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A B S T R A C T

This study aims to evaluate the influence of different carbohydrate sources on water quality, growth perfor-
mance and immunomodulation in pacific white shrimp and to find an alternate for molasses in biofloc system.
The experiment consists of 8 biofloc treatments with different carbon sources, C1 (maida flour), C2 (wheat
flour), C3 (gram flour), C4 (millet flour), C5 (rice flour), C6 (corn flour), C7 (molasses), C8 (multigrain flour)
and un-supplemented control C0 was conducted in 200 L tank system for 120 days. Shrimp juveniles of average
weight 1 g were stocked at the rate of 300 nos/m3. Shrimp reared in C8, C7 and C4 treatments had similar
growth, survival rate, and disease resistance and were significantly higher (P < 0.05) than other treatments
including control. Immune parameters like total hemocyte count (THC) and prophenoloxidase (ProPO) ac-
tivity showed significantly higher (P < 0.05) levels in biofloc treatment groups. The genes targeting the
proPO cascade (PX, BGBP) and antioxidant defense systems (SOD, MnSOD, CAT) revealed significant upre-
gulation in the transcript levels indicating an enhancement in the immune-regulatory functions in the BFT
groups. The results suggest that millets and multigrain flour can effectively replace molasses as the carbo-
hydrate source for biofloc system and the biofloc system offers higher growth, survival, and im-
munomodulation than control.

1. Introduction

Shrimp farming is one of the leading sectors in aquaculture ac-
counting for 55% of the world's crustacean production (Litopenaeus
vannamei) remarkably exceeding 3.66 MT (million tons) in 2014 [1].
The demands of shrimp in the international market led to an ex-
pansion of shrimp culture area and production which was supported
by innovative scientific methods to increase the farm productivity.
The biofloc technology (BFT) is considered as one such technique
which gained momentum and positive reviews in shrimp farming
recently. BFT is a pioneering notion which implements the rearing of
aquatic animals intensively by manipulating the microbial commu-
nities under controlled conditions [2,3]. The environmentally benign
system helps recycling the water in the culture system and cause
lesser environmental impacts on water source [4]. This approach was
shown to enhance the production of marine animals at high stocking
densities in a bio-secure manner [5]. It is well established that the

microbial populations in BFT maintain the basal water quality, assist
in oxidation of organic matters [6] and enhance the biosecurity of
the shrimp cultures by preventing the onset of various diseases [7]
and the nursery phase with high-density culture can avoid disease
outbreak such as EMS, RMS, EHP using minimal water exchange
system [8].

The biofloc system critically depends on the effective manipulation
of C: N ratio through the supply of carbon source and feed addition.
Carbon source addition enhances the conversion to heterotrophic bac-
teria and also helps in balancing the C: N ratio [3,9,10]. These het-
erotrophs effectively absorb the inorganic nitrogen and facilitate faster
reduction of TAN than the process of nitrification. Total ammonia ni-
trogen (TAN) is a major concern in shrimp farming. TAN consists of
ionized (NH4+) and unionized ammonia (NH3) with later being are
highly toxic to the cell membranes of shrimps and other aquatic or-
ganisms [11]. To minimize the TAN levels, it is necessary to use carbon
sources with lower dissolution rates to favor the carbon: nitrogen ratio
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(C: N ratio). On the other hand, different organic carbon sources can
probably affect the composition of biofloc [12].

The use of carbon sources like molasses in biofloc based L. vannamei
farming have shown to promote heterotrophic bacterial growth which
effectively controlled the TAN levels in the culture system [7]. Molasses
and dextrose are reported to efficiently control the ammonia levels in L.
vannamei biofloc systems [13]. Apparently, among the carbon sources
tested, molasses and dextrose were shown to possess faster dissolution
rates [14]. Faster degradation provides higher levels of carbon as a
substrate for heterotrophic bacteria to metabolize ammonia. Brewery
residues were also shown as a promising source of organic carbon for L.
schmitti farming in BFT system [15] evidencing the improvement on the
zootechnical performance of the species and the low cost compared to
the other sources reported.

Carbon sources in maintaining a balanced C: N ratios have divergent
roles including the formation of biofloc, reducing the TAN levels, and
consequently improving the water quality. It is also hypothesized that
carbon sources may play a vital role in enhancing the shrimp's im-
munostimulant activities. Understanding the transcriptome profile of
several immune genes involved with it is still a challenge, though re-
cently few studies are addressing it [16–18]. The objective of the study
was to evaluate growth performance and immunomodulation in pacific
white shrimp L. vannamei reared under BFT supplemented with dif-
ferent carbon sources.

