of \(P\) and \(K\) on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Sugarcane. (c) N.A. (ii) (a) Regur (black cotton soil). (b) N.A. (iii) June-July, 1955. (lv) (a) to (e) N.A. (v) \(1000 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C. and A/S in the ratio of 2:1 applied in three doses first at planting, second three months after planting and third 6 months after planting. (vi) CO-419. (vii) Irrigated. (viii) and (ix) N.A. (x) November-December, 1956.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=100\) and \(\mathrm{P}_{2}=200 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0, \mathrm{~K}_{1}=100\) and \(\mathrm{K}_{2}=200 \mathrm{Jb} . / \mathrm{ac}\).
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(1 / 11.4\) ac. (v) \(3 \frac{1^{\prime}}{} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal.
(ii) Nil. (iii) Cane yiel
(iv) (a) 1955-contd.
(b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :

\footnotetext{
(i) 64.51 tons/ac. (ii) 5.89 tons/ac. (iii) Only \(K\) effect and interaction \(P \times K\) are significant. (iv) Av. yield of cane in tons/ac.
}
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 58.27 & 72.40 & 60.58 & 63.75 \\
\hline \(\mathrm{P}_{1}\) & 68.01 & 63.15 & 69.82 & 66.99 \\
\hline \(\mathrm{P}_{2}\) & 53.49 & 68.71 & 66.12 & 62.77 \\
\hline Mean & 59.92 & 68.69 & 65.51 & 64.51 \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{S.E. of any marginal mean S.E. of body of table}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& =1.70 \text { tons/ac. } \\
& =2.95 \text { tons/ac. }
\end{aligned}
\]}} \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Crop :- Sugarcane.}

Ref :- A.P. 55(38).
Site :- Belal Farm, Shakkarnagar (Nizam Sugar Factory). Type :- 'M'.
Object:-To study the effect of different levels of \(P\) and \(K\) on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Sugarcane. (c) N.A. (ii) (a) Chalka (sandy loam). (b) N.A. (iii) June-July 1955. (iv) (a) to (e) N.A. (v) \(400 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C. and \(\mathrm{A} / \mathrm{S}\) in 2:1 applied in three doses first at planting second 3 months after planting and third 6 months after planting. (vi) CO-419. (vii) Irrigated. (viii) and (ix) N.A. (x) November-December 1956.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 55(37) on page 340.
5. RESULTS :
(i) 64.23 tons/ac. (ii) 6.73 tons/ac. (iii) Main effect of \(K\) alone is highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 58.62 & 70.19 & 62.21 & 63.68 \\
\hline \(\mathrm{P}_{1}\) & 63.88 & 69.49 & 60.71 & 64.69 \\
\hline \(\mathrm{P}_{2}\) & 57.88 & 67.71 & 67.40 & 64.33 \\
\hline Mean & 60.13 & 69.13 & 63.44 & 64.23 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { S.E. of any marginal mean } & =1.94 \text { tons } / \mathrm{ac} . \\ \text { S.E. of body of table } & =3.36 \text { tons/ac. }\end{array}\)

Crop :- Sugarcane.
Ref :- A.P. 59(25).
Site :- Sugarcane Liaison Farm, Tanuku.

Type :- ' \(\mathbf{M}\) '.

Object:-To find out the optimum time of application of N to Sugarcane crop.
1- EASAL CONDITIONS :
(i) (a) NiJ. (b) Paddy. (c) N.A. (ii) (a) Clayey loam. (b) N.A. (iii) 13.2.1959. (a) Ploughing and levelling. (b) In deep trenches. (c) N.A. (d) \(3.3^{\prime}\) between rows. (e) N.A. (v) Nil. (vi) CO-527 (early). (vii) Irrigated. (viii) Weeding and trash twist propping. (ix) \(63.18^{*}\). (x) 11.2.1960.
2. TREATMENTS :

3 split applications of 150 lb ./ac. of N as A/S and G.N.C. in \(2: 1\) ratio in equal doses: \(\mathrm{T}_{1}=30 \mathrm{th}\) and 60 th day of planting, \(T_{2}=45\) th and 90 th day of planting and \(T_{3}=30\) th, 60 th and 120 th day of planting.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) \(39.6^{\prime} \times 99.0^{\prime}\). (iii) 8 . (iv) (a) \(39.6^{\prime} \times 33.0^{\prime}\). (b) \(33.0^{\prime} \times 19.8^{\prime}\) (v) \(3.3^{\prime} \times 6.6^{\prime}\) (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) D.D.T. was sprayed once to prevent the incidence of early shoot borer during March 1959. (iii) Cane yield. (iv) (a) 1959-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 35.22 tons/ac. (ii) 13.24 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{llcl} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{\mathbf{2}}\) & \(\mathrm{T}_{\mathbf{3}}\) \\
Av. yield & 36.66 & 34.44 & 34.57 \\
& & & \\
& S.E./mean & \(=\) & 4.68 tons/ac.
\end{tabular}

\section*{Crop :- Sugarcane. \\ Ref :. A.P. 59(26). \\ Site :- Sugarcane Liaison Farm, Tanuku. \\ Type :- 'M'.}

Object :-To find out the optimum time of application of N to Sugarcane crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Clayey loam. (b) N.A. (iii) 10.2.1959. (iv) (a) Ploughing and levelling. (b) In deep trenches. (c) N.A. (d) \(3.3^{\prime}\) between rows. (e) N.A. (v) Nıl. (vi) CO-419 (late). (vii) Irrigated. (viii) Weeding and trash-twish propping. (ix) 63.18". (x) 24.2.1960 to 13.1960.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59(25) on page. 341.
5. RESULTS:


Crop :- Sugarcane.
Site :- Sugarcane Liaison Farm, Tanuku.

Ref :- A.P. 59(27).
Type :- ' \(\mathbf{M}\) '.

Object :-To find out the optimum doses of N for Sugarcane crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sugarcane-Sugarcane (Ratoon). (b) Paddy. (c) Nil. (ii) (a) Clayey loam. (b) N.A. (iii) 6.2.1959.
(vi) Ploughing and levelling. (b) Planting in trenches. (c) N.A. (d) \(3.3^{\prime}\) between rows. (e) N A. (v) N.A. (vi) CO-527 (early). (vii) Irrigated. (viii) Weeding, and trash twist propping. (ix) 63.18". (x) 11.2.1960.
2. TREATMENTS :

5 ievels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=50 \quad \mathrm{~N}_{2}=100, \mathrm{~N}_{3}=150\) and \(\mathrm{N}_{4}=200 \mathrm{jb}\)./ac. N was applied in two equal doses on 20.3.1959 and 6.4.1959.
3. DESIGN :
(i) R.B.D. (ii) (a) 5
(b) \(39.6^{\prime} \times 165.0^{\prime}\)
(iii) 6. (iv)
(a) \(39.6^{\prime} \times 33.0^{\prime}\).
(b) \(33.0^{\prime} \times 19.8\)
(v) \(3.3^{\prime} \times 6.6^{\circ}\) (vi, Yes.
4. GENERAL :
(i) Satisfactory. (ii) D.D.T. was sprayed to prevent the incidence of early shoot borer once during March, 1959. (iii) Cane yield. (iv) (a) 1959-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 32.64 tons/ac. (ii) 4.53 tons/ac. (iii) The treatment differences are highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lccccc} 
Treatment & \(\mathrm{N}_{0}\), & \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{3}\) & \(\mathrm{~N}_{4}\) \\
Av. yield & 21.41 & 29.26 & 32.14 & 39.37 & \(42.02^{-}\) \\
& & & & \(:\) &
\end{tabular}
```

Crop :- Sugarcane.
Site :- Sugarcane Liaison, Fram, Tanuku.
Ref :- A.P. 59(28).
Type :- 'M'.

```

Object :-To find out the optimum dose of N for Sugarcane crop. 1
1. BASAL CONDITIONS:
(i) (a) Sugarcane-Sugarcane (ratoon). (b) Paddy. (c) Nil. (ii) (a) Clayey loam. (b) N.A. (iii) 7.2.1959. (iv) (a) Ploughing and levelling. (b) Planting. (c) N.A. (d) \(3,3^{\prime}\) between rows. (e) N.A. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) Weeding and trash-twist propping. (ix) 63.18 . (x) 18.2.1960.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59(27) on page. 342.
5. RESUULTS :
(i) 36.93 tons/ac. (ii) 4.14 tons/ac. (iii) Treatment differences are highly significant. (iv) Av. yield of cane in ton/ac.
\begin{tabular}{cccccc} 
Treatment & \(\mathrm{N}_{0}\) & \(\mathrm{~N}_{1}\) & \(\mathrm{~N}_{2}\) & \(\mathrm{~N}_{3}\) & \(\mathrm{~N}_{4}\) \\
Av. yield & 23.36 & 32.12 & 37.23 & 42.57 & 49.37 \\
& & & & & \\
& S.E./mean & & \(=\) & 1.69 & Tons/ac.
\end{tabular}

\section*{Crop :- Sugarcane. \\ Site:- Sugarcane Liáison Farm, Tanuku. \\ Ref :- A.P. 59(29). \\ Type :- ' \(\mathbf{M}\) '.}

Object :-To study the economic way of application of N for Sugarcane crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Clayey loam. (b) N.A. (iii) 10.2.1959. (iv) (a) Ploughing and levelling. (b) Planting in trenchcs. (c) N.A. (d) Rows \(3.3^{\prime}\) apart. (e) N.A. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) Weeding and trash propping. (ix) 63.11". (x) 1.3.1960.
2. TREATMENTS :

3 methods of application of \(\mathrm{N}: \mathrm{M}_{1}=150 \mathrm{ib}\)./ac. of N applied to soil in two equal doses 1 and 2 months after planting. \(\mathrm{M}_{2}=75 \mathrm{lb} . / \mathrm{ac}\). of N applied to soil after 1 month of planting and 25 lb ./ac. of N as Urea by foliar spray and \(\mathrm{M}_{3}=100 \mathrm{lb} / \mathrm{ac}\). of N applied to soil in two equal doses 1 and 2 months after planting and \(5000 \mathrm{lb} . / \mathrm{ac}\). of G.L. at earthing.
N applied to soil by pocket method as A/S and G.N.C. in 2:1 ratio.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) \(39.6^{\prime} \times 99.0^{\prime}\). (iii) .8. (iv) (a) \(39.6^{\prime} \times 33.0^{\prime}\). (b) \(33.0^{\prime} \times 19.8^{\prime}\). (v) \(3.3^{\prime} \times 6.6^{\circ}\).
(vi) Yes.'
4. GENERAL :
(i) Satisfactory. (ii) D.D.T. was sprayed to prevent the incidence of early shoo 1 borer cnce during March, 1954. (iii) Cane yield. (iv) (a) 1959-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 52.27 tons/ac. (ii) 6.27 tons/ac. (iii) The treatment differences are not significant. (iv) Av. yicld of cane in tons/ac.
\begin{tabular}{lllr} 
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
Av. yield & 52.99 & 52.30 & 51.52 \\
& S.E./mean & \(=\) & 2.22 tons/ac.
\end{tabular}

\section*{Grop :- Sugarcane. \\ Ref:- A.P. 59(30). \\ Site :- Sugarcane Liaison Farm, Tanuku. \\ Type :- ‘M'.}

Object :-To study the effect of different levels of Super on cane yield and juice quality.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 30.1.1959. (iv) (a) Ploughing and levelling. (b) Planting in deep trenches. (c) N.A. (d) Rows 3.3' apart. (e) N.A. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) Weeding and trash-twist propping. (ix) 63.18'. (x) 17.1.1960.
2. TREATMENTS:

4 levels of \(\mathrm{P}_{5} \mathrm{O}_{5}\) as Super in 2 equal doses on 13.3 .1959 and 1.4.1959; \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=25, \mathrm{P}_{2}=50 \mathrm{P}_{3}=100 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) \(39.6^{\prime} \times 198.0^{\prime}\). (iii) 6 . (iv) (a) \(39.7^{\prime} \times 33.0^{\prime}\). (b) \(33.0^{\prime} \times 19.8^{\prime}\). (v) \(3.3^{\prime} \times 6.6^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) D.D.T. was sprayed to prevent the early incidence of shoot borer once during March, 1959. (iii) Cane yield. (iv) (a) 1959-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 43.97 tons/ac. (ii) 8.40 tons/ac. (iii) The treatment differences are not significant. (iv) Av. yield of cane in ton/ac.
\begin{tabular}{lcccc} 
Treatment & \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) \\
Av. yield & 42.67 & 44.12 & 45.08 & 43.99 \\
& S.E. \(/\) mean & \(=\) & 3.42 tons/ac.
\end{tabular}
\begin{tabular}{ll} 
Crop :- Sugarcane. & Ref :- A.P. 59(31) \\
Site :- Sugarcane Liaison Farm, Tanuku. & Type :- 'M'.
\end{tabular}

Object :-To study the effect of application of N, P and \(K\) and their combinations on the yield of Sugarcaze.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Nil. (il) (a) C'ay loam. (b) N.A. (iii) 12.2.1959. (iv) (a) Ploughing and levelling. (b) Planting in trenches. (c) N.A. (d) \(3.3^{\prime}\) between rows. (e) N.A. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) Weeding and trash-twist propping. (ix) \(63.18^{\prime \prime}\). (x) 21.2.1960.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 2 levels of \(N\) as A/S: \(N_{0}=0\) and \(N_{1}=150 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=100 \mathrm{lb}\)./ac.
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot Sul. : \(\mathrm{K}_{0}=0\) and \(\mathrm{K}_{1} \cdot 200 \mathrm{lb}\)./ac.

The treatments were applied in two equal doses on 45 th and 90 th day after planting by pocketing.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) \(8 . \quad\) (b) \(39.6^{\prime} \times 264.0^{\prime}\). (iii) 4 . (iv) (a) \(39.6^{\prime} \times 33.0^{\prime}\). (b) \(33.0^{\prime} \times 19\). es, (v) \(^{\prime}\) (v) \(3.3^{\prime} \times 6.6^{\prime}\). (vi) Yes.

\section*{4. GENERAL:}
(i) Satisfactory. (ii) D.D.T. was sprayed to prevent the incidence of early shoot borer once during March, 1959. (iii) Cane yield. (iv) (a) 1959 -contd. (b) No. (c) Nil. (v) to (vii) Nil,
5. RESULTS :
(i) 33.76 tons/ac. (ii) 5.71 tons/ac. (iii) Only N effect is highly significant.e: (iv) Av. yield of cane in tons/ac.

S.E. of any marginal mean \(\quad=1.43\) tons努c.
S.E. of body of any table \(\quad=2.01\) tons/ac.

Crop :- Sugarcane.
Centre :- Krishna (c.f.).

Ref:- A.P. 59(SFT).
Type :- \({ }^{\mathbf{T}} \mathbf{M}\).

Object:-Type A-To study the response of Sugarcane to levels of \(\mathrm{N}, \mathrm{P}\) and K applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal. (iii) Nil. (iv) Feb-March, 1959. (v) to (ix) N.A. (x) Feb-March, 1960 .
2. TREATMENTS :
\(0=\) Control.
\(\mathrm{n}=175 \mathrm{lb} / \mathrm{ac}\). of N as \(\overline{\mathrm{A}} / \mathrm{S}\).
\(\mathrm{p}=80 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
np \(=175 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{k}=80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
nk \(=175 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+80 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
\(\mathrm{pk}=80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +80 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. of Pot.
npk \(=175 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+80 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +80 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
3. DESIG:
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type A and the other half of type B on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosphate application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Sugarcane yield. (iv) (a) 1958 -contd. (b) No. (c) N.A. (v) As per design. (vi) and (vii) Nil.

\section*{5. RESULTS :}
\begin{tabular}{lccccccccc} 
Effect & n & p & \(\mathbf{k}\) & S.E. & np & nk & pk & npk & S.E. \\
Av. response in tons/ac. & 3.94 & 2.54 & 2.74 & 1.983 & -0.19 & 0.24 & 0.38 & -0.01 & 0.469 \\
& & & & & & & & &
\end{tabular}

\section*{Crop :- Sugarcane.}

Centre :- Visakhapatnam (c.f.).

Ref :- A.P. 59(SFT).
Type :- ' \(\mathbf{M}\) '.

Object :-To study the response of Sugarcane to levels of \(N, P\) and \(K\) applied individually and combinations.
1. BASAL CONDI IONS :
(i) (a) to (c) N.A.
(ii) Coastal.
(iii) Nil. (iv) Feb-March, 1959. (v) to
to (ix) N.A.
(x) Feb-March, 1960.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59(SFT) Type A on page 345 conducted at Krishna.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & \(n\) & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in ton/ac. & 1.31 & 0.37 & -0.06 & 0.545 & \(-0.20\) & 0.99 & -0.96 & 0.36 & 0.793 \\
\hline
\end{tabular}
```

Crop :- Sugarcane.
Centre :- Krishna (c.f.).

```
```

Ref :- A.P. 59(SFT).

```
Ref :- A.P. 59(SFT).
Type :- 'M'.
```

Type :- 'M'.

```

Object :-Type B-To investigate the relative effiziency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and tlack. (iii) Nil. (iv) Feb-March, 1959. (v) to (ix) N.A. (x) FebMarch, 1959.
2. TREATMENTS :
\(0=\) Control (no manure).
\(n_{1}=175 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{n}_{2}=350 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(n_{1}^{\prime}=175 \mathrm{lb} . / \mathrm{a}\). of N as Urea.
\(\mathrm{n}_{2}{ }^{\prime}=350 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{n}_{1}^{\prime \prime}=175 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
\(\mathrm{n}_{\mathrm{Z}}{ }^{*}=350 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogeneous zores and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type \(A\) and the other half of type B on crops other than the legumes. The three trials on legumes are of type \(\dot{C}\). Residual effects of phosphate application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid cut in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL :
(i) Normal. (ii)
(vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{lccccccc} 
Treament & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}^{\prime}\) & \(n_{2}^{\prime}\) & \(n_{1}^{\prime \prime}\) & \(n_{2}^{\prime \prime}\) \\
Av. yield & 31.84 & 37.59 & 40.94 & 37.87 & 40.21 & 41.07 & 43.63. \\
& & & & & & & \\
& G.M. & \(=\) & 39.02 tons/ac. ; S.E. & \(=\) & 0.079 & ton/ac. and no. of trials \(=4\).
\end{tabular}

Crop :- Sugarcane.
Centre :- Visakhapatnam. (c:f.).
Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal. (iii) Nil. (iv) Feb-March, 1959. (v) to (ix) N.A. (x) Feb-March, 1960.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. \(59(\mathrm{SFT})\) Type B on page 346 conducted at Krishna.
5. RESULTS :
\begin{tabular}{lccccccc} 
Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime}\) & \(\mathrm{n}_{2}{ }^{\prime \prime}\) \\
Av. yield & 36.53 & 40.18 & 39.56 & 37.51 & 38.86 & 39.43 & 39.54
\end{tabular}
\[
\text { G.M. }=38.80 \text { tons/ac. } ; \text { S.E. }=0.241 \text { tons/ac. arid no. of trials }=8
\]

\section*{Crop:- Sugarcane.}

Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 59(133).
Type :- ' \(M \mathbb{M}\) '.

Object:-To study the effect of different levels and methods of application of N on the yield of different varieties of Sugarcane.

\section*{1. BASAL CONDITIONS:}
(i) (a) Sugarcane-Paddy-Sugarcane. (b) Paddy. (c) \(5000 \mathrm{lb} . / \mathrm{ac}\). of G.L. and \(60 \mathrm{lb} . / \mathrm{ac}\). of A/S. (ii) (a) Loamy. (b) Refer soil analysis, Anakapalle. (iii) 13.2.1959. (iv) (a) Trenching. (b) In trenches. (c) 15000 setts/ac. (d) \(3.3^{\prime}\) between rows. (e) Three buds/sett. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) Hoeing, weeditig, trash-twist propping. (ix) \(41.97^{\prime \prime}\). (x) 28.1:1960 to 4.2.1960.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 varieties: \(\mathrm{V}_{1}=\mathrm{CO}-527\), and \(\mathrm{V}_{2}=\mathrm{CO}-997\).
(2) 2 levels of \(\mathrm{N}: \mathrm{N}_{1}=100\) and \(\mathrm{N}_{2}=200 \mathrm{jb}\)./ac,
(3) 2 split applications: \(\mathrm{T}_{1}=3 / 7\) of N at planting and \(4 / 7\) of N 60 days after planting and \(\mathrm{T}_{2}=\mathrm{In}\) two equal doses on 45 th and 90 th day after planting.
3. DESIGN :
(i) Fact. in R.B.D. (ii)
a) 8
(b) \(39.6^{\prime} \times 211.2\)
. (iii)
(iv)
a) \(39.6^{\prime} \times 26.4^{\prime}\)
(b) \(33.0^{\prime} \times 19.8^{\prime}\). (v) (v) \(3.3^{\prime} \times 3.3^{\prime}\). (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Spraying of Endrine to prevent the incidence of early shoot borer in 4 th, 6 th and 9 th week of crop. (iii) Cane yield. (iv) (a) \(1955-c o n t d . ~(b) N o . ~(c) ~ N . A . ~(v) ~ N . A . ~(v i) ~ a n d ~(v i i) ~ N i l . ~\)

\section*{5. RESULTS:}
(i) 56.82 ton/ac. (ii) 2.22 ton/ac. (iii) \(V\) effect is highly significant and \(T\) effect is significant. Other effects are not significant. (iv) Av. yield of cane in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & T \({ }_{1}\) & \(\mathrm{T}_{2}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) \\
\hline \(\mathrm{N}_{1}\) & 56.92 & 55.64 & 56.28 & 58.21 & 54.35 \\
\hline \(\mathrm{N}_{2}\) & 58.38 & 56.38 & 57.37 & 59.31 & 55.43 \\
\hline - Mean & 57.64 & 56.01 & 56.82 & 58.76 & 54.89 \\
\hline \(\mathrm{V}_{1}\) & 59.98 & 57.54 & & & \\
\hline \(V_{2}\) & 55.30 & 54.48 & & & \\
\hline \multicolumn{6}{|c|}{\(\bullet\)} \\
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
s.E. of any marginal mean \\
S.E. of body of any table
\end{tabular}} & \multicolumn{2}{|r|}{\[
\begin{aligned}
& =0.55 \text { ton/ac. } \\
& =0.78 \text { ton } / \mathrm{ac} .
\end{aligned}
\]} & \\
\hline
\end{tabular}

\section*{Crop :- Sugarcane. \\ Ref :- A.P. 55(63). \\ Site :- Agri. Res. Str., Rudrur. \\ Type :- 'C'.}

Object :-To find the optimum time of planting and harvesting of Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Black clay loam. (b) Refer soil analysis, Rudrur. (iii) As per treatments. (iv) (a). Ploughing, clod breaking and ridging. (b) and (c) N.A. (d) \(3^{\prime} \times 1_{2^{\prime}}\). (c) N.A. (v) 5 tons/ac. of F.Y.M. \(+35 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C. and \(\mathrm{A} / \mathrm{S}\) in \(2: 1\) ratio and \(45 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{3}\) as Super. (vi) \(\mathrm{CO}-419\) (medium). (vii) Irrigated. (viii) Weeding and earthing up. (ix) 127". ( \(x\); As per treatments.
2. TREATMENTS :

Main-plot treatments :
4 months of planting: \(\mathrm{T}_{1}=\) June, \(\mathrm{T}_{2}=\mathrm{July}, \mathrm{T}_{3}=\) August and \(\mathrm{T}_{4}=\) September, 1955.
Sub-plot treatments :
4 months of harvesting : \(H_{1}=\) October, 1956, \(H_{2}=\) November, \(1956, H_{3}=\) December, 1956 and \(H_{4}=\) January 1957.
3. DESIGN :
(i) Split plot. (ii) (a) 4 main-plots replication; 4 sub-plots/main plot. (b) N.A. (iii) 4 . (iv) (a) \(42^{\prime} \times 24^{\circ}\). (b) \(33^{\prime} \times 21^{\prime}\). (v) \(4.5^{\prime} \times 1.5^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Partial lodging. (ii) Slight borer attack; control measures-N.A. (iii) Yield of cane. (iv) (a) 1955contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 52.71 tons/ac. (ii) (a) 41.60 tons/ac. (b) 13.80 tons/ac. (iii) Main effect of H alone is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{c|cccc|c} 
& \(\mathrm{H}_{1}\) & \(\mathrm{H}_{2}\) & \(\mathrm{H}_{3}\) & \(\mathrm{H}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{T}_{1}\) & 58.76 & 51.53 & 64.58 & 54.34 & 57.30 \\
\(\mathrm{~T}_{2}\) & 43.97 & 41.11 & 62.28 & 55.26 & 50.66 \\
\(\mathrm{~T}_{3}\) & 55.13 & 49.47 & 62.32 & 48.56 & 53.87 \\
\(\mathrm{~T}_{4}\) & 42.85 & 42.32 & 60.35 & 50.46 & 49.00 \\
\hline Mean & 5017 & 46.11 & 62.38 & 52.16 & 52.71
\end{tabular}
S.E. of difference of two
1. T marginal means : \(\quad=14.70\) tons \(/ \mathrm{ac}\).
2. H marginal means \(\quad=4.90\) tons/ac.
3. H means at the same level of \(T=9.81\) tons/ac.
4. T means at the same level of \(H=17.00\) tons/ae.

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Rudrur.

Ref :- A.P. 57(30).
Type :- 'C'.

Object :-To find the optimum time of planting and harvesting for Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur (iii) As per treatments. (iv) (a) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. \(+350 \mathrm{lb} . / \mathrm{ac}\). of N as A/S and G.N.C. in \(1: 2\) ratio. (vi) \(\mathrm{CO}-419\). (vii) Irrigated. (viii) N.A. (ix) \(42.72^{\prime \prime}\). (x) As per treatments.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 months of planting : \(\mathrm{T}_{1}=\) June, \(\mathrm{T}_{2}=\) July. \(\cdot \mathrm{T}_{3}=\) August and \(\mathrm{T}_{4}=\) September, 1957.

\section*{Sub-plot treatments :}

4 month's of harvesting : \(\mathrm{H}_{1}=\) October, \(\mathrm{H}_{2}=\) November, \(\mathrm{H}_{3}=\) December, 1958. and \(\mathrm{H}_{4}=\) January 1959.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication ; 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(45^{\prime} \times 24^{\prime}\).
(b) \(38^{\prime} \times 22^{\prime}\). (v) \(3.5^{\prime} \times 1^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal. Crop lodged after May, 1958. (ii) Nil. (iii) Biometric observations and yield of cane. (iv) (a) 1955-contd. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) Crop suffered due to hailsterm in Feb., 1958.
5. RESULTS:
(i) 41.48 tons/ac. (ii) (a) 9.37 tons/ac. (b) 4.83 tons/ac. (iii) Main effect of H alone is highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{l|llll} 
& \(\mathrm{H}_{1}\) & \(\mathrm{H}_{2}\) & \(\mathrm{H}_{3}\) & \(\mathrm{H}_{4}\) \\
\hline \(\mathrm{~T}_{1}\) & 35.60 & 42.25 & 42.02 & 41.07 \\
\(\mathrm{~T}_{2}\) & 34.45 & 39.47 & 39.52 & 39.98 \\
\(\mathrm{~T}_{3}\) & 43.63 & 43.88 & 43.97 & 46.41 \\
\(\mathrm{~T}_{4}\) & 34.90 & 44.83 & 46.14 & 44.75 \\
\hline Mean & 37.14 & 42.78 & 42.91 & 43.05 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. T marginal means & \(=3.29\) tons/ac. \\
2. H marginal means & \(=1.71\) tons/ac. \\
3. H means at the same level of \(T\) & \(=3.42\) tons/ac. \\
4. T means at the same level of \(\mathbf{H}\) & \(=4.34\) tons/ac.
\end{tabular}

\footnotetext{
Crop:- Sugarcane.
Site :- Agri. Res. Stn., Rudrur.
}

Ref :- A.P. 58(107).
Type :- ' \(C\) '.
Object :-To find the optimum time of planting and harvesting of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) Nil. (ii)\}(a) Clay loam. (b) Refer soil analysis, Redrur. (iii) As per treatments. (iv) (a) Deep trenching. (b) Trench planting. (c) 10 to 12 thousand setts/ac. (d; 3 ' between rows. (e) 3 buds'sett. (v) 5 C.L./ac. of F.Y.M. +350 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\) and G.N.C. in \(1: 2\) ratio. (vi) CO-419. (vii) Irrigated. (viii) Weeding and hosing. (ix) N.A. (x) As per treatments.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

4 monihs of planting: \(\mathrm{T}_{1}=\) June, \(\mathrm{T}_{2}=\) July, \(\mathrm{T}_{3}=\) August and \(\mathrm{T}_{4}=\) September, 1958.
Sub-plot treatments:
4 months of harvesting \(\cdot \mathrm{H}_{1}=\) October 1959, \(\mathrm{H}_{2}=\) Nov., 1959, \(\mathrm{H}_{3}=\) Dec., 1959 and \(\mathrm{H}_{4}=\) Jan., 1960.
3. DESIGN :
(i) Sp it-plot. (ii) (a) 4 main-plots/replication; 4 sub-plot \(/ /\) main-plot. (b) N.A. (iii) 4 . (iv) (a) \(45 \times 24^{\prime}\). (b) \(39^{\prime} \times 22^{\prime}\). (v) \(3^{\prime} \times 1^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1955-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 56.70 tons/ac. (ii) (a) 7.38 tons/ac. (b) 4.94 tons/ac. (iii) Interaction \(\mathrm{T} \times \mathrm{H}\) alone is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{c:cccc|c} 
& \(\mathrm{H}_{1}\) & \(\mathrm{H}_{2}\) & \(\mathrm{H}_{3}\) & \(\mathrm{H}_{4}\) & Mean \\
\hline \(\mathrm{T}_{1}\) & 66.54 & 63.21 & 53.24 & 61.49 & 61.12 \\
\(\mathrm{~T}_{2}\) & 52.31 & 56.40 & 59.03 & 51.44 & 54.78 \\
\(\mathrm{~T}_{3}\) & 52.19 & 56.23 & 63.37 & 59.92 & 57.93 \\
\(\mathrm{~T}_{4}\) & 48.13 & 52.65 & 52.02 & 59.06 & 52.96 \\
\hline Mean & 54.80 & 57.12 & 56.92 & 57.98 & 56.70
\end{tabular}
S.E. of difference of two
1. T marginal means \(=2.61\) tons/ac.
2. H marginal means \(\quad=1.74\) tons/ac.
3. H means at the same level of \(\mathrm{T}=3.49\) tons/ac.
4. T means at the same level of \(\mathrm{H}=3.99\) tons/ac.

Crop :- Sugarcane.
Site :- Agri. Res. Stn., Rudrur.

\section*{Ref :- A.P. 59 (84).}

Type :-‘C?

Object :-To find the optimum time of planting and harvesting for Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) As per treatments. (iv) (a) Deep trenching. (b) Trench planting (c) 10 to 12 thousand setts/ac. (d) \(3^{\prime}\) between rows. (e, 3 buds/sett. (v) 5 C.L./ac. of F.Y.M. \(+350 \mathrm{lb} . / \mathrm{ac}\). of N in 3 split doses in the form of A:S ard G.N.C. in \(1: 2\) ratio. (vi) CO-419. (vii) Irrigated. (viii) and (ix) N.A. (x) As per treatments.
2. TREATMEVTS :

Main-plot treatments :
4 mocths of planting: \(T_{1}=\) Jane, \(T_{2}=\) July, \(T_{3}=\) August and \(T_{4}=\) September, 1959.

\section*{Sub plot treatments :}

4 month of harvesting: \(\mathrm{H}_{1}=\) October, 196), \(\mathrm{H}_{2}=\) November, \(1960, \mathrm{H}_{3}=\) December, 1960 and \(H_{4}=\) January 1961.

\section*{3, DESIGN}
(i) Split-plot. (ii) (a) 4 m in-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(45^{\prime} \times 24^{\prime}\). (b) \(39^{\prime} \times 22^{\prime} .(v) 3^{\prime} \times 1^{\prime}\) (vi) Yes

\section*{4. GENERAL :}
(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1955 -contd. (b) and (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) 51.79 tons/ac. (ii) (a) 5.83 tons/ac. (b) 4.63 tons/ac. (iii) No èfect is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{H}_{1}\), & \(\mathrm{H}_{2}\) & \(\mathrm{H}_{3}\) & \(\mathrm{H}_{4}\) & Mean \\
\hline T \({ }_{1}\) & 53.21 & 51.71 & 55.17 & \[
49.98^{\prime}
\] & 52.52 \\
\hline \(\mathrm{T}_{2}{ }^{\prime}\) & 57.02 & 50.24 & 55.58 & 50.73 & 53.39 \\
\hline T3 & 53.77 & 52.40 & 51.27 & 51.52. & 52.24 \\
\hline T4 & 49.58 & 50.16 & 47.57 & 48.66 & 48.99 \\
\hline Mean & 53.40 & 51.13 & 52.40 & 50.22 & 51.79 \\
\hline
\end{tabular}
S.E. of difference of two
1. T marginal means . \(\quad=2.06\) tons \(/ a c\).
2. H marginal means \(\quad=1.64\) tons/ac.
3. H means at the same level of \(\mathrm{T}=3.27\) tons/ac.'
4. T means at the same level of \(\mathrm{H}=3.50\) tons/ac.

\section*{Crop :- Sugarcane.}

Site :- Agri. Res. Stn., Rudrur.

Ref:- A.P. 56(7.1).
Type :- ' \(C\) '.

Object :-To find the optimum time of planting and harvesting of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Black clay loam. (b) Refer soil analysis, Rudrur. (iii) Å̀ per treatments. (iv) (a) Ploughing, clod breaking and ridging. (b) and (c) N.A. (d) \(3^{\prime} \times 3^{\prime}\). (e) N.A. (v) 5 tons/ac. of F.Y.M. +45 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super \(+25 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) and G.N.C. in, \(1: 2\) ratio. (vi) CO-419 (medium). (vii) Irrigated. (viii) Weedings, multching and earthing up. (ix) \(70^{\circ}\). (x) As per reatments.

\section*{2. TREATMENTS}

Main-plot treatments :
4 months of planting: \(\mathrm{T}_{1}=\) November, 1956, \(\mathrm{T}_{2}=\) December, 1956, \(\mathrm{T}_{3}=\) January, 1957 and \(\mathrm{T}_{4}=\mathrm{Feb}\) ruary, 1957.

\section*{Sub-piot treatments :}

4 months of harvesting: \(\mathrm{H}_{1}=\) December, 1957, \(\mathrm{H}_{2}=\) January, 1958, \(\mathrm{H}_{3}=\) February, 1958 and \(\mathrm{T}_{4}=\) March, 1958.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication; 4 sub-plots/main-p.ot. (b) N.A. (iii) 4 . (iv) (a) \(45^{\prime} \times 24^{\prime}\). (b) \(39^{\prime} \times 21^{\prime}\). (v) \(3^{\prime} \times 1.5^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Slight lodging. (ii) Slight borer attack ; control measures-N.A. (iii) Yield of cane. (iv) (a) 1956-1959. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 40.00 tons/ac: (ii) (a) 11.23 tons/ac. (b) 39.16 tons/ac. (iii) Main effect of \(T\) alone is highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{c|cccc|c} 
& \(\mathbf{H}_{\mathbf{1}}\) & \(\mathbf{H}_{2}\) & \(\mathbf{H}_{\mathbf{3}}\) & \(\mathbf{H}_{4}\) & Mean \\
\hline \(\mathrm{T}_{\mathbf{1}}\) & 57.46 & 46.38 & 52.51 & 40.08 & 49.11 \\
\(\mathrm{~T}_{\mathbf{2}}\) & 45.81 & 45.83 & 46.45 & 37.88 & 43.99 \\
\(\mathrm{~T}_{3}\) & 37.83 & 29.83 & 47.97 & 39.15 & 38.70 \\
\(\mathrm{~T}_{4}\) & 25.45 & 30.01 & 31.01 & 26.27 & 28.19 \\
\hline Mean & 41.64 & 38.01 & 44.49 & 35.85 & 40.00
\end{tabular}.
S.E. of difference of two
\begin{tabular}{ll} 
1. T marginal means & \(=3.97\) tons/ac. \\
2. H marginal means & \(=13.84\) tons/ac. \\
3. H means at the same level of T & \(=27.69\) tons/ac. \\
4. T means at the same level of H & \(=24.31\) tons'ac.
\end{tabular}

\section*{Crop :- Sugarcane.}

Ref :- A.P. 57(35).
Site :- Agri. Res. Stn., Rudrur.
Type :- ' \(\mathbf{C}\) '.

Object :-To find the optimum time of planting and harvesting for Sugarcane.
1. BASAL CONDITIONS :
(i) Nil. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) As per treatments. (iv) (a) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. +225 lb //ac. of N in three split-doses in the form of \(A / S\) and G.N.C. in \(1: 2\) ratio. (vi) CO-419. (vii) Irrigated. (viii! N.A. (ix) 42.72". (x) As per treatrents.
2. TREATMENTS :

Main-plot treatments :
4 months of planting : \(\mathrm{T}_{1}=\) Novimber, 1957, \(\mathrm{T}_{2}=\) December, 1957, \(\mathrm{T}_{3}=\) January, 1958 and \(\mathrm{T}_{4}=\) February, 1958.

Sub-plot treatments:
4 months of harvesting : \(\mathrm{H}_{1}=\) December, 1958, \(\mathrm{H}_{2}=\) January, 1 \(\because\) E9, \(\mathrm{H}_{3}=\) February, 1959 and \(\mathrm{H}_{4}=\) March, 1959.

\section*{3. DESIGN :}
(i) Spl t-plot. (ii) (a) 4 main-plots! replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(45^{\prime} \times 24^{\prime}\).
(b) \(39^{\prime} \times 22^{\prime}\). (v) \(3^{\prime} \times 1^{\prime}\). (vi. Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Biometric observations and yield of cane. (iv) (a) 1956 -contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS
(i) 24.43 tons/ac. (ii) (a) 5.37 tons/ac. (b) 4.05 tons/ac. (iii) Main effect of \(T\) is highly significant, while that of H is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{c|cccc|c} 
& \(\mathrm{H}_{1}\) & \(\mathrm{H}_{2}\) & \(\mathrm{H}_{3}\) & \(\mathrm{H}_{4}\) & Mean \\
\hline \(\mathrm{T}_{1}\) & 34.75 & 33.81 & 34.40 & 28.13 & 32.77 \\
\(\mathrm{~T}_{2}\) & 28.97 & 27.86 & 27.47 & 21.07 & 26.34 \\
\(\mathrm{~T}_{3}\) & 29.73 & 29.90 & 39.90 & 27.79 & 29.58 \\
\(\mathrm{~T}_{4}\) & 9.52 & 7.54 & 12.44 & 6.57 & 9.02 \\
\hline Mean & 25.74 & 24.78 & 26.30 & 20.89 & 24.43
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(\quad\) T marginal means & \(=1.89\) tons/ac. \\
2. \(\mathbf{H}\) marginal means & \(=1.43\) tons/ac. \\
3. H means at the same level of T & \(=2.87\) tons/ac. \\
4. T means at the same level of H & \(=3.12\) tons/ac.
\end{tabular}

Crop :- Sugarcane.
Ref :- A.P. 58(108).
Site :- Agri. Res. Stn., Rudrur.
Type :- ‘C'.
Object:-To find out the optimum time of planting and harvesting for Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis Rudrur. (iii) As per treatments. (iv) (a) Deep trenching. (b) Planting in trenches. (c) 10 to 12 thousand 3 budded setts/ac. (d) \(3^{\prime}\) between rows. (e)-. (v) \(5 \mathrm{C} . \mathrm{L} . / \mathrm{ac}\). of F.Y.M. \(+225 \mathrm{lb} . / \mathrm{ac}\). of N in three split doses as A/S and G.N.C. in 1:2 ratio. (vi) CO-419. (vii) Irrigated. (viii) Weeding and hoeing. (ix) N.A. (x) As per treatments.
2. TREATMENTS:

Main-plot treatments :
4 months of planting : \(\mathrm{T}_{1}=\) November, \(\mathrm{T}_{2}=\) December 1958, \(\mathrm{T}_{3}=\) January, and \(\mathrm{T}_{4} \doteq\) February, 1959.
Sub-plot treatments :
4 months of harvesting: \(\mathrm{H}_{1}=\) December, 1959, \(\mathrm{H}_{2}=\) January, \(\mathrm{H}_{3}=\) February, and \(\mathrm{H}_{4}=\) March, 1960.
3. DESIGN :
(i) Split-plot.
(ii) (a) 4 main-plots/replication; 4 sub-plots/main-plot.
(b) N.A. (iii) 4.
(iv) (a) \(45^{\prime} \times 24^{\prime}\).
(b) \(39^{\prime} \times 22^{\prime}\). (v) \(3^{\prime} \times 1^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 34.05 tons/ac. (ii) (a) 10.73 tons/ac. (b) 4.47 tons/ac. (iii) Only main effect of H is significant.
(iv) Av. yield of cane in tons/ac.
\begin{tabular}{c|cccc|c} 
& \(\mathrm{H}_{1}\) & \(\mathrm{H}_{2}\), & \(\mathrm{H}_{3}\) & \(\mathbf{H}_{\mathbf{4}}\) & \multicolumn{1}{l}{ Mean } \\
\hline \(\mathrm{T}_{1}\) & 45.98 & 38.52 & 36.13 & 33.09 & 38.43 \\
\(\mathrm{~T}_{\mathbf{2}}\) & 40.47 & 36.65 & 38.20 & 31.20 & 36.63 \\
\(\mathrm{~T}_{3}\) & 31.77 & 33.98 & 36.60 & 30.79 & 33.29 \\
\(\mathrm{~T}_{4}\) & 30.53 & 31.26 & 25.43 & 24.24 & 27.87 \\
\hline Mean & 37.19 & 35.10 & 34.09 & 29.83 & 34.05
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. T marginal means & \(=3.79\) tons \(/ \mathrm{ac}\). \\
2. H marginal means & \(=1.58\) tons \(/ \mathrm{ac}\). \\
3. H means at the same level of \(\mathbf{T}\) & \(=3.16\) tons \(/ \mathrm{ac}\). \\
4. T means at the same level of \(\mathbf{H}\) & \(=4.67\) tons \(/ \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Sugarcane.}

Site :- Agri. Res. Stm., Rudrur.

Ref:- A.P. 59(83).
'Type :- \({ }^{6}\) ' \('\).

Object :-To find the optimum time of planting and harvesting for Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) As per treatments. (iv) (a) Deep trenching. (b) Trench planting. (c) 10 to 12 thousand 3 budded setts/ac. (d) \(3^{\prime}\) between rows. (e)-. (v) 5 C.L./ac. of F.Y.M. \(+225 \mathrm{lb} . / \mathrm{ac}\). of N as A/S and G.N.C. in \(1: 2\) ratio. (vi) CO-419. (vii) Irrigated. (viii) and (ix) N.A. (x) As per treatments.
2. TREATMENTS:

Main-plot treatments :
4 months of planting : \(\mathrm{T}_{1}=\) November, \(\mathrm{T}_{2}=\) December, 1959, \(\mathrm{T}_{3}=\) January and \(\mathrm{T}_{4}=\) February, 1950.
Sub-plot treatments:
4 months of harvesting : \(\mathrm{H}_{1}=\) December \(1960, \mathrm{H}_{2}=\) January, \(\mathrm{H}_{3}=\) February, and \(H_{4}=\) March, 1961.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 4 main-plots/replication ; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(45^{\prime} \times 24^{\prime}\). (b) \(39^{\prime} \times 22^{\prime}\). (v) \(3^{\prime} \times 1^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Ni!.
5. RESULTS :
(i) 35.35 tons/ac. (ii) (a) 10.99 tons/ac. (b) 3.56 tons/ac. (iii) Only main effects of \(T\) and \(H\) are significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{c:cccc:c} 
& \(\mathbf{H}_{1}\) & \(\mathbf{H}_{2}\) & \(\mathbf{H}_{3}\) & \(\mathbf{H}_{4}\) & Mean \\
\hline \(\mathrm{T}_{1}\) & 43.52 & 43.98 & 43.15 & 34.85 & 41.38 \\
\(\mathrm{~T}_{2}\) & 42.03 & 42.75 & 42.49 & 37.94 & 41.30 \\
\(\mathrm{~T}_{\mathbf{3}}\), & 31.54 & 35.53 & 34.26 & 31.60 & 3323 \\
\(\mathrm{~T}_{\mathbf{4}}\) & 24.52 & 28.0 i & 25.31 & 24.07 & 25.48 \\
\hline Mean & 35.40 & 37.57 & 36.30 & 32.12 & 35.35
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. T marginal means & \(=3.88\) tons/ac. \\
2. H marginal means & \(=1.26\) tons/ac. \\
3. H means at the same level of \(\mathbf{T}\) & \(=2.52\) tons/ac. \\
4. \(\mathbf{T}\) means at the same level of \(\mathbf{H}\) & \(=4.45\) tons/ac.
\end{tabular}

\section*{Crop:- Sugarcane.}

Site :- Agri. Res. Stn., Rudrur.

Ref:- A.P. 55(60).
Type:- 'C'.

Object :-To study the effect of earthing on the yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) Refer soil analysis, Rudrur. (iii) 15.12.1955. (iv) (a) Ploughing, clod breaking and ridging. (b) and (c) N.A. (d) \(3^{\prime}\) between rows. (e) N.A. (v) \(240 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C. and A/S. (vi) CO-419 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) \(58.72^{\prime \prime}\). (x) 23.1.1957.
2. TREATMENTS :

6 intervals between planting and 1 st earthing: \(E_{0}=\) Control (no eartbing), \(E_{1}=6, E_{2}=7, E_{3}=8, E_{4}=9\) and \(E_{5}=10\) weeks.
2nd and 3 rd earthings were given at 15 days interval.

\section*{3. DESIGN :}
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) \(51^{\prime} \times 33^{\prime}\). (b) \(39^{\prime} \times 33^{\prime}\). (v) \(6^{\prime}\) on either side of the plot breadthwise. (vi) Yes
4. GENERAL
(i) Normal. (ii) Early shoot borer and top shoot borer noticed. No control meansures were taken. (iii) Yield of cane. (iv) (a) \(1955-\) N.A. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) 26.63 tons \(/ \mathrm{ac}\)
(ii) 7.94 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lccccccc} 
Treatment & \(\mathrm{E}_{0}\) & \(\mathrm{E}_{1}\) & \(\mathbf{E}_{2}\) & \(\mathbf{E}_{3}\) & \(\mathbf{E}_{4}\) & \(\mathbf{E}_{5}\) \\
Av. yield & \(22.15^{\prime}\) & 25.95 & \(\cdot 29.59\) & 28.51 & 26.94 & 26.63 \\
& \(\cdot\) & & & & & \\
& S.E./mean \(=\) & 3.97 tons/ac. & &
\end{tabular}

\section*{Crop :- Sugarcane.}

Site :- Agri. Res. Stn., Rudrur.

\section*{Ref: A.P. 58(141).}

Type :- \({ }^{6} \mathbf{C}^{\prime}\).
,Object :-To find out the optimum spacing between rows-and seed rate for Sugarcane.
.
BÁSAL CONDITIONS
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) 2nd week of December 1958. (iv) (a) Ploughing and levelling with the wooden plank. (b) Planting in rows. (c) and (d) As per treatments. (c) 3 buds/sett. (v) 3 to 5 tons/ac. of compost. 5000 lo./ac. of G.M. and 45 lb /ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) CO-419 (early). (vii) Irrigated. (viii) Multching, weeding and earthing up. (ix) 55.75": (x) Dec. 1959 and Jan. 1960.
2. TREATMENTS
, Main-plot treatments :
4 spacings between rows: \(S_{1}=3^{\prime}, S_{2}=3 \frac{1}{2}^{\prime}, S_{3}=4^{\prime}\) and \(S_{4}=4 \frac{1}{2}^{\prime}\).
, Sub-plot treatments :
1. 3 seed rates : \(R_{1}=8,000, R_{2}=10,000\) and \(R_{3}=12,000\) setts/ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(45^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of cane. (iv) (a) 1958 -contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) During 1959-60 expt. was not conducted.
5. RESULTS :
(i) 35.47 tons/ac. (ii) (a) 8.17 tons/ac. (b) 4.96 tons/ac. (iii) No effect is significant. (iv) Av. yield of cane int tons/ac.
\begin{tabular}{c|ccc|c} 
& \(\mathbf{R}_{1}\) & \multicolumn{1}{l}{\(\mathbf{R}_{\mathbf{2}}\)} & \(\mathbf{R}_{\mathbf{3}}\) & \multicolumn{1}{c}{ Mean } \\
\hline \(\mathrm{S}_{1}\) & 33.21 & 30.41 & 35.43 & 33.02 \\
\(\mathrm{~S}_{\mathbf{2}}\) & 38.61 & 33.06 & 41.19 & 37.62 \\
\(\mathrm{~S}_{\mathbf{3}}\) & 31.34 & 37.55 & 35.62 & 34.84 \\
\(\mathrm{~S}_{4}\) & 35.85 & 37.62 & 35.74 & 36.40 \\
\hline Mean & 34.75 & 34.66 & 37.00 & 35.47
\end{tabular}
S.E. of difference of two
1. S marginal means
\(=3.34\) tons/ac.
2. \(R\) marginal means \(=1.75\) tons/ac.
3. \(R\) means at the same level of \(S \quad=3.51\) tons/ac.
4. \(S\) means at the same level of \(R^{*}=4.40\) tons/ac.
Crop :- Sugarcane.
Site :- Sugarcane Liaison Farm, Tanuku.

Ref :- A.P. 59(32).
Type :- \(\mathbf{C}\).
Object :--To study the relative merits of different planting practices of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Clayey loam. (b) N.A. (iii) 3.2.1959. (iv) (a) Ploughing, levelling and trench formation. (b) As per treatments. (c) N.A. (d) As per treatments. (e) N.A. (v) \(150 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\). (vi) \(\mathrm{CO}-419\) (late). (vii) Irrigated. (viii) Weeding and trash twist propping. (ix) 63.18". (x) 31.1.1960 to 4.2.1960.

\section*{2. TREATMENTS:}

3 methods of planting: \(\mathrm{M}_{1}=\) Ploughing in trenches \(40^{\prime \prime}\) apart ( \(8^{\prime \prime}\) deep) coupled with trash twist propping using 1000 bamboos/ac. \(\mathrm{M}_{2}=\) Bed method of planting with \(32^{\prime \prime}\) spacing coupled with propping and wrapping with 5000 bamboos/ac. and \(\mathrm{M}_{3}=\) Local irregular planting (control).
3. DESIGN :
(i) R.B D. (ii) (a) 3. (b) \(39.6^{\prime} \times 297.0^{\prime}\). (iii) 8 . (iv) (a) \(39.6^{\prime} \times 99.0^{\prime}\). (b) \(39.6^{\prime} \times 52.8^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) D.D.T. was sprayed once to prevent early shoot borer. (iii) Yield of cane. (iv) (a) 1959-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 44.34 tons/ac. (ii) 3.74 tons/ac. (iii) Treatment differences are highly significant. (iv) Av. yield rf cane in tons/ac.
\begin{tabular}{llcc} 
Treatment & \(M_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
Av. yield & 45.50 & 50.81 & 36.70 \\
& S.E./mean & \(=\) & 1.32 tons/ac.
\end{tabular}

\section*{Crop :- Sugarcane. \\ Ref :- A.P. 54(86).}

Site :- Sugarcane Res. Stn., Anakapalle.
Type :- 'CV'.
Object :-To find out the effect of time of planting and age at harvest on the yield and Juice quality of different varieties of Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Paddy. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). of N as A/S. (ii) (a) Claey loam. (b) Refer soil analysis, Anakapalle. (iii) As per treatments. (iv) (a) Working of tractors for forming furrows, deepening the furrows, with V.P., making ridges, rectifying trenches and digging cross lains. (b) Planting. (c) 15,000 three-budded setts;ac. (d) \(3^{\prime} \times 4^{\prime}\). (e) - (v) F.Y.M, at 10 tons/ac. (vi) As per treatments. (vii) Irrigated. (viii) Weeding, 3 to 4 hoeings and earthing up. (ix) N.A. (x) As per treatments.
2. TREATMENTS:

Main-plot treatmets:
3 monts of planting: \(\quad T_{1}=\) January, \(T_{2}=\) May and \(T_{3}=\) September 1954.
Sub-plot treatmets :
All combinations of (1) and (2)
(1) 3 ages at harvest: \(\mathrm{H}_{1}=10 \mathrm{H}_{2}=12\) and \(\mathrm{H}_{3}=14\) months.
(2) Two varities: \(\mathrm{V}_{1}=\mathrm{CO}-419\) and \(\mathrm{V}_{2}=\mathrm{CO}-527\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/replivation; 6 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(55.4^{\prime} \times 19.8^{\prime}\). (b) \(49.4^{\prime} \times 13.2^{\prime}\). (v) \(3^{\prime} \times 3.3^{\circ}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yie!d of cane. (iv) (a) \(1954-1957\). (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) 43.4 tons/ac. (ii) (a) 9.83 tons/ac. (b) 3.39 tons/ac. (iii) Only main effects of \(T\) and \(V\) and interaction \(\mathrm{N} \times \mathrm{T}\) are significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & T & T & \(\mathrm{T}_{3}\) & Mean & & - \(\mathrm{V}_{1}\) & \({ }^{*} \mathrm{~V}_{2}\) \\
\hline \(\mathrm{H}_{1}\) & 44.8 & 46.5 & 36.0 & 42.4 & & 42.9 & 42.0 \\
\hline \(\mathrm{H}_{2}\) & 47.5 & 47.1 & 39.6 & 44.7 & & 44.9 & 44.6 \\
\hline \(\mathrm{H}_{3}\) & 52.0 & 37.3 & 39.6 & 43.0 & & 39.5 & 46.4 \\
\hline Mean & 48.1 & 43.6 & 38.4 & 43.4 & & 42.4 & 44.3 \\
\hline \(V_{1}\) & 47.2 & 43.8 & 36.3 & & & & \\
\hline \(\mathrm{V}_{2}\) & 49.0 & 43.4 & 40.5 & & & & \\
\hline
\end{tabular}
S.E. of difference of two \({ }^{\prime} \cdot\) :
1. T marginal means \(\quad=2.84\) tons/ac. 5. T means at the same level of \(\mathrm{H}=3.16\) tons/ac.
2. H marginal means \(\quad=0.98\) tons/ac. 6. \(V\) means at the same level of \(T=1.38\) tons/ac.
3. V marginal means \(\quad=0.80\) tons/ac. 7. T means at the same level of \(\mathrm{V}=3.00\) tons/ac.
4. \(H\) means at the same level of \(T=1.69\) tons/ac. S.E. of body of \(H \times V\) table \(\quad=0.98\) tons/ac.

\section*{Crop :- Sugarcane.}

Site:- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 55(53).
Type :- 'CV'.

Object:-To find out the effect of time of planting and age at harvest on the yield and juice quality of different varieties of Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sugarcane-Paddy. (b) Paddy. (c) \(56 \mathrm{lb} . / \mathrm{ac}\). as A/S \(+3250 \mathrm{lb} . / \mathrm{ac}\). of G.L. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) As per treatments. (iv) (a) N.A. (b) Trench planting (c) 15000 three-budded setis/ac. (d) and (e) N.A. (v) 20 C.L. of F.Y.M. and 100 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\). (vi) As per treatments. (vii) Irrigated. (viii) Crop kept erect by trash twist propping. (ix) Varies from \(49.4^{\prime \prime}\) to \(70.1^{\prime \prime}\) according to treatments. ( x ) As per treatments.

\section*{2. TREATMENTS}

Main-plot treatments :
2 months of planting: \(\mathrm{T}_{1}=\) January and \(\mathrm{T}_{2}=\) May 1955.
Sub-plot treatments :
All combinations of (1) and (2)
(1) 3 times of harvesting \(\mathrm{H}_{1}=10, \mathrm{H}_{2}=12\) and \(\mathrm{H}_{3}=14\) months.
(2) 2 varities: \(\mathrm{V}_{1}=\mathrm{CO}-419\) and \(\mathrm{V}_{2}=\mathrm{CO}-527\)
3. DESIGN :
(i) Split-plot. (ii) (a) 2 Main-plots/replication; 6 Sub-plots/main-plot. (iii) 4 . (iv) (a) \(42.2^{\prime} \times 23.1^{\prime}\). (b) \(39.6^{\prime} \times 16.5^{\prime}\). (v) 2 rows on either side. (vi) Yes.

\section*{4. GENERAL :}
(i) Satisfactory. (ii) D.D.T. sprayed to prevent incidence of early shoot borer. (iii) Biometric observations, and yield of cane (iv) (a) 1954-1957. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 38.47 tons/ac.
(ii) (a) 8.59 tons/ac.
(b) 4.97 tons/ac. (iii)
Main effect of \(\mathbf{T}\) alone is highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{T}_{1}\) & \(\mathrm{T}_{2}\) & Mean & \(\mathrm{V}_{1}\) & V \\
\hline \(\mathrm{H}_{1}\) & 46.84 & 2934 & 38.09 & 39.57 & 36.61 \\
\hline \(\mathrm{H}_{2}\) & 49.11 & 29.86 & 39.48 & 39.65 & 39.32 \\
\hline \(\mathrm{H}_{3}\) & 43.24 & 32.40 & 37.82 & 38.69 & 36.95 \\
\hline Mean & \[
46.40
\] & 30.53 & 38.97 & 39.30 & 37.63 \\
\hline \(\mathrm{V}_{1}\) & 46.42 & 32.19 & & & \\
\hline - \(\mathrm{V}_{3}\) & 46.37 & 28.88 & & & \\
\hline
\end{tabular}
S.E. of the difference of two
1. T marginal means \(\quad=2.48\) tons/ac.
5. T means at the same level of \(H=3.21\) tons/ac
2. \(H\) marginal means \(\quad=1.76\) tons \(/ \mathrm{ac}\).
6. \(V\) means at the same level of \(T=2.03\) tons/ac.
3. \(V\) marginal means \(\quad=1.43\) tons/ac.
7. T means at the same level of \(V\)
\(=2.87\) tons/ac.
4. H means at the same level of \(T=2.49\) tons/ac.
S.E. of body of \(\mathrm{H} \times \mathrm{V}\) table
\(=1.76\) tons/ac.

\section*{Crop:- Sugarcane. \\ Site :- Sugarcane Res. Stn., Anakapalle.}

Ref :- A.P. 56(101).
Type :- 'CV'.
Object:-To find out the effect of time of planting and age at harvest on the yield and juice quality of different varieties of Sugarcane.

\section*{1. BASAL CONDITIONS:}
(i) Sugarcane—Paddy-Sugarcane. (b) Paddy. (c) 40 lb ./ac. of N as A/S. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) As per treatments. (iv) (a) Trench digging. (b) Trench planting. (c) 15000 three-budded setts/ac. (d) 3.3' between rows. (e) -. (v) 10 tons/ac. of F.Y.M. (vi) As per treatments. (vii) Irrigated. (viii) Trash twist propping and earthing up. (ix) \(56.00^{\circ}\). (x) As per treatments.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(86) on page 356.
5. RESULTS :
(i) 27.8 tons/ac. (ii) (a) 7.83 tons/ac. (b) 4.23 tons/ac. (iii) Only main effect of \(T\) is highly signifizant.
(iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & T 1 & T 2 & \(\mathrm{T}_{3}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) \\
\hline \(\mathrm{H}_{1}\) & 35.3 & 29.5 & 13.9 & 26.2 & 27.6 & 24.9 \\
\hline \(\mathrm{H}_{2}\) & 38.0 & 30.5 & 20.1 & 29.5 & 29.1 & 300 \\
\hline \(\mathrm{H}_{3}\) & 36.8 & 26.4 & 19.5 & 27.6 & 25.7 & 29.4 \\
\hline Mean & 36.7 & 28.8 & 17.8 & 27.8 & 27.5 & 28.1 \\
\hline \(\mathrm{V}_{1}\) & 36.1 & 29.9 & 16.4 & & & \\
\hline \(\mathrm{V}_{2}\) & 37.3 & 27.7 & 19.2 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. T marginal means
2. H marginal means \(=1.22\) tons/ac. 6. \(V\) means at the same level of \(T=1.73\) tons/ac.
3. \(V\) marginal means
\(=1.00\) tons/ac. 7. T means at the'same level of V
\(=2\)
4. H means at the same level of \(\mathrm{T}=2.11\) tons/ac. S.E. of body of \(\mathrm{H} \times \mathrm{V}\) table \(=1.22\) tons/ac.

\section*{Crop:- Sugarcane.}

Site :- Sugarcane Res. Stni, Anakapalle.

Ref :- A.P. 57(102).
Type :- ‘CV’.

Object:-To find out the effect of time of planting and age at harvest on the yield and juice quality of different varieties of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane—Paddy—Sugarcane. (b) Paddy. (c) \(40 \mathrm{lb}^{\prime} / \mathrm{ac}\). N as \(\mathrm{A}_{/}\)S. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) As per treatments. (iv) (a) Trench digging. (b) Trench planting. (c). 15,000 three-budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e) 一. (v) 10 tons/ac. of.F.Y.M. (vi) As per treatments. (vii) Irrigated. (viii) Trash twist propping and earthing up. (ix) \(43.74^{\prime \prime}\) : ( x ) As per treatments.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(86) on page 356.

\section*{- RESULTS :}
(i) 26.91 tons/ac. (ii) (a) 5.54 tons/ac. (b) 2.97 tons/ac. (iii) Main effects of \(\mathrm{T}, \mathrm{H}\) and interaction \(\mathrm{H} \times \mathrm{V}\) are significant. Main effect of \(V\) is highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & T \({ }_{1}\) & T 2 & T3 & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) \\
\hline \(\mathrm{H}_{1}\) & 27.0 & 29.2 & 22.3 & 26.2 & 27.6 & 24.7 \\
\hline \(\mathrm{H}_{2}\) & 26.7 & 30.8 & 23.9 & 27.1 & 25.3 & 29.0 \\
\hline \(\mathrm{H}_{3}\) & 28.2 & 26.4 & 27.3 & 27.3 & 23.2 & 31.4 \\
\hline Mean & 27.3 & 28.8 & 24.5 & 26.9 & 25.4 & 28.4 \\
\hline \(V_{1}\) & 25.1 & 28.5 & 22.5 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \(\mathrm{V}_{2}\) & 29.5 & 29.1 & 26.4 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(\mathbf{T}\) marginal means \(\quad=1.60\) tons/ac. 5. T means at the same evel of \(\mathbf{H}=2.01\) tons/ac.
2. H marginal means \(\quad=0.86\) tons/ac. 6. V means at the same level of \(T=1.21\) tons/ac.
3. V marginal means \(\quad=0.70\) tons/ac. 7. T means at the same level of \(V=181\) tons/ac.
4. H. means at the same level of \(T=1.49\) tons/ac. S.E. of body of \(H \times V\) table \(\quad=0.86\) tons/ac.

> Crop :- Sugarcane.
> Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 58(144).
Type :- 'CV'.
Object:-To study the suitability of Rayungans as seed material under late planted conditions as compared to top setts.
1. BASAL CONDITIONS:
(i) (a) Sugarcane-Fodder-Sügarcane. (b) Fodder (Jowar). (c) -. (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) 6.8 .1958 . (iv) (a) Trenching. (b) Trench planting (c) N.A. (d) \(3.28^{\prime}\) between rows. (e) N:A. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) Weeding, hoeing, earthing up and bamber propping. (ix) \(90.1^{\prime \prime}\). '(x) 19.1.1960 to 26.1.1960.

\section*{2. TREATMENTS :}

All combination of (1) and (2)
(1) 2 seed materials: \(\mathrm{S}_{\mathbf{i}}=\) Rayungans and \(\mathrm{S}_{2}\) Top setts.
(2) 2 varieties: \(\mathrm{V}_{1}=\mathrm{CO}-419\) and \(\mathrm{V}_{2}=\mathrm{CO}-527\).
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 4 . (b) \(105.6^{\prime} \times 39.6^{\prime}\). (iii) 4 . (iv) (a) \(39.6^{\prime} \times 26.4^{\prime}\). (b) \(33.0^{\prime} \times 19.8^{\prime}\) (v) One row all round. (vi) Yes.
4. GENERAL :
(i) Lodging due to heavy winds. (ii) Incidence of top shoot-borer, (iii) Yield of cane. (iv) (a) and (b) No. (c) Nil. (v) No. (vi) Heavy rains occurred during Oct. 1958 and crop was submerged in water for 12 hours on 21.10.1958. (vii) Ni].
5. RESULTS:
(i) 38.28 tons/ac. (ii) 5.39 tons/ac. (iii) All the effects are highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{c|cc|c} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & Mean \\
\hline \(\mathrm{V}_{1}\) & 36.16 & 24.89 & 30.53 \\
\(\mathrm{~V}_{2}\) & 51.03 & 41.03 & 46.03 \\
\hline Mean & 43.59 & 32.96 & 38.28
\end{tabular}
S.E. of any marginal mean \(=1.91\) fons/ac.
S.E. of body of table \(=2.69\) tons/ac.

\section*{Crop :- Sugarcane.}

Site :- Agri. Res. Stn:, Rudrur.

Ref :- A.P. 59(125).
Type :- 'CMV'.

Object :-To study the cultural practices and neutrient requirements of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) N.A. (ii) (a) Chalka. (b) N.A. (iii) As per treatments. (iv) (a) 3 to 4 ploughings, levelling by running wooden plank-plate. (b) Planting. (c) 10,000 setts/ac. (d) \(3^{\prime}\) between rows. (e) 3 eye-budded/sett. (v) Nil. (vi) (Eksali) as per treatments. (vii) Irrigated. (viii) Mulching, weeding and earthing up. (ix) \(55.11^{\circ}\). (x) 15 th of Jan. and Feb. 1960.

\section*{2. TREATMENTS :}

Main-plot treatments :
All combinations of (1) and (2)
(1) 2 months of planting: \(D_{1}=\) Dec. 1958 and \(D_{2}=\) Jan. 1959.
(2) 3 varieties: \(\mathrm{V}_{1}=\mathrm{CO}-419, \mathrm{~V}_{2}=\mathrm{CO}-467\) and \(\mathrm{V}_{3}=\mathrm{CO}-527\).

\section*{Sub-plot treatments:}

All combinations of (1) and (2)
(1) 3 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{M}_{1}=175, \mathrm{M}_{2}=225\) and \(\mathrm{M}_{3}=275 \mathrm{lb}\)./ac.
(2) 2 times of application ; of \(\mathrm{N}: \mathrm{T}_{1}=90\) and \(\mathrm{T}_{2}=150\) days of planting.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/replication 6 sub-plots/.nain-plot. (b) N.A. (iii) 3. (iv) (a) \(21^{\prime} \times 22 \frac{1}{2}^{\prime}\). (b) \(15^{\prime} \times 22^{\prime}\). (v) \(3^{\prime}\) on either side of the plot and end plants of each row. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Cane yield. (iv) (a) 1959-contd. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 30.63 tons'ac. (ii) (a) 7.47 tons/ac. (b) 5.18 tons/ac. (iii) None of the effects is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(V_{3}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \(\mathrm{T}_{1}\) & 31.78 & 29.78 & 30.07 & 32.67 & \[
29.60
\] & 29.57 & 30.61 & 32.17 & 30.78 \\
\hline \(\mathrm{T}_{2}\) & 30.66 & 30.32 & 31.39 & 30.53 & 29.54 & 30.79 & 29.51 & 31.14 & 30.48 \\
\hline Mean & 31.22 & 30.05 & 30.73 & 31.60 & \[
\begin{array}{r}
29.57 \\
\hline
\end{array}
\] & 30.18 & 30.06 & 31.65 & 30.63 \\
\hline \(\mathrm{M}_{1}\) & 29.37 & 3099 & 2945 & 32.92 & 2817 & & & , & \\
\hline \(\mathrm{M}_{2}\) & 31.52 & 28.60 & 30.19 & 29.92 & 30.07 . & & & & \\
\hline \(\mathrm{M}_{3}\) & 32.75 & 30.56 & 32.54 & 31.96 & 30.47 & & & & \\
\hline \(\mathrm{V}_{1}\) & 30.52 & 30.94 & & & & & & & \\
\hline \(\mathrm{V}_{2}\) & 31.46 & 31.74 & & & & & & & \\
\hline \(\mathrm{V}_{3}\) & 31.67 & 27.46 & & & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(V\) marginal means \(\quad=1.76\) tons/ac. \(8 . V\) means at the same level of \(T=2.15\) tons/ac.
2. D marginal means \(\quad=1.44\) tons/ac. \(9 . \mathrm{M}\) means at the same level of \(\mathrm{D}=1.73\) tons/ac.
3. \(M\) marginal means \(\quad=1.22\) tons/ac. \(10 . \mathrm{D}\) means at the same level of \(\mathrm{M}=2.01\) tons/ac.
4. T marginal means \(\quad=1.00\) tons/ac. 11. T means at the same level of \(\mathrm{D}=1.41\) tons/ac.
5. \(M\) means at the same level of \(V=2.11\) tons/ac. 12. \(D\) means at the same level of \(T=1.75\) tons/ac.
6. V means at the same level of \(\mathrm{M}=2.47\) tons/ac. S.E. of body of \(\mathrm{V} \times \mathrm{D}\) table,\(=1.76\) tons/ac.
7. T means at the same level of \(\mathrm{V}=1.73\) tons/ac. S.E. of body of \(\mathrm{M} \times \mathrm{T}\) table \({ }^{\circ}=1.22\) tons/ac.

\section*{Crop :- Sugarcane.}

Ref :- A.P. 58(25).
Site :- Sugarcane Res. Stn., Anakapalle.

\section*{Type :- 'TM'.}

Object:-To find out the effects of soil moisture in the formative and maturity phases of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Paddy-Sugarcane - Paddy. (b) Paddy. (c) G.L. at \(5000 \mathrm{lb} . / \mathrm{ac}\). and N at 40 lb ./ac. (ii) (a) Clayey loam. (b) Refer soil analysis, Anakapalle. (iii) 22.2.1958. (iv) (a) Trénching. (b) Planting. (c) 15000 three-budded setts/ac. (d) \(3.3^{\prime}\) apart. (e) N.A. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) 2 weedings and earthing up. (ix) \(61.14^{\prime \prime}\). (x) 12.3 .1959.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of soil moisture during formation phase : \(A_{1}=25 \%, A_{2}=50 \%\) and \(A_{3}=75 \%\).
(2) 2 levels of soil moisture during maturing phase : \(\mathrm{B}_{1}=25 \%\) and \(\mathrm{B}_{2}=50 \%\).
(3) 2 levels of \(N\) as \(A / S: N_{1}=100\) and \(N_{2}=200 \mathrm{lb} . / \mathrm{ac}\). of N .
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 12 . (b) \(198^{\prime} \times 85.8^{\prime}\). (iii) 3. (iv) (a) \(1 / 30.8\) ac. (b) \(1 / 65.7 \mathrm{ac}\). (v) Yes. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) D.D.T. sprayed twice to check early shoot borer. (iii) Yield and no. of cane. (iv) (a) 1957contd. with modification. (b) No. (c) Nil. (v) (a) and (b) No. (vi) and (vii) ,Nil. ..
5. RESULTS:
(i) 47.39 tons/ac. (ii) 4.25 tons/ac. (iii) Only main effect of \(A\) is highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{A}_{1}\) & \(\mathrm{A}_{2}\) & \(\mathrm{A}_{3}\) & Mean & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) \\
\hline \(\mathrm{B}_{1}\) & 51.59 & 49.35 & 45.03 & 48.66 & 47.31 & 50.01 \\
\hline \(\mathrm{B}_{2}\) & 48.19 & 48.05 & 42.13 & 46.12 & 45.21 & 47.03 \\
\hline Mean & 49.89 & 48.70 & 43.58 & 47.39 & 46.26 & 48.52 \\
\hline \(\mathrm{N}_{1}\) & 49.04 & 47.30 & 42.43 & \multicolumn{3}{|c|}{\(1:\)} \\
\hline \(\mathrm{N}_{2}\) & 50.74 & 50.10 & 44.73 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(A\) marginal mean & \(=1.23\) tons/ac. \\
S.E. of \(B\) or \(N\) marginal mean & \(=1.00\) tons/ac. \\
S.E. of body of \(A \times B\) or \(A \times N\) table & \(=1.73\) tons \(/ \mathrm{ac}\). \\
S.E. of body of \(B \times N\) table & \(=1.42\) tons/ac.
\end{tabular}

\section*{Crop :- Sugarcane.}

Site :- Sugarcane Res. Stn., Anakapalle.

> Ref :- A.P. 54(72).
> Type :- ‘IM'.

Object:-To determine the water requirements and intervals of irrigation for sugarcane crop in relation to soil moisture, form and dose of manure.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fodder-Jowar. (c) F.Y.M. at 5 ton/ac. (ii) (a) Sandy loam. (b) Refer soil analysis, Anakapalle. (iii) 6.2.1954. (iv) (a) Forming furrows \(1^{\prime}\) deep. (b) Planting. (c) 15000 three-budded cane setts/ac. (d) \(1.32^{\prime}\). (e) N.A. (v) Nil. (vi) \(\mathrm{CO}-419\) (late). (vii) Irrigated. (viii) Hoeing, weeding, earthing up, trash-twisting and propping. (ix) \(44.28^{\prime \prime}\). (x) 15 to 17.2.1955.
2. TREATMENTS ;

Main-plot treatments :
2 soil moisture levels : \(\mathrm{H}_{1}=\) above \(10 \%\) and \(\mathrm{H}_{2}=\) above \(5 \%\).
Sub-plot treatments:
All combinations of (1) and (2)
(1) 2 sources of \(N: \quad S_{1}=A / S\) and \(S_{2}=G, N . C\).
(2) 2 levels of \(\mathrm{N}: \mathrm{N}_{1}=100\) and \(\mathrm{N}_{2}=200 \mathrm{lb}\)./ac. of N .

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 2 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(1 / 38.5 \mathrm{ac}\). (b) \(1 / 60.6 \mathrm{ac}\). (v) Two rows on either side. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Attack of early shoot borer, Guesarol was sprayed. B.H.C. dusting was resorted to against white ant attack. (iii) Biometric observations and yield of cane. (iv) (a) \(1954-\) contd. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 34.35 tons/ac. (ii) (a) 3.87 tons/ac. (b) 6.57 tons/ac. (iii) H effect alone is highly significant. (iv)
Av. yield of cane in tons/ac.
\begin{tabular}{l:ll|lll} 
& \(\mathrm{H}_{1}\) & \(\mathrm{H}_{2}\) & Mean & \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{2}\) \\
\hline \(\mathrm{~S}_{1}\) & 40.59 & 28.07 & 34.33 & 34.75 & 33.90 \\
\(\mathrm{~S}_{\mathbf{2}}\) & 37.53 & 31.21 & 34.37 & 34.37 & 34.38 \\
\hdashline Mean & 39.06 & 29.64 & 34.35 & 34.56 & 34.14 \\
\hline \(\mathrm{~N}_{1}\) & 37.84 & 31.26 & & \\
\(\mathrm{~N}_{\mathbf{2}}\) & 40.28 & 28.02 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
1. H marginal means & \(=1.37\) tons/ac. \\
2. S or N marginal means & \(=2.32\) tons/ac. \\
3. \(S\) or \(N\) means at the same level of \(H\) & \(=3.29 . \operatorname{tons} / \mathrm{ac}\). \\
4. H means at the same level of \(S\) or \(N\) & \(=2.70\) tons/ac. \\
S.E. of body of \(S \times N\) table & \(=2.32\) tons/ac.
\end{tabular}
Crop :- Sugarcane.
Site :- Sugarcane Res. Stn., Anakapalle.

