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Abstract 

This study proposed a novel groundwater quality stability index (GQSI), which considers 

probabilistic estimate of reliability and resilience based on multi-year dataset. The developed 

index is validated and optimized adopting optimum index factor approach. The vulnerabilities 

of different groundwater quality parameters were also computed to provide an insight about 

the deviations of their concentrations from the safe drinking water limits. The application of 

the developed stability index is demonstrated through a case study in quaternary alluvial and 

quartzite aquifer system of India. In addition, trends in the groundwater quality parameters 

are identified by using variance-corrected Mann-Kendall test, and trends are quantified by 

using Sen’s slope estimation test. Box-whisker plots revealed that EC and TDS mostly 

exceed their maximum permissible limits prescribed for drinking water in the southern and 

southwest hard-rock formations. Whereas, most parameters do not cross their maximum 

desirable limits under in the central and northern alluvial formations. Increasing trends of 

potassium and bicarbonate, and decreasing trends of carbonate, calcium, sulfate, and fluoride 

are found prominent. The GQSI values indicated high stability of groundwater quality under 

older alluvium geology and low stability under the gneiss and mica-schist. Results of the 

GQSI are found in agreement with that of groundwater quality index (GQI) at 84% sites, 

which proved adequacy of the developed GQSI. Also, three classes (‘low’/‘poor’, ‘moderate’, 

and ‘high’/‘good’) of both the GQSI and GQI showed a good coherence at 83, 78, and 87% 

sites. However, GQSI is more advantageous than GQI due to former’s statistical framework, 

consistency and comparability over different areas. Three optimum index factors, i.e., TDS, 

pH and nitrate, are found to have the maximum impact on overall groundwater quality with 

their largest variations. Results of the optimum groundwater quality stability index (OGQSI) 

and GQSI closely matched with each other, and a significant linear relationship (R2=0.70) 

exists between them. Therefore, OGQSI is a cost-effective approach for adequate monitoring 

and satisfactory evaluation of the groundwater quality in low-income nations. 

Keywords: Groundwater quality stability index; Mann-Kendall test; Optimum index factor; 

Reliability; Resilience; Vulnerability. 
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1. INTRODUCTION 

Groundwater is a ubiquitous source of freshwater, which supports human health, socio-

economic development and functioning of ecosystems (Humphreys, 2009; Steube et al., 

2009). It fulfills drinking water needs of more than half of the global population and 43% of 

all the irrigation water requirements (FAO, 2010). Basic daily water needs of about 2.5 

billion people in the world are solely met by the groundwater resources (UNESCO, 2012). 

The global groundwater use, mainly for agriculture, amounts to 800 km3 in the year 2010, 

and 67% of this estimate is extracted in India, the United States of America (USA), China, 

Iran and Pakistan in descending order (Burek et al., 2016). At present, a third of the world’s 

major groundwater systems are reported to be in distress (Richey et al., 2015). In addition, 

the contemporary global water demand presently estimated at 4600 km3 per year is projected 

to increase to 5500-6000 km3 per year by 2050 (Burek et al., 2016). Therefore, sustainability 

of this vital resource is threatened due to combined effects of rising population, 

overexploitation, urbanization, and developmental activities, which have resulted in 

increasing depletion and degradation of the groundwater resources. The groundwater quality 

may further be degraded due to the impacts of climate change and global warming (Bondu et 

al., 2016; Foster and Gun, 2016). 

 
It is imperative to comprehensively evaluate and characterize the groundwater quality in 

order to check its degradation and manage groundwater resources sustainably (Machiwal et 

al., 2011). A variety of tools and techniques exist in literature ranging from graphical to 

statistical that have been used by the researchers to interpret the groundwater quality 

(Machiwal et al., 2018). Few of the classical as well as modern techniques include Piper 

diagram, USSL diagram, Wilcox diagram, principal component analysis, cluster analysis, 

geostatistical modeling, among others (e.g., Wunderlin et al., 2001; Kumar et al., 2007; 

Cloutier et al., 2008; Güler et al., 2012; Machiwal and Jha, 2015; Davies and Crosbie, 2018). 

Another important technique is the water quality index (WQI), which is considered as a 

simplified way to aggregate and communicate the geochemical knowledge to groundwater 

managers for integrating the groundwater quality issues within the groundwater sustainability 

framework (Machiwal et al., 2018). In their pioneering work, Horton (1965) defined a WQI 

based on eight water quality parameters weighted according to their relative importance. An 

improved version (NSF-WQI) was proposed by the National Sanitation Foundation (NSF) of 

USA (Brown et al., 1970; Deininger and Maciunas, 1971) where parameter selection was 

based on the Rand Corporation’s Delphi technique (Linstone and Murray, 1975). Thereafter, 

many different kinds of the WQIs were proposed and an excellent review of the same is 

presented by Lumb et al. (2011). All the WQIs evolved before 1998 were mainly used for the 

surface water quality assessments although few of them were later on used for evaluating the 

groundwater quality.  

 

The WQI specific to the groundwater quality, i.e., groundwater quality index (GWQI), was 

derived for the first time by Backman et al. (1998) and Melloul and Collin (1998). 
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Subsequently, a large number of the GWQIs have been developed and used by the 

researchers from different parts of the world (Machiwal et al., 2018), and some salient studies 

are enlisted in Table 1. In general, computation of all such indices follows four basic steps: (i) 

selection of parameters, (ii) transformation of parameters to bring to a common scale 

(obtaining sub-index values), (iii) attributing the weights, and (iv) aggregation of sub-indices 

(Machiwal et al., 2018). These indices use water quality data collected through a monitoring 

network at a given point of time. These indices do not account for temporal variations of the 

groundwater quality occurring within the aquifer system over different years due to their 

inadequacy to deal with multi-year datasets. The multi-time datasets may provide an 

opportunity to estimate stability or sustainability of the groundwater quality (Babiker et al., 

2007). Also, none of the indices are capable of providing the probabilistic estimate of the 

groundwater quality after aggravation of the considered parameter concentrations. 

 

Trend identification is a useful tool for exploring temporal patterns in the groundwater 

quality. In groundwater quality literature, trend analysis is very rarely performed (Taylor and 

Loftis, 1989; Loftis, 1996). However, trend detection in groundwater quality parameters has 

been receiving increasing attention over the past one decade (Machiwal et al., 2018). Trend 

analysis plays a major role in providing useful information on possible water quality changes 

over a period of time. Apparently, different researchers have used different statistical tests for 

trend detection, which can be categorized as parametric and non-parametric tests (e.g., Visser 

et al., 2009; Machiwal and Jha, 2015; Koh et al., 2017). Mann-Kendal (M-K) test is the most-

widely used nonparametric test for detecting trends in water quality data but its results are 

reported not to be true when serial correlation is present in the dataset (Yue et al., 2002). The 

effect of serial correlation on robustness of the M-K test may be avoided by adopting 

variance-correction (VC) approaches (Lettenmaier, 1976; Hamed and Rao, 1998; Yue and 

Wang, 2004). 

 

This study proposed a novel probability-based groundwater-quality stability index 

considering temporal variability of the groundwater quality. The proposed stability index is 

developed based on the ’system-robustness’ and ‘system sustainability’ criteria (Hashimoto et 

al., 1982; Loucks, 1997), and it integrates two important probabilistic characteristics of the 

groundwater quality, i.e., reliability and resilience. The ‘system robustness’ of water 

resources systems in economic terms is defined as possible deviation between the actual costs 

of a proposed project and those of the least cost project design (Hashimoto et al., 1982). On 

the other hand, ‘system sustainability’ of water resource systems is examined by their designs 

and management that contribute to the objectives of society, now and in the future, while 

maintaining their ecological, environmental and hydrological integrity (Loucks, 1997). 