2. Materials and methods

2.1. Experimental site and tank preparation

The experiment was conducted for 120 days, in a 200 L fiber-re-
inforced plastic (FRP) tanks (dimensions: width 67 cm x Length
126.5 cm x Height 52.5 cm) at Muttukadu experimental station of
ICAR-CIBA. L. vannamei juveniles (1.01 ± 0.03 g) were stocked at the
rate of 300 nos m−3 into assigned experimental tanks. The experiment
consists of 8 treatments of different carbon sources for the develop-
ment of biofloc and an autotropic control in triplicates viz. C1 (maida
flour) C2 (wheat flour), C3 (gram flour), C4 (millet flour), C5 (rice
flour), C6 (corn flour), C7 (molasses), C8 (multigrain flour) and a
control treatment C0 (without carbon/Biofloc). All the experimental
units were filled with disinfected seawater (30 ppt) and were provided
with adequate aeration by a 5 HP blower. For the generation of bio-
floc, all the items were added based on the recommendation of
Avnimelech (1999) [9] and the respective carbon sources were added
to the treatments as per the experimental design. The respective
carbon sources and probiotic consortium Bacillus subtilis (MTCC 2756)
& Saccharomyces cerevisiae (IAM 14383T) at the rate of
5.4× 109 CFU/ml was fermented with 1 L of sterile seawater for 24 h.
After fermentation, 200ml of inoculum was added to generate biofloc
in respective treatment tanks.

2.2. Feed formulation and management

The experimental diet was formulated to contain crude protein level
of 35%. The list of ingredients and feed proximate composition are
depicted in Table 1. Fish meal, dried acetes, soya cake, and gingelly oil
cake are in the ratio of 4:2:3:1 was used as protein source. A Mixture of
Wheat, Broken rice and Maida (4:2:4) used as the carbohydrate source
and both the sunflower oil and cod liver oil (1:1) used as a lipid source.
Vitamins and minerals were added in the formulation as per the re-
commendation of Hu et al. and Xu et al. [19,20], respectively. The dried
ingredients were pulverized to powder forms and were mixed thor-
oughly.

Later, oil and water were added to the mixture, which was passed
through a ring die pellet extruder. For efficient storage, the extruded
pellets were oven dried and stored in a plastic bag. The proximate
composition of the diet was estimated by following the method of

AOAC [21]. The experimental animals were fed four times daily at
06.00, 11.00, 18.00 and 22:00 h initially for 2months at the rate of 8%
of body weight which declined gradually to 2.5% towards the end of the
experiment.

2.3. Assessment of water quality parameters

Water parameters such as temperature (mercury thermometer), pH
(pH-Scan-Eutech instruments, Singapore), Salinity (hand re-
fractometer), TAN (Phenol hypochlorite method), NO2eN, NO3eN,
phosphate-P (PO4eP), total alkalinity, turbidity, and dissolved oxygen
were recorded based on the methodology described in APHA (1998)
[22]. Total suspended solid was determined every fortnight following
the methods of APHA (1998) [22]. Biofloc volume was quantified by
measuring through the Imhoff cone on daily basis.

2.4. Assessment of growth performances

For estimation of the growth performance, 50 numbers of shrimp
were sampled from each treatment and control. The growth indices like
weight gain (AWG) (g week−1), final biomass (g m−3), survival (%),
growth rate (SGR), feed conversion ratio (FCR) and protein efficiency
ratio (PER) were measured by following our earlier work [23].

2.5. Bacterial quantification

The total heterotrophic count and vibrio count were analyzed at
every 10 days interval using the Zobell marine agar (ZMA) and thio-
sulfate citrate bile salts sucrose agar (TCBS agar) (Hi Media, Mumbai)
spread plates respectively till the end of the experiment. For efficient
proliferation of bacteria, the plates were incubated for 48 h at room
temperature. The colonies on the plates were counted and represented
as bacteria colony forming unit (CFU).

2.6. Analysis of amino acid composition

The biofloc samples from each replicate tank was collected on
monthly intervals and immediately freeze dried. The dried biofloc
samples were processed for hydrolysis using 6 N hydrochloric acid in
a sealed tube filled with nitrogen for 22 h at 110 °C in an oven. The
acid was dried using vacuum rotary evaporator (IKA, RE 10C S84)
and the residue was brought into a diluent (0.1 N hydrochloric acid),
and then filtered using a 0.2 μm membrane syringe filter. The amino
acid profiles were analyzed using pre-column HPLC gradient system
(Shimadzu Corp, LC 30 AD) [24]. The YMC-Triart C18, RRH (1.8 μm,
2.1× 100 mm) column was used to separate the amino acids after
derivatization with mercaptopropionic acid, O-pthaladehyde and
fluorenylmethoxycarbonyl chloride under gradient elution using
phosphate buffer (20 mmol as mobile phase A) and combination of
acetonitrile: methanol: water (45:40:15 as mobile phase B) at the
flow rate of 0.3 ml/min. The gradient was changed by increasing
mobile phase B concentration at the rate of 11%–13% at 3 min, 31%
at 5 min, 37% at 15 min, 70% at 20 min, 100% at 25 min. Amino
acids were qualified and quantified by a fluorescent detector (RF-
20AXS) using an amino acid mixer as an external standard (Sigma
Aldrich, Cat. No: AAS18) and nor leucine as an internal standard.
Tryptophan was measured after alkali hydrolysis by the spectro-
photometric method at 500 nm which is responsible for acid hydro-
lysis as mentioned by Sastry and Tummuru (1985) [25]. The partial
oxidation of sulfur-containing amino acids like cysteine and me-
thionine was prevented by adding 0.1% of phenol during acid di-
gestion as mentioned by Jajic et al. (2013) [26]. The Essential amino
acid index was calculated based on the amino acid requirements for
L. vannamei.
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2.7. Challenge study

