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ABSTRACT 

Water quality evaluation is critically important for the protection and sustainable management of 

groundwater resources, which are variably vulnerable to ever-increasing human-induced physical 

and chemical pressures (e.g., overexploitation and pollution of aquifers) and to climate 

change/variability. Preceding studies have applied a variety of tools and techniques, ranging 

from conventional to modern, for characterization of the groundwater quality worldwide. 

Recently, geographic information system (GIS) technology has been successfully integrated with 

the advanced statistical/geostatistical methods, providing improved interpretation capabilities for 

the assessment of the water quality over different spatial scales. This review intends to examine 

the current standing of the GIS-integrated statistical/geostatistical methods applied in 

hydrogeochemical studies. In this paper, we focus on applications of the time series modeling, 

multivariate statistical/geostatistical analyses, and artificial intelligence techniques used for 

groundwater quality evaluation and aquifer vulnerability assessment. In addition, we provide an 

overview of salient groundwater quality indices developed over the years and employed for the 

assessment of groundwater quality across the globe. Then, limitations and research gaps of the 

past studies are outlined and perspectives of the future research needs are discussed. It is 

revealed that comprehensive applications of the GIS-integrated advanced statistical methods are 

generally rare in groundwater quality evaluations. One of the major challenges in future research 

will be implementing procedures of statistical methods in GIS software to enhance analysis 

capabilities for both spatial and temporal data (multiple sites/stations and time frames) in a 

simultaneous manner. 
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1. INTRODUCTION 

Groundwater is the major source of freshwater supply worldwide, which is currently used 

to meet nearly half of the drinking water need, including requirement of about two billion people 

all over the world (WWAP, 2009; Gleeson et al., 2010). In addition, groundwater provides 

around 43% of the water consumed in irrigation (Siebert et al., 2010). Accordingly, the major 

groundwater systems of the world do not remain in dynamic equilibrium rather do show 

significantly declining groundwater level trends (WWAP, 2012). It has been estimated that about 

700-800 km3 of groundwater has been depleted from the aquifers in the USA during the 20th 

century (Konikow and Kendy, 2005). Likewise, a World Bank Report (World Bank, 2010) states 

that India is the largest consumer of groundwater in the world, with an estimated annual 

groundwater use of 230 km3. The fast-depleting groundwater resources, as depicted by the 

declining groundwater levels, caused deterioration in groundwater quality in many parts of the 

world. Groundwater quality may be further degraded due to pressure created over hydrologic and 

hydrogeologic systems in view of the impacts of climate change and variability (e.g., Gurdak et 

al., 2012; Bondu et al., 2016). 

The degradation of groundwater quality has also led to the reduction of the exploitable 

quantities. There are two major sources of the groundwater quality degradation, i.e., natural 

(geogenic) processes and anthropogenic activities. For example, in agricultural areas, excessive 

use of fertilizers has resulted in nitrate contaminations in groundwater well above the water 

quality guidelines (e.g., Machiwal et al., 2011; Paradis et al., 2016). In coastal areas, the 

overexploitation of aquifers via numerous wells and boreholes has established a negative water 

balance triggering seawater intrusion and salinization of groundwater (Ferguson and Gleeson, 

2012). Anthropogenic activities that pollute the natural environment with potential toxic 

elements (such as hexavalent chromium, arsenic, and antimony) include paint manufacturing, 

tannery industry, mining activities, phosphate fertilizer manufacturing and the combustion of 

coal and fly ash deposits (Molina et al., 2009; Jacobs and Testa, 2004). Natural processes also 

influence groundwater quality at both local and regional scales depending on the geological, 

hydrochemical and hydrogeological regimes. The release of arsenic (As) in groundwater is 

mainly controlled by the oxidation of organic carbon coupled with the reductive dissolution of 

As-bearing iron oxides (Postma et al., 2012), while As concentrations exceeding the WHO 

provisional guideline value of 10 μg/L (WHO, 2017) were measured in groundwater from 

fractured bedrock aquifer of the Canadian Shield, primarily derived from the weathering of As-

bearing sulfides in the oxic/suboxic zone of the aquifer (Bondu et al., 2017). Additionally, 

geothermal fluids can also enhance As concentrations in shallow aquifers through deep fractures 

(Pique et al., 2010; Iskandar et al., 2012). Iskandar and Koike (2011) identified the deep-seated 
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hydrothermal system as the major source of As contamination along the fault zone in North 

Sulawesi, Sulawesi Island, Indonesia by applying geostatistical and numerical simulation 

models. The geogenic origin of hexavalent chromium is attributed to ophiolitic rocks and 

specifically their serpentinized derivatives (Nriagu and Nieboer, 1988), while the concentrations 

of hexavalent chromium are influenced by the prevailing hydrogeological conditions (Kazakis et 

al., 2015). It is very much needed to pay adequate attention for evaluation of the quality of this 

vital but invisible resource from local to regional scales based on scientific knowledge, in order 

to manage it in a sustainable manner. Therefore, throughout the world, increasing demands for 

safe drinking water, agricultural and industrial use of it, as well as maintaining healthy 

ecosystems are leading stakeholders and scientists to develop appropriate strategies and methods 

varying from simple to complex nature for rational groundwater resource management and 

protection (e.g., Council of Canadian Academies, 2009). 

There exist several conventional tools and techniques ranging from graphical to statistical 

that have been used by various researchers for interpreting groundwater quality (Freeze and 

Cherry, 1979; Karanth, 1987; Sara and Gibbons, 1991; Güler et al., 2002; Machiwal and Jha, 

2010). In recent times, researchers felt a need for application of the modern techniques such as 

time series modeling (e.g., trend identification), multivariate statistics, and geostatistical 

modeling, among others, to better interpret and precisely characterize the groundwater quality for 

the efficient management and protection of groundwater resources (e.g., Güler et al., 2002; Jha et 

al., 2007; Cloutier et al., 2008; Steube et al., 2009; Machiwal and Jha, 2010; Machiwal and Jha, 

2015). The modern techniques also contribute to distinguish between the anthropogenic and 

natural processes and/or factors influencing the groundwater quality. Salient popular methods 

used for groundwater quality evaluation and protection are classified into distinct groups and 

subgroups as shown in Fig. 1. 

With the advent of geographic information system (GIS) technology, especially after 

1990s, visualization, interpretation and presentation of groundwater quality evaluations over 

large spatial scales has been drastically improved. The GIS is capable of capturing, storing, 

analyzing, manipulating, retrieving and displaying a large volume of spatial data for swift 

organization, quantification and interpretation for decision-making in areas including 

engineering and environmental sciences (e.g., Stafford, 1991; Goodchild et al., 1993; Burrough 

and McDonnell, 1998; Lo and Yeung, 2003). It has been proved to be a powerful tool for 

analyzing and mapping the hydrologic/hydrogeologic data over spatial and temporal scales in 

order to provide useful information about spatio-temporal variability that ultimately helps in 

decision-making (Burrough and McDonnell, 1998; Gurnell and Montgomery, 2000; Chang, 

2002; Chen et al., 2004; Güler and Thyne, 2004a; Machiwal and Jha, 2014). The GIS 

applications are advantageous in groundwater quality evaluation studies particularly for mapping 

spatial variations of water quality, subsurface flow and pollution modeling, and groundwater-

quality monitoring network design, etc. (Jha et al., 2007). In addition, GIS-based water quality 

mapping is imperative for pollution-hazard modeling, assessment and protection planning, and 
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detection of environmental changes (Goodchild et al., 1993; Skidmore et al., 1997; Chen et al., 

2004; Jha et al., 2007). 

Recently, advanced statistical tools are successfully integrated with GIS by researchers 

for illustrating spatial distribution of the chemical composition of groundwater over the large 

areas, sometimes up to regional scale. In addition, many studies have utilized the GIS-integrated 

statistical techniques and approaches to determine the hydrochemical regime and establish 

strategies to manage groundwater resources under the complexity of natural processes in 

conjunction with the anthropogenic practices that influence groundwater quality. The purpose of 

this paper is to explore the literature in order to evaluate the current standing of the GIS-

integrated statistical analyses used for groundwater quality evaluation, and to focus on the future 

research directions. To the authors’ knowledge, this kind of review does not currently exist in the 

literature. This paper deals with the past studies having application of time series modeling and 

multivariate statistical/geostatistical techniques for groundwater evaluation and artificial 

intelligence techniques for groundwater vulnerability assessment. Then, this paper outlines 

distinct GIS-based water quality indices developed and applied for groundwater quality 

assessment worldwide. Finally, it highlights the limitations and research gaps incurred in the past 

studies, and then it emphasizes on the future research needs to be considered for a better 

evaluation of groundwater quality under the framework of GIS-integrated statistical techniques. 

 

2. TIME SERIES MODELING OF GROUNDWATER QUALITY VARIABLES 

2.1. Components, Steps and Assumptions of Time Series Analysis 

A “time series” may be defined as “a sequence of values collected over time on a 

particular variable” (Haan, 1977). Similar to the time-variable data series, there exist “spatial 

data series” in hydrogeology. In spatial series, data are location-dependent instead of time-

dependent as in the time series. Most time series analysis techniques are equally applicable to 

spatial data series (Shahin et al., 1993), and hence, spatial data series is sometimes referred to as 

time series. In general, a hydrologic or hydrogeologic time series is composed of deterministic 

and stochastic components (Haan, 1977; Shahin et al., 1993). The deterministic component 

presents a systematic pattern in the time series and can be classified as a trend, a shift or jump, a 

periodic component, or a combination of these (Haan, 1977). The time series analysis intends at 

detection and quantitative description of each of the generating processes underlying a given 

sequence of observations (Shahin et al., 1993). There are four major steps involved in a time 

series modeling (McCuen, 2003): (i) detection, (ii) analysis, (iii) synthesis, and (iv) verification. 

In the detection step, systematic components of the time series such as trends and periodicity are 

identified. In the analysis step, the systematic components are analyzed to identify their 

characteristics, including magnitudes, form and their duration over which the effects exist. In the 

synthesis step, information from the analysis step is accumulated to develop a time series model 

and to evaluate goodness-of-fit of the developed model. Finally, in the verification step, the 
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developed time series model is evaluated using independent sets of data. For further details of the 

time series analysis, the reader is referred to the specialized books on time series analysis, such 

as Yevjevich (1972), Salas et al. (1980), Bras and Rodriguez-Iturbe (1985), Cryer (1986), Clarke 

(1998), and Machiwal and Jha (2012). Most statistical analyses using hydrologic time series are 

based on fundamental assumptions of the time series characteristics, which include; the series is 

homogenous and follows normal probability distribution, stationary, free from trends and shifts, 

non-periodic with no persistence (Adeloye and Montaseri, 2002). 

About five decades ago, hydrologic application of time series modeling was confined up 

to surface water problems, especially for analyzing the hydrologic extremes, such as floods and 

droughts (McCuen, 2003). However, with enlarging domain of statistical hydrology over the past 

few decades, time series analyses presently encompass the problems of surface water as well as 

groundwater systems (Shahin et al., 1993; Machiwal and Jha, 2006). With such a broad domain, 

time series analysis has emerged as a powerful tool for analyzing surface and subsurface 

hydrologic time series data. An extensive review on the applications of time series analysis in 

surface water hydrology, climatology and groundwater hydrology has been presented by 

Machiwal and Jha (2006). That review revealed that although several studies deal with the 

application of time series analysis in surface water hydrology, the application of time series 

analysis in groundwater hydrology is highly limited. Salient studies analyzing characteristics of 

the hydrogeochemistry time series are reviewed in the following sub-sections. 