Ref :- A.P. 56(51).
Type :- ‘IM'.
Object :-To study the effect of soil moisture levels with two forms and levels of nitrogenous manures on the yield and juice quality of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jonna for fodder. (c) F.Y.M. at \(10 \stackrel{1}{C}\) L./ac. (ii) (a) Sandy loam. (b) Refer soil analysis, Anakapalle. (iii) 18.2.1956. (iv) (a) Formation of trends. (b) Trench planting. (c) 15,000 three-budded setts/ac: (d) \(3.3^{\prime}\) apart. (e) N.A. (v) Nil. (vi) CO-419 (late). (vii) Irrigated. (viii) 2 weedings, 2 earthings and removal of water shoots. (ix) \(56.21^{\prime \prime}\). (x) 2.3.1957.

\section*{2. TREATMENTS :}

Same as in expt. no. 54(72) on page 362.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(1 / 24.7\) ac. (b) \(1 / 60.06 \mathrm{ac}\). (v) 2 rows on either side. (vi) Yes.
4. GENERAL:
(i) No lodging since it was propped with bamboos and wrapped periodically. (ii) Nil. (iii) Yield of cane(iv) (a) 1954-1956. (b) No. (c) Nil. (v) to (vii) Nil.
'5. RESULTS :
(i) 60.45 tons/ac. (ii) (a) 4.26 tons/ac. (b) 3.87 tons/ac. (iii) Only interaction \(\mathbf{H} \times \mathbf{S} \times \mathrm{N}\) is significant. (iv) Av. yield of cane in tons/ac.

S.E. of the difference of two
\begin{tabular}{lrl} 
1. H marginal means & \(=1.51\) tons/ac. \\
2. S or N marginal means & & \(=1.37\) tons/ac. \\
3. S or N means at the same level of H & & \(=1.94\) tons/ac. \\
4. H means at the same level of S or N & & \(=2.04\) tons/ac. \\
S.E. of body of \(\mathrm{S} \times \mathrm{N}\) table & & \(=1.37\) tons/ac.
\end{tabular}

\section*{Crop:- Sugarcane.}

Site :- Sugarcane Res Stn., Anakapalle.

> Ref :- A.P. 57(58).

Type :- 'IM'.
Object :-To study the effect of soil moisture in formative and maturity phases on Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Paddy-Sugarcane-Paddy. (b) Paddy. (c) 5000 Jb. iac. of G.L. \(+40 \mathrm{lb} . / \mathrm{ac}\). of N. (ii) (a) Clay loam. (b) Refer soi! analysis, Anakapalle. (iii) 21.3.1957. (iv) (a) Trenching. (b) Trench planting. (c) to (e) N.A. (v) Nil. (vi) \(\mathrm{CO}-419\) (late). (vii) Irrigated. (vii) Weeded twice, earthing up was done in July. (ix) 41.41.". (x) 10.4.1958.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 levels of soil moisture during formation phase: \(A_{1}=25 \%\) and \(A_{2}=50 \%\).
(2) 2 levels of soil moisture during maturity phase : \(B_{1}=25 \%\) and \(B_{2}=50 \%\).
(3) 2 levels of N as A/S: \(\mathrm{N}_{1}=100\) and \(\mathrm{N}_{2}=200 \mathrm{lb}\)./ac. of N .
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 8.
(b) N.A. (iii) 4. (iv) (a) \(1 / 35.7 \mathrm{ac}\).
(b) \(1 / 66.7 \mathrm{ac}\).
(v) N.A. (vi) Yes.
4. GENERAL :
(i) The crop was kept erect by bamboo propping and regular wrapping. (ii) 2 sprayings of D.D.T. to check early shoot borer, (iii) Biometric observation and yield of cane. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) \(t \supset\) (vii) Nil.
5. RESULTS ;
(i) 32.89 tons/ac. (ii) 2.95 tons/ac. (iii) No effect is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{A}_{1}\) & \(\mathrm{A}_{2}\) & Mean & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) \\
\hline \(\mathrm{B}_{1}\) & 32.19 & 33.43 & 32.81 & 31.89 & 33.73 \\
\hline \(\mathrm{B}_{2}\) & 32.79 & 33.15 & 32.97 & 32.81 & 33.13 \\
\hline Mean & 32.49 & 33.29 & 32.89 & 32.35 & 33.43 \\
\hline \(\mathrm{N}_{1}\) & 32.27 & 32.43 & & & \\
\hline \(\mathrm{N}_{2}\) & 32.71 & 34.15 & & & \\
\hline \multicolumn{3}{|c|}{S.E. of any marginal mean} & \multicolumn{2}{|l|}{\(=0.74\) tons/ac.} & \\
\hline \multicolumn{3}{|c|}{S.E. of body of any table} & \multicolumn{2}{|l|}{\(=1.04\) tons/ac.} & \\
\hline
\end{tabular}

\section*{Crop:- Sugarcane,}

Site :- Sugarcane Res. Stn., Anakapalle.

Ref. :- A.P. 59 (102).
Type :- 'CI'.

Object:-To study the effect of earthing up Sugarcane with reference to combination of soil moisture at different stages of crop.
1. BASAL CONDITIONS :
(i) (a) Niil. (b) Paddy. (c) \(40 \mathrm{lb} . / \mathrm{ac}\) of N as \(\mathrm{A} / \mathrm{S}\). (ii) (a) Sandy loam. (b) N.A. (iii) 23.2.1959. (iv) (a) Trench digging. (b) Planting. (c) 15,000 three-budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e) - (v) Nil. (vi) CJ-419. (vii) As per treatments. (viii) Trash-twist propping and earthing up. (ix) \(36.21^{\circ}\). (x) 10.2.1960.
2. TREATMENTS:

Main-plot treatments :
2 levels of irrigation : \(I_{1}=\) Once in 12 days from the time of planting up to harvest and \(I_{2}=\) Once in 24 days from planting time upto May and then once in 12 days upto harvest.

\section*{Sub-plot treatments :}

2 earthing levels: \(\quad E_{1}=\) Once in 7 days after planting and \(E_{2}=\) Once in 90 days after planting.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(39.6^{\circ} \times 33.0^{\prime}\). (b) \(33.0^{\prime} \times 25.4^{\circ}\), (v) \(3.3^{\circ} \times 3.3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii) Nil.
(iii) Yield of cane.
(iv) (a) and (b) No.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 39.7 tons/ac. (ii) (a) 2.60 tons/ac. (b) 3.75 tons/ac. (iii) No effect is significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{c|cc|c} 
& \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & Mean \\
\hline \(\mathrm{E}_{1}\) & 38.2 & 37.1 & 37.7 \\
\(\mathrm{E}_{\mathbf{2}}\) & 43.4 & 40.1 & 41.7 \\
\hline Mean & 40.8 & 38.6 & 39.7
\end{tabular}
S.E. of difference of two
1. I margińal means \(\quad=1.30\) tons/ac.
2. E marginal means \(\quad=1.88\) tons/ac.
3. E means at the same level of \(I \quad=2.65\) tons/ac.
4. I means at the same level of \(\mathrm{E} \quad=2.29\) tons/ac.

\section*{Crop :- Sugarcane.}

Ref. :- A.P. 55(82).
Type :- ‘TMV'.

Object:-To study the possibility of maintaining the juice quality in spite of the high level of nitrogenous manuring by following an appropriate irrigation policy.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Paddy. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). of N as A/S. (ii) (a) Clayey loam. (b) Refer soil analysis, Anakapalle. (iii) 18.2.1955. (iv) (a) Ploughing, formation of ridges and digging deep trenches. (b) Planting. (c) 15,000 three-budded setts/ac. (d) \(3^{\prime} \times 4^{\prime}\). (e) N.A. (v) Nil. (vi) and. (vii) As per treatments. (viii) Weeding, hoeing and earthing up. (ix) \(64.22^{\prime \prime}\). (x) February: 1956.
2. TREATMENTS :

1 Main-plot treatments :
2 levels of irrigation: \(I_{1}=6\) days interval of irrigation during June to August and 12 days interval after wards. \(\mathrm{I}_{2}=2\) irrigations in first 15 days and subsequent irrigations once in 12 days.

\section*{Sub-plot treatments}

All combinations of (1) and (2)
(1) 3 varieties of cane : \(\mathrm{V}_{1}=\mathrm{CO}-419, \mathrm{~V}_{2}=\mathrm{CO}-888\) and \(\mathrm{V}_{3}=\mathrm{CO}-527\).
(2) 2 levels of \(\mathrm{N}: \quad \mathrm{N}_{1}=100 \mathrm{lb} . / \mathrm{ac}\). of N in two doses, \(30 \mathrm{lb} . / \mathrm{ac}\). at planting and \(70 \mathrm{lb} . / \mathrm{ac} .8\) weeks later and \(N_{2}=200 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}: 60 \mathrm{lb} . / \mathrm{ac}\). at planting and \(140 \mathrm{lb} . / \mathrm{ac} .8\) weeks later.
3. DESIGN:
(i)'Split-plot. (ii) (a) 2 main-plots/replication; 6 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(46.2^{\prime} \times 23.1^{\prime \cdot}\) (b) \(39.6^{\prime} \times 16.5^{\prime}\). (v) and (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Mealy bugs. (iii) Yield of cane. (iv) (a) 1955-1956. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 43.0 tons/ac. (ii) (a) 5.29 tons/ac. (b) 3.85 tons/ac. (iii), Only \(V\) effect is highly significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & Mean & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) \\
\hline \(V_{1}\) & 46.6 & 49.1 & 47.9 & 47.3 & 48.4 \\
\hline \(V_{2}\) & 44.1 & 44.1 & 44.1 & 42.5 & 45.7 \\
\hline \(\mathrm{V}_{3}\) & 34.1 & 40.1 & 37.1 & 38.4 & 35.9 \\
\hline Mean & 41.6 & 44.4 & 43.0 & 42.7 & 43.3 \\
\hline \(\mathrm{N}_{1}\) & 41.1 & 44.4 & & & \\
\hline \(\mathrm{N}_{2}\) & 42.2 & 44.5 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. I marginal means \(\quad=1.53\) tons/ac. 5. I means at the same level of \(V=2.19\) tons/ac.
2. V marginal means \(\quad=1.36\) tons/ac. 6. N means at the same level of \(\mathrm{I}=1.57\) tons/ac.
3. N marginal means \(\quad=1.11\) tons/ac. 7. I means at the same level of \(\mathrm{N}=1.89\) tons/ac.
4. V meins at the same level of \(I=1.92\) tons/ac. S.E. of body of \((N \times V)\) table \(=1.36\) tons/ac.

Crop :- Sugarcane.
Site :- Sugarcane Res. Stn., Anakapalle.
\[
\begin{aligned}
& \text { Ref. :- A.P. } 56(59) . \\
& \text { Type :- ‘IMV'. }
\end{aligned}
\]

Object:-To study the possibility of maintaining the juice quality in spite of the high level of nitrogenous manuring by following an appropriate irrigation policy.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) \(5,000 \mathrm{lb} . / \mathrm{ac}\). cf sesbaniat. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) and 112 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (ii) (a) Clay loam. (b) Refer soil acalysis, Anakapalle. (iii) 22.2.1956. (iv) N.A. (b) Trench planting. (c) 15,000 three-budded setts/ac. (d) \(3^{\prime} 4^{\prime \prime}\). (e) N.A. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 3 weedings. Crop kept erect by trash-twist propping. (ix) \(56.21^{\prime \prime}\). (x) 13 to 16.2.1957.
2. TREATMENTS :

Same as in xept. no. 55(82) on page 365.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(46.2^{\prime} \times 23.1^{\prime}\). (b) \(39.6^{\prime} \times 16.5^{\prime}\). (v) 2 rows on either side. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) D.D.T. sprayed to prevent early shoot borer. (iii) Biometric observations and yield of cane. (iv) (a) 1955-1956. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) Inconsistent and heavy rains. (vii) Nil.
5. RESULTS :
(i) 45.54 tons/ac. (ii) (a) 3.64 tons/ac. (b) 3.09 tons/ac. (iii) Main effect of \(V\) alone is highly significant. (iv) Av. yield of cane in ton/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & Mean & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) \\
\hline \(\mathrm{V}_{1}\) & 5243 & 50.23 & 51.33 & 50.68 & 51.98 \\
\hline \(V_{2}\) & 43.41 & 44.16 & 43.78 & 42.96 & 44.61 \\
\hline \(\mathrm{V}_{3}\) & 41.68 & 41.34 & 45.54 & 41.51 & 41.51 \\
\hline Mean & 45.84 & 45.24 & 45.54 & 45.05 & 46.03 \\
\hline \(\mathrm{N}_{1}\) & 45.35 & 44.75 & & & \\
\hline N & 46.33 & 45.74 & & & \\
\hline
\end{tabular}

\section*{S.E. of difference of two}


\section*{Crop :- Sugarcane.}

Site :- Sugarcane Res: Stn., Amakapalle.

Ref. :- A.P. 59(129).
Type :- 'IMC'.

Object .--To study the suitability of Dr. Clement's crop logging practices and effect of time of planting ons. Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Rice-Sugarcane. (b) Rice. (c) 40 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\). (ii) (a) Clay loam. (b) Refer soil analysis, Anakapalle. (iii) As per treatments. (iv) (a) Formation of trenches, \(8^{\prime \prime}\) deep. (b) Planted in trenches. (c) 15,000 setts/ac. (d) \(3.3^{\prime}\), between rows. (e) 3 buds/sett. (v) Nil. (vi) \(\mathrm{CO}-419\) (late). (vii) Irrigated. (viii) Twice weeded, earthing up, wrapping and propping. (ix) \(40.4^{\prime \prime}\). (x) 17.3.1960.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 times of planting: \(T_{1}=\) December planting and \(T_{2}=\) February planting.
(2) 2 levels of logging : \(L_{0}=\) No crop logging practices and \(L_{1}=\) Crop logging practices.

\section*{Crop log practices :}
(1) Irrigation: During formative phase till the end of June irrigations were based on tension meter reading and were given when tension of 0.35 atmosphere was developed. During maturity phase irrigations were given basing on the sheath moisture.
(2) Manuring: \(25 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) at planting. \(25 \mathrm{lb} . / \mathrm{ac}\). of N on 30 th day and \(25 \mathrm{lb} . / \mathrm{ac}\). of N om 6Óth day after planting. Leaf ' \(N\) ' was determined from samples on 165 th day. Accordingly 65 lb ./ac. of N for December planting and 35 lb ./ac. of N for February planting were added in addition to 75 lb ./ac. given to the crop.

\section*{Control :}
(1) Irrigation : Once in 7 days in formative phase and once 21 days in maturity phase.
(2) Manuring: 100 ib ./ac. of N as \(\mathrm{A} / \mathrm{S}\) in two equal doses on 45 th and 90 th days after planting added for both the plantings.
3. DESIGN :
(i) R.B.D. (ii)
(a) 4.
(b) \(271^{\prime} \times 1^{189^{\prime}}\).
(iii) 6.
(iv) (a) \(1 / 23.0 \mathrm{ac}\).
(b) \(1 / 62.5 \mathrm{ac}\).
(v) 4 rows in each
side. (vi) Yes.
4. GENERAL :
(i) Satisfactory.
(ii) Nil.
(iii) Yield of sugarcane.
(iv) (a) Nil.
(b) No.
(c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS:}
(i) 65.9 tons/ac. (ii) 4.12 tons/ac. (iii) No effect is significant. (ii) Av. yield of sugarcane in tons/ac.
\begin{tabular}{|c|c|c|c|}
\hline & \(L_{0}\) & \(\mathrm{L}_{1}\) & Mean \\
\hline \(\mathrm{T}_{1}\) & 64.5 & 64.7 & 646 \\
\hline \(\mathrm{T}_{2}\) & 64.6 & 69.8 & 67.2 \\
\hline Mean & 64.6 & 67.2 & 65.9 \\
\hline
\end{tabular}
S.E. of any marginal mean \(\quad=1.19\) tons/ac.

Crop :- Sugarcane.
Site :- Sagarcane Res. Stn., Anakapalle.

Ref: :- A.P. 56(52).
Type :- 'D'.

Object :-To find out a suitable control measure for the early shoot borer of cane with insecticides applied as sprey to soil.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Paddy. (b) Paddy. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). of A/S. (ii) (a) Clay loam. (b) Refer soil analysis Anakapalle. (iii) \(14,15.3 .1956\) (vi) (a) N.A. (b) Trench planting. (c) 15,000 three budded setts/ac. (d) \(3.3^{\prime}\) between rows. (e) -. (v) 10 tons/ac. of F.Y.M. distributed in trenches and mixed with the loose soil at the bottom one month before planting. (vi) \(\mathrm{CO}-419\). (vii) Irrigated. (viii) Weeding, levelling, earthing, trenching and propping by trash-twist method. (ix) \(57.51^{\circ}\). (x) 11, 12.3.1957.
2. TREATMENTS:

6 insecticides \(. C_{0}=\) Control, \(C_{1}=\) spraying D.D.T. \(0.32 \%, C_{2}=\) Spraying D.D.T. \(0.25 \%, C_{3}=\) spraying Erdrin \(0.02 \%, \mathrm{C}_{4}=\) dusting D D.T. \(50 \%\) and \(\mathrm{C}_{5}=\) dusting Endrin \(5.0 \%\).
Dusting done to the soil at \(20 \mathrm{lb} . / \mathrm{ac}\). before planting and \(20 \mathrm{lb} . / \mathrm{ac}\). along with 1 st dose of concentrates.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4 . (iv) (a) \(59.4^{\prime} \times 19.8^{\prime}\). (b) \(52.8^{\prime} \times 14.2^{\prime}\). (v) One row on either side. (vi) Yes.

\section*{4. GENERAL:}
(i) Good. (ii) As per object and treatments. (tii) Biometric observations and yield of cane. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 44.30 ton/ac. (ii) 3.32 ton/ac. (iii) Treatment differences are significant. (iv) Av. yield of cane in ton'ac.
\begin{tabular}{lcccccc} 
Treatments & \(\mathrm{C}_{0}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{5}\) \\
Av. yield & 40.42 & 46.92 & 46.62 & 48.08 & 42.72 & 41.03 \\
& & & & & & \\
& S.E./mean & \(=\) & 1.66 ton/ac. & & &
\end{tabular}

Crop :- Sugarcane.
Site :- Sugarcane Res. Stn., Anakapalle.

> Ref :- A P. \(56(48)\).
> Type :- 'D'.

Object : - To work out a spray schedule with reduced number of sprayings to lessen the cost of spraying D.D.T. \(0.32 \%\) against the early shoot borer.
1. BASAL CONDITIONS:
(i) (a) Sugarcane-Paddy. (b) Paddy. (c) 40 lb ./ac. of A/S. (ii) (a)Clayey loam. (b) Refer soil analysis,
Anakapalle. (iii) 13.3 .1956 . (iv) (a) Formation of \(\delta^{\prime \prime}\) deep trenches. (b) N.A. (c) 15,000 three-budded
setts /ac. (d) \(3.3^{\prime}\) between rows. (e) N.A. (v) 10 tons/ac. of F.Y.M. mixed up in the trenches one month
before planting. (vi) CO-419. (vii) Irrigated. (viii) Weeding, levelling, earthing, trenching and
propping. (ix) \(57.51^{\prime \prime}\).
(x) 8 to 11.3 .1959.

\section*{2. TREATMENTS :}

8 sprayings of D.D.T. at \(0.32 \%\) at different ages : \(C_{0}=\) Control (no sprayirg), \(C_{1}=\) Spraying in 4 th week, \(\mathrm{C}_{2}=\) Spraying during 6 th week, \(\mathrm{C}_{3}=\) Spraying during 9 th week. \(\mathrm{C}_{4}=\) Spraying during 4 th and 6 th weeks, \(\mathrm{C}_{5}=\) Spraying during 4th, 9 th and \(\mathrm{C}_{6}=\) Spraying during 6th week andi9th weeks and \(\mathrm{C}_{\boldsymbol{i}}=\) Spraying during 4 th, 6th and 9 th weeks.
3. DESIGN :
(i) R.B.D. (a) 8. (b) N.A. (iii) 2. (iv) \(33.0^{\prime} \times 26.4^{\prime}\). (b) \(26.4^{\prime} \times 19.8^{\prime}\). (v) Two rows on either side.
(vi) Yes.
4. GENERAL :
(i) Good. (ii) Sprayed D.D.T. \(0.32 \%\) against early shoot borer. (iii) Biometric observations and yield of of cane. (iv) (a) 1956-1959. (b) No. (c) Nil. (v) (a) No. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) 438 tons/ac. (ii) 6.92 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{C}_{0}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}{ }^{\text {a }}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{6}\) & \(\mathrm{C}_{7}\) \\
\hline Av. yield & 383 & 42.6 & 49.5 & 44.2 & 36.2 & 44.6 & 44.8 & 50.4 \\
\hline \multicolumn{9}{|c|}{S.E./mean \(\quad=4.89\) tons/ac.} \\
\hline
\end{tabular}

Crop :- Sugarcane.
Site :- Sügarcane Res. Stn., Anakapalle.

\section*{Ref :- A.P. 58(27). \\ Type :- ‘D’.}

Object :-To work out a spray schedule with reduced number of sprayings to lessen the cost of spraying D.D.T., \(0.32 \%\) against the early shoot borer.

\section*{I: BASAL CONDITIONS :}
(i) (a) Paddy-Sugarcane. (b) Paddy. (c) 10 C.L./ac. of F.Y.M. \(+40 \mathrm{lb} . / \mathrm{ac}\). of N and \(40 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (ii) (a) Loamy. (b) Refer soil analysis, Anakapalle. (iii) 5.3.1958. (iv) (a) Trenches of \(8^{\prime \prime}\) depth were formed. (b) Plänting. (c) 15,000 setts/ac. (d) N.A. (e) 3 buds/sett. (v) F.Y.M. at 10 tons/ac. \(+100 \mathrm{lb} / \mathrm{ac}\). of N as A/S applied in equal doses after 45 and 90 days of planting.' (vi) CO-419 (late). (vii) Irrigated. (viii) Weeding. (ix) 61.14". (x) 14, 15.3.1959.

\section*{2. TREATMENTS :}

Same as in expt. no. 56(48) on page 368.
3. DESIGN:
(i) R.B.D., (ii) (a) 8 . (b) N.A. (iii) 4 . '(iv) (a) \(33.6^{\prime} \times 25.4^{\prime}\). (b) \(33.0^{\prime} \times 19.8^{\prime}\). (v) 2 guard rows on either side of the plot. (vi) Yes.
4. GENERAE:
(i) Satisfactory. (ii) Nil. (iii) Yield of cane. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) Nil. (vii) Yields are erratic due to floods.
5. RESULTS :
(i) 38.64 tons/ac. (ii) 7.93 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lllcccccc} 
Treatment & \(\mathrm{C}_{\mathbf{0}}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{6}\) & \(\mathrm{C}_{7}\) \\
Av. yield & 41.19 & 36.24 & 40.37 & 41.64 & 35.94 & 41.09 & 36.68 & 35.94 \\
& & & & & & & &
\end{tabular}

\section*{Crop :- Sugarcane. \\ Site :- Sugarcane Res. Stn., Anakapalle. \\ \[
\begin{aligned}
& \text { Ref :- A.P. } 57(59) . \\
& \text { Type :- 'D'. }
\end{aligned}
\]}

Object:-To study the zomparative effect of the two insezticides D.D.T. and Endrine in the control of early shoct borer.

\section*{1. BASAL CONDITIONS :}
(i) (a) Paddy-Sugarcane-Paddy. (b) Paddy.(c) G.M., A/S and K. (ii) (a) Loamy. (b) Refer soil analysis, Anakapalle. (iii) 27.3.1957. (iv) (a) Formation of \(8^{\prime \prime}\) deep trenches. (b) Planted in trenches. (c) 15,000 setts/ac. (d) and (e) N.A. (v) 10 tons/ac. of F.Y.M. and A/S at \(100 \mathrm{lb} . / \mathrm{ac}\). of N in two doses. (vi) CO-419 (late). (vii) Irrigated. (viii) Earthing up, wrapping and propping twice. (ix) \(41.41^{\prime \prime}\). (x) 27.2.1958 to 2.3.1958.

\section*{2. TREATMENTS :}

7 insecticidal sprayings : \(\mathrm{C}_{0}=\) Control, \(\mathrm{C}_{1}=\) D.D.T. at \(0.32 \%, \mathrm{C}_{2}=\) D.D.T. at \(0.25 \%, \mathrm{C}_{3}=\) D.D.T. at \(0.15 \%\),
\(\mathrm{C}_{4}=\) Endrine at \(0.02 \%, \mathrm{C}_{5}=\) Endrine at \(0.015 \%\) and \(\mathrm{C}_{6}=\) Endrine at \(001 \%\).
Sprayings given during 4th, 6th and 9th weeks.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) \(40.9^{\prime} \times 26.4^{\prime}\). (b) \(34.2^{\prime} \times 19.8^{\prime}\). (v) Two guard rows on either side of the plot. (vi) Yes.
4. GENERAL :
(i) Nit .
(ii) N.A.
(iii) Yield of cane.
(a) 1957-contd.
(b) No
(c)
(vi) and (vii) Nil.
5. RESULTS :
(i) 50.02 tons/ac. (ii) 4.97 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{lccccccc} 
Treatment & \(\mathrm{C}_{0}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{6}\) \\
Av. yield & 41.45 & 51.91 & 51.57 & 50.03 & 51.57 & 53.30 & 50.28 \\
& S.E. \(/\) mean & \(=\) & 2.48 tons/ac. & & & &
\end{tabular}

\section*{Crop :- Sugarcane. \\ Site :- Sugarcane Res. Stn., Anakapalle. \\ Ref :- A.P. 58(24). \\ Type :- 'D'.}

Object :-To study the comparative effect of the two insecticides D.D.T. and Endrine in the control of early shoot borer.
1. BASAL CONDITIONS :
(i) (a) Paddy-Sugarcane-Paddy. (b) Paddy. (c) F.Y.M. at 10 C.L./ac. of \(\mathrm{A} / \mathrm{S}\) at \(40 \mathrm{lb} . / \mathrm{ac}\). of N and Super at \(40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (ii) (a) Loamy. (b) Refer soil analysis, Anakapalle. (iii) 2.3 .1958 . (iv) (a) Planting in trenches \(8^{\prime \prime}\) deep with \(4^{\prime \prime}\) locse soil beneath. (b) Planting. (c) 15,000 , three-budded setts/ac. (d) and (e) -. (v) F.Y.M. at 10 tons/ac. and 100 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\) in 3 equal doses. (vi) \(\mathrm{CO}-419\) (late). (vii) Irrigated. (viii) 2 earthings and propping. (ix) \(61.14^{\prime \prime}\). (x) 16, 17.3.1959.
2. TREATMENTS :

Same as in expt. no. 57(59) on page 369.

\section*{DESIGN:}
(i) R.B.D (ii) (a) 7. (b) N.A. (iii) 4 . (iv) (a) \(26.1^{\prime} \times 39.6^{\prime}\). (b) \(19.8^{\prime} \times 33.0^{\prime}\). (v) Two guard rows on either side for each plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Control measures as per treatments for early shoot borer. (iii) Yield of cane. (iv) (a) 1957 -contd. (b) No. (c) Nil. (v) (a) and (b) No. (vi) Cylone on 15.5 .1958 damaged the crop up to \(10 \%\). (vii) Nil.
5. RESULTS :
(i) 46.13 tons'ac. (ii) 6.03 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tonsiac.
\begin{tabular}{lllccccc} 
Treatment & \(\mathrm{C}_{0}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{6}\) \\
Av. yield & 39.47 & 53.05 & 47.45 & 48.26 & 46.52 & 46.47 & 41.66 \\
& S.E./mean & \(=\) & 3.02 tons/ac. & & & &
\end{tabular}

\section*{Crop :- Sugarcane. \\ Site :- Sugarcane Res. Stn., Anakapalle.}

Ref :- A.P. 54(57).
Type :- ‘D'.

Object :-To study the effect of inoculation of setts with smut pores.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sugarcane-Paddy. (b) Paddy. (c) F.Y.M. and A/S. quantities-N.A. (ii) (a) Loamy. (b) Refer soil analysis, Anakapalle. (iii) 8.3.1954. (iv, (a) Digging trenches. (b) Trench planting. (c) N.A. (d) 3.3' between rows. (e) N.A. (v) 10 tons/ac. of F.Y.M. +100 lb ./ac. of N as \(\mathrm{A} / \mathrm{s}\) in two doses. (vi) CO-419.
(vii) Irrigated. (viii) 3 to 4 weedings, wrapping and propping 3 times. (ix) \(25.94^{\prime \prime}\) ( \(\mathbf{x}\) ) 3 to 8.2.1965.
2. TREATMENTS :

2 levels of inoculation: \(T_{0}=\) No inoculation and \(T_{1}=S\) tts inoculated with Smut.
3. DESIGN :
(i) R.B.D.
(ii) (a) 2 .
(b) N.A. (iii) 12 . (iv)
(a) \(1 / 66.5 \mathrm{ac}\).
(b) \(1 / 133\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (ii) Biometric observations and yield of cane. (iv) 1951-1954. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(7.15 \mathrm{lb} . / \mathrm{clump}\). (ii) 80 lb ./clump. (iii) Treatment difference is significant. (iv) Av. yield of cane, in lb./clump.
\(\begin{array}{lll}\text { Treatment } & \mathrm{T}_{0} & \mathrm{~T}_{1}\end{array}\)
Av. yield \(9.58 \quad 4.72\)
S.E. \(/\) mean \(=0.23 \mathrm{lb} . / \mathrm{clump}\).

\section*{Crop :- Sugarcane. \\ Site :- Agri. Res. Stn,. Rudrur. \\ Ref :- A.P. 55(45). \\ Type :- 'D'.}

Object :-To study the effect of different chemical compounds on germination and yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Black clay loam Regur. (b) Refer soil analysis, Rudrur. (iii) 3.12.1955. (iv) (a) Ploughings, clod breaking and ridging. (b) and (c) N.A. (d) \(18^{\prime \prime} \times 18^{\prime \prime}\). (e) N.A. (v) 5 tons/ac. of F.Y.M. +45 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+225 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C. and \(\mathrm{A} / \mathrm{S}\) in \(2: 1\) ratio. (vi) \(\mathrm{CO}-419\) (medium) (vii) Irrigated. (viii) Weeding, mulching and earthing up. (ix) \(68^{\prime \prime}\). (x) 13.12.1956.
12. TREATMENTS :

4 chemical compounds: \(\mathrm{C}_{0}=\) Control, \(\mathrm{C}_{1}=\) Aretan, \(\mathrm{C}_{2}=\) Agallol and \(\mathrm{C}_{3}=\) Agrosan. One pound of compound dissolved in 2 gallons of water and the setts dipped in the solution for 5 minutes. Untreated setts were used for control.
3. DESIGN :
(i) R.B.D.
(ii) (a)
(b) N.A.
(iii) 4. (iv) (a) \(51^{\prime} \times 24^{\prime}\).
(b) \(45^{\prime} \times 22^{\prime}\).
(v) \(3^{\prime} \times 1^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Slight borer attack - control measures N.A. (iii) Yield of cane. (iv) (a) 1955-58. (b) No. * (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 52.66 tons/ac. (ii) 10.64 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{llllcc} 
Treatment & \(\mathrm{C}_{\mathbf{0}}\) & \(\mathrm{C}_{\mathbf{1}}\) & \(\mathrm{C}_{\mathbf{2}}\) & \(\mathrm{C}_{\mathbf{3}}\) \\
Av. yield & 47.89 & 52.41 & 54.60 & 55.76 \\
& & & \\
& S.E./mean & \(=\) & 5.32 tons/ac.
\end{tabular}

\section*{Crop :- Sugarcane.}

Ref :- A.P. 56(109).
Site :- Agri: Res. Stn., Rudrur.
Type :- ‘D'.

Object :-To study the effect of different chemical compounds on germination and yield of Sugarcane.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) Nil. (ii) (a) Clay loam (Regur). (b) Refer soil analysis, Rudur. (iii) Nov.-Dec., 1956. (iv) (a) 3 to 4 ploughings, levelling and formation of furrows and ridges. (b) Planting. (c) 10,000 setts/ac. (d) \(3^{\prime}\) between rows. (e) 3 buds/sett. (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of G.M. and 45 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super added to G.M. (vi) \(\mathrm{CO}-419\), Eksali. (vii) Irrigated. (viii) Mulching weeding and earthing up. (ix) \(69.40^{\circ}\). (x) 2nd week of Dec. 1957.
2. TREATMENTS:

Same as in expt. no. 55(45) on page 371.
3. DESIGN :
(i) R.B.D. (ii) (a; 4. (b) N.A. (iii) 4. (iv) (a) \(15^{\prime} \times 60^{\prime}\). (b) \(12^{\prime} \times 54^{\prime}\). (v) \(1.5^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of care. (iv) (a) 1955-1958. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS;
(i) 80.38 tons/ac. (ii) 11.47 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac
\begin{tabular}{llccc} 
Treatment & \(\mathrm{C}_{0}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) \\
Av. yield & 7296 & 80.04 & 83.37 & 85.14 \\
& & & & \\
& S.E./mean & \(=\) & 5.73 tons/ac. &
\end{tabular}
\begin{tabular}{ll} 
Crop :- Sugarcane. & Ref :- A.P. 57(111). \\
Site :- Agri. Res. Stn., Rudrur. & Type :- ‘D'.
\end{tabular}

Object :-To study the effect of different chemical compounds on germination and yield of Sugarcane.
1. BASAL CONDITIONS :
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) -/Nov. 1957. (iv) (a) 3 to 4 ploughings, levelling and formation of ridges and furrows. (b) Planting. (c) \(10, C 00\) setts/ac. (d) 3' between rows. (e) 3 buds/setts. (v) \(5000 \mathrm{lb} / \mathrm{ac}\). of G.M. and \(45 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super added to G.M. (vi) CO-419 (eksali). (vii) Irrigated. (viii) Mulching, weeding and earthing. (ix) \(31.70^{\circ}\). ( x ) 3 rd week of Dec. 1958.

\section*{2. TREATMENTS :}

Same as in expt. no. 55(45) on page 371.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 56(109) on page 371.
5. RESULTS :
(i) 14.63 tons/ac. (ii) 2.02 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.
\begin{tabular}{llccc} 
Treatment & \(\mathrm{C}_{0}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) \\
Av. yield & 12.63 & 15.29 & 16.30 & 14.31 \\
& & & & \\
& S.E./mean & \(=\) & 1.01 tons/ac. &
\end{tabular}

\footnotetext{
Crop:- Sugarcane.
Site :- Agri. Res. Stn., Rudrur.
}

Ref :- A.P. 58 (142).
Type :- 'D'.
Object:-To study the effect of different chemical compounds on germination and yield of Sugarcane.

\section*{1. BASAL CONDITIONS}
(i) (a) Sugarcane-Fallow-Sugarcane. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) Refer soil analysis, Rudrur. (iii) Nov.-Dec. 1958. (iv) (a) 3 to 4 ploughings, levelling and formation of furrows and ridges. (b) Planting. (c) 10,000 setts/ac. (d) \(3^{\prime}\) between rows. (e) 3 buds/sett. (v) \(5000 \mathrm{lb} . / \mathrm{ac}\). of G.M. and 45 lb./ac. bf \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super added to G.M. (vi) CO-419 (eksali). (vii) Mulching, weeding and earthing up. (viil) Irrigated. (ix) \(55.75^{\prime \prime}\). (x). Dec. 1959 to 1st week of Jan. 1960.
2. TREATMENTS :

Same as in expt. no. 55(45) on page 371.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 56(109) on page 371.
5. RESULTS:
(i) 22.27 tons/ac. (ii) 3.18 tons/ac. (iii) Treatment differences are not significant. (lv) Av. yield of Sugarcane in tons/ac.
\begin{tabular}{llccr} 
Treatment & \(\mathrm{C}_{0}\) & \(\mathrm{C}_{1}\), & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) \\
Av. yield & 22.72 & 23.68 & 22.50 & 20.16 \\
& & & & \\
& S.E. \(/\) mean & \(=\) & \(1.59 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}
\begin{tabular}{ll} 
Crop :- Sugarcane: & Ref :- A.P. 56(63). \\
Site :- Agri. Res. Stn, Rudrur & Type :- 'D' \(^{\prime}\).
\end{tabular}

Object :-To find out a suitable insecticide to control the early shoot borer of cane.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c).Nil. (ii) (a) Loam. (b) Refer soil analysis, Rudrur. (iii) 5.1.1956. (iv) (a) . Ploughings, clod breaking and ridging. (b) and (c) N.A. (d) \(3^{\prime}\) between rows. (e) N.A. (v) \(160 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{G}: \mathrm{N} . \mathrm{C}\). and \(\mathrm{A} / \mathrm{S}\) in \(1: 1\) ratio. (vi) \(\mathrm{CO}-419\) (eksali). (vii) Irrigated. (viii) 2 weedings and 2 heavy earthings. (ix) \(71.45^{\prime \prime}\). (x) 9.2.1957.
2. TREATMENTS :

All combinations of (1) and (2) +a control.
(1) 4 insecticides : \(\mathrm{C}_{1}=\) D.D.T. at \(0.5 \%, \mathrm{C}_{2}=\) B.H.C. at \(0.5 \%, \mathrm{C}_{3}=\) Endrin at \(3 \mathrm{lb} . / \mathrm{ac}\), and \(\mathrm{C}_{4}=\) Folidol at 1 in 1500.
(2) 2 levels of spraying : \(L_{1}=1\) and \(L_{2}=2\) sprayings.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) \(33^{\prime} \times 33^{\prime}\). (b) \(33^{\prime} \times 21^{\prime}\). (v) 2 rows on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Early shoot borer noticed. Control measures as per treatments. . (iii) Yield of Sugarcane. (iv) (a) 1955-contd. (b) No. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.,
5. RESULTS :
(i) 19.30 tons/ac. (ii) 2.55 tons/ac. (iii) No effect is significant. (iv) Av. yield of cane in tons/ac.

Control \(=2165\) tons/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & C4 & Mean \\
\hline \(L_{1}\) & 20.75 & 17.39 & 20.63 & 19.81 & . 19.64 \\
\hline \(L_{2}\) & 19.05 & 18.70 & 17.79 & 17.95 & 18.37 \\
\hline Mean & 19.90 & 18.04 & 19.21 & 18.88 & 19:00 \\
\hline
\end{tabular}
S.E. of \(L\) marginal mean \(\quad=064\) tons/ac.
S.E. of \(C\) marginal mean \(\quad=0.90\) tons/ac.
S.E. of body of table or control mean \(=1.27\) tons/ac.

Crop:- Cotton.
Site :- Plant Breeding Stn., Mudhol.

Ref :- A.P. 56(6).
Type :- 'M'.

Object :-To study the comparative effects of F.Y.M. and A/S alone and in combination on Cottcn.
1. BASAL CONDITIONS :
(i) (a) Jowar-Cotton. (b) Jowar. (c) Nil. (ii) (a) Medium black soil. (b) N.A. (iii) 29.6.1956. (iv)
(a) One Summer ploughing and 3 bakharings. (b) Drilling. (c) \(16 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between ruws. (e) N.A.
(v) N.A. (vi) Gaorani 6. (vii) Un\&rigated. (viii) 1 hand weeding and 2 hoeings. (ix) 49.77*. (x) 11.11.1956, 26.11.1956, 11.12.19:6 and 26.12.1956.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of \(A / S: N_{0}=0\) and \(N_{1}=100 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of F.Y.M. : \(F_{0}=0\) and \(F_{1}=4\) tons/ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 5 . (iv) (a) \(127^{\prime} \times 15^{\prime}\). (b) \(121^{\prime} \times 9^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Biometic observations and yield of kapas. (iv) (a) 1953-contd. (b) No.
(c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(259 \mathrm{lb} . / \mathrm{ac}\). (ii) \(48.8 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of N alone is significant. (iv) Av. yield of kapas in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|ll|l} 
& \(F_{0}\) & \(F_{1}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 216 & 242 & 229 \\
\(\mathrm{~N}_{1}\) & 298 & 278 & 288 \\
\hline Mean & 257 & 260 & 259 \\
\begin{tabular}{ll} 
S.E. of any marginal mean & \\
S.E. of body of table
\end{tabular} & \(=15.4 \mathrm{lb} / \mathrm{ac}\). \\
\end{tabular}
```

Crop :- Cotton (Kharif).
Site :- Plant Breeding Stn., Mudhol.
Ref. :- A.P. 58(53).
Site :- Plant Breeding Stn., Mudhol.
Type :- ' \mathbf{M} '.

```

Object :-To study the optimum time of application of \(\mathrm{A} / \mathrm{S}\) to Cotton.
1. BASAL CONDITIONS :
(i) (a) Jowar-Cotton. (b) Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) N.A. (iii) 29.6.1958. (iv) (a) to (e) N A. (v) Nil. (vi) Gaorani (late). (vii) Irrigated. (viii) Two weedings and two bullock hoeings. (ix) \(39.59^{\circ}\). (x) November to December, 1958.
2. TREATMENTS :

All combinatiors of (1) and (2)
(1) 2 levels of N as \(\mathrm{A} / \mathrm{S}: \quad \mathrm{N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 8 split applications of \(\mathrm{A} / \mathrm{S}: \mathrm{T}_{0}=\) Control (2 plots), \(\mathrm{T}_{1}=\) Full dose before sowing, \(\mathrm{T}_{2}=\) Full dose at sowing, \(T_{3}=\) Full dose one month after sowing, \(T_{4}=\frac{1}{2}\) dose before sowing \(+\frac{1}{2}\) at sowing, \(T_{5}=\frac{1}{2}\) before sowing \(+\frac{1}{2}\) one month after sowing, \(\mathrm{T}_{6}=\frac{1}{2}\) at sowing \(+\frac{1}{2}\) ore month after sowing and \(\mathrm{T}_{7}=\frac{1}{3}\) before sowing \(+\frac{1}{3}\) at sowing \(+\frac{1}{3}\) one month after sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 16 . (b) \(128^{\prime} \times 96^{\prime}\). (iii) 3. (iv) (a) \(64^{\prime} \times 12^{\prime}\). (b) \(60^{\prime} \times 9^{\prime}\). (v) \(2^{\prime} \times 1.5^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Healthy. (ii) Only normal Bollworm attack; control measures taken N.A. (iii) Yie'd of Kopas. (iv) (a) 1958-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 372 lb ./ac. (ii) 48.7 lb ./ac. (iii) Control \(v s\). others, and main effects of N and T are highly significant. (iv) Av. yield of Kapas in lb./ac.

Ccntrol \(\mp .273 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{T}_{1}\) & \(\mathrm{T}_{2}\) & \(\mathrm{T}_{3}\) & T4 & \(\mathrm{T}_{5}\) & T \({ }_{6}\) & \(\mathrm{T}_{7}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 368 & 328 & 323 & 383 & 391 & 336 & 370 & 357 \\
\hline \(\mathrm{N}_{2}\) & 478 & 325 & 394 & 431 & 478 & 393 & 400 . & 414 \\
\hline Mean & 423 & 327 & 359 & 407 & 435 & 365 & 385 & 386 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of N marginal mean & \(=10.6 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of T marginal mean & \(=19.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=28.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of control mean & \(=19.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Cotton (Kharif).
Site :- Plant Breeding Sin., Mudhol.
Ref. :- A.P. 59(41)
Type :- \(\mathbf{~}^{\mathbf{M}}{ }^{\prime}\).
Object :-To study the effect of N, P and K on the yield of Cotton.
1. BASAL CONDITIONS :
(i) (a) Jowar-Cotton. (b) Jowar. (c) Ni1. (ii) (a) Black cotton soil. (b) N.A. (iii) 29.6.1959. (iv) (a) to (e) N.A. (v) Nil. (vi) Gaorani 6-(early). (vii) Unirrigated. (viii) - (ix) 57.37". (x) 20.11:1959, 21.12.1959 and 20.1.1960.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 2 leveis of \(N: N_{0}=0\) and \(N_{1}=30 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=30 \mathrm{lb}\)./ac.
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}\) : \(\mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=30 \mathrm{lb}\)./ac.

\section*{DESIGN :}
(i) R.B.D. (ii) (a) \(8 .^{.}\)(b) \(78^{\prime} \times 59^{\prime}\). (iii) 4 . (iv) (a) \(28^{\prime} \times 19.5^{\prime}\). (b) \(26^{\prime} \times 16.5^{\prime}\). (v) \(1 \times 1.5^{\prime}\). (vi) Yes.

GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of Kapas. (iv) (a) 1958-conta. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(30.91 \mathrm{lb} . / \mathrm{ac}\). (ii) 564.8 lb ./ac. (iii) Interaction \(\mathrm{N} \times \mathrm{K}\) alone is significant. (iv) Av. yield of kapas in \(1 \mathrm{~b} . / \mathrm{ac}\).

```

Crop :- Cotton.
Ref. :- A.P. 58(69).
Site :- Agri. Res. Stn., Nandyal.
Type :- 'M'.

```

Object :-To find out the effect of burning Jonna stubbles on yield of Cotton.
1. BASAL CONDITIONS :
(i) (a) Jonna-Cotton. (b) Jonna. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nandyal. (iii) 12.10.1958. (iv) (a) Working with gorru and guntaka twice. (b) to (e) N.A. (v) Nil. (vi) 122 Asiatic Cotton (late). (vii) Unirrigated. (viii) Interculturing with metta guntaka and hand weeding. (ix) \(11.21^{\prime \prime}\). (x) 12.3 .1959 to 18.4.1959.

\section*{2. TREATMENTS:}

All combinations (1) and (2) + a control :
(1) 2 levels of rabbing: \(\mathrm{R}_{1}=5\) and \(\mathrm{R}_{3}=10\) tons/ac. of burnt Jowar stubbles.
(2) 2 leve's of ash: \(A_{1}=5\) and \(\mathbf{A}_{2}=10\) tons/ac. of burnt Jowar stubbles ash.
3. DESIGN :
(i) R.B.D. (i)
ii) (a) 5. (b) N.A.
(iii) 4. (iv) (a) 1/75.76 ac.
(b) \(1 / 111.11 \mathrm{ac}\)
(v) 2 rows.
(vi) Yes.
4. GENERAL
(i) Good. (ii) Nil. (iii) Yield of kapas. (iv) (a) and (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(303 \mathrm{lb} . / \mathrm{ac}\). (ii) \(50.0 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of kapas in lb./ac.
\[
\text { Control }=269 \mathrm{lb} . / \mathrm{ac}
\]
\begin{tabular}{l|ll|l} 
& \(\mathbf{A}_{1}\) & \(\mathbf{A}_{\mathbf{2}}\) & Mean \\
\hline \(\mathbf{R}_{\mathbf{1}}\) & 339 & \(\mathbf{3 3 7}\) & 338 \\
\(\mathbf{R}_{2}\) & 306 & 306 & 306 \\
\hline Mean & 323 & 322 & 322
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=17.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of the table or control mean & \(=25.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop :- Cotton.
Site :- Agri. Res. Stn., Nandyal.

Ref. :- A.P 58(70).
Site :- Agri. Res. Stn., Nandyal.
Type :- ' \(\mathbf{M}\) '.

Object :-To determine the intake of fertilizers by Cotton plant.
1. BASAL CONDITIONS:
(i) (a) Jonna-Cotton. (b) Jonna. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nandyal. (iii) 6.9.1958. (iv) (a) Worked with gorru and guntaka twice. (b) to (e) N.A. (v) Nil. (vi) Desi (late). (vii) Unirrigated. (viii) Interculturing wilh metta guntaka and hand weeding. (ix) 11.21*. (x) 2.3.1959 and 16.4.1959.
2. TREATMENTS :

All combinations of (1), (2) and (3) :
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=30 \mathrm{lb}\). ac .
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=30 \mathrm{lb}\)./ac.
(3) 3 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=20\) and \(\mathrm{K}_{2}=30 \mathrm{lb}\)./ac.
3. DESIGN :
(i) R.B.D.
(ii) (a) 27
(b) N.A.
(iii) 4
(iv) (a) \(1 / 95.2 \mathrm{ac}\).
(b) \(1 / 200 \mathrm{ac}\)
(v) 2 rows. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Grey mildew attack-Fungi copper was sprayed. (iii) Yield of kapas. (iv) (a) N.A.
(b) and (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(392 \mathrm{lb} / \mathrm{ac}\).
(ii) \(74.0 \mathrm{lb} . / 2 \mathrm{c}\). (iii) No effect is significant
(iv) Av. yield of kapas in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) \\
\hline \(\mathrm{K}_{0}\) & 405. & 405 & 401 & 404 & 380 & 413 & 418 \\
\hline \(\mathrm{K}_{1}\) & 351 & 413 & 372 & 379 & 359 & 368 & 409 \\
\hline \(\mathrm{K}_{2}\) & 364 & 418 & 397 & 393 & 397 & 389 & 393 \\
\hline Mean & 373 & 412 & 390 & - 392 & 379 & 390 & 407 \\
\hline \(\mathrm{P}_{0}\) & 368 & 388 & 380 & & & & \\
\hline \(\mathrm{P}_{1}\) & 368 & 409 & 393 & - & & . & \\
\hline \(\mathrm{P}_{2}\) & 385 & 438 & 397 & & & & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =12.3 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of any table } & =21.4 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]
```

Crop :- Cotton (Kharif).
Site :- Agri. Res. Farm, Yemmiganur.,

```

Ref :- A.P. 57(85).
Type :- ' \(\mathbf{M}^{\prime}\).

Object:--To investigate the stability of nitrogenous fertilizers in the soils of the Tungabhadra project area with reference to their availability to Cotton.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Hingari jonna. (c) 5 tons/ac. of F.Y.M. (ii) (a) Mixed soil. (b) Refer soil analysis, Yemmiganur. (iii) 27.8.1957. (iv) (a) Working dantulu and guntaka 4 times. (b) to (e) N.A. (v) Nil. (vi) Laxmi (late). (v,i) Irrigated. (viii) 3 weedings and 2 intercultivations with guntaka. (ix) \(11.01^{\prime \prime}\). (x) 5.1.1958, 13.1.1958, 10.2.1958 and 2.4.1958.

\section*{2. TREATMENTS :}

7 manurial treatments : \(\mathrm{M}_{0}=\) Control (no manure), \(\mathrm{M}_{1}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) applied 1 week before sowing, \(M_{2}=2\) tons/ac. of straw applied 1 week before sowing, \(M_{3}=5\) tons/ac. of cotton stubbles applied one month before sowing, \(M_{4}=M_{1}+M_{2}, M_{5}=M_{1}+M_{3}\) and \(M_{6}=\) \(\mathrm{M}_{1}+5000 \mathrm{lb}\)./ac. of G.L. applied 1 month before sowing.
3. DESIGN
(i) R.B.D. (ii) (a) 7.
(b) N.A.
(iii) 4. (iv)
(a) \(1 / 48.08 \mathrm{ac}\). (b) \(1 / 64.52 \mathrm{ac}\).
(v) 1 row on either side. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Jassid attack and boll worm-Endrine and Parathion sprayed. (iii) Yield of kapas. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(941 \mathrm{lb} . / \mathrm{ac}\). (ii) 103.5 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of kapas in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lllllllc} 
Treatment & \(\mathbf{M}_{0}\) & \(\mathbf{M}_{1}\) & \(\mathbf{M}_{2}\) & \(\mathbf{M}_{3}\) & \(\mathbf{M}_{4}\) & \(\mathbf{M}_{5}\) & \(\mathbf{M}_{6}\) \\
Av. yield & 638 & 1211 & -711 & 719 & 1110 & 999 & 1200 \\
& & & & & & &
\end{tabular}
```

Grop:- Cotton (Kharif).
Site :- Agri. Res. Farm, Yemmiganur.
Ref :- A.P. 58(93).
Type :- 'M'.

```

Object:-To investigate the stability of nitrogenous fertilizers in the soils of Tungbhadra project with reference to their availability to Cotton.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Hinguri jonna. (c) 5 tons/ac. of F.YM. (ii) (a)Black soil. (b) Refer soil analysis, Yemmiganur. (iii) 30.8.1958. (iv) (a) 2 ploughings and work ng with guntaka twice. (b) and (c) N.A. (d) Ridges \(2^{\prime \prime} 6^{\prime \prime}\) apart. (e) N.A. (v) As per treatments. (vi) Laxmi (late). (vii) Irrigated. (viii) Intercultivation with guntaka. and line weeding 4 times. (ix) 7.16". (x) 22.1.1959, 9.2.1959, 6.3.1959 and 7.4.1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57,85 ) on page 377.
5. RESULTS :
(i) \(607 \mathrm{ib} . / \mathrm{ac}\). (ii) \(90.9 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of kapas in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{llllllll} 
Treatment & \(\mathrm{M}_{\mathbf{0}}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{\mathbf{2}}\) & \(\mathrm{M}_{\mathbf{3}}\) & \(\mathrm{M}_{\mathbf{4}}\) & \(\mathrm{M}_{5}\) & \(\mathbf{M}_{6}\) \\
Av. yield & 519 & 650 & 481 & 533 & 606 & 634 & 828 \\
& & & & & & & \\
& S.E./mean & \(=\) & \(45.4 \mathrm{lb} . / \mathrm{ac}\). & & & &
\end{tabular}

\author{
Crop:- Cotton (Kharif). \\ Site :- Agri. Res. Farm, Yemmiganur.
}

Ref :- A.P. 57(86).
Type :- ' \(\mathbf{M '}^{\prime}\).

Ohject :-To fix up a suitable manurial dose for Laxmi cotton.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Hingari Jonna. (c) 5 tons/ac. of F.Y.M. (ii) (a) Mixed soil. (b) Refer soil analysis, Yemmiganur. (iii) 20.9.1957./-. (iv) (a) to (e) N.A. (v) As per treatments. (vi) Laxmi (late). (vii) Irrigated. (viii) Thre: weedings and 2 intercultivations, with guntaka. (ix) 3.69". (x) 11.2.1958. and 14.3.1958.
2. TREATMENTS :

4 manurial treatments : \(\mathrm{M}_{1}=5\) tons/ac. of F.Y.M., \(\mathrm{M}_{2}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+30 \mathrm{lb}\)./ac. of \(\mathrm{N}, \mathrm{M}_{3}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}-45 \mathrm{lb}\)./ac. of N and \(\mathrm{M}_{4}=30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+60 \mathrm{lb} . / \mathrm{ac}\). of N . \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied as Super and N as \(\mathrm{A} / \mathrm{S}\).
G.M. crop ploughed in site for \(M_{2}, M_{3}\) and \(M_{4}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 6. (iv) (a) \(1 / 48.08\). ac. (b) \(1 / 64.52\) ac. (v) 1 row on either side. (vi) Yes.
4. GENERAL :
(i) Satisfactery. (ii) Jassids attack and bollworms-Endrin and Parathion sprayed twice. (iii) Yield of kapas. (iv) 1957-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(615 \mathrm{lb} . / \mathrm{ac}\) (ii) \(100.9 \mathrm{lb} . / \mathrm{ac}\). (iii) The treatment differences are significant. (vi) Av. yield of kapas in lb./ac.
\begin{tabular}{lllll} 
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) \\
Av. yield & 489 & 652 & 645 & 674 \\
& S.E./mean & \(=\) & \(41.2 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Crop :- Cotton (Kharif).
Ref :- A.P. 58(92).
Site :- Agri. Res. Farm, Yemmiganur.
Type :- ' M '.
Object :-To fix up a suitable manurial dose for Laxmi Cotton.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Mungari Jonna. (c) 5 tons/ac. of F.Y.M. (ii) (a) Mixed soil. (b) Refer soil analysis, Yemmiganur. (iii) 3.9.1958. (iv) (a) to (e) N.A. (v) Nil. (vi) Laxmi (late), (vii) Irrigated. (viii) Intercultivation with guntaka and line weeding. (ix) \(7.16^{\prime \prime}\). (x) 20.1.1959, 10.2.1959, 5.3.1959 and 7.4.1959.
2. TREATMENTS :

Same as in expt. no. \(57(86)\) on page 378.
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) \(1 / 58.82 \mathrm{ac}\). (b) \(1 / 79.36 \mathrm{ac}\). (v) One row on either side. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Jassids and boll worms-spraying Parathion. (iii) Yield of kapas. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(496 \mathrm{lb} . / \mathrm{ac}\). (ii) \(58.3 \mathrm{lb} . / \mathrm{ac}\). (ii) Treatment differences are not significant. (iv) Av. yield of kapas lb/ac.
\begin{tabular}{lccrc} 
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{\mathbf{5}}\) & \(\mathrm{M}_{3}\) & \(-\mathrm{M}_{4}\) \\
Av. yield & 460 & 467 & 515 & 541 \\
& & & & \\
& & & \\
& S.E. \(/\) mean & \(=\) & \(23.8 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}
```

Crop :- Cotton (Kharif).
Site :- Agri. Res. Farm, Yemmiganur.
Ref :- A.P. 59(51).
Type :- ' \mathbf{M} '

```

Object':-To fix up a suitable manurial dose for Laxmi Cotton.
1. BASAL CONDITIONS:
(i) (a) and (b) N.A. (c) 5 tons/ac. of F.Y.M. (ii) (a) Black. (b) Refer soil analysis, Yemmiganur. (iii) 3.9.1959. (iv) (a) to (e) N.A. (v) As per treatments. (vi) Laxmi (late). (vii) Irrigated. (viii) Intercultivations with danthis and guntaka and line weeding. (ix) \(7.7^{\prime \prime}\). (x) \(7.2 .1960,18.3 .1960\) and 25.4.1960
2. TREATMENTS :

Same as in expt. no. \(57(86)\) on page 378.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) \(45^{\prime} \times 42^{\prime}\). (iii) 6 . (iv) \({ }^{-}\)(a) \(1 / 92.59 \mathrm{ac}\). (b) \(1 / 163.93 \mathrm{ac}\). (v) One row on either side. (vi) Yes.
4. GENERAL: ,
(i) -. (ii) Attack of boll worms and jassids-sprayiug with Parathion periodically: (iii) Yield data. (iv) (a) 1957-contd. (b) No. (c) Nil; (v) to (vii) Nil.
5. RESULTS:
(i) \(388 \mathrm{lb} . / \mathrm{ac}\). (ii) \(59.1 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of kapas in lb./ac.
\begin{tabular}{llllll} 
Treatment & \(\mathrm{M}_{1}\) & \(\mathbf{M}_{2}\) & \(\mathbf{M}_{3}\) & \(\mathrm{M}_{4}\) \\
Av. yield & 319 & 380 & 416 & 436 \\
& & & & \\
& S.E./mean & \(=\) & \(24.1 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\section*{Grop:- Cotton.}

Site :- Plant Breeding Stn., Mudhol.
Ref :- A.P. 56(5).
Type :- ' \(\mathbf{C M}\) '.
Object:-To study the best time of application of \(A / S\) in relation to spacing.
1. BASAL CONDITIONS:
(i) Jowar-Cotton. (b) Jowar. (c) 10 to 15 C.L./ac. of F.Y.M. (ii) (a) Medium black soil. (b) N.A. (iii) 4.7.1956. (iv) (a) One summer ploughing and three bakharing. (b) Drilling. (c) \(16 \mathrm{lb} . / \mathrm{ac}\). (d) As per treatments. (e) N.A. (v) Nil. (vi) Gaorani 6. (vii) Unirrigated. (viii) 1 weeding and 2 hoeings. (ix) 49.77 . (x) 19.11.1956, 4.12.1956 and 4.1.1957.
2. TREATMENTS :

Main-plot treatments :
3 row spacings: \(\mathrm{S}_{1}=12^{\prime \prime}, \mathrm{S}_{2}=18^{\prime \prime}\) and \(\mathrm{S}_{3}=24^{\prime \prime}\).
Sub-plot treatments :
8 split applications of \(\mathrm{A} / \mathrm{S}\) at 100 lb ./ac.: \(\mathrm{T}_{0}=\mathrm{No} \mathrm{A} / \mathrm{S}, \mathrm{T}_{1}=\) Full dose at sowing, \(\mathrm{T}_{2}=\) Full dose at 1 st hoeing, \(T_{3}=\) Full dose at 2 nd hoeing, \(T_{4}=\frac{1}{2}\) at sowing and \(\frac{1}{2}\) at 1st hoeing, \(\mathrm{T}_{5}=\frac{1}{2}\) at sowing \(+\frac{1}{2}\) at second hoeing, \(\mathrm{T}_{6}=\frac{1}{2}\) at 1st hoeing \(+\frac{1}{2}\) at 2 nd hoeing and \(\mathrm{T}_{7}=\frac{1}{3}\) at sowing \(+\frac{1}{2}\) at 1 st hoeing \(+\frac{1}{3}\) at \(2 n d\) hoeing.
3. DESIGN :
(i) Split-plot. (i) (a) 3 main-plots/replication; 8 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) \(14^{\prime} \times 33^{\prime}\) for \(S_{1}, 15^{\prime} \times 33^{\prime}\) for \(S_{2}\) and \(16^{\prime} \times 33^{\prime}\) for \(S_{3}\). (b) \(12^{\prime} \times 30^{\prime}\). (v) One row on either side and \(1 \frac{1}{2}^{\prime}\) at either end. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nit. (iii) Periodical heights, no. of bolls and yield of kapas. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(2045 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) 115.0 lb ./ac. (b; 37.5 lb ./ac. (iii) Main effect of T alone is significant. (iv) Av. yield of kapas in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{ccccccccc|c} 
& \(\mathrm{T}_{0}\) & \(\mathrm{~T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) & \(\mathrm{~T}_{5}\) & \(\mathrm{~T}_{6}\) & \(\mathrm{~T}_{7}\) & Mean \\
\hline \(\mathrm{S}_{1}\) & 201.2 & 297.9 & 230.6 & 209.6 & 235.2 & 211.8 & 207.2 & 276.8 & 233.8 \\
\(\mathrm{~S}_{2}\) & 196.6 & 231.4 & 230.6 & 213.3 & 206.5 & 227.6 & 187.5 & 178.5 & 209.0 \\
\(\mathrm{~S}_{3}\) & 117.2 & 204.9 & 155.8 & 142.2 & 195.9 & 186.0 & 183.7 & 186.8 & 171.6 \\
\hline Mean & 171.8 & 244.9 & 205.7 & 188.3 & 212.4 & 208.5 & 192.8 & 214.1 & 204.5
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(S\) marginal means & \(=33.0 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(T\) marginal means & \(=18.0 \mathrm{lb} / \mathrm{ac}\). \\
3. \(T\) means at the same level of \(S\) & \(=31.0 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(S\) means at the same level of \(T\) &
\end{tabular}

Crop:- Cotton.
Site :- Plant Breeding Stn., Mudhol.

Ref :- A.P. 57(13).
Type :- \({ }^{〔} \mathrm{CM}^{\prime}\).

Object :-To study the best time of application of \(A / S\) in relation to spacing.
1. BASAL CONDITIONS :
(i) (a) Jowar-Cotton. (b) Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) N.A. (iii) 2.7.1957. (iv)
(a) One deep ploughing and 3 bakharing. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) Nil.
(vi) Gaorani 6 (early). (vii) Unirrigated. (viii) 2 weedings and 2 bullock hoeings. (ix) 52.96. (x) 16.11.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. \(56(5)\) above.

\section*{4. GENERAL:}

1 (i) Due to continuous rains in July and August the growth was stunted. (ii) Nil. (iii) Yield of kapas, periodical heights and number of bolls on random plants. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.
15. RESULTS
(i) \(375 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(99.3 \mathrm{lb} . / \mathrm{ac}\). (b) \(51.1 \mathrm{lb} . / \mathrm{ac}\). (iii) No effect is significant. (iv) Av. yield of kapas in lb. /ac.
\begin{tabular}{l|lllllllll|l} 
& \(\mathrm{T}_{\mathbf{0}}\) & \(\mathrm{T}_{\mathbf{1}}\) & \(\mathrm{T}_{\mathbf{2}}\) & \(\mathrm{T}_{\mathbf{3}}\) & \(\mathrm{T}_{\mathbf{4}}\) & \(\mathrm{T}_{5}\) & \(\mathrm{~T}_{\mathbf{6}}\) & \(\mathrm{T}_{\mathbf{7}}\) & Mean \\
\hline \(\mathrm{S}_{\mathbf{0}}\) & 334 & 417 & 407 & 408 & 432 & 406 & 354 & 446 & 402 \\
\(\mathrm{~S}_{\mathbf{1}}\) & 389 & 364 & 348 & 414 & 378 & 386 & 336 & 349 & 370 \\
\(\mathrm{~S}_{\mathbf{2}}\) & 322 & 364 & 367 & 353 & 321 & 389 & 334 & 369 & 352 \\
\hline Mean & 348 & \(382 \cdot\) & 374 & 392 & 377 & 394 & 345 & 388 & 375
\end{tabular}
S.E. of difference of two


Crop :- Cotton (Kharif).
Site :- Agri. Res. Farm, Yemmiganur.

Ref :- A.P. 56(91).
Type :- ‘I'.

Object:-To find out the optimum interval of irrigation.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Korra. (c) 5 tonslac. of F.Y.M. (ii) (a) Mixed. (b) Refer soil analysis, Yemmiganar. (iii) 19.9.1956. (iv) (a) to (e) N.A. (v) Super at \(188 \mathrm{lb} . / \mathrm{ac}\). A/S at \(100 \mathrm{lb} . / \mathrm{ac}\). at sowing \(+\mathrm{A} / \mathrm{S}\) at \(100 \mathrm{lb} . / \mathrm{ac}\). at flowering. (vi) Laxmi (late). (vii) As.per treatments. (viii) Working danti and guntaka 4 times and 4 weedings. (ix) \(7.93^{\prime \prime}\). (x) 11.2 .1957 to 8.3.1957.
2. TREATMENTS :

4 intervals of irrigation : \(\mathrm{I}_{1}=15\) days, \(\mathrm{I}_{2}=20\) days, \(\mathrm{I}_{3}=25\) days and \(\mathrm{I}_{4}-30\) days.
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) \(1 / 92.59 \mathrm{ac}\). (b) \(1 / 152.30 \mathrm{ac}\). (v) One row on either side and two plants at either end. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Jassids and boll worms. Endrin and Guesarol 550 sprayed. (iii) Yield of kapas. (iv),
(a) 1956-contd.
(b) No.
(c) Nil.
(v) to (vii) Nil.
5. RESULTS :
(i) \(756 \mathrm{lb} . / \mathrm{ac}\). (ii) \(124.1 \mathrm{lb} . / \mathrm{ac}\). (iil) Treatment differences are not significant. (iv) Av. yield of kapas in lb./ac.
\begin{tabular}{llccc} 
Treatment & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) & \(\mathrm{I}_{4}\) \\
Av. yield & 839 & 731 & 780 & 673 \\
& \multicolumn{5}{l}{} \\
& S.E./mean & \(=\) & \(50.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\footnotetext{
Crop :- Cotton (Kharif).
Site :- Agri. Res. Farm, Yemmiganur.
}

Ref :- A.P. 57(87).

Object :-To find the optimum interval of irrigation.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Hingari Jonna. (c) 5 tons/ac. of F.Y.M. (ii) (a) Mixed soil. (b) Refer soil analysis, Yemmiganur. (iii) 4.2.1957. (iv) (a) to (e) N.A. (v) 5 tons/ac. of F.Y.M. (vi) Laxmi (late). (vii) Irrigated. (viii) 3 line weedings and 2 intercultivations with guntaka. (Ix) 11.01". (x) 22.1.1958, 11.2.1958 and 4.3.1958.
2. TREATMENTS :

Same as in expt. no. 56(91) on page 381.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) \(1 / 91.74 \mathrm{ac}\). (b) \(1 / 161.29 \mathrm{ac}\). (v) One row on either side and 2 plots on either end. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Jassids and bollworm attack-Endrin and Parathion sprayed. (iii) Yield of kapas. (iv) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(1000 \mathrm{lb} . / \mathrm{ac}\). (ii) \(149.4 \mathrm{lb} . / \mathrm{ac}\). (iii) The treatment differences are not significant. (iv) Av. yield of kapas in lb./ac.
\begin{tabular}{llccc} 
Treatment & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) & \(\mathrm{I}_{4}\) \\
Av. yield & 1085 & 1002 & S 63 & 950 \\
& S.E./mean & \(=\) & \(61.0 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\author{
Crop :- Cotton (Kharif). \\ Site :- Agri. Res. Stn., Yemmiganur.
}

Ref :- A.P. 58(91).
Type :- ‘'

Object:-To find the optimum interval of irrigation.
1. BASAL CONDITIONS:
(1) (a) N.A. (b) Korra. (c) 5 tons/ac. of F.Y.M. (ii) (a) Mixed soil. (b) Refer soil analysis, Yemmiganur. (iii) 18.8.1958. (iv) (a) to (e) N.A. (v) G.M. crop of indigo ploughed in \(s i t u+30 \mathrm{lb} . / \mathrm{ac}\). \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super \(+40 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) as basal and \(20 \mathrm{lb} / \mathrm{ac}\). of N at flowering. (vi) Laxmi (late). (vii) As ner treatments. (viii) Intercultivation with guntaka and line weeding. (ix) 11.71". (x) 20.1.1959, 7.2.1959, 5.3 1959 and 6.4.1959.
2. TREATMENTS:

Same as in expt. no. 56(91) on pape 381.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6 (iv) (a) \(1 / 92.59 \mathrm{ac}\). (b) \(1 / 142.86 \mathrm{ac}\). (v) One row on either side. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Jassids and boll worms-spraying of Parathion. (iii) Yield of kapas. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(811 \mathrm{lb} . / \mathrm{ac}\). (ii) \(97.3 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of kapas in lb./ac.
\begin{tabular}{llccc} 
Treatment & \(\mathrm{I}_{\mathbf{1}}\) & \(\mathrm{I}_{\mathbf{2}}\) & \(\mathrm{I}_{\mathbf{3}}\) & \(\mathrm{I}_{\mathbf{4}}\) \\
Av. yield & 847 & 794 & 770 & -833 \\
& & & & \\
& S.E. \(/\) mean & \(=\) & \(39.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Grop :- Cotton (Kharif).
Site :- Agri. Res. Farm, Yemmiganur.

Ref :- A.P. 59(52).
Type :- ‘I’.

Object:-To find out the optimum interval of irrigation.
1, BASAL CONDITIONS :
(i) (a) Nil. (b) Jonna-G.M. crop. (c) 5 tons/ac. of F.Y.M. (ii) (a) Black soil. (b) Refer soil analysis, Yemmiganur. (iii) 8.8.1959. (iv) (a) to (e) N.A. (v) G.M. ploughed in situ, estimated green matter at \(2000 \mathrm{lb} . / \mathrm{ac} .+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super, \(40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}-\frac{1}{2}\) as basal and \(\frac{1}{2}\) at flowering. (vi) Laxmë (late). (vii) Irrigated. (viii) Line weeding. (ix) 11.2". (x) 3.2.1960, 17.3.1960 and 23.41960.

\section*{TREATMENTS :}

Same as in expt. no. \(56(91)\) on page 381.
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) \(72^{\prime} \times 32^{\prime}\). (iii) 6 . (iv) (a) \(1 / 75.76 \mathrm{ac}\). (b) \(1 / 109.89^{\prime}\). ac. (v) One row on either. side. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Jassid and boll worms-spraying with Parathion. (iii) Yield of kapas. (iv). (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(733 \mathrm{lb} . / \mathrm{ac}\). (ii) 108 lb /ac. (iii) Treatment differences are not significant. (iv) Av. yield of kapas in lb./ac.r.
Treatment \(\quad \mathrm{I}_{1} \quad \mathrm{I}_{2} \quad \mathrm{I}_{\mathbf{3}} \quad \mathrm{I}_{4}\)
Av, yield \(\quad 778 \quad 716.745 \quad 693\)

\section*{Crop:- Virginia Tobacco (Rabi). \\ Site :- Tobacco Res. Stn., Burgamphad.}

Ref :- A.P. 58(86). 'Type :- \({ }^{‘} \mathbf{M}\) '.

Object:-To find the optimum dose of fertilizers to the Virginia Tobacco.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Virginia Tobacco. (c) Nil. (ii) (a) Black (slightly alluvial type). (b) Refer soil analysis, Burgamphad. (iii) 6 to 8.11 .1958 . (iv) (a) Ploughing by tractor, 4 ploughings by country plough and 2 harrowings. (b) to (e) N.A. (v) 4 C.L./ac. of F.Y.M. as B.D. (vi) Harrison special. (vii) Unirrigated. (viii) 1 hand weeding, 2 interculturings with junior hoe and with blade harrow. (ix) \(1.80^{\prime \prime}\). (x) 9.1.1959 to 15.3 .1959.

\section*{2. TREATMENTS}

All combinations of (1) and (2)
(2) 2 levels of \(\mathrm{N}: \mathrm{N}_{0}=0\), and \(\mathrm{N}_{1}=20 \mathrm{lb} / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}{ }^{*}\) and \(\mathrm{K}_{2} \mathrm{O}: \mathrm{M}_{0}=0\) and \(\mathrm{M}_{1}=100 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+50 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).

\section*{3. DESIGN:}
(i) Fact. in R.B.D. (ii) (a) 4 . (b) \(440^{\circ} \times 220^{\prime}\). (iii) \(5 \circ^{\circ}\) (iv) (a) \(1 / 11.23 \mathrm{ac}\). (b) \(1 / 13.70 \mathrm{ac}\). (v), N.A. (vi) Yes.
4. GENERAL :
| (i). Satisfactory. (ii) Nil. (iii) Tobacco yield. (iv) (a) to (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) \(257 \mathrm{lb} . / \mathrm{ac}\). (ii) \(45.5 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of tobacco in lb ./ac.

S.E. of marginal means of N or \(\mathrm{M}=14.4 \mathrm{lb}\)./ac. S.E. of body of table \(=20.4 \mathrm{lb} . / \mathrm{ac}\).

\section*{Grop :- Tobacco (Rabi). \\ Site :- Tobacco Res. Stn., Kazipet.}

Ref:- A.P. 58(90).
Type:- ‘M'.
O 'jest :-To find out the optimam manurial dose and best source of N for Tobaceo crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Black cotton. (b) N.A. (iii) 30.10.1958. (iv) (a) 3 ploughings and 3 harrowings. (b) :o (e) N.A. (v) Nil. (vi) Guntur white ash. (vii) Unirrigated. (viii) Weeding, topping and desuckering. (ix) N.A. (x) 202.1958.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 sources of 40 lb ./ac. of \(\mathrm{N}: \mathrm{S}_{1}=\) G.N.C., \(\mathrm{S}_{2}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{3}=\) G.N.C. + A/S in \(1: 1\) ratio and \(S_{4}=\) F.Y.M.
(2) 2 manurial treatments : \(\mathrm{M}_{0}=0\) and \(\mathrm{M}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +20 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\). as Pot. Sul.