At the end of the experimental period, 20 healthy shrimps at an
inter-moult stage from each biofloc treatment and control were chal-
lenged with the pathogenic strain of Vibrio parahaemolyticus (MTCC
451, IMTCC, and Chandigarh India) in triplicates. The experimental
shrimps (average body weight= 15.5 ± 1.55 g) were kept in a 100 L
capacity plastic tank with 50 L of same culture water filled. The pa-
thogen was inoculated into the culture tank and the final bacterial load
of 1×104 CFU/ml was achieved. For negative control, the shrimps
reared in water without vibrio inoculation. All the important water
quality parameters and all the shrimps were carefully monitored after
infection. No water was exchanged for the whole duration of the trial.
During the challenge trail, water quality parameters, shrimp survival
and cumulative numbers of dead shrimps were assessed every day. The
present challenge trial was repeated twice and recorded.

2.8. Immunological parameters

2.8.1. Hemolymph collection and determination of immune parameters
Hemolymph samples were collected from the experimental animals

of both the treatment and the control group from the ventral sinus using
a 2ml sterile syringe with a 21G needle. The syringe consists of 1ml of
ice cold cysteine anticoagulant saline solution containing 3mg cysteine
to 5ml of physiological saline (KCl (13mM), NaCl (340mM), MgCl2
(10mM), NaH2PO4 (0.3mM),MgSO4 (11mM), and glucose (1.6mM) in
100ml distilled water, pH 7.8) [27].

2.8.2. THC and phenoloxidase activity
THC was measured as per the modified methods of Söderhäll and

Smith (1983) [27] where 10 μl of hemolymph from each sampled in-
dividual was introduced into the Neubauer hemocytometer. The con-
centration per cubic centimeter (milliliter) is calculated by counting the
total number of cells in four 1-mm2 area using the following formula:

THC=Total cell counted x dilution factor (10) x 104/number of 1-mm2

areas counted

Phenoloxidase activity was determined by following methods of

Söderhäll and Smith (1983) [27] in which the hemolymph was col-
lected without using the anticoagulant from the animal and was al-
lowed to clot for 30min at room temperature. After which the clot was
disturbed using glass rod and is subsequently centrifuged at the rate of
1500 rpm for 7min. Then 10 μl serum was incubated with 20 μl of
trypsin (2.1 mg/ml−1) for 15min at 25 °C. In control, trypsin was
substituted with tris-HCl buffer (50mM; pH 7.5). The mixtures were
made to 200 μl with 5mM L-DOPA and further incubated for 20min at
25 °C. The optical density of both control and treatment samples was
measured spectrophotometrically at 490 nm.

2.9. Quantitative PCR assays

Total RNA was isolated from the hepatopancreas of five shrimps
from each treatment using Qiagen RNA isolation kit (Qiagen, USA). The
presence of RNA bands was confirmed by agarose gel electrophoresis.
Reverse transcriptase PCR reaction was performed to convert mRNA
into complementary DNA. iScript 1st Strand cDNA Synthesis Kit (Bio-
Rad, USA) was used. The cDNA thus obtained was serially diluted and
used for relative quantification of the target genes. The Real-Time PCR
(Applied Biosystem's Real-Time PCR system StepOnePlus®) was used for
amplification, melt curve analysis and calculation of gene expression.
The temperature cycling parameters for the two-step PCR reaction were
as follows: Holding stage of 10min at 95 °C (Initial denaturation), 45
cycles of 00.15 s at 95 °C (denaturation), 1 min at 60 °C (annealing and
extension). The total reaction volume (20 μL) in each PCR tubes were as
follows; 10 μL of 2X SYBR®Green qPCR master mix (Bio-Rad, USA), 1 μL
each of forward and reverse primers (10 pmol), 1 μL of template DNA
(30–60 ng) and 7 μL of nuclease-free water. Transcript levels of immune
genes and the reference gene (β-actin) were quantified by comparative
delta-delta Ct (DDCt) method using a Real-Time PCR. The designed
oligonucleotides used for qPCR are listed in Table 2.