 

2.2. Normality of Groundwater Quality Variables 

The assumption of presence of normality in time series of groundwater quality variables 

is very crucial in obtaining reliable results of the parametric statistical tests (USEPA, 1996). In 

the past studies dealing with geochemistry data, normality tests are applied to the point data of 

the groundwater quality variables, and not to the spatial data/maps on GIS platform. For 

example, Mouser et al. (2005) tested pH, electrical conductivity (EC) and calcium concentration 

data from the Molly Bog peatland located between Stowe and Morristown in Vermont, USA for 

presence of normality using normal probability plot and Shapiro-Wilk test. Results suggested 

that calcium concentration did not follow a normal distribution, which was then subjected to 

logarithmic-transformation. Chou (2006) suggested use of normal probability plot for testing 

normality in environmental data, and transforming the non-normal data by applying logarithmic 

or Box-Cox transformations (Box and Cox, 1964). Aguilar et al. (2007) applied three tests (i.e., 

Shapiro-Wilk, Shapiro-Francia, and D’Agostino tests) to identify presence of normality in nitrate 

concentrations of 24 sites located in Hesbaye chalk aquifer of the Geer basin of Belgium. The 

Shapiro-Wilk test was employed for a sample size < 50, and the Shapiro-Francia test for a 

sample size≥50. In another study, Kolmogorov-Smirnov test was used to examine normality of 

chemical (i.e., ammonium, nitrate, nitrite, soluble reactive phosphorus and total phosphorus) and 

microbiological (i.e., bacterial abundance, cell biomass and bacterial biomass) variables of 
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groundwater samples collected in Doñana aquifer system of southwest Spain (Ayuso et al., 

2009). The non-normal variables identified by the Kolmogorov-Smirnov test were then 

transformed to make them normal. Nas and Berktay (2010) used frequency plot and quantile-

quantile plot to check normality of urban groundwater quality data (i.e., pH, EC, chloride, 

sulfate, hardness and nitrate) for 177 sites in Konya city (Turkey). Results revealed non-

normality of EC, chloride, sulfate, hardness and nitrate, which were then normalized by log-

transformation. Hosseini and Mahjouri (2014) employed Anderson-Darling test to assess 

normality of nitrate concentrations in Karaj aquifer of Iran. The non-normal data were 

transformed by using logarithmic transformations. Jovein and Hosseini (2017) examined 

normality of EC of the groundwater samples collected from Mahvelat plain located in the 

northeastern part of Iran by normal quantile-quantile and frequency plots, and transformed the 

data by applying Box-Cox transformation. Recently, Leite et al. (2018) evaluated multivariate 

normality using Shapiro-Wilk generalized test of 14 water quality parameters for 12 sites 

comprising three distinct micro-regions of Santa Catarina State (four sites per region) in the 

municipality of Ponte Alta do Norte and São Cristóvão do Sul, Brunópolis, and Curitibanos 

located in Marombas River basin of southern Brazil. 

In addition to statistical tests, skewness and kurtosis values were also computed to test 

normality of trace elements (i.e., arsenic, lead, cadmium, and aluminum) present in groundwater 

of Dhemaji district of Assam, India (Buragohain et al., 2010). All trace elements followed non-

uniform distribution in the area. Similarly, skewness and kurtosis values besides Kolmogorov-

Smirnov test were used to evaluate normality of groundwater quality parameters in Amol-Babol 

Plain (Narany et al., 2014) and Torbat-Zaveh plain, Khorasan Razavi (Nematollahi et al., 2016) 

of Iran, Modena plain of central Italy (Barca and Passarella, 2008), Antonio-El Triunfo mining 

district, Baja California Sur of Mexico (Wurl et al., 2014) and Pingtung plain of Taiwan (Jang et 

al., 2016). The normality of trace elements present in groundwater of Greece was evaluated by 

computing skewness and kurtosis values, and Box-Cox transformations were used to normalize 

data (Dokou et al., 2015). Using Shapiro-Wilk test, Noshadi and Ghafourian (2016) checked 

normality of groundwater quality parameters (i.e., calcium, chloride, bicarbonate, magnesium, 

sodium, nitrite, nitrate, pH, sulfate, total dissolved solids (TDS), hardness, EC, and sodium 

adsorption ratio) at 298 sites in Fars province of Iran. Results indicated presence of normality in 

all the parameters except magnesium that was later on considered normal looking at value of 

skewness (< 2). In addition, Gan et al. (2018) log-transformed chloride, sulfate and arsenic with 

substantial skewness and kurtosis values to improve the normality of distribution in groundwater 

of Jianghan Plain, located in central Yangtze River Basin of central China. 

It is clear from the above discussion that a variety of techniques has been used in 

literature to examine presence of normality in the time series of groundwater quality variables. 

The normality of groundwater quality variables is mainly evaluated by applying graphical 

(histograms, box-whisker plots, normal probability plots, quantile-quantile plots, etc.) and 
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statistical tests (skewness and kurtosis, Chi-square (2) test, Kolmogorov-Smirnov test, Lilliefors 

test, Anderson-Darling test, Cramér-von-Mises test, Shapiro-Wilk test, probability plot 

correlation coefficient, Jarque-Bera test, D’Agostino Pearson Omnibus test, etc.). Furthermore, 

normality is tested for point data of individual sites without their GIS integration. In fact, a 

methodology for examining normality of the spatially-distributed values of the point estimates is 

currently lacking that restricts the researchers to test normality as well as to present the normality 

test-results in a spatially-distributed manner. 

 

2.3. Trends in Groundwater Quality Variables 

Identifying trends and understanding their underlying mechanisms can help make 

appropriate decisions for groundwater quality management (McBride, 2005). Loftis (1996), for 

the first time, presented a review on trends in groundwater quality by discussing case studies 

from different parts of the world ranging from regional to local scales. Based on the review, the 

exact meaning of “trend” was emphasized as a critical step for groundwater quality studies in 

both temporal and spatial contexts. In literature, studies dealing with trend identification in 

groundwater quality are very less in comparison to those exploring trends in surface water 

quality (Taylor and Loftis, 1989; Loftis, 1996). Since the last decade, application of statistical 

trend tests in groundwater quality studies has been receiving an increasing attention (Visser et 

al., 2009; Kaown et al., 2012; Machiwal and Jha, 2015; Yazdanpanah, 2016; Koh et al., 2017). 

Since the inception of the GIS technology in groundwater studies during1990s, in studies 

involving trend identification of groundwater quality variables, researchers adopted the GIS 

mainly to present point-wise results of trend tests geographically for depicting spatial distribution 

of presence/absence of the trends (e.g., Mendizabal et al., 2012). Review of the literature 

revealed that most of the trend detection studies have dealt with individual parameters of the 

groundwater quality, such as sulfate(Malapati et al., 2011), chloride(Scanlon et al., 2010), 

hardness (Hudak, 2001), etc. Few researchers explored trends in multiple groundwater quality 

parameters (e.g., Machiwal and Jha, 2015; Masoud et al., 2016). Machiwal and Jha (2015) 

detected trends in 15 groundwater quality parameters of 53 sites located in Udaipur district of 

Rajasthan, India by applying three tests, i.e., Kendall’s Rank Correlation test, Spearman Rank 

Order Correlation test and Mann-Kendall test. The presence of serial correlation in all 

groundwater quality parameters was also tested before applying the Mann-Kendall test as the 

outcome of this test gets affected under the presence of serial correlation (Yue et al., 2002). 

Similarly, trends in multiple groundwater quality parameters (23 quality variables) were assessed 

for 20 sites located in Tanta district of Egypt by applying Mann-Kendall test (Masoud et al., 

2016). Results indicated that the statistically-significant trends at 5% significance level were 

remarkable for the total hardness, total alkalinity, TDS, iron, manganese, nitrite, ammonium, 

phosphate and silica. However, the major focus of the past studies has been on identifying trends 

in nitrate(Hudak, 2000a; Hudak, 2000b; Scanlon et al., 2008; Bronson et al., 2009; Enwright and 
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Hudak, 2009; Chaudhuri et al., 2012). Since 2000, researchers have been investigating how best 

to regionalize the nitrate concentration trends in the groundwater. 

Statistical trends are generally detected by two approaches: parametric and nonparametric 

(Machiwal and Jha, 2015). The most-widely used parametric method is regression test, which is 

more powerful than the commonly-employed nonparametric Mann-Kendall test, but the former 

approach requires the data be independent and normally-distributed (Gilbert, 1987; Bethea and 

Rhinehart, 1991), and the latter approach is free from such normality assumption. Helsel and 

Frans (2006) developed a Regional-Kendall method based on the principle of the Seasonal-

Kendall test to determine regional trends in the groundwater quality. The performance of the 

Regional-Kendall test was found satisfactory by many researchers such as Frans (2008), Sprague 

and Lorenz (2009), and Kaown et al. (2012). Recently, Lopez et al. (2015) developed a 

methodology for application of the Regional-Kendall test in GIS platform by using geostatistics. 

In addition, Yazdanpanah (2016) made an effort to integrate results of linear trend analysis with 

GIS using geostatistical modeling of slope values of the linear trend model. 

Similar to the normality-testing of the point-wise groundwater quality variables, it is 

evident that the literature studies have identified trends in a variety of groundwater quality 

parameters over individual sites in different parts of the world. However, trend detection studies 

using spatially-distributed GIS maps of the groundwater quality variables are not found in the 

literature. The major cause for non-consideration of spatial maps for trend assessment is non-

availability of a methodology for coupling statistical trend tests with GIS to identify the temporal 

trends directly into the GIS framework. In contrast to normality-testing, a large number of the 

studies used GIS to present the results of the trend tests for groundwater quality time series over 

space. Recently, Kumar et al. (2017) developed a standard methodology to identify spatial trends 

using spatial raster datasets in GIS framework by coupling three statistical tests (i.e., Kendall 

rank correlation test, Spearman rank order correlation test, and Mann-Kendall test) with GIS. 

However, the methodology developed was demonstrated through a case study to identify trends 

in rainfall of Gujarat state, India using satellite datasets. There is a need to employ such 

methodology for trend identification in time series of groundwater quality variables. 

 

2.4. Persistence 

Persistence of a time series is the tendency of the successive data to “remember” their 

antecedent data and to be influenced by them (Giles and Flocas, 1984). In other words, it is 

defined as the correlational dependency of order or time lag “k” between each ith element and the 

(i-k)th element of time series (Kendall, 1973), and is measured by autocorrelation (i.e., 

correlation between two terms of the same time series). In hydrogeochemistry, persistence 

testing is reported in a few studies (e.g., Jones and Smart, 2005). They investigated internal 

structure of long-term nitrate concentration records for five karst springs in the Mendip Hills, 
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England (U.K.) by using stochastic autoregressive modeling. The results indicated the significant 

short-term persistence of 1-2 months in three of five springs. 

It is also seen that except normality and trends, the remaining characteristics of the time 

series such as homogeneity, stationarity, periodicity, and persistence, are generally ignored in the 

studies dealing with groundwater quality over spatial and temporal scales. 

