Thermal Processing of Fishery Products

C.O. Mohan

Fish Processing Division

ICAR-Central Institute of Fisheries Technology

Email: comohan@gmail.com

Preservation is the process achieved to store food for storing longer duration. Human beings are dependent on products of plant and animal origin for food. As most of these products are readily available only during certain seasons of the year and fresh food spoils quickly, methods have been developed to preserve foods. Preserved foods can be eaten long after the fresh products would normally have spoiled. Preservation must be seen as a way of storing excess foods that are abundantly available at certain times of the year, so that they can be consumed in times when food is scarce.

Fish and shellfishes pass through a number of processing stages immediately after catch before it is consumed or sold for consumption. These processes can be divided into primary processing and secondary processing. Primary processing includes the steps that enable fish to be stored or sold for further processing, packaging and distribution. Examples include washing, cleaning, heading, gilling, scaling, gutting, grading, filleting, de-boning, skinning, chilling and freezing, whereas secondary processing includes the production of 'value-added products'. Examples are salting, drying, smoking, canning, marinating and packaged ready to eat foods. There are number of reasons for processing fish and shellfish which are given below.

- 1. To supply safe food
- 2. To minimize loss/waste of valuable food commodity
- 3. To meet consumer preference and specified quality standards
- 4. To extend the shelf life of food for longer duration
- 5. To make profit by adding value and increasing convenience to the consumer

Fresh fish will spoil very quickly due to its internal and external factors. Once the fish has been caught, spoilage progresses rapidly. In the high ambient temperatures of the tropics, fish will spoil within few hours. The storage life of fishery products can be increased by adopting good fishing techniques (to minimize fish damage) and cooling the fish immediately to minimize the spoilage of caused by enzymatic, bacterial action and oxidation process. Fish spoilage can be effectively minimized if the effects of enzymes, bacteria and oxidation are controlled properly. This can be achieved by understanding the optimum conditions that enzymes, bacteria and oxidation processes prefer and modifying these conditions. Many processing techniques aim to alter these conditions to achieve preservation. Some of the approaches are given in Table 1.

Table 1. Possible preservation approaches

Approaches	Examples of process			
Low temperature	Chilling, Refriger	Chilling, Refrigeration, Freezing		
High temperature	Pasteurization,	Thermal	processing,	

	smoking
Reduced water availability	Drying, salt curing, spray drying, freeze drying
Chemical based preservation	Organic acids, natural extracts from plants
Microbial product based	Bacteriocins
Radiation	Ionizing (Gamma rays) and non-ionizing (UV rays) radiation
Hurdle technology	Altered atmosphere (vacuum and modified atmosphere with CO ₂ , O ₂ , N ₂ and other gases); active packaging; high pressure treatment; smoking etc

The demand for better quality processed food is ever increasing. This led to the development of a large food preservation industry aiming to supply food that is sterile, nutritious and economical. Thermal sterilization of foods is the most significant part of this industry and is one of the most effective means of preserving our food supply. Thermal processing, which is commonly referred as heat processing or canning is a means of achieving long-term microbiological stability for non-dried foods without the use of refrigeration, by prolonged heating in hermetically sealed containers, such as cans or retortable pouches, to render the contents of the container sterile. The concept of thermal processing has come a long way since the invention of the process by French confectioner, Nicholas Appert. Later on Bigelow and Ball developed the scientific basis for calculating the sterilization process for producing safe foods. Today, thermal processing forms one of the most widely used method of preserving and extending shelf life of food products including seafood's. Thermal processing involves application of high temperature treatment for sufficient time to destroy all the microorganisms of public health and spoilage concerns. Normally, thermal processing is not designed to destroy all microorganisms in a packaged product, which may result in low quality product which destroys important nutrients. Instead of this, the pathogenic microorganisms in a hermetically sealed container are destroyed by heating and a suitable environment is created inside the container which does not support the growth of spoilage type microorganisms. Several factors must be considered for deciding the extent of heat processing which include,

- a) type and heat resistance of the target microorganism, spore, or enzyme present in the food
- b) pH of the food
- c) heating conditions
- d) thermo-physical properties of the food and the container shape and size
- e) storage conditions

Thermal processing is designed to destroy different microorganisms and enzymes present in the food. Normally in thermal processing, exhausting step is carried out to before sealing the containers. In some cases, food is vacuum packed in hermetically sealed containers. In such cases very low levels of oxygen is intentionally achieved.