Furthermore, application of the developed groundwater quality stability index is 

demonstrated through a case study in a quaternary alluvial and quartzite aquifer system of 

India. Moreover, trends in the groundwater quality parameters are also identified by applying 

the variance-corrected M-K test and trends are quantified by using Sen’s slope estimation 

method. 
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2. STUDY AREA AND DATA DESCRIPTION 

2.1 Location and Geography 

The study area, Jaipur district, is situated in northeast part of Rajasthan State of India (Fig. 1). 

The district lies between 26°25´ and 27°51´ North latitude and 74°55´and 76°10´ East 

longitude covering an area of about 10878 km2 that is 3.23% of total State’s area. For 

administrative purpose, the entire district is divided into 13 blocks or sub-divisions (Fig. 1). 

Major landscapes of the area include hillocks, pediments, undulating fluvial plains, Aeolian 

dune fields, ravines, and palaeo-channels. Structural hills, trending NNE-SSW, mainly exist 

in north and northeast parts, and are generally composed of Delhi quartzite. Pediments with 

thin to thick soil cover have a spread around Dudu, Phagi and Chaksu blocks that form flat 

gneissic outcrops. Aeolian sand dunes are mainly found in the western parts, i.e., Sambhar, 

Jobner, and Renwal. The area is drained by ephemeral rivers, such as Banganga, Bandi, 

Dhund, Mendha, Mashi, Sota, and Sabi, and also through their tributaries. Large surface 

water reservoirs of the area are Ramgarh, Champarwara, Kalakh, Hingonia, Buchara, and 

Mansagar. Soils are classified as loamy sand to sandy loam, sandy clay loam, sandy clay, 

wind-blown sand and river sand.  

 

2.2 Climatic Conditions and Groundwater Scenario 

Climate of the study area is dry and semi-arid, and is subjected to extremes of cold and heat 

at distinct places. The minimum and maximum temperatures are 3°C and 45°C, respectively, 

with the mean temperature of 24°C. The mean annual rainfall is 548 mm, and total annual 

potential evapotranspiration is 1745mm (CGWB, 2007). Groundwater occurs both in 

unconsolidated quaternary formations and consolidated formations of Bhilwara and Delhi 

supergroups, and also post-Delhi granites. Talus and scree deposits at foothills form potential 

aquifer at places including Bassi block and parts of Amber, Jamwaramgarh and Govindgarh 

blocks. Well yield in the aquifer ranges from 100 to 500 m3 d-1. In southern and southwest 

areas situated in Dudu, Phagi and Chaksu blocks, hard-rocks of Bhilwara supergroup form 

the main aquifers comprising of granulitic gneisses, quartz mica-schist, phyllite along with 

granite and pegmatite intrusive. Similarly, quartzite, schist and phyllite of Delhi supergroup 

form the aquifers in Jamwaramgarh, Bairath, Kotputli, Shahpura, Amber and Bassi blocks. 

Depth of wells generally varies from 50 to 100 m in alluvium and 50 to 200 m in 

consolidated formations. Specific capacity of wells varies from 58 to 500 lpm m-1. 

Transmissivity and storage coefficient values vary from 10 to 850 m2 d-1 and 4.70×10-5 to 

1.05×10-3, respectively (CGWB, 2017). About 35.27% area of the district has irrigated 

agriculture, and groundwater is the dominant source for providing irrigation water supplies. 

Currently, groundwater is the major source of water in the area supplying 1178.92×106 m3 for 

irrigation and 315.96×106 m3 for drinking and industrial purposes (CGWB, 2017). In Jaipur 

district, 120,471 dugwells and dug-cum-tubewells are in use for irrigation purpose and 

27,378 hand-pumps and dug-cum-tubewells are operational for domestic and industrial uses 

(CGWB, 2013). 
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2.3 Data Collection 

This study utilized fourteen groundwater quality parameters, i.e., pH, electrical conductivity 

(EC), total dissolved solids (TDS), calcium (Ca), magnesium (Mg), sodium (Na), potassium 

(K), chloride (Cl), sulfate (SO4), carbonate (CO3), bicarbonate (HCO3), nitrate (NO3), 

fluoride (F), and total hardness (TH), monitored at 250 sites over the area. The data are 

procured from the State Ground Water Department, Jaipur, Rajasthan, India. These 

groundwater samples are collected from the wells during pre-monsoon season (April to May) 

for twelve years (2001-2012). The data are checked for regularity and presence of any 

anomalies, the anomalies are screened out and error-free groundwater quality parameters of 

196 sites are used for subsequent analyses. 

 

3. MATERIALS AND METHODS 

3.1 Exploring Groundwater Quality Variations 

Box-whisker plots, depicting five important statistical properties, i.e., 25th percentile, median 

or 50th percentile, 75th percentile, range, and outlier or extreme (Machiwal and Jha, 2012), of 

14 groundwater quality parameters are drawn for 13 blocks of the study area to understand 

temporal variations over the given data period. 

 

3.2 Computing Autocorrelations of Groundwater Quality Parameters 

Autocorrelation or serial correlation, if present in a data series, causes inflation of the 

variance that may increase statistical significance of the trends detected by the nonparametric 

M-K test (Yue and Wang, 2002). Hence, presence of serial correlation at one-year time lag is 

determined in data series of every groundwater quality parameter by computing 

autocorrelation coefficient (ACF) using following expression (Haan, 2002): 

 

21
1n

0t

21n

0t
1t

2
1t

21
1n

0t

21n

0t
t

2
t

1n

0t

1n

0t

1n

0t
1tt1tt

x)1n(1xx)1n(1x

x.x)1n(1)x.x(

ACF















































  

  































  (1) 

 

where, xt = value of a parameter at time t, xt+1 = value of parameter at time t+1, and n = 

number of data in series. 

 

The ACF is considered statistically significant at α level of significance, if its computed value 

crosses the critical limits (Anderson, 1942) as given below: 
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  )11nz1()1n(1)r( 21lower1      (3) 

 

where, z1-α/2 = standard normal variate. 

 

3.3 Evaluating Significance of Trends  

The nonparametric M-K test is used for evaluating significance of trends in groundwater 

quality parameters. Details of the original M-K test may be found in standard textbooks, e.g., 

Salas (1993); Machiwal and Jha (2012). The original M-K test-statistic (zk) is modified to 

remove the effect of serial correlation by applying the variance-correction following the 

effective sample-size approach of Lettenmaier (1976), as shown below: 
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z*z kk 

     (4) 

 

where, zk* = variance-corrected M-K test-statistic, and n*/n = correction factor, which is 

computed using the formula given for lag-1 autoregressive process (Matalas and Langbein, 

1962): 
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3.4 Quantifying Trends by Sen’s Slope Estimation Test 

Groundwater quality trends are quantified using Sen’s slope estimation test, which considers 

all combinations of data pairs, such as xik and xjk, for a kth site (j>i). Then, slope (k) of the 

fitted straight line for every paired data is computed for a given kth site. Finally, the test-

statistic is computed as shown below (Sen, 1968; Hirsch et al., 1982): 
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The positive (or negative) β-values indicate the increasing (or decreasing) trends. 

 

3.5 Developing Probability-Based Groundwater Quality Stability Index 

Stability of a groundwater quality parameter is a measure of its variability over time. This 

study utilized the concepts of ‘system robustness’ (Hashimoto et al., 1982) and ‘system 

sustainability’ (Loucks, 1997), based on three probabilistic terms, such as reliability (Ry), 

resilience (Re) and vulnerability (Vy), to define a probability-based groundwater-quality 

stability index. This is helpful to understand the changes occurring in concentration of a 
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particular groundwater quality parameter over a given period of time. Terms Ry, Re and Vy, 

require a threshold value of the parameter to decide successful and failure events, and also to 

take a difference of the observed and threshold values for that parameter. Thus, the desirable 

and/or permissible limits suggested for drinking water, prescribed by the World Health 

Organization (WHO), Geneva, are used as threshold values for the parameters while 

computing the stability index (Table 2). The groundwater-quality stability index (GQSI) 

developed in this study tells about the probability of groundwater quality being stable or not 

over the years with respect to the WHO-prescribed drinking water standards. The WHO 

standards prescribed for drinking water quality are used in this study because when water is 

used both for irrigation and drinking purposes, irrigation water should ideally meet the 

drinking water limits (Jensen et al., 2001). The stability criterion, used in this study, is based 

on the idea that sustainability is related to a high degree of reliability and resilience and a low 

degree of vulnerability (Duckstein and Parent, 1994). The terms, Ry, Re, and Vy along with 

development of groundwater-quality stability index and composite stability index are 

discussed below. 