 

3. EVALUATION OF GROUNDWATER QUALITY DATA USING GIS-INTEGRATED 

MULTIVARIATE STATISTICAL METHODS 

3.1. Application of Multivariate Statistical Methods in Groundwater Quality Studies 

As it was put forth by J.D. Hem in his seminal work (Hem, 1985), water chemistry (i.e., 

hydrochemistry) – the field of study mainly concerned with chemical and physical properties of 

natural waters – “hardly qualified as a scientific discipline” until the late 1950s. Interest to 

groundwater chemistry (i.e., hydrogeochemistry) studies occurred even much later and was not 

extensive until 1972 (Niu et al., 2014). Furthermore, at the time being, water quality testing was 

mostly an expensive and arduous endeavor requiring a variety of volumetric, gravimetric, 

colorimetric, turbidimetric, complexometric, and potentiometric procedures (Rainwater and 

Thatcher, 1960). Today, with a wide array of modern analytical instruments and technologies at 

our disposal (APHA-AWWA-WEF, 2017), it is possible to identify and quantify a great number 

of chemical constituents (inorganic and organic) and to measure various physical parameters in 

water samples of different matrix complexity (ranging from freshwater to brine) with a better 

measurement accuracy/precision and at a lesser cost than ever before. Obviously, statistical 

analysis of such multidimensional datasets, acquired at different spatial and temporal scales, 

require computationally efficient and sophisticated techniques to close the widening gap between 

our data-generating and data-analyzing capabilities. Especially after 1980s, dramatic increase in 

the processing and storage capacities of computer hardware, coupled with the emergence of 

powerful multi-tasking (GIS-based) software packages integrating relational database 

management (RDBM), statistical/spatial analysis, and two or three dimensional (2-D/3-D) 

visualization tools have made possible to analyze such large datasets for extracting and 

summarizing relevant quantitative information hidden in data. This type of insight cannot be 

solely gained from the conventional graphical plots (Hem, 1985; Zaporozec, 1972; Güler et al., 

2002; Machiwal and Jha, 2010) that are used in visualization and interpretation of water quality 

data. 

The chemical composition of natural water is derived from many different complex 

processes and sources (natural and/or anthropogenic), all of which imprint a unique 

physicochemical signature on the water constantly recycling through the Earth’s spheres 

(atmosphere, hydrosphere, geosphere, and biosphere). Therefore, statistical analysis of 

hydrochemical data entails the simultaneous evaluation of all the chemical and physical 

parameters (or variables) measured, since water quality is a function of these properties 
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(Williams, 1982). One of the ways to accomplish such an evaluation is through Multi-Variate 

Statistical Analysis (MVSA). Generally speaking, the main objective of the MVSA is to simplify 

the data matrix (composed of p variables and n cases) by finding associations among dataset 

variables (called R-mode analysis) and/or cases (called Q-mode analysis) (Dalton and Upchurch, 

1978). Ideally, the information extracted from the data matrix should be easily understood and 

potentially useful, providing new insights about data. More often, MVSA is a stepwise procedure 

with the obvious first step getting acquainted with data at hand. Therefore, prior to conducting 

any formal statistical analysis (i.e., univariate, bivariate, and multivariate), all variables in the 

dataset should be carefully scrutinized for data quality, measurement/entry errors, 

missing/censored values, and outliers in order to verify data integrity/consistency and identify 

the variables/cases violating certain rules and/or method assumptions (Güler et al., 2002). 

Nonetheless, most of these data quality issues can be minimized, if not resolved completely, by 

developing and implementing reliable quality assurance/quality control (QA/QC) protocols for 

collection, handling, and analysis of water samples, both in the field and in laboratory. While 

most quantitative analytical data, especially the ones related to naturally occurring trace 

elements, do not lend themselves directly to inferential MVSA due to problems related to non-

normality and heteroscedasticity (i.e., heterogeneity of variances), there are techniques available 

(e.g., Box-Cox transformations (Box and Cox, 1964; Box et al., 1978) and z-score scaling, i.e., 

standardization) (Johnson and Wichern, 1992) to improve the overall data distribution for 

elucidating latent associations among data variables and/or cases. Although such statistical 

associations do not directly establish cause-and-effect relationships, they can assist in creating 

hypotheses to make viable predictions about the underlying complex processes and phenomena 

responsible for the data variance and noise (Güler et al., 2002; Güler et al., 2017). However, the 

challenge becomes deciding which MVSA methods are best suited for the problem at hand, and 

understanding their theoretical assumptions and inherent strengths/weaknesses. 

Up until late 1960s, statistical treatment of the water quality variables was mainly limited 

to univariate and bivariate numerical analysis (e.g., calculation of ionic ratios, mean/extreme 

values, and correlation coefficients) and graphical displays (e.g., frequency distributions and 

scatter plots) (Hem, 1970). Most of the MVSA methods in common use today for tackling Earth 

Science problems have been adopted from other scientific disciplines (e.g., physics, astronomy, 

biology, and social/behavioral sciences), where the use of these methods was widespread long 

before the computer era, thanks to Hollerith’s electromechanical punch-card tabulator and 

dedicated human computers. Pioneering applications of the MVSA methods in water-related 

fields occurred much later, and was not as extensive until 1990s. A simple bibliometric analysis 

(this study) of peer-reviewed journals (published from 1980 forward) listed by The Institute for 

Scientific Information (ISI) Web of Science online database revealed that Factor Analysis is by 

far the most frequently used MVSA method in groundwater studies, followed by Principal 

Component Analysis (PCA), Cluster Analysis (CA), and Discriminant Analysis (DA) (Fig. 2). 

However, applications of Canonical Correlation Analysis (CCA) and Correspondence Analysis 
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to groundwater studies are extremely rare or non-existent. It is further evident that the number of 

studies involving use of the MVSA techniques in hydrogeology has an overall increasing trend 

over the years, with a significant increment during the period 2011-2016. In the following 

sections, we will briefly introduce salient exploratory MVSA methods, along with examples 

from the scientific literature that focus on their different applications, for extraction of relevant 

information concealed in data. 

 

3.2. Eigenvector Methods: Factor Analysis vs. Principal Component Analysis 

FA and PCA can be described as “eigenvector” methods for finding lines and planes of 

closest fit to systems of points in multidimensional space, mathematical foundations of which 

was first established by Pearson as early as 1901 (Thurstone, 1931). Both FA and PCA have 

been extensively applied in many disciplines (especially in social and behavioral sciences) 

mainly for data reduction purposes, (e.g., reduction of variables or cases). The data reduction 

using these methods is achieved through finding the directions of maximum variances (i.e., 

eigenvalues) in a multivariate dataset and representing them in a much lower dimension (usually 

2 to 5) than the original dataset. In both methods, the variance analysis involves decomposition 

of the matrix of correlations, which presents interrelations between for all pairs of the original 

variables. However, PCA is often preferred as a method for data reduction, while FA is often 

used when the goal of the analysis is to detect the structure (i.e., a few underlying, but 

unobservable, latent constructs or factors) in a dataset (Suk and Lee, 1999). Indeed, combining 

two or more correlated variables (or vectors) into one “factor” or “principal component (PC)”, 

exemplifies the basic idea of FA or of PCA. The new factors and PCs extracted by FA and PCA 

(respectively) are uncorrelated and ordered so that each successively extracted factor (e.g., F1, 

F2, and so on) or PC (e.g., PC1, PC2, and so on) accounts for a lesser amount of variance of the 

original dataset than the previous one (Davis, 1986; Brown, 1998). FA and PCA are occasionally 

mistaken as the same MVSA method, probably because of the apparent similarities in the 

terminology and methodology used for both. Despite the similarities in the terminology, there are 

distinct differences between the methodologies of FA and PCA methods. However, in most 

cases, FA and PCA usually yield very similar results, if communalities (i.e., proportion of 

variance that each variable or case has in common with other variables or cases) are close to 

unity. 

Assumptions of both FA and PCA include that: (i) each original variable has normal 

distribution, (ii) original variables display linear relationships, (iii) there are no outliers in data, 

(iv) sample size is adequate (n ≥ 50, or n≥ 100 for more stable estimates) and balanced (i.e., case 

to variable ratio is at least 5). These multi-step MVSA methods (FA and PCA) have been used 

extensively in hydrogeochemical studies (both in R- and Q-modes) to extract the relevant 

information hidden in data matrices, e.g., to: (i) extract and ordinate the most important and 

influential parameters (i.e., physical and chemical variables) responsible for the spatial and/or 
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temporal variations in water quality (Ashley and Lloyd, 1978; Melloul and Collin, 1992; Ribeiro 

and Macedo, 1995; Reghunath et al., 2002; Thyne et al., 2004; Cloutier et al., 2008); (ii) 

ascertain the similarities/dissimilarities or continuity/overlap in spatially and/or temporally 

distributed groundwater samples (i.e., cases) (Güler et al., 2002; Dalton and Upchurch, 1978; 

Usunoff and Guzman-Guzman, 1989; Farnham et al., 2002); (iii) reveal underlying latent factors 

(e.g., key processes, phenomena, sources, and end-members) that account for the structure of the 

hydrochemical data (Dawdy and Feth, 1967; Melloul and Collin, 1992; Suk and Lee, 1999; 

Meng and Maynard, 2001; Lambrakis et al., 2004; Güler et al., 2017; Kazakis et al., 2017; 

Busico et al., 2018), and (iv) produce data for further investigation or for other methods (e.g., 

factor score mapping, multiple regression, cluster analysis, GIS analysis, etc.) (Dalton and 

Upchurch, 1978; Subbarao et al., 1996;, Suk and Lee, 1999, Güler et al., 2012). 

Many past studies applied FA or PCA in combination with GIS techniques to identify the 

anthropogenic and natural hydrogeologic processes functioning in the aquifer systems (e.g. 

(Thyne et al., 2004; Dragon, 2006; Güler et al., 2012; Petrişor et al., 2012). However, precise and 

proper spatial analyses integrating PC scores with GIS-based geostatistical modeling are rarely 

carried out (e.g., Güler et al., 2012; Narany et al., 2014; Machiwal and Jha, 2015). 

 

3.3. Cluster Analysis 

The term “Cluster Analysis”, first introduced by Tryon (Tryon, 1939), encompasses a 

wide variety of classification algorithms applied in many fields (including hydrogeochemistry) to 

organize data variables and/or cases into homogenous and non-overlapping subsets or groups, 

called clusters (Hartigan, 1975). Using this method, the original data matrix, composed of p 

variables and n cases, is partitioned into k number of subsets (where k is generally much smaller 

than p (in R-mode) and/or n (in Q-mode); hence, data reduction is achieved. In general, the 

members of each cluster share similar characteristics (e.g., in terms of chemical composition) 

compared to non-members (members belonging to other clusters). In this method, grouping of 

individual variables and/or cases is generally achieved through an iterative process, where the 

number of clusters (k) may or may not be known a priori. The cluster centroids (or means) 

obtained from the resulting partition can be used as representative members (a.k.a. prototypes) of 

their respective groups. In hydrochemical studies, commonly used partitioning algorithms 

include hierarchical clustering (joining or tree clustering) and K-means clustering. 