2.10. Statistical analysis

The data obtained from the experiment was analyzed by SPSS
(Version-16). The homogeneity of the data was verified using normality
“chi square” test. The comparison between all the treatment groups and

Table 1
Ingredients of experimental diet (as % fed basis), proximate composition of carbon sources (as 100 gm dry basis) and amino acid profile of biofloc samples.

Feed ingredients 35% CP

Fish meal 23.6
Acetes 11.8
Soyabean meal 17.7
Gingelly oil cake 5.9
Wheat 13.92
Broken rice 6.96
Maida 13.92
Fish oil + sunflower oil 2.2
Lecithin 1
Vitamin and Mineral Mixa 2
Binderb 1

Proximate composition of various carbon sources used in the experiment

Carbon sources (gm) Maida (C1) Wheat (C2) Gram (C3) Millet (C4) Rice (C5) Corn (C6) Molasses (C7) Multigrain (C8)

Crude protein 10.33 13.0 22.0 11 7.2 6.9 0 14.8
Ether extract 0.98 2.5 6.7 4.3 2.8 3.9 0.1 2.02
Crude fiber 2.7 11 11.0 3.5 4.6 7.3 0 7.9
Others (Vitamin & Minerals) 9.68 1.5 2.3 6.2 9.4 4.9 24.9 1.77
NFEc 76.31 72.0 58.0 75.0 76.0 77 75 73.51

a Vitamins (mg kg-1): Vitamin A 20.0, Vitamin D 4.0, Vitamin E 120.0, Vitamin K 60.0, Choline chloride 6000.0, Thiamine 180.0, Riboflavin 240.0, Pyridoxine
180.0, Niacin 1080.0, Pantothenic acid 720.0, Biotin 2.0, Folic acid 30.0, Vitamin B12 0.150 Inositol 1500.0, Vitamin C 9000.0. Minerals (g kg-1): CaCO3 28.0, K2SO4
10.0, MgSO4 12.5, CuSO4 0.2, FeCl3 0.5, MnSO40.5, KI 0.01; ZnSO4 1.0, CoSO4 0.01, Cr2SO4 0.05, Bread flour 7.14.
b Poly MethylolCarbamide.
c Nitrogen free extract calculated by difference = 100-(Crude protein%+Crude fibre%+Ether extract% + Total ash%).
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between the treatments (P < 0.05) was made using one way ANOVA
and Duncan's multiple range test (DMRT) respectively. The probability
level was kept at 5% for the statistical analysis.

3. Results

3.1. Water quality parameters

All the water quality parameters recorded in the experimental tanks
were within favorable range for L. vannamei rearing throughout the
experimental period. No significant difference (P > 0.05) among the
treatment groups in terms of salinity, temperature, pH were noted. The
temperature during the experiment was 28.8 ± 1.8 °C. All other
parameters showed significant variations among the treatments
(Table 2). The treatment C7 and C8 have significantly (P > 0.05)
lower DO than that of control and other treatments. TAN, Nitrite-N,
nitrate-N, PO4 and total alkalinity in control was recorded higher than
the biofloc treatment groups. The total alkalinity was significantly re-
duced in the C7 followed by other carbon sources when compared to
control (Table 2). Significantly (P < 0.01) higher chlorophylla, TSS,
floc volume (Fig. 1a), turbidity was recorded on C8, C7, and C4 than
other treatments and control (Table 3).

3.2. Effect of carbon sources on FCR, survival rate and ABW

Table 3 indicates that a significant difference was recorded
(P < 0.05) between the control and the biofloc treatments in terms of
zootechnical performance. The growth performance i.e., SGR, ABW,
ADG and FCR along with survival percentage were similar in C4, C7,
and C8 biofloc treatment groups. However, higher growth and survival
with minimum FCR was recorded in C8, C7, C4 followed by C6, C2, C1,
C5, and C3 when compared to control (Table 4 and Fig. 1b).

3.3. Microbial dynamics

Supplementation of carbohydrates in the biofloc treatment sig-
nificantly (P < 0.01) increased the total heterotrophic bacterial count
compared to control. Increased THB load was reported in C8 and C7
treatment among the biofloc treatments. However, in case of total vi-
brio count, control had a significantly higher vibrio load compared to
the biofloc treatments and C8 had the lowest which was statistically
similar to C7 and C4 (Table 3).

3.4. Biofloc amino acid composition

The amino acid profiles of the biofloc are represented in Table 5 and
are categorized as essential and nonessential amino acids based on the
nutritional requirements of the shrimp as recommended by NRC (2011)
[28]. The result revealed higher level of essential amino acids in C4, C7,

and C8 compared to other treatments. The utilization of protein by the
shrimp depends on the availability of essential amino acids in the diet.
Among them certain amino acids like arginine, methionine and lysine
are limiting amino acids as they are generally deficient in the diet. The
biofloc samples from C4, C7, and C8 are having higher arginine, me-
thionine and lysine levels of 1.35, 1.12, 2.13; 1.32, 1.17, 1.66 and 1.25,
1.093, 1.663 per 100 g dry floc, respectively compared to other treat-
ments and control.