 

3.5.1 Reliability 

Reliability of a water quality parameter is the probability of having that parameter 

(concentration or value) within the safe drinking water limits (desirable or permissible) 

prescribed by the WHO. In other words, it is defined as the ratio of number of successful 

events to the total number of data in series. Here, number of successful events is computed by 

counting number of years when concentration of the given parameter does not exceed a 

threshold xT, defined by the prescribed WHO limit. Thus, reliability (Ry) for a groundwater 

quality data series, containing n values of a parameter, is expressed as:  

 

nfR SEy       (7) 

 

where, SEf = number of successful events in data series of given parameter. 

 

The value of Ry ranges from 0 (no reliability when concentration of a parameter always 

exceeds the safe limits) to 1 (maximum reliability when parameter concentration never 

exceeds the safe limits). 

 

3.5.2 Resilience 

Resilience of a water quality parameter is defined as its capacity to adapt to changing 

conditions over time such as climate variability and change (WHO, 2009). In case of 

groundwater quality parameter, the Re value suggests ability or power of a parameter to come 

within its acceptable range defined for the safe drinking water after some adverse condition 

when its value exceeds the desirable or permissible limit. Resilience is the probability that a 

parameter, having failure event at a time t-1, will have the next event successful at time t. 
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Thus, resilience (Re) is ratio of number of times a successful event follows a failure event to 

number of total failure events in data series, and is shown by following expression: 

 

FESEFEe ffR      (8) 

 

where, SEFEf  = number of times a successful event follows a failure event, and FEf = number 

of times a failure event occurs in data series. 

 

Similar to the Ry, the value of Re varies between 0 (no resilience when a parameter never 

returns to safe limits once it crosses it) and 1 (maximum resilience when a parameter not at 

all exceeds its limits of safe drinking water). 

 

3.5.3 Vulnerability 

Vulnerability of a parameter indicates the severity of the ‘deviation’ of the groundwater 

quality from stability state during the years of failure events, and is defined by extent of 

differences between the observed data during failure events and threshold values, xT. 

Vulnerability (Vy) is defined as the probability of exceedance to vulnerability, and is 

computed by adding differences between data value and xT, as shown below: 
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 ; t = 1, 2, … n  (9) 

 

where,  



n

1i
t

T xxdifference  = sum of absolute values of (xT – xt) for failure events. 

 

As quantification of trend ‘magnitude’ is equally-important in trend ‘identification’ studies, 

‘vulnerability’ of the groundwater quality is very much relevant in studies dealing with 

computation of groundwater quality ‘stability’. In this study, vulnerability of the groundwater 

quality parameters is computed by adding differences between their observed values and 

desirable/permissible safe drinking water limits (threshold values). The Vy values obviously 

have the unit of the parameters, i.e., mg l-1 for the major cations and anions. 

 

3.5.4 Groundwater Quality Stability Index 

In this study, a probability-based stability index is developed to adjudge steadiness of the 

groundwater quality parameters over time with respect to the drinking water standards 

prescribed by the WHO. The stability index has resemblance to the sustainability index that 

quantifies sustainability of water resources systems to facilitate the evaluation and 

comparison of water management policies (Loucks, 1997). Loucks (1997) defined the 

sustainability index (SI) by combining Ry, Re and Vy in a multiplicative form. Later on, 

various alternative forms of the SI have been proposed in the literature. In this study, the 
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Groundwater Quality Stability Index (GQSI) is computed by modifying the original SI and 

considering only two terms, i.e., Ry and Re in multiplicative combination, as expressed below: 

 

ey RRGQSI      

 (10) 

 

Positives linear relationship between Ry and Re for individual nine groundwater quality 

parameters has been observed for 196 sites, indicating that small value of one parameter is 

likely to be accompanied with small value of other parameter, and vice-versa. Thus, value of 

GQSI ranges from 0 (no stability) to 1 (maximum stability). The GQSI approach uses an 

implicit weighting, because it adds the worst weight to the criteria having the worst 

performance. Term Vy is not considered in the development of GQSI in this study as its value 

depends upon the scale of measurements. However, the Vy values are computed for different 

groundwater quality parameters to provide an insight about the deviations of their 

concentrations from the safe drinking water limits. 

 

Finally, a composite stability index (GQSIcomposite) is computed by taking mean of the 

stability indexes for individual parameters, as defined below: 

 

n

GQSI

GQSI

n

1i
i

composite




   
 (11) 

 

where, GQSIi = groundwater quality stability index for ith parameter. 

 

3.6 Comparing GQSI with Groundwater Quality Index 

The developed GQSI is compared with a rating-based average groundwater quality index 

(GQI). Computation of GQI, as defined by Babiker et al. (2007), involves three steps: (i) 

calculating contamination index (C) for the annual mean values of every parameter by 

relating its value with WHO prescribed limit, (ii) rating C between 1 and 10 by generating 

rank (R), and (iii) computing GQI using ranks (R) and relative weights (W) of every 

parameter using the following equation. 

 

 








 


n

WR...WRWR(
100GQI nn2211

  
 (12) 

 

Detailed methodology for computing GQI may be found in Babiker et al. (2007) and 

Machiwal et al. (2011). 
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3.7 Developing Optimum Probabilistic Stability Index 

In the GQSI, some of the parameters may be spatially invariable or having similar spatial 

patterns or correlations, and thus, may be repetitive or having little contribution to variation 

of GQSI. Therefore, an Optimum Index Factor (OIF) is chosen to remove redundancy by 

identifying a combination of three parameters providing the highest information (or standard 

deviations) with least duplication (or lowest correlation). The OIF is given by the following 

expression (Machiwal et al., 2011): 

 

1,33,22,1

321

RRR

SDSDSD
OIF






   
 (13) 

 

where, SD = standard deviation, and |R| = absolute value of correlation coefficient between 

two parameter pairs. 

 

The OIF is computed for all three-parameter combinations among nine parameters, i.e., TDS, 

pH, Na, Ca, Mg, Cl, SO4, NO3 and hardness, and the best combination is selected based on 

the highest OIF value. Thereafter, the selected parameters are used to compute the optimum 

groundwater quality stability index (OGQSI) as follows: 

 

3

GQSIGQSIGQSI
OGQSI 321 

   

 (14) 

 

3.8 Validating Optimum Groundwater Quality Stability Index 

Values of OGQSI for 196 sites are plotted against the corresponding GQSI values on scatter 

plot. This study performed regression analysis for observed versus predicted values (OP) 

instead of predicted versus observed values (PO) as suggested by Piñeiro et al. (2008), 

drawing scatter plot by placing original GQSI values in ordinate (in y-axis) and OGQSI 

values in abscissa (in x-axis). A straight line is fitted to the scatter plot, and linear equation 

and coefficient of determination (R2) value are determined. Furthermore, the fitted line is 

compared with 1:1 line. A close proximity of the fitted line with 1:1 line validates the 

estimated values of the OGQSI.  

 

4. RESULTS AND DISCUSSION 

4.1 Spatial and Temporal Variations of Groundwater Quality Parameters 

Box-whisker plots of 14 groundwater quality parameters for 13 blocks are shown in Figs. 