The Hierarchical Clustering Analysis (HCA) employs various types of distance 

(similarity/dissimilarity) measures and linkage methods (i.e., amalgamation rules) (Sneath and 

Sokal, 1973; Hartigan, 1975) and the choice of which combination to use does not have an easy 

answer and greatly affects outcomes (Güler et al., 2002). One of the most widely used 

combination in HCA is the Euclidean distance (as distance measure) and Ward’s method (for 

linkage), which forms distinct and easily interpretable clusters that may be significant in the 

hydrochemical, hydrologic, and geologic contexts (Gong and Richman, 1995; Güler et al., 2002). 
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Since, the results of HCA are mostly presented in a tree-like 2-D diagram called dendogram 

(Davis, 1986), the method is generally appropriate for partitioning small datasets (Güler et al., 

2002). However, this apparent shortcoming can be overcome by employing a multi-step 

clustering approach (e.g., pre-clustering and then re-clustering) (Güler and Thyne, 2004a) or 

using another MVSA method (e.g., PCA) first for data reduction and noise filtering (Pirkle et al., 

1984). Dendograms can also be spatially projected in 3-D, in a map form using color-coded 

clusters (Forina et al., 2002), but to our knowledge this technique has not been used in 

hydrochemical and hydrogeochemical studies. The HCA is generally accepted as a semi-

objective procedure, not requiring a priori specification of the number of clusters (k), where their 

numbers is usually defined post-process (somewhat subjectively), drawing a line (i.e., phenon 

line) that cuts through dendogram branches at a certain distance value (Güler et al., 2002). 

Unlike HCA, K-Means Clustering (KMC) is a nonhierarchical method that can allow 

classification of a substantially large number of samples (Gong and Richman, 1995; Pacheco, 

1998). KMC follows a simple iterative procedure, which assumes exactly k number of random 

cluster centers at the onset of the analysis (MacQueen, 1967). If k is unknown a priori, a 

subjective bias may be introduced into the results. The KMC tries to define exactly k different 

cluster centroids (one for each cluster) with the greatest possible distinction. From the 

computational point of view, KMC can be thought of as analysis of variance (ANOVA) in 

reverse (Güler et al., 2002). The KMC process is initiated with k random clusters, and then 

objects to be clustered are iteratively relocated between those clusters with the aim to: (i) reduce 

within-cluster variance and (ii) increase between-cluster variances (Pacheco, 1998). However, 

the resulting KMC partition is highly sensitive to the initial randomly selected cluster centers. 

Executing multiple KMC runs on the dataset can help to minimize this effect. The results from 

KMC are typically presented in matrix form, which shows members of each cluster and their 

distances from respective cluster centers (Güler et al., 2002). 

CA techniques mentioned here relies on assumptions such as normal distribution and 

equal variance (homoscedasticity) of the water chemistry data variables that are continuous in 

nature (Alther, 1979). In addition, the use of variables having specific relationships or displaying 

a high intercorrelation among themselves (i.e., multicollinearity) may cause unwanted 

redundancies in the clustering process (Güler et al., 2002). However, CA using factor scores 

obtained from the factor analysis (FA) can be used in order to reduce multi-collinearity (Suk and 

Lee, 1999). Outliers should also be treated with caution, since they tend to strongly distort the 

results. Another important and essentially unsettled issue in cluster analysis is the “cluster 

validity problem” (Hardy, 1996), which mainly involves determination of the “true” number of 

groups (k) in a dataset (mostly unknown a priori). In hydrogeochemical studies, the spatial 

coherence of the statistically defined groups (e.g., similarity/proximity of geographical locations, 

altitudes, and distances of within and between group members) can be verified using GIS-based 

spatial analysis techniques for cluster validation purposes, which may also provide insights into 

aquifer heterogeneity/connectivity and the processes governing water quality (Güler and Thyne, 
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2004a). As a general rule of thumb, distinctly different hydrogeochemical groups should be both 

statistically and spatially (in a geographical sense) well separated, due to increasing water-rock 

interactions along hydrological flow paths (Thyne et al., 2004). 

Since the late 1970s, CA has been successfully applied to water chemistry data in many 

groundwater studies to: (i) classify samples into distinct hydrogeochemical groups (Ashley and 

Lloyd, 1978; Riley et al., 1990; Johnson and Wichern, 1992; Suk and Lee, 1999), (ii) identify 

hydraulic connections between surface and deep zones (Williams, 1982), (iii) interpret 

groundwater flow (Ochsenkühn et al., 1997), (iv) find optimal number of natural clusters 

(Pacheco, 1998), (v) classify samples from different aquifers (Steinhorst and Williams, 1985; 

Saleh et al., 1999), and (vi) evaluate temporal changes in groundwater composition (Ribeiro and 

Macedo, 1995; Suk and Lee, 1999; Berzas et al., 2000). A number of researchers (Farnham et al., 

2000; Meng and Maynard, 2001; Güler et al., 2002; Güler and Thyne, 2004a; Thyne et al., 2004; 

Helstrup et al., 2007; Cloutier et al., 2008) used R- and Q-mode cluster analyses, in conjunction 

with other MVSA, geochemical (modeling), and spatial analysis techniques (e.g., GIS) for 

hydrogeological and hydrogeochemical site characterization in groundwater studies with scales 

ranging from local to regional. 

 

3.4. Discriminant Analysis 

The main purpose of discriminant (function) analysis (DA) is to determine a set of 

characteristics (i.e., variables, p) that permit for the best prediction (discrimination) between two 

or more naturally occurring a priori defined groups (k ≥ 2) within the dataset or assigning new 

objects (i.e., cases, n) accurately into these homogeneous groups on this basis (Izenman, 2013). 

The basic notion underlying DA is to decide whether groups differ with regard to the mean of a 

predictor variable, and then to use that variable to predict group membership of new cases. The 

prediction is achieved by linear discriminant functions (Johnson and Wichern, 1992; Wunderlin 

et al., 2001), which are vectors (linear combination of the selected independent variables) in the 

directions of optimal separation between the groups. DA initially requires a reference set of 

(representative) samples for each group, for “training” purposes. DA is generally a stepwise 

procedure, with forward- and backward-modes, where variables are added or removed one-by-

one in a sequential manner to improve the separation between groups (Machiwal and Jha, 2010). 

DA algorithm tries to maximize between group variance-covariance and minimize within-group 

variance-covariance under simultaneous consideration of all analyzed features. The impact of 

each variable on the discriminant function can be assessed by comparing their partial F-values, 

where the higher the value is the more impact it has on the discriminant function. In addition, the 

Wilks' lambda (λ) value is used as a measure of the statistical significance of the discriminatory 

power of the model (λ = 0, perfect discriminatory power and λ = 1, no discriminatory power), 

while Mahalanobis distance statistic (D2) is used to assess for separation of groups. 

Computationally, DA is analogous to the one-way/multivariate analysis of variance methods 
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(ANOVA/MANOVA). When three or more groups (k) present, the method is referred to as 

Multiple Discriminant Analysis (MDA), which has close associations with other MVSA 

methods, including multiple regression analysis, FA, and canonical correlation. DA or MDA can 

be used to classify and, thus, to confirm the groups found by means of CA. DA relies on the 

same assumptions that are required for the CA (e.g., normal distribution, homogeneity of 

variances/covariances, multicollinearity, and no outliers) (Izenman, 2013). In addition, the 

variables that are used to discriminate between groups should not be completely redundant with 

the other variables. In other words, if a variable (e.g., total dissolved solids) is the sum of a 

number of other variables (e.g., ionic constituents) that are also being evaluated, then the “ill-

conditioned matrix” problem may occur. DA can be used successfully when the dependent 

variable is “categorical” and the independent variables are “metric” and normally distributed. 

In hydrogeochemical studies, DA is infrequently used and has been applied for the 

assessment of spatiotemporal variations in datasets (Steinhorst and Williams, 1985; Wunderlin et 

al., 2001), where site (spatial) and season (temporal) can be coded as grouping variables, while 

the measured physical and/or chemical parameters constitute independent variables (Machiwal 

and Jha, 2010). The further details on the procedure can be found in Cooley and Lohnes (1971) 

and Johnson and Wichern (1992). 

 

3.5. Canonical Correlation Analysis 

Canonical correlation analysis (CCA) is considered as one of the correlation techniques 

(Hotelling, 1936). However, it is different from the FA or PCA in spite of certain similarities in 

concept and terminology. In general, it is used to investigate the intercorrelation between two 

datasets of variables, whereas FA, PCA or empirical orthogonal functions detect a pattern of 

relationship within one dataset (Clark, 1975). The CCA can be used for examining presence of 

any similar kind of pattern that may occur simultaneously in two different datasets, and if it is 

present, then the correlation between associated patterns is calculated. In hydrogeochemistry 

studies, the application of CCA could not be found in literature. However, for measuring trophic 

status of reservoirs and lakes, Cairns et al. (1997) applied CCA on the water parameters (namely 

chlorophyll, total suspended and dissolved solids, and turbidity) and digital values of three bands 

and numerous band ratios of SPOT (Systeme Pour 1'Observation de la Terre) satellite data. The 

results indicated that the turbidity and chlorophyll contributed 0.91 and 0.76, respectively to the 

first canonical water variable showing a good relationship. It is worth mentioning that the DA is 

one of the special cases of CCA. 

 

4. APPLICATION OF GEOSTATISTICAL MODELING IN GROUNDWATER 

QUALITY EVALUATION 

Geostatistical modeling techniques were originally developed and applied in geological 

studies for estimating mineral concentrations in ore bodies and recoverable reserves (David, 
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1977; Journel, 1974; Journel and Huijbregts, 1978). It is seen from the literature that the first 

attempts of geostatistical-modeling application to geochemical data were made by David and 

Dagbert (1975) and David (1977). During the 1940s, an important contribution of geostatistics in 

meteorology was made by the Soviet School of Meteorology (Drozdov and Shepelevskii, 1946). 

Later on, Gandin (1965) and Kagan (1967) emphasized the need of recognizing spatial 

variability along with quantification of estimation error. Kriging is the widely-used geostatistical 

technique developed by Matheron (1965; 1973). In hydrogeology, Delhomme (1978) paved the 

way for the geostatistical modeling applications. Application of the geostatistical-modeling 

techniques in groundwater quality studies was very limited up to the end of 1990s. However, 

with integration of GIS, use of geostatistical-modeling techniques in groundwater quality 

evaluation significantly increased. After 2000, studies involving GIS-integrated geostatistical-

modeling techniques mushroomed in literature. Cooper and Istok (1988a,b) made an excellent 

effort by developing a comprehensive methodology for applying geostatistics to the problems of 

groundwater contamination, and demonstrated its application through a case study at the Chem-

Dyne Superfund site in Ohio, USA. Istok and Cooper (1988) developed techniques for 

combining local estimates obtained by kriging to obtain global estimates and estimation errors 

for the expected contaminant concentration in any specified portion of the contaminant plume. 

An overview of the basic concepts of the geostatistics and its proposed linear and nonlinear 

kriging estimation techniques is provided by the ASCE Task Committee (1990a). The ASCE 

Task Committee (1990b) reviewed the applications of the geostatistical-modeling techniques in 

groundwater hydrology under the five major sections: (i) mapping, (ii) simulation of 

hydrological variables, (iii) estimation using the flow equations, (iv) sampling design, and (v) 

geostatistical-modeling applications in groundwater system management. 

In 1980s, few researchers applied geostatistics in hydrogeochemistry studies (e.g., Myers 

et al., 1982). Myers et al. (1982) developed four variogram models (i.e., linear, constant-linear, 

concave and convex) for 12 variables (U, B, Ba, Ca, Li, Mg, Mo, As, V, SO4, Specific 

conductance, and total alkalinity) in Ogallala formation and Permian geologic units in Texas, 

USA. The results of the geostatistical modeling were compared with the inverse distance 

weighting (IDW) technique, which revealed a better performance of the IDW technique in spatial 

interpolations of the variables. Rouhani and Hall (1988) used geostatistical techniques for the 

design of a regional shallow groundwater quality monitoring network in the Dougherty Plain, 

located in southwest Georgia, USA. In Spain, reliability of groundwater-quality monitoring 

network in controlling saltwater intrusion was assessed by using lognormal kriging for mapping 

chloride distribution in the Llobregat delta confined aquifer of Barcelona (Candela et al., 1988). 