Hence, the prevailing conditions are not favorable for the growth of microorganisms that require oxygen (obligate aerobes) to create food spoilage or public-health problems. Further, the spores of obligate aerobes are less heat resistant than the microbial spores that grow under anaerobic conditions (facultative or obligate anaerobes). The growth and activity of these anaerobic microorganisms are largely pH dependent. From a thermal-processing standpoint, foods are divided into three distinct pH groups which are given below. Changes in the intrinsic properties of food, mainly salt, water activity and pH are known to affect the ability of microorganisms to survive thermal processes in addition to their genotype. Due to health related concerns on the use of salt, there is increased demand to reduce salt levels in foods. The United States Food and Drug Administration (FDA) have classified foods in the federal register (21 CFR Part 114) as follows (Table 2):

- 1. high-acid foods (pH < 3.7; e.g., apple, apple juice, apple cider, apple sauce, berries, cherry (red sour), cranberry juice, cranberry sauce, fruit jellies, grapefruit juice, grapefruit pulp, lemon juice, lime juice, orange juice, pineapple juice, sour pickles, vinegar)
- 2. acid or medium-acid foods (pH 3.7 4.5; e.g., fruit jams, frit cocktail, grapes, tomato, tomato juice, peaches, piento, pineapple slices, potato salad, prune juice, vegetable juice)
- 3. low-acid foods (pH > 4.5; e.g., all meats, fish and shellfishes, vegetables, mixed entries, and most soups).

Table 2. Approximate pH range of different food

Food	рН	Food	рН
Lemon juice	2.0 - 2.6	Sweet potato	5.3 - 5.6
Apples	3.1 - 4.0	Onion	5.3 – 5.8
Blueberries	3.1 – 3.3	Spinach	5.5 – 6.8
Sauerkraut	3.3 – 3.6	Beans	5.6 - 6.5
Orange juice	3.3 – 4.2	Soybeans	6.0 - 6.6
Apricot	3.3 – 4.0	Mushroom	6.0 – 6.7
Bananas	4.5 – 5.2	Clams	6.0 – 7.1
Beef	5.1 – 7.0	Salmon	6.1 – 6.3
Carrot	4.9 – 5.2	Coconut milk	6.1 – 7.0
Green pepper	5.2 – 5.9	Milk	6.4 - 6.8
Papaya	5.2 – 6.0	Chicken	6.5 – 6.7
Tuna	5.2 - 6.1	Whole egg	7.1 – 7.9

The acidity of the substrate or medium in which micro-organisms are present is an important factor in determining the extent of heat treatment required. With reference to thermal processing of food products, special attention should be devoted to *Clostridium botulinum* which is a highly heat resistant mesophilic gram positive, rod shaped spore-forming anaerobic pathogen that produces the toxin *botulin*. It has been

generally accepted that *C. botulinum* and other spore forming, human pathogens does not grow and produce toxins below a pH of 4.6. The organisms that can grow in such acid conditions are destroyed by relatively mild heat treatments. For food with pH values greater than 4.5, which are known as low-acid products which includes fishery products, it is necessary to apply a time-temperature regime sufficient to inactivate spores of *C. botulinum* which is commonly referred to as a *botulinum cook* in the industry. Thermal processes are calibrated in terms of the equivalent time the thermal centre of the product, i.e. the point of the product in the container most distant from the heat source or cold spot, spends at 121.1°C, and this thermal process lethality time is termed the F_0 value. Although there are other microorganisms, for example *Bacillus* stearothermophilus, B. thermoacidurans, and C. thermosaccolyaticum, which are thermophilic in nature (optimal growth temperature ~ 50-55°C) and are more heat resistant than *C. botulinum a* compromise on the practical impossibility of achieving full sterility in the contents of a hermetically sealed container during commercial heat processing, whereby the initial bacterial load is destroyed through sufficient decimal reductions to reduce the possibility of a single organism surviving to an acceptably low level. This level depends on the organism, usually Clostridium botulinum, which the process is designed to destroy. The time required to reduce the number of spores of this organism (or any other micro-organism) by a factor of 10 at a specific reference temperature (121.1°C) is the decimal reduction time, or D value, denoted D_0 . The D_0 value for Clostridium botulinum spores can be taken as 0.25 minutes. To achieve a reduction by a factor of 10^{12} , regarded as an acceptably low level, requires 3 minutes at 121.1°C, and is known as the process value, or F value, designated F_0 so, in this case, F_0 = 3, which is known as a botulinum cook which is the basis of commercial sterility.