3.5. Challenge study

Cumulative mortalities in different carbon source treated groups
were represented in (Fig. 2a). The challenge study shows that
90 ± 3.6% of mortality was observed in the control group whereas, in
the treatment group, a maximum mortality (C1) of (up to 70 ± 3.4%)
was recorded. The C4 and C8 groups were observed with the minimal
percentage of mortality of 55 ± 1.8% after challenging with V. para-
hemolyticus. Similarly, C2, C5 and C7 treatments were observed with
60 ± 2.1% and in treatments C3, C6, 65 ± 2.6% mortality was re-
corded. There was a significant difference (P < 0.05) observed be-
tween control and treatments.

3.6. Immunological parameters

After 120 days of experimental period, Total Hemocyte Count of
various CHO treated shrimp was significantly (P < 0.05) higher than
that of control groups when challenged against V. parahaemolyticus.
Similarly, Phenoloxidase activity was significantly higher (P < 0.05)
in the various carbon source treated groups especially C8, C7 & C1, and
others when compared to that of the control group (Fig. 2b and c).

Table 2
List of primer pair sequences and amplicon size of the genes used for real-time
PCR (qPCR).

Gene Primer sequence (5‘—3‘) Accession no Amplicon Size

SOD F-GCTGAATTGGGTGAGGAACG
R-CCTCCGCTTCAACCAACTTC

AY486424 172

cMnSOD Fe GGCACAGTCAGTCCTCAGAT
R- GAGAGGTGGCAAAGCATGAG

DQ298207.1 346

BgBp Fe TTATACCCGAGACTCCACGC
R- ACGTCCGTATCTGAAAGCGA

AY723297.1 235

Catalase Fe GCCCGTACAAGGAACTACCA
R- CTGACGTTCTGCCTCATTCA

AY518322.1 231

Peroxinectin F – GAGTCTGAACATCCATCGCG
R – TATGCCACCCACGAAGAAGT

KC708021.1 187

β-actin F-CAACCGCGAGAAGATGACAC
R-TCGGTCAGGATCTTCATCAGG

GU732815.1 243

Fig. 1. a: Bio-floc volume of various carbon sources treatment for bio-floc based
shrimp culture water. Significant difference (p < 0.05) between the groups is
indicated by different letters on top of the bar. Fig. 1b: Effect of different carbon
sources on ABW of L. vannamei measured at different in stages of growth. Data
shown as mean with standard deviation as error bars (n=50).
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3.7. Effect of carbon sources on immune gene expression

The transcript levels of SOD, MnSOD and BGBP were significantly
up-regulated in shrimps reared in C4, C7 and C8 indicating that in-
crease in the ABW and ABL has proportionally enhanced the immune
regulatory functions. Superoxide dismutase (SOD) had a considerable
higher expression pattern in sources C4 to C8. Shrimps reared with C4
showed approximately 11-fold up-regulation in the SOD transcript le-
vels, while C7 and C8 showed 12-fold and 11-fold respectively (Fig. 3a).
Similarly, up-regulation was measured in MnSOD transcripts (C4 – 16
fold, C7 -7 fold and C8 -5 fold) (Fig. 3b).

Further, the transcripts of β-1, 3-glucan-binding protein (BGBPβ) of
white shrimp was significantly increased in C6 (4 fold) and C7 (9 fold)
respectively while C4 (1 fold) remains unaffected (Fig. 3c). Enhanced
BGBP mRNA transcripts suggest that the activation of these systems
which indirectly control the immunomodulation in the shrimps. Ad-
ditionally, peroxinectin (PX) transcripts were upregulated in C4 treated
samples (Fig. 3d) and catalase (CAT) transcripts were upregulated in C7
treated samples (Fig. 3e).

4. Discussion

The water quality parameters are maintained in the optimal range
for L. vannamei culture [29]. The low concentration of TAN and nitrite
in the biofloc treatment than the control suggest total oxidation of
ammonia to nitrate in the biofloc treatment [30]. Further lowering of
nitrate level in the biofloc treated group indicates that the microbial
communities in the biofloc removed these obnoxious gases from the
system, which is very essential for a zero-water exchange system [31].
The chlorophylla concentration was higher in the biofloc system com-
pared to the control group (autotrophic) which can be attributed to the
high rate of nutrient recycling within the biofloc system. In the present
study, there is no difference between the biofloc treated groups in terms
of chlorophylla concentration.