Bárdossy and Kundzewicz (1990) applied two geostatistical methods (i.e., point kriging and 

intrinsic random function of order ‘k’) for detection of outliers in chloride and total hardness data 

of groundwater from the Upper Rhine Valley, extending across three countries: France, 

Germany, and Switzerland. Bjerg and Christensen (1992) evaluated horizontal variations in 

groundwater-quality parameters (i.e., pH, alkalinity, Cl, NO3, Ca and K) in a shallow sandy 
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aquifer located in western part of Denmark. Results indicated substantial variations in all 

parameters even at smaller distances. Istok et al. (1993) presented a case history of the alluvial 

aquifer underlying the Malheur River Basin, Oregon, USA, where isotropic and spherical 

geostatistical models were applied for estimating pesticide concentrations from the measured 

nitrate and pesticide concentrations under the limited sampling of the pesticides. Rautman and 

Istok (1996) presented a geostatistical framework for probabilistic assessment of groundwater 

contamination and illustrated the approach using synthetic data of a hypothetical site. The 

approach is further demonstrated through a case study in agricultural area in the Lower Malheur 

River Basin and the Western Snake River Plain near the eastern Oregon, USA (Istok and 

Rautman, 1996). Pebesma and de Kwaadsteniet (1997) prepared spatial maps of 25 groundwater-

quality variables based on median measurements of 425 sites in 4 km × 4 km block in the 

Netherlands using block kriging. Their study quantified the effect of monitoring network density, 

and evaluated changes in the groundwater quality over a span of 20 years.  

Ordinary kriging and cokriging were compared for studying spatial distribution of nitrate 

in Lucca Plain aquifer of Central Italy (D’Agostino et al., 1998). Results indicated that the 

cokriging improved the estimation and reduced the uncertainty in terms of estimation variance. 

In multivariate geostatistical problems, two related variables are used to improve estimation of 

the primary variable by using the secondary variable. The ordinary kriging and cokriging have a 

smoothing effect causing underestimation (or overestimation) of the variable due to large (or 

small) sample values in cross-validation. This smoothing effect was reduced by applying 

Gaussian random-process based principle in simulating kriged and cokriged estimates using 

chloride (primary variable) and resistivity (secondary variable) data in Horonobe area of northern 

Japan (Lu et al., 2016). Sânchez-Martos et al. (2001) first applied the PCA technique to identify 

three factors (i.e., sulfate, thermal and marine influences) that affect groundwater processes in 

the detrital aquifer of the Bajo Andarax (Almeria, Spain). Then, the identified three factors were 

analyzed using ordinary block kriging to obtain their spatial distribution. Geostatistical approach 

has been used with Bayesian analysis for contaminant source identification by developing a 

methodology to estimate release history of a conservative solute (Snodgrass and Kitanidis, 

1997). This approach is subsequently extended to the estimation of the antecedent distribution of 

a contaminant at a given point back in time (Michalak and Kitanidis, 2004). Later on, Sun (2007) 

further extended this approach to develop a robust geostatistical approach to contaminant source 

identification by solving the linear estimation problems. Empirical Bayesian kriging is another 

technique of kriging family, which is different from other kriging methods as the former uses an 

intrinsic random function for spatial interpolation (Gupta et al, 2017). This technique is rarely 

used for spatial interpolation of groundwater quality variables (e.g., Mirzaei and Sakizadeh, 

2016). 

After the year 2000, several studies have applied geostatistical modeling techniques for 

mapping spatial variability of the chemical concentrations for groundwater quality 

assessment/evaluation (e.g., Goovaerts, 1999; Castrignanò et al., 2000; Yu et al., 2003; Mouser 
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et al., 2005; Schaefer and Mayor, 2007; Machiwal and Jha, 2015). At present, abundant studies 

on this aspect exist in literature, and there has been an increasing trend in appearance of such 

studies in research journals after the year 2000. Salient studies, reported after 2000, dealing with 

the use of geostatistical-modeling techniques for the groundwater quality assessment/evaluation 

are enlisted in Table 1. It is revealed that ordinary kriging is the most widely-used geostatistical-

modeling technique in groundwater quality studies. The spatial distribution of almost all kind of 

groundwater-quality parameters along with scores of the principal components obtained through 

PCA is determined in different parts of the world. It is also observed that the estimation error of 

the geostatistical modeling is computed in a large number of studies by using cross-validation 

criteria. However, some of these studies ignored the important step of validation while applying 

the geostatistical modeling. 

 

5. APPLICATION OF HYBRID METHODS FOR GROUNDWATER VULNERABILITY 

ASSESSMENT IN GIS PLATFORM 

Concept of groundwater vulnerability, first introduced by Margat (1968), is based on the 

assumption that the physical environment may provide some degree of protection to groundwater 

against human activities. The groundwater vulnerability is classified into two types: specific 

vulnerability and intrinsic vulnerability (National Research Council, 1993). Intrinsic 

vulnerability of an aquifer can be defined as the ease with which a contaminant introduced onto 

the ground surface can reach and diffuse in groundwater (Vrba and Zaporozec, 1994). On the 

other hand, specific vulnerability is used to define the vulnerability of groundwater to particular 

contaminant or a group of contaminants by taking into account the physicochemical properties of 

the contaminants and their relationships (Gogu and Dassargues, 2000). Initially, groundwater 

vulnerability of an aquifer is mapped, and hence, it can be used as an assessment tool against 

groundwater pollution. Since the year 1968, numerous groundwater vulnerability assessment 

methods have been developed and applied worldwide, which are coupled with the GIS. The 

vulnerability assessment methods can be classified into: (i) index-based methods, (ii) quantitative 

or simulation models, (iii) statistical and artificial intelligence methods, and (iv) hybrid methods 

that are the combination of the earlier three methods mainly integrating index-based methods 

with statistical and artificial intelligence methods. A tree diagram illustrating classification of 

methods for groundwater vulnerability assessment is presented in Fig. 3. Shirazi et al. (2012) 

presented a review of application of the GIS-based DRASTIC method for groundwater 

vulnerability assessment. Later on, Wachniew et al. (2016) summarized review of intrinsic 

methods of groundwater vulnerability assessment. It is learnt that earlier reviews emphasized on 

a particular vulnerability assessment method or only index-based methods for groundwater 

vulnerability. Recently, Machiwal et al. (2018) presented a comprehensive review of 

groundwater vulnerability highlighting current status and challenges of index-based, quantitative 

and statistical methods including methods for source protection. However, in this paper, we 
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focus mainly on hybrid methods developed by combining advanced statistical and artificial 

intelligence techniques with index-based methods. The index-based methods are parameter 

weighting and rating methods, which, apart from classifying the various parameters, also 

introduce relative weight coefficients for each factor. Such methods are usually coupled with 

statistical methods, so as to overcome the subjectivity of weights and ratings of each parameter. 

Rupert (2001) introduced, perhaps for the first time, a hybrid approach for groundwater 

vulnerability assessment by using a calibration procedure. The groundwater vulnerability map, 

initially developed using the DRASTIC method, was modified according to its correlation with 

nitrate concentrations in the Snake River Basin in USA. Similarly, Panagopoulos et al. (2006) 

used Spearman’s rho and Kendall’s tau correlation coefficients to modify both the weights and 

ratings of the DRASTIC parameters. A major concern in the assessment of groundwater 

vulnerability to nitrates constitutes the use of qualitative parameters. Kazakis and Voudouris 

(2015) replaced the qualitative parameters of DRASTIC method with quantitative ones, and 

proposed a new method to estimate groundwater vulnerability to nitrate. Additionally, nitrate 

concentration was correlated with grading methods in order to determine the more suitable 

classes of the proposed method. The grading methods of natural breaks, equal interval, quantile 

and geometrical intervals were used to define the class ranges of the final vulnerability to nitrate-

based index, whilst sensitivity analysis and ANOVA F-test statistics were used to verify the 

results. Other more complex hybrid methods include integration of index-based methods and 

artificial intelligence (AI) techniques such as fuzzy logic and artificial neural networks (ANNs). 

Regression analysis has been widely used in environmental studies. In the region of 

Osona (NE Spain), Boy-Roura et al. (2013) used multiple linear regression and isotopes for the 

assessment of groundwater vulnerability to nitrates. In another study, logistic regression and 

weights of evidence statistical procedures were coupled with DRASTIC method for the 

development of two hybrid methods, which were applied in Korinthia prefecture in South Greece 

(Antonakos and Lambrakis, 2007). In the Pearl Harbor-Honolulu aquifer in the USA, stepwise 

logistic regression and capture zones of wells were coupled for the assessment of groundwater 

vulnerability (Mair and El-Kadi, 2013). Among other techniques, Pacheco et al. (2015) applied 

analytic hierarchy process (AHP) for the factor weighting of DRASTIC parameters and the 

estimation of groundwater vulnerability in different aquifers of Portugal. Fuzzy logic and ANNs 

are successfully utilized to assess groundwater vulnerability (Dixon, 2005a,b). Fijani et al. 

(2013) coupled Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic (MLF), ANNs, and Neuro-

Fuzzy (NF) techniques in order to estimate groundwater vulnerability in the Maragheh-Bonab 

basin of Iran. Likewise, Larsen Fuzzy Logic (LFL) was applied in conjunction with SFL and 

MFL for the assessment of groundwater vulnerability in the Varzeqan plain, in northwestern Iran 

(Nadiri et al., 2017). In addition to above techniques, multivariate statistical analysis, e.g., PCA 

and CA have also been used in groundwater vulnerability assessment studies. The CA has been 

used to determine the most influential chemical factors in determining aquifer vulnerability in 

the Visakhapatnam district of India (Rao et al., 2013). Additionally, the CA was coupled with 
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PCA for the modification of DRASTIC method in the Qazvin aquifer, in northern Iran (Javadi et 

al., 2017). 

Thirumalaivasan et al. (2003) made a first attempt to apply AHP for the modification of 

DRASTIC method, which was then employed for vulnerability assessment in Tamil Nadu, India. 

The AHP is a structured multi-criteria analysis technique used for analyzing complex problems, 

and thus, the AHP is widely used for the calibration of parameters’ weights in vulnerability 

assessment methods. In vulnerability assessment study of the Eğirdir Lake basin of Turkey, 

DRASTIC method was modified using the AHP technique (Sener and Davraz, 2013). 

Furthermore, overlay and index-based techniques were coupled with the AHP in a GIS platform 

for estimating groundwater vulnerability in northern India (Gangadharan et al., 2016). Decision 

support systems (DSSs) constitute a valuable and flexible tool for groundwater resource 

management, and it has been also integrated with groundwater vulnerability assessment methods. 

For instance, the DSSs have been coupled with vulnerability maps in intensively irrigated areas 

of Italy and Greece providing an integrated tool for sustainable management of groundwater and 

optimal use of fertilizers (Voudouris et al., 2010). Gemitzi et al. (2006) developed a groundwater 

vulnerability index based on decision-making techniques, such as fuzzy logic and GIS. Stumpp 

et al. (2016) established an intrinsic vulnerability index in a decision tree form, which leads the 

user through the stages of vulnerability assessment. Kazakis et al. (2018a) modified the GALDIT 

method using fuzzy sets in order to estimate groundwater vulnerability of coastal aquifer to 

seawater intrusion. 