Thermal resistance of microorganisms

For establishing a safe thermal processing, knowledge on the target microorganism or enzyme, its thermal resistance, microbiological history of the product, composition of the product and storage conditions are essential. After identifying the target microorganism, thermal resistance of the microorganism must be determined under conditions similar to the container. Thermal destruction of microorganism generally follow a first-order reaction indicating a logarithmic order of death i.e., the logarithm of the number of microorganisms surviving a given heat treatment at a particular temperature plotted against heating time (survivor curve) will give a straight line (Figure 1). The microbial destruction rate is generally defined in terms of a decimal reduction time (D value) which represents a heating time that results in 90% destruction of the existing microbial population or one decimal reduction in the surviving microbial population. Graphically, this represents the time between which the survival curve passes through one logarithmic cycle (Fig. 1). Mathematically,

$$D = (t_2 - t_1) / (\log a - \log b)$$

where, a and b are the survivor counts following heating for t_1 and t_2 min, respectively. As the survivor or destruction curve follows the logarithmic nature, the complete destruction of the microorganisms is theoretically not possible.

From the survivor curve, as the graph is known, it can be seen that the time interval required to bring about one decimal reduction, i.e. 90% reduction in the number of survivors is constant. This means that the time to reduce the spore population from 10,000 to 1000 is the same as the time required to reduce the spore population from 1000 to 100. This time interval is known as the decimal reduction time or the 'D' value.

The D value for bacterial spores is independent of initial numbers, but it is affected by the temperature of the heating medium. The higher the temperature, faster the rate of thermal destruction and lower the D value. The unit of measurement for D is 'minute'. An important feature of the survivor curve is that no matter how many decimal reductions in spore numbers are brought about by a thermal process, there will always be some probability of spore survival. Different micro-organisms and their spores have different D values as shown in Table–3.

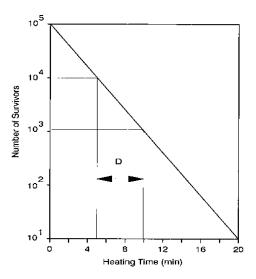


Fig 1. Survivor curve

Table-3. D value (at 121.1°C) of some bacterial spores

Microorganism	Optimum growth temperature (°C)	D value (min)
Bacillus stearothermophilus	55	4 to 5
Clostridium thermosaccharolyticum	55	3 to 4
Clostridium nigrificans	55	2 to 3
Clostridium botulinum types A & B	37	0.1 to 0.25
Clostridium sporogenes (PA 3679)	37	0.1 to 1.5
Bacillus coagulans	37	0.01 to 0.07
Non spore forming mesophilic bacterial yeasts and moulds	30 - 35	0.5 to 1.0

The thermal death time may be defined as the time required at any specified temperature to inactivate an arbitrarily chosen proportion of the spores, the higher the proportion the greater will be the margin of safety. TDT is the heating time required to cause complete destruction of a microbial population. Such data are obtained by subjecting a microbial population to a series of heat treatments at a given temperature and testing for survivors. The thermal death time curve is obtained by plotting the thermal death time on logarithmic scale against temperature of heating on linear scale on a semilogarithmic graph paper (Fig. 2). Comparing TDT approach with the decimal reduction approach, one can easily recognize that the TDT value depends on the initial microbial load (while D value does not). Further, if TDT is always measured with reference to a standard initial load or load reduction, it simply represents a certain multiple of D value. For example, if TDT represents the time to reduce the population from 10^{0} to 10^{-12} , then TDT is a measure of 12 D values. i.e., TDT = nD, where n is the number of decimal reductions. The extent of inactivation in the case of pathogenic microorganisms (C. botulinum) is equivalent to a 12 D process. The slope of the TDT curve is defined as 'z' value, which is the number of degrees for the TDT curve to traverse one log cycle. The temperature sensitivity indicator is defined as z, a value which represents a temperature range which results in a ten-fold change in D values or, on a semilog graph, it represents the temperature range between which the D value curve passes through one logarithmic cycle. The 'z' value which is also known as the temperature sensitivity indicator is usually taken as 10°C in the case of *C.botulinum*.