The ability of Pacific white shrimp to utilize natural productivity
and its effect on enhancing shrimp growth is well documented
[7,32,33]. Ju et al. (2009) [34] suggests that microalgae in the mi-
crobial floc may play a key role in improving shrimp growth. Biofloc
enhances the growth performance of Penaeus monodon [35,36] Litope-
naeus vannamei [7,37], and Farfantepenaeus paulensis [38]. Apart from
being a source of quality proteins, biofloc constituents are a rich source
of growth promoters, bioactive compounds [34] and improves health
status of the cultured shrimps [39]. The high survival and improved
growth of the shrimp in two biofloc treatments [37] can also support
the view that the shrimp can grow in a healthy condition (biofloc) with
carbohydrate addition. The present study revealed better shrimp per-
formance in terms of survival, growth in carbon sources such as C4, C7
and C8 treatments than control. Better essential amino acid composi-
tion in the millet, molasses and multigrain atta would have resulted in
enhanced growth performance in the reared animals [40].

Similarly, other carbon source used in the study is showing pro-
mising results in the biofloc system [41]. A comparison of wheat flour
and corn flour as a carbon sources for biofloc production in freshwater
tilapia showed that there were no significant effects on water quality
between the biofloc groups and the control. However, in terms of
weight gain and feed conversion ratio (FCR), wheat flour performed
better than corn flour [42]. In our present study, a similar trend was
observed with wheat and corn flour.

The utilization of microbial protein depends on the ability of the
target animal to harvest the bacteria and its ability to digest and utilize
the microbial protein [9]. The higher yield in the carbohydrate added
treatments of the present study showed that L. vannamei can well utilize
the additional protein derived from the increased bacterial biomass.
Burford et al. (2004) [32] suggested that flocculated particles rich in
bacteria and phytoplankton could contribute substantially to the nu-
trition of the L. vannamei in intensive shrimp ponds. Ju et al. (2009)Ta
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[34] reported that increase in organic carbon promotes the dominance
of heterotrophic bacterial community. Several studies have reported
that an increased resistance of shrimps to pathogenic Vibrio through
probiotic administration [43,44]. Our data pointed out a lower con-
centration of vibrio recorded in carbon sources treated groups than
control. Our findings are in harmony with Kumar et al. (2014) [45].
This indicates that the biofloc have beneficial microorganism that
competes and reduces the pathogens especially vibrios.

The challenge test helps us to deduce the health of animals reared in
the system. Vibrio parahemolyticus is one of the common disease-causing
bacteria in the aquatic system, which causes a huge loss to the farmers.
The animals were reared in the biofloc system with different carbon
sources. The carbon source used which results in the growth of abun-
dant microflora and microbiota in the system. in turn, improves
shrimp's health [9,36,46]. The biofloc naturally act as anti-bacterial
compound and the same as the positive influence on the immunity of
cultured species [47–50]. These shrimps were infected with opportu-
nistic pathogenic bacteria to understand the performance of carbon
source on shrimp's health and BFT reared animals. BFT reared animals
exhibited better resistance against the V. parahaemolyticus compared to
control irrespective of the CHO source. Our results are in agreement
with other findings on L. vannamei [16] and P. monodon [51]. The study
supports the use of different carbon source in reducing the stress of
toxic metabolites thereby reducing the chances of disease occurrence.
Avnimelech (2009) [2] stated that molasses are the most widely used

carbon source for biofloc production. Hence the present study also used
molasses as one of the carbon sources thus by increasing the availability
carbohydrate in the system and showed better survivability after
challenging V. parahaemolyticus. The results were comparable to Sa-
mocha et al. (2007) [46] and Krummenauer et al. (2014) [52]. There
was a difference in the performances of different treatments especially
Millet (finger millet), wheat, multigrain flour, and molasses.

Bioflocs are deliberated to be in one of the richest sources of many
bioactive compounds such as chlorophylls, carotenoids, phytosterols,
bromophenols, polysaccharides, fat soluble vitamins and amino sugars
[34,53]. These bio-active compounds produced in the biofloc improve
the health of cultured species and this is due to the amount of essential
amino acids, fatty acids and other nutritional elements [54]. The het-
erotrophic bacteria quickly decompose the simple carbohydrates, which
are added continuously to maintain C: N level in the tank. However
complex carbohydrates are decomposed slowly. As millets are highly
nutritive, it is one of the conventional foods in south India. 72.6 g of
carbohydrates are obtained from 100 g of millet it provides cheap
protein, minerals, and vitamins to the cultured species. Having starch as
its major component it also have amylopectin, amylase and 69.73% of
soluble carbohydrate in which 16.2% and 1.2% are composed of starch
and reducing sugars respectively [55]. Since no study had reported on
millet as a carbon source, we used finger millet powder and the results
were found to be positive on growth, survival as well as immunity when
compared to other carbon sources.

Multigrain flour is a mixture of six natural grains providing
wholesome nutrition.100 g of multigrain atta is made of 72.48 g of
carbohydrates in which 6.18 g are sugar and 14.43 g of proteins. After
challenging V. Parahemolyticus, the result was in harmony with the
result obtained from millet. The survival rate was up to 45%. Since
multigrain powder, millet and wheat are complex carbohydrates they
dissolve slowly and releases carbon in the culture water.