The weights of evidence (WoE) method have also been used for the modification of 

index-based methods of groundwater vulnerability assessment. This method can evaluate the 

importance of each single factor class, and thus, allowing the range of values that influences the 

nitrate concentration to be determined. Abbasi et al. (2013) modified the DRASTIC method 

using WoE in the Charmahal-Bakhtyari Province in southwest Iran. In Po plain area of Northern 

Italy, Sorichetta et al. (2012) used positive and negative WoE in order to assess groundwater 

vulnerability to nitrate. Genetic algorithm has also been used for the site selection of 

groundwater production wells considering groundwater vulnerability to pollution. Elçi and 

Ayvaz (2014) applied this approach in Tahtalı watershed in İzmir, Turkey. It is revealed from the 

literature that genetic algorithm has not been widely used in studies involving assessment of the 

groundwater vulnerability, and therefore, this promising AI technique has the vast scope in 

future studies. It is worth mentioning that the applications of the aforementioned hybrid methods 

performed in a GIS platform highlight importance of the statistical and AI methods in 

development and application of the new hybrid methods. Salient hybrid methods developed by 

modifying the original groundwater vulnerability assessment methods are summarized in Table 

2. 

 

6. GIS-BASED GROUNDWATER QUALITY INDEX 
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The previous sections reviewed the application of time series modeling, multivariate 

statistical/geostatistical and artificial intelligence techniques in hydrogeochemistry, as for 

groundwater quality evaluation and vulnerability assessment. Combined with more conventional 

methods (e.g., Piper and Durov diagrams, Wilcox chart, descriptive statistics), these techniques 

are powerful to get a better knowledge of the geochemical processes associated to groundwater 

chemical evolution, both in space and time. On the other hand, a challenge remains to properly 

communicate the relevant geochemical knowledge to groundwater managers in a way to 

integrate groundwater quality issues within groundwater sustainability action framework. To do 

so, there was a need to develop indices that could be applied for groundwater quality assessment. 

Combined to GIS, these water quality indices can be integrated into other spatial data related to 

natural resources and human geography, thus contributing to proper development and 

management of the groundwater resource. 

 

6.1. Water Quality Index (WQI) 

In their book dealing on water quality indices (WQIs), Abbasi and Abbasi (2012) pointed 

out that expressing water quality brings numerous challenges. In fact, the quality of water can be 

defined for different uses (e.g., drinking, agricultural irrigation, livestock, and industrial), may 

vary in time and space, and can be categorized by a number of parameters (chemical, physical, 

microbiological, and radiological), with some parameters being more problematic than others, 

regarding health issues. 

To face the complexity to describe water quality and to provide water resources managers 

with representation of water quality that allows comparisons between samples, regulatory 

agencies of different countries and international agencies have developed different types of 

WQIs, including the U.S. Geological Survey (Stoner, 1978), CCME-WQI (Canadian Council of 

Ministers of the Environment, 2001), and Global Drinking (GD)-WQI (United Nations 

Environment Programme, 2007). Lumb et al. (2011) published an extensive review of the 

evolution of the WQI concept, including the CCME-WQI and the GD-WQI. Later on, Sutadian 

et al. (2016) presented a review of 30 WQIs, developed for evaluating river water quality, based 

on selection of parameters, generation of subindices, generation of parameter weights, and 

aggregation procedure to compute index. Abbasi and Abbasi (2012) defined the objective of 

WQI as translating the concentrations of the measured parameters (variables) of a water sample 

into a single value (the index value). By doing so, the index value of each sample can be used to 

compare the water quality between samples (observations). When computing WQI with GIS, 

numerous applications leading to proper and sustainable management of water resources can be 

implemented. Abbasi and Abbasi (2012) provide detailed information on WQI development and 

common generation steps, starting with the Horton’s WQI (Horton, 1965). Fig. 4 illustrates the 

basic steps generally followed to develop WQI (Abbasi and Abbasi, 2012). The selection of 

parameters (Step 1) from the water quality dataset and the attribution of a weight to each of the 
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parameters (Step 3) are leading subjectivity to the technique. The parameters’ transformation 

(Step 2) is needed to bring parameters of different units or ranges to a single scale, producing 

subindices. It is during this step that one can index the parameters numerically to water quality 

guideline, such as the World Health Organization standards (WHO, 2017). Finally, the 

aggregation of the sub-indices (Step 4) allows the determination of the final index score of the 

WQI. 

Numbers of indices were developed for assessment of surface water quality (e.g., Prati et 

al., 1971; Smith, 1990; Dojlido et al., 1994; Nasiri et al., 2007; Thi Minh Hanh et al., 2011; 

Şener et al., 2017). The following sub-section emphases on the application of WQI in the field of 

hydrogeology, where specific indices, including the Groundwater Quality Index (GWQI; e.g., 

Machiwal et al., 2011), Contamination Index (Cd; e.g., Backman et al., 1998), Metal Pollution 

Index (MPI; e.g., Giri et al., 2010) and Index of Aquifer Water Quality (IAWQ; e.g., Melloul and 

Collin, 1998), were developed to define the quality of groundwater. With advancement of the 

computing facilities, WQIs are now integrated with GIS to provide quantitative groundwater 

quality maps for different geographical regions and scales (e.g., Machiwal et al., 2011; Ketata et 

al., 2012; Sadat-Noori et al., 2014). 

 

6.2. Groundwater Quality Index (GWQI) and GIS-Based GWQI Mapping 

For the purpose of this review, GWQI is used as the general term to describe indices 

developed to address groundwater quality, predominantly based on physicochemical parameters 

(e.g., GWQI, Cd, MPI, and IAWQ). Research studies on GWQI have been reported on 

groundwater geochemical data from many countries, as shown in Table 3. Such studies have 

increased since the pioneering work of Backman et al. (1998) and Melloul and Collin (1998), 

with an important number of publications from semi-arid and arid regions of the world, including 

parts of India, where several states are facing severe water scarcity (Machiwal et al., 2011). 

With the objective to provide a general view of the degree of groundwater contamination 

of a region, Backman et al. (1998) tested the applicability of mapping Groundwater 

Contamination Index (Cd) in Finland and Slovakia. There Cd takes into account the number of 

parameters exceeding the guideline values, as well as the concentrations exceeding these limit 

values. As shown by Backman et al. (1998), the groundwater contamination degree calculated 

for each sample can then be represented on maps for aesthetic and health-risk parameters 

distinguishing between groundwater contamination of geogenic origin and anthropogenic 

sources. By dressing parallels to DRASTIC model (Aller et al., 1985), Melloul and Collin (1998) 

developed the IAWQ, a GWQI that allowed delineating areas where land uses are already 

affecting groundwater quality. Stigter et al. (2006) used multivariate analysis to develop a GWQI 

and a Groundwater Composition Index (GWCI) as monitoring tools for groundwater 

contamination from agricultural activities and to serve as communication tool as part of agro-

environmental policies in Portugal. 
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In the last decade, several studies integrated the GWQI concept to GIS to support 

efficient strategies to assess groundwater quality, as well as to properly manage and monitor 

aquifers and groundwater resources (Table 3). Babiker et al. (2007) proposed a GIS-based 

GWQI with the objective to summarize available water quality data into easily understood maps. 

They used GIS to implement the proposed GWQI and to test the sensitivity of the model. In their 

GIS-based GWQI spatio-temporal study, Machiwal et al. (2011) developed, following GWQI 

map, an Optimum Index Factor (OIF) to generate a Potential GWQI (P-GWQI) map in western 

India. They summarized the entire process to develop GWQI and P-GWQI maps within a 

flowchart. Following Babiker et al. (2007), Machiwal et al. (2011) also performed a map 

removal sensitivity analysis to identify the most influential water quality parameters, and so, the 

parameters that should be monitored with higher accuracy. Khan et al. (2011) used GIS-based 

GWQI to assess the impact of land use changes on the groundwater quality from a rapidly 

urbanizing region of South India. Sadat-Noori et al. (2014) combined the use of GIS and GWQI 

to assess groundwater quality of the Saveh-Nobaran aquifer in Iran. 

GWQI had also been used in various applications in groundwater quality and 

hydrogeochemical studies. As an example, Ramos Leal et al. (2004) used a GWQI and the Cd of 

Backman et al. (1998), combined to aquifer vulnerability evaluation, to support the design of a 

water quality monitoring network for Mexico. Nobre et al. (2007) calculated a GWQI, based on 

the IAWQ of Melloul and Collin (1998), in conjunction with vulnerability, contamination and 

well capture indices, to develop GIS-based groundwater vulnerability and risk mapping. The 

approach of Nobre et al. (2007), where several elements are integrated within GIS environment, 

was successful to assess groundwater pollution risks and to identify areas to be prioritized for 

groundwater monitoring and use restriction. The concept of GWQI is still in evolution, as shown 

by the work of Li et al. (2014) and Vadiati et al. (2016). With the objective to minimize 

uncertainties associated with traditional WQI calculations, Vadiati et al. (2016) investigated the 

potential of a hybrid fuzzy-based GWQI (FGWQI) to assess groundwater quality in the Sarab 

Plain of Iran. They found that the hybrid FGWQI produces significantly more accurate 

assessments of groundwater quality than traditional WQI. Even though the application of 

FGWQI is promising, Vadiati et al. (2016) concluded that more research is needed to test the 

approach and compare it to deterministic WQI techniques in different contexts. 

 

7. LIMITATIONS AND RESEARCH GAPS 

7.1. Whether Time Series Analysis in Hydrogeochemistry Has Been Comprehensively 

Applied? 

This review highlighted that studies are generally lacking where multiple characteristics, 

i.e., normality, homogeneity, stationarity, trends, persistence, periodicity and stochasticity of a 

hydrogeochemical time series are characterized for the same time series. Every time series 

characteristics have their own importance, however, in literature studies dealing with 
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hydrogeochemical data series, the major emphasis was only on testing normality and 

presence/absence of trends. 

 

7.2. Has Time Series Modeling Been Adequately Integrated with GIS? 

Literature reviewed in this study clearly pointed out that the studies dealing with time 

series of hydrogeochemical variables could not adequately integrate time series modeling with 

GIS technology. This is mainly due to unavailability of the essential time series analysis modules 

in GIS software required for analyzing time series characteristics of hydrogeochemical variables 

in a spatially-distributed manner. 

 

7.3. Whether All Multivariate Statistical Techniques May Adequately Be Coupled with 

GIS? 

It is evident from this review that FA, PCA, and CA techniques have been extensively 

used to analyze the multivariate hydrogeochemical datasets. However, other MVSA techniques 

such as DA and CCA could not receive much attention of the researchers. In addition, it is learnt 

that the options for analyzing hydrogeochemical variables by applying GIS-coupled PCA 

technique are available in many GIS software. However, such procedures for coupling of other 

multivariate techniques with GIS are generally not available. 

Although multivariate statistical techniques provide a powerful means for the analysis of 

hydrogeochemical data series (allowing simultaneous evaluation of all physicochemical 

variables), due to their supervised nature, there are no unified methodologies on how to conduct 

such analyses. For instance, there are certain decisions to be made in certain steps of these 

analyses (e.g., variables to be included or excluded, use of raw or transformed/standardized 

variables, selection of methods, algorithms, cut-off levels, and criteria for evaluation), which 

may introduce a subjective bias in the process, with the potential of greatly affecting outcomes. 