Manures were applied before planting by ring manuring.
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 8. (b) N.A.
(iii) 4. (iv)
(a) \(61^{\prime} 4^{\prime \prime} \times 56^{\prime}\).
(b) \(56^{\prime} \times 50^{\prime} 8^{\prime \prime}\).
(v) \(32^{\prime \prime} \times 32^{\circ}\).
(vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Tobacco yield. (iv) (a) 1958-N.A. (b) No. (c) Nil (v) to (vii) Nil.
5. RESULTS :
(i) \(542 \mathrm{lb} . / \mathrm{ac}\). (ii) \(79.0 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of tobacco in \(\mathrm{lb} . / \mathrm{ac}\).

\begin{tabular}{ll} 
S.E. of marginal mean of \(S\) & \(=27.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E of marginal mean of \(M\) & \(=19.8 \mathrm{lb} . / \mathrm{ac}\) \\
S.E. of body of table & \(=39.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Tobacco (Rabi).
Ref:- A.P. 59(40).
Site :- Tobacco Res. Stn., Kazipet.
1. BASAL CONDITIONS:
(ii) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Black cotton. (b) N.A. (iii) 29.10.1959 to 7.11.1959. (iv) (a) 3 ploughings and furrowing, (b) to (e) N.A. (v) Nil. (vi) Guntur white ash. (vii) Unirrigated. (viii) Weeding, topping and desuckering. (ix) \(1.26^{\circ}\). (x) 11 to 25.2.1960.

\section*{2. TREATMENTS :}

Same as in expt. no. 58(90) on page 384.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 8 . (b) N.A. (iii) 4 . (iv) (a) \(44^{\prime} \times 33^{\prime}\). (b) \(41^{\prime} 3^{\prime \prime} \times 33^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of aphids-Basudin sprayed. (iii) Tobacco yield. (iv) (a) 1958-N.A. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(918 \mathrm{lb} . / \mathrm{ac}\). (ii) \(450.7 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of tobacco in \(\mathrm{lb} . / \mathrm{ac}\).


Grop :- Tobacco (Rabi).
Site :- Tobacco Res. Stn., Kazipet.

Ref :- A.P. 59(45).
Type :- \({ }^{6} \mathbf{M}\) '.

Object :-To find out the optimum manurial dose and best source of N for Tobacco crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (ii) Jowar. (c) Nil. (ii) (a) Black cotton. (b) N.A. (iii) 29.10 .1959 to 7.11 .1959 . (iv) (a) 3 ploughings and 3 harrowings. (b) to (e) N.A. (v) Nil. (vi) Guntur white ash. (vii) Unirrigated. (viii) Weeding, topping and desuckering. (ix) \(1.26^{\prime \prime}\). (x) 11 to 25.2.1960.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 sources of \(20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}: \mathrm{S}_{1}=\) G.N.C., \(\mathrm{S}_{2}=A / \mathrm{S}, \mathrm{S}_{3}=\) G.N.C. \(+\mathrm{A} / \mathrm{S}\) and \(\mathrm{S}_{4}=\) F.Y.M.
(2) 2 levels of \(P\) and \(K\) as Super and Pot. Sul. : \(\mathrm{M}_{0}=0, \mathrm{M}_{1}=20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+20 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\).

N applied in equal doses in \(\mathrm{S}_{3}\). Manures were given two days after planting and method of application was ring manuring.

3 DESIGN :
(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) \(77^{\prime} \times 33^{\prime}\). (b) \(74^{\prime} 3^{\prime \prime} \times 33^{\prime}\). (v) One row of \(33^{\prime \prime}\). (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Attack by aphids-Basuđin sprayed. (iii) Tobacco yield. (iv) (a) to (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) \(1311 \mathrm{lb} . / \mathrm{ac}\). (ii) \(489.7 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of tobacco in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{4}\) & Mean \\
\hline \(\mathrm{M}_{0}\) & 1404 & 1622 & 978 & 1129 & 1283 \\
\hline \(\mathrm{M}_{1}\) & 1360 & 1422 & 1280 & 1293 & 1339 \\
\hline Mean & 1382 & 1522 & 1129 & 1211 & 1311 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of \(S\) & \(=173.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of \(M\) & \(=122.4 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of table & \(=244.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Tobacco (Rabi).
Site :- Tohacco Res. Stn., Madira.

Ref:- A.P. 54(25).
Type :- ' \(\mathbf{M}\) '.

Object:-To find out the optimum manurial dose for Tobacco crop.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Tobacco. (c) 3 C.L./ac. of F.Y.M. (ii) (a) Clay. (b) N.A. (iii) 10.11.1954. (iv)
(a) 3 ploughings, harrowing and working with marker. (b) and (c) N.A. (d) \(33^{\circ} \times 33^{\prime \prime}\). (e) N.A.
(v) Nil. (vi) Virginia Tobacco. (vii) Irrigated. (vii) Working blade harrow and weedings. (ix) N.A.
(x) 16.2.1955 to 29.3.1955.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 levels of \(N\) as \(A / S: N_{0}=0\), and \(N_{1}=40 \mathrm{lb}\)./ac.
(2) 2 levels of \(P\) as Super : \(P_{0}=0\) and \(P_{1}=40 \mathrm{lb}\)./ac.
(3) 2 levels of \(K\) as Pot. Sul. : \(K_{0}=0\), and \(K_{1}=40 \mathrm{lb}\)./ac.

Time and method of application N.A.
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 8 .
(b) N.A. (iii)
4. (iv) (a) \(50^{\prime} \times 22^{\prime}\).
(b) \(44.5^{\prime} \times 16.5^{\prime}\). (v) \(33^{\prime \prime} \times 33^{\circ}\).
(vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Tobacco yield. (iv) (a) 1954-1956. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(1) \(903 \mathrm{lb} . / \mathrm{ac}\). (ii) \(140.0 \mathrm{lb} . / \mathrm{ac}\). (iii) Only \(\mathrm{N} \times \mathrm{P} \times \mathrm{K}\) interaction is significant. (iv) Av. yield of tobacco in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathbf{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{N}_{0}\) & 849 & 907 & 878 & 853 & 904 \\
\hline \(\mathrm{N}_{1}\) & 860 & 993 & 927 & 851 & 1002 \\
\hline Mean & 855 & 950 & 903 & 852 & 953 \\
\hline \(\mathrm{K}_{0}\) & 779 & 924 & & & \\
\hline \(\mathrm{K}_{1}\) & 931 & 925 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal means & \(=35.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=49.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Tobacco.}

Ref :- A.P. 55(14).
Site :- Tobacco Res. Stn., Madira.
Type :- 'M'.
Object :-To find out the optimum manurial dose for Tobacco crop.
1. BASAL CONDITIÓNS :
(i) (a) Nil. (b) Virginia Tobacco. (c) As per treatments. (ii) (a) Clay. (b) N.A. (iii) 24.10.1955.
(iv) (a) 3 ploughings, harrowing and working with marker. (b) and (c) N.A. (d) \(33^{\prime \prime} \times 33^{\prime \prime}\). (e) N.A.
(v) Nil. (vi) Virginia Tobacco. (vii) Irrigated. (viii) Working harrow and weedings. (ix) 6.37".
(x) 8.1.1956 to 5.3.1956.
2. TREATMENTS and 3. DESIGN :

Same as in expt. No. 54 (25) on page 386.
4. GENÉRAL :
(i) Normal. (ii) Nil. (iii) Tobacco yield. (iv) (a) 1954-1956. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(872 \mathrm{lb} . / \mathrm{ac}\). (ii) 125.8 lb ./ac. (iii) Main effects of N and P and \(\mathrm{N} \times \mathrm{K}\) interaction are significant. (iv) Av. yield of tobacco in \(\mathrm{lb} . / \mathrm{ac}\).

S.E. of any marginal mean \(\quad=31.5 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table

\section*{Crop :- Tobacco. \\ Site :- Tobacco Res. Stn., Madira.}

Ref :- A.P. 56(72).
Type :- 'M'.
Object :-To find out the optimum manurial dose for Tobacco crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) 6 C.L./ac. of F.Y.M. (ii) (a) Black cotton. (b) iN.A. (iii) 19.11.1956. (iv)
(a) 5 ploughings and 2 bakharings. (b) to (e) N.A. (v) Nil. (vi) Guntur white ash. (vii) Unírrigated.
(vii) Topping, weeding and interculturing. (ix) N.A. (x) 17.2.1957.
2. TREATMENTS :

Same as in expt. no. \(54(25)\) on page 386. Manuring done on 8.11.1956.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) and (b) \(22^{\prime} \times 50^{\prime}\). (v) Nil. (vi) Yes
4. GENERAL :
(i) Normal. (ii) Grass hopper attack-Gammexane mixed with sand sprinkled.?(iii) Tobacco (green leaf) yield. (iv) (a) 1954-1956. (b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(3^{3} 657 \mathrm{lb} . / \mathrm{ac}\). (ii) \(929.4 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of tobacco (green leaf) yield in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean & & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{N}_{0}\) & 3429 & 3239 & 3334 & 3259 & 3409 \\
\hline \(\mathrm{N}_{1}\) & 3980 & 3980 & 3980 & 4031 & 3930 \\
\hline Mean & 3704 & 3610 & 3657 & 3645 & 3669 \\
\hline \(\mathrm{K}_{0}\) & 3619 & 3671 & & & \\
\hline \(\mathrm{K}_{1}\) & 3790 & 3548 & & & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of marginal means } & =232.3 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =328.6 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]
```

Crop :- Virginia Tobacco (Rabi). Ref:- A.P. 58(85).
Site :- Tobacco Res. Stn., Burgamphad. Type :- 'C'.

```

Object :-To see the effect of local vs. improved cultural practices on the yield of Tobacco crop.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Virginia tobacco. (c) Nil. (ii) (a) Black (slightly alluvial). (b) Refer soil analysis, Burgamphad. (iii) 2 to 5.11 .1958 . (iv) (a) As per treatments. (b) to (e) N.A. (v) 4 C.L./ac. of F.Y.M.+ \(10 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) as top dressing. (vi) Harrison special. (vii) Unirrigated. (viii) Hand weeding, interculturing and working in both directions with blade harrow. (ix) \(1.80^{\prime \prime}\). (x) 9.1.1959 to 15.3.1959.
2. TREATMENTS :
\(\mathrm{C}_{1}=\) Local practices -5 ploughings and 2 harrowings.
\(\mathrm{C}_{2}=\) Improved practices -3 ploughings and 2 harrowings.
3. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) \(176^{\prime} \times 88^{\prime}\). (iii) 12 . (iv) (a) \(1 / 11.23 \mathrm{ac}\). (b) \(1 / 13.70 \mathrm{ac}\). (v) One row on either side of the plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Tobacco yield. (iv) (a) 1958-1960. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(178 \mathrm{lb} . / \mathrm{ac}\). (ii) \(46.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment difference is not significant. (iv) Av. yield of tobacco in lb ./ac.
\begin{tabular}{lll} 
Treatment & C \(_{1}\) & C \(_{2}\) \\
Av. yield & 168 & 187 \\
& & \\
& S.E./mean & \(=13.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Virginia Tobacco (Rabi).
Site :- Tobacco Res. Stn., Burgamphad.
Ref:- A.P. 59(72).
Type :- ${ }^{〔} \mathbf{C}$ '.

```

Object :-To see the effect of local ws. improved cultural practices on the yield of Tobacco crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) Virginia tobacco. (c) 3 C.L./ac. of F.Y.M. \(+112 \mathrm{lb} . / \mathrm{ac}\). of A/S. (ii) (a) Black soil.
(b) Refer soil analysis, Burgamphad. (iii) 1211.1959 . (iv) (a) As per treatments. (b; to (e) N.A. (v)
\(20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+20 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) in the form of \(\mathrm{A} / \mathrm{S}\), Super and Pot. Sul. (vi) Harrison special. (vil) Unirrigated. (viii) Interculturing with junior hoe was done. (ix) \(0.41^{\prime \prime}\). (x) 18.1 .1960 to 10.3 .1960 .

\section*{2. TREATMENTS:}

Same as in expt. no. 58(85) on page 388.
3. DESIGN :
(i) R.B.D. (ii) (a) 2: (b) \(93.5^{\prime} \times 49.5^{\prime}\). (iii) 6 . (iv) (a) \(1 / 37.7 \mathrm{ac}\). (b) \(1 / 45.0 \mathrm{ac}\). (v) One row on either side of the net plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Tobacco (cured leaves) yield. (iv) (a) 1958-1960. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) NiI.
5. RESULTS :
(i) \(421 \mathrm{lb} . / \mathrm{ac}\). (ii) \(105.9 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment difference is not significant. (iv) Av. yield, of tobacco in lb ./ac.
\begin{tabular}{lrr} 
Treatment & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{2}\) \\
Av. yield & 431 & 411
\end{tabular}
S.E./mean \(=43.2 \mathrm{lb} . / \mathrm{ac}\).
```

Grop :- Virginia Tobacco (Rabi).
Site :- Tobacco Res. Stn., Burgamphad.
Ref:- A.P. 58(87).
Type :- 'C'.

```

Object :-To find out the optimum spacing for Tobacco crop.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Virginia Tobacco. (c) Nil- (ii) (a) Black slightly alluvial type. (b) Refer soil analysis, Burgamphad. (iii) 29.10 .1958 to 1.11 .1958 . (iv) (a) Tractor ploughing, 4 ploughings by country plough and 2 harrowings. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) 4 C.L./ac. of F.Y.M.; \(10 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) as top dressing. (vi) Virginia Tobacco (Chattam). (vii) Unirrigated. (viil) Interculturing with junior hoe and country ploughing. (jx) \(1.80^{\circ \prime}\). (x) 9.1.1959 to 1.3.1959.
2. TREATMENTS:
\(\mathrm{S}_{1}=48^{\prime \prime}\) between rows and \(24^{\prime \prime}\) between plants. ,
\(S_{2}=33^{\prime \prime}\) between rows and \(33^{\prime \prime}\) between plants.
3. DESIGN :
(i) R.B.D. (ii) (a) 2 . (b) \(176^{\prime} \times 88^{\prime}\). (iii) 12 . (iv) (a) \(1 / 11.23\) ac. (b) \(1 / 13.70\) ac. (v) One row on each side. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Tobacco yield. (iv) (a) to (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
\begin{tabular}{l} 
(i) \(271 \mathrm{lb} . / \mathrm{ac}\). \\
in lb./ac.
\end{tabular}
(ii) \(41.3 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment difference is not significant. (iv) Av. yield of tobacco
Treatment
Av. yield,


S.E./mean \(=11.9 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Tobacco (Rabi).
Site :- Tobacco Res. Stn., Kazipet.

Ref :- A.P. 58(89).
Type :- 'C'.

Object :-To find out the effect of topping at different stages of the Tobacco crop after its full growth.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Black cotton. (b) NA. (iii) 15.11 .1958 , (iv) (a) 3 ploughings and 3 harrowings. (b) to (e) N.A. (v) \(20 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) and \(20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) Guntur white ash. (vii) Unirrigated. (viii) Interculturing operations with weeding, topping and desuckering. (ix) N.A. (x) 28.2.1959 to 2.3. 1959.
2. TREATMENTS :

4 topping treatments : \(T_{1}=\) Topping leaving 14 leaves, \(T_{2}=\) Topping leaving 16 leaves, \(T_{3}=\) Topping leaving 18 leaves and \(T_{4}=\) Topping flower heads.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 5 . (iv) (a) \(58^{\prime} 8^{\prime \prime} \times 48^{\prime}\). (b) \(53^{\prime} 4^{\prime \prime} \times 42^{\prime \prime} 8^{\prime \prime}\). (v) \(32^{\prime \prime} \times 32^{\prime \prime}\), (vi) Yes.
4. GENERAL:
(i) Normal.
(ii) Nil.
(iii) Tobacco yield. (iv) (a) 1958-contd.
(b) No.
(c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(637 \mathrm{lb} . / \mathrm{ac}\). (ii) 99.2 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of tobacco in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{lllcc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{\mathbf{2}}\) & \(\mathrm{T}_{3}\) & \(\mathrm{~T}_{\mathbf{4}}\) \\
Av. yield & 739 & 611 & 590 & 607 \\
& S.E./mean & \(=\) & \(44.4 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\section*{Crop :- Tobacco (Rabi). \\ Ref :- A.P. 59(47). \\ Site :- Tobacco Res. Stn., Kazipet. \\ Type :- ‘C'.}

Object :-To find out the effect of topping at different stages of the Tobacco crop after its full growth.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Black cotton. (b) N.A. (iii) 18.11.1959. (iv) (a) 3 ploughings and barrowings. (b) to (e) N.A. (v) 20 ib ./ac. of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as \(\mathrm{Super}+20 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. (vi) Guntur white ash. (vii) Unirrigated. (viii) Interculturing operation with regular weetings, topping and desuckering. (ix) \(1.26^{\prime \prime}\). (x) 15.2 .1960 .
2. TREATMENTS:

Same as in expt. no. 58(89) on page 389.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 5. (iv) (a) \(33^{\prime} \times 33^{\prime}\). (b) \(30^{\prime} 3^{\circ} \times 33^{\prime}\). (v) One row of \(33^{\prime \prime}\). (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack by aphids, Basudin sprayeJ. (iii) Tobacco yield. (iv) (a) 1958-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(903 \mathrm{lb} . / \mathrm{ac}\). (ii) \(446.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of tobacco in \(1 \mathrm{~b} / \mathrm{ac}\).
\begin{tabular}{lllcc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) \\
Av. yield & 820 & 724 & 934 & 1135 \\
& S.E.'mean & \(=\) & 199.6 lb. ' \(^{\prime} \mathrm{ac}\). &
\end{tabular}

\footnotetext{
Crop:- Tobacco.
Ref :- A.P. 54(26).
Site :- Tobacco Res. Stn., Madira. Type :- 'C'.
}

Object:-To find out the effect of topping at different stages of the Tobacco crop after its full growth.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Tobacco. (c) Nil. (ii) (a) Clay. (b) N.A. (iii) 2nd week of November, 1954. (iv) (a) 3 ploughings, harrowing and working with marker. (b) and (c) N.A. (d) \(33^{\prime \prime} \times 33^{\prime \prime}\). (e) N.A. (v) 50 lb ./ac. of A/S. (vi) Natu tobacco (Guntur while ash). (vii) Irrigated. (viii) Blade harrow and weeding. (ix) N.A. (x) 3rd week of March, 1955.

\section*{2. TREATMENTS :}
\(T_{1}=\) Topping leaving 12 leaves, \(T_{2}=\) Topping leaving 14 leaves, \(T_{3}=\) Topping leaving 16 leaves, \(T_{4}=\) Topping leaving 18 leaves and \(\mathrm{T}_{5}=\) Only flower head removed.
'3. DESIGN :
(i) R.B.D.
(ii) (a) 5 .
(b) N.A.
(iii) 6 (iv) (a) \(96^{\prime} \times 18^{\prime}\).
(b) \(90^{\prime} \times 12^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of tobacco (cured leaves). (iv) (a) 1950-1954. (b) No. (c) Nil.
(v) to (vii) Nil.
5. RESULTS :
(i) \(696 \mathrm{lb} . / \mathrm{ac}\). (ii) \(128 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of tobacco in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{llcccc} 
Treatment & \(T_{1}\) & \(T_{1}\) & \(T_{3}\) & \(T_{4}\) & \(T_{5}\) \\
Av. yield & 627 & 727 & 707 & 700 & 720 \\
& & & & & \\
& S.E./mean & \(=\) & \(523 \mathrm{lb} . / \mathrm{ac}\). & &
\end{tabular}

\section*{Crop :- Groundnut.}

Site :- Regional Oilseeds Res. Stn, Anantapur.
Ref :- A.P. 55(39).
Type :- ' \(\mathbf{M}\) '.
Object :-To find out the most suitable manure for Groundnut.
1. BASAL CONDITIONS:
(i) (a) Groundnut-Castor. (b) Castor. (c) No. (ii) (a) Red gravelly. (b) N.A. (iii) \(4,5.8 .1955\). (iv) (a) 2 ploughings with country plough and 1 ploughing with guntaka. (b) N.A. (c) \(85 \mathrm{lb} / \mathrm{ac}\). (d) \(9^{\prime \prime} \times 9^{\prime \prime}\). (e) \(1^{\circ}\) (v) \(2 \frac{1}{2}\) tons of F.Y.M. \(+3 \frac{1}{2}\) tons of tank silt/ac. Manure applied by broadcasting 20 days prior to sowing and then covered by ploughing and working guntaka. (vi) TMV-3 (late) spreading. (vii) Unirrigated. (viii) Thinning operations and weedings. (ix) \(14.59^{\prime \prime}\). (x) 1012.1955.

\section*{TREATMENTS :}

12 manurial treatments : \(M_{0}=0, M_{1}=C . M\). at 5 tons/ac., \(M_{2}=10 \mathrm{lb}\)./ac. of \(N, M_{3}=20 \mathrm{lb} . / \mathrm{ac}\). of \(N, M_{4}=\) \(\mathrm{M}_{2}+10 \mathrm{lb}\)./ac. of \(\mathrm{K}, \mathrm{M}_{5}=\mathrm{M}_{2}+20 \mathrm{lb}\)./ac. of \(\mathrm{K}, \mathrm{M}_{6}=\mathrm{M}_{3}+10 \mathrm{lb}\)./ac. of \(\mathrm{K}, \mathrm{M}_{7}=\) \(M_{3}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}, \mathrm{M}_{8}=\mathrm{M}_{2}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}, \mathrm{M}_{9}=\mathrm{M}_{3}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}, \mathrm{M}_{40}=\) \(\mathrm{M}_{4}+20 \mathrm{lb}\)./ac. of P and \(\mathrm{M}_{11}=\mathrm{M}_{7}+20 \mathrm{lb}\)./ac. of P .
N applied as \(\mathrm{A} / \mathrm{S}, \mathrm{P}\) as Super and K as Pot. Sul.
DESIGN:
(i) R.B.D.
(ii) (a) 12 .
(b) N.A. (iii) 4 .
(iv) (a) \(57^{\prime} \times 9^{\prime}\).
(b) \(54^{\prime} \times 6^{\prime}\).
(v) 2 guard rows alround the plot.
(vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of red hairy caterpillar. Caterpillars hand picked. (iii) Groundnut yield. (iv) (a) 1955-1957. (b) No. (c) Nil. (v) (a) No. (b) Nil. (vi) and (vii) Nil.

RESULTS :

\[
\mathrm{S} . \mathrm{E} . / \text { mean }=39.6 \mathrm{lb} . / \mathrm{ac}
\]

\section*{Crop :- Groundnut. \\ Ref :- A.P. 56(22). \\ Site :- Regional Oilseeds Res. Stn., Anantapur. \\ Type :- ' \(\mathbf{M}\) '.}

Object :-To find out the most suitable manure for Groundnut.
1. BASAL CONDITIONS :
(i) (a) Groundnut-Castor. (b) Castor. (c) \(2 \frac{1}{2}\) tons cf C.M. \(+3 \frac{1}{2}\) tons of tank silt/ac. (ii) (a) Red sandy soil. (b) N.A. (iii) 20.7.1956. (iv) (a) 2 country ploughings, 1 gumtaka and 1 gorru. (b; Hand drilling. (c) \(85 \mathrm{lb} . / \mathrm{ac}\). (d) \(9^{\prime \prime} \times 9^{\circ}\). (e) N.A. (v) Nil. (vi) TMV-3 (late). (vii) Unirrigated. (viii) 2 weedings and hoeings. (ix) \(27.43^{\circ}\). (x) 8.1.1957.
2. TREATMENTS :

Same as in expt. no. 55(39) on page 391.
3. DESIGN :
(i) R.B D. (ii) (a) 12 . (b) N.A. (iii) 4 . (iv) (a) \(60^{\prime} \times 12^{\prime}\). (b) \(54^{\prime} \times 6^{\prime}\). (v) Four rows alround. (vi) Yes.
4. GENERAL :
(i) Stunted during initial stages. (ii) Nil. (iii) Groundnut yield. (iv) (a) \(1955-1957\). (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) Suffered prolonged droughts during initial stages. The crop recovered with the he!p of rains received during the middle of September. Flowering started during the end of September. (vi) Nil.
5. RESULTS:
(i) \(1162 \mathrm{lb} . / \mathrm{ac}\). (ii) \(126.3 \mathrm{lt} . / \mathrm{ac}\). (iii) Treatment differences are signifiant. (iv) Av. yield of groundnut in lb.fac.
\begin{tabular}{lllllllllllll} 
Treatment & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) & \(\mathrm{M}_{6}\) & \(\mathrm{M}_{7}\) & \(\mathrm{M}_{8}\) & \(\mathrm{M}_{9}\) & \(\mathrm{M}_{10}\) & \(\mathrm{M}_{11}\)
\end{tabular}
\begin{tabular}{llllllllllllll} 
Av. yield & 953 & 1092 & 1098 & 1119 & 1208 & 1161 & 1180 & 1230 & 1283 & 1298 & 1052 & 1254
\end{tabular} S.E./mean \(=63.2 \mathrm{lb} . / \mathrm{ac}\).
```

Crop :- Groundnut (Kharif).
Ref :- A.P. 57(77).
Site :- Regional Oilseed Res. Stn., Anantapur.
Type :- 'M'.

```

Object :-To find out the most suitable manure for Groundnut.
1. BASAL CONDITIONS:
(i) (a) Groundnut-castor in two year rotation). (b) Castor. (c) N.A. (ii) (a) Red soil. (b) N.A. (iii) 16, 17.8.1957. (iv) (a) 2 country ploughings and 1 guntaka. (b) to (e) N.A. (v) Nil. (vi) TMV-3 (late). (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) \(13.44^{*}\). ( \(x\) ) 13 to 15.12.1957.
2. TREATMENTS:

Same as in expt. no. 55(39) on page 391.
3. DESIGN :
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 4 . (iv) (a) \(60^{\prime} \times 12^{\prime}\). (b) \(54^{\circ} \times 6^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Mild incidence of Tikka leaf spot. (iii) Groundnut yield. (iv) (a) 1955-1957. (b) and (c) No. (v) to (vii) Nil.
5. RESULTS :
(i) 298 lb ./ac. (ii) 23.0 lb ./ac. (iii` Treatment differences are significant. (iv) Av. yield of groundnut in lb./ac.
\begin{tabular}{lllllllllllll} 
Trearment & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) & \(\mathrm{M}_{6}\) & \(\mathrm{M}_{7}\) & \(\mathrm{M}_{5}\) & \(\mathrm{M}_{9}\) & \(\mathrm{M}_{10}\) & \(\mathrm{M}_{11}\) \\
Av. yield & 292 & 292 & 284 & 273 & 313 & 319 & 292 & 273 & 302 & 307 & 317 & \(36 \%\)
\end{tabular}

\section*{Grop :- Groundnuít. \\ Site :- Agri. College Farm, Bapatla.}

Ref :- A.P. 54(52).
Type :- 'M'.
Object :-To study the effect of \(P\) on the yield of Groundnut crop.
1: BASAL CONDITIONS :
(i) (a) Nil. (b) Horse gram. (c) Nil. (ii) (a) Sandy. (b) Refer soil analysis Bapatla. (iii) 17.7.1954. (iv) (a) 2 ploughings. (b) N.A. (c) \(250 \mathrm{lb} . / \mathrm{ac}\). (d) \(6^{\prime \prime} \times 6^{\prime \prime}\). (e) N.A. (v) F.Y.M. at 5 tons/ac. (vi) TMV-36 (vii) Unirrigated. (viii) 1 weeding. (ix) \(16.2^{\prime \prime}\). (x) 3.12.1954.
2. TREATMENTS :

2 levels of Super : \(P_{0}=0\) and \(P_{1}=448 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D.
(ii) (a) 2. (b) N.A.
(iii) 12.
(iv) (a) \(34.98^{\prime} \times 15.18^{\prime}\).
(b) \(33.00^{\circ} \times 13.20^{\prime}\).
(v) \(0.99^{\prime}\) alround.
(vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of aphids - no control measures taken. (iii) Groundnut yield. (iv) (a) 1954contd. (b) and (c) N.A. (v) and (vi) Nil. (vii) Experiment was conducted by Agronomy S:ction.
5. RESULTS:
(i) \(174 \mathrm{lb} . / \mathrm{ac}\). (ii) 30 lb ./ac. (iii) The treatment difference is highly significant. (iv) Av. yield of pod in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{llc} 
Treatment & \(P_{0}\) & \(P_{1}\) \\
Av. yield & 108 & 240 \\
& & \\
& S.E./mean & \(=8.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Groundnut. \\ Site :- Agri. College Farm, Bapatla. \\ > Ref :- A.P. \(55(18)\).
> Type :- ‘M'. \\ \\ Ref :- A.P. 55(18). \\ \\ Ref :- A.P. 55(18). \\ \\ Type :- 'M'.} \\ \\ Type :- 'M'.}

Object:-To study the effect of \(P\) on the yield of Groundnut.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Groundnut. (c) As per treatments. (ii) (a) Sandy loam. (b) Refer soil analysis, Bapatla. (iii) 7, 8.7.1955. (iv) (a) 3 ploughings.' (b) Seeds dibbled in lines (furrows). (c) \(250 \mathrm{lb}, \mathrm{ac}\). (d) \(6^{\prime \prime} \times 6^{\prime \prime}\). (e) N.A. (v) 5 tons/ac. of F.Y.M. (vi) TMV-3. (vii) Unirrigated. (viii) 1 weeding. (ix) N.A. (x) 25.11.1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(52) above.
4. GENERAL :
(i) Satisfactory. (ii) Attack of aphids-B:H.C. \(50 \%\) sprayed. (iii) Groundnut yield. (iv) (a) 1954-contd. (b) and (c) N.A. (v) and (vi) Nil. (vii) Experiment was conducted by Agronomy section.
5. RESULTS :
(i) \(716 \mathrm{lb} . / \mathrm{ac}\). (ii) \(152 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment difference is highly significant. (iv) Av. yield of groundnut: in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{llc} 
Treatment & \(P_{0}\) & \(P_{1}\) \\
Av. yield & 544 & 888 \\
& S.E. \(/\) mean \(=43.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll} 
Crop :- Groundnut (Kharif). & Ref :- A.P. 56(104). \\
Site :- Govt. Agri. Farm, Dindi. & Type :- 'M'.
\end{tabular}

Object :-To find out the manurial requirements of Groundnut crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) 7.7.1956. (iv) (a) Ploughing. (b) Dibbling. (c) \(60 \mathrm{lb} . / \mathrm{ac}\). (d) \(1^{\frac{1}{2}}\) between rows. (e) N.A. (v) Nil. (vi) TMV-2. (vii) Unirrigated. (viii) Handweeding and harrowing. (ix) \(33.73^{\circ}\). (x) 29.10.1956.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=15\) and \(N_{2}=30 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Triple super: \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=15\) and \(\mathrm{P}_{2}=30 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 9 . (b) N.A. (iii) 2. (iv) (a) and (b) \(33^{\prime} \times 33^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) No. (iii) Groundnut yield. (iv) (a) 1955 -contd. (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) As manured levels were not maintained for the experiment conducted during 1954, 1955 the data were not analysed.
5. RESULTS;
(i) \(533 \mathrm{lb} . / \mathrm{ac}\). (ii) \(130.4 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of groundrut in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 440 & 520 & 440 & 467 \\
\hline \(\mathrm{P}_{1}\) & 660 & 440 & 660 & 587 \\
\hline \(\mathrm{P}_{2}\) & 520 & 540 & 580 & 547 \\
\hline Mean & 540 & 500 & 560 & 533 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { S.E. of any marginal mean } & =53.2 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of the body of the table } & =92.2 \mathrm{lb} . / \mathrm{ac}\end{array}\)

Crop :- Groundnut (Kharif).
Site :- Govt. Agri. Farm, Dindi.

Ref :- A.P. 58(125).
Type :- ' \(\mathbf{M}\) '.

Object :-To find out the manurial requirements of Groundnut crop.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Groundnut. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 3.7.1958. (iv) (a) Ploughing. (b) Dibbling. (c) 60 lb. .ac. (d) \(1 \frac{\frac{1}{2}^{\prime}}{}\) between rows. (e) N.A. (v) Nil. (vi) TMV-2. (vii) Unirrigated. (viii) Hand weeding and barrowing. (ix) 18.19*. (x) 28.10.1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 56(104) on page 393.
5. RESULTS:
(i) 1331 lb ./ac. (ii) \(221.4 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of Groundnut in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|ccc|c} 
& \(N_{0}\) & \(N_{1}\) & \(N_{2}\) & Mean \\
\hline\(P_{0}\) & 1160 & 1440 & 1340 & 1313 \\
\(P_{1}\) & 1420 & 1320 & 1460 & 1400 \\
\(P_{2}\) & 1120 & 1400 & 1320 & 1280 \\
\hdashline \begin{tabular}{c|ccc} 
Mean & 1233 & 1387 & 1373
\end{tabular} & 1331
\end{tabular}

\footnotetext{
S.E. of any marginal mean \(\quad=90.4 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of the table \(\quad=156.5 \mathrm{lb} / \mathrm{ac}\).
}
```

Grop :- Groundnut (Kharif).
Ref :- A.P. 59(15).
Site :- Govt. Agri. Farm, Dindi.
Type :- 'M'.

```

Object :-To find out the manurial requirements of Groundnut crop.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) (a) Sandy soil. (b) N.A. (iii) 6.7.1959. (iv) (a) N.A. (b) Dibbling. (c) to (e) N.A.
(v) Nil. (vi) TM.V-2. (vii) Unirrigated. (viii) 3 hand weedings and 3 buckerings. (ix) 22.43". (x) 22.10.1959.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 56(104) on page 393.
5. RESULTS :
(i) \(360 \mathrm{lb} . / \mathrm{ac}\). (ii) \(103.4 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of pods in \(\mathrm{lb} . / \mathrm{ac}\).

\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =42.2 \mathrm{lb} . / \mathrm{ac} \\
\text { S.E. of body of the table } & =73.1 \mathrm{lb} . / \mathrm{ac}
\end{array}
\]

Grop :- Groundnut.
Site :- Regional Oil seed Res. Stn., Kadiri.

Ref :- A.P. 58(23).
Type:- 'M'.

Object :-To determine the optimum dose of artificial manures required for Groundnut crop.
1. BASAL CONDITIONS:
(i) (a) Castor-Groundnut. (b) Nil. (c) No. (ii) (a) Red sandy loam. (b) Refer soil analysis, Kadiri. (iii) 22.7.1958. (iv) (a) 2 country ploughings and guntaka. (b) By country seed/drill. (c) \(60 \mathrm{lb} / / \mathrm{ac}\). (d) between rows \(12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) TMV-3 (spreading), (medium). (vii) Irrigated. (viii) Hoeing and weeding. (ix) \(27.94^{\prime \prime}\). (x) 28.12.1958 to 1.1.1959.
2. TREATMENTS :
, All combination of (1), (2) and (3)
(1) 3 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15\), and \(\mathrm{N}_{2}=30 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=15\), and \(\mathrm{P}_{2}=30 \mathrm{lb}\)./ac.
(3) 3 levels of \(K\) as Pot. Sul. : \(K_{0}=0, K_{1}=15\), and \(K_{2}=30 \mathrm{Jb}\)./ac.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 27. (b) N.A. (iii) 2 . (iv) (a) \(63^{\prime} \times 9^{\prime}\). (b) \(60^{\prime} \times 6^{\prime}\). (v) \(1 \frac{1}{2}^{\prime} \times 1 \frac{1}{2}^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Mild incidence of leaf minor. No control measures were taken. (iii) Growth measurements and pod counts of representative plants and pod yield. (iv) (a).1958-1960. (b) and (c) No. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) 1123 lb ./ac. (ii) 187.1 lb ./ac. (iii) Only \(\mathrm{N} \times \mathrm{P} \times \mathrm{K}\) interactton is significant. (iv) Av. yield of pods in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) \\
\hline \(\mathrm{N}_{0}\) & 960 & 1087 & 1257 & 1101 & 1114 & 1129 & 1061 \\
\hline \(\mathrm{N}_{1}\) & 1234 & 1033 & 1121 & 1129 & 1165 & 1062 & 1161 \\
\hline \(\mathrm{N}_{2}\) & 1048 & 1199 & 1171 & 1139 & 1197 & 968 & 1253 \\
\hline Mean & 1081 & 1106 & 1183 & 1123 & 1159 & 1053 & 1158 \\
\hline \(\mathrm{K}_{\mathbf{0}}\) & 1071 & 1203 & 1202 & & & & \\
\hline \(\mathrm{K}_{1}\) & 1096 & 902 & 1160 & & & & \\
\hline \(\mathrm{K}_{2}\) & 1075 & 1214 & 1186 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=44.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=76.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Groundnut (Kharif).
Site :- Regional Oilseed Res. Stn., Kadiri.

Ref :- A.P. 59(112).
Type :- ' \(\mathbf{M}^{\prime}\).
Object :-To determine the optimum dose of \(\mathrm{N}, \mathrm{P}\) and K required for Groundnut crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Castor. (c) 3 C.L./ac. of C.M. and \(2 \frac{1}{2}\) C.L./ac. of shell Groundnut. (ii) (a) Red loam. (b) Refer soil analysis, Kadiri. (iii) 7, 8.7.1959. (iv) (a) Two ploughings with country plough. (b) 10 (e) N.A. (v) 4 C.L./ac. of C.M. (vi) TM—? Spreading (medium). (vii) Unirrigated. (viii) Hoeing and weedings. (ix) \(16.66^{\prime \prime}\). (x) 25 to 28.12 .1959 .
2. TREATMENTS and DESIGN :

Same as in expt. no. 58.23 ) on paze 395.
4. GENERAL :
(i) Normal, (ii) Leaf minor incidence-B.H.C. \(10 \%\) sprayed. (iii) Pod yield. (iv) (a) 1958-1960. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 768 lb ./ac. (ii) \(78.4 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of pods in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) \\
\hline \(\mathrm{N}_{0}\) & 693 & 781 & 761 & 745 & 807 & 726 & 703 \\
\hline \(\mathrm{N}_{1}\) & 770 & 806 & 777 & 785 & 800 & 768 & 787 \\
\hline \(\mathrm{N}_{2}\) & 741 & 792 & 789 & 774 & 765 & 749 & 808 \\
\hline Mean & 735 & 793 & 776 & 768 & 791 & 747 & 766 \\
\hline \(\mathrm{K}_{0}\) & 741 & 826 & 805 & & & & \\
\hline \(\mathrm{K}_{1}\) & 737 & 745 & 760 & & & & \\
\hline \(\mathrm{K}_{2}\) & 726 & 809 & 762 & & & & \\
\hline
\end{tabular}
S.E. of any marginal mean \(\quad=32.0 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of any table \(\quad=18.5 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Groundnut (Rabi).
Ref:- A.P. 59(4).
Site :- Groundnut Res. Stn., Kaikalur.
Type :- 'M.'
Object :-To determine the optimum dose of artificial manures required for Groundnut crop.
1. BASAL CONDITIONS :
(i) (a) Paddy-Groundnut-Paddy. (b) Paddy. (c) 10 C.L./ac. of C.M. (ii) (a) Sandy Loam. (b) N.A. (iii) \(10,11.1 .1959\) : (iv) (a) 5 country ploughings and levelling. (b) N.A. (c) \(80 \mathrm{lb} / \mathrm{ac}\). of kernels. (d) \(7 \frac{1}{2}^{\prime \prime}\) between rows. (e) 1. (v) N.A. (vi) TMV-2 (Bunch variety-early). (vii), Irrigated (viii) 1 weeding. (ix) \(2.23^{\prime \prime}\). (x) 13 to 19.4.1959.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{Jb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0 \quad \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lb}\)./ac.
(3) 3 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=20\) and \(\mathrm{K}_{2}=40 \mathrm{lb}\)./ac.

\section*{3. DESIGN}
(i) Fact., in R.B.D. (ii) (a) 27 . (b) \(56^{\prime} \times 324^{\prime}\). (iii) 2. (iv) (a) \(56^{\prime} \times 12^{\prime}\). (b) \(56^{\prime} \times 10^{\prime}\). (v) \(2^{\prime}\) border left between plots. (vi) Yes.
4. GENERAL :
(i) Satisfactory. Mortality of plants occurred due to seepage of water resulting in poor pod development.
(ii) Slight incidence of fungus - cupraman sprayed. (iii) Yield of pods. (iv) (a) No. (b), Yes. (c) Nil.
(v) to (vii) Nil.
5. RESULTS :
(i) \(539 \mathrm{lb} . / \mathrm{ac}\). (ii) 407.7 lb /ac. (iii) Only \(\mathrm{P} \times \mathrm{K}\) interaction is significant. (iv) Av. yield of pods in \(\mathrm{lb} . / \mathrm{ac}\).

S.E. of any marginal mean \(\quad=96.1 \mathrm{lb} . / \mathrm{ac}\). S.E. of body of any table \(\quad=166.4 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Groundnut.}

Site :- Govt. Main Farm, Warangal.
Ref :- A.P. 55(7).
Type :- ' \(M\) '.
Object:-To find out the manurial requirements of Groundnut.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) Ni]. (ii) (a) Sandy soil. (b) Refer soil analysis, Warangal. (iii) 22.6.1955.
(iv) (a) to (e) N.A. (v) Nil. (vi) Spanish peanut. (vii) Unirrigated. (viii) 2 intercultures with danthis. Intercultures with desi plough and 2 weedings. (ix) \(38.72^{\prime \prime}\). (x) 18.10.1955.
2. 'TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{2}=15\) and \(N_{2}=30 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=15\) and \(\mathrm{P}_{2}=30 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Fact. in R.B.D. (ii) 'a' 9 . (b) N.A. (iii) 2. (iv) (a) and (b) \(66^{\prime} \times 33^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(1) and (ii) N.A. (iii) Yield of pods. (iv) (a) \(1955-\) N.A. (b) Yes. (c) Nil. (v) (a) Himayatnagar, Sangareddy, Raichur and Dindi. (b) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(1300 \mathrm{lb} . / \mathrm{ac}\). (ii) \(126 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of pods in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll|l} 
& \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 1290 & 1320 & 1130 & 1247 \\
\(\mathrm{~N}_{1}\) & 1335 & 1370 & 1190 & 1298 \\
\(\mathrm{~N}_{2}\) & 1405 & 1305 & 1355 & 1355 \\
\hline Mean & 1343 & 1332 & 1225 & 1300 \\
& & & \\
\begin{tabular}{l} 
S.E. of any marginal mean \\
S.E. of body of table
\end{tabular} & & \\
\hline
\end{tabular}

\section*{Crop :- Groundnut (Kinarif).}

Site :- Govt. Main Farm, Warangal.

Ref :- A.P. 56(111).
Type :- 'M.'

Object:-To find out the manurial requirements of Groundnut.
1. BASAL CONDITIONS :
(i) (a) Jowar-Groundnut. (b) Jowar. (c) Nil. (ii) (a) Chalka soil. (b) Refer soil aralysis, Warangal. (iii) 236.1956 . (iv) (a) 3 ploughings and levelling. (b) By drilling. (c) to (e) N.A. (v) Nil. (vi) Spanist. (vii) Unirrigated. (viii) 3 weedings. (ix) \(29.64^{\circ}\). (x) 17.10 .1956.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=15\) and \(N_{2}=30 \mathrm{lb}\)./ac.
(2) 3 levels of \(P\) as Triple Super : \(P_{0}=0 \quad P_{1}=15\) and \(P_{2}=30 \mathrm{lb} / \mathrm{ac}\).
3. DESIGN :
(i) R B.D. (ii) (a) 9. (b) N.A. (iii) 2. (iv) (a) and (b) \(65^{\prime} \times 33^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Groundnut. (iv) (a) \(1955-\) contd. (b) No. (c) Nil. (v) Rajendranagar
and Sangareddi. (vi) and (vii) Nil.
5. RESULTS :
(i) \(629 \mathrm{lb} . / \mathrm{ac}\). (ii) 170.8 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of pods in lb ./ac.
\begin{tabular}{l|lll|l} 
& \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 709 & 658 & 416 & 594 \\
\(\mathbf{N}_{1}\) & 448 & 636 & 755 & 613 \\
\(\mathrm{~N}_{2}\) & 564 & 775 & 700 & 680 \\
\hline Mean & 574 & 690 & 624 & 629
\end{tabular}
S.E. of any margival mean S.E. of body of table
\(=69.7 \mathrm{lb} . / \mathrm{ac}\).
\(=120.7 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Groundnut (Kharif). . . Ref:- A.P. 57(114).
Site :- Govt. Main Farm, Warangal.
Type :- ' \(\mathbf{M}^{\prime}\).
' Object :-To find out the manurial requirements of Grounỏnut.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Groundnut. (c) N.A. (ii) (a) Chalka soil. (b) Refer soil analysis, Warangal. (iii) 296.1957 . (iv) (a) 3 ploughings. (b) Behind the drill. (c) 70 lb ./ac. of nuts have been sown. (d) 1 ' between, rows. (e) -. (v) Nil. (vi) Spanish peanut. (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 20.10.1957.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15\) and \(\mathrm{N}_{2}=30 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=15\) and \(\mathrm{P}_{2}=30 \mathrm{lb}\)./ac.

Triple Super and \(A / S\) for plots receiving single fertilizers and Ammo; Phos. and \(A / S\) for plots receiving combinations of fertilizers.

DESIGN :
(i) R.B.D. (ii) (a) 9 . (b) \(66^{\circ} \times 313^{\prime}\). (iii) 2. (iv) (a) and (b) \(66^{\prime} \times 33^{\prime}\). (v) Nil. (vi) Yes.

GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of pods and kernels. (iv) (a) 1955-contd. (b) No. (c Nil. (v) (a) and.(b) N.A. (vi) N.A. (vii) There was draught which delayed harvest.

\section*{5. RESULTS:}
(i) \(622 \mathrm{lb} / \mathrm{ac}\). (ii) 70.5 lb ./ac. (iii) No effect is significant. (iv) Av. yield of pods in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll|l} 
& \(\mathrm{N}_{0}\) & \(\mathrm{~N}_{1}\) & \(\mathrm{~N}_{2}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & \(590^{\circ}\) & 600, & 550 & 580 \\
\(\mathrm{P}_{1}\) & 520 & 750 & 780 & 683 \\
\(\mathrm{P}_{2}\) & 610 & 630 & 570 & 603 \\
\hline Mean & 573 & 660 & 633 & \(\ddots\)
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal means & \(=28.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=49.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Groundnut (Kharif). \\ Site :- Govt Main Farm, Warangal. \\ Ref :- A.P. 59(23). \\ Type :- ' \(\mathbf{M}^{\prime}\).}

Object :-To find out the manurial requirements of Groundnut.

\section*{1. BASAL CONDITIONS:}
(i) (a) Jowar-Groundnut. (b) Jowar: (c) Nil. (ii) (a) N.A. (b) Refer soil analysis, Warangal. (iii) 6.6.1959. (iv) (a) 3 ploughings. (b) Drilling. (c) \(80 \mathrm{lb} . / \mathrm{ac}\). (d) \(12^{\prime \prime}\). (e) N.A. (v) As per treatments. (vi) Sp.-9. (vii) Unirrigated. (ix) \(37.17^{\prime \prime}\). (x) 2.10 .1959.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of N as Urea: \(\mathrm{N}_{0}=0, \mathrm{~N}_{1}=15\) and \(\mathrm{N}_{2}=30 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=15\) and \(\mathrm{P}_{2}=30 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 9 .
(b) N.A.
(iii) 2. (iv) (a) and (b) \(66^{\prime} \times 33^{\prime}\).
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Groundnut yield. (iv) (a) 1955-contd. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2262 \mathrm{lb} . / \mathrm{ac}\). (ii) \(130.20 \mathrm{lb} . / \mathrm{ac}\). (iii) N effect is highly significant. P and \(\mathrm{N} \times \mathrm{P}\) effects are significant. (iv) Av. yield of groundnut in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll|l} 
& \(\mathbf{P}_{0}\) & \(\mathbf{P}_{1}\) & \(\mathbf{P}_{2}\) & Mean \\
\hline \(\mathbf{N}_{\mathbf{0}}\) & 1940 & 2080 & 2260 & 2093 \\
\(\mathbf{N}_{\mathbf{1}}\) & 2120 & 2380 & 2180 & 2227 \\
\(\mathbf{N}_{\mathbf{2}}\) & 2180 & 2460 & 2760 & 2467 \\
\hline Mean & 2080 & 2307 & 2400 & 2262
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=53.15 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=92.06 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Grop :- Groundnut.}

Centre :- Chittoor (c.f.).

Ref :- A.P. 59(SFT).
Type :- 'M'.

Object:-Type A To study the response of Groundnut to levels of \(\mathrm{N}, \mathrm{P}\) and K , applied individually and in combinations.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) Red and black soil. (iii) Nil. (iv) May-July. (v) to (ix) N.A. (x) September to December.
2. TREATMENTS :
o Control 'no manure).
\(\mathrm{n}=20 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(\mathrm{p}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{F}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{np}=20 \mathrm{lb}\). \(/ \mathrm{ac}\). of N or \(\mathrm{A} / \mathrm{S}+30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{k} \quad=30 \mathrm{lb} . \mathrm{tac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
nk \(=20 \mathrm{ib}\)./ac. of N or \(\mathrm{A} / \mathrm{S}+30 \mathrm{lb}\)./ac. of \(\mathrm{K}_{5} \mathrm{O}\) as Mur. Pot.
\(\mathrm{pk}=30 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +30 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
npk \(=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +30 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type \(A\) and the other half of type \(\mathbf{B}\) on crops other than the legumes. The three trials on legumes are of type \(C\). Residual efficts of phosphate application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Groundnut yield. (iv) (a) 1959-contd. (b) No. (c) N.A. (v) As per design. (vi) and (vii) Nil.
5. RESULTS:

```

Crop :- Groundnut.
Ref :- A.P. 59(SFT).
Centre :- Guntur (c.f.).
Type :- ‘ \mathbf{M} '

```

Object :-Type A-To study the response of Groundnut to levels of \(\mathrm{N}, \mathrm{P}\) and K applied individually and in combinations.
1. BASAL CONDITIONS to 4. GENERAL : '

Same as in expt. no. 59(SFT) type A on page 400 conducted at Chittoor.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in \(\mathrm{lb} . / \mathrm{ac}\) : & 82 & 91 & 82 & 38.7 & 33 & 66 & 99 & -33 & 10.7 \\
\hline - & \multicolumn{8}{|l|}{Control yield \(=922 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=8\).} & \\
\hline
\end{tabular}
```

Crop :- Groundinut.
Ref:- A.P. 59(SFT).
Centre :- 苴arimnagar (c.f.).
Type :- ' ${ }^{\mathbf{M} \text { '。 }}$

```

Object:-Type A-To study the response of Groundnut to levels of \(\mathrm{N}, \mathrm{P}\) and K applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal. (iii) Nil. (iv) May-July, 1959. (v) to (ix) N.A. (x) September-December, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59(SFT) type A on page 400 conducted at Chittoor.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in lb./ac & 25. & -25 & 99 & 57.6 & 16 & -33 & 49 & 0 & 68.3 \\
\hline & & 1 me & = & lb./ac & n & f trials & & & \\
\hline
\end{tabular}

\section*{Crop:- Groundnut.}

Centre :- Krishna (c.f.).

Ref:- A.P. 59(SFT).
Type :- ' \(\mathbf{M}\) '.

Object :-Type A-To study the response of Groundnut to levels of \(\mathrm{N}, \mathrm{P}\) and K , applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Black soil
(iii) Nil. (iv) May-July, 1959. (v)
to (ix) N.A.
(x) SeptemberDecember, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. \(59(\mathrm{SFT})\) type A on page 400 conducted at Chittoor.
5. RESULTS:


\footnotetext{
Crop:-Groundnut.
Centre :- Nellore (c f.).
Ref. :- A.P. 59(SFT).
Type :- \({ }^{6} \mathbf{M}\) '.
Object :-Type A-To study the response of Groundnut to levels of \(\mathrm{N}, \mathrm{P}\) and K applied individually and in combinations.
}
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) Deep black soil. (iii) Nil. (iv) May-June, 1959. (v) to (ix; N.A. (x) SeptemberDecember, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59(SFT) type A on page 400 conducted at Chittoor.
5. RESULTS:
\begin{tabular}{lccccccccc} 
Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
Av. response in lb., ac. & 115 & 140 & 16 & 14.0 & -8 & 16 & -8 & 99 & 60.1 \\
& \\
& Control yield \(=\) & \(823 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=\) & \(=4\).
\end{tabular}

\section*{Crop :- Groundnut. \\ Ref. :- A.P. 59(SFT). \\ Centre :- Srikakulam (c.f.). \\ Type :- ‘M’.}

Object:-Type A-To study the response of Groundnut to levels of \(N, P\) and \(K\) applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and coastal. (iii) Nil. (iv) May-July, 1959. (v) to (ix) N.A. (x) SeptemberDecember, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59(SFT) type A on page 400 conducted at Chittoor.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in lb./ac. & 263 & 148 & 49 & 31.3 & 16 & -25 & 66 & 91 & 24.7 \\
\hline & \multicolumn{9}{|l|}{Control mean \(=955\) and no. of tria} \\
\hline
\end{tabular}

\section*{Crop :- Groundnut. \\ Centre :- Chittoor (c.f.). \\ Ref. :- 59(SFT). \\ Type :- 'M'.}

Object :-Type B-To investigate the relative effiziency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) Red and black soil. (iii) Nil. (iv) May-July, 1959. (v) to (ix) N.A. (x) SeptemberDecember, 1959.
2. TREATMENTS :
o = Control.
\(\mathrm{n}_{1}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{a}_{2}=40 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(n_{1}^{\prime}=20 \mathrm{lb} / \mathrm{ac}\). of N as Urea.
\(\mathrm{D}_{2}{ }^{\prime}=40 \mathrm{lb} . \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{1}{ }^{\prime \prime}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
\(\mathrm{n}_{2}{ }^{\prime \prime}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} \mathrm{N}\).
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one feld assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle; thana is changed orce in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type A and the other half of type B on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosphate application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1959-contd. (b) No. (c) N.A. (v) As per design.
(vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{lccccccc} 
Treatment & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}{ }^{\prime}\) & \(n_{2}{ }^{\prime}\) & \(n_{2}{ }^{\prime \prime}\) & \(n_{2}{ }^{\prime \prime}\) \\
Av. yield & .1374 & 1481 & 1531 & 1358 & 1761 & 1366 & 1580
\end{tabular}
\begin{tabular}{ll} 
Crop :- Groundnut. & Ref.:- A.P. 59(SFT). \\
Centre :- Guntur (c.f.).
\end{tabular}

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS to 4. GENERAL:

Sarne as in expt. no. 59 (SFT) type B on page 402 conducted at Chittoor.
5. RESULTS:
\begin{tabular}{lccccccc} 
Treatment & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}^{\prime}\) & \(n_{2}{ }^{\prime}\) & \(n_{1}^{\prime \prime}\) & \(n_{2}^{\prime \prime}\) \\
Av. yield & 897 & 1308 & 1654 & 1456 & 1835 & 1860 & 1736
\end{tabular}

\section*{Crop :- Groundnut. \(\quad\), Ref. :- A.P. 59(SFT). \\ Centre :- Karimnagar (c.f.). \\ Type :- ‘'M'.}

Obiect:-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :

\begin{tabular}{lll} 
Grop :- Groundnut. & Ref.:- A.P. 59(SFT). \\
Centre :- Nellore (c.f.). & Type :- ‘M’.
\end{tabular}

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Deep black soil. (iii) Nil. (iv) May-July, 1959. (v) to (ix) N.A. (x) SeptemberDecember, 1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59 (SFT) type B on page 402 conducted at Chittoor.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime}\) & \(\mathrm{n}_{2}{ }^{\text {² }}\) \\
\hline Av. yield & 938 & 987 & 1218 & 1086 & 1382 & 1144 & 1284 \\
\hline
\end{tabular}
Crop:- Groundnut.
Centre :- Srikakulam (c f.).
```

Ref :- A.P. 59(SFT).
Type :- 'M'.

```

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and coastal. (iii) Nil. (iv) May-July, 1959. (v) to (ix) N A. (x) SeptemberDecember, 1959.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59(SFT) type B on page 402 conducted at Chittoor.
5. RESULTS :

\[
\begin{array}{ll}
\text { Crop :- Groundnut. } & \text { Ref. :- A.P. } 59(\text { SFT }) . \\
\text { Centre :- Visakhapatnam (c.f.). } & \text { Type :- ‘M'. }
\end{array}
\]

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal. (iii) Nil. (iv) May-July, 1959. (v) to (ix) N.A. (x) September-December, 1949.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59(SFT) type B on page 402 conducted at Chittocr.
5. RESULTS :


\section*{Grop:- Groundnut. \\ Ref:- A.P. 54(16). \\ Site :- Regional Oilseeds Res. Stn., Anantapur. \\ Type :- ' \(\mathbb{C}\) '.}

Object :-To find out the optimum spacing for bunch variety of Groundnut crop.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) Red soil. (b) N.A. (iii) 25.7.1954. (iv) (a) Worked tractor with ploughs and with disc harrows and twice with guntaka. (b) Dibbled. (c) N.A. (d) As per treatments. (e) N.A. (v) Nil. (vi)TMV-2. (early) (vii) Unırigated. (viii) Thinning, mukhing and weeding. (ix) \(11.91^{\circ}\). (x) 7.12.1954.
2. TREATMENTS :

8 spacings: \(S_{1}=6^{\prime \prime} \times 6^{\prime \prime}\) (control), \(S_{2}=9^{\prime \prime} \times 6^{\prime \prime}, S_{3}=9^{\prime \prime} \times 9^{\prime \prime}, S_{4}=12^{\prime \prime} \times 6^{\prime \prime}, S_{5}=12^{\prime \prime} \times 9^{\prime \prime}, S_{6}=12^{\prime \prime} \times 12^{\prime \prime}, S_{7}=\) \(18^{\prime \prime} \times 6^{\circ}\) and \(S_{8}=18^{\circ} \times 9^{\prime \prime}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) 'N.A. (iii) 3. (iv) (a) \(64^{\prime} \times 18^{\prime}\). (b) \(62^{\prime} \times 12^{\prime}\). (v) Varies from treatment to treatment as the spacings differ. (vi) Yes.
4. GENERAL :
(i) Stunted. (ii) Very light attack of red hairy cater pillar-hand picked. (iii) Yield of pods. (iv) (a) 1954-1956. (b) No. (c) Nil. (v) (a) No. (b) Nil. (vi) Nil. (vii) Suffered prolonged periods of drought.
5. RESULTS
(i) \(518 \mathrm{lb} / \mathrm{ac}\). (ii) \(65.0 \mathrm{lb} / \mathrm{ac}\). (iii) Treatment differences are not significant, (iv) Av. yield of groundnut in lb./ac.
\begin{tabular}{llllllllc} 
Treatment & \(\mathrm{S}_{\mathbf{1}}\) & \(\mathrm{S}_{\mathbf{2}}\) & \(\mathrm{S}_{\mathbf{3}}\) & \(\mathrm{S}_{\mathbf{4}}\) & \(\mathrm{S}_{5}\) & \(\mathrm{~S}_{\mathbf{6}}\) & \(\mathrm{S}_{7}\) & \(\mathrm{~S}_{8}\) \\
Av. yield & .546 & 518 & 512 & 528 & 566 & 558 & 484 & 405 \\
& & & & & & & &
\end{tabular}

\section*{Crop :- Groundnut. \\ Site :- Regional oilseeds Res Stn., Anantapur. \\ Ref :- A.P. 55(29). \\ Type:- ‘C'.}

Object:-To find out the optimum spacing for bunch variety of Groundnut crop.
1. BASAL CONDITIONS :
(i) (a) Groundnut-Castor. (b) Castor. (c) Nil. (ii) (a) Red gravelly. (b) N.A. (iii) 14, 15.8.1955. (iv) (a) 2 country ploughings and 1 guntaka. (b) dibbling. (c) N.A. (d) As per treatments. (e) N.A. (v) \(2 \frac{1}{2}\) tons of F.Y.M. \(+1 \frac{1}{2}\) tons of tank silt/ac. Manure applied by broadcasting in the pods and then covered by ploughing up the field. Manure applied 20 days prior to sowing. (vi) TMV-2 bunch (early). (vii) Unirrigated. (viii) 2 weedings and hoeing. (ix) \(14.59^{\prime \prime}\). (x) 18, 19.11.1955.
2. TREATMENTS :

Şame as in expt. no. 56(16) on page 404.
3. DESIGN:
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) \(60^{\prime} \times 18^{\prime}\). (b) \(54^{\prime} \times 12^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of red hairy caterpillar-caterpillar hand picked. (iii) Yields of pods. (iv) (a) 1954-1956. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(595 \mathrm{lb} . / \mathrm{ac}\). (ii) 62.5 lb ./ac. (iii) \({ }^{\mathrm{r}}\) reatment differences are highly significant. (iv) Av. yield of pods in lb./ac.
\begin{tabular}{lcccccccc} 
Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{4}\) & \(\mathrm{~S}_{5}\) & \(\mathrm{~S}_{6}\) & \(\mathrm{~S}_{7}\) & \(\mathrm{~S}_{8}\) \\
Av. yield & 810 & 662 & 614 & 681 & 533 & 476 & 544 & 423 \\
& & & & & & & & \\
& S.E./mean & \(=\) & \(31.3 \mathrm{lb} . / \mathrm{ac}\). & & & & &
\end{tabular}

\section*{Crop :- Groundnut. \\ Site :- Regional Oilseeds Res. Stn., Anantapur. \\ > Ref :- A.P. \(56(19)\).
> Type :- \({ }^{\prime} C^{\prime}\). \\ \\ Ref :- A.P. 56(19). \\ \\ Ref :- A.P. 56(19). \\ \\ Type :- ' C '.} \\ \\ Type :- ' C '.}

Object:-To find out the optimum spacing for bunch variety of Groundnut crop.
1. BASAL CONDITIONS:
(i) (a) Groundnut-Castor. (b) Castor. (c) \(2 \frac{1}{2}\) tons/ac. of C.M. \(+3 \frac{1}{2}\) tons/ac. of tank silt (ii) (a) Red sandy loam. (b) N.A. (iii) 20.7.1955. (iv) (a) 2 country ploughings. 1 guntaka and 1 gorru. (b) Dibbling by hand. (c) N.A. (d) As per treatments. (e) N.A. (v) \(3 \frac{1}{2}\) tans/ac. of C.M. \(+1 \frac{1}{\mathrm{~s}}\) tons/ac. of tank silt. Applied by broadcasting 20 days prior to sowing and covered up by working plough. (vi) TMV-2 bun (early). (vii) Unirrigated, (viii) Thinning, mulching and weeding. (ix) \(27.43^{\prime \prime}\). (x) 11.11.1956.

\section*{2. TREATMENTS :}

Same as in expr. no. 54(16) on page 404.
3. DESIGN :
(i) R.B.D. (ii) (a) 8 . (b) N.A. (iii) 4 . (iv) (a) \(60^{\prime} \times 18^{\prime}\). (b) \(54^{\prime} \times 12^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Stunted growth. (ii) Slight incidence of surah. (iii) Groundnut yield. (iv) (a) 1954 to 1956 . (b) No.
(c) Nil. (v) and (vi) Nil. (vii) The crop suffered a set back due to prolonged drought conditions in initial stages.
5. RESULTS:
(i) \(556 \mathrm{lb} . / \mathrm{ac}\). (ii) \(67.9 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of groundnut in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(S_{3}\) & \(\mathrm{S}_{4}\) & \(\mathrm{S}_{5}\) & \(\mathrm{S}_{6}\) & S7 & \(\mathrm{S}_{8}\) \\
\hline \multirow[t]{2}{*}{Av. yield} & 742 & 684 & 582 & 550 & 525 & 468 & 455 & 442 \\
\hline & \multicolumn{7}{|l|}{S.E./mean \(=33.9 \mathrm{lb} . / \mathrm{ac}\).} & \\
\hline
\end{tabular}

\section*{Crop:- Groundnut.}

Site :- Regional Oilseeds Res. Stn., Anantapur.

Ref:- A.P. 54(10).
Type :- 'C'.

Object :-To find out the optimum spacing for spreading variety of Groundnut crop.
1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) No. (ii) (a) Red soil. (b) N.A. (iii) 21.7 .1954 and 22.7.1954. (iv) (a) Worked tractor once with plough and once with disc harrow. Worked twice to level up the fields. (b) Dibbling. (c) N.A. (d) As per treatments. (e) 2. (v) Nil. (vi) TMV-3 (late-Improved Tindivanam spreading strain). (vii) Unirrigated. (viii) Weeding, mulching and thinning. (ix) i1.91". (x) 20.12.1954.
2. TREATMENTS :

8 spacings (between and within rows): \(\mathrm{S}_{0}=9^{\prime \prime} \times 9^{\prime \prime}\) (control), \(\mathrm{S}_{1}=6^{\prime \prime} \times 6^{\prime \prime}, \mathrm{S}_{2}=9^{\prime \prime} \times 6^{\prime \prime}, \mathrm{S}_{3}=12^{\prime \prime} \times 9^{\prime \prime} . \mathrm{S}_{4}=\) \(12^{\prime \prime} \times 9^{\prime \prime}, \mathrm{S}_{5}=12^{\prime \prime} \times 12^{\prime \prime}, \mathrm{S}_{6}=18^{\prime \prime} \times 6^{\prime \prime}\) and \(\mathrm{S}_{7}=18^{\prime \prime} \times 9^{\prime \prime}\) 。
3. DESIGN :
(i) R.B.D. (ii) (a) 8.
(b) N.A.
(iii) 4 .
(iv) (a) \(64^{\prime} \times 18^{\prime}\).
(b) \(62^{\prime} \times 12^{\prime}\). (v) \(1^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Incidence of red hairy cater pillar-band picked. (iii) Yield of pods. (iv) (a) 1954 to 1956. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(500 \mathrm{lb} . / \mathrm{ac}\). (ii) \(423 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of groundnut in lb./ac.
\begin{tabular}{lllcccccc} 
Treatment & \(\mathrm{S}_{\mathbf{0}}\) & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{\mathbf{2}}\) & \(\mathrm{S}_{3}\) & \(\mathrm{~S}_{\mathbf{4}}\) & \(\mathrm{S}_{5}\) & \(\mathrm{~S}_{\mathbf{6}}\) & \(\mathrm{S}_{\mathbf{7}}\) \\
Av. yield & 501 & 395 & 501 & 483 & 509 & 554 & 545 & 509 \\
& S.E./mean & \(=\) & \(21.2 \mathrm{lb} . / \mathrm{ac}\). & & & & &
\end{tabular}
```

Crop :- Groundnut.
Site :- Regional Oilseeds Res. Stn., Anantapur.

```
```

Ref :- A.P. 55(30).

```
Ref :- A.P. 55(30).
Type :- 'C'.
```

Type :- 'C'.

```

Object :-To find out the eptimum spacing for spreading variety of Groundout corp.
1. BASAL CONDITIONS :
(i) (a) Groundnut-Castor. (b) Castor. (c) Nil. (ii) (a) Red gravelly. (b) N.A. (iii) 13, 14.12.1955. (iv) (a) 2 ploughings with country plough and 1 guntaka. (b) Hand dibbling. (c) N.A. (d) As per treatments. (e) N.A. (v) \(2 \frac{1}{2}\) tons of F.Y.M. \(+3 \frac{1}{2}\) tons/ac. of tank silt. Manure applied by broadcasting in the fields and then covered by ploughing up the fields. Manure applied 20 days prior to sowing. (vi) TMV-3 (late). (vii) Unirrigated. (viii) 2 weedings and hoeings. (ix) \(14.59^{\prime \prime}\). ( x ) Last week of December, 1955.
2. TREATMENTS :

Same as in expt. no. 54(10) on page 406.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) \(60^{\prime} \times 18^{\prime}\). (b) \(54^{\prime} \times 12^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Slight incidence of red hairy caterpillar-caterpillars hand picked. (iii) Yield of pods. (iv) (a) 1954-1956. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(774 \mathrm{lb} . / \mathrm{ac}\). (ii) \(64.5 \mathrm{lb} / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of pods
in \(1 \mathrm{~b} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{S}_{0}\) & \(S_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{4}\) & \(\mathrm{S}_{5}\) & \(\mathrm{S}_{6}\) & \(S_{7}\) \\
\hline Av. yield & 759 & 892 & 814 & 813. & 752 & 715 & 763 & 681 \\
\hline & S.E. & & lb./a & & & & & \\
\hline
\end{tabular}

\section*{Grop :- Groundnnt.}

Site :- Regional Oilseeds Res. Stn., Anantapur.

Ref :- A.P. 56(20).
Type :- ' C '.

Object:-To find out the optimum spacing for spreading variety of Groundnut crop.
1. BASAL CONDITIONS :
(i) (a) Grourdnut-Castor. (b) Castor. (c) \(2 \frac{1}{2}\) tons of G.M. \(+3 \frac{1}{2}\) tons/ac. of tank silt. (ii) (a) Red sandy loam. (b) N.A. (iii) 15.6 .1956 . (iv) (a) 2 ploughings with country plough, 1 guntaka for levelling and 1 gorru. (b) Dibbling. (c) N.A'. (d) As per treatments. (e) N.A. 'v) \(3 \frac{1}{2}\) tons/ac. of G.M. \(+1 \frac{1}{2}\) tons/ac. of tank silt. Applied by broadcasting 20 days prior to sowing and then covered by ploughing. (vi) TMV-3 (late). (vii) Unirrigated. (viii) Thinning, weeding and mulching. (ix) 27.43". (x) 17.12.1956.
2. TREATMENTS :

Same as in expt. no. 54(10) on page 406.
3. DESIGN :
(i) R.B.D.
(ii) (a) 8. (b) N.A. (iii) 4.
(iv) (a) \(60^{\prime} \times 18^{\prime}\).
(b) \(54^{\prime} \times 12^{\prime}\).
(v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Stunted growth. (ii) Nil. (iii) Groundnut yield. (iv) (a) 1954-1956. (b) No. (c) Nil. (v) (a) No.
(b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(949 \mathrm{lb} . / \mathrm{ac}\). (ii) 132.4 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of groundnut in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{5}\) & \(\mathrm{S}_{6}\) - & \(\mathrm{S}_{7}\) \\
\hline Av. yield & 988 & 954 & - 1036 & 869 & 921 & 947 & 959 & 920 \\
\hline & S. & \(\cdots=\) & 2 lb /a & & & & & \\
\hline
\end{tabular}
```

Crop :- Groundnut.
Ref :- A.P. 57(22).
Site :- Regional Oilseeds Res. Stn., Anantapur.
Type:- 'C'.

```

Object :-To find out the optimum spacing for spreading variety of Groundnut.
1. BASAL CONDITIONS :
(i) (a) Castor-Groundnut. (b) Castor. (c) C.M. at \(3 \frac{1}{3}\) tons/ac. and tank silt at \(1 \frac{1}{2}\) tons/ac. (ii) (a) Red sandy loam. (b) N.A. (iii) 20.8.1957. (iv) (a) 2 ploughings with country plough and 1 guntaka. (b) dibbling. (c) N.A. (d) As per treatments. (e) N.A. (v) C.M. at \(4 \frac{1}{2}\) tons/ac. and tank silt at 3 tons/ac. (vi) TMV-3 (late). (vii) Unirrigated. (viii) Hosing and weeding. (ix) 13.44". (x) 19 and 20.12.1957.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings between rows: \(\mathrm{R}_{1}=9^{\prime \prime}, \mathrm{R}_{2}=12^{\prime \prime}\) and \(\mathrm{R}_{3}=18^{\prime \prime}\).
(2) 3 spacings between plants in row: \(S_{1}=3^{\circ}, S_{2}=6^{\circ}\) and \(S_{3}=9^{\prime \prime}\).
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) \(60^{\prime} \times 18^{\prime}\). (b) \(54^{\prime} \times 12^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (v) Yes.
4. GENERAL :
(i) Growth poor. (ii) Mild attack of tikka disease. (iii) Groundnut yield, (iv) (a) 1954-1957. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(176 \mathrm{lb} . / \mathrm{ac}\). (ii) 41.7 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of groundnut in in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathbf{R}_{3}\) & Mean \\
\hline \(\mathrm{S}_{1}\) & 163 & 192 & 207 & 187. \\
\hline \(\mathrm{S}_{2}\) & 194 & 184 & 162 & 180 \\
\hline \(\mathrm{S}_{3}\) & 184 & 164 & 135 & 161 \\
\hline Mean & 180 & 180 & 168 & 176 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
S.E. of any marginal mean & \(=12.03 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of the body of table & \(=20.84 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Groundnut. \\ Site :- Regional Oilseeds Res. Stn., Anantapur. \\ Ref :- A.P. 54(11). \\ Type :- \({ }^{6}{ }^{\prime}\).}

Object :-To find out the optimum number of intercultures required for maximum yield of Groundnut crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) No. (ii) (a) Red soil. (b) N.A. (iii) 25.7.1954. (iv) (a) Worked tractor with ploughs and with disc harrow once, 2 guntaka for levelling. (b) With gorru. (c) \(70 \mathrm{lb} / \mathrm{ac}\). (d) \(9^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) TMV-3. (late). (vii) Unirrigated. (viii) N.A. (ix) \(11.91^{\prime \prime}\) (x) 20.121954.

\section*{2. TREATMENTS :}

3 levels of intercultures with Metfa gun!aka: \(\mathrm{J}_{1}=1, \mathrm{I}_{2}=2\), and \(\mathrm{I}_{3}=3\) intercultures.
3. DESIGN :
(i) R.B D. (a) 3. (b) N.A. (iii) 8. (iv) (a) \(64^{\prime} \times 24^{\prime}\). (b) \(62^{\prime} \times 22^{\prime}\). (v) \(1^{\prime} \times 1^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Light attack of red hair catter-pillar. (iii) Groundnut yield. (iv) (a) 1954 to 1956.
(b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(452 \mathrm{lb} . / \mathrm{ac}\). (ii) 40.56 lb ./ac. (iii) Treatment differences are not, significant. (iv) Av. yield of groundnut in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lccc} 
Treatment & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) \\
Av. yield & 450 & 460 & 446 \\
& & & \\
& S.E. imean & \(=\) & \(14.35 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Groundnut.
Site :- Regional Oilseeds Res. Stn., Anantapur.*
Ref :- A.P. 55(34).
Type :- 'C’.

```

Object :-To find out the optimum number of intercultures required for maximum yield of Groundnut.