2(a-n). The median pH value of groundwater exceeds the maximum permissible limit (MPL) 

of 8.5 prescribed for drinking water for all the blocks, except three blocks situated in the 
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northern and northeast directions, i.e., Amber, Shahpura and Viratnagar (Fig. 2a). This 

finding suggests that the groundwater in most of the study area is under alkaline condition, 

which agrees with findings of Tatawat and Chandel (2008) for Jaipur city. The median EC 

value of groundwater is more than the maximum desirable limits (MDL) of the drinking 

water (750 mS cm-1) in all the blocks, which further exceeds the MPL (2250 mS cm-1) in four 

blocks, i.e., Chaksu, Dudu, Phagi, and Sambhar (Fig. 2b). Box-whisker plots of TDS are 

exactly similar to those of EC in each block, and the median TDS values exceed the MPL 

(1500 mg l-1) in four blocks where EC also exceeded the MPL (Fig. 2c). Calcium 

concentrations in all blocks are found within the MDL of 75 mg l-1 (Fig. 2d). However, the 

median concentrations of magnesium crossed the MDL, i.e., 30 mg l-1 in 12 blocks (Fig. 2e). 

The median concentrations of both sodium and chloride go beyond the MDL (200 mg l-1) in 7 

blocks, i.e., Bassi, Chaksu, Dudu, Kotputli, Phagi, Sambhar, and Sanganer (Figs. 2f,h). The 

median of bicarbonate and nitrate exceeds the MDL in six blocks each (Figs. 2k,l). Total 

hardness in all the blocks crosses the MDL although it does not exceed the MPL (Fig. 2n). 

Hard to very hard groundwater quality for Jaipur city is also reported in some earlier studies 

(Tatawat and Chandel, 2008; Tank and Chandel, 2010). It is seen that the median 

concentration value of the most parameters is relatively high in four blocks, i.e., Chaksu, 

Dudu, Phagi and Sambhar, which are situated under gneiss and mica-schist type of hard-rock 

geology lying in southern and southwest portions of the area. On the other hand, the median 

concentration values of the most parameters are the lowest in three blocks, i.e., Shahpura, 

Viratnagar and Jhotwara, where mainly older alluvium exists. This indicates that the 

groundwater under hard-rock geology is contaminated more as compared to alluvium 

geology. Low vulnerability to groundwater pollution under alluvial formations of Jaipur 

district in comparison to fractured hard-rock formations has been also reported by 

Chintalapudi et al. (2017). It is further observed from Figs. 2(a-n) that box size and whiskers’ 

length of the most parameters are larger for four blocks, i.e., Chaksu, Dudu, Phagi, and 

Sambhar. This suggests relatively large spatial variations of the groundwater quality 

parameters in these blocks. Therefore, blocks situated in the southern and southwest portions 

of the area depict higher parameter concentration exceeding the MDL and MPL, with larger 

spatial variations. 

 

4.2 Presence of Serial Correlation in Parameter Series 

Presence of the significant serial correlation at different sites of 13 blocks for 14 parameters 

is presented in Table 3. For individual parameters and blocks, number of sites with presence 

of serial correlation varies from 0 to 6. The total number of sites with serial correlation 

(p>0.05) is found to vary from 10 (fluoride) to 38 (pH) of the total 196 sites, which indicates 

that a large number of the sites are free from serial correlation for all parameters. 

 

4.3 Trends in Groundwater Quality Parameters 

Trends identified in 14 groundwater-quality parameters at three significance levels, i.e., 1, 5 

and 10%, are found to vary spatially [Figs. 3(a-n)]. Of the total 196 sites, positive trends are 
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dominant for potassium and bicarbonate parameters at 161 and 153 sites, respectively. 

However, significantly increasing trends at 10% level of significance are found to be present 

for potassium at 25 sites, followed by TDS, EC and bicarbonate at 12, 11 and 11 sites, 

respectively. The increasing potassium concentration in the groundwater may be attributed to 

the leaching of fertilizers through the subsurface (Sethy et al., 2017). Likewise, bicarbonates 

are probably derived from weathering of silicate rocks, dissolution of carbonate precipitates, 

atmospheric and soil carbon-dioxide (CO2) gas (Jeong, 2001; Krishna Kumar et al., 2011). 

Furthermore, increased bicarbonate may be due to increased percolation from the recently-

recharged surface water in the area (Deshmukh and Aher, 2016). The level of significance for 

most significant trends is higher for TDS and EC in comparison to potassium. On the 

contrary, prominent declining trends are visible for carbonate, calcium, sulfate, fluoride, and 

pH at 160, 156, 151, 142, and 130 sites, respectively. Of the total declining trends, 

statistically-significant trends are revealed mostly for carbonate (30 sites), followed by 

calcium (26 sites), sulfate (26 sites) and fluoride (26 sites). The statistical significance of 

identified trends is higher (level of significance is 5% or more) for calcium and sulfate. The 

declining trends of calcium and sulfate result in poor concentration of these ions in 

groundwater over the years, which indicate freshening of the groundwater resources (Appelo 

and Postma, 2005). Besides, decreasing sulfate-trends are most-likely due to less sulfur 

deposition and natural dilution processes occurring in the area (Wahlin and Grimvall, 2010). 

The partial pressures of CO2 may also be responsible for diminishing trends of carbonates, 

which also decreases sulfur content under the presence of sulfur-reducing bacteria (Toscani et 

al., 2001). Decreasing fluoride content in the groundwater depends on pH, groundwater 

temperature, intensity of weathering processes of fluorine-bearing minerals and type of 

geology (Dar et al., 2011). It is observed that there is no definite spatial pattern of 

increasing/decreasing trends for all the groundwater quality parameters. 

 

Trend magnitudes of 14 groundwater-quality parameters at 196 sites are estimated by using 

the Sen’s slope estimator, and the mean values of the trend magnitudes for 13 blocks are 

shown in Figs. 4(a-n). The mean trend magnitudes of pH, sodium, calcium, sulfate, 

carbonate, nitrate, and fluoride are negative in all the blocks except 2 or 3 blocks, whereas 

potassium and bicarbonate have positive trend magnitudes over almost all the blocks. The 

mean trend magnitudes for EC, TDS and pH range from 82.2 to -83.1 mS cm-1 year-1, from 

29.6 to -51.0 mg l-1 year-1, and from -0.024 to -0.001 year-1, respectively. Similarly, the mean 

trend rates of sodium, potassium, calcium, magnesium, chloride, sulfate, carbonate, 

bicarbonate, nitrate, fluoride, and hardness vary from -18.8 to 2.9, -0.1 to 4, -0.9 to 0.2, -1.9 

to 1.8, -17.8 to 19.7, -10.2 to 0.2, -2.8 to 0.6, 2.6 to 12.5, -2.3 to 1.2, -0.2 to 0.03, -10.5 to 7.1 

mg l-1 year-1, respectively. Of the total 14 parameters, 8 parameters (i.e., EC, TDS, sodium, 

magnesium, chloride, sulfate, fluoride, and hardness) depict the fast-declining trends in four 

blocks, i.e., Chaksu, Dudu, Kotputli, and Phagi. Concentration of EC and TDS are found fast-

increasing in Jamwaramgarh (44.9 and 24.5 mg l-1 year-1, respectively) and Sambhar blocks 

(82.2 and 29.6 mg l-1 year-1, respectively). Likewise, potassium has an increasing trend 

magnitude of more than 0.1 mg l-1 year-1 in six blocks including four blocks where EC and 



- 52 - 
 

TDS are found to have fast-increasing trends. In addition, trend magnitudes are observed to 

be considerably inclining for magnesium in Jamwaramgarh (1.8 mg l-1 year-1), and for 

chloride in Sambhar block (19.7 mg l-1 year-1). Presence of a salty lake in Sambhar block may 

be a likely cause for the increasing trend magnitudes there (Yadav et al., 2007; Joshi and 

Seth, 2011). Nitrate concentration is found to be increasing at mean rate of 1.2 mg l-1 year-1. 