Even using the same dataset, different results can be obtained as a result of options chosen to 

conduct the analyses and during interpretation stage. 

 

7.4 Have Geostatistical Modeling Techniques Been Advanced in Mapping Groundwater 

Quality Variations 

 In groundwater quality mapping studies, it has been a customary practice to apply 

ordinary kriging technique. There have been fewer efforts in exploring applicability and efficacy 

of other kriging techniques, e.g., cokriging, indicator kriging, empirical Bayesian kriging, etc. 

Only a few studies comparatively evaluated multiple kriging techniques for getting the best 

results. Validation of the mapped variable is an essential step in the procedure of applying the 

geostatistical modeling technique for estimating spatial distributions. However, uncertainty in 

spatial estimations of the groundwater quality variables remains unaddressed in few studies due 

to non-computation of error variance.  
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7.5. Is Quantitative Assessment of Groundwater Vulnerability more Comprehensive than 

Qualitative? 

The modern and advanced approaches of groundwater vulnerability assessment are based 

on both using hybrid methods involving a coupling of qualitative-quantitative methods and 

integration of statistical and artificial intelligence techniques with index-based qualitative 

methods. However, these approaches demand a large number of field data, which are difficult to 

be collected/measured. Additionally, the trend to establish a method for all hydrogeological 

regimes might neglect the specific conditions of each aquifer. Although the qualitative 

approaches are characterized by subjectivity and strong dependence on the researchers, they 

might be more flexible, adaptable and cost-effective. It is clear that vulnerability assessment 

using intelligence techniques should be carefully applied and evaluated. In the future, a deeper 

discussion and comparison between quantitative and qualitative approaches will be needed in 

order to determine the most suitable approach. 

 

7.6. Does GIS-Based Groundwater Quality Index Provide Consistent Evaluation? 

It is apparent from the results of past GWQI studies that index score calculation remains 

highly dependent on the set of parameters selected, as well as on the weights assigned to each of 

the parameters, making this technique subjective. Of the several developed GWQIs, hardly any 

GWQI have the ability to be consistent and comparable if applied over different areas. Thus, a 

universally accepted and consistent GIS-based GWQI is currently not available in literature. 

 

7.7. Are Different Water Quality Indices Steady and Comparable over Spatial and 

Temporal Scales? 

As revealed by the review of literature, most of the WQIs are dependent upon the water 

quality guidelines that vary among jurisdictions/institutions, and thus, lead to difficulties in 

interpreting water quality when comparing WQI maps at regional scale, sometimes at country-

level. Furthermore, there are chances that the water quality guideline for some parameters may 

change in time, and in such a case, the WQI map needs to be updated prior to interpretation or 

use. 

 

8. PERSPECTIVES ON FUTURE RESEARCH NEEDS 

This review clearly evidenced that application of statistical techniques such as time series 

modeling, multivariate statistical/geostatistical techniques, artificial intelligence techniques and 

water quality indices are gaining popularity in the field of hydrogeochemistry. Integration of 

statistical techniques with GIS enhanced capabilities for precisely interpreting the hydrogeologic 

processes occurring within the aquifer systems. Still, some research gaps and limitations in 
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integration of the advanced statistical techniques within the GIS platform are experienced by the 

researchers as explained in the previous section, which may be a challenge for future studies 

undertaking water quality evaluation of the hydrogeologic systems. Few of the major needs for 

future research are pointed out below. 

 In hydrogeochemistry, first two steps of time series modeling, i.e., detection and analysis, 

have been widely adopted. However, the future research will need to focus on the last two 

steps, i.e., synthesis and verification including stochastic time series modeling of 

groundwater quality variables. 

 Time series characteristics other than normality and presence of trend such as homogeneity, 

stationarity, periodicity and persistence need to be considered equally important in 

hydrogeochemistry, and wide applications of statistical methods for their detection are 

required. 

 Due to inherent complexities of and spatial continuities observed in the chemical and 

physical properties of water chemistry data, sometimes multivariate statistics may not be able 

to produce the expected results. This is mostly because, most of the multivariate statistical 

methods are based on binary logic (i.e., Aristotelian logic), which imposes sharp boundaries. 

According to this logic, a water sample can only be a member of a certain group and no 

overlapping groups are allowed, e.g., in cluster analysis. However, methods using a multi-

valued logic (e.g., fuzzy c-means clustering) can be used to overcome such limitations, where 

partial memberships can be evaluated (a water sample can be partial member of other groups) 

(Güler and Thyne, 2004b; Güler et al., 2012). 

 In future studies, uncertainty associated with the spatial estimations of groundwater quality 

variables predicted by geostatistical modeling techniques will have to be properly addressed 

by validating the mapped variables using the cross-validation criteria. Also, accuracy of the 

customary ordinary kriging and few advanced techniques such as empirical Bayesian kriging 

will need to be comparatively evaluated in order to find the best interpolation technique 

under a set of given hydrogeologic conditions. 

 For groundwater vulnerability assessment studies, a need is felt to develop some sort of 

protocol for monitoring of the groundwater quality in order to have comparative appraisal of 

vulnerability degree of the aquifer over different parts of the world. 

 In studies dealing with groundwater quality index (GWQI) for groundwater quality 

assessments, a robust methodology will have to be developed to reduce subjectivity from the 

processes of parameter selection and weight attribution. 

 Development of a universal GWQI for assessing groundwater quality for different purposes 

would really be a challenging task for prospective researchers. Attempts should be made to 

develop a framework for generating a unique as well as versatile index that allows 
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comparisons in groundwater quality among different spatial scales ranging from local to 

regional (Lumb et al., 2011). 

 It is emphasized to investigate the applicability of hybrid GWQI involving coupling of 

artificial intelligence techniques such as fuzzy or neuro-fuzzy technique with index-based 

weights, along with integration of various additional parameters such as physicochemical, 

organic matter, microbiological, major anions/cations and heavy metals (Vadiati et al., 2016). 

 One of the major future research need will be adequate integration of all kind of statistical 

methods in GIS platform. Procedures for different time series modeling tests, multivariate 

statistical and artificial intelligence techniques and water quality indices need to be 

adequately incorporated in GIS software. 

 Finally, it is realized that a deep sense of cooperation, sharing of experience and exchange of 

ideas among the hydrogeologists working in different regions of the world having a diverse 

setting of economic, social and political ethics would be needed to ensure thorough 

investigations and reliability of outcomes. 

 

9. CONCLUDING REMARKS 

Application of modern techniques such as time series modeling, multivariate 

statistical/geostatistical and artificial intelligence techniques to characterize groundwater quality 

for efficient management and protection of groundwater resources has been attracting the 

researchers increasingly over the past five decades. After advent of Geographic Information 

System (GIS) in 1990s, the advanced statistical and artificial intelligence techniques with their 

GIS-based integration have emerged as more powerful tools than the traditional methods for a 

better evaluation of groundwater quality. It is revealed from the literature that time series 

modeling has not been extensively utilized in hydrogeochemistry studies, and there exists a huge 

scope for its comprehensive applications in future. Mainly, presence of normality and trend are 

examined in groundwater quality time series, and other important time series properties such as 

homogeneity, stationarity, periodicity, persistence and stochasticity are generally ignored on the 

temporal scale. Also, adequate GIS integration of time series modeling techniques are generally 

lacking. It is apparently depicted that the past studies have mostly adopted Factor Analysis, 

Principal Component Analysis (PCA) and Cluster Analysis (CA) for evaluating the groundwater 

quality. However, other multivariate statistical analysis techniques could not be widely 

employed. Recently, factor loadings/scores of the PCA have been integrated with GIS-coupled 

geostatistical modeling, although such studies are quite rare in literature. A need is felt to find the 

accuracy of the advanced geostatistical modeling techniques, e.g., Empirical Bayesian Kriging 

and geostatistical-simulation, in spatial mapping of the groundwater quality variables, and their 

spatial comparisons with the traditional techniques, e.g., Ordinary Kriging. It is evident from 

literature that the concept of groundwater vulnerability has been developed widely over the past 
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five decades since its inception in 1968, and currently a very large number of artificial 

intelligence techniques have seen their GIS-integrated applications for protection of the 

groundwater resources worldwide. In recent times, a hybrid approach amalgamating index-based 

rating methods with statistical methods is gaining wide attention of the researchers across the 

globe for groundwater vulnerability assessments. Furthermore, review of the past studies clearly 

highlighted that studies dealing with water quality assessment based on certain indices are 

relatively less for the groundwater in comparison to those for the surface water. Over the last one 

decade, there has been an increase in the number of studies, either developing a Groundwater 

Quality Index (GWQI) or applying an existing GWQI for groundwater quality appraisals. 

This review emphasizes the importance of salient time series characteristics in GIS-based 

hydrogeochemistry studies. In future groundwater quality studies, time series modeling should 

be employed in a comprehensive manner by including synthesis and verification steps. Similarly, 

potential of the multivariate statistical techniques, other than PCA and CA, need to be explored 

for groundwater quality evaluation and protection. Also, it will be imperative to minimize 

uncertainty of the aquifer vulnerability assessments by developing the hybrid methods with a 

proper balance of qualitative and quantitative methods. In addition, a robust and global GWQI 

would have to be generated in order to have consistent and steady water quality evaluations of 

the hydrogeologic systems that can be comparable over different spatial scales across the globe. 

Finally, one of the major future challenges would be to develop and implement modules for 

implementing advanced statistical and artificial intelligence methods in GIS platform to enable 

advanced analyses of these techniques in a spatial manner. 
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Table 1. Salient studies that utilized geostatistical techniques for mapping spatial distribution of groundwater quality after the year 
2000. 