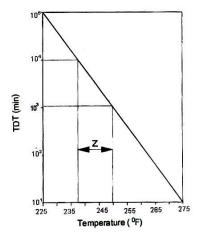


Fig. 2 TDT Curve

For the purpose of heat process determination with respect to their lethality towards specific micro-organisms, the reciprocal of the thermal death time (TDT value) called the lethal rate, L is used. So, instead of temperatures, the corresponding lethal rates are plotted against time, the area enclosed by the graph and the ordinate represent the F value for the process. i.e.,

$$L = \frac{1}{TDT}, \text{ and}$$

$$f = \int_{0}^{t} L dt$$

92

Thermal Process Severity or F₀ value

From D value and the initial number of spores inside the sealed container (N_o), an idea of the severity of heat process required to reduce the spore population to a predetermined level, N_t , can be calculated from the equation:

$$t = D (log No - log N_t)$$
 or $t = D log (No/N_t)$

where, t = time required to achieve commercial sterility

This log No/ N_t is sometimes referred to as the 'order of process', factor 'm' and the value of the product of m and D is called the 'process value' or 'F value'. That is:

$$F_0 = mD_{121.1}$$
°C

For example, considering the generally accepted minimum process for prevention of botulism through under processing of canned fishery products preserved by heat alone, assuming that the initial loads are of the order of 1 spore/g and in line with good manufacturing practice guidelines, the final loads shall be no more than $log10^{-12}$ spores/g. That is 12 decimal reductions are required. It is also known as 12 D process. The minimum time required to achieve commercial sterility can be calculated from

t =
$$0.25 (\log 1 - \log 10^{-12})$$
,
i.e., t = $0.25 \times 12 = 3.00 \text{ min}$

Thus an F₀ value of 3.00 minutes at 121.1°C at the slowest heating point (SHP) of the container is sufficient for providing safety from pathogenic organism *C. botulinum*.

Commercial sterility

If the thermal process is sufficient to fulfill the criteria of safety and prevention of non-pathogenic spoilage under normal conditions of transport and storage, the product is said to be 'commercially sterile'. In relation to canned foods, the FAO/WHO Codex Alimentarius Commission (1983) defines, commercial sterility as the condition achieved by the application of heat, sufficient alone or in combination with other appropriate treatments, to render the food free from microorganisms capable of growing in the food at normal non-refrigerated conditions at which the food is likely to be held during distribution and storage. Apart from this concept there are circumstances where a canner will select a process which is more severe than that required for commercial sterility as in the case of mackerel and sardine where bone softening is considered desirable.

Mechanism of heat transfer

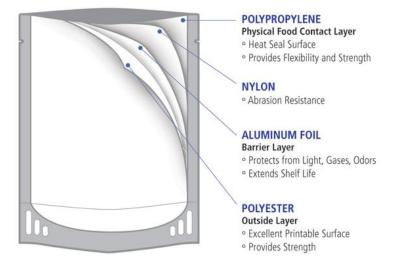
Understanding the mechanism of heat transfer is very important for thermal processing. Normally, there are three different modes of heat transfer: conduction, convection and radiation. Conduction is the transfer of heat by molecular motion in solid bodies. Convection is the transfer of heat by fluid flow, created by density differences and buoyancy effects, in fluid products. Radiation is the transfer of electromagnetic energy between two bodies at different temperatures. In thermal processed foods, the mechanism of heat transfer is either by conduction, convection or by broken heating (combination of conduction and convection). The factors which determine the mode of

heat transfer are nature or consistency of a food product, the presence of particles, and the use of thickening agents and sugars. The heating modes in the thermal processing are first by heat transfer to the container or packaging material from heating and cooling media, second through the container wall and third is into the product from container wall. Convective-heat transfer rates depend largely on the velocity of flow of the media over the container, and this is an important factor to be controlled in all processing operations. In conduction heading method, energy transfer takes place when different parts of a solid body are at different temperatures. The slowest heating point or cold point in cylindrical metal containers is at its geometric centre for food products heated by conduction method. Convection heat transfer involves the transfer of heat from one location to the other through the actual movement or flow of a fluid. The slowest heating point for convection heated products in cylindrical metal container is approximately 1/10th up from the base of the container. Packaging material forms the most important component of thermal processed foods. It should be able to withstand the severe process conditions and should prevent recontamination of the product.

Containers for thermal processing

Containers used for thermal processing should have special properties like it should withstand high temperature and pressure. Tin cans are commonly used in the canning industry and cans are denoted by trade name. First digit represents diameter of can (in inches) and next two digits represent measurement in sixteenth of inches. Apart from OTS cans, other container used in canning are: aluminium cans, tin free steel (TFS) cans, glass containers, retort pouches and semi-rigid containers.