 

4.4 Probabilistic Stability of Groundwater Quality over the Space 

In this study, Ry, Re and Vy values along with the groundwater-quality stability index are 

computed for nine parameters, i.e., pH, TDS, Ca, Mg, Na, Cl, SO4, NO3 and TH over 196 

sampling sites. Out of total 14 parameters, we selected nine parameters as the WHO-

prescribed (WHO, 2017) desirable and/or permissible limits for drinking water are available 

only for these nine parameters. 

 

4.4.1 Reliability Measure of Parameters 

Reliability (Ry) values are classified into three groups of equal interval, i.e., 0-0.33 (‘low’ 

reliability), 0.33-0.66 (‘moderate’ reliability), and 0.66-1.0 (‘high’ reliability). Distribution of 

the classified Ry values over 196 sites in the study area are shown in Figs. 5(a-i) for nine 

groundwater quality parameters. It is evident from Fig. 5 that calcium, sulfate and nitrate 

possess more reliability in comparison to other parameters as these three parameters have 

‘high’ reliability at 100, 97, and 70% of the total sites, respectively. On the other hand, TH 

and TDS have ‘low’ reliability at majority of the sites, i.e., 95 and 47%, respectively. It is 

further revealed that ‘low’ reliability of TDS, sodium and chloride is mostly dominating in 

five blocks of Chaksu, Dudu, Kotputli, Phagi, and Sambhar mainly situated under gneiss and 

mica-schist geology in the southern, southwest, and southeast portions of the area. The low 

reliability of these parameters is most-likely due to geogenic contamination occurring from 

the hard-rock geologic terrain (Machiwal and Jha, 2015; Chintalapudi et al., 2017). The 

‘moderate’ reliability for pH and magnesium is prominent over 66 and 63% sites over the 

area, respectively. 

 

4.4.2 Resilience Measure of Parameters 

The Re values of the parameters are classified into three equal-interval probability classes: (i) 

0-0.33 (‘low’ resilience), (ii) 0.33-0.66 (‘moderate’ resilience), and (iii) 0.66-1.0 (‘high’ 

resilience). All the sampling sites grouped under three probability classes of Re are depicted 

in Figs. 6(a-i) for the nine groundwater quality parameters. It is revealed that calcium has 

‘high’ resilience at all the sites followed by sulfate and nitrate at 95 and 64% sites, 

respectively. Likewise, resilience is prominently ‘high’ to ‘moderate’ at more than 73% sites 

for sodium and chloride. On the contrary, three parameters, i.e., pH, TDS and magnesium, 

showed ‘moderate’ to ‘low’ resilience at majority of the sites, i.e. 73% or more. Similar to the 

results of reliability, resilience of sodium and chloride is apparently ‘low’ in five blocks 

having gneiss and mica-schist rocky terrain and situated in the southern, southeast and 

southwest portions. The low resilience of sodium and chloride in the hard-rock terrain 
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indicates that these constituents mostly remain under failure state (unacceptable range) and 

do not easily return to success state (acceptable/permissible range), which may be attributed 

to water-rock interactions and geogenic contamination occurring in the aquifer system 

(Chintalapudi et al., 2017). 

 

A positive linear relationship between Ry and Re indices is obtained for eight individual 

groundwater quality parameters, i.e., pH, TDS, Ca, Mg, Na, Cl, SO4, and NO3, as revealed 

from the correlation-coefficient (R) values of 0.71, 0.33, 0.44, 0.73, 0.82, 0.86, 0.67, and 

0.66, respectively. In case of TH, relationship is found negative (R=-0.49); otherwise, most of 

the positive Ry-Re relationships are statistically-significant (R>0.50), which suggest that small 

value of one parameter will likely be accompanied with small value of other parameter, and 

vice-versa. The similar observation of a monotonic relationship between Ry and Re indices is 

reported by Maity et al. (2013), and also agrees with findings of Hashimoto et al. (1982). This 

finding justifies the consideration of product of two indices (Eq. 10) in this study to define 

the groundwater-quality stability index. 

 

4.4.3 Vulnerability Measure of Parameters 

Vulnerability (Vy), in statistical perspective, is the likelihood or measure of degree that a 

failure event will become a loss. The Vy value of a groundwater quality parameter is looked 

at as probability of exceedance that describes the magnitude of the average deviation of the 

parameter value or concentration during the failure events from its safe limit or threshold 

value set by the WHO for drinking water. The value of Vy depends upon the unit of 

measurement of the parameter, and therefore, its range is observed to be the smallest for pH 

and the largest for TDS. Hence, class values for three groups (i.e., ‘low’, ‘moderate’ and 

‘high’ vulnerability) of Vy are not kept the similar for all nine parameters but the classes are 

chosen depending upon their threshold values (Table 4). The sites are grouped under the three 

vulnerability classes for all the nine parameters (Figs. 7a-i). It is apparent from Fig. 7 that 

sulfate and chloride have ‘low’ vulnerability at 95 and 91% sites followed by magnesium 

with 62% sites having ‘low’ vulnerability. Furthermore, TDS, sodium, nitrate, and TH have 

‘low’ to ‘moderate’ vulnerability over 75% or more sites. In contrast, pH is highly vulnerable 

at 54% sites and moderately vulnerable at 46% sites. Also, it is observed that sites depicting 

‘high’ vulnerability of six parameters, i.e., pH, TDS, sodium, chloride, nitrate and TH, are 

dominating in four blocks, i.e., Chaksu, Dudu, Phagi and Sambhar, which are mainly overlain 

by the gneiss and mica-schist geology in southern, southwest and western parts. These results 

are in agreement with findings of box-whisker plots, which revealed relatively high median 

concentration and a large temporal variation among the most of the groundwater quality 

parameters in these four blocks. Therefore, it is emphasized that vulnerability measure is an 

important indicator for understanding temporal dynamics of the groundwater quality. 

 

4.4.4 Groundwater Stability Index 
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Composite probability-based stability index of the groundwater quality is computed based on 

reliability and resilience indicators. Spatial distribution of groundwater-quality stability index 

(GQSI), classified into three categories, i.e., ‘low stability’, ‘moderate stability’ and ‘high 

stability’, is shown in Fig. 8(a). The GQSI values indicate ‘low’, ‘moderate’, and ‘high’ 

stability at 92 (47%), 80 (41%) and 24 (12%) sites, respectively. It is apparent that stability of 

the groundwater quality is generally ‘low’ at almost all sites located in four blocks, i.e., 

Chaksu, Dudu, Phagi, and Sambhar having gneiss and mica-schist type of geology. Presence 

of hard-rocks in these blocks may be responsible for geogenic contamination of the 

groundwater resources, and degradation of the groundwater quality (Machiwal and Jha, 2015; 

Chintalapudi et al., 2017). In addition, the low GQSI values are found at 3, 6, 2, 9, 6, 1, and 2 

sites in Amber, Bassi, Jamwaramgarh, Kotputli, Sanganer, Shahpura, and Viratnagar, 

respectively. On the other hand, groundwater quality is found stable mainly in Shahpura (7 

sites) and Viratnagar (6 sites) along with Govindgarh (4 sites) and Jhotwara (4 sites) blocks. 

Spatially, the low stability of the groundwater quality is observed in the southern, southwest 

and northern parts, whereas the moderately stable groundwater quality is seen towards the 

central, eastern and northeast parts. The groundwater quality in the central and north-central 

parts having older alluvium geology is found to be highly stable. 