The biofloc clearly elucidate the shrimp innate immune response.
For instance, the activity of phenoloxidase and total hemocyte count
was upregulating in the shrimp reared in a biofloc system than control
without any induced infection. This stimulation effect seems to be a
general feature of the biofloc system [23], although the extent of the
stimulation implies to be a carbon source dependent. Improvement in
immunomodulatory functions of L. vannamei in the biofloc reared
shrimps suggest that these carbon sources can modulate and trigger the
immune genes when challenged with pathogens. The circulating he-
mocytes of crustaceans are essential in performing functions such as
phagocytosis, encapsulation, and storage and release of the propheno-
loxidase system [56]. Phenoloxidase is an enzyme activating melani-
zation of foreign cells and prevents them from further infection. This
enzyme is highly stimulated by microbial cell wall components such as
lipopolysaccharides (LPS) and ß −1, 3-glucans [57–59]. As the shrimps
were cultured in BFT-based systems they evidently consumed the mi-
crobial floc in situ, [3,16] so that the increase in total hemocyte number
and PO activity point in the direction of a stimulatory effect of the

Table 4
Growth parameters of Litopenaeus vannamei culture based on bio-floc system using various carbon sources and control groups. Significant difference (p < 0.05)
between the groups is indicated by different letters on top of the data. ABW=average body weight; ABL= average body length; ADG= average daily growth;
SGR= specific growth rate; FCR= feed conversion ratio.

Treat-ments Initial weight (gm) Initial length (mm) Survival (%) ABW (gm) ABL (mm) ADG (gm) SGR (%) FCR Improvement (%)

C0 1.10 ± 0.07a 46.3 ± 3.2a 70.5 ± 2.1a 13.7 ± 2.8a 99.3 ± 1.3a 0.082 ± 0.0a 2.55 ± 0.01a 2.25 ± 0.3c -
C1 1.04 ± 0.03a 44.5 ± 1.7a 86.5 ± 2.1c 16.2 ± 2.5b 120.7 ± 2.6d 0.119 ± 0.01b 2.73 ± 0.01b 1.5 ± 0.1b 18.25 ± 1.03a

C2 1.10 ± 0.15a 44.0 ± 0.1a 84.0 ± 1.4bc 16.6 ± 1.1b 121.3 ± 1.8d 0.138 ± 0.01b 2.76 ± 0.07b 1.5 ± 0.1b 21.17 ± 8.26a

C3 1.05 ± 0.03a 43.5 ± 0.5a 81.0 ± 1.4b 15.7 ± 2.8b 116.3 ± 5.2c 0.125 ± 0.01b 2.76 ± 0.09b 1.6 ± 0.2b 14.6 ± 1.03a

C4 1.12 ± 0.11a 46.0 ± 1.1a 96.5 ± 2.1d 24.95 ± 0.8c 129.8 ± 1.3b 0.208 ± 0.01c 3.18 ± 0.03d 0.93 ± 0.1a 82.12 ± 5.68ab

C5 1.02 ± 0.14a 45.2 ± 3.5a 83.0 ± 4.2b 16.0 ± 2.4b 118.2 ± 3.1cd 0.131 ± 0.01b 2.78 ± 0.06bc 1.5 ± 0.1b 16.79 ± 1.55a

C6 1.03 ± 0.14a 43.9 ± 2.4a 82.5 ± 3.5b 16.85 ± 2.2b 110.6 ± 0.9b 0.114 ± 0.01b 2.83 ± 0.05c 1.5 ± 0.2b 22.99 ± 1.66a

C7 1.08 ± 0.04a 43.5 ± 1.2a 99.0 ± 1.1de 25.05 ± 1.2c 128.9 ± 1.8e 0.209 ± 0.00c 3.19 ± 0.01d 0.91 ± 0.1a 82.85 ± 1.55ab

C8 1.02 ± 0.02a 44.6 ± 1.0a 100.0 ± 0.0e 26.55 ± 1.6c 131.8 ± 0.5e 0.221 ± 0.00c 3.25 ± 0.01e 0.87 ± 0.1a 93.80 ± 1.55b

Table 5
Amino acid composition (g/100 g dry floc) of biofloc produced with different
carbon sources.