Country Geostatistical Modeling Technique Validation Technique Parameters1 Source 
Australia Ordinary Kriging Data from other study Cl Davies and Crosbie (2018) 
Bangladesh Cokriging None As Hassan and Atkins (2007) 
 Ordinary Kriging Cross-Validation Groundwater quality index, Degree of contamination, Heavy metal 

pollution Index, Heavy metal evaluation index, Principal component scores 
Bhuiyan et al. (2016) 

 Ordinary Kriging Cross-Validation Groundwater quality index, Degree of contamination, Heavy metal 
pollution index, Heavy metal evaluation index 

Bodrud-Doza et al. (2016) 

Cameroon Ordinary and Block Kriging Cross-Validation Groundwater quality index Nshagali et al. (2015) 
China Ordinary Kriging None TDS, Ca, Mg, Na, K, Cl, SO4, HCO3 Chen and Feng (2013) 
Egypt Ordinary Kriging None TDS, Fe, Mn Masoud et al. (2018) 
Germany Ordinary Kriging None N2O von der Heide et al. (2008) 
 Ordinary and Indicator Kriging Cross-Validation Cl, As, deethylatrazine Bárdossy (2011) 
Greece Ordinary Kriging Mean standardized 

prediction error 
EC, NO3, NH4, PO4 Stamatis et al. (2011) 

India Ordinary Kriging Cross-Validation EC, TDS,Hardness, SAR, Mg-Ca ratio, Cl,HCO3, NO3 Adhikary et al. (2012) 
 Ordinary Kriging None Principal componentscores Machiwal and Jha (2015) 
 Empirical Bayesian Kriging Prediction Standard 

Error 
F Magesh et al. (2016) 

Iran Ordinary, Simple, Universal, 
Indicator, Probability, and 
Disjunctive Kriging 

Cross-Validation EC, SAR, Ca, Mg, Na,Cl, SO4,HCO3 Yazdanpanah (2016) 

 Ordinary Kriging Cross-Validation EC, TDS, Total hardness, SAR, Na, Cl, SO4 Karami et al. (2018) 
Italy Disjunctive Kriging Cross-Validation NO3 Passarella et al. (2002) 
 Disjunctive Kriging Cross-Validation NO3 Barca and Passarella (2008) 
Japan Ordinary Kriging andCokriging Cross-Validation Cl Lu et al. (2016) 
Korea Ordinary Kriging None Cl, NO3, Fe, Factor analysis scores Kim et al. (2012) 
 Ordinary Kriging None Ca,Mg,Na,K,Cl, SO4,HCO3,NO3-N Venkatramanan et al. (2016) 
Lebanon Ordinary Kriging Cross-Validation NO3 Assaf and Saadeh (2009) 
Malaysia Ordinary Kriging None Ca,Mg,Na, K,Cl,H4SiO4,Al, Ba, Fe, Mn, Pb, Se, Sr Lin et al. (2012) 
Saudi Arabia Ordinary Kriging Cross-Validation Temp,EC,TDS, Salinity,Ca, Mg, Cl, NO3 Marko et al. (2014) 
 Ordinary and Probability Kriging None TDS,pH, Ca, Mg, Na, K, Cl, SO4, HCO3, NO3 Salman et al. (2015) 
Spain Ordinary Kriging None Principal componentscores Sánchez-Martos et al. (2001) 
Taiwan Indicator Kriging None As Jang et al. (2007) 
 Multivariate Indicator Kriging Cross-Validation Multiplication of indicator variables, Average of indicator variables Jang (2013) 
Turkey Ordinary Kriging Cross-Validation EC,pH, Hardness,Cl, SO4, NO3 Nas and Berktay (2010) 
 Ordinary Kriging Cross-Validation Fuzzy membership function values of four groundwater classes Güler et al. (2012) 
 Block Kriging None Temp, DO,Salt content, NO3, NH4, P, Cd, Co, Cr, Cu, Fe, Mn, Ni, Zn Ağca et al. (2014) 
 Ordinary Kriging None EC, SAR, Kelly index, Mg ratio, RSC, Potential salinity, %Na Arslan (2017) 
USA Ordinary Kriging None EC, pH, Ca Mouser et al. (2005) 
 Indicator Kriging Cross-Validation As Goovaerts et al. (2005) 

1 TDS: Total Dissolved Solids; EC: Electrical Conductivity;SAR: Sodium Adsorption Ratio; Temp: Temperature; DO: Dissolved Oxygen; RSC: Residual Sodium Carbonate 
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Table 2.Methods used for groundwater vulnerability assessmentand their modifications in literature. 

No. Vulnerability Assessment Method Type Source 
1 DRASTIC Index Aller et al. (1985) 
2 SINTACS Index Civita and De Maio (2004) 
3 AVI Index Van Stempvoort et al. (1992) 
4 GOD Index Foster (1987) 
5 SEEPAGE Index Moore (1988) 
6 Kansas Leachability Index Index Kissel et al. (1982) 
7 California Hotspots Index Cohen et al. (1986) 
8 Washington Map Overlay Vulnerability Index Sacha et al. (1987) 
9 Iowa Ground Water Vulnerability Index Hoyer and Hallberg (1991) 
10 EPA/UIC Index Pettyjohn et al. (1991) 
11 EPIK Index Doerfliger et al. (1999) 
12 COP Index Zwahlen (2004) 
13 PaPRIKa Index Kavouri et al. (2011) 
14 RISKE Index Petelet-Giraud et al. (2000) 
15 PI Index Goldscheider et al. (2000) 
16 DRASTIC-FM Index Denny et al. (2007) 
17 GALDIT Index Chachadi and Lobo-Ferreira (2001) 
18 PESTANS Simulation Enfield et al. (1982) 
19 MOUSE Simulation Steenhuis et al. (1987) 
20 LEACHM Simulation Wagenet and Hutson (1987) 
21 RUSTIC Simulation Dean et al. (1989) 
22 Discriminant Analysis Statistical Teso et al. (1988) 
23 Regression Analysis Statistical Chen and Druliner (1988) 
24 Groundwater vulnerability/probability map Hybrid Rupert (2001) 
25 DRASTIC Fuzzy modification Hybrid Dixon (2005b) 
26 DRATI Hybrid Panagopoulos et al. (2006) 
27 DATIL Hybrid Antonakos and Lambrakis (2007) 
28 DRASTIC Fuzzy modification Hybrid Mohammadi et al. (2009) 
29 DRASTIC Fuzzy modification Hybrid Fijani et al. (2013) 
30 DRASTIC-PAN Hybrid Kazakis and Voudouris (2015) 
31 P3 Hybrid Sullivan and Gao (2017) 
32 DRASTIC SICM modification Hybrid Nadiri et al. (2017) 
33 SINTACS-SV Hybrid Busico et al. (2017) 
34 GALDIT-F Hybrid Kazakis et al. (2018a) 
35 PaPRIKaRa Hybrid Kazakis et al. (2018b) 
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Table 3. Salient studies that developed and applied various types of groundwater quality indexes(GWQIs). 

Country Name of Index1 Parameters2 Source3 
Brazil GWQI Cl, NO3 Nobre et al. (2007)* 

IQNAS WQI TDS,pH,Hardness, Cl, F,NO3 Leite et al. (2018) 
China Entropy-weighted 

fuzzy WQI 
TDS,Ca,Mg,Na, K, Cl,SO4,HCO3, F,NO3-N, NO2-N, 
NH4-N, Al,As, Cr, Cu, Hg, Mn, Zn 

Li et al. (2014) 

Croatia GWQI/SWQI (WQI) Temp, DO,BOD,Mineralization, Corrosion coefficient, 
Total N, Protein N, Total P, TC 

Stambuk-Giljanovic (1999) 

Egypt GWQI (WQI) TDS, BOD, NO3, Cl,PO4, Cd, Cr, Ni, Pb Soltan (1999) 
WQI EC,TDS, pH, Na, K, Hardness, SAR El-Shahat et al. (2017) 

Finland GWQI (Cd) pH,Na,Cl,SO4,F, NO3,UO2, Ag,Al,As, B, Ba, Cd, Cr, 
Cu,Fe, Mn, Ni, Pb, Rn, Se, Zn, KMnO4consumption 

Backman et al. (1998) 

Ghana GWQI (WQI) EC, Ca, Mg, Na,Cl, F,NO3 Banoeng-Yakubo et al. (2009) 
WQI EC,TDS, pH, Ca, Mg,Cl, SO4,HCO3, NO3,PO4 Boateng et al. (2016) 

India GWQI (WQI) TDS,pH, Hardness, Ca, Mg, Cl,SO4, HCO3, F,NO3, Fe, 
Mn 

Ramakrishnaiah et al. (2009) 

MPI Cu,Fe, Mn, Ni,Pb, Zn Giri et al. (2010) 
GWQI EC,pH, Hardness,Ca, Mg,Na, Cl,SO4, Alkalinity,F,NO3, 

NO2,Cd, Cr,Cu,Fe, Mn,Ni,Pb,Zn, TC, Salmonella 
Ramesh et al. (2010) 

GWQI TDS, Ca, Mg, Na, K,Cl, SO4,HCO3,F,NO3,PO4, Si Vasanthavigar et al. (2010) 
GWQI (GQI) TDS,Ca, Mg,Na,Cl, SO4 Khan et al. (2011)* 
GWQI EC, TDS,pH, Hardness, Ca, Mg, Na,Cl,SO4, HCO3, NO3 Machiwal et al. (2011)* 
GWQI (GQI) TDS, pH, Ca,Mg,Na, K, Cl, SO4, HCO3,NO3 Sethy et al. (2017)* 

Iran GWQI TDS, pH,Ca, Mg,Na,K, Cl, SO4 Saeedi et al. (2010) 
GWQI TDS,pH, Ca, Mg, Na, K, Cl, SO4, HCO3 Sadat-Noori et al. (2014)* 
GWQI / FGWQI TDS, Ca, Mg,Na,Cl, SO4, NO3 Vadiati et al. (2016)* 
EWQI EC, Ca, Mg,Na, K,Cl, SO4,HCO3, F, NO3, Al, As,Fe, Mn, 

Pb 
Gorgij et al. (2017) 

PWQI EC, TDS, pH,Hardness, Ca, Mg, Na, K,Cl,SO4, HCO3 Jamshidzadeh and Barzi 
(2018) 

Israel GWQI (IAWQ) Cl, NO3 Melloul and Collin (1998) 
Japan GWQI (GQI) TDS,Ca, Mg, Na,Cl,SO4, NO3 Babiker et al. (2007)* 
Lebanon GWQI TDS,Ca, Mg, Na, Cl, SO4,HCO3,F, NO3, NO2, FC, TC El-Fadel et al. (2014)* 
Mexico GWCI (Cd) Temp, EC,pH,Major ions Ramos Leal et al. (2004) 
Portugal GWQI / GWCI Ca,Cl,SO4, NO3 Stigter et al. (2006) 
Slovakia GWCI (Cd) TDS, Cl, SO4,F, NO3, NH4, Al, As, Ba, Cd, Cr, Cu, Fe, 

Hg, Mn, Pb, Sb, Se, Zn 
Backman et al. (1998) 

Syria HPI Cd, Cu, Pb,Zn Zakhem and Hafez (2015) 
Tunisia GWQI EC, TDS, pH,Ca, Mg, Na,K, Cl, SO4, NO3 Ketata et al. (2012)* 

1 GWQI/GQI: Groundwater Quality Index; IQNAS WQI: Groundwater Natural Quality Index; SWQI: Surface Water Quality Index; WQI: Water 
Quality Index; MPI: Metal Pollution Index; Cd: Contamination Index; FGWQI: Fuzzy Ground Water Quality Index; EWQI: Entropy Weighted 
Water Quality Index; PWQI: Potability Water Quality Index; IAWQ: Index of Aquifer Water Quality; GWCI: Groundwater Composition Index; 
HPI: Heavy Metal Pollution Index. 

2TDS: Total Dissolved Solids;Temp: Temperature; DO: Dissolved Oxygen; BOD: Biochemical Oxygen Demand; EC: Electrical Conductivity; 
FC: Fecal Coliform; TC: Total Coliform; SAR: Sodium Adsorption Ratio. 

3 Studies with “*” have strong GIS-based GWQI applications. 
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Figure Captions 
 
Fig. 1.Classification of salient methods for the groundwater quality evaluation and protection. 

 

Fig. 2. Bar charts depicting usage and growth of multivariate statistical analysis methods in SCI-

expanded publications related to hydrogeochemical studies (as of July 4, 2017). CCA – 

Canonical Correlation Analysis; DA – Discriminant Analysis; CA – Cluster Analysis; 

PCA – Principal Component Analysis; FA – Factor Analysis. 

 

Fig. 3.Tree diagram illustrating classification of methods for groundwater vulnerability 

assessment. 

 

Fig. 4.Flowchart illustrating basic steps generally involved in water quality index (WQI) 

determination as presented by Abbasi and Abbasi(2012). 
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