 

4.5 Groundwater Quality Index 

The mean groundwater quality index (GQI) map, shown in Fig. 8(b), depicts spatial 

distribution of 196 sites into three classes of ‘good’, ‘moderate’ and ‘poor’ groundwater 

quality. Groundwater quality at 84 (43%) and 89 (45%) sites is ‘poor’ and ‘moderate’, 

respectively. However, ‘good’ quality groundwater exists at 23 (12%) sites only. Overall, the 

groundwater quality of the study area is good as revealed from the mean GQI value of 73.93 

(maximum GQI=100). On computing the mean GQI for 14 individual blocks, it is found that 

relatively poor (GWQI<72) groundwater quality exists in four blocks, i.e., Dudu, Phagi, 

Chaksu, and Sambhar, where almost all the sites are classified under ‘poor’ quality category. 

On the other hand, most of the ‘good’ quality sites exist in four blocks, i.e., Govindgarh, 

Jhotwara, Shahpura, and Viratnagar, which suggests that the groundwater quality is relatively 

good (GWQI>76) under alluvium geology. Existence of gradients of groundwater quality, in 

the study area (Fig. 8b), indicate that the groundwater quality gets deteriorated while moving 

from the northwest to southern, southwest, southeast, and northern directions. 

 

4.6 Comparison of the Probabilistic GQSI and GQI 

A spatial comparison of both GQSI and GQI maps (Fig. 9) clearly suggests that 165 (84%) 

sites, having ‘good’, ‘moderate’, and ‘poor’ groundwater quality, correspond to similar 

category of ‘high’, ‘moderate’, and ‘low’ stability of the groundwater quality. Dissimilar 

results are found for only 31 (16%) sites. Thus, stability of the groundwater quality is more 

for a site where groundwater quality is relatively good, and vice-versa. Furthermore, it is 

apparent from Fig. 10 that 83% of the ‘high’, 78% of the ‘moderate’, and 87% of the ‘low’ 

GQSI sites are grouped under ‘good’, ‘moderate’, and ‘poor’ classes of GQI, respectively. It 
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is apparent from the above discussion that the sites having ‘good’ quality groundwater 

showed ‘high’ stability of the groundwater quality, whereas the sites with ‘poor’ quality 

groundwater depicted ‘low’ stability of the groundwater quality. Thus, GQSI has a good 

agreement with GQI over most of the sites in the area. However, GQSI in contrast to GQI is 

more advantageous as it is a probability-based indicator of groundwater quality with 

statistical framework. The probability indicators Ry, Re and Vy, used in this study, have also 

been used to assess watershed health propensity through a drought index by some researchers 

(Sadeghi and Hazbavi, 2017; Hazbavi et al., 2018). However, none of these studies 

considered other indices available in literature for comparison and validation of the 

developed drought index. The GQSI reveals the probability of groundwater quality being in a 

successful or satisfactory state and how quickly it returns to a satisfactory state after falling 

below the satisfactory threshold. This study integrates two important probabilistic terms, i.e., 

reliability, and resilience to estimate stability index (Hashimoto et al., 1982), and the third 

probability indicator, i.e., vulnerability calculates the contrast between groundwater quality 

and acceptable range of water quality standards. This type of integration is suggested in 

literature for the water quality parameters over a range of water quality constituents at 

watershed-scale (Hoque et al., 2012, 2014). In addition, the proposed GQSI is superior to the 

existing water quality indices as it provides an estimate of temporal stability of the 

groundwater quality by amalgamating temporal variation as well as discrepancy from the 

water quality standards prescribed by the WHO. Various GQIs available in the literature are 

mostly developed for assessing water quality at some static-point of time, and are not apt to 

capture temporal variations of the dynamic water quality. Hence, studies dealing with 

dynamic water quality are compelled to adopt other measures to understand temporal 

variations of the water quality; for example the coefficient of variation (CV) as is used in 

Babiker et al. (2007), Khan et al. (2011), etc. Also, the CV values in such studies could not 

reveal an overall variability of the groundwater quality rather variations were obtained for the 

individual water quality parameters (e.g., Machiwal et al., 2011). On the contrary, the 

developed GQSI has the competency to precisely account for the temporal variability of the 

composite groundwater quality. This characteristic of the GQSI enables its applicability for 

the multi-season or multi-year groundwater quality dataset. Moreover, formulation of the 

proposed GQSI uses implicit weighting through reliability and resilience, and explicit 

assignment of weights to different parameters considered for the analysis are not needed. 

Hence, the GQSI is free from subjectivity, and thus, is more convenient, usable and 

preferable than other water quality indices where certain weights are associated with 

parameters, e.g., WQI (Boateng et al., 2016), modified DWQI (Abtahi et al., 2015), IWQI 

(Singh et al., 2018), etc. This merit of the GQSI qualifies its applicability over different 

aquifer systems under varying hydrogeologic conditions where the GQSI values may be 

easily compared with each other. Therefore, the GQSI is an excellent probabilistic indicator 

of groundwater-quality variations, which may have potential usability in different parts of the 

world. 

 

4.7 Optimum Stability Index of Groundwater Quality 
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This study computed optimum index factor (OIF) for all possible three-parameter 

combinations of total nine groundwater quality parameters to reveal the largest variation 

among the parameters with the least duplication of them. These nine parameters are 

considered for developing the GQSI. Thus, in total, 84 combinations of nine parameters are 

used to find out OIF values, and the best five combinations having the largest OIF values are 

presented in Table 5. It is worth mentioning that two parameters, i.e., TDS and pH, are the 

similar in each of five combinations, which had the high vulnerability in four blocks, i.e., 

Chaksu, Dudu, Phagi and Sambhar. Thus, TDS and pH are the two groundwater quality 

parameters that depict the largest variation in comparison to other parameters. Similar to this 

study, pH depicted the largest variation in comparison to other parameters in a hard-rock 

aquifer system of India (Machiwal et al., 2011). The highest OIF value of 718.43 is obtained 

in case of TDS, pH, and nitrate, and hence, these three optimum parameters are further 

utilized to compute the stability of the groundwater quality. 

 

4.8 Verification of the Optimum Probabilistic Stability Index 

The optimum probabilistic estimates of the stability index are classified into three categories, 

i.e., low, moderate and high, and spatial distribution of the same over 196 sites is depicted in 

Fig. 11a. Similar to the findings of the GQSI, results of the optimum GQSI indicated that the 

groundwater quality at few sites in the central and north-central portions is highly stable. On 

the other hand, low stability of the groundwater quality is found towards the southern, 

southwest and northern portions. A good concurrence in spatial distribution of the GQSI (Fig. 

8a) and optimum GQSI (Fig. 11a) is evidenced, which verifies capability of the optimum 

GQSI in revealing exact stability of the groundwater quality. In order to further verify the 

accuracy of the optimum GQSI, the estimates of the optimum GQSI are scatter plotted on 1:1 

line along with the corresponding estimates of the GQSI for 196 sites in the study area, and 

the same is shown in Fig. 11b. The fitted linear trend line on upperside of the 1:1 line over a 

major portion further suggests that the optimum GQSI values are slightly over-estimated than 

the original GQSI values at most sites. However, an apparent linear pattern with statistical 

significance (R2 value = 0.70) in the relationship between the two stability indices and 

scattering of the data points closed to the 1:1 line suggest competence in the optimum GQSI 

approach. The OIF criterion chosen in developing optimum GQSI has been successfully 

utilized for the cost-effective and long-term groundwater quality monitoring by Babiket et al. 

(2007) and Machiwal et al. (2011). Thus, the optimum GQSI provides satisfactory estimates 

of the probabilistic stability of the groundwater quality, and can be used to reveal the 

groundwater quality under economic perspectives of cost-effective monitoring of only critical 

groundwater quality parameters especially in the developing nations. 