\section*{1. BASAL CONDITIONS :}
(i) (a) Groundnut-Castor. (b) Castor. (c) No. (ii) (a) Red gravelly. (b) N.A. (iii) 4.8.1955. (iv) (a) 2 ploughings with country plough and 1 guntaka to level up the fields. (b) Hand dibbling (c) \(100 \mathrm{lb} / \mathrm{ac}\). (d) \(9^{\prime \prime} \times 9^{\prime \prime}\). (e) N.A. (v) \(2 \frac{1}{2}\) tons/ac. of F.Y.M. and \(2 \frac{1}{2}\) tons/ac. of tank silt. Manure applied bybroadcasting 20 days prior to sowing and covered by working a plough. (vi) TMV -3 (improved spreading, late). (vii) Unirrigated. (viii) Intercultures as per treatments. Weeding in between the plant by hand hoeing. (ix) 14.59*. (x) 13.12.1955.
2. TREATMENTS :

3 levels of intercultures with Metta guntaka: \(I_{1}=1, I_{2}=2\) and \(I_{3}=3\) intercultures.
3. DESIGN :
(i) R.B.D.
ii) (a) 3.
(b) N.A.
(iii) 8.
(iv)
(a) \(63^{\prime} \times 15^{\prime}\).
(b) \(61 \frac{1^{\prime}}{2} \times 13 \frac{1}{2}^{\prime}\). (v) \(9^{\circ} \times 9^{\prime \prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. . (ii) Mild attack of Red hairy cater-piller-hand picked. (iii) Groundnut yield. (iv) (a) 1954-1956. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(521 \mathrm{lb} . / \mathrm{ac}\). (ii) \(47.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of groundnut in lb ./ac.
\begin{tabular}{lllcc} 
Treatment & & \(\mathrm{I}_{\mathbf{1}}\) & \(\mathrm{I}_{\mathbf{2}}\) & \(\mathrm{I}_{\mathbf{3}}\). \\
Av. yield & \(\ldots\) & 499 & 579 & 485. \\
& & \\
& & \\
& S.E./mean & \(=\) & \(16.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Groundnut.}

Site :- Regional Oilseeds Res. Stn., Anantapur.

Ref :- A.P. 56(21).
Type :- \({ }^{6} \mathrm{C}\) '.

Object :-To find out the optimum number of intercultures required for maximum yield of Groundnut.
1. BASAL CONDITIONS :
(i) (a) Groundout-Castor. (b) Castor. (c) \(2 \frac{1}{2}\) tons/ac. of C.M. \(+3 \frac{1}{2}\) tons/ac of tank silt. (ii) (a) Red sandy loam. (b) N.A. (iii) 14.6.1956. (iv) (a) 2 ploughings with country plough, 1 guntaka for levelling and 1 gorru. (b) Hand dibbling. (c) \(100 \mathrm{lb} . / \mathrm{ac}\). (d) \(9^{\prime \prime} \times 9^{\prime \prime}\). (e) N.A. (v) \(3 \frac{1}{2}\) tons/ac. of C.M. \(+1 \frac{1}{2}\) tons/ac. of tank silt applied by brcadcasting, 20 days prior to sowing and covered by ploughing. (vi) TMV-3 (improved strain late). (vii) Unirrigated. (viii) Intercultures as per treatments. (ix) \(27.43^{\prime \prime}\). (x) 1.1.1957.
2. TREATMENTS :

Same as in expt. no. 54(11) on page 408:
3. DÉSIGN :

Same as in expt. no. \(55(34)\) above.

\section*{4. GENERAL:}
(i) Satisfactory. (ii) Mild attack of stomoptorya at flowering pest was dusted. (iii) Groundnut yield. (iv) (a) 1954 to 1956. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) Crop suffered due to drought during August and slight incidence of stomoptorya. (vii) Nil.
5. RESULTS :
(i) \(1052 \mathrm{lb} . / \mathrm{ac}\). (ii) \(152.3 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of groundnut in lb./ac.
\begin{tabular}{llcc} 
Treatment & \(I_{1}\) & \(I_{2}\) & \(I_{3}\) \\
Av. yield & 1016 & 1023 & 1117 \\
& & & \\
& S.E./mean & \(=\) & \(53.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Groundnut.
Site :- Regional Oilseeds Res. Stn., Anantapur.

Ref :- A.P. 54(12).
Type :- ' C '.

Object : -To find out the optimum number of intercultures required for maximum yield of Groundnut.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) N.A. (c) No. (ii) (a) Red soil. (b) N.A. (iii) 23.7.1954. (iv) (a) Worked tractor with ploughs and with disc harrows once, 2 guntaka for levelling. (b) With country gorru. (c) \(80 \mathrm{lb} . / \mathrm{ac}\). (d) \(6^{*} \times 6^{\circ}\). (e) N.A. (v) No. (vi) TMV-2 improved (early). Bunch type. (vii) Unitrigated. (viii) As per treatments. (ix) 11.91". (x) 30.11.1954 and 1.121954.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(11) on page 408.
4. GENERAL
(i) Satisfactory. (ii) Mild attack of red hairy cater pillar. Hand picked. (iii) Groundnut yield, (iv) (a) 1954-1956. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(422 \mathrm{lb} . / \mathrm{ac}\). (ii) \(41.52 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of groundnut in lb.ac.
\begin{tabular}{llcc} 
Treatment & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) \\
Av. yield & 423 & 425 & 419 \\
& & & \\
& S.E. \(/\) mean & \(=\) & \(14.7 \mathrm{ib} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop :- Groundnut. \\ Site :- Regional Oilseeds Res. Stn., Anantapur.
}

Ref :- A.P. 55(33).
Type :- 'C'.

Object :-To find out the optimum number of intercultures required for maximum yield of Groundnut.

\section*{1. BASAL CONDITIONS :}
(i) (a) Grouodnut-Castor. (b) Castor. (c) No. (ii) (a) Red gravelly. (b) N.A. (iii) 4.8.1955. (iv) (a) 2 ploughings with country plough and 1 guntaka for levelling. (b) Hand dibbling. (c) \(135 \mathrm{lb} . / \mathrm{ac}\). (d) \(6^{\prime \prime} \times 6^{\prime \prime}\). (e) N.A. (v) \(2 \frac{1}{2}\) tons of F.Y.M. and \(3 \frac{1}{2}\) tons/ac. of tank silt. Manure applied by broadcasting 20 days prior to sowing and covered by ploughing. (vi) TMV-2 (Improved Bunch type, early). (vii) Unirrigated. (viii) Intercuitures as per treatmerts. Weeding by hand hoeing. (ix) 14.59". (x) 15.11.1955.
2. TREATMENTS :

Same as in expt. no. 54(11) on page 408.
3. DESIGN :
(i) R.B.D. (ii) (a) 3.
(b) N.A.
(iii) 8 .
(iv) (a) \(63^{\prime} \times 9^{\prime}\).
(b) \(62^{\circ} \times 8^{\prime}\)
(v) \(6^{\prime \prime} \times 6^{\prime \prime}\)
(vi) Yes.

\section*{4. GENERAL :}
(i) Satisfactory. (ii) Mild attack of red hairy catter piller-catter pillers hand picked. (iii) Groundnut yield. (iv) (a) 1954-1956. , (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(734 \mathrm{lb} . / \mathrm{ac}\). (ii) 73.75 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of groundnut in lb./ac.
\begin{tabular}{cccc} 
Treatment & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) \\
Av. yield & 741 & 751 & 709 \\
& & \\
1 & & S.E./mean \(=\) & \(26.07 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Groundnut}
| Sita :- Regional Oilseeds Res. Stn., Anantapur.
1.

Object :-To find out the optimum number of intercultures required for maximum yield of Groundnut. 1
1. BASAL CONDITIONS :
(i) (a) Groundnut-Castor. (b) Castor. (c) \(2 \frac{1}{2}\) tons of C.M. \(+3 \frac{1}{2}\) tons/ac. of tank silt. (ii) (a) Red sandy soil. (b) N.A. (iii) 15 and 16.6 .1966 . (iv) (a) 2 ploughings with country plough and 1 guntaka for levelling, and 1 gorru. (b) Hand dibbling. (c) \(135 \mathrm{lb} / \mathrm{ac}\). (d) \(6^{\prime \prime} \times 6^{\prime \prime}\). (e) N.A. (v) 3 l tons/ac. of C.M. \(+1 \frac{1}{2}\) tons/ac. of tank silt applied by broadcasting 20 days prior to sowing and covered by working plough. (vi) TMV-2 (impoved, early). (vii) Unirrigated (viii) Intercultures as per treatments. (ix) 27.43". (x) 5 to 8.11.1956.
2. TREATMENTS :

Same as in expt. no. 54(11) on page 408.
3. DESIGN :
(i) R.B.D.' (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) \(63^{\prime} \times 10^{\prime}\). (b) \(62^{\prime} \times 9^{\prime}\). (v) \(5^{\prime \prime} \times 6^{\prime \prime}\). (vi) Yes.
4. GENERAL :
(i) Highly drought conditions affected the stand of the crop. (ii) Mild attack of guvin-Gammaxene: dusted, (iii): Groundnut yield. (iv) (a) 1954 to 1956 . (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(888 \mathrm{lb} . / \mathrm{ac}\). (ii) \(76.54 \mathrm{lb} / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of groundnut in lb./ac.
\begin{tabular}{lllc} 
Treatment & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{2}\) & \(\mathrm{I}_{3}\) \\
Av. yield & 894 & 869 & 899 \\
& & & \\
& S.E./mean & \(=\) & \(27.06 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Groundnut.}
, Site :- Regional Oilseeds Res. Stro., Kadiri.
Ref:- A.P. 58(15).

Object :-To find out the best combination of seedrates and spacings for the Groundnut crop.
1. i

BASAL CONDITIONS :
(i) (a) Castor-Groundnut. (b) N.A. (c) No. (ii) (a) Red sandy loam. (b) Refer soil analysis, Kadiri.
(iii) 11 to 13.8 .1958 . (iv) (a) 2 ploughings with country plough and guntaka. (b) With local Gorru. (c) and (d) As per treatments. (e) N.A. (v) 3 C.L./ac. of C.M. and \(2 \frac{1}{2}\) C.L./ac. of groundnut shell. (vi) 'TMV-3. (spreading, medium). (vii) Unirrigated. (viii) Hoeing and weeding. (ix) 27.94'. (x) 6 t, 9.1.1959.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments}

3 levels of seed rates: \(\mathrm{R}_{1}=50, \mathrm{R}_{\mathbf{2}}=70\) and \(\mathrm{R}_{3}=90 \mathrm{lb} . / \mathrm{ac}\).
Sub-plot treatments
3 spacings between rows: \(S_{1}=9^{\prime \prime}, S_{2}=13^{\prime \prime}\) and \(S_{3}=15^{\circ}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) Main-plot\(54^{\prime} \times 51\) ³ \(^{\prime}\), Sub-plot \(-54^{\prime} \times 17 \frac{1}{4}^{\prime}\), (b) Sub-plot- \(54^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Poor. (ii) Mild attack of leaf minor and Tikka leaf spot. (iii) Pod yield. (iv) (a) 1958 to 1960. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(687 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(63.9 \mathrm{lb} . / \mathrm{ac}\). (b) \(86.8 \mathrm{lb} . / \mathrm{ac}\). (iii) Only \(\mathrm{R} \times \mathrm{S}\) interaction is significant. (iv) Av. yield of pods in lb./ac.
\begin{tabular}{c:ccc|c} 
& \(S_{1}\) & \(S_{2}\) & \(S_{3}\) & Mean \\
\hdashline\(R_{1}\) & 617 & 611 & 733 & 654 \\
\(\mathbf{R}_{2}\) & 707 & 705 & 653 & 688 \\
\(\mathbf{R}_{3}\) & 801 & 739 & 615 & 718 \\
\hdashline \begin{tabular}{cl} 
Mean & 708
\end{tabular} & 685 & 667 & 687
\end{tabular}

S E. of difference of two
\begin{tabular}{ll} 
1. R marginal means & \(=26.1 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(S\) marginal means & \(=35.4 \mathrm{lb} . / \mathrm{ac}\). \\
\(3 \quad \mathrm{~S}\) means at the same level of \(R\) & \(=61.4 \mathrm{lb} . / \mathrm{ac}\). \\
4. R means at the same level of \(S\) & \(=56.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Groundnt (Kharif).
Site :- Regional Oilseeds Res. Stn., Kadiri.

Ref:- A.P. 59(114). Type :- 'C'.

Object :-To find out the combined effect of seed-rates and spacings on Groundnut.
1. BASAL CONDITIONS:
(i) (a) No. (b) Castor. (c) 3 C.L./ac. of C.M. (ii) (a) Red loam. (b) N.A. (iii) 27 th and 28 th July 1959. (iv) (a) 2 ploughings with country plough. (b) N.A. (c) and (d) As per treatments. (e) N.A. (v) 4 C.L./ac. of C.M. (vi) T.M. -3 (spreading, medium). (vii) Unirrigated. (viii) Two hoeings and weedings. (ix) \(16.66^{\prime \prime}\). (x) \(27,28.12 .1959\).
2. TREATMENTS :

Same as in expt. no. 58(15) on page 412.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/replication. 3 sub-plots/main-plot. (b) \(168^{\prime} \times 54^{\prime}\). (iii) 4. (iv) (a) Varies with different spacings. (b) \(54^{\prime} \times 15^{\prime}\). (v) One row by the sides. (vi) Yes."
4. GENERAL:
(i) Normal. (ii) Attack of leaf minor-B.H.C. \(10 \%\) dusted. (iii) Pod yield. (iv) (a) to (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(727 \mathrm{lb} / \mathrm{/ac}\). (ii) (a) \(81.5 \mathrm{lb} . \mathrm{a}\). (b) \(69.0 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effcets is significant. (iv) Av. yield of pods in lo./ac.
\begin{tabular}{c|ccc|c}
\(*\) & \(\mathbf{R}_{1}\) & \(\mathbf{R}_{2}\) & \(\mathbf{R}_{3}\) & Mean \\
\hline \(\mathrm{S}_{1}\) & 701 & 715 & 772 & 729 \\
\(\mathrm{~S}_{2}\) & 757 & 680 & 728 & 722 \\
\(\mathrm{~S}_{\mathbf{3}}\) & 707 & 704 & 779 & 730 \\
\hline Mean & 722 & 700 & 760 & 727
\end{tabular}
S.E. of difference of two
1. R marginal means
\(=33.3 \mathrm{lb} . / \mathrm{ac}\).
2. \(S\) marginal means
\(=28.2 \mathrm{lb} / \mathrm{ac}\).
3. \(S\) means at the same level of \(R \quad=48.8 \mathrm{lb} . / \mathrm{ac}\).
4. \(R\) means at the same level of \(S \quad . \quad=51.9 \mathrm{lb} / \mathrm{ac}\).

\section*{Grop :- Groundnut (Kharif). \\ Site :- Regional Oilseeds Res. Stn., Kadiri.}

Ref :- A.P. 58(16).
. : . . .
Type :- ' C '.
Object:-To determine the optimum number of ploughings and interculturings required for Groundnut crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Castor-Groundnut. (b) N.A. (c) No. (ii) (a) Red sandy loam. (b) Refer soil analysis, Kadiri. (iii) 17.7.1958. (iv) (a) As per treatments. (b) and (c) N.A. (d) \(6^{\circ} \times 5^{\prime \prime}\). (e) N.A. (v) 3 C.L./ac. of Castor manure and \(2 \frac{1}{2}\) C.L./ac. of Groundnut shell. (vi) TMV-3 (medium). (vii) Unirrigated. (viii) Hand weeding. (ix) \(27.94^{\prime \prime}\). (x) 11.12 .1958 .

\section*{2. TREATMENTS :}

Main-plot treatments :
4 levels of ploughings with country plough: \(C_{1}=1, C_{2}=2, C_{3}=3\) and \(C_{4}=4\) ploughings.

\section*{Sub-plot treatment :}

2 levels of interculturings with Metta guntaka: \(\mathrm{I}_{1}=1\) and \(\mathrm{I}_{2}=2\).
3. DESIGN :
(i) Split-plot. (ii) (a). 4 main-plots/block 2 sub-plots/main-plot. (b) \(60^{\prime} \times 68^{\prime}\). (iii) 4. (iv) (a) Main-plot \(60^{\circ} \times 17^{\prime}\); Sub-plot, \(60^{\prime} \times 8 \frac{1}{2}\). (b) Sub-plot \(59^{\prime} \times 7 \frac{3}{4}^{\prime}\). (v) \(6^{\prime \prime} \times 4 \frac{1}{2^{\prime \prime}} .(\mathrm{vi})\) 'Yes.
4. GENERAL :
(i) Satisfactory. (ii) Slight attack of leaf minor. (iii) Groundnut yield, (iv) (a) 1958 to, 1960. (b) \(N\) No.f(c) (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(493 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(149.0 \mathrm{lb} . / \mathrm{ac}\). (b) \(138.4 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Avyield of pods in lb ./ac.

S.E. of difference of two
\begin{tabular}{ll} 
1. C marginal means & \(=74.5 \mathrm{lb} . / \mathrm{ac}\). \\
2. I marginal means & \(=48.9 \mathrm{lb} . / \mathrm{ac}\). \\
3. I means at the same level of \(C\) & \(=97.8 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(C\) means at the level of I & \(=101.6 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}
```

Crop :- Groundnut (Kharif). Ref :- A.P. 59(111).
Site :- Regional Oilseeds Res. Stn., Kadiri.
Type:- `C'.

```

Object:-To determine the optimum number of ploughings and interculturings required for Groundnut crop.
1. BASAL CONDITIONS:
(i) (a) Castor-Groundnut. (b) Castor. (c) 3 C.L./ac. of C.M. \(+2 \frac{1}{2}\) C.L./ac. of Groundnut shell. (ii) (a) Red loam. (b) N.A. (iii) 16.7.1959. (iv) (a) As per treatments. (b) to (e) N.A. (v) 4 C.L./ac. of C.M. (vi) TM-3 spreading (medium). (vii) Unirrigated. (viii) Hoeing and weeding. (ix) 16.66". (x) 19.12.1959.
2. TREATMENTS :

Same as in expt. no. 58(16) on page 413.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(60^{\prime} \times 7 \frac{1}{2}^{\prime}\). (b) \(58 \frac{\mathbf{I}^{\prime}}{} \times 6^{\prime}\). (v) \(9^{\prime \prime} \times 9^{\prime \prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Severe attack of leaf minor-B.H.C. \(10 \%\) dusted. (iii) Groundnut yield. (iv) (a) 1958 -1960. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(801.9 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(112.8 \mathrm{lb} . / \mathrm{ac}\). (b) \(61.2 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of pods in lb./ac.
\begin{tabular}{l:llll|l} 
& \(C_{1}\) & \(C_{2}\) & \(C_{3}\) & \(C_{4}\) & Mean \\
\hline \(\mathrm{I}_{1}\) & 800 & 807 & 807 & 828 & 810 \\
\(\mathrm{I}_{2}\) & 780 & 828 & 752 & 814 & 794 \\
\hline Mean & 790 & 817 & 780 & 821 & 802
\end{tabular}
S.E. of difference of two
1. \(C\) margival means \(\quad=56.4 \mathrm{lb} . / \mathrm{ac}\).
2. 1 marginal means \(=21.6 \mathrm{lb} . / \mathrm{ac}\).
3. I means at the same level of \(\mathbf{C}=43.3 \mathrm{lb} . / \mathrm{ac}\).
4. \(C\) means at the same level of \(I=64.2 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{ll} 
Crop :- Groundnut ( \(R a b i\) ). & Ref :- A.P. 59(3). \\
Site :- Groundnut Res. Stn., Kaikalur. & Type :- 'C'.
\end{tabular}

Object:-To determine the optimum seedrate for the Groundnut crop.
1. BASAL CONDITIONS :
(i) (a) Paddy-Groundnut-Paddy. (b) Paddy, (c) 10 C.L./ac. of C.M. (ii) (a) Sandy loam. (b) N.A. (iii) 6 and 7.1.1959. (iv) (a) 5 p'oughings with country plough, paddy stubbles removed and the field levelled. (b) Sowing behind country plough. (c) As per treatments. (d) N.A. (e) 1. (v) Nil. (vi) TMV-2 Bunch variety (early). (vii) Irrigated. (viii) 1 weeding. (ix) 1.23". (x) 6.4.1959.
2. TREATMENTS:

3 levels of seedrates: \(S_{1}=72, S_{2}=96\) and \(S_{3}=120 \mathrm{lb}\)./ac. of kernels.
3, DESIGN :
(i) R.B.D. (ii) (a) 3. (b) \(115^{\prime} \times 31^{\prime}\). (iii) 2 . (iv) (a) \(115^{\prime} \times 27^{\prime}\). (b) \(115^{\prime} \times 25^{\prime}\). (v) \(2^{\prime}\) border left beween plots. (vi) Yes.
4. GENERAL :
(i) Growth generally satisfactory. Pod development poor due to seepage of water. (ii) Slight incidence of fungus-Cupraman sprayed. (iii) Yield of pods. (iv) (a) and (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(702 \mathrm{lb} . / \mathrm{ac}\). (ii) 357 lb ./ac. (iii) Treatment differences are not significant. (iv) Av, yield of F ods \(\mathrm{in} \mathrm{ib} . / \mathrm{ac}\).
\begin{tabular}{lccc} 
& & \\
Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}{ }^{\prime}\) \\
Av. yield & 485 & 947 & 674 \\
& & \\
& S.E \(/\) mean & \(=\) & \(252.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Groundinut (Rabi).
Site :- Groundnut Res. Stn., Masulipatam,

Ref:- A.P. 59(117). Type :- 'C'.

Object:-To determine the optimum seedrate for Groundnut crop in rice fallows.

\section*{1. BASAL CONDITIONS :}
(i) (a) Paddy-Groundnut. (b) Paddy. (c) 10 C.L./ac. of C.M. (ii) (a) Sandy loam. (b) Refer soil analysis, Masulipatam. (iii) \(6,7.1 .1959\). (iv) (a) 5 ploughings with country plough. Paddy stubbles removed and levelled. (b) Sowing behind plough. (c) As per treatments. (d) N.A. (e) 1. (v) Nil. (vi) TMV-2 Bunch (early). (vii) Irrigated. (viii) Weeding. (ix) \(1.23^{\prime \prime}\). (x) 6.41959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 59(3) on page 414.
4. GENERAL :
(i) Satisfactory. (ii) Attack of leaf minar-Endrine sprayed. (iii) Pod yield. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) The yields are low due to the mortality of plants in the plots due to seepage of water.
5. RESULTS :
(i) 43.8 lb ./ac. (ii) \(29.1 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of pods in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|}
\hline Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) \\
\hline Av. yield & 50.6 & 38.6 & 42.1 \\
\hline & S.E./ & \(=\) & b./ac \\
\hline
\end{tabular}

\section*{Crop:- Groundnut.}

Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. 54(21).
Type :- \({ }^{6}\) '.

Object :-To find out suitable control measures against 'Tikka' (cercospora leaf spots) of Groundnut.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Bengalgram. (c) Nil. (ii) (a) Light black soil. (b) N.A. (iii) 5.7.1954. (iv) (a) 3 ploughings. (b) Dibbling. (c) \(80 \mathrm{lb} . / \mathrm{ac}\). (d) Between rows \(1^{\prime}\). (e) N.A. (v) 10 C.L./ac. of F.Y.M. before sowing and \(35 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) after one month of sowing as surface application. (vi) Local (medium). (vii) Unirrigated. (viii) 3 weedings. (ix) \(31.77^{\prime \prime}\). (x) 13.11.1954.
2. TREATMENTS :

6 chemicals : \(S_{0}=\) Control, \(S_{1}=\) Sulphur, \(S_{2}=\) Agrosan G.N., \(S_{3}=\) Landisar, \(S_{4}=\) Ceresan wet, \(S_{5}=\) Ceresan dry.
Chemicals were sprayed at intervals of about 15 days.
3. DESIGN :
(i) R.B.D. (ii) (a) 6 . (b) N.A. (iii) 4. (iv) (a) \(40^{\prime} \times 40^{\prime}\). (b) \(20^{\prime} \times 20^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Attack of pod borer. (iii) Counts are taken one line in the centre from west to east and the other from South to North. Percentage of infection before each spraying was taken. Percentage of intensity was taken as per grades before harvesting. (iv) (a) 1952-1957. (b) No. (c) Nil. (v) and (vi) NIl. (vii) Experiment conducted by plant Pathologist.
5. RESULTS:
(i) \(123.6 \mathrm{lb} . / \mathrm{ac}\). (ii) \(1448 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of pods in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{llccccc} 
Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{~S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{4}\) & \(\mathrm{~S}_{5}\) \\
Av. yield & 994 & 1484 & 1388 & 1225 & 1185 & 1143 \\
& S.E.jmean & \(=\) & \(72.4 \mathrm{lb} . / \mathrm{ac}\). & & &
\end{tabular}

\section*{Crop :- Groundnut. \\ Site :- Agri. Res. Instt., Rajendranagar. \\ Ref :- A.P. 55(17). \\ Type :- ‘D'.}

Object :-To find out suitable control measures against 'Tikka' (cercospora leaf spots) of Groundnut.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Castor. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 21.6.1955. (iv) (a) N.A. (b) Dibbling. (c) N.A. (d) \(9^{\prime \prime}\) hill to hill and \(1^{\prime}\) row to row. (e) N.A. (v) \(35 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (vi) Local (medium).
(vii) Unirrigated. (viii) 3 hand weedings. (ix) \(23.27^{*}\). (x) Last week of Oct. 1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54:21) on page \(4 \$ 5\).
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Intensity of disease (percentage). (iv) (a) 1952-1957. (b) No. (c) Nil. (v) (a) Badnspur. (b) Nil. (vi) Nil. (vii) Experiment conducted by Plant Pahologist.
5. RESULTS :
(i) \(1628 \mathrm{lb} . / \mathrm{ac}\). (ii) \(252.6 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of pods in lb ., ac.
\begin{tabular}{lclcccc} 
Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{~S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{\mathbf{4}}\) & \(\mathrm{S}_{5}\) \\
Av. yield & 1154 & 1633 & 1840 & 1612 & 1622 & 1905 \\
& S.E. \(/\) mean & \(=\) & \(126.3 \mathrm{lb} . / \mathrm{ac}\). & & &
\end{tabular}

Crop :- Groundnut.
Site :- Agri. Res. Instt., Rajendranagar.

Type :- ‘D'.
Object :To find out suitable control measures against Tikka (cercospora leaf spots) of Groundnut.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Jowar. (i) \(15 \mathrm{C} . \mathrm{L} . / \mathrm{ac}\). of F.Y.M. \(+20 \mathrm{Ib} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) and \(10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Scper. (ii) (a) Light black soil. (b) N.A. (iii) 1st week of July 1956. (iv) (a) 3 ploughings. (b) Dibbling. (c) 80 \(\mathrm{lb} . / \mathrm{ac}\). (d) \(9^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) 10 C.L./ac. of F.Y.M. before sowing and \(35 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) after one month of sowing as surface application. (vi) Local variety (medium). (vii) Unirrigated. (viii) 3 weedings. (ix) \(35^{\prime \prime}\). (x) 2 nd week of Nov.- 1956.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. \(54(21)\) on page 415.
4. GENERAL :
(i) Normal. (i) Attack of pod borer. (iii) Counts are taken one line in the middle from east to west and another from South to North. \% infection before each spraying was taken. (iv) (a) 1952-1957. (b. No. (c) Nil. (v) and , vi) Nil. (vii) Experiment was conducted by Plant Pathologist.
5. RESULTS:
(i) \(567 \mathrm{lb} . / \mathrm{ac}\). (ii) 233.0 ib /ac. (iii) Treatment differences are significant. (iv) Av. yield of pods in \(\mathrm{lb} . / \mathrm{ac}\).


Crop :- Groundnut.
Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. \({ }^{57(33) .}\)
Type:- 'D'.

Object:-To find out suitable control measures against' 'Tikka' (cercospora leaf spots) of Groundnut.
1. \(B^{\prime}\)
(i) (a) Nit. (b) and (c) N.A. (ii) (a) Light chalka: (b) N.A. (iii) 8.7.1957. (iv) (a) Ploughing by improved ploughs and buckerings. (b) to (e) N.A. (v) 10 C.L./ac. of F.Y.M. broadcast before sowing \(+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (vi) Local variety (medium). (vii) Unirrigated. (viii) Hand weeding. (ix) \(35^{\prime \prime}\). (x) 21, 22.10.1957.
2. T TREATMENTS
\({ }_{6}\) chemicals: \(\mathrm{S}_{0}=\) Control, \(\mathrm{S}_{1}=\) Sulphur at 5 ozs./ac., \(\mathrm{S}_{2}=\) Agrosan at 5 ozs./ac., \(\mathrm{S}_{3}=\) Landisan at \(5 \mathrm{ozs} . / \mathrm{ac}\). \(S_{4}=\) Ceresan wet at 1 lb . in 100 . gallons, of water and \(S_{5}=\) Ceresan dry at \(5 \mathrm{ozs} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 6 .
(b) N.A.
(iii) 4. (iv) (a) \(30^{\prime} \times 30^{\prime}\).
(b) \(20^{\prime} \times 20^{\prime}\).
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. No lodsing. (ii) Attack of Tikka disease. (iii) Counts are taken one line in the middle from east to west and another from south to north. \% infection before each spraying was taken. (iv) (a) 1952contd. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Experiment conducted by Plant Pathologist.
3. RESULTS:
(i) \(200 \mathrm{lb} . / \mathrm{ac}\). (ii) \(194.0 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are nct significant. (iv) Av. yield of groundnut in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{4}\) & \(\mathrm{S}_{5}\) \\
\hline Av; yield & 82 & 381 & 259 & 197 & 136 & 143 \\
\hline & & \(=\) & lb. & & & \\
\hline
\end{tabular}

\section*{Crop :- Groundnat.}

Site :- Agri, Res. Instt., Rajendranagar.

Ref :- A.P. 54(22).
Type :- ‘D',

Object :-To find out suitable control measures against 'Tikka' (cercospora leaf spots) of Groundnut.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Bengal gram. (c) Nil. (ii) (a) Light black soil. (b) N.A. (iii) 3.7.1954. (iv) (a) 3 ploughings. (b) Dibbling. (c) \(80 \mathrm{lb} . / \mathrm{ac}\). (d) Row to row \(1^{\prime}\). (e) N.A. (v) 10 C.L./ac. of F.Y.M. before sowing and 35 lb./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) after one month of sowing as surface application. (vi) Local (medium). (vii) Unirrigated. (viii) 3 weedings. (ix) \(31.77^{\prime \prime}\). (x) 11.11 .1954 .
2. TREATMENTS :

8 chemicals : \(S_{0}=\) Control, \(S_{1}=\) Bordeaux mixture, \(S_{2}=\) Wetcol, \(S_{3}=\) Perenox, \(S_{4}=\) Furnusal, \(S_{5}=\) Agricop, \(\mathrm{S}_{6}=\) Diathane \(\mathrm{Z}-78\) and \(\mathrm{S}_{7}=\) Sulphur dust.
The chemicals are sprayed at intervals of about 15 days.
3. DESIGN :
(i) R.E.D.
(ii) (a) 8 .
(b) N.A.
(iii) 4. (iv) (a) \(40^{\circ} \times 30^{\prime}\).
(b) \(20^{\prime} \times 20^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Not good because of breach of canal. (ii) Considerable attack of pod borer. Control manures as per treatments. (iii) Counts are taken one line in the centre from west to east and the other from south to north. Percentage of infection before each spraying was taken. (iv) (a) 1952 to 1957 . (b) No. (c) Nil. (v) and (vi) Nil. (vii) Experiment was conducted by Plant Pathologist.

\section*{5. RESULTS :}
(i) \(893 \mathrm{lb} . / \mathrm{ac}\). (ii) \(301.6 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. "(iv) Av. yield of pods in \(\mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Groundnut.}

Site :- Agri. Res. Instt., Rajendranagar.

Ref :- A.P. \({ }^{\text {57(33). }}\)
Type :- ‘D'.

Object :-To find out suitable control measures against 'Tikka' (cercospora leaf spots) of Groundnut.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Light chalka. (b) N.A. (iii) 8.7.1957. (iv) (a) Ploughing by improved ploughs and buckerings. (b) to (e) N.A. (v) 10 C.L./ac. of F.Y.M. broadcast before sowing \(+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (vi) Local variety (medium). (vii) Unirrigated. (viii) Hand weeding. (ix) \(35^{\prime \prime}\). (x) 21, 22.10.1957.

\section*{2. TREATMENTS :}

6 chemicals: \(\mathrm{S}_{0}=\) Control, \(\mathrm{S}_{1}=\) Sulphur at \(5 \mathrm{ozs} . / \mathrm{ac}\)., \(\mathrm{S}_{2}=\) Agrosan at \(5 \mathrm{ozs} . / \mathrm{ac}\)., \(\mathrm{S}_{3}=\) Landisan at \(5 \mathrm{ozs} . / \mathrm{ac}\). \(S_{4}=\) Ceresan wet at 1 lb . in 100 gallons of water and \(S_{5}=\) Ceresan dry at 5 ozs ./ac.
3. DESIGN :
(i) R.B.D.
(ii) (a) 6 .
(b) N.A.
(iii) 4. (iv) (a) \(30^{\prime} \times 30^{\prime}\).
(b) \(20^{\prime} \times 20^{\prime}\).
(v) N.A. (vi) Yes.
.4. GENERAL :
(i) Normal. No lodging. (ii) Attack of Tikka disease. (iii) Counts are taken one line in the middle from east to west and another from south to north. \% infection before each spraying was taken. (iv) (a) 1952contd. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Experiment conducted by Plant Pathologist.
3. RESULTS:
(i) \(200 \mathrm{lb} . / \mathrm{ac}\). (ii) \(194.0 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are nct significant. (iv) Av. yield of groundnut in lb /ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 'Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{4}\) & \(\mathrm{S}_{5}\) \\
\hline Av. yield & 82 & 381 & 259 & 197 & 136 & 143 \\
\hline \multicolumn{7}{|c|}{S.E./mean \(=97.0 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

\section*{Crop :- Groundnat. \\ Ref :- A.P. 54(22).}

Site :- Agri, Res. Instt., Rajéndranagar.
Type :- ‘D'.
. Object :-To find out suitable control measures against 'Tikka' (cercospora leaf spots) of Groundnut.

\section*{1. BASAL CONDITIONS :}
(i) .(a) Nil. (b) Bengal gram. (c) Nil. (ii) (a) Light black soil. (b) N.A. (iii) 3.7.1954. (iv) (a) 3 ploughings. (b) Dibbling. (c) \(80 \mathrm{lb} / \mathrm{ac}\). (d) Row to row \(1^{\prime}\). (e) N.A. (v) 10 C.L./ac. of F.Y.M. before sowing and 35 lb./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) after one month of sowing as surface application. (vi) Local (medium). (vii) Unirrigated. (viii) 3 weedings. (ix) \(31.77^{\prime \prime}\). (x) 11.11.1954.
2. TREATMENTS :

8 chemicals : \(S_{0}=\) Control, \(S_{1}=\) Bordeaux mixture, \(S_{2}=\) Wetcol, \(S_{3}=\) Perenox, \(S_{4}=\) Furnusal, \(S_{5}=\) Agricop, \(\mathrm{S}_{6}=\) Diathane \(\mathrm{Z}-78\) and \(\mathrm{S}_{7}=\) Sulphur dust.
The chemicals are sprayed at intervals of about 15 days.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) \(40^{\prime} \times 30^{\prime}\). (b) \(20^{\prime} \times 20^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Not good because of breach of canal. (ii) Considerable attackl of pod borer. Control manures as per treatments. (iii) Counts are taken one line in the centre from west to east and the other from south to north. Percentage of infection before each spraying was taken. (iv) (a) 1952 to 1957 . (b) No. (c) Nil. '(v) and . (vi) Nil. (vii) Experiment was conducted by Plant Pathologist.
5. RESULTS :
(i) \(893 \mathrm{lb} . / \mathrm{ac}\). (ii) \(301.6 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of pods in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{4}\) & \(\mathrm{S}_{5}\) & \(\mathrm{S}_{6}\) & \(\mathrm{S}_{7}\) \\
\hline Av. yield & 953 & 926 & 871 & 776 & 1457 & 722 & 762 & 681 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Crop :- Groundnut. & Ref. :- A.P. 55(16) \\
Site :- Agri. Res. Instt., Rajendranagar. & Type :- 'D'.
\end{tabular}

Type :- 'D'.
Object :-To find out suitable control measures against 'Tikka' (cercorpora leaf spots) of Groundnut.
1. BASAL CONDITIONS :
(i) (a) Nit. (b) Castor. (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) 25.6 .1955 . (iv) (a) N.A.
(b) Dibbling. (c) N.A. (d; \(9^{\prime \prime}\) from hill to hill and \(1^{\prime}\) row to row. (e) N.A. (v) \(35 \mathrm{lb} . / \mathrm{ac} . \mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
(vi) Local (medium). (vii) Unirrigated. (viii) 3 hand weedings. (ix) \(2327^{*}\). ( \(x\), Last week of Octeber, 1955.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 54(22) on page 417.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Intensity of the disease and pod yield. (iv) (a) 1952 to 1957. (b) No. (c) Nil. (v) (a) Badnapur. (b) Nil. (vi) Nil. (vii) Experiment conducted by Plant Fathologist.
5. RESULTS:
(i) \(1089 \mathrm{lb} . / \mathrm{ac}\). (ii) \(374.6 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of pod is \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{llccccccc} 
Treatment & \(\mathrm{S}_{\mathbf{0}}\) & \(\mathrm{S}_{\mathbf{1}}\) & \(\mathrm{S}_{\mathbf{2}}\) & \(\mathrm{S}_{3}\) & \(\mathrm{~S}_{\mathbf{4}}\) & \(\mathrm{S}_{\mathbf{5}}\) & \(\mathrm{S}_{6}\) & \(\mathrm{~S}_{\mathbf{7}}\) \\
Av. yield & 1013 & 1600 & 849 & 1002 & 969 & 675 & 1176 & 1427 \\
& S.E. \(/\) mean & \(=\) & \(187.3 \mathrm{lb} . / \mathrm{ac}\). & & & & &
\end{tabular}

\author{
Grop :- Groundnut. \\ Site :- Agri. Res. Instt., Rajendranagar. \\ Ref. :- A.P. 56(50). \\ Type :- ' \({ }^{D}\) '.
}

Object. -To find out suitable control measures against 'Tikka' (cercorpora leaf spots) of Grcuranut.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Jowar. (c) 15 C.L./ac. of F.Y.M. \(+20 \mathrm{lb} . / \mathrm{ac}\). of N and 10 lb ., ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\). (ii ' 1st week of July, 1956. (iv) (a; N.A. (b) Dibbing. (c) 80 lb. /ac. (d) \(9^{\circ} \times 12^{\circ}\). (e) N.A. (v; 10 C L./ac. of F.Y.M before sowlng and 35 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) after one month of sowing as surface application. (vi) Local var.ety (medium). (vii) Unırrigated. (vii) 3 weedings. (ix) \(35^{\prime \prime}\). ( \(x^{\prime}\) ' 1 st week of Novemter, 1956.

\section*{2. TREATMENTS :}

8 chemicals: \(\mathrm{S}_{0}=\) Control, \(\mathrm{S}_{1}=\) Bordeaux mixture \(1 \%, \mathrm{~S}_{2}=\) Wetcol ( 1 oz . in gallon', \(\mathrm{S}_{6}=\) Perencx \(0.35 \%\), \(S_{4}=\) Feruasul ( 1 cz . in 1 gallon), \(S_{5}=\) Agricop \(4 \%, S_{6}=\) Diathane \(Z-78\) at 1 lb . in 50 gallors and \(S_{;}=\)Sulphur dust at \(20 \mathrm{lb} . / \mathrm{ac}\).
The chemicals are sprayed 3 to 4 t.mes at an interval of 15 days.
3. DESIGN :
(i) R.B.D. (ii’ \({ }^{\prime}\) ’ 8.
(b) N.A. (iii, \(4 . \quad\) (iv) (a) \(40^{\prime} \times 40^{\prime}\).
(b) \(20^{\prime} \times 20^{\prime} . \quad\) (v; N.A. (vi; No.
4. GENERAL :
(i) Normal. (ii) Considerable attack of pod borer. (iii) Counts are taken rne line in the middle frem east to West and an other from South to North. \% irfection was taken for each spray. (iv) a) 1952-1958, (b) No. (c) Nil. (v) and (vi) Nil. (vii) Experiment conducted by Plant Pathologist.

\section*{5. RESULTS :}
(i) \(589 \mathrm{lb} . / \mathrm{ac}\). (ii) \(137.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of pod in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & \(\mathrm{S}_{4}\) & \(\mathrm{S}_{5}\) & \(\mathrm{S}_{6}\) & \(S_{7}\) \\
\hline \multirow[t]{3}{*}{Av. yield} & 635 & 698 & 632 & 616 & 399 & 472 & 526 & 735 \\
\hline & & ( & & & & & & \\
\hline & \multicolumn{8}{|l|}{S.E./mean \(=68.6 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

\section*{Crop :- Groundnut. \\ Site :- Agri. Res. Instt:, Rajendranagar.}

Ref :- A.P. 57(34).
Type :- ‘D',

Object:-To find out suitable control measures against 'Tikka' (cercorpora leaf spots) of Groundnut.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Light chalka. (b) N.A. (iii) 8.7.1957. (iv) (a) Dry cultivation, plughing by imported ploughs, buckering etc. (b) to (e) N.A. (v) 10 C.L./ac. of F.Y.M. broadcast before sowing, and \(35 \mathrm{lb} . / \mathrm{ac}\) of \(\mathrm{P}_{2} \mathrm{O}_{5}{ }^{\text {' (vi) Local variety (medium). (vii) Unirrigated. (viii) Hand weeding. (ix) }}\) 35". (x) 21,22.10.1957.

\section*{2. TREATMENTS:}

8 chemicals : \(S_{0}=\) Control, \(S_{1}=\) Bordeaux Mixture \((1 \%), S_{2}=\) Wetcol ( 1 oz . in one gallon) \(S_{3}=\) Perenox ( \(0.35 \%\) ), \(\mathrm{S}_{4}=\) Feruasul ( 1 oz . in one gallon), \(\mathrm{S}_{5}=\) Agri cop ( \(4 \%\) ) \(\mathrm{S}_{6}=\) Diathane \(\mathrm{Z}-78\) ( 1 lb . in 50 gallons) and \(\mathrm{S}_{7}=\) Sulphur dust ( 20 lb ./ac.).
2 or 3 sprayings at fortnightly intervals.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4 . (iv) (a) \(30^{\prime} \times 30^{\prime}\). (b) \(20^{\prime} \times 20^{\prime}\). (v) \(5^{\prime} \times 5^{\prime}\) (vi) Yes.
4. GENERAL:
(i) Normal. No lodging. (ii) Attack of Tikka disease. (iii) Recording of incidence of Tikka disease. (iv) (a) 1952-contd. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Experiment was conducted by Plant Pathologist.
5. 'RESULTS :
(i) \(401 \mathrm{lb} . / \mathrm{ac}\). (ii) \(200.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of pod in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{llccccccc} 
Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{~S}_{\mathbf{1}}\) & \(\mathrm{S}_{\mathbf{2}}\) & \(\mathrm{S}_{3}\) & \(\mathrm{~S}_{4}\) & \(\mathrm{~S}_{5}\) & \(\mathrm{~S}_{6}\) & \(\mathrm{~S}_{7}\) \\
Av. yield & 299 & 415 & 395 & 463 & 259 & 504 & 368 & \(\leq 04\) \\
& S.E./mean \(=\) & \(100.2 \mathrm{lb} / \mathrm{ac}\). & \(:\) &. & & &
\end{tabular}
\begin{tabular}{ll} 
Crop :- Castor (Kharif). & Ref. :- A.P. 56(25). \\
Site :- Regional Oilseeds Res. Stn., Kadiri. & Type :- ‘M'.
\end{tabular}

Object :-To determine the optimum dose of manure required for Castor crop.
1. BASAL CONDITIONS :
(i) (a) Castor-Groundnut. (b) Groundnut. (c) \(2 \frac{1}{2}\) ton/ac. of C.M. \(+3 \frac{1}{2}\) ton/ac. of tank silt. (ii) (a) Red sandy. (b) Refer scil analysis, Kadiri. (iii) 20.7.1956. (iv) (a) 2 country ploughings, 1 guntaka and 1 gorru. (b) Dibbled. (c) \(8 \mathrm{lb} . / \mathrm{ac}\). (d) \(3^{\prime}\) between rows and \(3^{\prime}\) between plarits. (e) N.A. (v) Nil. (vi) TMV-1 (late). (vii) Unirrigated. (viii) 3 Guntaka working and 3 weedings. (ix) \(33.53^{\text {n }}\). (x) 31.3.1957.
2. TREATMENTS :
\(M_{0}=\) Control, \(M_{1}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}, \quad \mathrm{M}_{2}=\mathrm{M}_{1}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super, \(\mathrm{M}_{3}=\mathrm{M}_{2}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul., \(\mathrm{M}_{4}=40 \mathrm{lb}\)./ac. of Castor cake. \(\mathrm{M}_{5}=8\) tons/ac. of tank silt, \(\mathrm{M}_{6}=5\) tons/ac. of F.Y.M., and \(\mathrm{M}_{7}=\mathrm{M}_{6}+10 \mathrm{lb}\)./ac. of \(\mathrm{N}+10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+10 \mathrm{lb}\). \(/ \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 8 . (b) N.A. (iii) 4. (iv) (a, \(60^{\prime} \times 24^{\prime}\). (b) \(54^{\prime} \times 18^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Very poor.
(ii) Nil.
(iii) Castor yield. (iv) 1956-1958.
(b) Yes. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(512 \mathrm{lb} . / \mathrm{ac}\). (ii) \(108.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are significant. (iv) Av. yield of castor in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lllllllll} 
Treatment & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{\mathbf{2}}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) & \(\mathrm{M}_{5}\) & \(\mathrm{M}_{6}\) & \(\mathrm{M}_{7}\) \\
Av. yield & 346 & 557 & 503 & 608 & 633 & 416 & 493 & 553 \\
& S.E./mean & \(=\) & \(54.2 \mathrm{lb} . / \mathrm{ac}\). & & & & &
\end{tabular}
Crop :- Castor (Kharif).
Ref :- A.P. 57(26).
Site :- Regional Oilseeds Res. Stn., Kadiri.
Type :- ‘M'.

Object:-To determine the optimum dose of manure required for Castor crop.
1. BASAL CONDITIONS :
(i) (a) Groundnut-Castor. (b) Groundnut. (c) \(3 \frac{1}{2}\) tons/ac. of C.M. \(+1 \frac{1}{2}\) tons/ac. of tank sin.

Red soil. (b) Refer soil analysis, Kadiri. (iii) 15.7.1957. (iv) (a) 2 ploughings with wooden plough and guntaka. (b) and (c) N.A. (d) \(3^{\prime}\) between rows and \(3^{\prime}\) between plants. (e) N.A. (v) Nil. (vi) TMV-1 (early). (vii) Unirrigated. (viii) Thinning, hoeing and weeding. (ix) \(13.44^{\circ}\). (x) 19.11 .1957 to 8.3.1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(25) on page 419.
4. GENERAL:
(i) Good. (ii) Mild. attack of semi looper Control measures taken N. A. (iii) Castor yield. (iv) (a) 1956 1958. (b) Yes (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(ii) \(520 \mathrm{lb} . / \mathrm{ac}\). (ii) 108.0 lb ./ac. (iii) Treatment differences are not signiazant. (iv) Av. yield of castor in lb./ac.
\begin{tabular}{lllllllll} 
Treatment & \(\mathbf{M}_{\mathbf{0}}\) & \(\mathbf{M}_{1}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{M}_{\mathbf{4}}\) & \(\mathbf{M}_{\mathbf{5}}\) & \(\mathbf{M}_{6}\) & \(\mathbf{M}_{\mathbf{7}}\) \\
Av. yield & 527 & 555 & 543 & 581 & 538 & 478 & 461 & 479 \\
& S.E./mean \(=\) & \(54.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Grop :- Castor (Kharif).
Site :- Regional Oilseeds Res. Stn., Kadiri.

> Ref :- A.P. \(58(17)\).
> Type :- \({ }^{\prime} \mathbf{M}^{\prime}\).

Object:-To determine the optimum dose of N, P and K for Castor crop.
1. BASAL CONDI TIONS :
(i) (a) Groundnut-Castor. (b) NA. (c) N.I. (ii) (a) Red loam. (b) Refer soil analysis, Kadiri. (iii) 16.7.1958. (iv) (a) 2 ploughings with country plough and 1 guntaka. (b) to (e) N.A. (v) Nil. (vi) H C.-6 (medium'. (vii) Unirrigated. (viii) Hosing and weediny. (ix) 27.94. (x) 3.1.1959.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=20\) and \(N_{3}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{1}=9, \mathrm{P}_{1}=10\) an \(1 \mathrm{P}_{2}=20 \mathrm{lb} . / \mathrm{ar}\).
(3) 3 levels of \(K_{2}\) O as Pot Sal.: \(K_{0}=0, K_{1}=10\) and \(K_{2}=20 \mathrm{lb}\),/az.

Fertilizers applied just before sowing in furrows \(6^{\circ}\) away from sowiog line.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 27. (b) N.A. (iii) 2. (iv) (a) \(60^{\prime} \times 18^{\prime}\). (b) \(54^{\prime} \times 12^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL
(i) Satisfactory. (ii) Severe attack of semi looper-Endrine sprayed. (iii) Castor yield. (iv) (a) 19581960. (b) No. (c) Nil. (v) (a) N.A. (b) Nil. '(vi) and (vii) Nil.
5. RESULTS :
(i) \(385 \mathrm{lb} . / \mathrm{ac}\). (ii) \(181.4 \mathrm{lb} . /\) ac. (iii) Cnly main effect of N is highly significant (iv) Av. yield of castor in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) \\
\hline \(\mathrm{P}_{0}\) & 334 & 462 & 547 & 448 & 356 & 446. & 541 \\
\hline \(\mathrm{P}_{1}\) & 245 & 395 & 470 & 370 & 334 & 409 & 368 \\
\hline \(\mathrm{P}_{2}\) & 245 & 295 & 475 & 338 & 372 & 363 & 280 \\
\hline Mean & 275 & 384 & 497 & 385 & 354 & 406. & 396 \\
\hline - \(\mathrm{K}_{0}\) & 291 & 273 & 499 & & & & \\
\hline \(\mathrm{K}_{1}\) & 200 & 498 & 519 & & & & \\
\hline \(\mathrm{K}_{2}\) & 333 & 381 & 474 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal means of \(\mathrm{N}, \mathrm{P}\) or K & \(=42.8 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of any table & \(=74.1 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Castor (Kharif). \\ Site :- Regional Oilseeds Res. Stn., Kadiri. \\ > Ref :- A.P. \(59(110)\).
> Type :- ‘M'. \\ \\ Ref:- A.P. 59(110). \\ \\ Ref:- A.P. 59(110). \\ \\ Type :- ' \(\mathbf{M}^{\prime}\).} \\ \\ Type :- ' \(\mathbf{M}^{\prime}\).}

Object :-To determine the optimum dose of \(\mathrm{N}, \mathrm{P}\) and K for Castor crop
1. BASAL CONDITIONS :
(i) (a) No. (b) Groundnut. (c) 3 C.L./ac. of C.M. \(+2 \frac{1}{2}\) C.L./ac. of groundnut shell. (ii) (a) Red loam. (b) Refer soil analysis, Kadiri. (iii) 30.6 .1959 . (iv) (a) 2 ploughings with country plough. (b) to (e) N.A. (v) 4 C.L./ac. of C.M. (vi) HC-6 (late). (vii) Unirrigated. (viii) Interculturing and hand weeding. (ix) \(16.66^{\prime \prime}\). (x) 7.11.1959 to 4.3.1960.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 58(17) on page 420.
4. GENERAL :
(i) Satisfactory. (ii) Semi looper incidence-Endrine sprayed. (iii) Castor yield. (iv) (a) \(1958-1960\). (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(805 \mathrm{lb} . / \mathrm{ac}\). (ii) \(110.2 \mathrm{lb} / \mathrm{ac}\). (iii) Only N and \(\mathbf{P}\) effects are highly significant. (iv) Av. yield of pods in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) \\
\hline \(\mathrm{N}_{0}\) & 567 & 632 & 718 & 639 & 658 & 636 & 624 \\
\hline \(\mathrm{N}_{1}\) & 757 & 828 & 963 & 849 & 802 & 853 & 893 \\
\hline \(\mathrm{N}_{2}\) & 962 & 881 & 934 & 926 & 914 & 898 & 965 \\
\hline Mean & 762 & 780 & 872 & 805 & 791 & 796 & 827 \\
\hline \(\mathrm{K}_{0}\) & 772 & 731 & 871 & \multicolumn{4}{|l|}{\multirow{3}{*}{.}} \\
\hline \(\mathrm{K}_{1}\) & 709 & 793 & 885 & & & & \\
\hline \(\mathrm{K}_{2}\) & 806 & 816 & 860 & & & & \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { S.E. of any marginal mean } & =26.0 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of any table } & =45.0 \mathrm{lb} . / \mathrm{ac} .\end{array}\)
```

Crop :- Castor (Kharif).
Site :- Agri. Res. Instt., Rajendranrgar.
Ref :- A.P. 59(62).
Type :- 'M'.

```

Object :-To determine the optimum dose of \(\mathrm{N}, \mathrm{P}\) and K for Castor crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Castor. (c) As per treatments. (ii) (a) Chalka. (b) N.A. (iii) 20.7.1959. (iv) (a) 3 ploughings and 2 harrowing. (b) to (e) N.A. (v) Nil. (vi) Castor \(\mathrm{HC}-6\) (late). (vii) Unirrigated. (viii) 2 harrewings and 2 hand weedings. (ix) 3.26", (x) 15.3.1960.
2. TREATMENTS and 3. DESIGN

Same as in expt. no. 58 (17) on page 420.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Castor yield. (iv) (a) 1958-N.A. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 1968 lb ./ac. (ii) 1166 lb ./ac. (iii) Only main effect of N is highly significant. (iv) Av. yield of castor in lb.ıac.

\begin{tabular}{ll} 
Crop :- Castor (Kharif). & Ref :- A.P. 57(24). \\
Site :- Regional Oilseeds Res. Stn., Kadiri. & Type :- \({ }^{6} \mathbf{C}^{\prime}\).
\end{tabular}

Object :-To determine the best intercultural practice for Castor crop.
1. BASAL CONDITIONS:
(i) (a) Groundnut-Castor. (b) Groundnut. (c) \(3 \frac{1}{2}\) tons/ac. of C.M. and \(I^{2}\) tons ac. of tank sit. (ii) (a) Red. (b) Refer soil analysis, Kadiri. (iii) 15.7 .1957 . (v) (a) As per ireatments. (b) to (e) N.A. (v) \(4 \frac{1}{2}\) tons/ac. of C.M. and 3 tons/ac. of tank sill. (vi) TMV-1 (early;. (vii) Unirrigated. (viii) Thining and weeding. (ix) \(13.44^{\circ}\). ( x ; 26.11 .1957 to 17.3 .1958 .
2. TREATMENTS :

5 cultural treatments of working Guntaka: \(\mathrm{T}_{1}=\) Once during 1 st and 2 nd month, \(\mathrm{T}_{2}=\) Twice during 1 st and 3 rd month, \(\mathrm{T}_{3}=\) Once in 3 rd month and ploughing after 15 days, \(\mathrm{T}_{4}=\) Twice during 1 st and 3 rd month and ploughing once fin 2 na month and \(\mathrm{T}_{5}=\) Twice during 1st and 2 nd month and ploughing in 3rd month.
3. DESIGN:
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 6. (iv) (a) \(63^{\prime} \times 18^{\prime}\). (b) \(57^{\prime} \times 12^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Mild attack of semilooper—removed by hand picking. (iii) Castor yield. (iv) (a) 19571959. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(319 \mathrm{lb} . / \mathrm{ac}\). (ii) \(71.0 \mathrm{lb} / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of
castor in \(\mathrm{lb} . / \mathrm{ac}\). castor in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{T}_{1}\) & T \({ }_{2}\) & T3 & \(\mathrm{T}_{4}\) & T5 \\
\hline A.v. yield & 319 & 368 & 270 & 312 & 324 \\
\hline \multicolumn{6}{|c|}{S.E./mean \(=29.0 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

1 Crop :- Castor. (Kharif).
\(\mid\) Site :- Regional Oilseeds Res. Stn., Kadiri.
```

Ref :- A.P. 58(12).
Type :- ${ }^{6} \mathbf{C}^{\prime}$.

```

Object :-To determine the best intercultural practice for Castor crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Red loam. (b) Refer soil analysis, Kadiri. (iii) 9.7.1958. (iv) (a) As per treatments. (b) to (e) N.A. (v) 3 C.L./ac. of C.M. \(+2 \frac{1}{2}\) C.L./ac. of G.N. shell. (vi) TM-1 Castor (medium) (vii) Unirrigated. (viii) Hand weeding. (ix) 27.94". (x) 13.3.1959.

TREATMENTS :
Same as in expt. no. 57(24) on page 42.2.
DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) \(63^{\prime} \times 90^{\prime}\). (iii) 4 . (iv) (a) \(63^{\prime} \times 18^{\prime}\). (b) \(57^{\prime} \times 12^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL:
(i) Poor. (ii) Severe attack of semi-looper. Endrine sprayed. (iii) Castor yield. (iv) (a) 1957-1959.
(b) No. (c) Nil: (v) to (vii) Nil.
5. RESULTS:
(i) 167 lb /ac. (ii) 67.9 lb ./ac. (iii). Treatment differences are not significant. (iv) Av. yield of castor in lb ./ac.
\begin{tabular}{lccccc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) & \(\mathrm{~T}_{5}\) \\
Av. yield & 132 & 112 & 249 & 160 & 186 \\
& \(\therefore\) & & & \\
& S.E./mean & \(=\) & \(33.9 \mathrm{lb} . / \mathrm{ac}\). & &
\end{tabular}

Grop :- Castor (Kharif).
Site :- Regional Oilseed Res. Stn., Kadiri.
Object :-To determine the best intercultural practice for Castor crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Groundnut. (c) 3 C.L./ac. of C.M. \(+2 \frac{1}{2}\) C.L./ac. of Groundnut shell. (ii) (a) Red loam. (b) Refer soil analysis, Kadiri. (iii) 23.6.1959. (iv) (a) As per treatments. (b) to (e) N.A. (v) 4 C.L./ac. of C.M. (vi) \(\mathrm{HC}-6\) (late). (vii) Unirrigated. (viii) As per treatments. (ix) \(16.66^{\prime \prime}\). (x) 2.1.1960 to 24.3.1960.
2. TREATMENTS :

Same as in expt. no. 57(24) on page 422.
3. DESIGN :
(i) R.B.D.
(ii) (a) \(5 . \quad\) (b) \(60^{\circ} \times 90^{\circ}\).
(iii) 4. (iv) (a) \(60^{\prime} \times 15^{\prime}\).
(b) \(54^{\prime} \times 9^{\prime}\).
(v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.

\section*{4. GENERAL :}
(i Satisfactory. (ii) Semi-looper incidence-Endrine sprayed. (iii) Castor yield. (iv) (a) 1957-1959, (b) No. (c) Nil. (v, a) and \{b; N.A. (vi) and (vii) Nil.

\section*{5. RESULTS}
(i). \(598 \mathrm{lb} . / \mathrm{ac}\). (ii) \(182.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of ca:ter in lb./ac.
\begin{tabular}{lllccc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) & \(\mathrm{~T}_{5}\) \\
Av. yieid & 583 & 675 & 504 & 596 & 635 \\
& S.E.'mean & \(=\) & \(74.4 \mathrm{lb} . ; \mathrm{ac}\). & &
\end{tabular}
```

Crop :- Castor (Kharif).
Site :- Regional Oilseeds Res. Stn., Kadiri.
Ref:- A.P. 59(109).
Type:- ‘C'.

```

Object:-To find the optimum spacing for Castor crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Groundnut. (c; 3 C.L./ac. of C.M. \(+2 \pm\) C.L./ac. of Groundnut shell. (ii) (a) Red loam. (b) Refer soil analysis, Kadiri. (iii) 23.6 .1959 . (iv) (a) 2 ploughings with country plough. (b) and (c) N.A. (d) As per treatments. (e N.A. (v) \(4 \pm\) C.L./ac. of C.M. (vi) TMV-1 (short duration). (vii) Unirrigated. (viii) Interculturing and weedings. (IX) \(16.66^{\prime \prime}\). (x) 9.11 .1959 to 8.3 .1960 .

\section*{2. TREATMENTS:}

All combinations of (1) and (2) +2 extra treatments.
(1) 2 levels of spacing between rows: \(R_{1}=3^{\prime}\) and \(R_{2}=4^{\prime}\).
(2) 3 levels of spacing between plants: \(P_{1}=1^{\prime}, P_{2}=2^{\prime}\) and \(P_{3}=3^{\prime}\).

Extra treatments: \(T_{1}=2^{\prime} \times 1^{\prime}\) and \(T_{2}=2^{\prime} \times 2^{\prime}\).
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 8 . (b) \(60^{\prime} \times 145^{\prime}\). (iii) 4 . (iv) (a) Varies from \(60^{\circ} \times 16^{\prime}\) to \(60^{\circ} \times 20^{\prime}\), (b) \(60^{\circ} \times 12^{\circ}\) (v) One row alround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Semi-looper incidence-Endrine sprayed. (iii) Growth measurements and cas-or yield. (iv) (a) 1959-N.A. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 769 lb ./ac. (ii) \(134.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Only main effect of R and \(\mathrm{R} \times \mathrm{P}\) interaction are highly significant. (iv) Av. yield of castor in lb.jac.

\begin{tabular}{ll} 
S.E. of marginal mean of \(\mathbf{P}\) & \(=47.5 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of \(R\) & \(=38.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=67.2 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

Crop :- Castor (Kharif).
Site :- Regional Oilseeds Res. Stn., Kadiri.

Ref :- A.P. 54(8).
Type:-‘'C'.

Object:-To find out the optimum spacing for Castor crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) Nil. (ii) (a) Red soil. (b) Refer soil anolysis, Kadiri. (iii) 27.7.1954. (iv) (a) 1 ploughing, 1 disc harrowing and 2 guntaka. (b) In furrows. (c) N.A. (d) As per treatments. (e) 2. (v) Nil. (vi) TMV-(late). (vii) Unirrigated. (viii) Worked guntaka twice and weeded within rows. (ix) \(11.91^{\prime \prime}\). (x) 21.2 1955.
2. TREATMENTS :

All combinations of (1) and (2) +one control.
(1) 2 spacings between rows: \(\mathrm{R}_{1}=2^{\prime}\) and \(\mathrm{R}_{2}=3^{\prime}\).
(2) 2 spacings between plants : \(\mathrm{P}_{1}=1^{\prime}\) and \(\mathrm{P}_{2}=2^{\prime}\).

Control : \(3^{\prime}\) between rows and \(3^{\prime}\) between plants.
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 5 .
(b) N.A.
(iii) 4. (iv) (a) \(63^{\prime} \times 36^{\prime}\).
(b) \(57^{\prime} \times 24^{\prime}\). (v) \(3^{\prime} \times 6^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Severe attack of semi-looper-Calcium arsenate sprayed. (iii) Castor yield. (iv) (a) 1954-1956. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(301 \mathrm{lb} . / \mathrm{ac}\). (ii) \(71.7 \mathrm{lb} / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of castor in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(=341 \mathrm{lb} / \mathrm{ac}\).
\(\left.\begin{array}{c|cc} & P_{1} & P_{2} \\
\hline \mathbf{R}_{1} & 222 & 289 \\
\mathbf{R}_{2} . & 287 & 365\end{array}\right]\)\begin{tabular}{c}
256 \\
\hline Mean \\
\hline 254
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal means of \(R\) or \(P\) & \(=25.3 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=35.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Castor (Kharif).
Site :- Regional Oilseeds Res. Stn., Kadiri.

Ref :- A.P. 55(42).
Type :- ‘C'.

Object:-To find out the optimum spacing for Castor crop.
1. BASAL CONDITIONS :
(i) (a) Groundnut-Castor. (b) Groundnut. (c) Nil. (ii) (a) Red soil. (b) Refer soil analysis, Kadiri. (iii) 10, 11.6.1955. (iv) (a)2 country ploughings and 1 guntaka. (b) Dibbling. (c) N.A. (d) As per treatments. (e) 1. (v) \(2 \frac{1}{2}\) tons/ac. of F.Y.M. \(+3 \frac{1}{2}\) tons/ac. of tank silt. (vi) TMV-1 (early). (vii) Unirrigated. (viii) 3 . guntaka and 1 thinning. (ix) 17.33". (x) 15.3.1956.
2. TREATMENTS :

Same as in expt. no. 54(8) above.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 5. (b) N.A. (iii) 4 . (iv) (a) \(60^{\prime} \times 36^{\prime}\). (b) \(54^{\prime} \times 30^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of semi looper-Calcium arsenate sprayed. (iii) Castor yield. (iv) (a) 1954-1956.
(b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(254 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of castor in lb./ac.

Control \(=294 \mathrm{lb}\)./ac.
\begin{tabular}{l|ll|l} 
& \(\mathbf{P}_{1}\) & \(\mathbf{P}_{\mathbf{2}}\) & Mean \\
\hline \(\mathbf{R}_{\mathbf{1}}\) & 209 & 244 & 226 \\
\(\mathbf{R}_{\mathbf{2}}\) & 239 & 285 & 262 \\
\hline Mean & 224 & 264 & 244 \\
S.E. of marginal means of \(\mathbf{R}\) or \(\mathbf{P}\) & \(=22.2 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of table & \(=31.5 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

Crop :- Castor (Kharif).
Site :- Regional Oilseeds Res. Stn., Kadiri.

Ref:- A.P. 56(24).
Type :- 'C'.

Object:-To find out the optimum spacing for Castor crop.
1. BASAL CONDITIONS :
(i) (a) Castor-Groundnut. (b) Groundnut. (c) \(2 \frac{1}{2}\) tons/ac. of C.M. \(+3 \frac{1}{2}\) tons/ac. of tank siit. (ii) (a) Red sandy loam. (b) Refer soil analysis, Kadiri. (iii) 9.6.1956. (iv) (a) 2 country ploughings, 1 Guntaka and 1 gorru. (b) Dibbling. (c) \(8 \mathrm{lb} / \mathrm{ac}\). (d) As per treatments. (e) N.A. (v) \(3 \frac{1}{2}\) tons/ac. of C.M. \(+1 \frac{1}{2}\) tons/ac. of tank silt. (vi) TMV-1 (late). (vii) Unirrigated. (viii) 3 weeding and hoeing. (ix) \(33.53^{\prime \prime}\). (x) 14.3 .1957.

\section*{2. TREATMENTS :}

Same as in expt. no. \(54(8)\) on page 425.
3. DESIGN :
(i, Fact. in R.B.D. (ii) (a) 5. (b) N.A. (iii) 4, (iv) (a) \(60^{\prime} \times 36^{\prime}\). (b) \(48^{\prime} \times 24^{\prime}\). (v) \(6^{\prime} \times 6^{\prime}\). (vi) Yes.
4. GENERAL:
(i) Stunted growth. (ii) Attack of semi looper. Control measures taken N.A. (iii) Castor yield. (iv) (a) 1954-1956. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(672 \mathrm{lb} . / \mathrm{ac}\). (ii) 85.1 lb ./ac. (iii) Only main effect of P and 'control vs. others' are highly significant. (iv) Av. yield of castor in lb ./ac.
\begin{tabular}{l} 
Control \(=805 \mathrm{lb} . / \mathrm{ac}\). \\
\hline \(\mathrm{R}_{1}\) \\
\(\mathrm{R}_{2}\)
\end{tabular}

Crop :- Castor (Kharif).
Site :- Regional Oilseeds Res. Stn., Kadiri.

Ref :- A.P. 55(43).
Type ' C '.

Object:-To find out the optimum number of intercultures required for Castor crop.
1. BASAL CONDITIONS:
(i) (a) Groundnut-Castor. (b) Groundnut. (c) Nil.- (ii).(a) Red gravelly. (b) Refer soil analysis, Kadiri, (iii) 12.6 .1955 . (iv) 2 country ploughing and 1 guntaka. (b). Dibbling (c) \(8 \mathrm{lb} . / \mathrm{ac}\). (d) \(3^{\prime}\) between rows and 3' between plants. (e) 1. (v) \(2 \frac{1}{2}\) tons/ac. of F.Y.M. \(+3 \frac{\pi}{2}\) tons/ac.' of of tank silt. (vi) TMV-1 (ear!y). (vii) .Unirrigated. (viii) Guntaka worked and thinning done. (ix) 17.33". (x) 16.3.1956.
2. TREATMENTS :

6 levels of intercultures : 1. 1st and 3rd month, 2. 2nd and 4th month, 3. 1st, 3 rd and 5 th month, 4. 2nd, 3rd and 4th month, 5. 2nd, 3rd, 4th, and 5th month and 6. 1st, 2nd, \(3 \mathrm{rd}, 4 \mathrm{~h}\) and 5 th month.
3. DESIGN :
(i) R.B.D.
(ii) (a) 6 .
(b) N.A.
(iii) 4. (iv) \(63^{\prime} \times 21^{\prime}\).
(b) \(57^{\prime} \times 15^{\prime}\). (v) \(3^{\prime} \times 3^{\prime}\). (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Attack of semi looper-Calcium arsenate sprayed and tricho grame released. (iii) Castor yield. (lv) (a) 1954-1956. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(211 \mathrm{lb} . / \mathrm{ac}\). (ii) \(107.4 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of castor in lb ./ac.
\begin{tabular}{lcccccc} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 \\
Av. yield & 203 & 188 & 193 & 294 & 235 & 154 \\
& \multicolumn{6}{l}{ S.E./mean } \\
& \(=\) & \(53.7 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

Grop :- Gingelly.
Centre :- Karimnagar (c.f.).

Ref :- A.P. 59(SFT).
Type :- ' \({ }^{\prime}\) ?

Object:-Type A-To study the response of Gingelly to levels of \(N, P\) and \(K\) applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red and deep black soil. (iii) Nil. (iv) to (x) N.A.
2. TREATMENTS :
\(0=\) Control (no manure).
\(\mathrm{n}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
p \(\quad=20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
np \(\quad=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{k}=20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
\(\mathrm{nk}=20 \mathrm{lb} / \mathrm{ac}:\) of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
\(\mathrm{pk}=20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super \(+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
\(\mathrm{npk}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super \(+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.

3, DESIGN:
(i) and (ii) The district has been divided into four agriculturally homogenous zones and one field assistant: posted in each zone. The field assistant conducts the trials in onき Revenue circle or thana in the zone and: the circle/thana is changed once in two years within the same zone.. Each field assistant is required to conduct 31 trials 'in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on a oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type A and the other half of type B on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosphate application are stucied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1959-contd. (b) No. (c) N.A. (v) As per design. (vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & \(\square\) & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in \(\mathrm{lb} . / \mathrm{ac}\). & 206 & 560 & 263 & 14.0 & 148 & 99 & 313 & 148 & 8.2 \\
\hline & \multicolumn{8}{|l|}{Control mean \(=675 \mathrm{lb} . / \mathrm{ac}\). and no. of trials} & \\
\hline
\end{tabular}
```

 Crop :- Gingelly.
 Centre :- Visakhapatnam (c.f.).
 Ref :- A.P. 59(SFT).
Type:- 'M'.

```

Object :-Type A-To stuaiy the response of Gingelly to leve's of \(N_{2} P\) and \(K\) applied individually and in combinations.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. ii) Coastal. (iii) Nil. (iv) to (x) N.A.
2. TREATMENTS to 4. GENERAL :

Same as in expt, no. 59 (SFT) type A on page 427 conducted at Karimnagar.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in lb/ac. & 3:0 & 206 & -453 & 29.6 & -82 & 82 & 0 & 288 & 14.8 \\
\hline & \multicolumn{9}{|l|}{Control mean \(=411 \mathrm{lb} . / \mathrm{ac}\). and co. of trials \(=6\).} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Crop :- Gingelly. & Ref :- A.P. 59 (SFT). \\
Centre :- Karimnagar (c.f.). & Type :- ‘M’.
\end{tabular}

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii: Red and deep black soil. (iii) Nil. (iv) to (x) N.A.
2. TREATMENTS :
\(0=\) Contol (no manure).
\(\mathrm{n}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{n}_{2}=40 \mathrm{lb} . / \mathrm{ac}\). of N as A.S.
\(n_{1}^{\prime}=20 \mathrm{lb} / \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{2}^{\prime}=40 \mathrm{lb} . \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{1}{ }^{\prime \prime}=20 \mathrm{lb} . \mathrm{a}^{\prime} \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
\(\mathrm{n}_{2}{ }^{\prime \prime}=40 \mathrm{lb}\).;ac. of N as \(\mathrm{A}_{1} \mathrm{~S} / \mathrm{N}\).
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogenons zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on a oilseed crop and 3 on a legumincts crop. Half the number of trials conducted are of type \(A\) and the other half of type \(B\) on crops other than the legumes. The tnree trials on legumes are of type C. Residual effects of phosphate applicati \(n\) are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{a} c\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL :
(i) Normal. i) Nil. (iii) Grain yield. (iv) (a) 1959-contd. (b) No. (c) N.A. (v) As per design. (vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Effect & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime}\) & \(\mathrm{n}_{2}{ }^{\prime \prime}\) \\
\hline Av. yield & 123 & 123 & 173 & 132 & 156 & 132 & 165 \\
\hline & G.M & \(=\) & lb. /a & S.E. & 12.2 & c. an & of \\
\hline
\end{tabular}
```

Crop :- Gingelly:
Centre :- Srikakulam (c.f.).

```
Ref :- A.P. 59(SFT).
Type :- ' \(\mathbf{M}\) '.

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red soil. (iii) Nil. (iv) to (x) N.A.

TREATMENTS to 4. GENERAL :
Same as in expt. no. 59 (SFT) type B on page 428 conducted at Karimnagar.
```

RESULTS :

```
\begin{tabular}{lccccccc} 
Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathbf{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime}\) & \(\mathrm{n}_{2}{ }^{\prime \prime}\) \\
Av. yield & 189 & 255 & 288 & 214 & 214 & 239 & 239
\end{tabular} G.M. \(=234 \mathrm{lb} . / \mathrm{ac} . ;\) S.E. \(=15.7 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=2\).
\begin{tabular}{ll} 
Crop :- Gingelly. & Ref :- A.P. 59(SFT). \\
Centre :- Visalkhapatnam (c.f.). & Type :- 'M'.
\end{tabular}

Crop :- Gingelly.
Type :- 'M'.
Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Coastal.
(iii) Nil. (iv) to (x) N.A.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59(SFT) type B on page 428 conducted at Karimnagar.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 'Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime}\) & \(\mathrm{n}_{2}{ }^{\prime \prime}\) \\
\hline Av. yield & 436 & 527 & 518 & 510 & 502 & 502 & . 535 \\
\hline & \multicolumn{7}{|r|}{rials} \\
\hline
\end{tabular}

\footnotetext{
Crop :- Jute.
Ref :- A.P. 59(SFT).
Centre :- Srikakulam. (c.f.).
Type :- ' \(\mathbf{M}\) '.
}

Object:-Type A-To study the response of Jute to levels of \(N, P\) and \(K\) applied individually and in. combinations.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) Red. (iii) Nil. (iv) to (x) N.A.
2. TREATMENTS:
```

0 = Control (no manure).
m = 40 lb./ac. of N as'A/S.
p =20 lb./ac. of }\mp@subsup{P}{2}{}\mp@subsup{O}{5}{}\mathrm{ as Super.
np = 40 lb/ac of N as A/S+20 lb./ac. of P}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{O}}{5}{}\mathrm{ as Super.
k =20 lb./ac. of }\mp@subsup{\textrm{K}}{2}{}\textrm{O}\mathrm{ as Mur. Pot.
nk = 40 lb./ac. of N as A/S+20 lb./ac. of K}\mp@subsup{\textrm{K}}{2}{}\textrm{O}\mathrm{ as Mur. Pot.:
pk}=20\textrm{lb}./\textrm{ac}.0\mathrm{ of }\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{O}}{5}{}\mathrm{ as Super +20 lb./ac. of K}\mp@subsup{\textrm{K}}{2}{}\textrm{O}\mathrm{ as Mur Pot.
npk = 40 lb./ac. of N as A/S +20 lb./ac. of }\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{O}}{5}{}\mathrm{ as Super +20 lb}//\textrm{ac}.\mathrm{ of }\mp@subsup{\textrm{K}}{2}{}\textrm{O}\mathrm{ as Mur. Pot.