C1 C2 C3 C4 C5 C6 C7 C8

Essential amino acids

Arg 1.143 1.187 1.113 1.353 1.160 1.273 1.320 1.253
His 2.803 2.663 2.740 2.920 2.567 2.440 3.030 2.907
Ile 1.313 1.307 1.193 1.317 1.240 1.173 1.360 1.293
Leu 2.150 2.057 2.050 2.137 1.493 1.727 2.153 1.900
Lys 1.393 1.343 1.463 1.560 1.270 1.257 1.660 1.663
Met 1.007 0.967 1.077 1.127 0.903 0.863 1.170 1.093
Phe 1.547 1.860 1.717 1.803 1.647 1.507 1.773 1.790
Thr 1.653 1.750 1.730 1.870 1.850 1.750 1.810 1.850
Trp 0.290 0.290 0.290 0.330 0.280 0.323 0.367 0.350
Val 1.383 1.373 1.310 1.490 1.373 1.277 1.367 1.313

Non-essential amino acids

Ala 2.677 2.560 2.227 2.267 2.450 2.430 2.287 2.277
Asp 2.863 2.493 2.433 2.553 2.673 2.327 2.367 2.373
Cys 0.417 0.393 0.437 0.453 0.370 0.517 0.457 0.477
Glu 3.277 3.617 3.663 3.407 3.060 3.367 3.433 3.600
Gly 2.183 2.443 2.303 2.150 2.820 3.383 3.463 3.427
Pro 1.290 1.293 1.270 1.287 1.367 1.437 1.290 1.313
Ser 1.350 1.550 1.253 1.383 1.483 1.383 1.440 1.360
Tyr 1.223 1.053 1.133 0.963 1.000 0.987 1.147 1.163
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(digested) biofloc on shrimp immunity. Similarly, our data showed C8,
C7, C4 and other carbon sources had significantly increased in the level
of THC and Phenoloxidase activity than control shrimp. It is also in-
teresting to note that the application of biofloc in shrimp culture results
in similar effects in terms of growth, feeding efficiency, pathogenic
bacteria inhibition and immune responses as the application of pro-
biotics [60].

The biofloc system consists of beneficial microbes in high density
which is assumed to enhance the immune system. The present finding
of biofloc induced immunomodulation are in agreement with the earlier
studies [16,17,23,48]. The immune system of shrimp is mainly acti-
vated by the microbial cell wall material comprise of peptidoglycan,

lipopolysaccharides and β-1,3-glucans [17,23,61,62]. Superoxide dis-
mutase (SOD) is frequently used as a biomarker for measuring immune
parameters in L. vannamei [63]. The expression level of SOD increases
after infection with Vibrio sp. as bacterial infection induces the activity
of SOD significantly. Anchalee et al. (2013) [64] observed similar
findings in their study. β-1, 3-glucan-binding protein (BGBP) gene plays
an essential role in shrimp-pathogen interactions and reflexes. They
respond to the pathogens by activating a series of downstream cascade
which triggers the proPO system, coagulation cascade and the expres-
sion for antibacterial effectors [65]. Pattern recognition protein of LPS
and β-1, 3-glucan in the shrimp proPO-activating system, enhance the
phenoloxidase activity [64]. The protein further acts as an opsonin to
increase phagocytosis [66]. Enhanced BGBP mRNA transcripts suggest
the activation of these systems which indirectly control the im-
munomodulation in the shrimps. CAT enzymes are also known to play a
vital role in the antioxidant defense system, hence protecting the
shrimps from free radicals [67,68]. The catalase expression level was
up-regulated in this study. Similar results were reported by Anchalee
et al. (2013) [64] where PX is involved in the proPO cascade system
[57]. Beneficial bacteria (probiotics) also show a promising result in
activating the immune response in shrimp and the mechanisms by
which the bacteria influence shrimp performance have been reviewed
by several authors [59,69,70]. For instance, Zokaeifar et al., (2012,
2014) [60,71] reported that adding Bacillus subtilis into the water or
into the feed of white shrimp resulted in better growth, survival, in-
hibition of Vibrio growth in the intestine, as well as the up-regulation of
immune related genes such as LGBP, proPO, peroxinectin, and serine
protease. Biofloc act as a natural probiotic which acts against patho-
genic stimulants and the carbon source used in the biofloc increase the
beneficial bacteria naturally [72]. The bio active compound of biofloc
may have an effect on the health of cultured shrimps, particularly on
immune and antioxidant defense system by the addition of different
carbon source [50]. In our present study better immune responses were
exhibited as a result of having a better nutritive composition in dif-
ferent carbon source.

5. Conclusion

Biofloc science is gaining importance in aquaculture alongside the
commercial success of its adoption for high-density aquaculture to
achieve high productivity through a sustainable approach. This study
highlights the importance of different carbon sources in improvising the
biofloc system and shrimp performance and warrants the use of millet,
multigrain as an alternate to molasses without compromising genera-
tion of biofloc and enhanced growth performance with improved dis-
eases resistance in L. vannamei. The gene expression study revealed that
carbon sources, in specific millet, multigrain and molasses showed
immunomodulatory action in L. vannamei by triggering the proPO ac-
tivating and antioxidant defense systems. Considering the fact that gene
expression does not inevitably refer to functional proteins, further in-
vestigation in this regard is justified for prolific documentation. It is
important to define the advantages of available CHO sources in im-
proving the zootechnical performance of the species and reducing the
cost of production compared to other sources reported.
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