 

5. CONCLUSIONS 

In this study, a novel probabilistic index is proposed to evaluate temporal stability of the 

groundwater quality. Application of the developed index is demonstrated through a case 

study in quaternary alluvial and quartzite aquifer system of Jaipur district of Rajasthan, India. 
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The vulnerabilities of different groundwater quality parameters, describing deviations of their 

concentrations from the safe drinking water limits, are also analyzed. Furthermore, trends in 

groundwater quality parameters are identified by using variance-corrected Mann-Kendall test, 

and quantified using Sen’s slope estimator.  Box-whisker plots revealed that most of the 

groundwater quality parameters including EC and TDS exceed their maximum permissible 

limits in the southern and southwest portions having gneiss and mica-schist type of geology. 

On the contrary, groundwater quality parameters remain within the maximum desirable limits 

prescribed by the WHO in older alluvium geology existing towards the central and northern 

portions. Autocorrelation analysis suggested that the serial correlation in the groundwater 

quality parameters is not present at most of the sites in the area. In the study area, the 

increasing trends of potassium and bicarbonate parameters are prevailing at most sites. On the 

other hand, the decreasing trends are prominent in carbonate, calcium, sulfate, and fluoride. 

The fast-inclining trends in TDS and EC are depicted in Jamwaramgarh and Sambhar blocks, 

and presence of a salty water lake in Sambhar block may be attributed to increase in both the 

parameters. Stability of the groundwater quality is found generally low under the gneiss and 

mica-schist geology, which may be due to geogenic contamination of the groundwater 

occurring in the hard-rock aquifer system. In contrast, the groundwater quality underlying the 

older alluvium geology is found to be highly stable. Results of the groundwater quality index 

(GQI) supported the findings of the groundwater-quality stability index (GQSI). However, 

GQSI, proposed in this study, has the added advantages of having statistical framework, 

consistency (free from subjectivity) and comparability over different parts of the world. 

Three classes of the stability index, i.e., ‘high’, ‘moderate’, and ‘low’, fairly matches with 

other three categories of the water quality index, i.e., ‘good’, ‘moderate’, and ‘poor’ at 84% 

sites with dissimilar results at only 16% sites. Also, ‘high’, ‘moderate’, and ‘low’ stability 

sites are found in perfect agreement with ‘good’, ‘moderate’, and ‘poor’ classes of the water 

quality index at 83, 78, and 87% sites, respectively, which clearly verifies the adequacy of the 

developed stability index in evaluating the groundwater quality probabilistically. It is worth 

mentioning here that the proposed GQSI provides a statistical framework to assess steadiness 

of the groundwater quality parameters over time and does not identify factors responsible for 

changes in the groundwater quality. The optimum index factor criterion indicated that three 

parameters, i.e., TDS, pH and nitrate, have the great impact on the overall groundwater 

quality. Thus, these parameters need to be monitored accurately and regularly in the study 

area. The stability index of the groundwater quality based on the three optimum index factors 

shows a good coherence with the findings of the original stability index with strong statistical 

significance (R2=0.70) of the linear relationship between the two estimates. Thus, the 

optimum stability index is very valuable approach for cost-effective monitoring and 

evaluation of the groundwater quality in low-income nations.  
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Table 1. Salient groundwater quality indices developed and used (in chronological order) in different parts of the world 

Year Country Name of Index1 Parameters2 Source3 
1998 Finland GWQI (Cd) pH, Na, Cl, SO4, F, NO3, UO2, Ag, Al, As, B, Ba, Cd, Cr, Cu, Fe, Mn, 

Ni, Pb, Rn, Se, Zn, KMnO4 consumption 
Backman et al. (1998) 

1998 Slovakia GWCI (Cd) TDS, Cl, SO4, F, NO3, NH4, Al, As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Sb, 
Se, Zn 

Backman et al. (1998) 

1998 Israel GWQI (IAWQ) Cl, NO3 Melloul and Collin (1998) 
1999 Egypt GWQI (WQI) TDS, BOD, NO3, Cl, PO4, Cd, Cr, Ni, Pb Soltan (1999) 
1999 Croatia GWQI/SWQI (WQI) Temperature, DO, BOD, Mineralization, Corrosion coefficient, Total N, 

Protein N, Total P, TC 
Stambuk-Giljanovic (1999) 

2004 Mexico GWQI (ICA)/GWCI 
(Cd) 

Temperature, EC, pH, Major ions Ramos Leal et al. (2004) 

2006 Portugal GWQI / GWCI Ca, Cl, SO4, NO3 Stigter et al. (2006) 
2007 Brazil GWQI Cl, NO3 Nobre et al. (2007) 
2007 Japan GWQI (GQI) TDS, Ca, Mg, Na, Cl, SO4, NO3 Babiker et al. (2007) 
2009 Ghana GWQI (WQI) EC, Ca, Mg, Na, Cl, F, NO3 Banoeng-Yakubo et al. 

(2009) 
2009 India GWQI (WQI) TDS, pH, Hardness, Ca, Mg, Cl, SO4, HCO3, F, NO3, Fe, Mn Ramakrishnaiah et al. (2009) 
2010 India MPI Cu, Fe, Mn, Ni, Pb, Zn Giri et al. (2010) 
2010 India DWQI EC, pH, Hardness, Ca, Mg, Na, Cl, SO4, Alkalinity, F, NO3, NO2, Cd, Cr, 

Cu, Fe, Mn, Ni, Pb, Zn, TC, Salmonella 
Ramesh et al. (2010) 

2010 India GWQI TDS, Ca, Mg, Na, K, Cl, SO4, HCO3, F, NO3, PO4, Si Vasanthavigar et al. (2010) 
2010 Iran GWQI TDS, pH, Ca, Mg, Na, K, Cl, SO4 Saeedi et al. (2010) 
2011 India GWQI EC, TDS, pH, Hardness, Ca, Mg, Na, Cl, SO4, HCO3, NO3 Machiwal et al. (2011) 
2011 India GWQI (GQI) TDS, Ca, Mg, Na, Cl, SO4 Khan et al. (2011) 
2012 Tunisia GWQI EC, TDS, pH, Ca, Mg, Na, K, Cl, SO4, NO3 Ketata et al. (2012) 
2013 Iran Modified DWQI Al, NH3-N, Ca, Cl, Hardness, Fe, Mg, pH, Na, SO4, TDS, Zn, As, Cd, Cr, 

Cu, FC, F, Pb, Mn, Hg, NO3, NO2, Turbidity 
Mohebbi et al. (2013) 

2014 Iran GWQI TDS, pH, Ca, Mg, Na, K, Cl, SO4, HCO3 Sadat-Noori et al. (2014) 
2014 Lebanon GWQI TDS, Ca, Mg, Na, Cl, SO4, HCO3, F, NO3, NO2, FC, TC El-Fadel et al. (2014) 
2014 China Entropy-weighted TDS, Ca, Mg, Na, K, Cl, SO4, HCO3, F,NO3-N, NO2-N, NH4-N, Al, As, Li et al. (2014) 
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fuzzy WQI Cr, Cu, Hg, Mn, Zn 
2015 Syria HPI Cd, Cu, Pb, Zn Zakhem and Hafez (2015) 
2015 Iran Modified DWQI Al, NH3-N, Ca, Cl, Hardness, Fe, Mg, pH, Ryznar index, Na, SO4, TDS, 

Zn, As, Cr, Cu, FC, F, Mn, NO3, NO2, Turbidity 
Abtahi et al. (2015) 

2016 Ghana WQI EC, TDS, pH, Ca, Mg, Cl, SO4, HCO3, NO3, PO4 Boateng et al. (2016) 
2016 Iran FGQI/FWQI / FGWQI TDS, Ca, Mg, Na, Cl, SO4, NO3 Vadiati et al. (2016) 
2017 Egypt WQI EC, TDS, pH, Na, K, Hardness, SAR El-Shahat et al. (2017) 
2017 India GWQI (GQI) TDS, pH, Ca, Mg, Na, K, Cl, SO4, HCO3, NO3 Sethy et al. (2017) 
2017 Iran EWQI EC, Ca, Mg, Na, K, Cl, SO4, HCO3, F, NO3, Al, As, Fe, Mn, Pb Gorgij et al. (2017) 
2018 Iran PWQI EC, TDS, pH, Hardness, Ca, Mg, Na, K, Cl, SO4, HCO3 Jamshidzadeh and Barzi 

(2018) 
2018 Brazil IQNAS WQI TDS, pH, Hardness, Cl, F, NO3 Leite et al. (2018) 
2018 India IWQI EC, pH, Na, SAR, RSC, Cl, NO3, B, As, Cd, F, Fe Singh et al. (2018) 

1 GWQI/GQI: Groundwater Quality Index; IQNAS WQI: Groundwater Natural Quality Index; SWQI: Surface Water Quality Index; WQI: Water Quality Index; MPI: Metal Pollution Index; Cd: Contamination Index; 
FGWQI: Fuzzy Ground Water Quality Index; EWQI: Entropy Weighted Water Quality Index; PWQI: Potability Water Quality Index; IAWQ: Index of Aquifer Water Quality; GWCI: Groundwater Composition Index; 
HPI: Heavy Metal Pollution Index. 