```
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assist int posted in each zone. The feld assistant conducts the trials in one Revenue circle or thana in the zone and the circle;thana is changed once in two years within the same zone. Each field assistantis required tu conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a ieguminous crop. Half the number of trials conducted are of type \(A\) and the other half of type \(B\) on crops other than the legumes. The three trials on legumes are of type \(C\). Residual effects of phosphate application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly located felds in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b, \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Fibre yield. (iv) (a) 1959 -contd. (b) No. (c) N.A. (v) As per design. (vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline \multirow[t]{2}{*}{Av response in lb. 'ac.} & 938 & 197 & 82 & 181.9 & \(-140\) & 16 & 115 & 280 & 121.0 \\
\hline & \multicolumn{8}{|l|}{Control mean} & \\
\hline
\end{tabular}

\section*{Crop:- Jute. \\ Centre :- Srikakulam (c.f.).}

Ref:- A.P. 59(SFT).
Type :- ' \(\mathbf{M}\) '.
Object:-Type B-To investigate the relative efficiency of different nitrogenous fertilziers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red soil. (ii) Nil. (iv) to (x) N.A.
2. TREATMENTS :
\(0=\) Control 'no manure).
\(\mathrm{n}_{1}=20 \mathrm{lb}\). ac. of N as \(\mathrm{A} / \mathrm{S}\).
\(n_{2}=40 \mathrm{lb} . \mathrm{ac}\). of N as A/S.
\(\mathrm{n}_{1}^{\prime}=20 \mathrm{lb}\). ac. of N as Urea.
\(n_{2}^{\prime}=40 \mathrm{lb} .2 \mathrm{ac}\) of N as Urea.
\(\mathbf{n}_{1}^{\prime \prime}=20 \mathrm{ib}\). \({ }^{\prime} \mathrm{ac}\). of N as A/S/N.
\(\mathbf{n}_{\mathbf{2}}{ }^{*}=40 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
3. DESIGN to 4. GENERAL :

Same as in expt. nc. 59(SFT) type A on page 429 conducted at Srikakulam
5. RESULTS :
\begin{tabular}{lccccccc} 
Effe:t & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}{ }^{\prime}\) & \(n_{2}{ }^{\prime}\) & \(n_{1}{ }^{\prime \prime}\) & \(n_{z}^{\prime \prime}\) \\
Av. yield & 4888 & 5941 & 6303 & 5538 & 6213 & 5307 & 5735
\end{tabular}
G.M. \(=5704 \mathrm{lb} . / \mathrm{ac} . ;\) S.E. \(=152.4 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=8\).

Crop :- Mesta (Kharif).
Site :- Mesta Res. Stn., Amadalavalasa.

Ref :- A.P. 59(64).
Type :- ' \({ }^{\mathbf{M}}\) '.

Object :-To study the effect of \(N, P\) and \(K\) at varying levels on the yield and quality of Fibre.
1. BASAL CONDITIONS :
(i) (a! Nil. (b) GM. as second crop. (c) N.A. (ii) (a) Alluvial. (b) N.A. (iii) 8.7.1959. (iv) (a) Tbree ploughings were giver by country plough. (b) Broadcasting. (c) N.A. (d) and (e) -. (v) 100 \(\mathrm{lb} . / \mathrm{ac}\) of A'S was applied on the first receipt of rain. (vi) N.A. (vii) Unirrigated. (viii) Two weedings and hoeines. 'ix) N A. (x) 30.101959.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
1. 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{\mathrm{i}}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\). \(/ \mathrm{ac}\).
2. 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0\), and \(\mathrm{P}_{1}=20 \mathrm{lb}\)./ac.
3. 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=20 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Partial confd. (ii) (a) 6 plots/block ; 2 blocks/replication. (b) N.A. (iii) 3. (iv) (a) \(1 / 80 \mathrm{ac}\). (b) \(1 / 95.2\) ac. (v) \(1.5^{\prime} \times 1^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Due to poor rainfall after September, the crop has suffered. (ii) Nil. (iii) Yield data. (iv) (a) 1959contd. (b) Ne. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(478 \mathrm{lb} / \mathrm{ac}\). (ii) \(86.4 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\). & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{P}_{0}\) & 387 & 521 & 458 & 455 & 444 & 466 \\
\hline \(\mathrm{P}_{1}\) & 513 & 537 & 450 & 500 & 488 & 513 \\
\hline Mean & 450 & 529 & 454 & 478 & 466 & 490 \\
\hline \(\mathrm{K}_{0}\) & 419 & 545 & 434 & & & \\
\hline \(\mathrm{K}_{1}\) & 481 & 514 & 474 & & & \\
\hline \multicolumn{4}{|r|}{\begin{tabular}{l}
S.E. of N marginal mean \\
S.E. of \(P\) or \(K\) marginal mean \\
S.E. of body of \(N \times P\) or \(N \times K\) table \\
S E. of body of \(\mathrm{P} \times \mathrm{K}\) table
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =24.9 \mathrm{lb} / \mathrm{ac} . \\
& =20.4 \mathrm{lb} / \mathrm{ac} . \\
& =35.3 \mathrm{lb} / \mathrm{ac} . \\
& =28.8 \mathrm{lb} / \mathrm{ac} .
\end{aligned}
\]} & \\
\hline
\end{tabular}

Crop :- Mesta (Kharif).
Site :- Mesta Res. Stn., Amadalavalasa.

Ref :- A.P. \(59(36)\)
Type :- \({ }^{6}{ }^{\prime}\).

Object:-To find out the effect of different spacings against the local method of broadcasting.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Green gram as second crop. (c) Nil. (ii) (a) Alluviai. (b) N.A. (iii) 6.7.1959. (iv) (a) 3 ploughings with country plough. (b) Dibbled. (c) N.A. (d) As per treatments. (e) N.A. (v) 100 \(\mathrm{lb} . / \mathrm{ac}\). of A/S was applied on the first receipt of rains. (vi) MT-166. (vii) Unirrigated. (viii) Two weedings. (ix) N.A. (x) 29.10.1959.

\section*{2. TREATMENTS :}

All combination of (1) and (2)+one extra treatment ( \(T=\) Broadcasting).
(1) Spacing within lines: \(S_{1}=2^{\prime \prime}, S_{2}=4^{\prime \prime}\) and \(S_{3}=6^{\prime \prime}\).
(2) Spacing between lines: \(\mathrm{L}_{1}=9^{\prime \prime}, \mathrm{L}_{2}=12^{\prime \prime}\) and \(\mathrm{L}_{3}=15^{\prime \prime}\).
3. DESIGN:
(i) R.B.D. (ii) (a) 10 . (b) \(64^{\prime} \times 55^{\prime}\). (iii) 4 . (iv) (a) N.A. (b) \(30^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.

4, GENERAL:
(i) The crop has suffered from extreme water stress in the later days due to poor rainfall after September. (ii) N.A. (iii) Yield data. (iv) 1959-contd. (b) No. (c) Nil. (v) (a) and (b)-. (vi) and (vii) Nil.
5. RESULTS :
(i) 401 lb ./ac. (ii) \(982 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of fibre in lb./ac.

432
\(T=460 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cccc:c} 
& \(\mathrm{L}_{\mathbf{1}}\) & \(\mathrm{L}_{\mathbf{2}}\) & \(\mathrm{L}_{\mathbf{3}}\) & Mean \\
\hdashline \(\mathrm{S}_{\mathbf{1}}\) & 375 & 339 & 314 & 343 \\
\(\mathrm{~S}_{2}\) & 448 & 496 & 375 & 440 \\
\(\mathrm{~S}_{3}\) & 424 & 375 & 399 & 399 \\
Mean & 416 & 403 & 363 & 394
\end{tabular}
S.E. of \(L\) or \(S\) marginal mean \(\quad=28.3 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table or T mean \(\quad=49.1 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{ll} 
Crop :- Mesta (Kharif). & Ref :- A.P. 59(35). \\
Site :- Mesta Res. Stn., Amadalavalasa. & Type :- 'C'.
\end{tabular}

Object :-To determine the optimum seed rate.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) G.M. as second crop. (c) N.A. (ii) (a) Alluvial. (b) N.A. (iii) 3.7.1959. (a) 3 plougdings with country plough. (b) Broadzasting. Seeds were covered witn bush harrowing. (c) As per treatments. (d) and (e) -. (v) 100 lb . of \(\mathrm{A} / \mathrm{S}\) was applied on first receipt of rain. (vi) MT-129. (vii) Unirrigated. (viji) Two weedings. (ix) N.A. 'x) 2.11.1959.
2. TREATMENTS :

8 seed rates : \(\mathrm{R}_{1}=5, \mathrm{R}_{2}=10, \mathrm{R}_{3}=15, \mathrm{R}_{4}=20, \mathrm{R}_{5}=25, \mathrm{R}_{6}=30, \mathrm{R}_{7}=35\) and \(\mathrm{R}_{8}=40 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) \(55^{\prime} \times 75^{\circ}\). (iii) 4 . (iv) (a) N.A. (b) \(26^{\prime} \times 17^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) The crop has suffered from extreme water stress in the later days due to poor rainfall after September. (ii) Nil. (iii) Yie d data. (iv) (a) 1959-contd. (b) No. (c) -. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(645 \mathrm{Ib} . / \mathrm{ac}\). (ii) \(170.1 \mathrm{lb} .{ }^{\prime} \mathrm{ac}\). (iii) Treatment differences are not signifeant. (iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathrm{R}_{3}\) & \(\mathrm{R}_{4}\) & \(\mathrm{R}_{5}\) & \(\mathbf{R}_{6}\) & \(\mathrm{R}_{7}\) \\
\hline Av. yield & 468 & 641 & 641 & 653 & 665 & 714 & 690 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Crop :- Roselle (Kharif). & Ref. :- A.P. 59(63). \\
Site :- Mesta Res. Stn., Amadalavalasa. & Type :- ‘M’.
\end{tabular}

Object :-To study the effect of \(\mathrm{N}, \mathrm{P}\) and K at varying levels on the yield and quality of Fibre.

\section*{1. BASAL CONDITIONS :}
(i) (a Nil. (b) Green gram as se:ond crop. (c) N.A. (ii) (a) Alluvial. (b) N.A. (iii) 7.7.1959. (iv) (a) 3 ploughings with country plough. (b) Broadcasted. (c) N.A. (d) and (e) -. (v) \(100 \mathrm{lb} / \mathrm{ac}\). of A/S was app'ied at the first receipt of rain. (vi) R T 26 . (vii) Unirrigated. (viii) Two weedings and harrowings. ( \(x\); N.A. (x) 27.11.1959.
2. TREATMENTS :

All combinations of (1), (2) and (3) :
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=40\) and \(\mathrm{N}_{2}=80 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=40 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=40 \mathrm{lb}\)./ac.,
3. DESIGN :
(i) Partial confd. (ii) (a) 6 plots/block; 2 blocks/replication, (b) N.A. (iii) 3. (iv) (a) \(25^{\prime} \times 22^{\prime}\). (b) \(23^{\prime} \times 20^{\prime}\). (v) \(1^{\prime} \times 1^{\prime}\). (vi) Yes.
4. GENER \(\angle L\) :
(i) Due to poor rainfall after September the crop has suffered. (ii) Nil. (iii) Yield data. (iv) 1959-contd. (b) No. (c) -. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(726 \mathrm{lb} . / \mathrm{ac}\). (ii) \(170.3 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) \\
\hline \(\mathrm{P}_{0}\) & 782 & 741 & 726 & 750 & 829 & 671 \\
\hline \(\mathrm{P}_{1}\) & 727 & 741 & 639 & 702 & 681 & 723 \\
\hline Mean & 754 & 741 & 683 & 726 & 755 & 697 \\
\hline \(\mathrm{K}_{0}\) & 805 & 734 & \(7 \grave{6}\) & & & \\
\hline \(\mathrm{K}_{1}\) & 704 & 749 & '639 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(N\) marginal mean & \(=49.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(P\) or \(K\) marginal mean & \(=40.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(N \times P\) or \(N \times K\) table & \(=69.5 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(P \times K\) table & \(=56.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Roselle (Kharif).
Site :- Mesta Res. Stra., Amadalavalasa.

Ref, :- A.P. 59(33).
Type :- ' C '.

Object:-To find out the effect of different spacings against the usual method of broadcasting.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) G.M. was second crop. (c) N.A. (ii) (a) Alluvial. (b) N.A. (iii) 2.7.1959. (iv)
(a) 3 ploughings with country plough. (b) Dibbling. (c) N.A. (d) As per treatments. (e) N.A.
(v) 100 lb ./ac. of \(\mathrm{A} / \mathrm{S}\) was applied after the first receipt of rain. (vi) \(\mathrm{RT}-1\) (Non-Bristle). (vii) Unirrigated (viii) Two weedings. (ix) N.A. (x) 6.11.1959.

\section*{2. TREATMENTS :}

Same as in expt. no. 59(36) on page 431.

\section*{3. DESIGN :}
(i) R.B.D.
(ii) (a) 10 . (b) \(64^{\prime} \times 85^{\prime}\).
(iii) 4. (iv) (a) and
(b) \(30^{\prime} \times 15^{\prime}\).
(v) No. (vi) Yes.
4. GENERAL: -
(i) Crop suffered due to poor rainfall. (ii) Nil. . (iii) Yield data. (iv) (a) 1959-contd. (b) No. (c) N.A. (v) (a) and (b)N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(663 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(124.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant. (iv) Av. yield of fibre in \(\mathrm{lb} . / \mathrm{ac}\).


\author{
Crop :- Roselle (Kharif). \\ Site :- Mesta Res. Stn., Amadalavalasa.
}

Ref. :- A.P. 59(34).
Type :- ' C '.
Object:-To determine the optimum seedrate.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Green gram as second crop. (c) Nil. (ii) (a) Alluvial. (b) N.A. (iii) 3.7.1959. (iv) (a) 3 ploughings with country plough. (b) Broadcasting: Seeds were covered by harrowing. (c) As per treatments. (d) and (e) -. (v) 100 lb . ac. of \(A_{/} S\) was applied after first receipt of rains. (vi) N.A. (vii) Unirrigaied. (viii) Two weedings and hoeings. (ix) N.A. (x) 27.11.1959.
2. TREATMENTS :

Same as in expt. no. 59(35) on page 432.
3. DESIGN :
(i) R.B.D. (ii) (a) 8 . (b) \(55^{\prime} \times 75^{\prime}\). (iii) 4. (iv) (a) and (b) \(26^{\prime} \times 17^{\prime}\). (v) No. (vi) Yes.
4. GENERAL:
(i) The crop suffered due to poor rainfall. (ii) Nil. (iii) Yjeld data. (iv) (a) \(1950-c o n t d\). (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(631 \mathrm{lb} . / \mathrm{ac}\). (ii) 163.9 lb ./ac. (iii) The treatment differences are not significant. (iv) Av. yield of fibre in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathrm{R}_{3}\) & \(\mathrm{R}_{4}\) & \(\mathrm{R}_{5}\) & \(\mathbf{R}_{6}\) & R7 & \(\mathrm{R}_{8}\) \\
\hline Av. yield & 517 & 665 & 653 & 641 & 665 & 776 & 530 & 604 \\
\hline & \multicolumn{8}{|l|}{S.E./mean \(=82.0 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Crop :- Turmeric (Kharif). & Ref.:- A.P. 56(14). \\
Site :- Turmeric Res. Stn., Peddapallem. & Type := ‘M'.
\end{tabular}

Object:-To assess the relative merits of F.Y.M. and G.M. as basal dressing and to find out the optimum level of \(N\) with and without \(P\) and \(K\) to the Turmeric crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Pillipesara for G.M. (c) 112 lb ./ac. of Super. (ii) (a) Stiff clayey soil. (b) Refer seil analysis, Peddapallem. (iii) \(5,68,1956\). (iv) a 8 ploughings. (b) Dibbling. (c) N.A. (d) \(18^{\prime \prime}\) between rows. (e' 1 holefac. (v) Nil. (vi) Desavali (late). (vii) Irrigated. (viii) 9 hand weedings and 4 intercultivations by working country plough, (ix) \(27.13^{\prime \prime}\). (x) \(28,29.3 .1957\).

\section*{2. TREATMENTS:}

Main-plot treatments:
\(\mathrm{M}_{1}=\) Raising of Pillipesara as G.M. crop over a basal dressing of Super at \(112 \mathrm{lb} . / \mathrm{ac}\). and ploughing in Situ.
\(M_{2}=F . Y . M\). to supply an equal quantity of \(N\) as contained in the G.M. incorporated in \(M_{1}\).
Sub-plot treatments:
All combinations of (1), (2) and (3):
(1) 3 levels of \(N\) as \(A / S\) and G.N.C. in 1:1 ratio: \(N_{1}=60, N_{2}=100\) and \(N_{3}=140 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=60 \mathrm{lb} / \mathrm{ac}\).
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul.: \(\mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=100 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 maic-plots/replication; 12 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(15^{\prime} \times 24^{\prime}\) (b) \(12^{\prime} \times 21^{\prime}\). (vi) \(1 \frac{1}{2}^{\prime} \times 1 \frac{1}{2}^{\prime}\). (vi) Yes.
4. GENERAL:
(i) Not satisfactory. (ii) Leaf spot disease, 2 sprayings with \(1 \%\) Bordeaux mixture. Mite attack on the crop observed ard the same was controlled by spraying Parathion. (iii) Main shoot height, no. of leaves/plant and yield of green rhizomes. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
- (i) \(7907 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(4350 \mathrm{lb} . / \mathrm{ac}\). (b) 1411 lb ./ac. (iii) None of the effects is signiffcant. (iv) Av. yield of green rbizomes in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 6854 & 8243 & 7403 & 7694 & 7638 & 7459 & 7549 \\
\hline \(\mathrm{N}_{2}\) & 7381 & 8769 & 7996 & 8154 & 7862 & 8288 & 8075 \\
\hline - \(\mathrm{N}_{3}\) & 7807 & 8389 & 8165 & 8030 & 7907 & 8288 & 8098 \\
\hline Mean & 7347 & 8467 & 7855 & 7959 & 7802 & 8012 & 7907 \\
\hline \(\mathrm{K}_{0}\) & 7504 & 8100 & 7696 & 7909 & & & \\
\hline \(\mathrm{k}_{1}\) & 7190 & 8834 & 8014 & 8008 & & & \\
\hline \(\mathrm{P}_{0}\) & 7358 & 8355 & & & & & \\
\hline \(\mathrm{P}_{1}\) & 7336 & 8579 & & & - & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{|c|c|}
\hline 1. M marginal means & \(887.9 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 2. P or K marginal means & 288.0 lb./ac. \\
\hline 3. N marginal means & 352.8 lb./ac. \\
\hline 4. P or K means at the same level of M & \(=407.3 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 5. N means at the same level of M & \(=498.9 \mathrm{lb} . \mathrm{ac}\). \\
\hline 6. M means at the same Jevel of P or K & \(=933.5 \mathrm{lb} / \mathrm{ac}\). \\
\hline 7. M means at the same level of \(\mathbf{N}\) & \(=976.9 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of body of \(\mathrm{N} \times \mathrm{P}\) or \(\mathrm{N} \times \mathrm{K}\) table & \(=352.8 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of body of \(\mathbf{P} \times \mathrm{K}\) table & \(=288.0 \mathrm{lb} / \mathrm{ac}\). \\
\hline
\end{tabular}

Crop :- Turmeric (Kharif).
Site :- Turmeric Res. Stn., Peddapallem.

Ref:- A.P. 57(45).
Type :- ' \(\mathbf{~ ' M}\).

Object :-To assess the relative merits of F.Y.M. and G.M. as basal dressing and to find out the optimum levels of N with and without P and K to the Turmeric crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Pillipesara for G.M. (c) 112 lb ./ac. of Super. (ii) (a) Stiff clayey. (b) Refer soil analysis, Peddapallem. (iii) 6.7.1957. (iv) (a) 6 ploughings. (b) and (c) N.A. (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) Desavali (late). (vii) Irrigated. (viii) 9 hand weedings and 5 intercultivations. (ix) \(33.96^{\prime \prime}\). (x) \(16 / 19.3 .1958\).
2. TREATMENTS

Same as in expt. no. 56(14) on page 434.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/replication; 12 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(12^{\prime} \times 27^{\prime}\) (b) \(9^{\prime} \times 24^{\prime}\). (v) \(1 \frac{1}{2}^{\prime} \times 1 \frac{1}{2}^{\prime} . \quad\) (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Spraying \(1 \%\) Bordeaux mixture against leaf spot disease. (iii) Main shoot height, no. of tillers no. of leaves per plant and yield of green rhizomes. (iv) (a) 1956 -contd. (b) No. (c) Nil. (v) to (vii' Nil.
5. RESULTS :
(i) \(9.459 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(2369 \mathrm{lb} . / \mathrm{ac}\). (b) 1492 lb ./ac. (iii) Main effect of K and interaction \(\mathrm{P} \times \mathrm{K}\) are significant. Others are not significant. (iv) Av. yield of green rbizomes in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 8466 & 10201 & 9232 & 9435 & 9117 & 5550 & 9334 \\
\hline \(\mathrm{N}_{2}\) & 8812 & 10150 & 9474 & 9488 & 8913 & 10048 & \(9+80\) \\
\hline \(\mathrm{N}_{3}\) & 9079 & 10048 & 9091 & 10035 & 9042 & 10086 & 9554 \\
\hline Mean & 8785 & 10133 & 9266 & 9652 & 9023 & 9895 & 9459 \\
\hline \(\mathrm{K}_{0}\) & 8475 & 9571 & 8518 & 9528 & & & \\
\hline \(\mathrm{K}_{1}\) & 9096 & 10694 & 10014 & 9776 & & & \\
\hline \(\mathbf{P}_{0}\) & 8730 & 9801 & & & & & \\
\hline \(\mathrm{P}_{1}\) & 8841 & 10454 & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{|c|c|}
\hline 1. \(\mathbf{M}\) marginal means & \(=483.6 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 2. P or K marginal means & \(304.6 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 3. N marginal means & \(=373.0 \mathrm{lb} / \mathrm{ac}\). \\
\hline 4. P or K means at the same level of M & \(=430.7 \mathrm{lb}, / \mathrm{ac}\). \\
\hline 5. Nimeans at the same level of \(M\) & \(=527.5 \mathrm{lb} / \mathrm{ac}\). \\
\hline 6. M means at the same level of P or K & \(=571.4 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 7. M means at the same level of N & \(=647.5 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of body of \(\mathrm{N} \times \mathrm{P}\) or \(\mathrm{N} \times \mathrm{K}\) table & \(=373,0 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of body of \(\mathrm{P} \times \mathrm{K}\) table & \(=304.6 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}

Crop :- Turmeric (Kharif).
Site :- Turmeric Res. Stn., Peddapallem.

Ref :- A.P. 58(82).
Type :- 'M'.

Object:-To assess the relative merits of F.Y.M. and G.M. as basal dressing and to find out the cptimum level of \(N\) with and without \(P\) and \(K\) to the Turmeric crop.
1. BASAL CONDITIONS:
(i) 'a) Nil. (b' Pillipesara. (c) \(112 \mathrm{Ib} . / \mathrm{ac}\). of Super. (ii) (a) Stiff clayey soil. (b) Refer soil anaiysis, Peddapallem (iii) 23.24.7.1958. (iv) (a) 4 ploughings. (b) Hand dibbling. (c) and (d) N.A. (e) 1. (v) Nil. (vi) Desavali (late;. .vii) Irrigated. (viii) 10 hand weedings and 4 intercultivations. (ix; 24.1". (x) 22 to 24.3.1959.
2. TREATMENTS:

Same as in expt. no. 56(14) on page 434.
3. DESIGN :
(i) Split-plot. (ii) (a) 24 . (b) \(72^{\prime} \times 108^{\prime}\). (iii) 4 . (iv) (a) \(12^{\prime} \times 27^{\prime}\). (b) \(9^{\prime} \times 24^{\prime}\). (v) \(1 \xi^{\prime} \times 1 \frac{1}{2}^{\prime}\). (ii) Yes.

\section*{4. GENERAL :}
(i) The germination was adversely affected due to heavy rains soon after planting. (ii) Soil drenching with \(0.3 \%\) chestnut compound against 'wilt' disease. Spraying with \(1 \%\) Bordeaux mixture against leaf spot and sulphur dusting againt mite attack. (iii) Yield of green rhizomes. (iv) (a) 1956-contd. (b) and (c) No. (v) to (vii) Nil.
5. RESULTS :
(i) \(7960 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(4413 \mathrm{lb} . / \mathrm{ac}\). (b) \(1523 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effects of \(\mathrm{N}, \mathrm{P}\) and K are highly significant. (iv) Av. yield of green rhizomes in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 7683 & 8490 & 6810 & 9363 & 8042 & 8131 & 8087 \\
\hline \(\mathrm{N}_{2}\) & 7325 & 9117 & 7907 & 8535 & 7840 & 8602 & 8221 \\
\hline \(\mathrm{N}_{3}\) & 6832 & 8310 & 7930 & 7213 & 7370 & 7773 & 7571 \\
\hline Meå & 7280 & 8639 & 7549 & 8370 & 7751 & 8169 & 7960 \\
\hline \(\mathrm{K}_{0}\) & 6810 & 8691 & 7414 & 8086 & & & \\
\hline \(\mathrm{K}_{1}\) & 7750 & 8587 & 7683 & 8654 & & & \\
\hline \(\mathrm{P}_{0}\) & 6989 & 8109 & & & & & \\
\hline \(\mathrm{P}_{1}\) & 7571 & 9169 & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{|c|c|}
\hline 1. 'M marginal means & \(901 \mathrm{lb} / \mathrm{ac}\). \\
\hline 2. P or K marginal means & \(311 \mathrm{lb} / \mathrm{ac}\). \\
\hline 3. N marginal means & \(=381 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 4. P or K means at the same level of M & \(=439 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 5. N means at the same level of M & \(538 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 6. M means at the same level of \(P\) or \(K\) & \(\doteq 953 \mathrm{lb}\). ac . \\
\hline 7. M means at the same level of N & \(=1002 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of body \(\mathrm{N} \times \mathrm{P}\) or \(\mathrm{N} \times \mathrm{K}\) table & \(=381 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of body of \(\mathrm{P} \times \mathrm{K}\) table & \(=311 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}

Grop :- Tưrmeric (Kharif).
Site :- Turmeric Res, Stn., Peddapallem.

> Ref :- A.P. 59(75).

Type :- \({ }^{6} \mathbf{M}^{\prime}\).

Object :-To assess the relative merits of F.Y.M. and G.M. as basal dressing and to find out the optimum level of \(N\) with and without \(P\) and \(K\) to the Turmeric crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Pillipesara. (c) \(112 \mathrm{lb} . / \mathrm{ac}\). of Super. (ii) (a) Stiff clayey soil. (b) Refer soil analysis, Peddapallem. (iii) 9.8.1959. (iv) (a) 10 ploughings. (b) Dibbling. (c) N.A. (d) \(18^{\prime \prime}\) between rows. (e) N.A:' (v) Nil. (vi) Desavali (late). (vii) Irrigated. (viii) 9 hand weedings and 2 intercultivations. (ix) \(21.7^{\prime \prime}\). (x) 4.4.1960 to 6.4.1960.
2. TREATMENTS :

Same as in expt. no. 56(14) on page 434.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block and 12 sub-plots/main-plot. (b) \(24^{\prime} \times 162^{\prime}\). (iii) 4 . (iv) (a) \(12^{\prime} \times 27^{\prime}\). (b) \(9^{\prime} \times 24^{\prime}\). (v) \(1 \frac{12^{\prime}}{} \times 1 \frac{1_{2}^{\prime}}{}\). (vi) Yes.
4. GENERAL :
(i) The germination badly affected due to heavy rains. Gap-filling brought considerable improvement. (ii) Minor attack of colletotrichum leaf-spot disease. Spraying of \(1 \%\) Bordeaux mixture against it. Drenching with \(0.3 \%\) chestnut compound was done against "wilt" disease. Spraying with Parathion was done against leaf-mite attack. (iii) Yield of green rhizomes. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(9479 \mathrm{lb} / \mathrm{ac}\). (ii) (a) \(2374 \mathrm{lb} . / \mathrm{ac}\). (b) \(2778 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is \(s\) gnificant. (iv) Av. yield of green rhizomes in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{1}\) & \(\mathbf{M}_{\mathbf{2}}\) & & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 9946 & 8624 & & 8758 & S811 & 9341 & 9230 & 9285 \\
\hline \(\mathrm{N}_{2}\) & 9498 & 9520 & & 9541 & 9478 & 8826 & 10192 & 9509 \\
\hline \(\mathrm{N}_{2}\) & 9229 & 10058 & & 8803 & 10485 & 9385 & 9903 & 9644 \\
\hline Mean & 9558 & 9401 & & 9034 & 9925 & 9184 & 9775 & 9479 \\
\hline \(\mathrm{K}_{0}\) & 9318 & 9050 & & 8422 & 9946 & & & \\
\hline \(\mathrm{K}_{1}\) & 9800 & 9750 & , & 9646 & 9904 & & & \\
\hline \(\mathrm{P}_{0}\) & 9152 & 8915 & & & & & & - \\
\hline \(\mathrm{P}_{1}\) & 9964 & 9887 & & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{|c|c|}
\hline 1. M marginal means & \(484.6 \mathrm{lb} . \mathrm{ac}\). \\
\hline 2. P or K marginal means & . \(567.0 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 3. N marginal means & \(=694.5 \mathrm{lb} / \mathrm{ac}\). \\
\hline 4. P or K means at the same level of M & 801.9 lb ./ac. \\
\hline 5. N means at the same level of M & \(982.2 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 6. M means at the same level of P or K & \(745.9 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 7. M means at the same level of N & \(937.0 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of body of \(\mathbf{N} \times \mathrm{P}\) or \(\mathbf{N} \times \mathrm{K}\) toble & \(694.5 \mathrm{lb} / \mathrm{ac}\). \\
\hline S.E. of body of \(\mathrm{P} \times \mathrm{K}\) table & \(=567.0 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}

Grop :- Turmeric.
Centre :- Krishna Dist. (c.f.).

Ref :- A.P. 59(SFT).
Type :- ' \(\mathbf{M}^{\prime}\).

Object:-Type A-To study the response of Turmeric to levels of \(\mathrm{N}, \mathrm{P}\) and K , applied individually and in combinations.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) Coastal. (iii) Nil. (iv) July-August 1959. (v) to (ix) N.A. (x) January-February 1959.
2. TREATMENTS :

0 = Control (no manure).
\(\mathrm{n}=50 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(\mathrm{p}=25 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{np}=50 \mathrm{lb}\). ac. of N as \(\mathrm{A} / \mathrm{S}+25 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{k}=50 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. of Pot.
\(\mathrm{nk}=50 \mathrm{lb}\).'ac. of N as \(\mathrm{A} / \mathrm{S}+50 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. of Pot.
\(\mathrm{pk}=25 \mathrm{lb} .: \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +50 ib ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. of Pot.
npk \(=50 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+25 \mathrm{lb}\)., ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as \(\mathrm{Super}+50 \mathrm{lb}\). ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. of Pot.
3. DESIGN :
(i) and (ii) The district has been divided irto four agriculturally homogeneous zones and one fie'd assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thara in the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is reouired to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crep and 3 on a leguminous crop. Half the number of trials conducted are of Type \(A\) and the other half of Type \(B\) on crops other than the legumes. The three trials on legumes are of Type C. Residual effects of phosphate application are studied on Type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly lozated fields in randomly selected villages in each of the four zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes

\section*{4. GENERAL :}
(i) Normal. (ii) Nil. (iii) Rhizomes yield. (iv) (a) 1959-contd. (b) No. (c) N.A. (v) (a) No. (b) NA. (v) As per design. (vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in lb./ac. & 2288 & 1168 & 1835 & 534.0 & 99 & -354 & 214 & 41 & 485.4 \\
\hline & \multicolumn{9}{|l|}{Control mean \(=13157 \mathrm{lb}\)./ac. and no. of tria} \\
\hline
\end{tabular}

\section*{Grop:- Turmeric. \\ Centre :- Krishna Dist. (c.f.).}

Object :-Type A-To investigate the relative efficiency of different nitrogenous fertilizers at different doses. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal. (iii) Nil. (iv) July—August, 1959. (v) to (ix) N.A. (x) January - February, 1959.
2. TREATMENTS :
\(0=\) Control (no manure).
\(\mathrm{n}_{1}=50 \mathrm{Ib} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{n}_{\mathbf{2}}=100 \mathrm{lb} / \mathrm{ac}\). of N as A/S.
\(\mathrm{n}_{1}^{\prime}=50 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{n}_{2}^{\prime}=100 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{1}{ }^{\prime \prime}=50 \mathrm{Jb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
\(\mathrm{n}_{2}{ }^{\prime \prime}=100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
3. DESIGN and 4. GENERAL :

Same as in expt. no. 59 (SFT) type A on page 438 conducted at Krishna.
5. RESULTS :
\(\begin{array}{llllllll}\text { Treatment } & 0 & n_{1} & n_{2} & n_{1}^{\prime} & n_{2}{ }^{\prime} & n_{1}{ }^{\prime \prime} & n_{2}{ }^{\prime \prime}\end{array}\)
\(\begin{array}{lllllllll}\text { Av. yield } & 14293 & 16293 & 17576 & .16564 & 17017 & 17173 & 19337\end{array}\)
G.M. \(=16893 \mathrm{lb} . / \mathrm{ac} . ;\) S.E. \(=190.3 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=3\).

Crop :- Turmeric (Kharif).
Site :- Turmeric Res. Stn., Peddapallem.

Ref :- A.P. 55(25).
Type:- ' C '.

Object :-To ascertain the comparative merits of planting different types of seed material viz. mother rhizomes as whole, cut mothers and primary fingers in relation to different spacings.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Turmeric. (c) N.A. (ii) (a) Stiff clayey soil. (b) Refer soil analysis, Peddapallem. (iii) 3, 4.8.1955. (iv) (a) 6 ploughings. (b) In furrows. (c) N.A. (d) As per treatments. (e) N.A. (v) G.M. crop of pillipesara was ploughed in and castor cake at 960 lb ./ac. applied before planting. (vi) Desavali (late). (vii) Irrigated. (viii) 8 hand weedings. (ix) N.A.' (x) 21.3.1956.
2. TREATMENTS :
```

Main-plot treatments:
Spacing between rows : $S_{1}=12^{\prime \prime}, S_{2}=18^{\prime \prime}$ and $S_{3}=24^{\prime \prime}$.

```

\section*{Sub-plot treatments :}

All combinations of (1) and (2)
3 seed materials: \(M_{1}=\) Fingers, \(M_{2}=\) Mother rhizomes and \(M_{3}=\) Mother rhizomes (longitude cut).
2 spacings within rows: \(\mathbf{R}_{1}=9^{\prime \prime}\) and \(\mathrm{R}_{2}=12^{\prime \prime}\).
3. DESIGN :
(1) Split-plot. (ii) (a) 3 main-plots/replication ; 6 sub-plets/main-plot. (b) N.A. (iii) 4. (iv) (a) \(12^{\prime} \times 36^{\prime}\). (b) \(6 \times 33^{\prime}\). (v) \(3 \times 15^{\prime}\). (vi) Yes.

\section*{4. GENERAL :}
(i) Poor. (ii) Rhizome rot disease and leaf spot disease affected the crop. Spraying and drenching with \(1 \%\) Bordeaux mixture three times. (iii) Main shoot beight, no. of tillers, number of leaves per plant and yield of green rhizomes. (iv) (a) 1955-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(4415 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(1904 \mathrm{lb} . / \mathrm{ac}\). (b) \(1770 \mathrm{lb} . / \mathrm{ac}\). (iii) Only interaction \(\mathrm{M} \times \mathrm{S}\) is significart. (iv, Av. yield of green rhizomes in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l:llll|lll} 
& \(\mathbf{S}_{\mathbf{1}}\) & \(\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{3}}\) & Mean & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) \\
\hline \(\mathbf{M}_{\mathbf{1}}\) & 3718 & 4144 & 5197 & 4353 & 4397 & 4309 & \\
\(\mathbf{M}_{\mathbf{2}}\) & 5802 & 5040 & 3226 & 4689 & 5103 & 4275 \\
\(\mathbf{M}_{\mathbf{3}}\) & 4995 & 3181 & 4435 & 4204 & 4753 & 3653 \\
\hline Mean & 4838 & 4122 & 4286 & 4415 & 4751 & 4079 \\
\hline \(\mathbf{R}_{\mathbf{1}}\) & 5219 & 4659 & 4376 & & \\
\(\mathbf{R}_{\mathbf{2}}\) & 4458 & 3584 & 4196 & &
\end{tabular}
S.E. of difference of two
1. \(S\) marginal means \(\quad=549.6 \mathrm{lb} . / \mathrm{ac}\).
2. R marginal means \(\quad=417.2 \mathrm{lb} . / \mathrm{ac}\).
3. M marginal means \(\quad=510.9 \mathrm{lb} . / \mathrm{ac}\).
4. \(R\) means at the same level of \(S \quad=722.6 \mathrm{lb} . / \mathrm{ac}\).
5. \(M\) means at the same level of \(S \quad=885.0 \mathrm{lb} . / \mathrm{ac}\)
6. \(S\) means at the same level of \(R \quad=750.4 \mathrm{lb} / \mathrm{ac}\).
7. \(S\) means at the same level of \(\mathrm{M}=9079 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of \(R \times M\) table \(\quad=510.9 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Turmeric (Kharif).
Site :- Turmeric Res. Stn., Peddapallem.

Ref:- A.P. 56(27).
Type :- 'C'.

Object :- To ascertain the comparative merits of planting different types of seed material viz. mother rhizomes as whole, cut mothers and primary fingers in relation to different spacings.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Sann hemp and Jonna. (c) Nil. (ii) (a) Stiff clayey soil. (b) Refer soil analysis, Peddapallem. (iii) 27, 28.7.1956. (iv) (a) 10 ploughings. (b) Planting in furrows. (c) N.A. (d) As per treatments. (e) -. (v) \(6000 \mathrm{lb} / \mathrm{ac}\). of pillipesara as G.M. +960 lb ./ac. of castor cake \(+112 \mathrm{lb} . / \mathrm{ac}\). of Super. (vi) Local desavall (late). (vii) Irrigated. (viii) 9 hand weedings. (ix) \(28.89^{*}\). (x) 24.31957.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 55(25) on page \(43 \%\).
5. RESULTS :
(i) \(9313 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(2330 \mathrm{lb} . / \mathrm{ac}\). (b) \(1971 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effects of S and M are highly significant and main effect of \(R\) is significant. None of the interactions is significant. (iv) Av. yield of green rhizomes in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & Mean & \(\mathrm{R}_{1}\) & \(\mathbf{R}_{2}\) \\
\hline \(\mathrm{M}_{1}\) & 11648 & 7280 & 6272 & 8400 & 8803 & 7997 \\
\hline \(\mathrm{M}_{2}\) & 13216 & 9766 & 10528 & 11170 & 12400 & 9939 \\
\hline \(\mathrm{M}_{3}\) & 10909 & 7616 & 6568 & 8370. & 8425 & 8314 \\
\hline Mean & 11924 & 8221 & 7795 & 9313 & 9876 & 8750 \\
\hline \(\mathrm{R}_{1}\) & 12693 & 9117. & 7818 & & & \\
\hline \(\mathrm{R}_{2}\) & 11152 & 7325 & 7773 & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{|c|c|c|}
\hline 1. S marginal means & \(=\) & \(673 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 2. R marginal means & \(=\) & \(465 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 3. M marginal means & \(=\) & \(569 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 4. \(R\) means at the same level of \(S\) & = & \(805 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 5. M means at the same ievel of \(S\) & = & \(985 \mathrm{lb} / / \mathrm{ac}\). \\
\hline 6. S means at the same level of \(R\) & = & \(881 \mathrm{lb} . / \mathrm{ac}\). \\
\hline 7. S means at the same level of M & = & \(1049 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of body of \(\mathrm{R} \times \mathrm{M}\) table & \(=\) & \(169 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}

Crop :- Turmeric (Kharif).
Site :- Turmeric Res. Stn., Peddapallem.

Ref :- A.P. 57(44),
Type:- 'C'.

Object:-To ascertain the comparative merits of planting different types of seed material viz. mother rhizomes as whole, cut mothers and primary fingers in relation to different spacings.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Sannhemp for G.M. (c) Nil. (ii) (a) Stiff clayey. (b) Refer soil analysis, Peddapallem. (iii) 29, 30.6.1957. (iv) (a) Country ploughing. (b) Planted in furrows. (c) N.A. (d) As per treatments. (e) NA. (v) \(10,000 \mathrm{lb} . / \mathrm{ac}\). of sannhemp +4300 lb ./ac. of F.Y.M. \(+960 \mathrm{lb} . / \mathrm{ac}\). of castor cake \(+112 \mathrm{lb} . / \mathrm{ac}\). of Super +480 \(\mathrm{lb} . / \mathrm{ac}\) of Expella cake +72 lb ./ac. of \(\mathrm{A} / \mathrm{S}\). (vi) Desavali (local). (vii) Irrigated. (viii) 12 handweedings and 4 intercultivations. (ix) \(34.50^{\circ}\). (x) 12.3.1958 to 16.3.1958.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 55(25) on page 439.
5. RESULTS:
(i) \(10005 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) 1256 lb ./ac. (b) 1544 lb ./ac. (iii) Main effects of R and M are significant. Interactions \(\mathbf{R} \times \mathbf{M}\) and \(\mathbf{S} \times \mathbf{R}\) are significant. (iv) Av. yield of green rhizomes in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(S_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & Mean & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) \\
\hline \(\mathrm{M}_{1}\) & 9505 & 8325 & 9168 & 8999 & 9806 & . 8192 \\
\hline \(\mathrm{M}_{2}\) & 11839 & 11446 & 12570 & 11952 & 11774 & 12130 \\
\hline \(\mathrm{M}_{3}\) & 8662 & 9393 & 9140 & 9065 & 9918 & 8212 \\
\hline Mean & 10002 & 9721 & 10293 & : 10005 & 10499 & 9511 \\
\hline \(\mathrm{R}_{1}\) & 11286 & 9262 & 10949 & & , & \\
\hline \(\mathrm{R}_{2}\) & 8718 & 10180 & 9636 & & & \\
\hline
\end{tabular}

\section*{S.E. of difference of two}
1. \(S\) marginal means \(\quad=564 \mathrm{lb} . / \mathrm{ac}\).
2. \(R\) marginal means \(\quad=363 \mathrm{lb} . / \mathrm{ac}\).
3. \(M\) marginal means \(\quad=445 \mathrm{lb} . / \mathrm{ac}\).
4. \(R\) means at the same level of \(S \quad=630 \mathrm{lb} . / \mathrm{ac}\).
5. \(M\) means at the same level of \(S=772 \mathrm{lb} . / \mathrm{ac}\).
6. \(S\) means at the same level of \(R \quad=719 \mathrm{lb} . / \mathrm{ac}\).
7. \(S\) means at the same level of \(M=846 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of \(\mathbf{R} \times \mathrm{M}\) table \(=445 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Turmeric (Kharif). \\ Site :- Turmeric Res. Stn., Peddapallem.}

\section*{Ref :- A.P. 58(81).}

Type :- ‘C'. \(\cdot\)
Object:-To ascertain the comparative merits of planting different types of seed material viz. mother rhizomes as whole, cut mo hers and primary fingers in relation to different spacings.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jonna. (c) N;1. (ii) (a) Stiff clay soil. (b) Refer soil analysis, Peddapallem. (iii) 16, 17.7.1958. (iv) (a) 4 ploughing; and making beds. (b) Hard dibbling. (c) -. (d) As per treatments. (e) 1 . (v) 13440 \(\mathrm{lb} . / \mathrm{ac}\). of F.Y M. \(+14,560 \mathrm{lb} . / \mathrm{ac}\). of compost \(+296 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. \(+252 \mathrm{lb} / \mathrm{ac}\). of A/S. (vi) Desavali (late). (vii) Irrigated. (viii) 12 hand weedings and 2 intercultivations. (ix) 25.6. (x) 19 to 21.3.1959.
2. TREATMENT :

Main-plot treatments:
\(\mathrm{M}_{1}=\) Broad ridges \(4^{\prime}\) wide with rows spaced \(12^{\prime \prime}\) apart. and \(\mathrm{M}_{2}=\) Ridges "and furrows \(20^{\prime \prime}\) apart with rows spaced \(20^{\circ}\) apart.

\section*{Sub-plot treatments :}
\(\mathrm{T}_{1}=\) Whole mother rhizomes planted \(12^{\circ}\) apart, \(\mathrm{T}_{2}=\) Whole mother rhizomes planted \(8^{\prime \prime}\) apart, \(\mathrm{T}_{3}=\) Cut mother rhizomes planted \(8^{*}\) apart, \(\mathrm{T}_{4}=\) Cut mother rhizomes planted \(4^{*}\) apart, \(\mathrm{T}_{5}=\) Primary fingerlings planted \(8^{\prime \prime}\) apart and \(\mathrm{T}_{6}=\) Primary fingerlings planted \(4^{\prime \prime}\) apart.
-3. DESIGN ;
(i) Split-plot. (ii) (a) 2 main-plots!replication and 6 sub-plots/main-plot. (b) \(60^{\prime} \times 96^{\prime}\). (iii) 4 . (iv) (a) \(15 \times 32^{\prime}\) (b) \(10^{\prime} \times 30^{\prime} .\). (v) \(2.5^{\prime} \times 1^{\prime}\). (vi) Yes.
4. GENERAL ;
(i) Good. (ii) Soil drenching with \(0.3 \%\) chestnut compound done against 'wilt' disease. Spraying with \(1 \%\) Bordeaux mix. 2 times against 'leaf spot' disease. Sulphur dusting against 'mite' attack. (iii) 1955-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS ;
(i) \(18513 \mathrm{lb} / \mathrm{ac}\). (ii) (a) \(3158 \mathrm{lb} . / \mathrm{ac}\). (b) \(2419 \mathrm{lb} . / \mathrm{ac}\). (iii) M effect is alone highly significant. (iv) Av. yield of turmeric in lb.fac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{T}_{1}\) & T2 & T3 & T4 & \(\mathrm{T}_{5}\) & T6 & Mean \\
\hline \(\mathrm{M}_{1}\) & 22646 & 21414 & 22870 & 21907 & 25603 & 24662 & 23184 \\
\hline \(\mathrm{M}_{2}\) & 14067 & 15366 & 14268 & 12835 & 13059 & 13462 & 13843 \\
\hline Mean & 18356 & 18390 & 18569 & 17371 & 19331 & 19062 & 18513 \\
\hline
\end{tabular}
S.E. of difference of two
\(\begin{array}{ll}\text { 1. } \mathrm{M} \text { marginal means } & =912 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. } \mathrm{T} \text { marginal means } & =1209 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } T \text { means at the same level of } \mathrm{M} & =1710 \mathrm{lb} . / \mathrm{ac} . \\ \text { 4. M means at the same level of } T & =1808 \mathrm{lb} . / \mathrm{ac} .\end{array}\)

Crop :- Turmeric (Kharif).
Site :- Turmeric Res. Stn., Peddapallem.

Ref :- A.P. 59(76).
Type:- \(\mathbf{C}\) '.

Object:-To ascertain the comparative merits of planting different types of seed material viz. mother. rhizomes as whole, cut mothers and primary fingers in relation to different spacing.

\section*{BASAL CONDITIONS :}
(i) (a) Nil. (b) Paddy+Red gram. (c) \(76 \mathrm{lb} . / \mathrm{ac}\). of A/S. (ii) (a) Stiff chayey. (b) Refer soil analysis, Peddapallem. (iii) 30.7 .1959 to 1.8 .59 . (iv) (a) 7 ploughing with country plough. (b) Planted in furrows. (c) N.A. (d) As per treatments. (e) N.A. (v). \(8280 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. + compost \(176 \mathrm{lb} . / \mathrm{ac}\). of Super, \(104 \mathrm{lb} . / \mathrm{ac}\). of Pot. Sul. \(593 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. and 153 lb ./ac. of A/S. (vi) Duggirala local-Desavali (late). (vii) Irrigated. (viii) 10 hand weedings and 3 intercultivations. (ix) \(25.3^{\prime \prime}\). (x) 10.3 .1960 to 13.3.1960.
2. TREATMENTS to 3. DESIGN :

Same as in expt. \(58(81)\) on page 442.
4. GENERAL :
(i) Heavy and continuous rainfall at the time of planting resulted in rotting of rhizomes. Gap-filling was done. (ii) 'wilt' disease 'colletotrichum' leaf-spot disease was very severe. \(1 \%\) Bordeaux mixture sprayed against leaf spot disease \(0.3 \%\) cheshnut compound was sprayed once against 'will' spraying B.H.C. \(50 \%\) against 'lace wing bugs'. Spraying Parathion against 'leaf-mite'. (iii) Yield of grain. (iv) (a) 1955-contd. (b) N.A. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(9509 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(2040 \mathrm{glb} . / \mathrm{ac}\). (b) \(278 \mathrm{lb} . / \mathrm{ac}\). (iii) M effect is highly significant. Interaction \(\mathrm{M} \times \mathbf{T}\) is significant. (iv) Av. yield of turmeric in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & T & T \({ }_{2}\) & T3 & \(\mathrm{T}_{4}\) & \(\mathrm{T}_{5}\) & T 6 & . Mean \\
\hline \[
\ddot{M}_{1}
\] & 10416 & 10685 & 15389 & 10349 & 17517 & 12925 & 12880 \\
\hline \(\mathbf{M}_{\mathbf{2}}\) & 6652 & 6720 & 5958 & 4771 & 7974 & 4749 & 6137 \\
\hline Mean & 8534 & 8702 & 10674 & 7560 & 12746 & 8837 & 9509 \\
\hline
\end{tabular}
S.E. of difference of two.
\begin{tabular}{ll} 
1. M marginal means & \(=589 \mathrm{lb} . / \mathrm{ac}\). \\
2. T marginal means & \(=1139 \mathrm{lb} . / \mathrm{ac}\). \\
3. T means at the same level of M & \(=1611 \mathrm{lb} . / \mathrm{ac}\). \\
4. M means at the same level of T & \(=1584 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Turmeric (Kharif).
Site :- Turmeric Res. Strs., Peddapallem.

> Ref :- A.P. \(56(13)\) Type :- ‘C'.

Object:-To economise the seed material required for planting and to find out the effect on yield by plant= ing detached sprouts of different lengths from'germinating rounds.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Stiff clayey. (b) Refer soil analysis, Peddapallem. (iii) 16.7.1956.
(iv) (a) 8 ploughings. (b) In furrows. (c) N.A. (d) \(18^{\prime \prime}\) between rows and \(9^{\prime \prime}\) between plants. (e) N.A.
(v) 10 C.L./ac. of F.Y.M. (vi) Local-Desavali (late). (vii) Irigated. (viii) 8 hand weedings and 3 intercultivations. (ix) \(33.35^{\prime \prime}\). (x) 20, 21.3.1957.

\section*{2. TREATMENTS :}

Planting of detached sprouts of different lengths:
\(L_{1}=\) Rounds cut longitudinally (control), \(L_{2}=4^{\prime \prime}, L_{3}=6^{\prime \prime}, L_{4}=8^{\prime \prime}, L_{5}=10^{\prime \prime}\) and \(L_{6}=12^{\prime \prime}\) length .
3. DESIGN :
(i) R.B.D. (ii) (a) 6 . (b) N.A. (iii) 4. (iv) (a) \(18^{\prime} \times 18^{\prime}\). (b) \(15^{\prime} \times 15^{\prime}\). (v) \(1.5^{\prime} \times 1.5^{\prime}\). (vi) Yes.

\section*{4. GENERAL :}
(i) Not sat sfactory. (ii) Leaf spot disease caused by colletotrichum Capsici affected the crop and two sprayings were given with \(1 \%\) Bordeaux mixture to check the disease. (iii) Main shoot height, no. of leaves per plant no. of tillers and turmeric yield. (iv) (a) 1956 -contd. (b) No. (c) Nul. (v) to (vii) Nil.
5. RESULTS :
(i) \(5839 \mathrm{lb} . / \mathrm{ac}\). (ii; 1111 lb .ac. (iii) Treatment differences are not significant. (iv) Av. yield of turmeric in lb./ac.
\begin{tabular}{lcccccc} 
Treatment & \(\mathrm{L}_{1}\) & \(\mathbf{L}_{\mathbf{2}}\) & \(\mathbf{L}_{3}\) & \(\mathbf{L}_{\mathbf{4}}\) & \(\mathbf{L}_{5}\) & \(\mathbf{L}_{6}\) \\
Av. yield & 5085 & 6048 & 6205 & 5802 & 6765 & 5130
\end{tabular}
S.E./mean \(=555.5 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Turmeric (Kharif).
Site :- Turmeric Res. Stn., Pedapallem.

Ref:- A.P. 58(71).
Type :- 'C'.

Object :--To economise the seed material required for planting and to find out the effect on yield by planting detached sprouts of different lengths from germinating rounds.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Patipes ra and Ragi for fodder. (c) Nil. (ii) (a) Stiff clay. (b) Refer soil analysis, Peddapallem (iii) 19.7.1958. (v) (a) 2 ploughings and making ridges and furrows. (b) Planted in furrows. (c) N.A. :d) \(\mathrm{g}^{\prime \prime}\) between placts. (e) 1 . (v) \(13,440 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. \(+590 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. \(+252 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\) in 2 doses. ivi) Dugeirala local-Desavali (late). (vii) Irrigated. (viii) 9 hand weedings and 3 intercutivations. (ix) \(25.3^{\circ}\). (x) 18.3 .1959.
2. TREATMENTS :

Same as in expt. no. 56(13) on page 443.
3. DESIGN :
(i) R.B.D.
(ii) (a) 6 .
(b) \(18^{\prime} \times 81^{\prime}\).
(iii) 4
(iv) (a) \(9^{\prime} \times 27^{\prime}\).
(c) \(6^{\prime} \times 24^{\prime}\).
(v) \(1.5^{\prime} \times 1.5^{\prime}\). (vi) Yes.
4. GENERAL:
(i) Gocd. (ii) Scil drenching with \(0.3 \%\) cheshnut compound against leaf 'Wilt' disease. Spraying with \(1 \%\) Bordeaux mixture against 'leaf' spot disease. Sulphur dusting against 'Mite' attack, (iv) (a) Yield of green rhizomes. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(9695 \mathrm{lb} / \mathrm{ac}\). (ii) \(1949 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of turmeric in lb./ac.
\begin{tabular}{lllcccc} 
Treatment & \(\mathrm{L}_{1}\) & \(\mathrm{~L}_{2}\) & \(\mathrm{~L}_{3}\) & \(\mathrm{~L}_{\mathbf{4}}\) & \(\mathrm{L}_{5}\) & \(\mathrm{~L}_{6}\) \\
Av. yield & 16240 & 9900 & 8086 & 8758 & 7549 & 7638 \\
& \multicolumn{6}{l}{} \\
& S.E. \(/\) mean & \(=\) & \(974.5 \mathrm{lb} . / \mathrm{ac}\). & & &
\end{tabular}

Crop :- Turmeric (Kharif).
Site :- Turmeric Res. Stn., Peddapallem.

Ref :- A.P. 59(42).
Type :- \({ }^{\prime} \mathrm{C}^{\prime}\).

Object:-To economise the seed material required for planting and to find out the effect on yield by planting detached sprouts of different lengths from germinating rounds.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy + Redgram. (c) \(51 \mathrm{lb} . / \mathrm{ac}\). of A/S. (ii) (a) Stiff clayey. (b) Refer soil analysis, Peddapallem. (iii) \(2,3.8 .1958\). (iv) (a) 8 ploughings with country plough. (b) Dibbling. (c) to (e) N.A. (v) \(2070 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M +compost \(+46.5 \mathrm{lb} . / \mathrm{ac}\). of Super \(+27.5 \mathrm{lb} . / \mathrm{ac}\). of Pot. Sul. \(+157 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. 48.25 lb 'ac. of A S. (vi) Duggirala local (late). (vii) Irrigated. (viii) 9 hand weedings and 3 interculturings. (ix) \(25.0^{\circ}\). (x) 14.1960 .

\section*{2. TREATMENTS}

Same as in expt. no. 56(13) on page 443.
3. DESIGN :
(i) R.B.D.
(ii) (a) 6 .
(b) \(27^{\prime} \times 54^{\prime}\).
(iii) 4. (iv) (a) \(9^{\prime} \times 27^{\prime}\).
(b) \(6^{\prime} \times 24^{\prime}\). (v) \(1.5^{\prime} \times 1.5^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Spraving with \(1 \%\) Bordeaux mixture against "colletotrichum" Jeaf spot disease. Drenching with \(0.3 \%\) cheshnut compound against wilt disease. (iii) Yield of turmeric. (iv) (a) 1956 -contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) \(4988 \mathrm{lb} . / \mathrm{ac}\). (ii) 1674 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of turmeric in \(\mathrm{lb}, / \mathrm{ac}\).
\begin{tabular}{lcccccc} 
Treatment & \(\mathrm{L}_{1}\) & \(\mathrm{~L}_{2}\) & \(\mathrm{~L}_{3}\) & \(\mathrm{~L}_{\mathbf{4}}\) & \(\mathbf{L}_{\mathbf{5}}\) & \(\mathrm{L}_{6}\) \\
Av. yield & 6182 & 4525 & 3987 & 4928 & 4995 & 5309 \\
& & & & & &
\end{tabular}

\section*{Crop :- Chillies. \\ Site :- Millet Res. Stn., Lam, Guntur.}

Ref :- A.P. 54(19).,
Type :- ' \(\mathbf{M}\) '.

Object:-To find out the manurial requirements of Chillies and to compare the effect of different fertilizers with and without G.L. as basal dressing.
1. BASAL CONDITIONS :
(i) (a) No. (b) Chillies. (c) G.L. at 5000 lb ./ac. and 1 cwt of \(\mathrm{A} / \mathrm{S}\). (ii) (a) Black soil. (b) Refer soil analysis,Guntur. (iii) \(8,9.9 .1954\). (iv) (a) 6 ploughings with country plough. (b) and (c) N.A. (d) \(22^{\prime \prime} \times 2 z^{\prime \prime}\). (e) N.A. (v) Nil. (vi) G-2. (early). (vii) Unirrigated. (viii) Intercultivation with country plough and 2 hand weerdings. (ix) \(16.35^{\prime \prime}\). (x) 12.1.1955 to 12.3.1955.
2. TREATMENTS :

\section*{Main-plot treatments :}

2 manurial treatments : \(\mathrm{M}_{0}=0\) and \(\mathrm{M}_{1}=5000 \mathrm{lb}\)./ac. of G.L. manure.

\section*{Sub-plot treatments :}

All combinations of (1). (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=40\) and \(\mathrm{N}_{2}=60 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=30^{\circ} \mathrm{lb} . / \mathrm{ac}\).
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=50 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication ; 12 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(1 / 45.04\) ac. (b) \(1 / 68.05 \mathrm{ac}\). (v) One row on either side; \(3.96^{\prime}\) on either end. (vi) Yes.

\section*{4. GENERAL :}
(i) Good. (ii) Nil. (iii) Periodical growth measurements, plant and soil samples were taken. Yield of ripe chillies as well as dry chillies were recorded. (iv) (a) \(1954-1956\). (b) Yes. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) 1522 lb ./ac. (ii) (a) 934.3 lb ./ac. (b) \(327.7 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of N is highly significant. No other effect is significant. (iv) Av. yieid of chillies in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathbf{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{N}_{4}\) & 989 & 1196 & 1152 & 1032 & 1142 & 1043 & 1 (92 \\
\hline \(\mathrm{N}_{1}\) & 1726 & 1576 & 1604 & 1698 & 1621 & 1682 & 1651 \\
\hline \(\mathrm{N}_{2}\) & 1878 & 1768 & 1693 & 1953 & 1830 & 1816 & 1823 \\
\hline Mean & 1531 & 1514 & 1483 & 1561 & 1496 & 1549 & 1522 \\
\hline \(\mathrm{P}_{0}\) & 1515 & 1477 & 1463 & 1529 & & & \\
\hline \(\mathrm{P}_{1}\) & 1547 & 1551 & 1504 & 1593 & & & \\
\hline \(\mathrm{K}_{0}\) & 1521 & 1445 & & & & & \\
\hline \(\mathrm{K}_{1}\) & 1541 & 1583 & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. M marginal means \(\quad=190.7 \mathrm{lb}\). ac. 6. M means at the same ievel of P or \(\mathrm{K}=202.1 \mathrm{lb} . \mathrm{ac}\).
2. N marginal means \(\quad=81.9 \mathrm{lb} . \mathrm{ac}\). 7. P or K means at the same leve of \(\mathrm{M}=94.58 \mathrm{l} . / \mathrm{ac}\).
3. \(\mathbf{P}\) or K margina: means \(=65.9 \mathrm{lb} . \mathrm{ac}\). S.E. of body of \(\mathrm{N} \times \mathrm{P}\) or \(\mathrm{N} \times \mathrm{K}\) table \(=81.5 \mathrm{lb} / \mathrm{ac}\).
4. N means at the same level of \(\mathrm{M}=115.8 \mathrm{lb} . / \mathrm{ac}\). S.E. of body of \(\mathrm{K} \times \mathrm{P}\) table \(=66.9 \mathrm{lb} \mathrm{ac}\).
5. M means at the same level of \(N=218.9 \mathrm{lb} . / \mathrm{ac}\).
\[
\begin{array}{ll}
\text { Crop :- Chillies. } & \text { Ref :- A.P. 55(52). } \\
\text { Site :- Millet Res. Stn., Lam, Guntur. } & \text { Type :- 'M'. }
\end{array}
\]

Object :-To find out the manurial requirements of chilles and to compare the effect of different fertilizers with and without G.L. as basal dressing.
1. BASAL CONDITIO\S :
(i) a Chillies-Chillies. b) Chillies, (c) G.L. manuring at 5000 lb ./ac. and \(1 \mathrm{cwt} . / \mathrm{ac}\). of A/S (ii) (a) Black soil. (b; Refer soil analysis, Guntur. (iii) 7.9.1955. (iv) (a) 6 ploughings with country plough at different leve's (b) and (c) N.A. (d) \(22^{\circ} \times 22^{\prime \prime}\). (e) \(4-5\). (v) Nil. (vi) G-2. (vii) Unirrigated. (viii) Intercultivation with country plough and 2 hand weedings. (ix) 13.3*. (x) 3.1.1956 to 19.3.1956.
2. TREATMENTS to 4. GENERAL:

Same as in expt. 54;19) on page 445.
5. RESULTS ;
(i) 1064 lb .;ac. (ii) (a) 29.48 lb ./ac. (b) 186.26 lb ./ac. (iii) M and N effects are significant, other efects are not significant. (iv) Av. yield of chillies in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 318 & 565 & 432 & 450 & 403 & 480 & 441 \\
\hline \(\mathrm{N}_{1}\) & 1125 & 1311 & 1203 & 1233 & 1117 & 1318 & 1218 \\
\hline \(\mathrm{N}_{2}\) & 1430 & 1637 & 1530 & 1537 & 1388 & 1679 & 1533 \\
\hline Mean & 958 & 1171 & 105 & 1073 & 969 & 1159 & 1064 \\
\hline \(P_{0}\) & 854 & 1084 & 979 & 959 & & & \\
\hline \(\mathbf{P}_{1}\) & 1 C 61 & 1257 & 1131 & 1187 & & & \\
\hline \(\mathrm{K}_{0}\) & 948 & 1161 & & & & & \\
\hline \(\mathrm{K}_{1}\) & 967 & 1180 & & & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{lr} 
1. M marginal means & \(=6.0 \mathrm{lb} / \mathrm{ac}\). \\
2. N marginal means & \(=46.5 \mathrm{lb} .(\mathrm{ac}\). \\
3. \(\mathbf{P}\) or K marginal means & \(=38.0 \mathrm{lb} . / \mathrm{ac}\). \\
4. P or K means at the same level of M & \(=53.8 \mathrm{lb} . / \mathrm{ac}\). \\
5. N means at the same level of M & \(=65.8 \mathrm{lb} . / \mathrm{ac}\). \\
6. M means at the same level of N & \(=54.1 \mathrm{lb} . / \mathrm{ac}\). \\
7. M means at the sama level of P or K & \(=38.2 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{N} \times \mathrm{P}\) or \(\mathrm{N} \times \mathrm{K}\) table & \(=46.5 \mathrm{lb} . \mathrm{ac}\). \\
S.E. of body of \(\mathrm{P} \times \mathrm{K}\) table & \(=38.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Chillies (Kharif). \\ Site :- Millet Res. Stn., Lam, Guntur.}

Ref:- A.P. 56(116).
Type :- \({ }^{6} \mathbf{M}^{\prime}\).
Object :-To study the effect of \(N, P\) and \(K\) fertilizers with and without G.L. manure on dry land Chillies.
1. BASAL CONDITIONS :
(i) (a) Chillies-Chillies. (b) Chillies. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Guntur. (iii) 7.9.1956. (iv) (a) Five ploughings with country plough. (b) Transplanted. (c) N.A. (d) \(22^{\prime \prime \prime} \times 5 \frac{1}{2}^{\prime \prime}\). (e) One. (v) Nil. (vi) G-2. (vii) Unirrigated. (viii) Intercultivation twice and hand weeding at periodical intervals. (ix) \(13.67^{\prime \prime}\). (x) January to March 1557, (Three pickings).
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(19) on page 445.
4. GENERAL :
(i) Normal. (ii) Thrips incidence was noticed-B.H.C. sprayed. (iii) Yield of rip pods. (iv) (a) 1954-195\%. (b) Yes. (c) No. (v) to (vii) Nil.
5. RESULTS :
(i) 1703 lb ./ac. (ii) (a) 404.0 lb ./ac. (b) 204.0 lb ./ac. (iii) Main effects of \(\mathrm{N}, \mathrm{P}, \mathrm{K}\) and interaction \(\mathrm{N} \times \mathrm{K}\) are highly significant. Interactions \(N \times P\) and \(N \times P \times K\) are significant. (iv) Av, yield of chillies (ripe pod) in. lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{P}_{0}\) & \(P_{1}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 1125 & 1321 & 1213 & 1233 & 1205 & 1241 & 1223 \\
\hline \(\mathrm{N}_{1}\) & 1799 & 1923 & 1710 & 2012 & 1782 & 1940 & 1861 \\
\hline \(\mathrm{N}_{2}\) & 1969 & 2081 & 2018 & 2032 & 1870 & 2180 & 2025 \\
\hline Mean & 1631 & 1775 & 1647 & 1759 & 1619 & 1787 & 1703 \\
\hline \(\mathrm{P}_{0}\) & 1531 & 1707 & 1577 & 1661 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{. \({ }^{\text {b }}\)}} \\
\hline \(\mathrm{P}_{1}\) & 1731 & 1843 & 1717 & 1857 & & & \\
\hline \(\mathrm{K}_{0}\) & 1599 & 1695 & \multicolumn{5}{|c|}{'.} \\
\hline \(\mathrm{K}_{1}\) & 1663 & 1855 & & & & & \\
\hline
\end{tabular}
S.E. of the difference of two
1. M marginal means \(=82.5 \mathrm{lb} . / \mathrm{ac}\).
2. N m rginal means \(\quad=51.0 \mathrm{lb} / \mathrm{ac}\).
3. \(P\) or \(K\) marginal means \(=41.6 \mathrm{lb} . / \mathrm{ac}\).
4. \(\mathbf{P}\) or \(K\) means at the same level of \(M\)
5. \(N\) means at the same level of \(M\)
\(=58.9 \mathrm{lb} . / \mathrm{ac}\).
6. \(M\) means at the same level of \(N\)
7. \(M\) means at the same level of \(P\) or \(K\)
\(=72.1 \mathrm{lb} . / \mathrm{ac}\).
\(=101.3 \mathrm{lb} / / \mathrm{ac}\).
S.E. of body of \(\mathrm{N} \times \mathrm{P}\) or \(\mathrm{N} \times \mathrm{K}\) table
\(=92.4 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of \(P \times K\) table
\(=51.0 \mathrm{lb} . / \mathrm{ac}\).
\(=41.6 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Chillies.}

Site :- Millet Res. Stn., Lam, Guntur.

Ref. :- A.P. 55(46).
Type :- ' \(\mathbf{M}\) '.

Object :-To study the effest of different organic manures on Chillies.

\section*{1. BASAL CONDITIONS:}
(i) (a) Pyru Jonna-Chilies. ib PyruJonna. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Guntur. (in) 89 .:955. iv) (a) 5 plcughings. (b) and (c) N.A. (d) \(22^{\prime \prime} \times 22^{\circ}\). (e) 4 to 5 . (v) Nil. (vi; G-1 (late'. (vii; Unirrigated. (viii) Papatam worked in 1 month old rop. (ix) \(1.1 L^{\prime \prime}\). (x) 25.1.1956 to 25.2.1955.
2. TREATMENTS:

All combications of \(\{1\}\) and \(; 2\}+\) a control
(1) 3 sources of \(N: S_{1}=\) Urban compost, \(S_{2}=\) F.Y.M. and \(S_{3}=\) G.L.
(2) 3 devels of \(\mathrm{N}: \mathrm{N}_{1}=4\) ), \(\mathrm{N}_{2}=60\) and \(\mathrm{N}_{3}=80 \mathrm{lb}\)./ac.

All manures were applied one month before sowing and incerporated into the soil.
3. DESIGN:
(i) Fact. in R.B.D. (ii) (a) 10. (b) N.A. (iii) 4 . (iv) (a) \(1 / 33.61 \mathrm{ac}\). (b) \(1 / 50 \mathrm{ac}\). (v) 2 lines on either side. (vi) Yes.
4. GENERAL:
(i) Crep badly ffected by heavy rains in initial stages. (ii) Nil. (iii) Measurement of growth at different intervals and weight of Chilies. iv' (a) 1955-1957. (b) No. (c) N.A. (v) to (vii) Nil.
5. RESULTS :
(i) \(301 \mathrm{lb} .\), ac. (ii. \(85.5 \mathrm{lb} . ; \mathrm{ac}\). (iii), Effect of N is signifizant. Effects of S , interaction \(\mathrm{N} \times \mathrm{S}\) and 'control vs others' are highly significant. (iv) Av. yield of chillies in lb./ac.
\[
\text { Control }=203 \mathrm{lb} . / \mathrm{ac}
\]


\section*{Crop :- Chillies.}

\section*{Site :- Millets Res. Stn., Lam, Guntur.}

Ref. :- A.P. 56(38).
Type :- ' \(\mathbf{M}\) '.

Object :-To study the effect of organic manures on the yield of Chillies.
1. BASAL CONDITIONS :
(i) a! Pyru Jonıa-Chillies. (b) Pyru Jonna. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Guntur. (ui) 99.1956 . (iv) (a) 6 ploughings. (b) Transplanted. (c) - (d; \(1.32^{*}\) between rcws. (e) N.A. iv’ Nil. 'vi) G-2. (vii) Unirrigated. (viii) Intercultivation with country plough both way in rows \(1 \frac{1}{2}\) months after transpanting and 2 hand weedings. (ix) \(13.3^{\prime \prime}\). ( \(x\) ) 30.11.1956, 11.1.1957, 13.2.:957 and 7.3.1957.
2. TREATMENTS and 3. DES'GN:

Same as in expt. nc. 55;46; above.
4. GENERAL :
(i) Good. (ii) Nil iii) Weights of wet and dry pods. (iv) (a) 1955-1957.
(b) No.
(c) Nil. , v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(696 \mathrm{lb} . / \mathrm{ac}\). (ii) \(144 \mathrm{lb} . / \mathrm{ac}\). (iii) Effect of N is significant. Effects of S , interaction \(\mathrm{N} \times \mathrm{S}\) and control vs. others' are highly significant. (iv) Av. yield of chillies in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|ccc|c} 
Control \(=493 \mathrm{lb} / \mathrm{ac}\). \\
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 645 & 693 & 719 & \begin{tabular}{l}
686 \\
\(\mathrm{~N}_{2}\) \\
\(\mathrm{~N}_{3}\)
\end{tabular} \\
\hline 600 & 697 & 743 & 680 \\
\hline Mean & 645 & 729 & 988 & 787 \\
& 630 & 706 & 817 & 718
\end{tabular}
\[
\begin{aligned}
& \text { S.E. of } N \text { or } S \text { marginal mean }=41.6 \mathrm{lb} . / \mathrm{ac} . \\
& \text { S.E. of body of table or control mean }
\end{aligned}=72.0 \mathrm{lb} . / \mathrm{ac} .
\]

Crop :- Chillies.
Site :- Millet Res. Stn., Lam, Guntur.

Ref :- A.P. 57(37).
Type :- ' \(\mathbf{M}^{\prime}\).

Object :-To study the effect of organic manures on the yield of Chillies.
1. BASAL CONDITIONS :
(i) (a) Chillies-Jonna. (b) Jonna. (c) As per treatments. (ii) (a) Black soil. (b) Refer soil analysis, Guatur. (iii) 12.9.1957. (iv) (a) 5 ploughings. (b) to (e) N.A. (v) Nil. (vi) G-2. (vii) Unirrigated. (viii) Intercultivation with papatam in one month crop. (ix) \(277^{\prime \prime}\). (x) 31.3.1958, 29.1.1958 and 22.2.1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 55(46) on page 448.
5. RESÛLTS :
(i) \(2457 \mathrm{lb} . / \mathrm{ac}\). (ii) \(354.0 \mathrm{lb} . / \mathrm{ac}\). (iii) Only the effect 'control \(\nu s\). others' is highly significant. (iv) Av. yield of green chillies in \(1 \mathrm{~b} . / \mathrm{ac}\).

Control \(=1720 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|ccc|c} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 2480 & 2275 & 2485 & 2413 \\
\(\mathrm{~N}_{2}\) & 2425 & 2425 & 2655 & 2502 \\
\(\mathrm{~N}_{3}\) & 2530 & 2655 & 2920 & 2702 \\
\hline Mean & 2478 & 2452 & 2687 & 2539
\end{tabular}
\begin{tabular}{ll} 
S.E. of N crS marginal mean & \(=102.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=177.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Grop :- Chillies (Kharif).
Ref : A.P. 57(118).
Site :- Millet Res. Stn., Lam, Guntur.
Object :-To study the effect of sulphur on Chillies.

\section*{1. BASAL CONDITIONS:}
(i) (a) Chillies-Chillies. (b) Chillies. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analys:s, Guntur. (iii) 2nd week of September, 1957. (iv) (a) 5 ploughings with country plough. (b) Transplanting. (c) N.A. (d) \(22^{\prime \prime} \times 5 \frac{1}{2}^{\prime \prime}\). (e; One. (v) \(60 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as \(\mathrm{Super}+50\) \(\mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Pct. Sul. (vi) \(\mathrm{G}-2\). (vii) Unirrigated. (viii) Intercultivation twice and periodical hand weeding (ix) \(4.77^{*}\). (x’ January to March 1958 (three pickings).

\section*{2. TREATMENTS :}

Main-plot treatments :
\(S_{0}=\) No sulphur and \(S_{1}=\) Sulphur applied.
Sub-plot treatments :
3 G.M. : \(\mathrm{G}_{0}=\) No G.M., \(\mathrm{G}_{1}=\) Pillipesara and \(\mathrm{G}_{2}=\) Medapeara.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 sub-plots/main-plot; 2 main-plots/replication. (b) N.A. (iii) 4 . (iv) (a; \(1 / 35.35 \mathrm{ac}\). (b) \(1 / 51.95 \mathrm{ac}\). (v) One row on each side. (vi) Yes.
4. GENERAL :
(i) Satisfactory. 'ii; Thrips incidence-sprayed B.H.C. (iii) Growth measurements and yield ef ripe-pods. (iv) (a) 1957-1959. (b) Yes. (c) No. (v) to (vii) Nil.
5. RESULTS :
(i) \(2593 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(1474.5 \mathrm{lb} . / \mathrm{ac}\). (b) \(528.0 \mathrm{lb} / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of chillies in lb ./ac.

S.E. of difference of two
\begin{tabular}{ll} 
1. \(S\) marginal mears & \(=602.0 \mathrm{lb} . / \mathrm{ac}\). \\
2. G marginal means & \(=264.0 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(G\) means at the same level of \(S\) & \(=373.4 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(S\) means at the same level of \(G\) & \(=674.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Chillies (Kharif).
Site :- Millet Res. Stn., Lam, Cuntur.

Ref :- A.P. 58(153).
Type :- 'M'.

Object :-To study the effect of su!phur on Chillies.
1. BASAL CO \(\operatorname{CDITIONS}\) :
(i) (a) Chillies-Chillies. (b) Chillies. (c) \(60 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +50 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot-Sul. (ii) (a) Black soil. (b) Refer soil anaiysis, Guntur. (iii) 2nd week of September 1958. (iv) (a' Six ploughings with country plough. (b) Transplanting. (c) N.A. (d) \(22^{*} \times 5 \frac{1}{2}^{\circ}\). (e) One. (v) \(60 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+30 \mathrm{lb}\) ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super \(+50 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. (vi) \(\mathrm{G}-2\). (vii) Unirrigated. (viii) Intercultivation and weeding. (ix) \(15.49^{\prime \prime}\). ( x ) 2 nd week of January to 1 st week of March 1959. (Three pickings).
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. \(57(118)\) on page 449.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of ripe pods per plots. (iv) (a) 1957-1959. (b) Yes. (c) No. (v) to (vii) Nil,
5. RESULTS:
(i) :019 lb./ac. (ii) (a) \(421.1 \mathrm{lb} . / \mathrm{ac}\). (b) \(239.6 \mathrm{lb} / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of chillies (ripe pod) in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{G}_{0}\) & \(\mathrm{G}_{1}\) & \(\mathrm{G}_{2}\) & Mean \\
\hline \(\cdots\) & 1136 & 1003 & 923 & 1021 \\
\hline \(S_{1}\) & 1131 & 936 & 982 & 1016 \\
\hline Mean & 1134 & 970 & 953 & 1019 \\
\hline
\end{tabular}
S.E. of difference of two
1. S marginal means \(=171.9 \mathrm{lb} . / \mathrm{ac}\).
2. G marginal means \(\quad=119.8 \mathrm{lb} . / \mathrm{ac}\).
3. \(G\) means at the same level of \(S=169.4 \mathrm{lb}\)./ae.
4. S means at the same level of \(G \cdot=220.7 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Chillies (Kharif).
Site :- Millet Res. Stn., Lam, Guntur.

Ref :- A.P. 59(143).
Type :- ' \(M\) '.

Object :-To study the effect of sulphur en Chillies
1. BASAL CONDITIONS :
(i) (a) Chillies-Chillies. (b) Chillies. (c) \(60 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super \(+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. (ii) (a) Black cotton soil. (b) Refer soil analysis, Guntur. (iii) 1.9.1959. (iv) (a) Six ploughings. (b) Transplanting. (c) N.A. (d) \(22^{\prime \prime} \times 5 \frac{1}{2}\) ". (e) One. (v) \(60 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +50 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. (vi) \(\mathrm{G}-2\). (vii) Unirrigated. (viii) Interculturing and weeding. (ix) \(13.93^{\prime \prime}\). (x) January to March 1960 (Three pickings).
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. \(57(118)\) on page 449.
5. RESULTS :
(i) \(873 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(221.8 \mathrm{lb} . / \mathrm{ac}\). (b) \(194.0 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of Chillies (ripe-pods) in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{G}_{0}\) & \(\mathrm{G}_{1}\) & \(\mathrm{G}_{2}\) & Mean \\
\hline \(\mathrm{S}_{0}\) & 774 & 1010 & 938 & 907 \\
\hline \(\mathrm{S}_{1}\) & 841 & 727 & 945 & 838 \\
\hline Mean & 808 & 869 & 942 & 873 \\
\hline
\end{tabular}
S.E. of difference of two
1. S marginal means
2. \(G\) marginal means
3. \(G\) means at the same level of \(S\)
4. \(S\) means at the same level of \(G \quad=90.5 \mathrm{lb} / \mathrm{ac}\).

Crop :- Chillies (Kharif).
Ref :- A.P. 57(119).
Site :- Millet Res. Stn., Lam, Guntur.

Object :-To study the effect of different sources and split application of \(\dot{N}\).
1. BASAL CONDITIONS :
(i) (a) Chillies-Chilliés. (b) Chillies. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Guntur. (iii) September 1957. (iv) (a) Five ploughings with country plough. (b) Transplanted.. (c) N.A. (d) \(22^{\prime \prime} \times 5 \frac{1}{2}\). (e) One. (v) G.M. with 45 day old Pillipesara crop +30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +50 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. (vi) G-2. (vii) Unirrigated. (viii) Intercultivation and periodic hand weeding. (ix) \(4.77^{\prime \prime}\). (x) January to March 1958 (three pickings).

\section*{2. TREATMENTS :}

9 manurial treatments : \(T_{0}=\) Control (no manure), \(T_{1}=D_{1}\) as \(A / S\) at \(t_{1}, T_{2}=D_{1}\) as Urea at \(t_{1}, T_{3}=D_{1}\) as G.N.C. at \(t_{1}, T_{4}=D_{2}\) as \(A / S\) at \(t_{1}+D_{2}\) as Urea as \(t_{2}, T_{5}=D_{2}\) as G.N.C. at \(t_{1}+D_{2}\) as \(A / S\) as \(t_{2}, T_{6}=D_{2}\) as G.N.C. at \(t_{1}+D_{2}\) as Urea at \(t_{2}, T_{7}=D_{2}\) as \(A / S\) at \(t_{1}+D_{2}\) as A/S as \(t_{2}\) and \(T_{8}=D_{2}\) as Urea at \(t_{1}+D_{2}\) as Urea as \(t_{2}\).
\(D_{1}=60 \mathrm{lb}\)./ac. of \(\mathrm{N}, \mathrm{D}_{2}=30 \mathrm{lb}\)./ac. of \(\mathrm{N}, \mathrm{t}_{1}=1\) week before planting and \(\mathrm{t}_{2}=\) Top dressing.
3. DESIGN : -
(i) R.B.D.
(ii) (a) 9 .
(b) N.A.
(iii) 4. (iv) (a) \(1 / 60.61 \mathrm{ac}\).
(b) \(1 / 90.91 \mathrm{ac}\).
(v) One row on each side. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Thrip incidence controlled by spraying B.H.C. (iii) Yield of ripe-pods. (iv) (a) 1957-1959. (b) Yes. (c) No. (v) to (vii) Nil.
5. RESULTS:
(i) \(2837 \mathrm{lb} . j \mathrm{ac}\). (ii) \(330.9 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of chillies (ripe-pods) in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Treatment & T0 & T1 & T2 & T3 & T4 & \(\mathrm{T}_{5}\) & T6 & \(\mathrm{T}_{7}\) & \(\mathrm{T}_{8}\) \\
\hline Av. yield & 1964 & 2975 & 3107 & 3009 & 2684 & 2818 & 2727 & 2950 & 3300 \\
\hline \multicolumn{10}{|c|}{S.E./mean \(=165.5 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

\author{
Crop :- Chillies (Kharif). \\ site :- Millet Res. Stn., Lam, Guntur.
}

Ref :- A.P. 58(154),
Type :- 'M'.

Object :-To study the effect of different sources and split application of N .
1. BASAL CONDITIONS :
(i) (a) Chillies—Chillies. (b) Chillies. (c) G.M. \(+30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}+60 \mathrm{lb} . / \mathrm{ac}\). of N .
(ii) (a) Black cotton soil (b) Refer soil analysis, Guntur. (iii) 2nd week of September, 1958. (iv; (a) Five ploughings. (b) Transplanting. (c) N.A. (d) \(22^{\prime \prime} \times 5 \frac{2^{\prime \prime}}{}\). (e) One. (v) G.M. with 45 day old pillipesara crop +30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as \(\mathrm{Super}+50 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. (vi) G-2. (vii) Unirrigated. (viii) Intercultivation twice and hand weeding at periodic intervals. (ix) 15.49'. (x) January to March 1959 (three pickings).
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 57(119) on page 451.
4. GENERAL :
(i) Satisfactory. (ii) Nil, (iii) Yield of ripe-pods per plot. (iv) (a) 1957-1959. (b) Yes. (c) No. (v) to . (vii) Nil.
5. RESULTS :
(i) \(1414 \mathrm{lb} . / \mathrm{ac}\). (ii) \(192.7 \mathrm{lb} . / \mathrm{ac}\). (ili) Treatment differences are highly significant. (iv) Av. yield of chillies (ripe-pods) in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{T}_{0}\) & T \({ }_{1}\) & T2 & T3 & T \({ }_{4}\) & \(\mathrm{T}_{5}\) & T6 & T7 & \(\mathrm{T}_{8}\) \\
\hline Av. yield & 709 & 1609 & 1827 & 1568 & 1221 & 1277 & 1457 & 1605 & 1448 \\
\hline \multicolumn{10}{|c|}{S.E./mean \(=96.4 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

\footnotetext{
Grop :- Chillies (Kharif).
Site :- Millet Res. Stn., Lam, Guntur.
Ref :- A.P. 59(144).
Type :- ' \(\mathbf{M}^{\prime}\).
}

Object :-To study the effect of different sources and split application of N .

\section*{1. BASAL CONDITIONS :}
(i) (a) Chillies-Chillies. (b) Chillies. (c) G.M. \(+60 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+30 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\).
(ii) (a) Black cotton soil. (b) Refer soil analysis, Guntur. (iii) 2 nd week of September, 1959. (iv) (a)

Five ploughings with country plough. (b) Transplanting. (c) N.A. (d) \(22^{\prime \prime} \times 5 \frac{1}{2}^{\prime \prime}\). (e) One. (v) G.M. with 45 days old pillipesara crop +30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as \(\mathrm{Super}+50 \mathrm{lb}\)./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. (vi) G-2. (vii) Unirrigated. (viii) Intercultivation and periodic hand weeding. (ix) 13.93". (x) 2nd week of January to March, 1960 (three pickings).
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 57(119) on page 451:
5. RESULTS :
(i) \(669 \mathrm{lb} . / \mathrm{ac}\). (ii) \(223.6 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of chillies ripe-pods in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Treatment & T0 & T \({ }_{1}\) & T \({ }_{2}\) & \(\mathrm{T}_{3}\) & \(\mathrm{T}_{4}\) & T5 & \(\mathrm{T}_{6}\) & \(\mathrm{T}_{7}\) & T8 \\
\hline Av. yield & 166 & 1045 & 1098 & 445 & 705 & 535 & 495 & 845 & 686 \\
\hline & \multicolumn{9}{|l|}{S.E./mean \(=111.8 \mathrm{lb} / \mathrm{ac}\).} \\
\hline
\end{tabular}

1
Crop :- Chillies.
Centre :- Guntur (c.f.).

Ref :- A.P. 58(SFT).
Type :- \({ }^{6}{ }^{\mathbf{M}}\) '.

Object:-Type A-To study the response of Chillies to levels of \(\mathbf{N}, \mathrm{P}\) and K applied individualiy and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Black soil.
(iii) Nil.
(iv) and (v) N.A. (vi) Local. (vii) to (x) N.A.
2. TREATMENTS :

0 = Control (no manure).
in \(=50 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{p}=25 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{np}=50 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+25^{\circ} \mathrm{lb}\). \(/ \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{k} \quad=50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
\(\mathrm{nk}=50 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
\(\mathrm{pk}=25 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +50 lb ./ac. of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
\(\mathrm{npk}=50 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+25 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super \(+50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{K}_{2} \mathrm{O}\) as Mur. Pot.
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on a oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type \(A\) and the other half of type \(B\) on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosphate application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly located fields in randomly selected villages in each of the zones at the rate of one experiment per village. (iii) (a) \(1 ; 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL :


Grop:- Chillies.
Ref :- A.P. 59(SFT).
Centre :- Guntur (c.f.).

Object :--Type A-To study the response of Chillies to levels of \(\mathrm{N}, \mathrm{P}\) and K applied individually and in combinations.
1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 58'SFT) type A on page 453 conducted at Guntur.
5. RESULTS:
\begin{tabular}{lccccccccr} 
Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
Av. response in lb./ac. & 428 & 362 & 354 & 68.3 & -99 & -25 & 8 & 132 & 57.6 \\
& \\
& \\
Control yield & \(=\) & \(1572 \mathrm{lb} . / \mathrm{ac}\). and no. of trials & \(=\) & 15. &
\end{tabular}
\begin{tabular}{ll} 
Crop :- Chillies. & Ref :- A.P. 58(SFT). \\
Centre :- Krishna Dist. (c.f.). & Type :- 'M'.
\end{tabular}

Object:-Type A-To study the response of Chillies to levels of \(\mathrm{N}, \mathrm{P}\) and K applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red soil. (iii) Nil. (iv) and (v) N.A. (vi) Local. (vii; to (x) N.A.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 58(SFT) type A on page 453 conducted at Guntur.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effect & \(n\) & p & k & S.E. & np & nk & pk & npk & S.E. \\
\hline Av. response in lb./ac. & 428 & 222 & 91 & 50.2 & 8 & 41 & 82 & 0 & 23.0 \\
\hline & \multicolumn{9}{|l|}{Control yield \(=5291 \mathrm{lb} . / \mathrm{ac}\). and no. of trials \(=8\).} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Crop :- Chillies. & Ref :- A.P. 59(SFT). \\
Centre :- Krishna Dist. (c.f.). & Type :- 'M'.
\end{tabular}

Object :-Type A-To study the response of Chillies to levels of \(\mathrm{N}, \mathrm{P}\) and K applied individually and in combinations.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Red soil. (iii) Nil. (iv) and (v) N.A. (vi) Local. (vii) to (x) N.A.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 58(SFT) type A on page 453 conducted at Guntur.
5. RESULTS :
\begin{tabular}{lcccccccccc} 
Effect & n & p & k & S.E. & np & nk & pk & npk & S.E. \\
Av. response in lb./ac. & 963 & 609 & 370 & 152.2 & 115 & 66 & 49 & 33 & 41.1
\end{tabular}

Crop :- Chillies.
Centre :- Nellore (c.f.).

Ref :- A.P. 58(SFT).
Type :- ' \({ }^{\mathbf{M}} \mathbf{M}^{\prime}\).

Object :-Type A-To study the response of Chillies to levels of \(N, P\) and \(K\) applied individually and in combinations..
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Red and black soil.
(iii) Nil.
(iv) and (v) N.A.
(vi) Local. (vii) to (x) N.A.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 58(SFT) type A on page 453 conducted at Guntur.
5. RESULTS :

Crop :- Chillies.
Ref:- A.P. 58(SFT).
Centre :- Guntur (c.f.). Type :- ' \(\mathbf{M}^{\prime}\) :

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Black and red soil.
(iii) Nil.
(iv) and (v) N.A.
(vi) Local. (vii) to (x) N.A.
2. TREATMENTS :

0 =Control (no manure).
\(\mathrm{n}_{1}=50 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(\mathrm{n}_{2}=100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathbf{n}_{1}^{\prime}=50 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathbf{n}_{\mathbf{2}}{ }^{\prime}=100 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{D}_{1}{ }^{\prime \prime}=50 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
\({\dot{n_{2}}}^{\prime \prime}=100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S} / \mathrm{N}\).
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogenous zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on khartf cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type \(A\) and the other half of type \(B\) on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosphate application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Chillies yield. (iv) (a) \(1958-\) contd. (b) No. (c) N.A. (v) As per design.
(vi) and (vii) Nil.
5. RESULTS :
\begin{tabular}{lccccccr} 
Treatment & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}{ }^{\prime}\) & \(n_{2}{ }^{\prime}\) & \(n_{1}{ }^{\prime \prime}\) & \(n_{2}{ }^{\prime \prime}\) \\
Av. yield & 938 & 1168 & 1193 & 1284 & 1489 & 1226 & 1339.
\end{tabular}
\[
\text { G.M. }=1242 \mathrm{lb} . / \mathrm{ac} . ; \text { S.E. }=100.7 \mathrm{lb} . / \mathrm{ac} . \text { and no. of trials }=12
\]
```

Grop :- Chillies.
Ref :- A.P. 59(SFT).
Centre :- Guntur (c.f.).
Type :- 'M'.

```

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 58(SFT) type B on page 455 condusted at Guntur.
5. RESULTS:

\begin{tabular}{ll} 
Crop :- Chillies. & Ref :- A.P. \(58(\mathrm{SFT})\). \\
Site :- Krishna Dist. (c.f.). & Type :- 'M'.
\end{tabular}

Object :-Type B-To investigate the re'ative efficency of different nitrogenous fertilizers at different doses.
. BASAL CONDITIONS :
(i) (a) to (c) N A. (ii) Black and coastal. (iii) Nil. (iv) and (v) N.A. (vi) Local. (vii) to (x) N.A.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 58(SFT) type B on page 455 conduzted at Guntur.
5. RESULTS :
\begin{tabular}{lccccccc} 
Treatmeat & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}^{\prime}\) & \(n_{2}^{\prime}\) & \(n_{1}^{\prime \prime}\) & \(n_{2}^{\prime \prime}\) \\
Av. yield & 2107 & 2403 & 2526 & 2534 & 2650 & 2296 & 2427 \\
& G.M. & \(=\) & \(2420 \mathrm{lb} . / \mathrm{ac} . ;\) S.E. & \(=\) & \(32.6 \mathrm{lb} . / \mathrm{ac}\). and no. of trials & \(=7\).
\end{tabular}
Crop :- Chillies.
Centre :- Krishna Dist. (c.f.).
Ref:- A.P. 59(SFT).
Type :- ‘'M'.

Object: - Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal. (iii) Nil. (iv) and (v) N.A. (vi) Local. (vii) to (x) N.A.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58(SFT) type B on page 455 conducted at Guntur.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\prime}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & n. \({ }^{\text {a }}\) & \(\mathrm{n}_{2}{ }^{\prime \prime}\) \\
\hline Av. yield & 2098 & 2831 & 2913 & 2715 & 2773 & 2954 & 3217 \\
\hline
\end{tabular}

Crop:-Chillies.
Centre :- Krishna Dist. (c.f.).
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Coastal. (iii) Nil. (iv) and (v) N.A. (vi) Local. (vii) to (x) N.A.
2. TREATMENTS:
\(0=\) Control (no manure).
\(\mathrm{n}_{1}=50 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{n}_{2}=100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\cdot \mathrm{A} / \mathrm{S}\).
\(n_{1}{ }^{\prime}=50 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathbf{n}_{\mathbf{2}}{ }^{\prime}=100 \mathrm{lb} / \mathrm{ac}\). of N as Urea.
\(\mathrm{n}_{1}{ }^{\prime \prime \prime}=50 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{C} / \mathrm{A} / \mathrm{N}\).
\(\mathbf{n}_{\mathbf{2}}{ }^{\prime \prime \prime}=100 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{C} / \mathrm{A} / \mathrm{N}\).
3. DESIGN and 4. GENERAL:

Same as in expt. no. 58(SFT) type B on page 456 conducted at Guntur.
5. RESULTS :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & 0 & \(\mathrm{n}_{1}\) & \(\mathrm{n}_{2}\) & \(\mathrm{n}_{1}{ }^{\text {. }}\) & \(\mathrm{n}_{2}{ }^{\prime}\) & \(\mathrm{n}_{1}{ }^{\prime \prime}\) & \(\mathrm{n}_{2}{ }^{\prime \prime \prime}\) \\
\hline Av. yield & 3209 & 3884 & 4608 & . 3892 & 4929 & 3999 & 4912 \\
\hline & G.M. & 4205 & c. ; S & \(=\) & b./ac. & of & \\
\hline
\end{tabular}

Grop:- Chillies.
Centre :- Nellore (c.f.).

Ref :- A.P. 58(SFT).
Type :- ' \(\mathbf{M}\) '.

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Deep black soil.
(iii) Nil. (iv) and (v) N.A.
(vi) Local. (vii) to (x) N.A.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58 (SFT) type B on page 455 conducted at Guntur.
5. RESULTS :
\begin{tabular}{rccccccc} 
Treatment & 0 & \(n_{1}\) & \(n_{2}\) & \(n_{1}{ }^{\prime}\) & \(n_{2}{ }^{\prime}\) & \(n_{1}{ }^{\prime \prime}\) & \(n_{2}{ }^{\prime \prime}\) \\
Av. yield & 2938 & 4106 & 5365 & 3637 & 5275 & 4386 & 6130
\end{tabular}
```

Grop:- Chillies (Rabi).
Site :- Fruit Res. Stn., Sangareddy.

```

\section*{Ref :- A.P. 58(115). Type :- 'CM'.}

Object :-To find out suitable combination of fertilizers and spacing.
1. BASAL CONDITIONS :
(i) (a) Chillies-Fallow-Chillies. (b) Fallow. (c) -. (ii) (a) Black soil. (b) Refer soil analysis, Sangareddy. (iii) 18.9.1958. (iv) (a) Four ploughings, 2 harrowings and levelling with patta, (b) Transplanting. (c) N.A. (d) As per treatments. (e) One. (v) Nil. (vi) Sadasirpet. (vii) Unirrigated. (viii) 3 weedings and 3 interculturings. (ix) N.A. (x) 20.1.1959.
2. TREATMENTS :

All combinations of (1), (2), (3) and (4)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=25\) and \(\mathrm{N}_{2}=501 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=25\) and \(\mathrm{P}_{2}=50 \mathrm{lb} . / \mathrm{ac}\).
(3) 3 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=25\) and \(\mathrm{K}_{2}=50 \mathrm{lb}\)./ac.
(4) 3 spacings: \(S_{1}=2^{\prime} \times \frac{1^{\prime}}{2^{\prime}}, S_{2}=2^{\prime} \times 1^{\prime}\) and \(S_{3}=2^{\prime} \times 1 \frac{1^{\prime}}{2}\).
3. DESIGN :
(i) \(3^{4}\) confd. (ii) (a) 9 plots/block; 9 blocks/replication. (b) \(71^{\prime} \times 34^{\prime}\). (iii) 1. (iv) (a) \(24^{\prime} \times 12^{\prime}\). (b) \(8^{\prime} \times 23^{\prime}\) for \(S_{1}, 8^{\prime} \times 22\) for \(S_{2}\) and \(8^{\prime} \times 21^{\prime}\) for \(S_{3}\). (v) Varying according to treatments. (vi) Yes.
4. GENERAL :
(i) Satisfastory. (ii) Nıl. (iii) Yield data. (iv) (a) 1958 -contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) \(432 \mathrm{lb} . / \mathrm{ac}\). (ii) 276.5 lb ./ac. (iii) Only the main effect of S is significants (iv) Av. yield of dry chillies in lb.fac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & \(\mathrm{K}_{\mathrm{p}}\) & \(\mathbf{K}_{1}\) & \(\mathrm{K}_{2}\) & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(S_{3}\) & Mean \\
\hline \(\mathbf{N}_{6}\) & 487 & 378 & 382 & 476 & 458 & 314 & 525 & 371 & 351 & 416 \\
\hline \(\mathbf{N}_{1}\) & 497 & 439 & 401 & 323 & 509 & 506 & 553 & 401 & 383 & 446 \\
\hline \(\mathbf{N}_{\mathbf{2}}\) & 484 & 450 & 373 & 423 & 480 & 405 & 602 & 443 & 263 & 436 \\
\hline Mcan & 489 & 422 & 385 & 407 & 482 & 408 & 560 & 405 & 332 & 432 \\
\hline \(\mathbf{S}_{1}\) & 578 & 576 & 526 & 573 & 677 & 430 & & & & \\
\hline \(\mathrm{S}_{2}\) & 449 & 404 & 362 & 371 & 445 & 399 & & & & \\
\hline \(\mathbf{S}_{\mathbf{3}}\) & 441 & 257 & 268 & 276 & 325 & 396 & & & & \\
\hline \(\mathbf{K}_{0}\) & 510 & 415 & 296 & & & & & & & \\
\hline \(\mathrm{K}_{1}\) & 510 & 462 & 474 & & & & & & & \\
\hline \(\mathbf{K}_{2}\) & 447 & 390 & 385 & & & & & & & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =53.2 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of any table } & =92.2 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]
```

Crop :- Chillies.
Site :- Fruit Res. Stn., Sangareddy.
Ref :- A.P. 59(94).
Type := 'CM'.

```

Object:-To find out suitable combination of fertilizers and spacing.
1. BASAL CONDITIONS :
(i) (a) Chillies - Fallow-Chillies. (b) Fallow. (c) -. (ii) (a) Black soil. (b) Refer soil analysis, Sangareddy. (iii) 28.7.1959/26.9.1959. (iv) (a) Four ploughings, 2 harrowings and levelling with patta. (b) Transplanting. (c) N.A. (d) As per treatments. (e) One. (v) Nil. (vi) Sadasivpet. (vii) Unirrigated. (viii) 3 weedings and 3 interculturings. (ix) N.A. (x) 30.1.1960.

\section*{2. TREATMENTS :}

Same as in expt. 58(115) on page 457.

\section*{3. DESIGN :}
(i) \(3^{4}\) confd. (ii) (a) 9 plots/block; 9 blocks/replication. (b) \(71^{\prime} \times 34^{\prime}\). (iii) 1 . (iv) (a) \(12^{\prime} \times 36^{\prime}\). (b) \(35^{\prime} \times 8^{\prime}\) for \(S_{1}, 34^{\prime} \times 8^{\prime}\) for \(S_{2}\) and \(33^{\prime} \times 8^{\prime}\) for \(S_{3}\). (v) and (vi) Yes.
4. GENERAL:
(a) Satisfactory. (ii) Nil. (iii) Yield data. (iv) (a) 1958-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 461 lb ./ac. (ii) \(99.2 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effects of N and S and interaction \(\mathrm{P} \times \mathrm{S}\) are highly significant. Main effect of \(\mathbf{P}\) and interaction \(\mathrm{N} \times \mathrm{P}\) are significant. (iv) Av. yield in \(\mathrm{lb} . / \mathrm{ac}\).


\section*{Crop :- Chillies.}

Site :- Millet Res. Stn., Lam, Guntur.

\section*{Ref:- A.P. 54(17).}

Type :- ‘D'.

Objéct :-To find out suitable remedial measures for the control of 'colletotrichum' diseases.
1. BASAL CONDITIONS:
(i) (a).Nil. (b) Chillies. (c) \(15,000 \mathrm{lb} / \mathrm{ac}\). of G.M. and \(1 \mathrm{cwt} / \mathrm{ac}\). of A/S. (ii) (a) Black soif. (b) Refer soil analysis, Guntur. (iil) 11.9.1954. (iv) (a) 6 ploughings with country plough at different intervals. (b) to (c) N A. (v) \(15,000 \mathrm{lb}\)./ac. of G.M. and 1 cwt. of A/S. (vi) \(\mathrm{G}-2\) (early). (vii) Unirrigated. (viii) Interculivations with country plough and hand weeding twice. (ix) 16.35". (x) 17.1.1955 to 16.3.1955.

\section*{2. TREATMENTS :}

6 spraying treatments : \(T_{0}=\) No spraying, \(T_{1}=\) Urea at \(1 \frac{1}{2} \mathrm{oz}\). in one gallon of water, \(T_{2}=\) Perenox at \(3 / 4 \mathrm{cz}\) per gallon of water, \(\mathrm{T}_{3}=1 \%\) Bordeaux mixture, \(\mathrm{T}_{4}=\) Urea + Perenox and \(\mathrm{T}_{5}=\) Urea + Bordeaux.

\section*{3. DESIGN :}
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) \(1 / 132.23 \mathrm{ac}\). (b) \(1 / 312.5 \mathrm{ac}\). (v) One row on either side and? hills at both ends. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) The diseased plant counts were recorded and expressed as \(\%\) of the total population (iv) (a) 1953-1954. (b) to (e) N.A. (v) and (vi) Nil. (vii) The first spraying of fugacide was given on 1 11.1954. \(1 \frac{1}{2}\) months after plantation of chillies crop using 500 gallons of spray fluid per acreTo ensure the infestation of diseases fungal culture obtained from the Mycologist was inoculater on 16.11.1954. This process of spraying fungicides and inoculation was carried out subsequently at two dificrent intervals (viz. 1.12.1954, 1.1.1955 and 12.12.1954, 8.1.1955 respectively).
5. RESULTS:
(i) \(302 \mathrm{lb} . / \mathrm{ac}\). (ii) 46.2 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of chillies in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{T}_{0}\) & T1 & T & \(\mathrm{T}_{3}\) & T4 & T5 \\
\hline Av. yield & 365 & 336 & 253 & 292 & 272 & 297 \\
\hline & S.E. & n & 23.1 & & & \\
\hline
\end{tabular}

Crop :- Berseem and Pillipesara (Legumes) (Rabi).
Site :- Agri. Res. Instt., Rajendranagar.

Ref. :- A.P. 58(63).
Type :- \(\boldsymbol{\imath}^{\mathbf{M}}\).

Object :-To study the response of Berseem and Pillipesara to N and P .

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Fodder-Jowar-Mung and Pnillipesara mixture cropping. (c) \(30 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) and \(15 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. (ii) (a) Clay loam. (b) N.A. (iii) 2.12 .1958 . (iv) (a) 4 to 5 ploughings with country plough and disc was worked once. (b) Broadcasting. (c) Berseem 15-20 lb./ac. and Pillipesara 25-30 lb./ac. (d) and (e) N.A. (v) N.A. (vi) Berseem and Pillipesara. (vii) Irrigated. (viii) Weeding etc. done as and when needed. (ix) Nil. (x) 1st cutting on 4.2.1959, 2nd on 2.3.1959, 3rd on 28.3 1959, and 4 th on 25.4.1959.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30\) and \(\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D.
(ii) 9.
(b) \(131^{\prime} \times 111^{\prime}\).
(iii) 3 .
(iv) (a) \(32^{\prime} \times 18^{\prime}\).
(b) \(30^{\prime} \times 16^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Good for Berseem. So poor for Phillipesara that no cuts were taken. (ii) Nil. (iii) Yield of green matter. (iv) (a) 1958 -contd. (b) No. (c) Nil. (v) and (vi) Nil. (vii) The germination of Pillipesara was very poor and therefore failed.
5. RESULTS :
(i) \(48726 \mathrm{lb} . / \mathrm{ac}\). (ii) 4410 lb ./ac. (iii) Main effect of \(P\) alone is highly significant. (iv) Av. yield of grass in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(P_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 43288 & 52605 & 44558 & 46815 \\
\hline \(\mathrm{N}_{1}\) & 42804 & 54843 & 54116 & 50919 \\
\hline \(\mathrm{N}_{2}\) & 41624 & 51395 & 52302 & 48439 \\
\hline Mean & 42570 & 52946 & 50657 & 48726 \\
\hline \multicolumn{3}{|l|}{S.E. of N or P marginal mean} & \multicolumn{2}{|l|}{\(=1470 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline S.E. of & of table & & = 25 & /ac. \\
\hline
\end{tabular}

Grop :- Common Legume (Kharif).
Site :- Agri. Res. Instt., Rajendranagar.

Ref. :- A.P. 58(59).
Type :- \({ }^{\mathbf{\prime}} \mathbf{M}\) '.

Object:-To find out the optimum quantity of manures required for different kinds of Legumes under rainfed conditions to get maximum yields.

\section*{1. BASAL CONDITIONS:}
(i) (a) N1I. (b) Wheat. (c) 20 C.L./ac. of F.Y.M. (ii) (a) Clay loam. (b) Refer soil analysis, Rajendranagar. (iii) 26, 27.7.1958. (iv) (a) 4 ploughings with country plough. The disc was also worked. (b) Dibbling in rows. (c) \(10-12 \mathrm{lb} . / \mathrm{ac}\). (d) \(12^{\prime \prime} \times 6^{\prime \prime}\). (e) 2 . (v) Nil. (vi) Mung, Urad, Cowpea and Pillipesara. (vii) Rainfed. (viii) Thinning was done two weeks after germination, cultural operations such as weeding etc., 'was done as and when needed (ix) 29.2". ( \(x^{\prime}\) 'Mung: 26.9.1958. Urad : 11.10.1953. Cowpea : 24.10.1958. and Pillipesara : 5.10.1958
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 legumes: \(\mathrm{L}_{1}=\) Mung, \(\mathrm{L}_{2}=\) Urad, \(\mathrm{L}_{3}=\) Cowpea and \(\mathrm{L}_{4}=\) Pillipesara.
(2) 4 manurial treatments: \(\mathrm{M}_{0}=\) No manure, \(\mathrm{M}_{1}=10 \mathrm{C} . \mathrm{L} . / \mathrm{ac}\). of F.Y.M., \(\mathrm{M}_{2}=20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{M}_{3}=40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 16 .
(b) \(122^{\prime} \times 92^{\prime}\). (iii) 4 .
(iv) (a) \(28^{\prime} \times 20^{\prime}\).
(b) \(26^{\prime} \times 18^{\prime}\).
(v) 1' alround (vi) Yes.
4. GENERAL :
(i) The early growth of the crop was satisfactory. Due to heavy rains stunted growth was observed. (ii) Nil. (iii) Yield of fodder. (iv) (a) 1957-1959. (b) No. (c) -. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(9986 \mathrm{lb} . / \mathrm{ac}\). (ii) \(2969 \mathrm{lb} . / \mathrm{ac}\). (iii) L effect is highly significant, interaction \(\mathrm{M} \times \mathrm{L}\) is significant. (iv) Av. yield of fodder in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Mean \\
\hline \(L_{1}\) & 3418 & 3046 & 3371 & 2953 & 3197 \\
\hline \(\mathrm{L}_{2}\) & 8672 & 9649 & 9602 & 11252 & 9794 \\
\hline \(L_{3}\) & 13648 & 15391 & 17879 & 15391 & 15577 \\
\hline \(\mathrm{L}_{4}\) & 10043 & 11065 & 11902 & 12483 & 11375 \\
\hline Mean & 8945 & 9788 & 10689 & 10521 & 9986 \\
\hline \multicolumn{6}{|c|}{\begin{tabular}{ll} 
S.E. of any marginal mean & \(=742\) \\
S.E. of body of table & \(=1485\)
\end{tabular}} \\
\hline
\end{tabular}

Crop :- Green Manure Crops (Kharif).
Site :- Agri. Coconut Res. Stn., Ambajipeta.

Ref. :- A.P. 57(82).
Type :- ' \(\mathbf{M}\) '.

Object:-To fix up the best G.M. crop for the Cozonut gardens.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) Nil. (ii) (a) Black clayey soil. (b) Refer soil analysis Ambajipeta. (iii) 6.7.1957. (iv) (a) \(\mathcal{K}^{2}\) ploughings before sowing. (b) to (e) N.A. (v) Nil. (vi) N.A. ; Yii) Unirrigated. (viii) Nil. (ix) \(31.33^{r}\). (x) Sannhemp: 1.10.1957; Pillipesara: 26.11.1957; Sesabania: 3.12.1957 and Calapoganium : 9:1.1958.
2. TREATMENTS :

6 G.M. crop: \(G_{1}=\) Sannhemp, \(G_{2}=\) Pillipesara, \(G_{3}=\) Crotolaria striata, \(G_{4}=\) Sesabanta speciosa, \(G_{5}=\) - Calapoganium, \(\mathrm{G}_{6}=\) Aschenomene americana.

3 DESIGN:
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) \(32^{\prime} \times 17^{\prime}\). (b) \(30^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Fodder yield. (iv) (a) 1956-1960. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Croto= laria striata and Aschenomene americana crop failed.
5. RESULTS :
(i) \(8111 \mathrm{lb} . / \mathrm{ac}\). (ii) \(2521.5 \mathrm{lb} . / \mathrm{ac}\). (iii) Tteatment differences are highly significant. (iv) Av. yield of fodder in lb./ac.
\begin{tabular}{lcccc} 
Treatment & \(G_{1}\) & \(G_{2}\) & \(G_{4}\) & \(G_{5}\) \\
Av. yield & 10982 & 8960 & 10200 & 2300 \\
& & & & \\
& S.E./mean & \(=\) & 1260.7 lb. /ac. &
\end{tabular}
```

Crop:- Green Manure Crops(Kharif).
Ref. :- A.P. 58(88).
Site :- Agri, Coconut Res. Stn., Ambajipeta.
Type:- 'M'.

```

Obj ct:-To fix up the bast G.M. crop for the Cozonut gardens.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) Nil. (i) (a) Black clayey soil. (b) Refer soil analysis, Ambajipeta. (iii) 18.7.1958. (iv) (a) 2 ploughings before sowing. (b) to :e) N.A. (v) Nil. (vi) N.A. (vii) Rainfed. (viii) Nii. (ix) \(59.46^{\circ}\). (x) Sannhemp: 27.9.!958; Pillipesara: 1911.1958; Aschenomene americana: 1.12.1958; Calapogonium: 1.12.1958 Sesbania: 7.1.1959; Crotolaria striata: 29.1.1959.
2. TREATMENTS :

Same as in expt. no. 57(82) on page 461.
3. DESIGN :
(i) R B.D. (ii) (a) 6 .
(b) N.A.
(iii) \(4 . \quad\) (iv) (a) \(34^{\prime} \times 14.5^{\prime}\).
(b) \(33^{\prime} \times 13.2^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Fodder yield. (iv) (a) 1956-1960. (b) No. (c) Nil, (v) to (vii) Nil.
5. RESULTS:
(i) \(6433 \mathrm{lb} . / \mathrm{ac}\). (ii) \(1909 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of fodder in lb./ac.
\begin{tabular}{llcrccc} 
Treatment & \(\mathrm{G}_{1}\) & \(\mathrm{G}_{2}\) & \(\mathrm{G}_{3}\) & \(\mathrm{G}_{4}\) & \(\mathrm{G}_{5}\) & \(\mathrm{G}_{6}\) \\
Av. yield & 9325 & 7375 & 4025 & 8125 & 2400 & \(73500^{\circ}\) \\
& & & & & &
\end{tabular}
```

Crop :- Green manure crops (Kharif).
Site :- Agri. Coconut Res. Stn., Ambajipeta.
Ref :- A.P. 59(37).
Type :- ${ }^{\mathbf{4}}{ }^{\prime}$ '.

```

Object:-To fix up the best G.M. crop for Coconut gardens.
1. BASAL CONDITIONS :
(i) (a) to (c) Nil. ii) (a) Back clayey. (b) Refer soil analysis, Ambajipeta. (iii) 10.6 1959. (iv) (a) 2 ploughings before sowing. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Nil. (ix) \(48.3^{\circ}\). (x) Sannhemp : 17.9.1959; Sesbania : 27.11.1959 and crotolaria crop failed.
2. TREATMENTS :

3 G.M. crops: \(\mathrm{C}_{1}=\) Sannhemp, \(\mathrm{C}_{2}=\) Sesbania speciosa, and \(\mathrm{C}_{3}=\) Crotolaria.
3. DESIGN :
(i) R.B.D. (ii) (a) 3 . (b) \(1 / 33\) ac. (iii) 8 . (iv) (a) \(34^{\prime} \times 14.5^{\prime}\). (b) \(33^{\prime} \times 14.5^{\prime}\). (v) Nil. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Fodder yield. (iv) (a) 1956-1960. (b) No. (c) Nil (v) to (vi) Nil. (vii) There were three treatments i.e. Sanr.hemp, Sesbania, and crotolaria. But the crop of crotolaria failed completely and so there were no observations for the third treatment. Hence the expt. is analysed as a R.B D. with two treatments.

\section*{5. RESULTS :}
(i) 7130 lb /ac. (ii) \(1377 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment difference is highly significant. (iv) Av. yield of fodder in lb./ac.
\begin{tabular}{lll} 
Treatment & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) \\
Av. yield & 5817 & 8443 \\
& S.E./mean \(=487 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Pillipesara.
Centre :- Nellore (c.f.).

Ref:- A.P. 58 (SFT).
Type :- \(\boldsymbol{\epsilon M}^{\mathbf{M}}\).

Object :-Type C-To compare the response of Pillipesara to alternative sources and levels of phosphate
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.
(ii) Deep black soil.
(iii) Nil.
(iv) and (v) N.A. (vi) Local. (vii) to (x) N.A.
2. TREATMENTS:
\(0=\) Control (no manure).
\(\mathrm{p}_{1}=3^{n} \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{p}_{2}=60 \mathrm{1b} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{p}_{1}{ }^{\prime}=30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as. Dicalcium Phosphate.
\(\mathrm{p}_{2}{ }^{\prime}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Dicalcium Phosphate.
3. DESIGN:
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in the zone and the circle/thana is changed once'in two years within the same zone. Each feld assistant is required to conduct 31 trials in a year, 8 on kharif cereal, 8 on rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type A and the other half of type \(B\) on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosphate application are studied on type \(C\) trials in two out of the four zones in each district every year. The experiments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate' of one experiment per village. (iii) (a) \(1 / 40 \mathrm{ac}\). (b) \(1 / 80 \mathrm{ac}\). (iv) Yes.

GENERAL :
(i) Normal. (ii) Nil. (iii) Fodder yield. (iv) (a) to (c) N.A. (v) As per design. (vi) and (vii) Nil.
5. RESULTS:
\begin{tabular}{lccccc} 
Treatment & 0 & \(\mathrm{p}_{1}\) & \(\mathrm{p}_{2}\) & \(\mathrm{p}_{1}{ }^{\prime}\) & \(\mathrm{p}_{2}{ }^{\prime}\) \\
Av. yield & 8443 & 13306 & 16013 & 12450 & 14252
\end{tabular}
\[
\text { G.M. }=12893 \mathrm{lb} . / \mathrm{ac} . ; \text { S.E. }=165.8 \mathrm{lb} . / \mathrm{ac} . \text { and no. of trials } \Rightarrow 12
\]

\title{
Crop :- Setaria, Cotton and Groundnut (Kharif). \\ Site :- Govt. Cotton Farm, Adoni.
}

\section*{Ref:- A.P. 56(96). \\ Type :- ‘ \(\mathbf{X}^{\prime}\).}

Object :-To fix up the best strain of Cotton and its economical proportion for mixed cropping with Setaria and Groundnut.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Light red soil. (b) N.A. (iii) 1.7.1956. (iv) 2 ploughing with country plough during summer with the help of summer showers. After a month a heavy guntaka was worked to break up the clods. A fortnight before sowing light guntaka worked to level up the field. (b) to (e) N.A. (v) Nil. (vi) Cotton: As* per treatments. Setaria: H-2 korra. Groundnut : Local bunch type. (vii) Unirrigated. (viii) Dantulu was worked thrice and three hand weedings. Guntaka was worked twice after the harvest of Setaria and Groundnut. (ix) \(29.22^{\prime \prime}\). (x) Setaria : 16.10.1956; Groundnuit : 23, 24, 10.1956; Cotton: 17.12.1956 to 14.3.1956.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

All combinations of (1) and (2)
(1) 2 crops to be mixed with Cotton : \(\mathrm{C}_{1}=\) Setaria and \(\mathrm{C}_{2}=\) Groundnut.
(2) 3 ratios of Cotton and other crop: \(\mathrm{R}_{1}=1: 1, \mathrm{R}_{2}=1: 2\) and \(\mathrm{R}_{3}=1: 5\).

\section*{Snb-plot treatments :}

6 Cotton varieties: \(V_{1}=K .28, V_{2}=4616\) D.2, \(V_{3}=R .1, V_{4}=3930 A, V_{5}=H .420\) and \(V_{6}=\) Local mungari.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(1 / 161\) ac. (b) \(1 / 196 \mathrm{ac}\). (v) \(\mathbf{3}^{\prime}\) on either side. (vi) Yes.
4. GFNERAL :
(i) Due to continuous and heavy rainfall, crop was stunted and the rainfall interfered with the interculturing operations. Picking of Cotton was delayed upto March. (ii) Groundnut was attacked by Aphids during July. It got controlled due to predatory lady bird butles multiplying after a month. (iii) Yield and monetary return. (iv) (a) 195 j-contd. (b) No. (c) Nil (v) to (vii) Nil.
5. RESULTS:
(i) \(168 \mathrm{Rs} . / \mathrm{ac}\). (ii) (a) 68.62 Rs ./ac. (b) 29.4 I Rs ./ac. (iii) Main effect of C and V alone are highly significant. (iv) Av. value of produce in Rs /ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(V_{3}\) & \(V_{4}\) & \(\mathrm{V}_{5}\) & \(\mathrm{V}_{6}\) & Mean & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) \\
\hline \(\mathrm{R}_{1}\) & 156 & 131 & 190 & 180 & 199 & 145 & 166 & 119 & 214 \\
\hline \(\mathrm{R}_{2}\) & 164 & 119 & 171 & 178 & 185 & 192 & 168 & 121 & 215 \\
\hline \(\mathrm{R}_{3}\) & 163 & 140 & 210 & 182 & 181 & 149 & 171 & 114 & 228 \\
\hline Mean & 161 & 130 & 190 & 180 & 188 & 162 & 168 & 118 & 219 \\
\hline \(\mathrm{C}_{1}\) & 103 & 88 & 143 & 129 & 147 & 98 & & & \\
\hline \(\mathrm{C}_{2}\) & 219 & 172 & 236 & 23 ? & 229 & 227 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(\mathbf{C}\) marginal means \(\quad=11.43 \mathrm{Rs} . / \mathrm{ac} .5\). C means at the same level of \(\mathrm{V}=15.81 \mathrm{Rs} . / \mathrm{ac}\).
2. \(R\) marginal means \(\quad=14.00 \mathrm{Rs} . / \mathrm{ac}\). 6. V means at the same level of \(\mathrm{R}=14.10 \mathrm{Rs} . / \mathrm{ac}\).
3. V marginal means \(\quad=\quad 8.49 \mathrm{Rs} . / \mathrm{ac}\). 7. R means at the same level of \(\mathrm{V}=19.41 \mathrm{Rs}\)./ac.
4. \(V\) means at the same level of \(C=12.00\) Rs./ac. S.E. of body of \(C \times R\) table \(=14.00 \mathrm{Rs} . / \mathrm{ac}\).
\[
\begin{array}{ll}
\text { Crop :- Setaria, Cotton and Groundnnt (Kharif). } & \text { Ref :- A.P. 57(88). } \\
\text { Site :- Govt. Cotton Farm, Adoni. } & \text { Type :- ‘X'. }
\end{array}
\]

Object:-To fix up the best strain of Cotton and its economical proportion for mixed cropping with Setaria and Groundnut.
1. BASAL CONDITIONS:
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Red soil light. (b) N.A. (iii) 25.6.1957. (iv) (r) 2 plough ngs, break \(n g\) up of clods with heavy guntaka and leveling with the help of light guntaka. (b) to (e) N.A. (v) \(30 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) at the time of sowing. (vi) Cotton : As per treatments, Setaria : H-2 korra, Groundnut : TMV-2 (Bunch). (vii) Ucirrigated. (viii) Dantulu was worked thrice and hand weeding was also done thrice. After the harvest of component crops guntaka was worked twice. (ix) \(26.91^{\prime \prime}\). (x) Setaria : 19.9.1957, Groundnut : 25.10.1957, Cotton : 26.10.1957 to 20.2.1958.

\section*{2. TREATMENTS :}
.Same as in expt. no. 56 (96) on page 463.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block and 6 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(1 / 79\) ac. (b) \(1 / 98 \mathrm{ac}\). (v) \(3^{\prime}\) on either side. (vi) Yes.

\section*{GENERAL:}
(i) Cotton yield was normal. For want of timely rains at the critical period, groundnut suffered badly. (ii) Stenosis disease on Cotton was seen. (iii) Yield and monetary return. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) \(205 \mathrm{Rs} . / \mathrm{ac}\). (ii) (a) 104.22 Rs./ac. (b) \(42.67 \mathrm{Rs} . / \mathrm{ac}\). (iii) Main effects of C and V are highly significant. (iv) Av. money value in Rs.;ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(V_{1}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{3}\) & \(\mathrm{V}_{4}\) & \(\mathrm{V}_{5}\) & \(\mathrm{V}_{6}\) & Mean & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) \\
\hline \(\mathrm{R}_{1}\) & 215 & 176 & 195 & 207 & 218 & 186 & 199 & 229 & 170 \\
\hline \(\mathrm{R}_{2}\) & 232 & 213 & 257 & 240 & 225 & 194 & 227 & 252 & 201 \\
\hline \(\mathrm{R}_{3}\) & 169 & 146 & 238 & 203 & 218 & 164 & 190 & 240 & 139 \\
\hline Mean & 205 & 178 & 230 & 217 & 220 & 181 & 205 & 240 & 170 \\
\hline \(\mathrm{C}_{1}\) & 243 & 217 & 266 & 245 & 254 & 215 & & & \\
\hline \(\mathrm{C}_{2}\) & 167 & 139. & 194 & 188 & 186 & 146 & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{lll} 
1. C marginal means & \(=17.37 \mathrm{Rs} . / \mathrm{ac}\). & \(5 . \mathrm{C}\) means at the same level of \(\mathrm{V}=23.53 \mathrm{Rs} . / \mathrm{ac}\). \\
2. R marginal means & \(=21.27 \mathrm{Rs} . / \mathrm{ac}\). & \(6 . \mathrm{V}\) means at the same level of \(\mathrm{R}=21.33 \mathrm{Rs} . / \mathrm{ac}\). \\
3. V marginal means & \(=12.30 \mathrm{Rs} . / \mathrm{ac}\). & \(7 . \mathrm{R}\) means at the same level of \(\mathrm{V}=28.83 \mathrm{Rs} . / \mathrm{ac}\). \\
4. V means at the same level of C & \(=17.42 \mathrm{Rs} / \mathrm{ac}\). & \(\mathrm{S} . \mathrm{E}\). of body of \(\mathrm{C} \times \mathrm{R}\) table \\
\end{tabular}
Crop :- Setaria, Cotton and Groundnut (Kharif). Site :- Govt. Cotton Farm, Adoni.

\section*{Ref :- A.P. 56(95). \\ Type :- ' \({ }^{\prime}\) '.}

Object:-To fix up the best strain of Cotton and its economical proportion for mixed cropping with setaria and Groundnut.
1. BASAL CONDITIONS :
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Deep black soil. (b) N.A. (iii) 4.7.1956. (iv)
(a) 2 ploughings with country plough Heavy guntaka to break up the clods after one month. And light guntaka to level up the field, 15 days before sowing. (b) to (e) N A. (v) 12 C.L./ac. of C.M. (vi) Cotton : As per treatments. Setaria : H-2. korra. Groundnut : Local bunch. (vii) Unirrigated. (viii) Dantulu was worked thrice and hand weeding was done thrice. After the harvest of Setaria and groundnut crop guntaka was worked twice. (ix) 29.22". (x) Setaria: 9.10.1956, Groundnut : 8.11.1956 and Cotton : 22.1.1957 to 8.3.1957.

\section*{2. TREATMENTS :}

Main-plot treatments :
All combinations of (1) and (2)
(1) 2 crops to be mixed with Cotton: \(\mathrm{C}_{1}=\) Setaria and \(\dot{C}_{2}=\) Groundnut.
(2) 3 ratios of Cotton : Other crop: \(\mathrm{R}_{1}=1: 1, \mathrm{R}_{2}=1: 2\) and \(\mathrm{R}_{3}=1: 5\).

Sub-plot treatments :
6 varieties of Cotton: \(V_{1}=\) K. 28, \(V_{2}=4616\) D. 2, \(V_{3}=\) R. 1, \(V_{4}=3930 \mathrm{~A}, V_{5}=H .420\) and \(V_{6}=\) * Westerns 1.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(1 / 161\) ac. (b) \(1 / 196 \mathrm{ac}\). (v) \(3^{\prime}\) on either side. (vi) Yes. .-
4. GENERAL :
(i) Crop growth was stunted in early stages due to continuous and heavy rain fall that interfered with intercultural operations and weeding. Picking of Cotton was delayed upto March. (ii) Groundnut was attacked by aphids during July. It got controlled due to predatory lady bird beetle multiplying after a month. (iii) Yield data and monetary return. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil,
5. RESULTS :
(i) 164 Rs./ac. (ii) (a) 76.47 Rs ./ac. (b) \(33.33 \mathrm{Rs} . / \mathrm{ac}\). (iii) Main effect of C and V alone are highly significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{3}\) & \(\mathrm{V}_{4}\) & \(V_{5}\) & \(\mathrm{V}_{6}\) & Mean & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) \\
\hline \(\mathrm{R}_{1}\) & 136 & 118 & 164 & 165 & 175 & 128 & 148 & 173 & 122 \\
\hline \(\mathrm{R}_{2}\) & 184 & 113 & 178 & 250 & 203 & 144 & 179 & 209 & 148 \\
\hline \(\mathrm{R}_{3}\) & 163 & 121 & 189 & 169 & 200 & 156 & 166 & 200 & 132 \\
\hline Mean & 161 & 117 & 177 & 195 & 193 & 143 & 164 & 194 & 134 \\
\hline \(\mathrm{C}_{1}\) & 184 & 135 & 205 & 240 & 226 & 175 & & & \\
\hline \(\mathrm{C}_{2}\) & 137 & 99 & 149 & 149 & 159 & 111 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means \(\quad=12.74\) Rs./ac. 5. C means at the same level of \(\mathrm{V}=17.75 \mathrm{Rs} . / \mathrm{ac}\).
2. \(\mathbf{R}\) marginal means
\(=15.60 \mathrm{Rs} . / \mathrm{ac} . \quad 6 . \mathrm{V}\) means at the same level of \(\mathrm{R}=16.67 \mathrm{Rs} . / \mathrm{ac}\).
3. V marginal means \(\quad=9.62 \mathrm{Rs} / \mathrm{/ac}\). 7. R means at the same level of \(\mathrm{V}=21.75 \mathrm{Rs} . / \mathrm{ac}\).

4 V means at the same level of \(\mathrm{C}=13.61 \mathrm{Rs} . / \mathrm{ac}\). S.E. of body of \(\mathrm{C} \times \mathrm{R}\) table \(=15.60 \mathrm{Rs} . / \mathrm{ac}\).

Grop :- Setaria, Cotton and Groundnut (Kharif).
Site :- Govt. Cotton Farm, Adoni.

Ref :- A.P. 57(90).
Type :- ' \(\mathbf{X '}^{\prime}\).

Object:-To fix up the lust strain of Cotton and its economical proportion for mixed cropping with Setaria and Groundout.
1. BASAL CONDITIONS:
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Deep black soil. (b) N.A. (iii) 26.6.1957. (iv) (a) 2 ploughings, breaking up of clods with heavy guntaka and levelling with the help of light guntaka. ib) to (e) N.A. (v) \(30 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +20 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\) at the time of sowing. (vi) Cotton: As per treatments, Setaria: \(\mathrm{H}-2\), korra and groundnut: TMV-2 (Bunch). (vii) Unirrigated. (vi:i) Dantulu was worked thrice and hand weeding was also done thrice. After the harvest of component crops guntaka was worked twice. (ix) \(26.91^{*}\). (x) Setaria: 26.9.1957; Groundnut : 25.10.1957 and Cotton: 31.10.1957 to 21.1.1958.

\section*{2. TREATMENTS :}

Same as in expt. no. \(56(95)\) on page 465.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(1 / 79\) ac. (b) \(1 / 98 \mathrm{ac}\). (v) \(3^{\prime}\) on either side. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Stenosis disease on Cotton was seen upto \(10 \%\). (iii) Yield data and monetary value. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 171 Rs./ac. (ii) (a) 76.32 Rs./ac. (b) 43.37 Rs./ac.(iii) Main effect of \(V\) is highly significant and effect of C is significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(V_{2}\) & \(\mathrm{V}_{3}\) & V4 & \(\mathrm{V}_{5}\) & \(\mathrm{V}_{6}\) & Mean & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) \\
\hline \(\mathrm{R}_{1}\) & 163 & 173 & 175 & 189 & 191 & 124 & 169 & 156 & 182 \\
\hline \(\mathrm{R}_{2}\) & 183 & 169 & 173 & 222 & 183 & 157 & 181 & 169 & 193 \\
\hline \(\mathbf{R}_{3}\) & 195 & 149 & 163 & 159 & 179 & 134 & 163 & 144 & 183 \\
\hline Mean & 180 & 164 & 170 & 190 & 184 & 138 & 171 & 156 & 186 \\
\hline \(\mathrm{C}_{1}\) & 154 & 159 & 151 & 169 & 179 & 124 & & & \\
\hline \(\mathrm{C}_{2}\) & 206 & 169 & 189 & 211 & 189 & 152 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means \(\quad=12.71 \mathrm{Rs} . / \mathrm{ac}\). 5. C means at the same level of \(\mathrm{V}=20.57 \mathrm{Rs} . / \mathrm{ac}\).
2. R marginal means. \(\quad=15.57 \mathrm{Rs} . / \mathrm{ac}\). 6. V means at the same level of \(\mathrm{R},=21.69 \mathrm{Rs} . / \mathrm{ac}\).
3. V marginal means \(\quad=12.52 \mathrm{Rs} . / \mathrm{ac}: ~ 7 . ~ \mathrm{R}\) means at the same level of \(\mathrm{V}=25.19 \mathrm{Rs} . / \mathrm{ac}\).
4. \(V\) means at the same level of \(C=17.70 \mathrm{Rs} . / \mathrm{ac} . \quad\) S.E. of body of \(C \times R\) table \(=15.57 \mathrm{Rs} . / \mathrm{ac}\). 1

\author{
Crop :- Setaria, Cotton and Groundnut (Kharif). \\ Site :- Govt. Cotton Farm, Adoni.
}
```

Ref :- A.P. 56(93).
Type:- 'X'.

```

Object :-To decide the best strain of Cotton for mixed cropping and best time for raising mixtures.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Light red soil. (b) N.A. (iii) As per treatments. (iv) \({ }^{\prime}(\mathrm{a}) 2\) ploughings with country plough. After a month a heavy guntaka was worked to break up the clods. A fortnight before sowing a light guntaka was worked to level up the field. (b) to (e) N.A. (v) Nil. (vi) Cotton : As per treatments. Setaria : H-2 Korra and Groundnut : Local Bunch. (vii) Unirrigated. (viii) Dantulu was worked thrice and three hand weedings were done. After the harvest of setaria and groundnut crop, guntaka was worked twice. (ix) \(19.47^{\prime \prime}\) to \(28.22^{\prime \prime}\). (x) Setaria: 16.10 .1956 for \(D_{1}\), 5.11.1956 for \(D_{2}\), and 15.11.1956 for \(D_{3}\); Groundnut : 25.10 .1956 for \(D_{1} 12.11 .1956\) for \(D_{2}\) and 22.11.1956 for \(D_{3} ;\) Cotton : 17.11.1956 to 21.3.1957 for \(D_{1}, 29.12 .1956\) to 21.3 .1957 for \(D_{2}\) and 29.12 .1952 to 21.3.1957 for \(D_{3}\).

\section*{2. TREATMENTS :}

Main-plot treatments :
All combinations of (1) and (2).
(1) 2 crops to be mixed with cotton : \(\mathrm{C}_{1}=\) Setaria and \(\mathrm{C}_{2}=\) Groundnut.
(2) 3 dates of sowing: \(D_{1}=2.7 .1: 56, D_{2}=5.8 .1956\) and \(D_{3}=25.8 .1956\).

Sub-plot treatments :
6 cotton varieties: \(\mathrm{V}_{1}=\) K. 28, \(\mathrm{V}_{2}=4616 \cdot\) D. \(2, \mathrm{~V}_{3}=\) R. \(1, \mathrm{R}_{4}=3930 \mathrm{~A}, \mathrm{R}_{5}=\) H. 420 and \(\dot{V}_{6}=\) Local Mungari.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(1 / 161\) ac. (b)
\(1 / 196\) ac. (v) 3 ' on either side. (vi) Yes.
4. GENERAL :
(i) Crop growth was shunted in early stages due to continuous and heavy rain that interfered with inter-fered with intercultural operations and weeding. Picking of cotton was delayed upto March. (ii) Groundnut was attacked by Aphids during July. It got controlled due to predatory lady bird beetles multiplying after month. (iii) Yield data and money value. (iv) (a; 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS}
(i) \(207 \mathrm{Rs} . / \mathrm{ac}\). (ii) (a) \(68.63 \mathrm{Rs} . / \mathrm{ac}\). (b) \(9.80 \mathrm{Rs} . / \mathrm{ac}\). (iii) Effect of \(\mathrm{C}, \mathrm{D}\) and V are highly significant. Interactions are not significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\mathbf{V}_{3}\) & \(\mathrm{V}_{4}\) & \(\mathrm{V}_{5}\) & \(\mathrm{V}_{6}\) & Mean & , \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) \\
\hline \(\mathrm{D}_{1}\) & 244 & 199 & 284 & 283 & 298 & 227 & 256 & 198 & 313 \\
\hline \(\mathrm{D}_{2}\) & 183 & 170 & 188 & 211 & 188 & 175 & 186 & 122 & 250 \\
\hline \(\mathrm{D}_{3}\) & 161 & 160 & 218 & 197 & 192 & 160 & 181. & 150 & 212 \\
\hline Mean & 196 & 176 & 230 & 230 & 226 & 187 & 207 & 157 & 258 \\
\hline \(\mathrm{C}_{1}\) & 141 & 121 & 162 . & 185 & 193. & 142 & & & \\
\hline - \({ }^{\prime} \mathrm{C}_{2}\) & 251 & 231 & 299 & 276 & 259 & 232 & . & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means
11.43 Rs./ac. 5. C means at the same level of \(\mathrm{V}=12.01 \mathrm{Rs} . / \mathrm{ac}\).
2. \(\mathbf{D}\) marginal means \(\quad=14.00 \mathrm{Rs} . / \mathrm{ac} .6\). V means at the same level of \(\mathrm{D}=4.90 \mathrm{Rs} . / \mathrm{ac}\).
3. \(V\) marginal means \(\quad=2.83 \mathrm{Rs}\)./ac. 7. D means at the same level of \(\mathrm{V}=1467 \mathrm{Rs}\)./ac.
4. \(V\) means at the same level of \(C=4.00 \mathrm{Rs} . / \mathrm{ac}\). S.E. of body of \(\mathrm{C} \times \mathrm{D}\) table \(=1400 \mathrm{Rs} . / \mathrm{ac}\).

\section*{Crop :- Setaria, Cotton and Croundnut.}

Site :- Govt. Cotton Farm, Adoni.

\section*{Ref A.P. 57(89). \\ Type :- ‘X'.}

Object :-To decide the best strain of cotton for mixed cropping and best time for raising mixtures.
1. BASAL CONDITIONS :
(i) (a) Sorghum—Cotton. (b) Sorghum. (c) Nil. ii) Light red soil. (b) N.A. (iii) As per treatments. (iv', (a) 2 ploughings. After a month ieavy guntaka was worked to break up the clods. A light guntaka or leve!ling is worked fifteen days before sowing. (b) to (e) N.A. (v) 30 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super +20 lb ./ac. of N as \(\mathrm{A} / \mathrm{s}\) at the time of sowing. (vi) Cotton : As per treatments. Setaria: H-2 Korra, Groundnut: TMV-2 (Bunch). (vii) Unirrigated. (viii) Dantuiu was worked thrice and hand weeding was also done thrice. After th: harvest of component creps glintaka was worked twice. (ix) \(642^{\prime \prime}\) to \(17.92^{\prime \prime}\). ( \(x\) ) Setaria: 249.1957. for \(D_{1}\) Groundnut : 2710.1959 for \(D_{1}\) and Cotton : 29.10.1957 to 11.3.1958 for \(D_{1}, 2211.1957\) to 12.3.1958. for \(D_{2}\) and 8.12.1657 to 12.3 .1958 for \(D_{3}\).
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 2 crops to be mixed with cotton : \(C_{1}=\) Setaria and \(C_{2}=\) Groundnut.
(2) 3 dates of sowing : \(\mathrm{D}_{1}=25.6 .1957, \mathrm{D}_{2}=17.7 .1957\) and \(\mathrm{D}_{3}=24.8 .1957\).

Sub-plot treatments :
6 cotton varisties: \(\mathrm{V}_{2}=\mathrm{K} .28, \mathrm{~V}_{2}=4616 \mathrm{D} .2, \mathrm{~V}_{3}=\mathrm{R} .1, \mathrm{~V}_{4}=3930 \mathrm{~A}, \mathrm{~V}_{5}=\mathrm{H} .420\) and \(\mathrm{V}_{6}=\) Local Mungari. Cotion : Other crop mixed in 1:2 ratio.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block and 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(1 / 79\) ac. (b) \(1 / 98\) ac (v) \(3^{\prime}\) on either side. (vi) Yes.
4. GENERAL :
(i) Cotton crop was satisfactory. But for want of timely sain at the critical period groundnut and setaria failed. (ii) Stenosis disease on cotton was seen. (ii) Yield data and monetary value. (iv) (a) 1956-contd. (b) No. (c) Nil. (v) and (vi) Nil. (vii) The low monetary value in \(D_{2}\) and \(D_{3}\) are due to the failue of of groundnut and Setaria crop for the treatments. Mosetary values indicate that of Kapas only.
5. RESULTS :
(i) 106 Rs./ac. (ii) (a) 80.57 Rs ./ac. (b) 34.25 Rs ./ac. (iii) Main effects of D and V are highly significant. Interaction \(\mathrm{C} \times \mathrm{D}\) is significant. (iv) Av . value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{\mathrm{t}}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{3}\) & \(\mathrm{V}_{4}\) & \(V_{5}\) & \(\mathrm{V}_{6}\) & Mean & \(C_{1}\) & \(\mathrm{C}_{2}\) \\
\hline \(\mathrm{D}_{1}\) & 197 & 167 & 189 & 211 & 187 & 167 & 186 & 215 & 157 \\
\hline \(\mathrm{D}_{2}\) & 64 & 47 & 89 & 71 & 43 & 38 & 59 & 38 & 79 \\
\hline \(\mathrm{D}_{3}\) & 67 & 55 & 82 & 104 & 77 & 57 & 74 & 79 & 68 \\
\hline Mean & 109 & 90 & 120 & 129 & 102 & 87 & 106 & 111 & 101 \\
\hline \(\mathrm{C}_{1}\) & 109 & 106 & 115 & 133 & 110 & 95 & & & \\
\hline \(\mathrm{C}_{2}\) & 109 & 74 & 125 & 125 & 94 & 79 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means
2. D marginal means
3. V marginal means
\(=13.42\) Rs./ac. \(\quad\) 5. C means at the same level of \(\mathrm{V}=18.52 \mathrm{Rs} / \mathrm{ac}\).
\(=16.45 \mathrm{Rs} . / \mathrm{ac} . \quad 6 . \mathrm{V}\) means at the same leve! of \(\mathrm{D}=17.12 \mathrm{Rs} . / \mathrm{ac}\).
4. \(V\) means at the same level of \(C\)
\(=9.89 \mathrm{Rs} . / \mathrm{ac} . \quad 7 . \mathrm{D}\) means at the same level of \(\mathrm{V}=22.68 \mathrm{Rs} . / \mathrm{ac}\).
\(=13.98 \mathrm{Rs} . / \mathrm{ac} . \mathrm{S} E\). of body of \(\mathrm{C} \times \mathrm{D}\) table \(=16.45 \mathrm{Rs} . / \mathrm{ac}\).

\title{
Crop :- Setaria, Cotton and Groundnut. (Kharif). \\ Site :- Govt. Cotton Farm, Adoni. \\ Ref :- A.P. 56(94). \\ Type :- ‘X'
}

Otject :-To decide the best strain of cotton for mixed cropping and best time for raising mixtures. \({ }^{*}\)

\section*{1. BASAL CONDITIONS :}
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Dry black soil. (b) N.'A. (iii) As per treatment. (iv) (a) 2 ploughings with country plough. After a month a heavy guntakd was worked to break up the clods. A fortnight before sowing a light guntaka was worked to level the field. (b) to (e) N.A. (v) C.M. was applied at 12 C L./ac. (vi) Cotton: As per treatments. Setaria : H-2, Korra: Groundnut ; Local Bunch. (vii) Unirrigated. (viii) Dantulu was worked thrice and 3 hand weedings were given. After the harvest of Groundnut and Setaria guutaka was worked twice: (ix) \(19.47^{\prime \prime}\) to \(28.22^{\prime \prime}\). (x) Setaria 20.10.1956. for \(D_{1}, 5.11 .1956\) for \(D_{2}, 29.11 .1956\) for \(D_{3}\). Groundnut : 31.10 .1956 for \(D_{1}, 12.11 .1956\) for \(D_{2}, 23.11 .1956\) for \(D_{3}\) and Cotton: 18.11 .1956 to 26.3 .1957 for \(D_{1}\), 1.1.1957 to 26.3 .1957 for \(D_{2}\), 1.1.1957 to 26.3 .1957 for \(D_{3}\).
2. TREATMENTS:

Main-plot treatments :
All combinations of (1) and (2)
(1) 2 crops to be mixed with cotton: \(C_{1}=\) Setaria and \(C_{2}=\) Groundnut. .
(2) 3 dates of sowing : \(D_{1}=2.7 .56, D_{2}=5.3 .1956\) and \(D_{3}=25.8 .1956\).

Sub-plot treatments :
6 varieties of cotton: \(V_{1}=K .28, V_{2}=4616 \cdot \mathrm{D} .2, V_{3}=R .1, V_{4}=3930 \mathrm{~A}, V_{5}=H .420\) and \(V_{6}=\) Western, 1.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block ; 6 sub-plots/maia-plot. (b) N.A . (iii) 4. (iv) (a) \(1 / 161\) ac. (b) \(1 / 196\) ac. (v) \(3^{\prime}\) on either side. (vi) Yes.
4. GENERAL :
(i) Crop growth was stunted in early stages due to continuous and heavy rainfall that interfered with intercultural operations and weeding. Picking of cotton was delayed upto March. (ii) Groundnut was attacked by Aphids during July. It got controlled dụe to predatory "lady bird butles multiplying after a month. (iii) Yield data and monetary value. (iv) (a) 1956 -contd. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i \(119 \mathrm{Rs} . / \mathrm{ac}\). (ii) (a) 143.14 Rs ./ac. (b) 23.53 Rs ./ac. (iii) Effect of V is highly significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{c|cccccc|cc|cc|} 
& \(\dot{V}_{1}\) & \(\mathrm{~V}_{2}\) & \(\mathrm{~V}_{3}\) & \(\mathrm{~V}_{4}\) & \(\mathrm{~V}_{5}\) & \(\mathrm{~V}_{6}\) & Mean & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) \\
\hline \(\mathrm{D}_{1}\) & 150 & 102 & 165 & 153 & 181 & 138 & 148 & 134 & 162 \\
\(\mathrm{D}_{2}\) & 125 & 69 & 130 & 104 & 130 & 91 & 108 & 105 & 111 \\
\(\mathrm{D}_{3}\) & 103 & 86 & 114 & 121 & 99 & 83 & 101 & 82 & 120 \\
\hline Mean & 126 & 86 & 136 & 126 & 137 & 104 & 119 & 107 & 131 \\
\hline \(\mathrm{C}_{1}\) & 98 & 73 & 126 & 109 & 140 & 96 & & & \\
\(\mathrm{C}_{2}\) & 154 & 98 & 146 & 142 & 134 & 111 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means - \(\quad=23.84 \mathrm{Rs} . / \mathrm{ac}\). \(5 . \mathrm{C}\) means at the same level os \(\mathrm{V}=25.41 \mathrm{Rs} . / \mathrm{ac}\)
2. D marginal means \(\quad=29.22 \mathrm{Rs} / \mathrm{ac}\). 6. V means at the same level of \(\mathrm{D}=11.77 \mathrm{Rs} . / \mathrm{ac}\).
3. V marginal means \(\quad=6.79 \mathrm{Rs} . / \mathrm{ac}\). 7. D means at the same level of \(\mathrm{V}=31.12 \mathrm{Rs} . / \mathrm{ac}\),
4. V means at the same level of \(C=9.60 \mathrm{Rs} . / \mathrm{ac}\). S.E. of body of \(\mathrm{C} \times \mathrm{D}\) table \(=29.22 \mathrm{Rs} . / \mathrm{ac}\).
Crop :- Setaria, Cotton and Groundnut (Kharif).
Site :- Govt. Cotton Farm, Adoni.
\[
\begin{aligned}
& \text { Ref :- A.P. } 57(91) . \\
& \text { Type :- } ‘ X^{\prime} .
\end{aligned}
\]

Object :-To decide the best strain of Cotton for mixed cropping and best time of raising mixtures.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Deep black soil. (b) N.A. (iii) As per treatments. (iv) (a) 2 ploughings. After a month heavy guntaka was worked to break up the clods. A light guntaka for level.ing is worked fifteen days before sowing. (b) to (e) N.A. (v) \(30 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as \(\mathrm{Super}+20\) \(\mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) at the time of sowing. (vi) Cotton : as per treatments and Setaria: H-2 Korra, Groundnut: TMV-2 (Bunch). (vii) Irrigated. (viii) 3 weedings with dantulu and 3 weedings by hand. After the harvest of component crop guntaka was worked twice. (ix) \(6.42^{\prime \prime}\) to \(17.92^{* \prime}\). ( \(x\) ) Setaria : 279.1957 for \(D_{1}, 15.10 .1957\) for \(D_{2}\) and failed in \(D_{3}\); Groundnut : 2610.1957 for \(D_{1}, 1.11 .1957 \mathrm{for} D_{2}\) and 28.11.1957 for \(D_{3}\) and Cotton : 5.11.1957 to 23.1.1958 for \(D_{1}, 7.12 .1957\) to 9.1 .1958 for \(D_{2}\) and 17.1.1958 to 3.2.1958 for \(D_{3}\).
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 2 crops to be mixed with cotton: \(\mathrm{C}_{1}=\) Setaria and \(\mathrm{C}_{2}=\) Groundnut.
(2) 3 dates of sowing: \(D_{1}=26.6 .1957, D_{2}=17.7 .1957\) and \(D_{3}=31.8 .1957\).