2TDS: Total Dissolved Solids; DO: Dissolved Oxygen; BOD: Biochemical Oxygen Demand; EC: Electrical Conductivity; FC: Fecal Coliform; TC: Total Coliform; SAR: Sodium Adsorption Ratio. 
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Table 2. Safe drinking water limits of the parameters prescribed the World Health Organization 

S. No. Parameter Desirable Limit Permissible Limit 

1 pH 7-8.5 n.a. 

2 Total Dissolved Solids 500 mg l-1 1500 mg l-1 

3 Calcium 75 mg l-1 200 mg l-1 

4 Magnesium 30 mg l-1 150 mg l-1 

5 Sodium 200 mg l-1 n.a. 

6 Chloride 200 mg l-1 600 mg l-1 

7 Sulfate 200 mg l-1 400 mg l-1 

8 Nitrate 45 mg l-1 n.a. 

9 Total Hardness 100 mg l-1 500 mg l-1 

Source: WHO (2017); n.a.: not available  
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Table 3. Number of sites with presence of significant serial correlation 

S. 
No. 

Block 
Sites in 

Individual 
Block 

Number of Sites with Presence of Serial Correlation in Groundwater Quality 
Parameters 

EC TDS pH Na K Ca Mg Cl SO4 CO3 HCO3 NO3 F TH 

1 Amber 11 1 1 0 1 1 1 0 0 0 2 2 2 1 0 

2 Bassi 14 2 4 4 1 1 0 3 1 2 3 0 1 0 1 

3 Chaksu 14 0 0 0 0 2 0 1 1 3 1 2 0 0 1 

4 Dudu 22 1 1 4 3 5 2 2 3 4 3 5 4 1 1 

5 Govindgarh 12 2 1 2 1 2 1 1 2 0 2 0 3 0 1 

6 Jamwaramgarh 14 0 0 4 0 1 0 2 0 1 1 4 1 0 2 

7 Jhotwara 14 1 1 4 0 3 2 1 2 1 1 4 1 3 2 

8 Kotputli 19 2 2 6 2 2 3 0 3 5 2 2 0 1 0 

9 Phagi 17 3 1 2 2 5 2 2 1 0 0 3 2 3 2 

10 Sambhar 13 1 1 2 0 0 0 1 0 2 3 0 2 0 1 

11 Sanganer 14 1 1 2 1 2 2 0 2 1 2 1 0 0 0 

12 Shahpura 13 1 1 4 0 2 0 1 2 0 2 0 1 0 2 

13 Viratnagar 19 2 2 4 2 2 6 1 2 0 3 3 1 1 1 

Total 17 16 38 13 28 19 15 19 19 25 26 18 10 14 
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Table 4. Range of three groups of vulnerability classes for nine groundwater quality parameters 

considered in this study 

S. No. Parameter Vulnerability Class 

Low Moderate High 

1 pH 0-1.5 1.5-3.0 >3.0 

2 Total Dissolved Solids (mg l-1) 0-500 500-1000 >1000 

3 Calcium (mg l-1) 0-75 75-150 >150 

4 Magnesium (mg l-1) 0-30 30-60 >60 

5 Sodium (mg l-1) 0-200 200-400 >400 

6 Chloride (mg l-1) 0-200 200-400 >400 

7 Sulfate (mg l-1) 0-200 200-400 >400 

8 Nitrate (mg l-1) 0-45 45-90 >90 

9 Total Hardness (mg l-1) 0-100 100-200   >200 
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Table 5. Values of optimum index factors for five best combinations of three groundwater quality 

parameters 

S. No. Three Parameters Optimum Index Factor 

1 TDS pH NO3 718.43 

2 TDS pH Hardness 642.01 

3 TDS pH Mg 589.74 

4 TDS pH Cl 583.37 

5 TDS pH Ca 575.07 
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Figure Caption 

 

Fig. 1. Location map of study area showing groundwater monitoring sites 

 

Fig. 2. Box-whisker plots of 14 groundwater quality parameters for 13 blocks (AM – Amber, BS 

– Bassi, CH – Chaksu, DU – Dudu, GG – Govindgarh, JR – Jamwaramgarh, JW – 

Jhotwara, KT – Kotputli, PH – Phagi, SB – Sambhar, SN – Sanganer, SP – Shahpura, VN 

– Viratnagar) 

 

Fig. 3. Spatially-distributed results of the Mann-Kendall test showing presence of non-significant 

(n.s.) and significant increasing/decreasing trends at 1, 5 and 10% level of significance 

(l.s.) for 14 groundwater quality parameters 

 

Fig. 4. Barcharts illustrating trend magnitudes of 14 groundwater quality parameters through 

Sen’s slope estimates over 13 blocks 

 

Fig. 5. Sites classified into three groups according to ‘low’, ‘moderate’ and ‘high’ reliability (Ry) 

of nine groundwater quality parameters 

 

Fig. 6. Sites classified into three groups according to ‘low’, ‘moderate’ and ‘high’ resilience (Re) 

of nine groundwater quality parameters 

 

Fig. 7. Sites classified into three groups according to ‘low’, ‘moderate’ and ‘high’ vulnerability 

(Vy) of nine groundwater quality parameters 

 

Fig. 8. Spatial distribution maps of (a) probabilistic groundwater quality stability index (GQSI) 

and (b) groundwater quality index (GQI) classified into three classes 

 

Fig. 9. Spatial comparison of groundwater quality stability index (GQSI) and groundwater quality 

index (GQI) illustrating their similar/contrasting results 

 

Fig. 10. Barcharts classifying sites, having good, moderate and poor groundwater quality, into 

groups of good, moderate and poor groundwater quality stability index 

 

Fig. 11. (a) Spatial distribution of optimum groundwater quality stability index (GQSI) 

classifying sites into three groups, and (b) scatter plot of GQSI versus optimum GQSI 

(OGQSI) along with fitted straight line, 1:1 line, and coefficient of determination (R2) 
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Figure 3 
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(a) Electrical Conductivity
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(b) Total Dissolved Solids
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(c) pH
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(d) Sodium
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(e) Potassium
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(f) Calcium
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(g) Magnesium
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(h) Chloride
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(i) Sulphate
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(j) Carbonate
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(k) Bicarbonate
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(l) Nitrate
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(m) Fluoride
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(n) Hardness
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Figure 5 
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Figure 7 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) GQSI Map 
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Figure 8 

 

(b) GQI Map 
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Figure 10 
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Figure 11 

(b) 

GQSI = 0.720×OGQSI + 0.201
R² = 0.70

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5

G
Q

S
I

Optimum GQSI

OGQSI-GQSI 1:1 Line

 

OGQSI + 0.201

0.6 0.7 0.8 0.9 1.0

Optimum GQSI

Fitted Straight Line