Sub-plot treatments :
6 varieties of cotton : \(\mathrm{V}_{1}=3930 . \mathrm{A}, \mathrm{V}_{2}=\mathrm{K} .28, \mathrm{~V}_{3}=4616 \quad\) D. 2, \(\mathrm{V}_{4}=\mathrm{R} .1, \mathrm{~V}_{5}=\mathrm{H} .420\) and \(\mathrm{V}_{6}=\) Western 1.
Cotton: Other crop mixed in \(1: 2\) ratio .
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(1 / 79\) ac. (b) \(1 / 98 \mathrm{ac}\). (v) \(3^{\prime}\) on either side. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Stenosis disease was seen upto \(10 \%\) on cotton. (iii) Yield data and monetary values, (iv) (a) 1956-contd. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) 144 Rs./ac. (ii) (a) 52.29 Rs./ac. (b) 37.09 Rs./ac. (iii) None of the effects is significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{l|llllll|l|ll|} 
& \(V_{1}\) & \(V_{2}\) & \(V_{3}\) & \(V_{4}\) & \(V_{5}\) & \(V_{6}\) & Mean & \(C_{1}\) & \(C_{2}\) \\
\hline\(D_{1}\) & 132 & 120 & 192 & 126 & 157 & 132 & 143 & 143 & 144 \\
\(D_{2}\) & 149 & 147 & 155 & 197 & 146 & 160 & 159 & 171 & 146 \\
\(D_{3}\) & 124 & 129 & 139 & 136 & 123 & 130 & 130 & 123 & 137 \\
\hline Mean & 135 & 132 & 162 & 153 & 142 & 141 & 144 & 146 & 142 \\
\hline\(C_{1}\) & 134 & 148 & 171 & 141 & 144 & 135 & & & \\
\(C_{2}\) & 136 & 115 & 152 & 165 & 140 & 146 & & &
\end{tabular}
S.E. of difference of two
1. C marginal means
\(=8.71 \mathrm{Rs} . / \mathrm{ac}\). 5. C means at the same level of \(\mathrm{V}=16.35 \mathrm{Rs} . / \mathrm{ac}\).
2. D marginal means
\(=10.66 \mathrm{Rs} . / \mathrm{ac}\). 6. V means at the same level of \(\mathrm{D}=18.55 \mathrm{Rs} . / \mathrm{ac}\).
3. \(V\) marginal means
\(=10.71\) Rs./ac. 7. \(D\) means at the same level of \(\mathrm{V}=20.02\) Rs.rac.
4. V means at the same level of \(C\)
\(=15.14 \mathrm{Rs} . / \mathrm{ac} . \quad\) S.E. of body of \(\mathrm{C} \times \mathrm{D}\) tab'e
\(=10.66\) Rs. \(/ \mathrm{ac}\).

Grop :- Setaria, Cotton and Groundnut.
Site :- Govt. Cotton Farm, Adoni.

\section*{Ref :- A.P. 58(148). \\ Type :- ‘X'.}

Object:-To study the effect of mixed cropping of different varieties of Cotton with Setaria and Groundnut sown at different times.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sarghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Red soil. (b) N.A.' (iii) 8,9.7.1958; intersowing in the 3 rd week of August 1958. (iv) (a) 2 ploughings, heavy guntaka was worked to break up the clods and light juntaka for levelling. (b) to (e) N.A. (v) A/S at 20 lb ./ac. of N applied with seed-drill a fortnight before sowing. (vi) Setaria : H-2 Korra, Groundnut : TMV-2 and Cotton as per treatments. (vii) Unirrigated. (viii) Dantalu was worked thrice and hand weeding was done. After the harvest of Setaria and groundnut crops guntaka was worked. (ix) \(22.16^{\prime \prime}\). (x) Setaria: 13.10.1958, Groundnut : 28.10.1958 and Cotton : 9.1.1959 to 23.3.1959.
2. TREATMENTS :

\section*{Main-plot treatments :}

All combinations of (1) and (2)
(1) Intersowing of cotton in : \(\mathrm{M}_{1}=\) Setaria, \(\mathrm{M}_{2}=\) Ground nut and \(\mathrm{M}_{3}=\) Cotton.
(2) 2 timings of intersowing: \(\mathrm{T}_{1} \doteq\) Early sowing and \(\mathrm{T}_{2}=\) Late sowing.

Sub-plot treatments :
6 varieties of cotton : \(V_{1}=3930-A, V_{2}=3943-B, V_{3}=K-28, V_{4}=4616-D 2, V_{5}=R .1\) and \(V_{6}=\) Local Mangari.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block; 6 sub-plots/main plot. (b) N.A. (iii) 4 . (iv) (a) \(1 / 161\) ac. (b) 1/196 ac. (v) 4 , on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Cotton had an early set back due to red-hairy-caterpillar attack but pulled up later. (iii) Yield data and monetary value.' (iv) (a) 1958-contd. (b) and (c) No. (v) No. (vi) Nil. (vii) No.
5. RESULTS:
(i) 224 Rs./ac. (ii) (a) 67.04 Rs./ac. (b) 43.98 Rs./ac. (iii) Main effect of \(M\) is highly significant and effect of \(T\) is significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(V_{2}\) & \(\mathrm{V}_{3}\) & \(\mathrm{V}_{4}{ }^{\text {² }}\) & V & V6 & Mean & \(\mathrm{T}_{1}\) & \(\mathrm{T}_{2}\) \\
\hline \(\mathrm{M}_{1}\) & 2.7 & 221 & 254 & 242 & 232 & 294 & 250 & 237 & 263 \\
\hline \(\mathrm{M}_{2}\) & 251 & 306 & 278 & 284 & 261 & 29.3 & 279 & 274 & 284 \\
\hline \(\mathrm{M}_{3}\) & 131 & , 143 & 159 & 141 & 138 & 154 & 144 & 145 & 143 \\
\hline Mean & 213 & 223 & 230 & 222 & 210 & 247 & 224 & 218 & - 230 \\
\hline \(\mathrm{T}_{1}\) & 221 & 225 & 215 & 228 & 194 & 229 & & & \\
\hline T \({ }_{2}\) & 205 & 222 . & 245 & 217 & 226 & 265 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \({ }^{-}\)T marginal means \(\quad=11.17\) Rs./ac. 5. M means at the same level of \(\mathrm{V}=24.28 \mathrm{Rs} . / \mathrm{ac}\).
2. M marginal means \(\quad \vdots=13.68 \mathrm{Rs} / \mathrm{ac}\). 6. V means at the same level of \(\mathrm{T}=17.95 \mathrm{Rs} . / \mathrm{ac}\).
3. \(\dot{V}\) marginal means \(\quad=12.70 \mathrm{Rs} . / \mathrm{ac} .7 . \mathrm{T}\) means at the same level of \(\mathrm{V}=1980 \mathrm{Rs} . / \mathrm{ac}\).
4. \(V\) means at the same level of \(\mathrm{M}=21.99\) Rs./ac. S.E. of body of \(\mathrm{M} \times \mathrm{T}\) table
\(1 \quad 13.68\) Rs./ac.

\section*{Crop :- Setaria, Cotton and Groundnut (Kharif).}

Site :- Govt. Cotton Farm, Adoni.

> Ref :- A.P. 59(137).

Type :- \({ }^{\mathbf{6}} \mathbf{X}\).

Object :-To study the effect of mixed cropping of different varieties of cotton with Setaria and Groundnut sown at different times.
1. BASAL CONDITICINS :
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Red soil. (b) N.A. (iii) 4.6 .1959 and intersowing 9.8.1959 (iv) (a) 2 ploughings, heavy guntaka was worked to break up the clods and light guntaka for levelling. (b) to (e) N.A. (v) A/S at 20 lb ./ac. of N applied with seed drill a fortnight before sowing. (vi) 'Setaria: H-2 Korra, Groundnut : TMV-2. Cotton: As per treatment. (vii) Unirrigated. (viii) Dantalu was worked twice and hand weeding was done. After the harvest of setaria and Groundnut guntaka was porked. (ix) 30.56". (x) Setaria : 29.9.1959, Groundnut : 24.9.1959, and Cotton :19.10.1959 to 3.2.1960.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. \(58(148)\) on page 470.

\section*{4. GENERAL :}
(i) Cotton yield showed a decline due to the failure of monsocn showers. (ii), There was mild attack o. caterpillar. (iii) Yield data and monetary value of produce (iv) (a) 1959-contd. (b) and c) No. (v, No. (vi) Nil. (vii) No.
5. RESULTS :
(i) 436 Rs./ac. (ii) (a) 259.27 Rs./ac. (b) 62.65 Rs./ac. (iii) Main effects of T ard M are significant. Interactions \(\mathrm{M} \times \mathrm{V}\) and \(\mathrm{M} \times \mathrm{T} \times \mathrm{V}\) are highly significant. (iv) Av. value of produce in Rs.rac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{3}\) & \(\mathrm{V}_{4}\) & \(V_{5}\) & \(\mathrm{V}_{6}\) & Mean & \(\mathrm{T}_{1}\) & \(\mathrm{T}_{2}\) \\
\hline M \({ }_{1}\) & 395 & 423 & 452 & 421 & 503 & 401 & 433 & 535 & 331 \\
\hline \(\mathrm{M}_{3}\) & 548 & \(5 \div 3\) & 537 & 556 & 506 & 617 & 551 & 603 & 499 \\
\hline \(\mathrm{M}_{3}\) & 330 & 340 & 318 & 350 & 314 & 299 & 325 & 429 & 221 \\
\hline Mean & 424 & 435 & 436 & 442 & 441 & 439 & 436 & 522 & 350 \\
\hline T1 & 515 & 521 & 546 & 525 & 525 & 500 & & & \\
\hline T 2 & 332 & 350 & 326 & 360 & 356 & 378 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. T marginal means \(\quad=43.21 \mathrm{Rs} . / \mathrm{ac}\). 5. M means at the same level \(\mathrm{V}=60.16 \mathrm{Rs} / \mathrm{ac}\).
2. \(M\) marginal means \(\quad=52.92\) Rs./ac. 6. \(V\) means at the same level of \(T=25.57 \mathrm{Rs} . / \mathrm{cc}\).
3. \(V\) marginal means \(\quad=18.09 \mathrm{Rs} . / \mathrm{ac}\). 7. T means at the same level of \(\mathrm{V}=49.10 \mathrm{Rs}\) ac.
4. \(V\) means at the same level of \(M=31.32 \mathrm{Rs} . / \mathrm{ac}\). S.E. of body of \(\mathrm{M} \times \mathrm{T}\) table \(=52.92 \mathrm{Rs} / \mathrm{ac}\).
\[
\begin{array}{ll}
\text { Crop :- Setaria, Cotton and Groundnut (Kharif). } & \text { Ref :- A.P. 58(149). } \\
\text { Site :- Govt. Cotton Farm, Adoni. } & \text { Type :- }{ }^{\prime} \mathbf{X}^{\prime} .
\end{array}
\]

Object:-To study the effect of mixed cropping of different varieties of Cotton with Setariz and Groundnut sown at different times.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Black soil. (b) N.A. (iii) 11.7 .1958 ; intersowing in the 3rd week of August 1958. (iv) (a) 2 ploughings with country plough, heavy guntaka used to break up the clods fortnight before sowing. Light guntaka was used to level the field. (b) to (e) N.A. (v) A/S at 20 lb ./ac. of N applied with seed drill a fortnight before sowing. (vi) Setaria \(\mathrm{H}-2\) Korra. Groundnut: TMV-2. Cotton: As per treatments. (vii) Unirrigated. (viii) Dantalu was worked and band weeding was done. After the harvest of Setaria and groundnut crop guntaka was worked. (ix) \(22.16^{\circ}\).(x) Setaria 11.10.1958., Groundnut 1.11.1958, Cotton 6.1.1959 to 11.3.1959.
9. TREATMENTS :

All combinations of (1) and (2)
Main-plot treatments :
(1) 2 times of sowing : \(T_{1}=\) Early and \(T_{2}=\) Late.
(2) Intersowing of cotton in : \(\mathrm{M}_{1}=\) Cotton, \(\mathrm{M}_{2}=\) Setaria, and \(\mathrm{M}_{3}=\) Groundnut.

\section*{Sab-plot treatments :}

6 varieties of cotton: \(\begin{aligned} & \mathrm{V}_{1}=3930-\mathrm{A}, \quad \mathrm{V}_{2}=3943-\mathrm{B}, \quad \mathrm{V}_{3}=\mathrm{K}-28, \quad \mathrm{~V}_{4}=4616-\mathrm{D} 2, \mathrm{~V}_{5}=\mathrm{R} .1 \quad \text { and } \mathrm{V}_{6}= \\ & \text { Western-1 (control). }\end{aligned}\) Western - 1 (control).
3. DESIGN :
(i) Split-plot (ii) (a) 6 main-plots/replication; 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(1 / 161\) ac. (b) 1/196 ac. (v) \(4^{\prime}\) on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Severe attack of Stenosis due to which cotton yield was low. (iii) Yield data ' and monetary value. (iv) (a) 1958-contd. (b) and (c) No. (v) to (vii) Nil.
5. RESULTS :
(i) \(157 \mathrm{Rs} . / \mathrm{ac}\). (ii) (a) 41.73 Rs ./ac. (b) 24.88 Rs ./ac. (iii) Main effect of T is highiy significant and effect of \(\mathbf{M}\) is significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \[
V_{2}
\] & \(V_{3}\) & \(\mathrm{V}_{4}\) & \(V_{5}\) & \(\mathrm{V}_{6}\) & Mean & \(\mathrm{T}_{1}\) & \(\mathrm{T}_{2}\) \\
\hline M \({ }_{1}\) & 109 & 93 & 114 & 102 & 109 & 90 & 103 & 64 & 142 \\
\hline \(\mathrm{M}_{2}\) & 173 & 167 & 199 & 194 & 186 & 166 & 181 & 173 & 190 \\
\hline \(\cdot \mathrm{M}_{3}\) & 186 & 196 & 184 & 172 & 187 & 191 & 186 & 154 & 218 \\
\hline Mean & 156 & 152 & 166 & 156 & 161 & 149 & 157 & 130 & 183 \\
\hline T \({ }_{1}\) & 138 & 124 & 130 & 136 & 131 & 121 & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{}} \\
\hline \(\mathrm{T}_{2}\) & 174 & 180 & 202 & 177 & 190 & 177 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. T marginal means
\(=6.96 \mathrm{Rs} . / \mathrm{ac}\).
5. \(M\) means at the same level of \(V=14.14 \mathrm{Rs} . / \mathrm{ac}\).
2. \(M\) marginal means \(\quad=8.51 \mathrm{Rs} /\) /ac. \(6 . \mathrm{V}\) means at the same level of \(\mathrm{T}=10.16 \mathrm{Rs} / \mathrm{ac}\).
3. V márginal means
\(=7.18 \mathrm{Rs} . / \mathrm{ac} . \quad\) 7. T means at the same level of \(\cdot \mathrm{V}=11.60 \mathrm{Rs} . / \mathrm{ac}\).
4. \(V\) means at the same level of \(M=12.44\) Rs./ac. S.E. of body of \(T \times M\) table \(=\quad 8.51 \mathrm{Rs} . / \mathrm{ac}\).

Grop :- Cotton, Setaria and Groundnut (Kharif).
Site :- Govt, Cotton Farm, Adoni.

Ref :- A.P. 59(138).
Type :- ' \(\mathbf{X}\) '.

Object :--To study the effect of mixed cropping of different varieties of Cotton with Setaria and Groundnut sown at different times.
1. BASAL CONDITIONS :
(i) (a) Sorghum-Cotton (b) Sorghum. (c) Nil. (ii) (a) Black seil. (b) N.A. (iii) 29.6 .1959 to 10.8.1959. (iv) (a) 2 ploughings with country plough, heavy guntaka used to break up the clods a fortnight before sowing, light guntaka was used to level the field. (b) to (e) N.A. (v) A/S at \(20 \mathrm{lb} . / \mathrm{ac}\). of N applied with the seed drill a fortnight before sowing. (vi) Setaria: H-2 korra Groundnut TMV-2; Cotton-as per treatments. (vii) Unirrigated. (viii) Dantulu was worked and weeding was done. After the harvest of Setaria and groundnut crop guntaka was worked. (ix) \(30.56^{\prime \prime}\). (x) Setaria : 9.10.1959, Groundnut 23.101959. and Cotton 17.11.1959 to 24.2.1960.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. \(58(148)\) on page 470.
4. GENERAL:
(i) Cotton yield showed decline due to the failure of monsoon. (ii). There was mild stenosis attack in early sown plots. (iii) Yield data and monetary value. (iv) (a) 1958 -contd. (b) and (c) No. (v) to (vii) Nil.
5. RESULTS :
(i) \(405 \mathrm{Rs} . / \mathrm{ac}\). (ii) (a) 118.73 Rs ./ac. (b) 76.18 Rs ./ac. (iii) Main effect of M is highly significant and interaction \(\mathbf{T} \times \mathbf{M}\) is significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(V_{1}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{3}\) & \[
\dot{v_{4}}
\] & \(V_{5}\) & \(V_{6}\) & Mean & T1 & T8 \\
\hline \(\mathrm{M}_{1}\) & 334 & 359 & 300 & 345 & 338 & 287 & 327 & 288 & 367 \\
\hline \(\mathrm{M}_{2}\) & 321 & 357 & 349 & 327 & 339 & 305 & 333 & 343 & 323 \\
\hline \(\mathrm{M}_{3}\) & 549 & 555 & 568 & 571 & 535 & 548 & 554 & 530 & 579 \\
\hline Mean & 401 & 424 & 405 & 414 & 404 & 380 & 405 & 387 & 423 \\
\hline T1 & '391 & 416 & 387 & 398 & 370 & 359 & & & \\
\hline \(\mathrm{T}_{2}\) & 412 & 431 & 422 & 431 & 438 & 401 & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{llll} 
1 T marginal means & \(=19.93 \mathrm{Rs} . / \mathrm{ac}\). & 5. M means at the same level of \(\mathrm{V}=42.37 \mathrm{Rs} . / \mathrm{ac}\) \\
2. M marginal means & \(=24.23 \mathrm{Rs} . / \mathrm{ac}\). & 6. V means at the same level of \(\mathrm{T}=31.10 \mathrm{Rs} . / \mathrm{ac}\). \\
3. V marginal means & \(=21.99 \mathrm{Rs} . / \mathrm{ac}\). & 7. T means at the same level of \(\mathrm{V}=34.57 \mathrm{Rs} . / \mathrm{ac}\). \\
4. V means at the same level of M & \(=38.09 \mathrm{Rs} / \mathrm{ac}\). & \(\mathrm{S} . \mathrm{E}\). of body of \(\mathrm{T} \times \mathrm{M}\) table & \(=24.23 \mathrm{Rs} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Cotton, Setaria and Groundnut (Kharif). Site :- Covt. Cotton Farm, Adoni.}
Ref:- A.P. 58(146).
Type :- ‘X'.

Object :-To study the effect of mixed cropping of different varieties of Cotton with Setaria and Groundnut mixed in different ratios.
1. BASAL CONDITIONS :
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Black soil. (b) N.A. (iii) 11.7.1958 (for all crops). (iv) (a) Two ploughings, breaking up of clods and levelling. (b) to (e) N.A. (v) A/S at 20 lb ./ac. of \(N\) applied with seed drill a fortnight before sowing. (vi) Setaria: H-2. Korra. Groundnut : TMV-2, and Cotton-as per treatments. (vii) Unirrigated. (viii) Sinall blade harrow was worked and hand weeding was done. After harvest of Setaria and groundnut, blade harrow was worked. (ix) 22.16". (x) Setaria : 11.10.1958, Groundnut : 1.11.1958 and Cotton : 6.1.1959 to 11.3.1959.
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) Inter sowing Cotton in : \(\mathrm{M}_{1}=\) Setaria and \(\mathrm{M}_{2}=\) Groundnut.
(2) 3 ratios of Cotton to component crops: \(\mathrm{R}_{1}=1: 1, \mathrm{R}_{2}=1: 2\) and \(\mathrm{R}_{3}=1: 5\).

Sub-plot treatments :
6 Cotton varieties: \(\mathrm{V}_{1}=3930-\mathrm{A}, \mathrm{V}_{2}=3943-\mathrm{B}, \mathrm{V}_{3}=\mathrm{K}-28, \mathrm{~V}_{4}=4616 \mathrm{D}-2, \mathrm{~V}_{5}=\mathrm{R}-1\) and \(\mathrm{V}_{8}=\) Westerns-1.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(1 / 81\) ac. (b) 1.98 a :. (v) \(4^{\prime}\) on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Severe attack of stenosis to cotton. (iii) Yield data and monetary value. (iv: (a) 1956contd. (b) and (c) No. (v) to (vii) Nil.
5. RESULTS:

\footnotetext{
(i) 93 Rs./ac. (ii) (a) 28.81 Rs./ac. (b) \(12.64 \mathrm{Rs} . / \mathrm{ac}\). (iii) Main effects of \(M\) and \(R\) are signiâcant. (iv) Av. value of produce :n Rs./ac.
}

S.E. of difference' of two
1. M marginal means . \(\quad=4.80 \mathrm{Rs} . / \mathrm{ac}\). 5. M means at the same level of \(\mathrm{V}=6.86 \mathrm{Rs}\)./ac.
2. R marginal means \(\quad=5.87 \mathrm{Rs} . / \mathrm{ac} .6\). V means at the same level of \(\mathrm{R}=6.32 \mathrm{Rs}\)./ac.
3. \(V\) marginal means
\(=3.65 \mathrm{Rs} . / \mathrm{ac} .7 \mathrm{R}\) means at the same level of \(\mathrm{V}=8.23 \mathrm{Rs} / \mathrm{ac}\).
4. \(V\) means at the same level of \(M=5.16 \mathrm{Rs} . / \mathrm{ac}\). S.E. of body of \(\mathrm{M} \times \mathrm{R}\) table \(=5.87 \mathrm{Rs} . / \mathrm{ac}\).

Grop :- Cotton, Setaria and Groundnut (Kharif).
Site :-Govt. Cotton Farm, Adoni.

Ref. :- A.P. 59(139).
Type :- ' \({ }^{\prime}\) '.

Object:-To study the effect of mixed cropping of different varieties of Cotton with Setaria and Groundnut mixed in different ratios.
1. BASAL CONDITIONS :
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Black soil. (b) N.A. (iii) 25.6 .1959 (iv) (a) 2 ploughings were given with country plough, a heavy guntaka was used to break up clods and light guntäka to level the grounds. (b) to (e) N.A. (v) A/S at \(20 \mathrm{lb} . / \mathrm{ac}\). of N applied with seeddrill before sowing. (vi) Setaria: H-2 Korra. Cotton : As per treatments. and Groundnut: TMV-2. (vii) Unirrigated. (vii) Dantulu was worked and hand weeding was done. After the harvest of component crops, guntaka was worked. (ix) \(30.56^{\prime \prime} .^{\circ}(\mathrm{x})\) Setaria: 9.10.1959; Groundnut: 23.10.1959. and Cotton: 6.11.1959 to. 24.2.1960.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. \(58\left(1^{\dagger} 6\right)\) on page 474.
4. GENERAL :
(i) Cotton yield poor due to the failure of monsoon. (ii) Attack of stenosis. (iii) Yield data of Groundnut, Setaria, kapas and monetary value. (iv) (a) 1956-contd. (b) and (c) No. (v) to (vii) Nil.
5. RESULTS :
(i) 365 Rs./ac. (ii) (a) 105.96 Rs./ac. (b) 60.82 Rs./ac. (iii) Main effect of \(V\) and interaction \(V \times M\) are highly significant. '(iv) Av. value of produce in Rs./ac.

S.E. of difference of two
\begin{tabular}{lll} 
1. M marginal means & \(=17.66 \mathrm{Rs} . / \mathrm{ac}\). & 5. M means at the same level of \(\mathrm{V}=28.73 \mathrm{Rs} . / \mathrm{ac}\). \\
2. R marginal means & \(=21.62 \mathrm{Rs} . / \mathrm{ac}\). & \(6 . \mathrm{V}\) means at the same level of \(\mathrm{R}=30.41 \mathrm{Rs} / \mathrm{ac}\). \\
3. \(V\) marginal means & \(=17.55 \mathrm{Rs} / \mathrm{ac}\). & 7. R means at the same level of \(\mathrm{V}=35.19 \mathrm{Rs} / \mathrm{ac}\). \\
4. \(V\) means at the same level of \(\mathrm{M}=24.83 \mathrm{Rs} . / \mathrm{ac}\). & & S.E. of body of \(\mathrm{M} \times \mathrm{R}\) table \(=21.62 \mathrm{Rs} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Cotton, Setaria and Groundnut (Khanif). \\ Site :- Govt. Cotton Farm, Adoni.}

Ref:- A.P. 58(147).
Type :- 'X'.
Oject :-To study the effect of mixed בropping of different varieties of Cotton with Setaria ard Groundnut mixed in different ratios.

\section*{1. BASAL CONDITIONS:}
(i) 'a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Red soil. (b) N.A. (iii) 8 and 9.7.1958. (iv) (a) 2 ploughings with country plough, heavy guntaka to break up the clods, a light blade harrow worked to level the fields. (b) to (e) N.A. (v) A/S at 20 lb ./ac. of N applied with seed-drill a for?night before sowing. (vi) Setaria: H-2. Korra, Cotton - As per treatments and Groundnut : TMV - 2. , vii: Unirrigated. (vii) Dantulu were worked and hand weeding done. After harvest of Setaria and Groundnut guntaka was worked. (ix) \(22.16^{\prime \prime}\). (x) Setaria: 13.10.1958; Grourdnut : 28.10 1958; and Cotton 9.1.1959 to 23.3.1959.
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2) :
(1) Intersowing Cotton in: \(\mathrm{M}_{1}=\) Setaria and \(\mathrm{M}_{2}=\) Groundnut.
(2) 3 ratios of Cotton to component crop: \(\mathrm{R}_{1}=1: 1, \mathrm{R}_{2}=1: 2\) and \(\mathrm{R}_{3}=1: 5\).

Sub-plot treatments:
6 varieties of Cotton: \(V_{1}=3930-A, V_{2}=3943-B, V_{3}=K-28, V_{4}=4616-D .2, V_{5}=R_{1}\) and \(V_{6}=\) (Mungari), local.
3. DESIGN :
(i) Split-plot. (ii) (a` 6 main-plots/replication; 6 sub-plots \({ }^{\prime}\) main-plot. (b) N.A. (iii) 4 . (iv) a) 1,81 ac. (b) 1/96 ac. (v) \(4^{\prime}\) on either side. (vi) Yes.
4. GENERAL:
i) Normal. (ii) Nil. (iii) Yield of kapas, groundnut pods and haulms, korra grain and straw and monetary value. (iv, (a) 1956-centd. (b) and ic; No. (v) to (vii; Nil.
5. RESULTS:
i) \(245 \mathrm{Rs} . / \mathrm{ac}\). (ii) (a) \(85.30 \mathrm{Rs} . / \mathrm{ac}\). (b) \(36.53 \mathrm{Rs} . / \mathrm{ac}\). (iii) Main effect of M atone is highly significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{3}\) & \(\mathrm{V}_{4}\) & \(V_{5}\) & \(\mathrm{V}_{6}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{N}_{2}\) \\
\hline \(\mathrm{R}_{1}\) & 227 & 240 & 226 & 268 & 231 & 245 & 239 & 193 & 285 \\
\hline \(\mathrm{R}_{2}\) & 284 & 242 & 262 & 248 & 248 & 256 & 257 & 203 & 310 \\
\hline \(\mathrm{R}_{3}\) & 253 & 235 & 241 & 225 & 236 & 238 & 238 & 176 & 303 \\
\hline Mean & 255 & 239 & 243 & 247 & 238 & 246 & 245 & 191 & 293 \\
\hline \(\mathrm{M}_{1}\) & 208 & 196 & 182 & 191 & 177 & 189 & & & \\
\hline M, & 301 & 282 & 303 & 303 & 299 & 303 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. M marginal means \(\quad=14.22 \mathrm{Rs} . / \mathrm{ac}\). 5. M means as the same level of \(\mathrm{V}=19.68 \mathrm{Rs} . / \mathrm{ac}\).
2. R marginal means \(\quad=17.44 \mathrm{Rs} . / \mathrm{ac}\). 6. V means at the same level of \(\mathrm{R}=18.27 \mathrm{Rs}\)./ac.
3. \(V\) marginal means \(\quad=10.55 \mathrm{Rs} . / \mathrm{ac}\). 7. R means at the same level of \(\mathrm{V}=24.12 \mathrm{Rs} . / \mathrm{ac}\).
4. \(V\) means at the same level of \(M=14.91\) Rs./ac. S.E. of body of \(M \times R\) table \(=17.44 \mathrm{Rs} . / \mathrm{ac}\).

\title{
Grop :- Cotton, Setaria and Groundnut (Kharif).
}

Site Goyt. Gotton Farm, Adoni.
Ref:- A.P. 59(140).

Object:-To study the effect of mixed cropping of different varieties of Cotton with Setaria and Groundnut mixed in different ratios.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Red soil. (b) N.A. (iii) 4.61959 . (iv) (a) 2 ploughings with country plough, heavy guntaka used to break the clods. (b) to (e) N.A. (v) A/S at \(20 \mathrm{lb} . / \mathrm{ac}\). of N applied with seed-arill before sowing. (vi) Setaria : H-2 korra, Groundnut: TMV-2 and Cotton-As per treatments. (vii) Unirrigated. (viii) After the harvest of Setaria and Groundnut dantulu was worked and hand-weeding was done. (ix) \(30.56^{\prime \prime}\). (x) Setaria : 7.9.1959, Groundnut : 23.9 .1959 and Cotton : 19.10.1959 to 4.2 .1960 .
2. TREATMENTS :

Same as in expt. no. 58(147) on page 476.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/replication; 6 sub-plot/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(1 / 81 \mathrm{ac}\). (b) \(1 / 98 \mathrm{ac}\). (v) \(4^{\prime}\) on either side. (vi) Yes.
4. GENERAL:
(i) The Cotton yield was not good due to failure of monsoon showers. (ii) Mild attack of red-hairy caterpillers. (iii) Yields of groundnut pods and haulms, Setaria grain and sprouted kapas yields and monetory value. (iv) (a, 1956-contd. (b) and (c) No. (v) to (vii) Nil.
5. RESULTS :
(i) 590 Rs /ac. (ii) (a) 278.92 Rs./ac. (b) 78.15 Rs./ac. (iii) Main effect of V alone is significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\mathrm{V}_{1}
\] & \(\mathrm{V}_{2}\). & \(\mathrm{V}_{3}\) & \(\mathrm{V}_{4}\) & \[
\ddot{v}_{5}
\] & \(\mathrm{V}_{6}\) & Mean & \(\mathrm{M}_{1}\) & \[
\dot{\mathbf{M}}_{2}
\] \\
\hline \(\mathrm{R}_{1}\) & 554 & 567 & 643 & 646 & 657 & 609 & 613 & 616 & 610 \\
\hline \(\mathrm{R}_{2}\) & 648 & 636 & 621 & 597 & 602 & 576 & 613 & 511 & 715 \\
\hline \(\mathrm{R}_{3}\) & 527 & 527 & 561 & 593 & 575 & 474 & 543 & 498 & 588 \\
\hline Mean & 576 & 577 & 608 & 612 & 611 & 553 & 590 & 542 & 638 \\
\hline \(\mathrm{M}_{1}\) & 541 & - 529 & 559 & 565 & 548 & 508 & & & \\
\hline \(\mathrm{M}_{2}\) & \(6: 1\) & 625 & 657 & 659 & 674 & 598 & & & - \\
\hline
\end{tabular}
S.E. of difference of two
1. M marginal means \(\quad=46.48 \mathrm{Rs} /\) ac. 5. M means at the same level of \(\mathrm{V}=5486 \mathrm{Rs} . / \mathrm{ac}\).
2. \(R\) marginal means \(\quad=56.93\) Rs./ac. 6. \(V\) means at the sams level of \(R=39.08 \mathrm{Rs} . / \mathrm{ac}\).
3. V marginal means \(\quad=22.56 \mathrm{Rs} . / \mathrm{ac}\). 7. R means at the same level of \(\mathrm{V}=67.20 \mathrm{Rs} . / \mathrm{ac}\).
4. \(V\) means at the same level of \(M=3190 \mathrm{Rs} / \mathrm{ac}\), S.E. of body of \(\mathrm{M} \times \mathrm{R}\) table \(=56.93 \mathrm{Rs} / \mathrm{ac}\),

\section*{Crop :- Cotton, Setaria and Groundnut (Kharif). Site :- Govt. Cotton Farm, Adoni. \\ Ref:- A.P. 58(150). Typre:- \(\mathbf{6}^{\mathbf{X}}{ }^{9}\).}

Object:-To decide the best strain of Cotton for mixed cropping and best time of raising mixture.
1. BASAL CONDITIONS:

\footnotetext{
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Black soil. (b) N.A. (iii) As per treatments. (iv) (a) Two ploughing, breaking up the clods and levelling. (b) to (e) N.A. (v) A/S. at \(20 \mathrm{lb} / \mathrm{ac}\). of N was applied with seed drill a fortnight before sowing. (vi) Setaria: H-2 korra, Groundnut : TMV-2 and Cctton-as per treatments. (vii) Unirrigated. (viii) Small blade harrow was worked and hand weeding was done. After harvèst of Setaria and Groundnut harrow was workéd. (ix) \(22.16^{\prime \prime}\). (x) Setaria : 10.10.1958 and 1, 15.11.1958; Groundnut : \(1,6,15.11 .1958\) and Cotton : 3.1.1959 to 11.3.1959.
}

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

All combinations of (1) and (2)
(1) 2 crops mixed with Cotton: \(\mathrm{M}_{1}=\) Setaria and \(\mathrm{M}_{2}=\) Groundnut.
(2) 3 times of sowing: \(\mathrm{T}_{1}=11.7 .1958, \mathrm{~T}_{2}=31.7 .1958\) and \(\mathrm{T}_{3}=19.8 .1958\).

Sub-plot treatments :
6 varieties of Cotton: \(V_{1}=3930-A, \quad V_{2}=3943-B, \quad V_{3}=K-28, \quad V_{4}=4616, \quad D-2, V_{5}=R-1\) and \(V_{6}=\) Western-1.
3. DESIGN:
(i) Split-plot. (ii) (a) 6 main-plots/replication ; 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(1 / 182\) ac.
(b) \(1 / 196 \mathrm{ac}\). (v) \(3^{\prime}\) on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Severe attack of stenosis, due to which Cotton yield was low. (iii) Yield data and monetary value. (iv) (a) 1956 -contd. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS:
(i) 177 Rs./ac. (ii) (a) 47.35 Rs./ac. (b) \(22.10 \mathrm{Rs} . / \mathrm{ac}\). (iii) Main effects of M and T aloce are significant. (iv) Av. vaule of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(V_{1}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{3}\) & \(\mathrm{V}_{4}\) & \(\mathrm{V}_{5}\) & \(\mathrm{V}_{6}\) & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
\hline \(\mathrm{T}_{1}\) & 190 & 187 & 190 & 190 & 184 & 170 & 185 & 185 & 185 \\
\hline T2 & 181 & 173 & 204 & 192 & 184 & 170 & 184 & 159 & 210 \\
\hline \(\mathrm{T}_{3}\) & 147 & 148 & 163 & 158 & 166 & 187 & 161 & 165 & 158 \\
\hline Mean & 173 & 169 & - 186 & 180 & 178 & 176 & 177 & 170 & 184 \\
\hline \(\mathrm{M}_{1}\) & 164 & 165 & 173 & 173 & 174 & 169 & & & \\
\hline \(\mathrm{M}_{2}\) & 181 & 174 & 198 & 188 & 182 & 183 & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. M marginal means \(\quad=7.89 \mathrm{Rs} . / \mathrm{ac} .5\). M means at the same level of \(\mathrm{V}=11.43 \mathrm{Rs} . / \mathrm{ac}\).
2. T marginal means \(\quad=9.66 \mathrm{Rs} . / \mathrm{ac}\). 6 . V means at the same level of \(\mathrm{T}=11.05 \mathrm{Rs}\)./ae.
3. \(V\) marginal means \(\quad=6.38 \mathrm{Rs} . / \mathrm{ac} .7\). T means at the same level of \(\mathrm{V}=14.00 \mathrm{Rs} . / \mathrm{ac}\).
4. \(V\) means at the same level of \(\mathrm{M}=9.10 \mathrm{Rs} . / \mathrm{ac}\). S.E. of body of \(\mathrm{M} \times \mathrm{T}\) table \(=9.66 \mathrm{Rs}\)./ac.

\section*{Crop :- Cotton, Setaria and Groundnut (Kharif). \\ Site :- Govt. Cotton Farm, Adoni.}
Ref :- A.P. 59(141).
Type :- ‘X'.

Object :-To deside the best strain of Cotton for mixed cropping and best time for raising of mixture.

\section*{1. BASAL CONDITIONS :}
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Black soil. (b) N.A. (iij As per treatments. (iv) a) 2 ploughings with country plough, heavy guntaka was worked to break up the c'ods a fortnight before sowing and light guntaka was used to level the field. (b) to (e) N.A. v) A/S at \(20 \mathrm{lb} . / \mathrm{ac}\). of N was applied by seed-drill a fortnight before sowing. (vi) Cotton : as per treatments and Setaria: H-2 Korra and Groundnut : TMV-2. (vii) Unirrigated. (viii) Dantulu was worked and hand weeding was done after the harvest of the component crops, gu:taka was worked. (ix) \(30.56^{\prime \prime}\). (x) Setaria: 10.10.1959. 20.11.1959 ; Groundnut : \(24.10 .1959,20.11 .1959\) and Cotton : 7.11.1959 to 25.2.1:60.
2. TREATMENTS:

Main-plot treatments :
All combinations of (1) and (2).
(1) Mixed cropping of Cotton with: \(\mathrm{M}_{1}=\) Setaria and \(\mathrm{M}_{2}=\) Groundnut.
(2) 2 dates of sowing : \(\mathrm{T}_{1}=7.7 .1959\) and \(\mathrm{T}_{2}=10.8 .1959\).

Sub-plot treatments : .
6 varieties of Cotton: \(V_{1}=3930-A, V_{2}=3943-B, V_{3}=K-28, V_{4}=4616 \quad D-2, V_{5}=R_{1}\) and \(V_{6}=\) Westerns-1.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication ; 6 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(1 / 182 \mathrm{ac}\).
(b) \(1 / 196 \mathrm{ac}\).
(v) \(3^{\prime}\) on either side.
(vi) Yes.
4. GENERAL :
(i) The yield of Cotton suffered due to the failure of monsoon. (ii) Stenosis attack on all early sown plots.
(iii) Yield data and monetary value. (iv) (a) 1956-contd. (b) and (c) No. (v) to (vii) Nil.

\section*{5. RESULTS:}
(i) \(405 \mathrm{Rs} . / \mathrm{ac}\). (ii) (a) \(103.12 \mathrm{Rs} . / \mathrm{ac}\). (b) \(90.16 \mathrm{Rs} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. value of produce in Rs./ac.

S.E. of difference of two
\begin{tabular}{ll} 
1. M or T marginal means & \(=21.05 \mathrm{Rs} . / \mathrm{ac}\). \\
2. V marginal means & \(=31.88 \mathrm{Rs} . / \mathrm{ac}\). \\
3. \(V\) means at the same level of M or T & \(=45.08 \mathrm{Rs} . / \mathrm{ac}\). \\
4. M or T means at the same level of V & \(=46.23 \mathrm{Rs} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{M} \times \mathrm{T}\) table & \(=21.05 \mathrm{Rs} . / \mathrm{ac}\).
\end{tabular}


Ref :- A.P. 58(151).
Type :- 'X'.
Object :-To decide the best strain of Cotton for mixed cropping and best time for raising mixture.
1. BASAL CONDITIONS :
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Red soil. (b) N.A. (iii) As per treatments. (iv) (a) Two ploughings with country plough, heavy gunfaka to break the clods and leveling. (b) to (e) N.A. (v) A/S at 20 lb ./ac. of N applied with seed-drill a fortnight before sowing. (vi) Setaria: H-2-Korra, Groundnut : TMV-2 and Cotton : as per treatments. (vii) Unirrigated. (viii) Dantulu was worked and hand weeding was done. After the harvest of Setaria and Groundnut guntaka was worked. (ix) \(22.16^{\prime \prime}\). (x) Setaria : 13.10.1958 and 1, 14.11.1958; Groundnut : 31.10.1958, and 13, 14.11.1958 and Cotton: 10.1.1959 to 10.3.1959.
2. TREATMENTS:

\section*{Main-plot treatments :}

All combinations of (1) and (2)
(1) Mixed cropping of Cotton with : \(\mathrm{M}_{1}=\) Setaria and \(\mathrm{M}_{2}=\) Groundnut.
(2) 3 times of sowing: \(\mathrm{T}_{1}=10.7 .1958, \mathrm{~T}_{2}=31.7 .1958\) and \(\mathrm{T}_{3}=16.8\).1958.

\section*{Sub-plot treatments :}

6 varieties of Cotton : \(V_{1}=3930-A, V_{2}=3943-B, V_{3}=K-28, V_{4}=4616-D .2, V_{5}=R_{1}\) and \(V_{8}=\) Local.
3. DESIGN :
(i) Split-piot.
(ii) (a) 6 main-plots/replication; 6 sub-plots/main-plot.
(b) N.A.
(iii) 4 .
(iv) (a) \(1 / 182 \mathrm{ac}\).
(b) 1 i196 ac. (v) \(3^{\prime}\) on either side. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Cotton had an early set back due to red hairy caterpillar attack but pulled up later. (iii) Yield data and monetary value. (iv) (a) 1956-contd. (b) and (c) No. (v) to (vii) Nil.

\section*{5. RESULTS:}
(i) \(197 \mathrm{Rs} . / \mathrm{ac}\). (ii) (a) \(96.33 \mathrm{Rs} . / \mathrm{ac}\). (b) \(30.88 \mathrm{Rs} . / \mathrm{ac}\). (iii) Main effect of M is highly significant and effect of \(T\) is significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(V_{3}\) & \(\mathrm{V}_{4}\) & \(\mathrm{V}_{5}\) & V6 & Mean & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) \\
\hline T \({ }_{1}\) & 238 & 220 & 206 & 223 & 254 & 250 & 232 & 178 & 286 \\
\hline T2 & 208 & 209 & 207 & 192 & 200 & 194 & 202 & 145 & 258 \\
\hline T3 & 132 & 166 & 162 & 157 & 156 & 173 & 158 & 128 & 187 \\
\hline Mean & 193 & 198 & 192 & 191 & 203 & 206 & 197 & 150 & 244 \\
\hline \(\mathrm{M}_{1}\) & 142 & 148 & 150 & 138 & 163 & 160 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{.}} \\
\hline \(\mathrm{M}_{2}\) & 243 & 248 & 233 & 243 & 244 & 251 & & & \\
\hline
\end{tabular}
S.E. of difference of two


\section*{Crop :- Cotton, Setaria and Groundnut (Kharif). \\ Site :- Govt. Cotton Farm, Adoni.}

\section*{Ref :- A.P. 59(142). \\ Type :- ' \(\mathbf{X}\) '.}

Object :-To decide the best strain of Cotton for mixed cropping and best time for raising of mixtures.
1. BASAL CONDITIONS :
(i) (a) Sorghum-Cotton. (b) Sorghum. (c) Nil. (ii) (a) Red soil. (b) N.A. (iii) As per treatments (iv) (a) 2 ploughings with coun'ry plough, heavy guntaka was used to break the clods and light guntaka worked a fortnight before sowing to level the field. (b) to (e) N.A. (v) A/S at 20 lb ./ac. of N was applied a fertnight before sowing by seed drill. (vi) Cotton : As per treatments, Setaria: H-2 Korra, Groundnut: TMV-2 (vii) Unirrigated. (viii) Dantulu was worked and hand-weeding was done. After the harvest of Setaria nd Groundnut guntaka was worked. (ix) \(30.56^{\prime \prime}\). (x) Setaria 8.9.1959; 12.10.1959; Groundnut 24.9.1959, 12.10.1959 and Cotton 20.10.1959 to 19.2.1960.

\section*{2. TKEATMENTS :}

Main-plot treatments :
All combinations of (1) and (2)
(1) Mixed cropping of Cotton with : \(\mathrm{M}_{1}=\) Sefaria and \(\mathrm{M}_{2}=\) Groundnut.
(2) 2 times of sowing: \(\mathrm{T}_{1}=5.6 .1959\) and \(\mathrm{T}_{2}=6.7 .1959\).

Sub-plot treatments :
6 varietiesof Cotton : \(\mathrm{V}_{1}=3930-\mathrm{A}, \quad \mathrm{V}_{2}=3943-\mathrm{B}, \quad \mathrm{V}_{3}=\mathrm{K}-28, \quad \mathrm{~V}_{4}=4616 . \mathrm{D}-2, \quad \mathrm{~V}_{5}=\mathrm{R}_{1}\) and \(\mathrm{V}_{6}=\) (Mungari) local.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication; 6 sub-plots/main-plot. (b) N.A. (iii) 4 . (v) (a) \(1 / 182\) ac. (b) (b) \(1 / 196 \mathrm{ac}\), (vi) \(3^{\prime}\) on either side. (vi) Yes.

\section*{4. GENERAL :}
(i) Cotton yield suffered due to the failure of monsoon showers. (ii) Mild attack of red-hairy caterpillar. (iii) Yie!d data and monetary value. (iv) (a) 1956-contd. (b) and (c) No. (v) to (vii) Nil.
5. RESULTS :
(i) 467 Rs ./ac. (ii) (a) 309.84 Rs /ac. (b) 76.41 Rs //ac. (iii) Main effect of \(T\) alone is highy significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{3}\) & \(\mathrm{V}_{4}\) & \(\mathrm{V}_{5}\) & \(\mathrm{V}_{6}\) & Mean & \(\mathrm{T}_{1}\) & \(\mathrm{T}_{2}\) \\
\hline . \(\mathrm{M}_{1}\) & 337 & 440 & 411 & 410 & 437 & 390 & 413 & 624 & 202 \\
\hline , \(\mathrm{M}_{2}\) & 561 & 532 & 566 & 441 & 545 & 489 & 522 & 738 & 305 \\
\hline Mean & 474 & 486 & 489 & 425 & 491 & 439 & 467 & 681 & 254 \\
\hline T & 697 & 690 & 723 & 622 & 698 & 657 & & & \\
\hline T \({ }_{2}\) & 251 & 282 & 255 & 229 & 284 & 222 & & & \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. M or T margioal means & \(=63.24 \mathrm{Rs} . / \mathrm{ac}\). \\
2. V marginal means & \(=27.01 \mathrm{Rs} . / \mathrm{ac}\). \\
3. V means at the same level of M or T & \(=38.20 \mathrm{Rs} . / \mathrm{ac}\). \\
4. M or T means at the same level of V & \(=72.21 \mathrm{Rs} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{M} \times \mathrm{T}\) table & \(=63.24 \mathrm{Rs} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Groundnut and Redgram.}

Site :- Regional Oilseeds Res. Stn., Anantapur.

Ref :- A.P. 54(6).
Type :- ' \(\mathbf{X}\) '.

Object:-To find out the optimum ratio of mixing Redgram to Groundnut.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) Red soil (b) N.A. (iii) 20.7.1954 and 22.7.1954. (iv) (a) Worked tractor once with ploughs and once with disc harrow. Worked gnntaka twice to level up the fields. (b) Sown with gorru. (c) As per treatments. (d) \(9^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) TMV-3 groundnut (Improved and Redgram 37-late). (vii) Unirrigated, (viii) Worked metta guntaka twice weeded within rows. (xi) \(1191^{\prime \prime}\). (x) 22.12.1954 and 23.12.1954.
2. TREATMENTS :

5 fatios of number of lines of Redgram and groundnut : \(\mathrm{R}_{1}=1: 3, \mathrm{R}_{2}=1: 7, \mathrm{R}_{3}=1: 11, \mathrm{R}_{\mathbf{4}}=1: 15\) and \(R_{5}=\) Pure groundnut.
3. DESIGN :
(i) R.B D. (ii) (a) 5 . (b) N.A. (iii) 4 . (iv) (a) \(66^{\prime} \times 32^{\prime}\). (b) \(64^{\prime} \times 22^{\prime}\). (v) One row on either side breadthwise.
(vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Very light attack of red-hairy caterpillar. (iii) Yield and money value of the produce. (iv) (a) 1954-1956. (b) No. (c) -. (v) (a) and (b) No. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(55 \mathrm{Rs} . / \mathrm{ac}\). (ii) \(10.39 \mathrm{Rs} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs./ac.


\footnotetext{
Grop:- Groundnut and Redgram.
Ref :- A.P. 55(41).
Site :- Regional Oilseeds Res. Stn., Anantapur.
Type :- ' \(X\) '.
}

Object :-To determine the optimum ratio of mixing Groundnut to Redgram.

\section*{1. BASAL CONDITIONS ;}
(i) (a) Groundnut-Castor. (b) Castor. (c) No. (ii) (a) Red gravely. (b) N.A. (iii) 5.8 .1955 . (iv) 'a) Two ploughings with country plough, guntaka once to level up the fields. (b) Hand dibbling. (d, hnes \(9^{\prime \prime}\) apart. (c) Groundrut \(88 \mathrm{lb} . / \mathrm{ac}\). (e) One. (v) \(2 \frac{1}{2}\) tons of F.Y.M. \(+3 \frac{1}{2}\) tons/ac. of tank silt. Manure applied by broadcasting 20 days prior to showing and covered by working plough and guntaka. (vi) Groundnut TMV-3. (late), Red gram no.-37. (vii) Unirrigated. (viii) Metta guntaka twice. (ix; 14.59". ,x) 19.12.1955.

\section*{2. TREATMENTS:}

Same as in expt. 54(6) no page 481.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4 . (iv) (a) \(63^{\prime} \times 36^{\prime}\). (b) \(61 \frac{1}{2}^{\prime} \times 36^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Growth of red gram not satisfactory while the stand of the crop was good. (ii) Leaf roler attack to redgram in a mild form. Gammeyane dusted. (iii) Yield and monetary value. (iv) (a) 1954-1956. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 66 Rs./ac. (ii) 10.0 Rs./ac. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{llcccc} 
Treatment & \(R_{1}\) & \(R_{2}\) & \(R_{3}\) & \(R_{4}\) & \(R_{5}\) \\
Av. value & 60 & 68 & 71 & 72 & 60 \\
& \multicolumn{5}{l}{} \\
& S.E./mean & \(=\) & 5.0 & Rs./ac.
\end{tabular}

\section*{Crop :- Groundnut and Redgram. \\ Ref :- A.P. 56(23). \\ Site :-Regional Oilseeds Res. Stn., Anantapur. \\ Type :- ' \(\mathbf{X}\) '.}

Object:-To find out the optimum ratio of mixing Redgram to Groundnut.
1. BASAL CONDITIONS :
(i) (a) Groundnut-Castor. (b) Castor. (c) \(2 \frac{1}{2}\) tons/ac. of C.M. \(+3 \frac{1}{2}\) tons/ac. of tank silt. (ii) Red sandy scil. (b) N.A. (iii) 26.7.1956. (iv) (a) Ploughed twice with country plough, worked guntaka for levelling, worked gorru once. (b) Sown by drilling in gorru worked furrows. (c) 88 lb ./ac. (d) \(9^{\prime \prime}\) apart. (v) \(3 \frac{1}{2}\) tons/ac. of C.M. + \(1 \frac{1}{2}\) tons/ac. of tank silt. Applied by broadcasting 20 days prior to sowing and covered by ploughing Mortiely. (vi) Groundnut TMV-3. (late) Redgram No. 37 (late). (vii) Unirrigated. (vii) Worked metta guntaka once and weeding twice. (ix) 27.43". (x) 6.1.1957.
2. TREATMENTS :

Same as in expt. no. 54(6) on page 481.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) \(57^{\prime} \times 36^{\prime}\). (b) \(55 \frac{1^{\prime}}{} \times 36^{\prime}\). (iv) One row on either side breadthwise. (v) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Mild attack of Surul was noticed in the month of August September. Gammexane was dusted to prevent further spread of the pest. (iii) Yeld and money value of produce. (iv) (a) 1954-1956. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Sufferd a set back due to prolonged drought in inital stage.

\section*{5. RESULTS:}
(i) 162 Rs./ac. (ii) 26 Rs./ac. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{llllll} 
Treatment & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{3}\) & \(\mathbf{R}_{\mathbf{4}}\) & \(\mathbf{R}_{5}\) \\
Av. value & 134 & 146 & 168 & 178 & 185 \\
& \multicolumn{5}{l}{} \\
& S.E./mean & & & \(13 \mathrm{Rs} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Groundnut and Cotton. \\ Site :- Regional Oilseeds Res. Stm., Anantapur. \\ \[
\begin{aligned}
& \text { Ref :- A.P. } 54(7) . \\
& \text { Type :- ‘X'. }
\end{aligned}
\]}

Object :-To find out the optimum ratio of Cotton to Groundnut for growing mixed crop.
1. BASAL CONDITIONS:
(i) (a) No. (b) and (c) N.A. (ii) (a) Red soil. (b) N.A. (iii) 22.7 .1954 . (iv) (a) Worked tractor once with ploughs and once with disc harrows. Worked guntaka twice to level up the fields. (b) Sown with gorru. (c) N.A. (d) \(9^{\prime \prime}\) apart. (e) N.A. (v) No. (vi) Groundnut TMV-3 (late) and Cotton H-420. (vii Unirrigated. (viii) Thinnings, working metta guntaka twice and weeding within the rows. (ix) 11.91". (x) 22.7.1954.
5. TREATMENTS :

5 ratios of number of lines of Cotton to Groundnut \(: \mathrm{R}_{1}=1: 3, \mathrm{R}_{2}=1: 7, \mathrm{R}_{3}=1: 11, \mathrm{R}_{4}=1: 15\) and \(\mathrm{R}_{5}=\) Pure groundnut.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) \(66^{\prime} \times 32^{\prime}\). (b) \(64^{\prime} \times 32^{\prime}\). (v) On row each on width side of the plots. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Very light incidence of red-hairy cater pillar. (iii) Money value. (iv) (a) 1954-1956. (b) No. (c) Nil. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(53 \mathrm{Rs} . / \mathrm{ac}\). (ii) 8.86 Rs ./ac. (iii) Treatment differences are not significant. (iv) Av. value of prodace in Rs./ac.
\begin{tabular}{llcccc} 
Treatment & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & \(\mathbf{R}_{\mathbf{4}}\) & \(\mathbf{R}_{\mathbf{5}}\) \\
Av. value & 52 & 53 & 54 & 54 & 53 \\
& & & & \\
& S.E. \(/\) mean & \(=\) & 4.43 & Rs. \(/ \mathrm{ac}\). &
\end{tabular}

\section*{Crop:- Groundnut and Cotton. \\ Ref :- A.P. 55(40). \\ Site :- Regional Oilseeds Res. Stn., Anantapur. \\ Type :- \({ }^{\prime} \mathbf{X}\) '.}

Object :-To determine the optimum ratio of growing Groundnut with Cotten.
1. BASAL CONDITIONS :
(i) (a) Groundnut-Castor. (b) Castor. (c) No. (ii) (a) Red gravelly. (b) N.A. (iii) 19.8.1955. (iv) (a) 2 ploughings with country plough and guntaka once to level up the fields. (b) Seeds hand dibbled. (c) Groundnut 90 lb ./ac. (d \(9^{7}\) apart. (e) 1. (v) \(2 \frac{2}{2}\) tons/ac. of F.Y.M. \(+3 \frac{1}{2}\) tons/ac. of tank silt. . The manure applied by broad casting 20 days prior to-sowing and covered by working plough and guntaka. (vi) Groundnut : TMV-3, Spreading (late) ; H-420 Cotton (early). (yii) Unirrigated. (viii) Thinding leaving one plant per hole metta guntaka twice. (ix) 14.59". (x) 16.12.1955.
2. TREATMENTS:

Same as in expt. no. 54(7) above
3. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 4. (iv) (a) \(63^{\prime} \times 36^{\prime}\). (b) \(61^{\frac{1}{2}} \times 36^{\prime}\). (v) One row on either side. (vi) Yes.
4. GENERAL :
(i) Growth of Cotton stunted and yield was low. (ii) Bollworm attack on mild scale on Cotton. (iii) Yield and money value. (iv) (a) 1954-1956. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 80 Rs./ac. (ii) 16.74 Rs./ac. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{llllll} 
Treatment & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & \(\mathbf{R}_{\mathbf{4}}\) & \(\mathbf{R}_{\mathbf{5}}\) \\
Av. value & 71 & 84 & 79 & 80 & 86 \\
& \multicolumn{7}{l}{} \\
& S.E. \(/\) mean & \(=\) & 8.37 Rs./ac. & &
\end{tabular}

\section*{Crop :- Groundnut and Cotton. \\ Ref :- A.P. 56(26). \\ Site :- Regional Oilseeds Res. Stn., Anantapur. \\ Type :- ' \(\mathbf{X}\) '.}

Object:-To find out the optimum ratio of Cotton to Groundnut for growing mixed crop.
1. BASAL CONDITIONS :
(i) (a) Groundnut-Castor. (b) Castor. (c) \(2 \frac{1}{2}\) tons/ac. of C.M. \(+3 \frac{1}{2}\) tons/ac. of tank silt. (ii) (a) Red sandy loam. (b; N.A. (iii) 26 and 27.7 .1956 . (iv) (a) Ploughing with country plough twice, working guntaka for levelling and working gorru once. (i) Dibbling. (c) Groundnut : \(90 \mathrm{lb} / \mathrm{ac}\). (d) \(9^{\prime \prime}\) apart. (e) N.A. (v) \(3 \frac{1}{2}\) tons/ac. of C.M. \(+1 \frac{1}{2}\) tons/ac. of tank silt applied by broadaasting. 20 days prior to sowing and covered up by ploughing. (vi) Groundnut : TMV-3 (late). Cotton (local). (vii) Unirrigated. (viii) Working metta guntaka once weeding and hoeing twice. Thinning cotton plants once. (ix) \(27.43^{\prime \prime}\). (x) 3 ard 41.1957.
2. TREATMENTS :

Same as in expt. no. 54(7) on page 483.
3. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 4. (iv) (a) \(57^{\prime} \times 36^{\prime}\). (b) \(55 \frac{1}{2}^{\prime} \times 36^{\prime}\). (v) One row on either side breadthwise of the plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield and money value. (iv) (a) 1954-1956. (b) No (c) Nil. (v) and (vi) Nil. (vii) Crop suffered prolonged droughts.
5. RESULTS :
(i) 268 Rs./ac. (ii) 46.2 Rs./ac. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{lllccl} 
Treatment & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & \(\mathbf{R}_{\mathbf{4}}\) & \(\mathbf{R}_{\mathbf{5}}\) \\
Av. value & 297 & 270 & 239 & \(\mathbf{2 7 2}\) & 260 \\
& \multicolumn{6}{c}{ S.E./mean } & \(=\) & 23.1 & Rs. \(/ \mathrm{ac}\). & &
\end{tabular}

\section*{Grop :- Groundnut. \\ Site :- Regional Oilseeds Res. Stn., Anantapur.}

Ref:- A.P. 57(23). Type :- ‘X’.

Object :-To determine the most suitable crops that can be grown mixed with Groundnut.
1. BASAL CONDITIONS :
(i) (a) Groundnut follows castor in a two year rotation. (b) Castor. (c) C.M. at \(3 \frac{1}{2}\) tons/ac. and tank silt at \(1 \frac{1}{2}\) tons/ac. (ii) (a) Red soil. (b) N.A. (iii) 16.8 .1957 . (iv) (a) Ploughing thice with wooden plough and working guntaka once. (b) to (e) N.A. (v) \(4 \frac{1}{2}\) tons/ac. of C.M. and 3 tons/ac. of tank silt. (vi) Groundnut : TMV-3 (spreading, Castor and Korra, Cotton and Redgram (local). (vii) Unirrigated. (viii) Thinning the plants, hoeing and weeding. (ix) \(13.44^{\prime \prime}\). (x) 14.12.1957.
2. TREATMENTS :
1. Groundnut pure (control).
2. Groundnut + Castor.
3. Groundnut + Redgram.
4. Groundnut + Korra.
5. Groundnut + Cotton.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4 . (iv) (a) \(49 \frac{1^{\prime}}{} \times 12^{\prime}\). (b) \(46 \frac{1}{2}^{\prime} \times 12^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) The growth of all the component crops was satisfactory excepting Cotton. (ii) Mild attack of Tikka on Groundnut. (iii) Yield and money value. (iv) (a) 1957-1959. (b) No. (c) Nil. (v) to (vii) Nil
5. RESULTS :

\footnotetext{
(i) 52 Rs./ac. (ii) 8.0 Rs./ac. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs./ac.
}
\begin{tabular}{llcccc} 
Treatment & 1 & 2 & 3 & 4 & 5 \\
Av. yalue & 57 & 55 & 57 & 53 & 38 \\
& S.E./mean & \(=\) & 4.0 Rs./ac. & &
\end{tabular}

\section*{Crop :- Castor. \\ Site :- Regional Oilseeds Res. Stn., Anantapur.}

> Ref :- A.P. \(56(57)\).
> Type :- ‘X'.

Object :-To determine the suitable component crops that can be grown mixed with Castor.
1. BASAL CONDITIONS :
(i), (a) Castor-Groundnut. (b) Groundnut. (c) \(2 \frac{1}{2}\) tons/ac. of C.M. \(+3 \frac{1}{2}\) tons/ac. of tank silt. (ii) (a) Red sandy soil. (b) N.A. (iii) 14.7.1956. (iv) (a) Ploughed with country plough, worked guntaka once for levelling and worked gorru once. (b) Dibbled. (c) N.A. (d) Castor spacing 3' either other crops. 3 rows in between castor rows. (e) N.A. (v) \(3 \frac{1}{2}\) tons/ac. of C.M. \(+1 \frac{1}{2}\) tons/ac: of tank silt applied before planting and then puddied and ploughed. (vi) Castor: TMT-1; Redgram no. 37 ; Jonna \(: \mathrm{N}_{1}\) and other crops of _local variety. (vii) Unirrigated. (viii) Thinning twice, weeding and hoeing thrice. (ix) \(33.53^{\prime \prime}\). (x) Castor : 28.3.1957, Rederam : 16.1.1957, Cowpea : 2.10.1956, Groundnut: 5.12.1956, Greengram : 12.11.1956 and Cumbu: 26.10.1956.
2. TREATMENTS :

8 mixed crops: \(\mathrm{C}_{1}=\) Castor + Groundnut, \(\mathrm{C}_{2}=\) Castor + Cumbu, \(\mathrm{C}_{3}=\) Castor + Jonna, \(\mathrm{C}_{4}=\) Castor + Redgram, \(\mathrm{C}_{5}=\) Castor + Korra, \(\mathrm{C}_{6}=\) Castor + Greengram, \(\mathrm{C}_{8}=\) Castor + Cowpea and \(\mathrm{C}_{8}=\) Castor pure (control).
3. DESIGN :
(i) R.B D. (ii) (a) 8. (b) N.A. (iii) 4 , (iv) (a) \(45^{\prime} \times 15^{\prime}\). (b) \(39^{\prime} \times 9^{\prime}\). (v) One row of castor alround left as guard row (vi) Yes.
4. GENERAL :
(i) The growth of Redgram, Greengram and Cowpea was satisfactory and the castor crop was smothered by the quick growing crops. (ii) Jonna suffered a severe set back due to the incidence of satiga and mouled. (iii) Yield and money value of the produce. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Crop sufferd prolonged droughts.
5. RESULTS :
(i) 84 Rs./ac. (ii) 64.0 Rs ./ac. (iii) Treatment differences are significant. (iv) Av. money value of produce in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{6}\) & \(\mathrm{C}_{7}\) & \(\mathrm{C}_{8}\) \\
\hline Av. value & 186 & 53 & 47 & 85 & 42 & 56 & 111 & 93 \\
\hline & \multicolumn{8}{|l|}{S.E./mean \(=32.0\) Rs./ac.} \\
\hline
\end{tabular}

Crop:- Castor.
Site :- Regional Oilseeds Res. Stn., Anantapur.

Ref :- A.P. 57(25).
Type :- 'X'.

Object :-To determine the suitable component crops that can be sown mixed with Castor.
1. BASAL CONDITIONS :
(i) (a) Castor-Groundnut. (b) Groundnut. (c) C.M. at \(3 \frac{1}{2}\) tons/ac. + tank silt at \(1 \frac{1}{2}\) tons/ac.. (ii) (a) Red soil. (b) N.A. (iii) 15.7.1957. (iv) (a) Ploughing twice with wooden plough and working guntaka once. (b) and (c) N.A. (d) Castor: \(3^{\prime} \times 3^{\prime}\). Component crops are raised in the inter space between the Castor rows. (e) N.A. (v) C.M. at \(4 \frac{1}{2}\). tons/ac. and tank silt at 3 tons/ac. (vi) Castor: TMV-1. (main crops) and groundnut : TM-3. and other crops of local variety. (vii) Unirrigated. (viii) Thinning, weeding and hoeing. (ix) \(13.44^{\prime \prime}\). (x) 21.1.1958 to 8.3 .1958 (castor crop 3 periodical picking). Jonna: 24.10.1957, Cumbu : 26.10.1957, Korra : 26.10.1957, Cowpea : 9.11.1957, 22.11 .1957 and 11.12.1957, Green gram : 23.11.1957 and 10.12.1957 Groundnut : 1.12.1957 and Red gram : 18.12.1957.

\section*{2. TREATMENTS :}

Same as in expt. no. 56(57) on page 485.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) \(63^{\prime} \times 18^{\circ}\). (b) \(57^{\prime} \times 12^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) The growth of Castor was smothered in plots grown mixed with Redgram and Cowpea. (ii) Semilocper attack in a mild form was noticed and this was brought under complete check by resorting to hand picking. (iii) Yield data and money value of the produce. (iv) (a) \(1956-1958\). (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 75 Rs./ac. (ii) 22.0 Rs./ac. (iii) Treatment differences are significant. (iv) Av. money value in Rs./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{5}\) & C6 & \(\mathrm{C}_{7}\) & \(\mathrm{C}_{8}\) \\
\hline Av. value & 91 & 86 & 84 & 79 & 73 & 68 & 62 & 55 \\
\hline
\end{tabular}

\author{
Crop:- Grondnat and Cotton. \\ Ref, :- A.P. 54(18). \\ Site :- Agri. Res. Stn., Lam, Guntur.
}

Object :- To determine the optimum time of sowing Cotton in Groundnut.
1. BASAL CONDITIONS :
(i) (a Nil. (b) Jonna. (c) 5 C L./ac. of F.Y.M. (ii) (a) Black soil. (b) Refer soil analysis, Guntur. (iii) Cotton: 2.7.1954, 17.7.1954 and 2.8.1954. Groundnut: 2.7.1954. (iv) (a) Working of guntaka and papatam twice. (b) to (e) N.A. (v) Nil. (vi) Groundnut : TMV-2 Bunch (early) and Cotton : H-420 (early). (vii) Unirrigated. (viii) Weeding was given twice. (ix) \(23.3^{\prime \prime}\) to \(315 .^{\prime \prime}\). (x) Cotton : 8.10.1954 to 10.3.1955 and Groundnut: 19.10.1954.

\section*{2. TREATMENTS:}
1. Groundnut pure sown in June-July.
2. Groundnut in June--July + Cotton dibbled on the same day.
3. Groundnut in June-July + Cotton dibbled 15 days after.
4. Groundnut in June-July + Cotton dibbled 1 month later.

5: Pure Cotton sown along with treatment 1.
6. Pure Cotton sown along with trestment 4.
3. DESIGN
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6 . (iv) (a) \(38^{\prime} \times 11^{\prime}\). (b) \(33^{\prime} \times 7^{\prime}\). (v) One row either side for cotton, 2 rows on either side for groundnut and \(3^{\prime}\) on either end for both the crops. (vi) Yes.
4. GENERAL:
(i) Groundnut crop was good. Late sown cotton was poor in vigour as it was covered by the early groundnut crop. (ii) Nil. (iii) Yield of groundnut pods and Cotton. (iv) (a) 1950-1955. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Money value N.A.
5. RESULTS :
(i) to (iv) Results in lb./ac.
\begin{tabular}{lccccccccc} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 & G.M. & S.E. & Significant \\
Groundnut & 1094 & 636 & 758 & 1022 & - & - & 878 & 190.7 & Significant \\
Cotton & - & 202 & 106 & 55 & 326 & 125 & 163 & 138.3 & Significant
\end{tabular}

\section*{Crop :- Groundnut and Cotton. \\ Site :- Agri. Res. Stn., Lam, Guntur.}

Ref. :- A.P. 55(48).
Type :- ' \(\mathbf{X}\) '.
Object :-To determine the optimum time of sowing Cotton as mixture in the Groundnut.
1. BASAL CONDITION :
(i) (a) No. (b) Jonna. (c) N.A. (ii) (a) Black soil. (b) Refer soil analysis, Guntur. (iii) Cotton : 19.7.1955, 6.8.1955 and 19.8.1955. Groundnut : 19:7.1955. (iv) (a) 6 ploughings with country plough. (b) Cotton dibbled. (c) N.A. (d) H. 420 -Cotton was dibbled in between the alternate rows of groundnut thus providing a space of \(22^{\prime \prime}\) between two rows of cotton while the spacing of groundnut being \(11^{\prime \prime}\) between rows. (e) N.A. (v) Glyricidia at 3000 lb ./ac. applied as basal dressing and ploughed in 'situ'. (vi) Cotton : H. 420-(early). Groundnut : T.M.V. 2-(Bunch Var) early. (vii) Unirrigated. (viii) Twice weeding. (ix) \(36.07^{\prime \prime}\). (x) Cotton : 28.11.1955 to 5.2.1955. Groundnut : 31.10.1955.

\section*{2. TREATMENTS :}

Same as in expt. no 54(18) on page 486.
3. DESIGN:
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) \(23^{\prime} \times 11^{\prime}\). (b) \(20^{\prime} \times 7^{\prime}\). (v) One row on either side for cotton and 2 rows on either side for groundnut. (vi) \(Y \in s\).
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield of groundnut pod andcotton. (iv) (a) 1953-1956. (b) No. (c) Nil. (v) (a) and (b) No. (vi) Nil. (vii) Money value N.A.
5. RESULTS :
(i) to (iv) Results in lb./ac.
\begin{tabular}{lccccccccc} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 & G.M. & S.E. & Significant \\
Groundnut & 150 & 81 & 107 & 146 & - & - & 121 & 18.6 & Significant \\
Cotton & - & 194 & 144 & 111 & 220 & 116 & 157 & 23.5 & Significant
\end{tabular}

\section*{Crop :- Groundnut and Cotton. \\ Site :- Agri. Res. Stn., Lam, Guntur.}

Ref:- A.P. 56(36).
Type :- 'X'.
Otject :-To determine the optimum tune of sowing Cotton as a mixture with Groundnut.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) Jonna. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Black soil. (b) Refer soil analysis, Guntur. (iii) Cotton: 9.7.1956, 23.7.1956 and 8.8.1956. Groundnut : 9.7.1956. (iv) (a) Working of guntaka and papatam twice. (b) and (c) N.A. (d) Cotton was dibbled in between the alternate rows of groundnut this providing a space of \(22^{\prime \prime}\) between two rows of cotton while the spacing of groundnut being \(11^{\prime \prime}\) between rows. (e) N.A. (v) 5 C.L./ac. of F.Y.M. +2 bags of groundnut cake +1 cwt of A/S was drilled during the period of preparatory cultivation. (vi) Bunch groundnut : TMV-2 (early) Cotton H-420 (early). (vii) Unirrigated. (viii) Weeding was given twice. (ix) \(16.6^{\prime \prime}\) to \(26.4^{\prime \prime}\). ( \(x\) ) Cotton : 29.11.1956 to 11.2.1957, and Groundnut : 22.10.1956.
2. TREATMENTS :

Same as in' expt. no. \(54(18)\) on page 486.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) \(23^{\prime} \times 11^{\prime}\). (b) \(20^{\prime} \times 7^{\prime}\). (v) One row on either side for cotton. Two rows on either side for groundnut. (vi) Yes.
4. GENERAL :
(i) Groundnut crop was good, late sown cotton crop was poor in vigor as it was covered by the early . groundnut crop: (ii) No. (iii) Only yield. (iv) (a) 1953-1956. (b) No. (c) Nil. (v) (a) and (b) No. (vi) Nil. (vii) Money value-,N.A.
5. RESULTS :
(i), to (iv) Resultś in \(1 \mathrm{~b} . / \mathrm{ac}\).
\begin{tabular}{lccccccccl} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 & G.M. & S.E. & Significance \\
Groundnut & 140 & 75 & 88 & 116 & - & - & 105 & 5.3 & Not significant \\
Cotton & - & 234 & 115 & 25 & 224 & 46 & 129 & 18.6 & Significant.
\end{tabular}

\section*{Crop :- Chillies and Cotton. \\ Site :- Agri. Res. Stn., Lam, Guntur.}

\author{
Ref :- A.P. 55(59).
}

Type :- ' \(X\) '.
Object :-To fix up the suitable type of Cotton that can be profitably grown as a mixture with Chillies.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) Jonna. (c) N.A. (ii) (a) Black soil. (b) Refer soil analysis, Guntur. (iii) Cotton and chillies 19.9.1955. (iv) (a) 6 ploughings with country plough at different intervals. (b) Cotton dibbled, Chillies trnasplanted. (c) N.A. (d) As per treatments. (e) N.A. (v) N.A. (vi) Cotton (early) as per treatments ; chillies : \(G_{2}\). (vii) Unirrigated. (viii) Intercultivation with country plough \(1 \frac{1}{2}\) month after transplantation. Hand weeding twice. (ix) \(19.14^{\circ}\). (x. Cotton : 4.4.1956 to 9.5.1956; Chillies : 211.1956 to 16.2.1956.
2. TREATMENTS :

Main-plot treatments :
2 spacings between Cotton plants : \(C_{1}=12^{\circ}\) and \(C_{2}=6^{\circ}\).
Sub-plot treatments :
6 varieties of Cotton to be sown along with Chillies: G-2: \(\mathrm{V}_{1}=\mathrm{Lakshmi}, \mathrm{V}_{2}=34 / 4, \mathrm{~V}_{3}=\mathrm{C}-520 / 2, \mathrm{~V}_{4}=\) 197-3, \(\mathrm{V}_{5}=\mathrm{CO}-2\) and \(\mathrm{V}_{6}=\) Chillies alone.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/replication; 6 suob-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(1 / 31.4\) ac.
(b) \(1 / 36.6 \mathrm{ac}\). (v) 2 rows on either side for chillies and 1 row on enther side for cotton. (vi) Yes.

\section*{4. GENERAL :}
(i) Good. (ii) Nil. (iii) Yield and money value. (iv) (a) 1953-1955. (b) No. (c) Nil. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) 95.92 Rs./ac. (ii) (a) \(38.61 \mathrm{Rs} . / \mathrm{ac}\). (b) \(9.22 \mathrm{Rs} . / \mathrm{ac}\). (ili) Main effect of V alone is significant. (iv)
Av. value of produce in Rs./ac.
\begin{tabular}{l|cccccccc} 
& \(\mathrm{V}_{1}\) & \(\mathrm{~V}_{2}\) & \(\mathrm{~V}_{3}\) & \(\mathrm{~V}_{4}\) & \(\mathrm{~V}_{5}\) & \(\mathrm{~V}_{6}\) & \begin{tabular}{c} 
Mean \\
\hline \(\mathrm{C}_{1}\) \\
\(\mathrm{C}_{2}\)
\end{tabular} & 115.19 \\
118.25 & 100.13 & 65.00 & 73.31 & 131.44 & 70.00 & 92.51 \\
\hline Mean & 116.72 & 105.03 & 73.82 & 78.72 & 134.22 & 67.00 & 99 & 9.9 \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means \(=11.14\) Rs./ac.
2. V marginal means \(\quad=4.61 \mathrm{Rs} . / \mathrm{ac}\).
3. V means at the same level of \(C \quad=6.52 \mathrm{Rs} . / \mathrm{ac}\).
4. C means at the same level of \(\mathrm{V}=12.63 \mathrm{Rs} . / \mathrm{a}=\).
```

Crop :- Chillies and Cotton.
Site :- Agri. Res. Stn., Lam. Guntur.

> Ref :- A.P. $55(58)$.
> Type :- ‘X’.

```

Object:-To fix up the suitable type of Cotton that can be profitably grown as a mixture with Chillies.
1. BASAL CONDITIONS :
(i) (a) No. (b) Jonna. (c) N.A. (ii) (a) Black soil. (b) Refer soil analysis, Guntur. (iii) Cotton : 3.9.1955 and, Chillies: 19.9.1955. (iv) (a) 6 ploughing with country plough with different interval. (b) Cotton dibbled. Chillies transplanted (c) N.A. (d) As per treatments. (e) N.A. (v) N.A. (vi) Cotton(early) as per treatments Chillies: G-2. (vii) Unirrigated (viii) Intercultivation with country plough \(1 \frac{1}{2}\) months after transplanting, hand weeding twice. (ix) \(19.14^{\prime \prime}\). (x) Cotton : 21.1.1956 to 2.5.1956 and Chiliies: 21.1.1956 to 17.2.1956.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 55(59) on page 488.
5. RESULTS :
(i) 84.62 Rs./ac. (ii) (a) 23.79 Rs./ac. (b) 10.61 Rs./ac. (ii) Main effect' of \(V\) is significant. (iv) Av. value of produce in Rs./ac.

S.E. of difference of two
\begin{tabular}{ll} 
1. C marginal means & \(=668 \mathrm{Rs} . / \mathrm{ac}\). \\
2. V marginal means & \(=5,30 \mathrm{Rs} / \mathrm{ac}\). \\
3. V means at the same level of C & \(=7.50 \mathrm{Rs} / \mathrm{ac}\).
\end{tabular}

\section*{Grop :- Groundnut and Other Crops. \\ Site :- Regional Oilseeds Res. Stn., Kadiri.}
Ref:- A.P. 58(13).
Type :- \({ }^{6} \mathrm{X}\).

Object :-To determine the suitable component crop that can be sown mixed with Groundnut to realise maximum monetary value.
1. BASAL CONDITIONS:
(i) (a) and (b) N.A. (c) Nil. (ii) Red sandy loam. (b) Refer soil analysis, Kadiri. (iii) 17, 18.7.1958. (iv) (a) 2 ploughings with country plough and guntaka. (b) to (e) N.A. (v) Castor manure at 3 C.L./ac. + groundnut shell \(2 \frac{1}{2}\) C.L /ac. (vi) Groundnut : TMV-3 (medium), castor: TMV-1, Redgram : R-G and Korra Lccal. (viii) Unirrigated. (viii) Hoeing and weeding. (ix) 27.94". (x) 22.10.1958.
2. TREATMENTS :

4 crop mixtures: \(C_{1}=\) Groundnut alone (control), \(C_{2}=\) Groundnut + Castor, \(C_{5}=\) Groundnut + Korra and \(\mathrm{C}_{4}=\) Groundnut + Redgram.
3. DESIGN :
(i) R.B D. (ii) (a) 4. (b) \(60^{\circ} \times 72^{\prime}\). (iii) 4. (iv) (a) \(60^{\prime} \times 18^{\prime}\). (b) \(57^{\prime} \times 15^{\prime}\). (v) \(1 \frac{1}{2}^{\prime} \times 11^{\frac{1}{2}}:\) (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Leaf minor incidence on groundnut crop and semilooper on castor-Endrine sprayed. (iii) Yield and money value. (iv) (a) 1957-1959. (b) No. (c) Nil. (v) to (vii) Nil.
5. RESULTS :
(i) 178 Rs. ac. (ii) 38 Rs./ac. (iii) Treatment differences are not significant. (sv) Av. value of produce in Rs./ac.
\begin{tabular}{lllrl} 
Treatment & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) \\
Av. valve & 167 & 208 & 184 & 155 \\
& & & & \\
& S.E./mean & \(=\) & 19.0 & Rs./ac.
\end{tabular}

\section*{Crop :- Castor and Other Crops. Ref :- A.P. 58(14). \\ Site :- Regional Oilseeds Res. Stn., Kadiri. Type :- ‘X'.}

Object :-To determine the suitable component crop that can be sown mixed with Castor.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) N.A. (c) Nil. (ii) (a) Red loam soil. (b) Refer soil analysis, Kadiri. (iii) 9.7.1958. (iv) (a) 2 ploughings with country plough and guntaka once. (b) to (e) N.A. (v) C.M. at 3 C.L /ac. + groundnut shell at \(2 \stackrel{1}{1}\) C.L./ac. (vi) Castor : TMV-1 (medium), Groundnut: TMV-3 (medium), Redgram: RC-37 and local varieties of korra, cowpea and Greengram. (vii) Unirrigated. (viit) Hoeing and weeding. (ix) \(2794^{\prime \prime}\). (x) J.2.1959 (main crop castor).
2. TREATMENTS :

6 mixed crops : \(C_{1}=\) Castor and Groundnut, \(C_{2}=\) Castor and Redgram, \(C_{3}=\) Castor and Cowpea, \(C_{4}=\) Castor and Greengram, \(\mathrm{C}_{5}=\) Castor and Korra and \(\mathrm{C}_{6}=\) Castor Pure.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) \(66^{\circ} \times 72^{\prime}\). (iii) 4 . (iv) (a) \(60^{\prime} \times 18^{\prime}\). (b) \(57^{\prime} \times 15^{\prime}\). (v) \(1 \frac{1^{\prime}}{}\) all round. (vi) Yes.
4. GENERAL :
(i) Growth of the main crop (castor) is satisfactory. (ii) There was semilooper incidence on castor and the pest was controlled by spraying Endrine. (iii) Yield data and monetary value. (iv) (a) 1956-1958. (b) No. (c) Nil. (v) to (vii) Nil.

\section*{5. RESULTS :}
(i) 88 Rs./ac. (ii) 21.05 Rs./ac. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs./ac.
\begin{tabular}{lllllll} 
Treatment & \(C_{1}\) & \(C_{2}\) & \(C_{3}\) & \(C_{4}\) & \(C_{5}\) & \(C_{6}\) \\
Av. value & 128 & 116 & 100 & 71 & 71 & 42 \\
& & & & & &
\end{tabular}

\section*{Crop :- Groundnut and Other Crops. \\ Ref:- A.P. 59(113). \\ Site :- Regional Oilseeds Res. Stn., Kadiri. \\ Type :- ' \(X\) '.}

Object :-To determine the suitable component crops that can be grown with Groundnut.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Castor. (c) 3 C.L./ac. of C.M. \(+2 \frac{1}{2}\) C.L./ac. of Groundnut shell. (ii) (a) Red loam soin. (b) Refer soil analysis, Kadiri. (iii) 14.7.1959. (iv) (a) 2 ploughings with country plough. (b) to (e) N.A. (v) 4 C.L./ac. of C.M. (vi) TM-3 spreading (medium) and local varieties of component crops. (vii) Unirrigated. (viii) Hoeing and weeding. (ix) 16.7 \({ }^{\circ}\). ( \(x\) ) Groundnut : 30.12.1959, Component crops : 12.11.1959 to \(\mathbf{3 0 . 1 2 . 1 9 5 9 .}\)

\section*{2. TREATMENTS :}

6 crop mixtures: \(\mathrm{C}_{1}=\) Groundnut + Korra, \(\mathrm{C}_{2}=\) Groundnut + Jonna, \(\mathrm{C}_{3}=\) Groundnut + Sajja, \(\mathrm{C}_{4}=\) Groundnut + Redgram, \(C_{5}=\) Groundnut + Castor and \(C_{6}=\) Groundnut alone.
3. DESIGN:
(i) R.B.D.
(ii) (a) 6 .
(b) N.A.
(iii) 4 . (iv) (a) \(48^{\prime} \times 18^{\prime}\). (b) \(46 \frac{1^{\prime}}{2} \times 16 \frac{\frac{1}{2}^{\prime}}{}\).
(v) One row all round. (vi) Yes.
4. GENERAL :
(i) Normal and satisfactory. (ii) Leaf minor of groundnut was controlled by dusting B.H.C. \(10 \%\). (iii) Yield and money value. (iv) (a, to (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) 160.30 Rs./ac. (ii) 11.81 Rs./ac. (iii) Treatment differences are not significant. (iv) Ay. value of produce in Rs./ac.
\begin{tabular}{ccccccc} 
Treatment & \(\mathrm{C}_{2}\) & \({ }^{\prime} \mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{5}\). & \(\mathrm{C}_{6}\) \\
Av. value & 172.12 & 149.14 & 162.90 & 160.21 & 150.27 & 167.16 \\
& & & & & &
\end{tabular}

\section*{Crop :- Castor and othè crops (Kharif). \\ Site :- Regional Oilseeds Res. Stn., Kadiri. \\ Ref:- A:P. 59(108). \\ Type :- ' \(\mathbf{X}\) '.}

Object :-To determine the suitable remunerative component crop to be grown with Castor.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Groundnut. (c) 3 C.L./ac. of C.M. \(+2 \frac{1}{2}\) C.L./ac. of groundnut shell. (ii) (a) Red loam soil. (b) Refer soil analysis, Kadiri. (iii) 25.6 .1959 . (iv) (a) 2 ploughings with country plough. (b) to (e) N.A. (v) 4 C.L./ac. of C.M. (vi) Castor : TM-1 (medium) ; other crops local. (vii) Unirrigated. (viii) Hoeing and weeding. (ix) \(16.7^{\prime \prime}\). (x) Castor periodically from 9.11 .1959 to 2.3.1960. Component creps in October and November, 1959.
2. TREATMENTS :

7 crop mixtures : \(\mathrm{C}_{1}=\) Castor + Groundnut, \(\mathrm{C}_{2}=\) Castor + Sajia, \(\quad \mathrm{C}_{3}=\) Castor + Jonna, \(\mathrm{C}_{4}=\) Castor + Korra, \(\mathrm{C}_{5}=\) Castor + Greengram, \(\mathrm{C}_{6}=\) Castor + Cowpea and \(\mathrm{C}_{7}=\) Castor alone.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) \(60^{\prime} \times 68^{\prime}\). (iii) 4. (iv) (a) \(60^{\prime} \times 24^{\prime}\). (b) \(54^{\prime} \times 16^{\prime}\). (v) One row allround. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) There was a semilooper incidence on castor-controlled by spraying Endrine. (iii) Yield and monetary value. (iv) (a) 1959-1961. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) No.
5. RESULTS :
(i) 81.62 Rs./ac. (ii) 17.14 Rs./ac. (iii) Treatment differences are highly significant. (iv) Av. yield of.: produce in Rs./ac.
\begin{tabular}{lccccccc} 
Treatment & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{6}\) & \(\mathrm{C}_{7}\) \\
Av. value & 155.35 & 62.17 & 26.86 & 67.46 & 62.29 & 112.48 & 84.74 \\
& & & & & & & \\
& S.E. \(/\) mean & \(=\) & 8.57 & Rs. \(/ \mathrm{ac}\). & & & \\
& & & & & & &
\end{tabular}

\section*{Crop :- Acid Lime.}

Site :- Govt. Fruit Res. Stn., Anantharajupeta,

Ref:- A.P. 54(75)
Type :- \({ }^{6} \mathrm{C}^{\prime}\).

Object :-To determine the most suitable rootstock for Acid Lime.
1. BASAL CONDITIONS:
(i) N.A. (ii) (a) Sandy loam. (b) Refer soil analysis, Ananthárajupeta. (iii) N.A. (iv) Acid lime.(v) 20.10.1938. (vi) Nearly 3 years. (vii) \(200 \mathrm{lb} . / \mathrm{ac}\) of compost \(+8 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. \(+8 \mathrm{lb} . / \mathrm{ac}\). of Urea per tree applied in August. (viii) Digging, hoeing and weeding. (ix) Nil. (x) Irrigated. (xi) N.A.(xii) Thorough out the year.
2. TREATMENTS :

Acid lime budded on the following stock.
1. Acid lime on Acid lime.
2. Acid lime on Jemberi.
3. Acid lime on Gajanimma.
4. Acid lime seedling.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) 3. (v) Guard row was left alround. (vi) Yes.
4. GENERÁL :
(i) Good. (ii) NII. (iii) Yield of the fruits. (iv) (a) and (b) 1938-contd. (v) Due to casualities and unequal no. of trees in each treatinent statistical interpretation of the data is not possible. Hence the mean values have teen furnished in the results. (vi) Nil.
5. RESULTS:
(i) to (iv)
\begin{tabular}{ccc} 
Treatment & Av. no. of fruits/tree & Av. wt. of fruits in lb./tree \\
1. & 4758 & 453.6 \\
2. & 4996 & 463.9 \\
3. & 5056 & 445.5 \\
4. & 4772 & 447.2 \\
G.M. & 4906 & 452.5
\end{tabular}

Crop:- Acid Lime.
Site :- Govt. Fricit Res. Str., Anantharajupeta.

Ref :- A P. 55: 70).
Type :- \({ }^{〔} C\) '.

Object : - To determine the must suitable rootstock for Acid lime.
1. BASAL CONDITIONS :
(i) N.A. (ii) (a) Sandy loam. (b) Refer soil analysis, Anantharajupet. (iii) N.A. (iv) Acid lime. (v) 20.10.1938. (vi' Nearly 3 years. (vii) N at 5 lb ./tree applied in the month of September (viii) Digging, hoeing and weecing. (ix; Nil. (x) lrrigated. (xi) \(36.45^{\prime \prime}\). (xii) Throughout the year.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54, 75: on paje 491 .
5. RESULTS :
\begin{tabular}{ccc} 
Treatment & Av. no. of fruits/tree & Av. wt. of fruits in \(\mathrm{lb} . /\) tree \\
1. & 6830 & 637.2 \\
2. & 7107 & 686.5 \\
3. & 6943 & 6544 \\
4. & 7117 & 661.3 \\
G.M. & 6999 & 659.9
\end{tabular}

Crop :-Acid Lime.
Site :- Govt. Fruit Res. Stn., Anantharajupeta.

Ref :- A.P. 56(86).
Type :- ' C '.

Object :-To determine the most suitable rootstock for Acid lime.
1. BASAL CONDITIONS :
(i) N.A. (ii), (a) Sandy loam. (b) Refer soil analysis, Anantharajupet. (iii) N.A. (iv) Acid lime. (v) 20.13.1938. (vi, Nearly 3 years. (vii) 200 lb . of compost +8 lb . of G.N.C. +8 lb . of Urea'tree applied in August. (viii) Digging, hjeing and weeding. (ix) Nil. (x) Irrigated. (xi) \(60.60^{\prime \prime}\). (xii) Throughout the year.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(75) on page 491.
5. RESULTS:
(i) to (iv)
\begin{tabular}{ccc} 
Treatment & Av. no. of fruits/tree & Av. wt. of fruits in \(\mathrm{lb} . /\) tree \\
1. & 4843 & 399.1 \\
2. & 5669 & 475.0 \\
3. & 5068 & 417.1 \\
4. & 5687 & 464.9 \\
G.M. & 5317 & 439.0
\end{tabular}
```

Crop :- Acid Lime.
Ref:- A.P. 57(80).
Site :- Govt. Friut. Res. Stn., Anantharajupeta.
Type:-`व

```

Object :-To determine the most suitable root stock for Acid lime.
1. BASAL CONDITIONS :
(i) N.A. (ii) (a) Sandy loam. (b) Refer soil analysis, Anantharajupeta. (iii) N.A. (iv) Acid lime. (v) 20.10.1938. (vi) Nearly 3 years. (vii) \(N\) in the form of compost, Urea and G.N.C. (viii) Digging and weeding. (ix) Nil. (x) Irrigated. (xi) N.A. (xii) Throughout the year.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(75) on page 491.
5. RESULTS :
(i) to (iv)
\begin{tabular}{ccc} 
Treatment & Av. no. of fruits/tree & Av. wt. of fruits in lb./tree \\
1. & 3225 & 245.8 \\
2. & 3703 & 281.9 \\
3. & 3066 & 216.9 \\
4. & 3516 & 263.9 \\
G.M. & 3378 & 252.1
\end{tabular}

\section*{Crop :- Acid Lime.}

Ref :- A.P. 58(80).
Site :- Govt. Fruit Res. Stn., Anantharajupeta.
Type :- ' C '.
Object:-To determine the most suitable root stock for Acid lime.
1. BASAL CONDITIONS :
(i) N.A. (ii) (a) Sandy loam. (b) Refer soil analysis, Anantharajupeta. (iii) N.A. (iv) Acid lime. (v) 20.10.1938. (vi) Nearly 3 years. (vii) 200 lb . of compost +8 lb . of G.N.C. +8 lb . of Urea per tree applied in August. (viii) Weeding and hoeing, (ix) Nil. (x) Irrigated. (xi) N.A. (xii) Throughout the: year.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no 54(75) on page 491.
5. RESULTS :
(i) to (iv)
\begin{tabular}{ccc} 
Treatment & Av. no. of fruits/tree. & Av. wh. of fruits in lb./tree. \\
1. & 2474 & 168.9 \\
2. & 3045 & 205.0 \\
3. & 2481 & 188.3 \\
4. & 2651 & 181.0 \\
G.M. & 2663 & 185.8
\end{tabular}

\section*{Crop :- Acid Lime. \\ Site :- Citrus Root stock Trial Stn., Kodur.}

\section*{Ref :- A.P. 54(58).}

Type :- ' \(C\) '
Object :-To find out the best root stock for Acid lime.
1. BASAL CONDITIONS :
(i) Agricultural crops grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil analysis, Kodur. (iii) Shield budding. (iv) Acid lime. (v) 22 to \(24.7 .1951,28^{\prime} \times 28^{\prime}\). (vi) \(19 \frac{1}{2}\) months old budding. (vii) G.M. raised in 1949 ploughed in situ. (viii) Weed control. (ix) Horsegram. (x) Irrigated. (xi) \(55.25^{\prime \prime}\). (xii) Throughout the year, but mainly in March, July and December.

\section*{2. TREATMENTS :}
\(\mathrm{T}_{1}=\) Acid lime on Tamberi.
\(\mathrm{T}_{2}=\) Acid lime on Gajanimma.
\(\mathrm{T}_{3}=\) Acid lime on Acid lime.
3. DESIGN
(i) R.B.D. (ii) (a) and (b) 3. (iii) 6. (iv) 6. (v) One guard row alround the six blocks. (vi) Yes.
4. GENERAL :
(i) Satisfactery. (ii) Ni!. (iii) Growth data recorded in February 1955 and analysed for the charazters strech girth, scion girth etc. (iv) (a) aad (b) 1951 -contd. (v) and (vi) Nil.
5. RESULTS:
(i) to (iv)
\begin{tabular}{cccc} 
Treatment & Scion cirzumference in cms. & Av. no. of fruitsitree & Av. wt. of fruits in lb./tree \\
\(\mathrm{T}_{1}\) & 39.6 & 117 & 10.6 \\
\(\mathrm{~T}_{2}\) & 34.4 & 165 & 17.4 \\
\(\mathrm{~T}_{3}\) & 35.0 & 134 & 12.3 \\
G M. & 36.3 & 139 & 13.4 \\
S.E /mean & 0.8 & 22.9 & 2.3 \\
Significance & Significant & N.S. & N.S.
\end{tabular}

\section*{Grop :- Acid Lime. \\ Site :- Citrus Root stock Trial Stn., Kodur.}

Ref :- A.P. 55(27).
Type :- 'C'.
Object :-To find out the best root stock for Acid lime.
1. BASAL CONDITIONS :
(i) Agricultural crops grown under rainfed concitions. (ii) (a) Red loamy soil. (b) Refer soil analysis, Kodur. (iii) Shield budding. (iv) Acid lime. (v) 22 to \(24.7 .1951,28^{\prime} \times 28^{\prime}\). (vi) 191 months old budding. (vii) G.M. raised during 1949 and ploughed under in situ. (viii) Weed control. (ix) Horse gram. (x) Irrigated. (xi) \(43.77^{\prime \prime}\). xii) Throughout the year, mainly in March, July and December.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(58) on page 493.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Stock girth, scion girth, tree height, tree spread etc. (iv) (a) and (b) 1951contd. (v) and (vi) Nil.
5. RESULTS:
(i) to 'iv)
\begin{tabular}{lccc} 
Treatment & Scion circumference in cms. & Av. no. of fruits/tree & Av. wt. of fruits in lb./tree \\
\(\mathrm{T}_{1}\) & 52.7 & 893 & 92.0 \\
\(\mathrm{~T}_{2}\) & 45.4 & 1188 & 121.7 \\
\(\mathrm{~T}_{3}\) & 48.0 & 881 & 86.4 \\
G.M. & 48.7 & 987 & 100.0 \\
S.E./mean & 0.9 & 28.8 & 6.4 \\
Significance & Significant & Significant & Significant
\end{tabular}

\section*{Grop :- Acid Lime. \\ Site :- Citrus Root stock Trial Stn., Kodur.}

Ref :- A.P. 56(16).
Type:- ' C '.

Object :-To find out the best root stoek for Acid lime.
1. BASAL CONDITIONS :
(i) Agricultural crops grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil abalysis, Kodur. (iii) Shield budding. (iv) Acid lime. (v) 22 to \(24.7 .1951,28^{\prime} \times 28^{\prime}\). - (vi) \(19 \frac{1}{2}\) months old budding. (vii) G.M. crop raised during 1949 and ploughed under in Situ. (viii) Weéd control. (ix) Nil. (x) Irrigated. (xi) \(46.45^{\prime \prime}\). (xii) Throughout the year, mainly in March, July and December.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(58) on page 493.
4. GENERAL :
(i) Very good. (ii) Nil. (iii) Scion cricumference, stock cricumference, tree height etc. (iv) (a) 1951. (b) Still in progress. (v) and (vi) Nil.

1
5. RESULTS :
(i) to (iv)
\begin{tabular}{|c|c|c|c|}
\hline Treatment & Scion circumference in cms. & Av. no. of fruits/tree & Av. wt. of fruits in lb ./tree. \\
\hline \(\mathrm{T}_{1}\) & 61.2 & 2514 & 245.8 \\
\hline \(\mathrm{T}_{2}\) & 50.4 & 2873 & 274.0 \\
\hline \(\mathrm{T}_{3}\) & 56.8 & 2663 & 247.6 \\
\hline G.M. & 56.1 & 2683 & 255.8 \\
\hline S.E./mean & 1.4 & 146.8 & 10.7 \\
\hline Significance & Significant & N.S. & N.S. \\
\hline
\end{tabular}

\section*{Crop :- Acid Lime.}

Site :- Citrus Root Stock Trial Stn., Kodur.

\section*{Ref :- A.P. 57(40).}

Type :- ‘' \({ }^{\prime}\) '.

Object :-To find out the best root stock for Acid lime.
1. BASAL CONDITIONS:
(i) Agricultural crops grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil analysis, Kodur.-
(iii) Shield budding. (iv) Acid lime. (v) 22 to \(24.7 .1951,28^{\prime} \times 28^{\prime}\). (vi) \(19 \frac{1}{2}\). monthis old budding.-
(vii) G.M. crop raised during 1949 and ploughed under in situ. (viii) Weed control. (ix) Nil. (x) Irrigated.
(xi) \(31.24^{\prime \prime}\). (xii) Throughout the year (Mainly in March, July and December).
2. TREATMENTS and 3: DESIGN :

Same as in expt. no. 54(58) on page 493.
4. GENERAL :
(i) Very good. (ii) Nil. (iii) Tree growth, Fruits yield, Fruits quality and disease resistance. (iv) (a) and (b) 1951-contd. (v) and (vi) Nil.
5. RESULTS :
(i) to (iv)
\begin{tabular}{|c|c|c|}
\hline Treatment & Av. no. of fruits/tree & Av. wt. of fruits in \(\mathrm{lb} . /\) /ree \\
\hline - \(\mathrm{T}_{1}\) & 3718 & 328.0 \\
\hline \(\therefore \mathrm{T}_{2}\) & . 3624 & 326.8 \\
\hline T3 & 3289 & 292.7 \\
\hline * G.M. & 3544 & 315.8 \\
\hline S.E./mean & 53.4 & 6.2 \\
\hline Significance & N.S. & N.S. \\
\hline
\end{tabular}

\section*{Crop :- Acid Lime. \\ Site:- Citrus Root Stock Trial Stn., Kodur. \\ Ref:- A.P. 58(110). \\ Type :- ‘C'.}

Object:-To find out the best root sto:k for Acid lime.
1. basal conditions :
(i) Agricultural crops were grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil analysls, Kodur. (iii) Shield budding. (iv) Acid lime. (v) 22 to \(24.7 .1951,28^{\prime} \times 28^{\prime}\). (vi) \(19 \frac{1}{2}\) months old. (vii) One G M. crop raised daring 1949 and ploughed in situ. (viii) Weed control. (ix) Nil. (x) Irrigated. (xi) \(4879^{\prime \prime}\). (xii) Throughout the year.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54 (58) on page 493.
4. GENERAL:
(i) Good. (ii) Nil. (iii: Fruit yield. (iv) (a) and (b) 1951 -contd. (v) and (vi) Nil.

\section*{5. RESULTS :}
(i) :o (iv)
\begin{tabular}{ccc} 
Treatment & Av. no. of fruits/tree & Av. wt. of fruits in lb./tree \\
\(\mathbf{T}_{\mathbf{1}}\) & 4485 & 373 \\
\(\mathbf{T}_{\mathbf{2}}\) & 4242 & 368 \\
\(\mathrm{~T}_{\mathbf{3}}\) & 3499 & 285 \\
& & \\
G.M. & 4075 & 342.3 \\
S.E.'mean & 58.6 & 5.2 \\
Significance & Significant & Significant
\end{tabular}

\section*{Crop :- Lemon. \\ Site :- Citrus Root Stock Trial Stn., Kodur.}

Ref :- A.P. 54(60).
Type:- 'C'.
Object:-To find out the best root stock for Lemon Nepali Oblong.
1. BASAL CONDITIONS :
(i) Agricultural crops grown under rainfed conditions. (ii) (a) Red loamy soll. (b) Rcfer soil analyeis, Kodur. (iii) Shield budding. (iv) Lemon-Nepali Oblong. (v) 26 to 28.7.1951, \(22^{\prime} \times 22^{\prime}\). (vi) 20 months old budd.ng. (vii) One G.M. crop of horsegram was raised during 1949 and ploughed under in situ. (viii) Weed control. (ix) Nil. (x).Irrigated. (xi) \(55.25^{\prime}\). (xii) Throughout the year but mainly in March, June and November.
2. TREATMENTS :
\(\mathrm{T}_{1}=\) Lemon on Jamberi root stock.
\(\mathrm{T}_{2}=\) Lemon on Gajanimma root stock.
\(\mathrm{T}_{3}=\) Lemon on Acid lime root stock.
3. DESIGN :
(i) R.B.D.
(ii) (a) 3.
(b) N.A.
(iii) 6.
(iv) 6 .
(v) One guard row alround the six blocks.
(vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Growth data resorded in February 1955 and analysed for the characters stock girth, scion girth, tree height and tree spread etc. (iv) (a) and (b) 1951-contd. (v) and (vi) Nil.

\section*{5. \#RESULTS :}
(i) to (iv) Fruits yield.
\begin{tabular}{cccc} 
Treatment & Scion circumference in cms. & Av. yield of fruits/tree & Av. wt. of fruits in lb./tree \\
\(\mathrm{T}_{\mathbf{1}}\) & 43.9 & 369 & 139.5 \\
\(\mathrm{~T}_{\mathbf{2}}\) & 40.2 & 328 & 126.8 \\
\(\mathrm{~T}_{\mathbf{2}}\) & 45.3 & 304 & 118.5 \\
& & & \\
G.M. & 43.2 & 334 & 128.3 \\
S.E./mean & 06 & 6.4 & 5.7 \\
Significance & Significant & Significant & Significant
\end{tabular}

\section*{Crop :--Lemon.}

Site :- Citrus Root stock Trial Stn., Kodur.

Ref:- A.P. 55(26).
Type :- \({ }^{\prime}\) C'.

Object :-To find out the best root stock for Lemon Nepali Oblong.

\section*{1. BASAL CONDITIONS :}
(i) Agricultural crops were grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil analysis, Kodur. (iii) Shield budding. (iv) Lemon-Nepali Oblong. (v) 26 to \(28.7 .1951,22^{\prime} \times 22^{\prime}\). (vi) 20 months old budding. (vii) G.M. crop of horsegram was raised during 1949 and ploughed under in situ. (viii) Weed control. (ix) Nil. (x) Irrigated. (xi) \(43.77^{\prime \prime}\). (xii) Throughout the year (mainly in March, June and November).
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. \(£ 4(60)\) on page 496.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Stock girth, Scion girth, tree height, etc. (iv) (a) and (b) 1951-contd. (v) and (vi) Nil.
5. RESULTS:
(i) to (iv)


Crop :- Lemon. . 어
Site :- Citrus Root stock Trial Stn.g Kodur:

Ref :- A.P. 56(17).
Type :- ' \(\mathbf{C}^{\prime}\).

Object :-To find out the best root stock for Lemon Nepali Oblong.
1. BASAL CONDITIONS :
(i) Agricuilturãl crops were grown under rainfed conditions. . (ii) (a) Red loamy soil. (b) Refer soil analysis, Kodur. (iii) Shield budding. (iv) Lemon Nepali Oblong (v) 26 to \(28.7 .1951,22^{\prime} \times 22^{\prime}\). (vi) 20 months old budding. (vii) One G.M. crop of horsegram was raised during 1949 and ploughed under in situ. (viii) Weed control. (ix) Nil. (x) Irrigated. (xi) \(46.45^{\prime \prime}\). (xii) Throughout the year (Mainly March, June and November).
2. TREATMENTS and 3. DESIGN:

Same as in expt. no \(54(60)\) on page 496.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Scion circumference, stock circumference, and tree height etc. (iv) (a) and (b) 1951-contd. (v) and (vi) Nil.
5. RESULTS:
(i) to (iv)
\begin{tabular}{ccccc} 
Treatment & Scion circumference in cm. & Av. yield of fruits/tree & Av. wt. of fruits in lb. /tree \\
\(\mathrm{T}_{1}\) & 60.4 & 1020 & 421.4 \\
\(\mathrm{~T}_{2}\) & 54.4 & 1008 & 429.1 \\
\(\mathrm{~T}_{3}\) & 62.1 & 1002 & 414.5 \\
& & & \\
G.M. & 59.0 & 1011 & 421.7 & \\
S.E./mean & 1.2 & 53.8 & 13.0 \\
Significance & Significant & Not significant & Not significant
\end{tabular}

\section*{Crop :- Lemon. \\ Site :- Citras Root Stock Trial Stn., Kodur.}

Ref :- A.P. 57(41).
Type:- ‘' \({ }^{\prime}\).
Object :-To find out the best root stock for Lemon Nepali Oblong.
1. BASAL CONDITIONS :
(i) Agricultural crops were grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil analysis, Kodur. (iii) Shield budding. (iv) Lemon Nepali Oblong. (v) 26 to 28.7.1951, \(22^{\prime} \times 22^{\prime}\). (vi) 20 months old budding. (vii) One G.M. crop of horsegram was raised during 1949 and ploughed under in situ. (viii) Weed control. (ix) Nil. (x) Irrigated. (xi) \(31.24^{\circ}\). (xii) Throughout the year mainly in March, June and November.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(60) on page 496.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Tree growth, fruit yie'd, fruit qualities and disease resistance. (iv) (a) and (b) 1951-contd. (v) and (vi) Nil
5. RESULTS :
(i) to (iv) Fruit yield.
\begin{tabular}{ccc} 
Treatment & Av. no. of fruits/tree & Av. wt. of fruits in \(\mathrm{lb} . /\) tree. \\
\(\mathrm{T}_{\mathbf{1}}\) & 1178 & 398.7 \\
\(\mathbf{T}_{\mathbf{2}}\) & 1352 & 471.3 \\
\(\mathbf{T}_{\mathbf{3}}\) & 1066 & 391.6 \\
& & \\
G.M. & 1199 & 420.5 \\
S.E./mean & 34.7 & 13.8 \\
Significance & Not significant & Not significant
\end{tabular}

Crop :- Lemon.
Site :- Citrus Root Stock Trial Stn., Kodur.

\section*{Ref :- A.P. 58(111).}

Type :- 'C'.

Object :-To find out the best root stock for Lemon Nepali Oblong.
1. BASAL CONDITIONS :
(i) Agricultural crops were grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil analysis, Kodur. (iii) Sheild budding. (iv) Nepali Oblong. (v) 26 to \(28.7 .1951,22^{\prime} \times 22^{\prime}\). (vi) 20 months old budding. (vii) One G.M. crop of horsegram was raised during 1949 and ploughed in situ. (viii) Weed control. (ix) Nil. (x) Irrigated. (xi) 48.79". (xii) Throughout the year mainly in March, June and November.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(60) on page 496.
4. GENERAL :
(i) Satisfactory. (ii) Occurrence of dry root rot. Treated with medicated sand. (iii) Fruit yield. (iv) (a) and (b) 1951-contd. (v) and (vi) Nil.
5. RESULTS:
(i) to (iv) Fruit yield.
\begin{tabular}{ccc} 
Treatment & Av. no. of fruits/tree & Av. wt. of fruits in lb./tree \\
\(\mathrm{T}_{\mathbf{1}}\) & 794 & 267.27 \\
\(\mathrm{~T}_{\mathbf{2}}\) & 815 & 289.13 \\
\(\mathrm{~T}_{3}\) & 754 & 262.73 \\
G.M. & 788 & \\
S.E./mean & 21.1 & 273.04 \\
Significance & Not significant & 11.1 \\
& & Not significant
\end{tabular}

Crop :- Citrus.
Site :- Fruit Res. Stn., Anantharajupeta.
\[
\begin{aligned}
& \text { Ref :- A.P. } 54(76) \text {. } \\
& \text { Type :- ‘' '. }
\end{aligned}
\]

Object :-To determine the most suitable root stock for Sathugudi.
1. BASAL CONDITIONS :
(i) Mostly waste land. (ii) (a) Līght red loam. (b) Refer soil analysis, Anantarajupeta. (iii) Shield method of budding. (iv) Sathugudi. (v) Planted on 13.10.1938. (vi) Nearly 3 years. (vii) N applied in December. (viii) Digging and weeding. (ix) Nil. (x) Irrigated. (xi) N.A. (xii) September to November and April to July.

\section*{2. TREATMENTS :}

Sathugudi budded on following stocks :
1. Sathugudi on Acidlime. 6. Sathugudi on Ceabbechesies.
2. Sathugudi on Kichili.
7. Sathugudi on Jamberi.
3. Sathugudi on Billi Kichili.
8. Sathugudi on Herali.
4. Sathugudi on Gajanimma.
9. Sathugudi on Sathugudj seedling (unworked).
5. Sathugudi on Pummalo.
10. Sathugudi on Sathugudi.
3. DESIGN :
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 6. (iv) 3. (v) and (vi) Yes.
- 4. GENERAL :
(i) Fair. (ii) Nil. (iii) Yield of fruits. (iv) (a) and (b) 1938-contd. (v) Due to several casualities in the same treatment and unequal number of trees in each treatment the statistical interpretation has not been possible. Hence only mean values have been furnished. (vi) Nil.
5. RESULTS :
(i) to (iv) Fruit yield.
\begin{tabular}{lccccccccccccr} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & G.M. \\
Av. no. of fruits/trees & 414 & 454 & 409 & 489 & 284 & 427 & 431 & 331 & 196 & 437 & 390 \\
Av. wt. of fruits in lb./ac. & 187.5 & 210.0 & 188.7 & 246.0 & 111.0 & 192.8 & 200.8 & 145.2 & 87.3 & 209.3 & 180.0
\end{tabular}
Crop :- Citrus.
Site :- Govt. Fruit Res. Stn.g Anantharajupeta.
\[
\begin{aligned}
& \text { Ref :- A.P. } 55(71) . \\
& \text { Type :- }{ }^{6} \mathrm{C} ' .
\end{aligned}
\]

Object :-To determine the most suitable root stock for Sathugudi.

\section*{1. BASAL CONDITIONS :}
(i) Mostly waste land. (ii) (a) Light red loam soil. (b) Refer soil analysis, Anantharajupeta. (iii) Shield method of budding. (iv) Sathugudi. (v) Planted on 13.10.1938. (vi) Nearly 3 years. (vii) 2 CO lb ./ac. of compost \(+3 \mathrm{lb} . / \mathrm{ac}\). and \(10 \mathrm{oz} . / \mathrm{ac}\). of neem-cake +2 lb . of \(\mathrm{A} / \mathrm{S}+4 \mathrm{lb} . / \mathrm{ac}\). and \(8 \mathrm{oz} . / \mathrm{ac}\). of urea applied in December and January. (viii) Digging, hoeing and weeding. (ix) Nil. (x) Irrigated. (xi) \(36.45^{\prime \prime}\). (xii) September to November and April to July.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(76) above.
4. GENERAL:
(i) Fair. (ii) Dry root rot and deficiency. disease. Composite nutrients' spray given to all trees. (iii) Yield of fruits. (iv) (a) and (b) 1938-contd. (v) Due to several casualities in the same treatment and unequal number of trees in each treatment, statistical interpretation has not been possible. Hence only mean are furnished. (vi) Nil.
5. RESULTS :
(i) to (iv)
\begin{tabular}{lccccccccccccr} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & G.M. \\
Av. no. of fruits/tree. & 316 & 464 & 243 & 507 & 285 & 537 & 325 & 401 & 42 & 298 & 342 \\
Av. wt. of fruit in lb./ac. & 141.5 & 200.2 & 111.1 & 239.1 & 101.8 & 205.6 & 151.7 & 187.6 & 19.0 & 126.6 & 148.4
\end{tabular}

\author{
Crop :- Citrus. \\ Site :- Govt. Fruit. Res. Stn., Anàntharajupeta.
}

Ref :- A.P. 56(87).
Type :- 'C'.

Object :-To determine the most suitable root stock for Sathugudi.
1. BASAL CONDITIONS :
(i) Most'y waste land. (ii) (a) Light red loam soli. (b) Refer soil analysis, Anantharajupeta. (iii) Shield method of budding. (iv) Sathugudi. (v) Planted on 13.10.1938. (vi) Nearly 3 years. (vii) 200 lb . of compost +3 lb .10 ozs of neem cake +2 lb . of \(\mathrm{A} / \mathrm{S}+4 \mathrm{lb} .8 \mathrm{ozs}\). of urea applied in December and January. (viii) Digging, hoeing and weeding. (ix) Nil. (x) Irriga'ed. (xi) \(60.06^{\prime}\). (xii) Sept. to Nov. and April to July.

\section*{2. TREATMENTS and 3. DESIGN:}

Same as in expt. no. S4(76) on paga 499.
4. GENERAL :
(i) Fair. (ii) Dry root and deficiency disease-compost nutrients' spray given to all trees. (iii) Yield of fruit. (iv) (a) and (b) 1938-contd. (v) Due to several casualties in th \(\geqslant\) same treatmeat and unequal no. of trees in each treatment statistical investigation is \(n>t\) possible. Hence only means are furnished. (vi) Nil.
5. RESULTS :
(i) to (iv) Fruit yield.
\begin{tabular}{lccccccccccr} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & G.M. \\
Av. no. of fruits/tree & 253 & 347 & 321 & 322 & 203 & 389 & 237 & 138 & 126 & 396 & 273 \\
Av. wt. of fruits in lb./tree & 108.1 & 140.5 & 138.1 & 137.7 & 82.7 & 160.8 & 99.2 & 61.0 & 58.2 & 159.2 & 114.6
\end{tabular}

\section*{Crop :- Citrus.}

Site :- Govt. Fruit Res. Stn., Anantharajupeta.

Ref:- A.P. 57(81).
Type :- \({ }^{\mathbf{C}} \mathbf{C}\).

Object :-To determine the most suitable root stock for Sathugudi.
1. BASAL CONDITIANS :
(i) Mostly waste land. (ii) (a) Light Red loam soil. (b) Refer soil analysis, Anantharajupeta. (ii) Shield method of budding. (iv) Sathugudi. (v) Planted on 13.10.1938. (vi Nearly 3 years. (vii) 200 lb. compost +3 lb .10 oz . of neem cake +2 lb . of \(\mathrm{A} / \mathrm{S}+4 \mathrm{lb}, 8 \mathrm{ozs}\). of urea applied in Dec. Jan. (viii) Digging, hoeing and weeding. (ix) Nil. (x) Irrigated. (xi) N.A. (xii) Sept. to Nov. and April to July.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 54(76) on page 499.
4. GENERAL :
(i) Fair. (ii) Dry root and deficiency disease-compost nutrients' spray given to all trees. (iii) Yield of fruit. (iv) ( \(a\), and (b) 1930 -contd. (v) Due to severe casualities in the same treatment and unequal no. of trees in one treatment, statistical analysis is not possible. Hence only means are furinshed. (vi) Nil.
5. RESULTS :
(i) to (iv)
\begin{tabular}{lccccccccccr} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & G.M. \\
Av. no. of fruits/tree & 401 & 331 & 294 & 345 & 166 & 279 & 245 & 513 & 68 & 281 & 292 \\
Av. weight of fruits in lb./tree & 149.1 & 115.6 & 117.0 & 149.1 & 61.1 & 109.5 & 97.3 & 203.0 & 25.6 & 103.3 & 113.1
\end{tabular}

\section*{Crop :- Citrus.}

Site :- Citrus Root Stock Trial Stn., Kodur.

Ref :- A.P. 54(59).
Type :- \({ }^{6}{ }^{\prime}\) '.

Object :-To find out the best root stock for Sathugudi.

\section*{1. BASAL CONDITIONS :}
(i) Agricultural crops grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil analysis, Kodur. (iii) Shield budding. (iv) Sathugudi. (v) \(4,5.8 .1951,28^{\prime} \times 28^{\prime}\). (vi) 20 months old budding. (vii) One G.M. crop of horse gram was raised during 1949 and ploughed under in situ. (viii) Weed control. (ix) Horse gram. (x) Irrigated. (xi) \(55.25^{\prime \prime}\). (xii) No yield.
2. TREATMENTS :
\(T_{1}=\) Sathugudi on Jamberi root stock.
\(\mathrm{T}_{2}=\) Sathugudi on Acidlime root stock.
\(\mathrm{T}_{3}=\) Sathugudi on Sathugudi root stock.
\(\mathrm{T}_{4}=\) Sathugudi on Kichili root stock.
3. DESIGN :
(i) R.B.D.
(ii) (a) and (b) N.A.
(iii) 6.
(iv) 6.
(v) One guard row alround the six blocks.
(vi) Yes.
14. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Growth data was recorded in February 1955 and analysed for the characters like stock girth, and scion girth etc. (iv) (a) and (b) 1951-contd. (v) and (vi) Nil.
5. RESULTS :
(i) to (iv) scion girth
\begin{tabular}{lcccc} 
Treatment & \(\mathrm{T}_{\mathbf{1}}\) & \(\mathrm{T}_{\mathbf{2}}\) & \(\mathrm{T}_{3}\) & \(\mathrm{~T}_{4}\) \\
Scion circumference in cms. & 39.1 & 33.1 & 38.0 & 32.6
\end{tabular}
G.M. \(=37.6 \mathrm{cms}\) S.E. \(/\) mean \(=1.0 \mathrm{cms}\). Treatments are significantly different.
\begin{tabular}{ll} 
Crop :- Citrus. & Ref :- A:P. 55(28). \\
Site :- Citrus Root Stock Trial Stn., Kodur. & Type :- ‘C'.
\end{tabular}

Object :-To find out the best root stock for Sathugudi.
1. BASAL CONDITIONS :
(i) Agricultural crops grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil analysis, Kodur. (iii) Shield budding. (iv) Sathugudi. (v) \(4,5.8 .1951,28^{\prime} \times 28^{\prime}\). (vi) 20 months old budding. (vii) Horse gram was raised in 1949 and ploughed under in situ (viii) Weed control. (ix) Raised cowpea and ploughed under in situ as G.M. during monsoon period. (x) Irrigated. (xi). 43.77". (xii) Nil.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(59) above.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Stock girth, scion girth, tree height and tree spread. (iv) (a) and (b) 1951contd. (v) and (vi) Nil.
5. RESULTS:
(i) to (iv) scion girth
\begin{tabular}{lcccc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{\mathbf{4}}\) \\
Scion circumference in cms. & 42.98 & 36.26 & 38.72 & 40.03
\end{tabular}
G.M. \(=39.50 \mathrm{cms} /\) tree \(;\) S.E \(/\) mean \(=0.99 \mathrm{cms}\). Treatments are significantly different.

Grop :- Citrus.

\section*{Site :- Citrus Root Stock Trial Stn., Kodur.}

Ref:- A.P. 56(15).
Type:- 'C'.

Object:- To find out the best root stock for Sathugudi Orange.
1. BASAL CONDITIONS :
(i) Agricultural crops grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil analysis Kodur. (iii) Shield budding. (iv) Sathugudi orange. (v) \(4,5.8 .1951,28^{\prime} \times 28^{\prime}\). (vi) 20 months old budding. (vii) One G.M. crop of horse gram was raised during 1949 and ploughed under in situ. (viii) Weed control. (ix) Raised cowpea and plough under in situ as G.M. during the monsoon period. (x) Irrigated. (ix) \(46.45^{*}\).
(xii) Dates not available (March, June and October).
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(59) on page 501.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Scion circumference, stock circumference and tree beight and yield of fruits. (iv) (a) and (b) 1951 -contd. (v) and (vi) Nil.
5. RESULTS:
(i) to (iv) Fruit yield.
\begin{tabular}{lccc} 
Treatment & Scion circumference in cms & Av. no. of fruits/tree & Av. wt. of fruits in lb./tree \\
\(\mathbf{T}_{\mathbf{1}}\) & 53.3 & 135 & 49.6 \\
\(\mathbf{T}_{2}\) & 45.6 & 172 & 65.3 \\
\(\mathbf{T}_{3}\) & 46.9 & 126 & 43.2 \\
\(\mathbf{T}_{\mathbf{4}}\) & 47.3 & 82 & 27.9 \\
G.M. & 48.3 & 129 & 46.5 \\
S.E./mean & 1.2 & 19.8 & 7.8 \\
Significance & Signlficant & Significant & Significant
\end{tabular}

\section*{Crop :- Citrus.}

> Ref :- A.P. 57(39).

Site :- Citrus Root Stock Trial Stn., Kodur.
Type :- 'C'.
Object:-To find out the best root stock for Sathugudi Orange.
1. BASAL CONDITIONS:
(i) Agricultural crops grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil analysis, Kodur. (iii) Shield budding. (iv) Sweet orange. (v) \(4,5.8 .1951,28^{\prime} \times 28^{\prime}\). (vi) 20 months old budding. (vii) Horse gram was raised during 1949 and ploughed under in situ. (viii) Weed control. (ix) Nil. (x) Irrigated. (xi) 31.24*. (xii) March, June and October.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(59) on page 501.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Tree growth, fruit yield, fruit quality and disease resistance. (iv) (a) and (b) 1951-contd. (v) and (vi) Nil.
5. RESULTS :
(i) to (iv) Fruit yield.
\begin{tabular}{lcc} 
Treatment & Av. no. of fruits/tree & Av. wt. of fruits in Ib./tree \\
\(\mathrm{T}_{1}\) & 138 & 57.7 \\
\(\mathrm{~T}_{2}\) & 200 & 73.6 \\
\(\mathrm{~T}_{3}\) & 152 & 56.6 \\
\(\mathrm{~T}_{4}\) & 119 & 44.4 \\
& & \\
G.M. & 152 & 58.1 \\
S.E./mean & 26.0 & 34.8 \\
Significance & Not significant & Significant
\end{tabular}
```

Crop :- Citrus.
Site :- Citrus Root Stock Trial Stn., Kodur.
Ref :- A.P. 58(109).
Type :- 'C’.

```

Object:-To find out the besi root stock for Sathugudi Orange.
1. BASAL CONDITIONS:
(i) Agricultural crops were grown under rainfed conditions. (ii) (a) Red loamy soil. (b) Refer soil analysis, Kodur. (iii) Shield budding. (iv) Sathugudi Orange. (v) \(4,5.8 .1951,28^{\prime} \times 28^{\prime}\). (vi) 20 months old buddings. (vii) One G.M. crop was raised during 1949 and ploughed in situ. (viii) Hoeing and weeding. (ix) Nil. (x) Irrigated. (xi) \(48.79^{\prime \prime}\). (xii) March, June and October.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(59) on page 501.
4. GENERAL:
(i) Satisfactory. (ii) Occurrence of root rot. Treated with medicated sand etc.-Zinc bordeaux mixture against deficiencies. (iii) Fruit yield. (iv) (a) and (b) 1951 -contd. (v) and (vi) Nil.
5. RESULTS :
(i) to (iv) Fruit yield.

Treatment Av. no. of fruits/tree Av. wt. of fruits in lb./tree.
\(\quad \mathrm{T}_{1}\)
\(\mathrm{~T}_{2}\)
\(\mathrm{~T}_{3}\)
\(\mathrm{~T}_{4}\)
G.M.
S.E./mean
Significance

\section*{Crop :- Mango. \\ Site :- Govt. Fruit Res. Stn., Anantharajupet.}

> Ref :- A.P. \(54(74)\).
> Type :- 'C'.

Object :-To determine the relative performance of Mango raised by different propagation methods.

\section*{1. BASAL CONDITIONS:}
(i) Waste land under o:casional cropping with rainfed crops. (ii) (a) Sandy loam soil. (b) Refer soil analysis, Anantharajupet. (iii) Grafting. (iv) Neelum and Banglora. (v) 2.2 .1939 with \(40^{\prime} \times 40^{\prime}\) spacing. (vi) One year. (vii) Nil. (viii) One ploughing with early rains. (ix) N.A. (x) Nil. (xi) N.A. (xii) July, 1954.
2. TREATMENTS :
\(\mathrm{T}_{1}=\) Neelum Inarched.
\(\mathrm{T}_{2}=\) Neelum Root graft.
\(\mathrm{T}_{3}=\) Neelum Double graft (Neelum/Banglora/seedling).
\(\mathrm{T}_{4}=\) Banglora Inarched.
\(\mathrm{T}_{5}=\) Banglora root graft.
\(\mathrm{T}_{6}=\) Banglora Double graft (Banglora/Neelum/seedling).
3, DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) 3. (v) Two guard rows were provided. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Yield of fruits in numbers and weight. (iv) (a) and (b) 1939—contd. (v) Nil. (vi) Dueto heavy casualties in the same treatment and unequal no. of trees in one treatment, statistical analysis is. not possible. Hence only mears are furnished.
5. RESULTS:
(i) to (iv) Fruit yield.
\begin{tabular}{lccccccc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) & \(\mathrm{~T}_{5}\) & \(\mathrm{~T}_{6}\) & G.M. \\
Av. no. of fruits/tree & 109 & 93 & 88 & 294 & 103 & 272 & 160 \\
Av. wt. of fruits in lb ./tree. & 43.4 & 37.8 & 30.1 & 277.8 & 75.7 & 210.3 & 112.5
\end{tabular}
\begin{tabular}{ll} 
Crop :- Mango. & Ref :- A.P. 56(85). \\
Site :- Govt. Fruit. Res. Stn., Anantharajupet. & Type :- \({ }^{\text {C }}\).
\end{tabular}

Object :-To determine the relative performance of Mango raised by different propagation methods.
1. BASAL CONDITIONS :
(i) Waste land under occasional cropping with rainfed crops. (ii) (a) Sandy locm soil. (b) Refer soil analysis, Anantharajupet. (iii) Grafting. (iv) Neelum and Banglora. (v) 2.21939 with \(40^{\prime} \times 40^{\prime}\) spacing. (vi) One year. (vii) Nil. (viii One ploughing with early rains. (ix) N.A. (x) Nil. (x) \(60.06^{\circ}\). (xii) July 1956.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 54,74 ) on page 503.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield of fruit in numbers and weight. (iv) (a) and (b) 1939-contd. (v) Nil. (vi) Due to severe casualities in the same treatment and unequal no. of trees in one treatment, statistical analysis is not possible. Hence only means are supplied. Less then \(5 \%\) of trees bore fruits and that too to a negligible extent during the year \(1955,1956\).
5. RESULTS :
(i) to (iv! Fruit yietd.
\begin{tabular}{lccccccc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{\mathbf{2}}\) & \(\mathrm{T}_{\mathbf{3}}\) & \(\mathrm{T}_{4}\) & \(\mathrm{~T}_{5}\) & \(\mathrm{~T}_{6}\) & G.M. \\
Av. no. of fruits/tree & 46 & 16 & 23 & 39 & 35 & 24 & 31 \\
Av. wt. of fruits in lb./tree & 14.5 & 4.8 & 7.1 & 21.4 & 21.9 & 13.2 & 13.8
\end{tabular}

\author{
Crop :- Mango. \\ Site :- Govt. Fruit. Res. Stn., Anantharajupet.
}

> Ref :- A.P. \(57(79)\).
> Type :- \({ }^{\prime} \mathrm{C}^{\prime}\).

Object :-To determine the relative performance of Mango raised by different propagation methods.
1. BASAL CONDITIONS :
(i) Waste land under occasional cropping with rainfed crops. (ii) (a) Sandy loam soil. (b) Refer soil analysis, Ananthrajupet. (iii) Grafting. (iv) Neelum and Benglora. (v) 2.2 .1936 with \(40^{\prime} \times 40^{\prime}\) spacing. (vi) One year (vii) Nil. (v ii) One ploughing with early rains. (ix) and (x) Nil. (xi) N.A. (xii) June, July 1957.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. \(54(74)\) on page 503.
5. RESULTS :
(i) to (iv) Fruit yield.
\begin{tabular}{lccccccc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) & \(\mathrm{~T}_{5}\) & \(\mathrm{~T}_{6}\) & G M. \\
Av. no of fruits, tree & 31 & 63 & 54 & 24 & 14 & 97 & 48 \\
Av. wt. of fruits in lb.ftree & 11.6 & 17.7 & 20.2 & 11.9 & 5.6 & 54.6 & 20.3
\end{tabular}

\section*{Grop:- Mango. \\ Site :- Govt. Fruit Res. Stn., Anantharajupet. \\ Ref:- A.P. 58(79). \\ Type :- 'C'.}

Object:-To determine the relative performance of Mango raised by different propagation methods.
1. BASAL CONDITIONS :
(i) Waste land under occasional cropping with rainfed crops. (ii) (a) Sandy loam soil. (b) Refer soil analysis, Anantharaiupet. (iii) Grafting. (iv) Neelum and Banglora. (v) 2.2 .1939 with \(40^{\prime} \times 40^{\prime}\) spacing. (vi) One year. (vii) Nil. (viii) One ploughing with early rains. (ix) N.A. (x) Nil. (xi) N.A. (xii) July 1958.
2. TREATMENTS:
\(\mathrm{T}_{1}=\) Neelum inarched.
\(\mathrm{T}_{2}=\) Neelum root graft.
\(\mathrm{T}_{3}=\) Neelum double graft (Neelum/Baraglora/seeding).
\(\mathrm{T}_{4}=\) Banglora inarched
\(\mathrm{T}_{5}=\) Banglora root graft.
\(\mathrm{T}_{6}=\) Banglora double graft (Banglora/Neelum/Seedling).
3. DESIGN :
(i) R.B.D.
(ii) "(a) 6
(b) N.A.
(iii) 6 .
(iv) 3 .
(v) Two guard rows were provided. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield in number and weight. (iv) (a) and (b) 1939-contd., (v) Nil. (vi) Due to heavy casualities in the same treatments and unequal no. of trees in one treatment, statistical analysis is not possible. Hence only means are furnished.
5. RESULTS: '
(i) to (iv) Fruit yield.
\begin{tabular}{lccccccc:c} 
Treatment & \(\mathrm{T}_{\mathrm{I}}\) & \(\mathrm{T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) & \(\mathrm{~T}_{5}\) & \(\mathrm{~T}_{6}\) & G.M. \\
1. & Av. no. of fruits/tree & 1031 & 815 & 855 & 489 & 368 & 407 & 661 \\
Av. wt. of fruits in lb./tree & 301.4 & 263.7 & 271.5 & 394.3 & 310.0 & 324.9 & 310.9
\end{tabular}
Crop :- Mango. \(\quad\) Ref :- A.P. \(54(73)\).
Site :-Govt. Fruit Res. Stn., Anantharajupet.

Site :- Govt. Fruit Res. Stn., Anantharajupet. Type : ©CM.
Object:-To study the effect of manuring and other cultural practices on growth, yield etc. of Neelum Mango.
1. BASAL CONDITIONS :
(i) Mostly a waste land with occasional cropping with rainfed crops. (ii) (a) Sandy loam soil. (b) Refer soil' analysis, Anantharajupet. (iii) Grafting by inarching. (iv) Neelum mango. (v) 13.12.1938 to 1.1.1939, N.A. (vi) One year and six months. (vii) Nil. (viii) As per treatments. (ix) Nil. (x) Unirrigated. (xi) N.A. (xii) July 1954.

\section*{2. TREATMENTS:}
\(T_{1}=\) Control-no culture.
\(\mathbf{T}_{\mathbf{2}}=\) Annual application of manure to supply 3 lb ./ac. of N in the form of both organic and inorganic manures and incorporating the manure in to the soil with early rains i.e. during Tuly and August. Second ploughing is to be given again in Oct. and Nov.
\(\mathrm{T}_{3}=\) Ploughing alone without any manure in July-Aug. and again in Oct.-Nov.
3. DESIGN :
(i) R.B.D.
(ii) (a) 3.
(b) N.A.
(iii) 4 .
(iv) 3.
(v) No.
(vi) Yes.
4. GENERAL :
(i) Good. (ii) Mango hoppers controlled by D.D.T. spray. (iii) Yield data in no. and weight. (iv) (a) and (b) 1938-contd. (v) Nil. (vi) Due to several casualities in the same treatment and unequal no. of trees in the same treatment, statistical analysis is not possible. Hence only means are furnished.
5. RESULTS:
(i) to (iv) Fruit yield.
\begin{tabular}{llcrrr} 
Treatment & \(T_{1}\) & & \(T_{2}\) & \(T_{3}\) & G.M. \\
Ay. no. of fruits/tree, & 247 & & 160 & 230 & 212 \\
Av. wt. of fruits in lb ./tree & 97.7 & & 66.5 & 108.4 & \(\cdots\)
\end{tabular}

Crop:- Mango.
Site :- Govt. Fruit Res. Stn., Anantharajupet.

Ref :- A.P. 55(68).
Type :- 'CM'.

Object :-To study the effect of manuring and other cultural practices on the growth yield etc. of Neelum Mango.

\section*{1. BASAL CONDITIONS :}
(i) Mostly a waste land with occasional cropping with rainfed crops. (ii) (a) Sandy loam soil. (b) Refer soil analysis, Anantharajupet. (iii) Grafting by inarching. (iv) Neelum mango. (v) 13.12 .1938 to 1.1.1939, N.A. (vi) One year and six months. (vii) Nil. (viii) As per treatments. (ix) Nil. (x) Unirrigated. (xi) \(36.45^{\circ}\). (xii) July 1955.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(73) on page 505.
5. RESULTS :
(i) to (iv) Fruit yield.
\begin{tabular}{lcccc} 
Treatment & \(T_{1}\) & \(T_{2}\) & \(T_{3}\) & G.M. \\
Av. no. of fruits/tree & 13 & 35 & 17 & 22 \\
Av. wt. of fruits in lb ./tree & 7.67 & 17.11 & 8.83 & 11.20
\end{tabular}
\begin{tabular}{ll} 
Crop :- Mango. & Ref :- A.P. 56(84). \\
Site :- Govt. Fruit Res. Stn., Anantharajupet. & Type :- ‘CM'.
\end{tabular}

Object:-To study the effect of manuring and other cultural practices on growth, yield etc. of Neelum Mango.
1. BASAL CONDITIONS :
(i) Mostly a waste land with occasional cropping with rainfed crops. (ii) (a) Sandy loam soil. (b) Refer soil analysis, Anantharajupet. (iii) Grafting by inarching. (iv) Neelum mango. (v) 13.12 .1938 to 1.1.1939, N.A. (vi) One year and six months. (vii) Nil. (viii) As per treatments. (ix) Nil. (x) Unirrigated. (xi) 60.06. (xii) June, July 1956.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(73) on page 505.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield data in no. and weight. (iv) (a) and (b) 1938-contd. (v) Nil. (vii) Due to several casualities in the same treatment and unqual no. of trees in the same treatment, statistical analysis in not possible. Hence only means are furnished.
5. RESULTS:
\begin{tabular}{lcccl} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{\mathbf{2}}\) & \(\mathrm{T}_{3}\) & G.M. \\
Av. no. of fruits/tree & 76 & 40 & 77 & 64 \\
Av. wt. of fruits in lb./tree & 29.8 & 15.3 & 28.1 & 24.4
\end{tabular}

\footnotetext{
Crop :- Mango
Site :- Govt. Fruit Res. Stn., Anantharajupet.

> Ref :- A.P. \(57(78)\).
> Type :- 'CM'.
}

Object:-To study the effect of manuring and other cultural practices on growth, yield etc. of Neelum Mango.

\section*{1. ' BASAL CONDITIONS :}
(i) Mostly a waste land with occasional cropping with rainfed crops. (ii) (a) Sandy loam soil. (b) Refer soil analysis, Anantharajupet. (iii) Grafting by inarching. (iv) Neelum Mango. (v) 13.12 .1938 to 1.1.1939, spacing N.A. (vi). One year and six months. (vii) Nil. (viii) As per treatments. (ix) Nil. (x) Unirrigated. (xi) N.A. (xii) June, July 1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. 54(73) on page 505.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield data in no. and weight. (iv) (a) and (b) 1938-contd. (v) Nil. (vi) Due to severe casualities in the same treatment and unequal no. of trees in one treatment, the statistical analysis is not possible. Hence only means are furnished.
5. RESULTS :
(i) to (iv) Fruit yield.
\begin{tabular}{lccccc} 
Treatment & \(\mathbf{T}_{\mathbf{1}}\) & \(\mathbf{T}_{\mathbf{2}}\) & \(\mathrm{T}_{\mathbf{3}}\) & & G.M. \\
Av. no. of fruits/tree & & 181 & 154 & 150 & \\
Av. wt. of fruits in lb./tree & 79.1 & 59.4 & 60.6 & 162 \\
& & & & 66.4
\end{tabular}

Crop :- Mango.
Site :- Govt. Fruit Res. Stn., Anantharajupet.

Ref :- A.P. 58(78).
Type :- 'CM'.

Object :-To study the effect of manuring and other cultural practices on the growth, yield etc. of Neelum - Mango.
```

 g
    ```

\section*{11. BASAL CONDITIONS :}
(i) Mostly a waste land with occasional cropping with rainfed crops. (ii) (a) Sandy loam soil. (b) Refer soil analysis, Anantharajupet. (iii) Grafting by inarching. (iv) Neelum Mango. (v) 13.12 .1958 to 1.1.1939 N.A. (vi) One year and six months. (vii) Nil. (viii) As per treatments. (ix) Nil. (x) Unirrigatéd. (xi) N.A. (xii) July 1958.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(73) on page 505.
5. RESULTS :
(i) to (iv) Fruit yield.
\begin{tabular}{lcccc|} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & G.M. \\
Av. no. of fruits/tree & 959 & 1026 & 972 & 986 \\
Av. wt. of fruits in lb./tree & 367.7 & 434.3 & 404.7 & 402.2
\end{tabular}
Crop :- Banana.
Site :- Banana. Res. Stn., Tanaku.

Ref :- A.P. 59(121).
Type :- ' \(\mathbf{M}\) '.
Object :-To study the individual and combined effect of \(N, P\) and \(K\) on growth, yield, fruit quality etc., of Banana with a view to evolve a suitable manurial scheme.
1. BASAL CONDITIONS :
(i) N.A. (ii) (a) Black clay loam soil. (b) Refer soil analysis, Tanaku. (iii) By planting sword sucker in-pits of \(1 \frac{1}{2}\) cube. (iv) Karpura chakkarakeli. (v) 3.8 .1959 , by planting in a line at \(8^{\prime}\) distance. (vi) 2,3 months old suckers. (vii) N.A. (viii) Propping, weeding and desuckering. (ix) No. (x) Irrigated. (xi) \(56.2^{\prime \prime}\). (xii) 20.7.1960 to 15.8.1960.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3;
(1) 3 levels of \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=3\) and \(\mathrm{N}_{2}=6 \mathrm{oz}\)./plant.
(2) 3 levels of Super: \(P_{0}=0, P_{1}=2\) and \(P_{2}=4 \mathrm{oz}\)./plant.
(3) 3 levels of Pot. Sul : \(K_{0}=0, K_{1}=2\) and \(K_{2}=4 \mathrm{oz}\)./plant.

Fertilizers were applied at the 3 rd and 6 th months in equal doses.
3. DESIGN :
(i) \(3^{3}\) partally confd. (ii) (a) and (b) 9 plots/block, 3 blocks/replication. (iii) 2. (iv) 9. (v) A single guard row between two treatments. (vi) Yes.
4. GENERAL:
(i) On the whole the season was favourable. (ii) Nil. (iii) Height, girth and no. of leaves etc. and fruit yield. (iv) (a) and (b) 1959-contd. (v) and (vi) Nil.
5. RESULTS :
(i) \(24.1 \mathrm{lb} . /\) plant. (ii) 2.14 lb ./plant. (iii) Main effects of N and P are significant. (iv) Av. yield of bananas in lb./plant.


\section*{Crop:- Banana.}

Site :- Banana Res. Stn., Tanaku.

Ref :- A.P. 58(133),
Type:- ' C '.

Object :-To determine the optimum spacing for the common commercial variety Karpura Chakkrakeli. \({ }^{\text {. }}\)
1. BASAL CONDITIONS :
(i) N.A. (ii) (a) Black clay loam. (b) Refer soil analysis, Tanaku. (iii) By planting the suckers in pits of \(1_{2}^{\prime}\) 'cube. (iv) Karpura Chakkarakeli. (v) 27.7 .1958 , planting the suckers at a distance as per treatment. (vi) 2 to 3 desuckers. (vii) 6 ozs of N/plant as A/S. applied after 6 months of planting. (viii) Weeding, desuckering, irrigations and manuring as per local practice. (ix) No. (x) Irrigated. (xi) 56.2". (xii) 30.7.1959.
2. TREATMENTS :

2 spacings: \(\mathrm{S}_{1}=6^{\prime} \times 6^{\prime}\) and \(\mathrm{S}_{2}=8^{\prime} \times 8^{\prime}\).
3, DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 6. (iv) For \(S_{1} 16\) plants and for \(S_{2} 9\) plants. (v) Nil. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Height, girth and yield in pounds. (iv) (a) Yes. (b) 1958 to 1961 . (v) and (vi) Nil.
5. RESULTS:
(i) \(22813 \mathrm{lb} . / \mathrm{ac}\). (li) \(1728.1 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment difference is significant. (iv) Av. yield of bananas in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lcc} 
Treatment & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) \\
Mean yield & \(28926 \quad 16700\) \\
& \multicolumn{2}{c}{\(/ \mathrm{C} . \mathrm{C} /\) mean \(=705.5 \mathrm{lb} / \mathrm{ac}\)}
\end{tabular}

\section*{Crop :- Banana.}

Ref :- A.P. 59(120).
Site :- Banana Res. Stn., Tanaku.
Type :- ‘CM'.
Object:-To evolve a suitable combination of dose and time of application of nitrogenous manures ( \(\mathrm{A} / \mathrm{S}\) ) together with optimum spacing.
1. EASAL CONDITIONS :
(i) N.A. (ii) (a) Black clay loam soil. (b) Refer soil analysis, Tanaku. (iii) By planting sword suskers in pits of \(1 \frac{1^{\prime}}{}{ }^{\prime}\) cube. (iv) Bartha (culinary). (v) 12.8.1959, by planting sword suckers in lines at different spacings as per treatments. (vi) 2 to 3 months old sword suckers. (vii) N.A. (viii) Weeding, desuckering, propping, irrigating and manuring. (ix) No. (x) Irrigated. (xi) 56.2". (xii) 20.7.1960 to 2.8.1960.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 2 levels of \(N\) as A/S: \(\mathrm{L}_{1}=10\) and \(\mathrm{L}_{2}=20\) oz./plot.
(2) 3 spacings: \(\mathrm{S}_{1}=4^{\prime} \times 4^{\prime}, \mathrm{S}_{2}=6^{\prime} \times 6^{\prime}\) and \(\mathrm{S}_{3}=8^{\prime} \times 8^{\prime}\).
(3) 3 times of application of manures in single dose: \(\mathrm{T}_{1}=2, \mathrm{~T}_{2}=4\) and \(\mathrm{T}_{3}=6\) months after planting.
3. DESIGN
(i) Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 3. (iv) For \(S_{1}=72, S_{2}=32\) and \(S_{3}=18\) plants/plot. (v) A single guard row. (vi) Yes.
4. GENERAL
(i) Good. (ii) Nil. (iii) Yield in lb./ac. (iv) (a) and (b) 1959-1962. (v) and (vi) Nil.

5 RESULTS:
(i) \(18277 \mathrm{lb} . / \mathrm{ac}\). (ii) \(5348.8 \mathrm{lb} . / \mathrm{ac}\). (iii) Only S effect is significant. (iv) Av. yield of fruits in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & Mean & \(\mathrm{L}_{1}\) & \(\mathrm{L}_{2}\) \\
\hline T1 & 21249 & 23537 & 15851 & 20212 & 20370 & 20055 \\
\hline T2 & 16216 & 22213 & 13771 & 17400 & 18853 & 15947 \\
\hline T3 & 14377 & 22705 & 14578 & 17220 & 17380 & 17060 \\
\hline Mean & 17281 & 22818 & 14733 & 18277 & 18868 & 17687 \\
\hline \(\mathrm{L}_{1}\) & 19345 & 22831 & 14427 & & & \\
\hline \(\mathrm{L}_{2}\) & 15216 & 22806 & 15040 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(L\) marginal mean & \(=1029.3 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(S\) or \(T\) marginal mean & \(=1260.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(T \times L\) or \(S \times L\) table & \(=1782.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(T \times S\) table & \(=2183.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\footnotetext{
Crop :- Banana.
Ref:- A.P. 58(131).
Site :- Banana Res. Stn., Tanaku.
Type :- ‘D'.
}
- Object :- Co study the effect of treating of Rhizome for invigorating plant growth in the yield.
1. BASAL CONDITIONS :
(i) N.A. (ii) (a) Black clay loam soil. (b) Refer soil analysis, Tanaku. (iii) By planting rhizomes in pits of 1尔 cube. (iv) Karpura chakkarakeli. (v) 20.8.1958, planted in lines at a distance \(8^{\prime}\) from plant to plant. (vi) 2 to 3 months old suckers. (vii) About 6 ozs folant of \(N\) as \(A / S\) was applied after 6 months of planting. (viii) Weeding and desuckering. (ix', No. (x) Irrigated. (xi) \(56.2^{\prime \prime}\). (xii) 20.7.1959 to 7.8.1959.
2. TREATMENTS:
\(\mathrm{T}_{1}=\) Rhizomes treated with cow-dung solution before planting. \(T_{2}=\) Rhizomes untreated.
3. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (ii) 10 . (iv) 12. (v’ A single guard row between two treatments. (vi) Yes.
4. GENERAL :
(i) Stormy weather affected the plants. (ii) Nil. (iii) Yield data in lbs, (iv) (a) and (b) 1959-1960. (v) and (vi) Nil.
5. RESULTS :
(i) \(25.1 \mathrm{lb} . / \mathrm{plant}\). (ii) \(2.94 \mathrm{lb} . / \mathrm{plant}\). (iii) Treatment difference is not significant. (iv) Av. yield of banaeas in lb./plant.
\begin{tabular}{|c|c|c|}
\hline Treatment & T1 & Ts \\
\hline \multirow[t]{2}{*}{Av. yield} & 23.7 & 26.5 \\
\hline & S.E./ & = \\
\hline
\end{tabular}```


[^0]:    (i) (a, Sugarcane-Fallow-Paddy. (b) Sugarcane-Fallow. (c) $100 \mathrm{lb} . / \mathrm{ac}$. of N. (ii) (a) Loamy. (b)

    Refer soil analysis, Anakapalle. (iii) N.A /6.8.1957. (iv) (a) 4 puddlings pressing, patti, and levelling, (b) Transplanted. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (c) 2 to 3 . (v) As per treatments. (vi) GEB-29 (medium). (vii) Irrigated. (vii) Working hoe twice. (ix) N.A. (x) 2.1.1958.

[^1]:    Crop :- Paddy (Tabi).
    Site :- Agri. Res. Instt., Rajendranagar.

[^2]:    Crop:- Paddy (Rabi).
    Site :- Agri. Res. Stn., Rudrur.
    Ref :- A.P. 55(22).
    Type :- ' $\mathbf{M}$ '.

[^3]:    Crop :-Paddy (Rabi).
    Site :- Agri. Res. Stn., Rudrur.
    Ref :- A.P. 59(11)

    Type :- ' $\mathbf{M}$ '.

[^4]:    Crop :- Paddy (Kharif).
    Site :- M.A.E. Farm, Maruteru.
    Ref :- A.P. 59(MAE).
    Type :- ' $\mathbf{M}$ '.

[^5]:    Crop :- Paddy (Rabi).
    Site :- M.A.E. Farm, Maruteru,

[^6]:    Crop :- Paddy (Rabi).
    Site :- M.A.E. Farm, Maruteru.

[^7]:    Crop :- Paddy (Kharif).
    Ref:- A.P. 59(SFT).
    Centre :- Guntur (c.f.).
    Type :- ‘M'.