Table 1. Cans used in fish canning industry


Trade Name	Dimension	Over-seam dimension
41/2 OZ prawn cans	301 x 203	77 x 56
8 oz prawn cans	301 x 206	77 x 60
1 lb. jam can	301 x 309	77 x 90
No.1 tall can	301 x 409	77 x 116
8 oz. tuna can	307 x 113	87 x 43

Nowadays, retort pouch processing is very popular. The retort pouches are flexible in nature and they easily withstand high temperatures used during thermal processing. They also provide good barrier against moisture and gases. The most common retort pouch is 3 layered laminate. The 3 layers are joined with adhesive lamination. These three layers are:

- Polyester layer which helps in providing strength and abrasion resistance
- Aluminium foil for providing barrier against moisture, gases and light
- Polypropylene/ polyethylene for heat sealing properties.

Containers used for thermal processing

Composition of Retortable pouch

Ideally, the container used for thermal processing should fulfill following characterisitcs:

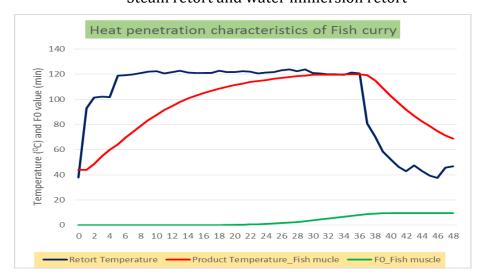
- Should withstand the sterilisation pressure and temperature
- Should be impervious to air, moisture, dust and disease germs once the can is sealed air tight
- Internal lacquer should not impart toxicity to the contents
- Strong enough to protect the contents during transportation and handling
- Inexpensive, preferably cheap enough to discard after use
- Capable of sealing at high speed
- Pleasing and sanitary appearance

Thermal Processing of Fishery Products

The thermal processing is carried out for achieving two objectives; the first is consumer safety from botulism and the second is non-pathogenic spoilage which is deemed commercially acceptable to a certain extent. If heat processing is inadequate the

possibility of spoilage due to C. botulinum is more and will endanger the health of the consumer. Safety from botulism is made possible by making the probability of C. botulinum spores surviving the heat process sufficiently remote and presents no significant health risk to the consumer. An acceptable low level in the context of this dangerously pathogenic organism means less than one in a billion (10^{-12}) chance of survival. Such a low probability of spore survival is commercially acceptable as it does not represent a significant health risk. The excellent safety record of the canning industry with respect to the incidence of botulism through under processing, confirms the validity of this judgment. An acceptable low level in the case of thermophilic nonpathogenic organisms should be arrived at judiciously considering the factors like very high D value, risk of flat sour spoilage, commercial viability and profitability etc. Since non-pathogenic organisms do not endanger the health of the consumer process adequacy is generally assessed in terms of the probability of spore survival which is judged commercially acceptable. Considering all these facts, it is generally found acceptable if thermophilic spore levels are reduced to around 10^{-2} to 10^{-3} per g. Another reason for this acceptance is that the survivors will not germinate if the storage temperature is kept below the thermophilic optimum growth temperature i.e. below 35°C.

Fishery products, being categorized as low acid foods require heat processing severity with respect to *C botulinum* and F₀ value recommended is 5-20 min. Thermal processing of fishery products include various steps. These steps include, preparations like washing, beheading, gutting, removing scales / fins, cutting into required size, blanching (hot / cold), pre-cooking, filling fish pieces into containers, filling content or medium, exhausting to remove air, sealing, loading into the retort or autoclave, sterilization, washing and storing. Various packaging materials have been used from historically starting from glass container to metal container, flexible retortable pouches and rigid plastic containers. The sterilization process in the canned product can be subdivided into three phases. First one is heating phase, in which the product temperature is increased from ambient to the required sterilization temperature by means of a heating medium (water or steam). This temperature is maintained for a defined time (phase 2 = holding phasing). In (phase 3 = cooling phase) the temperature in the container is decreased by introduction of cold water into the autoclave. In order to reach temperatures above 100°C (sterilization), the thermal treatment has to be performed under pressure in pressure cookers, also called autoclaves or retorts. Simple autoclaves are generally vertical ones with the lid on top. Through the opened lid, the goods to be sterilized are loaded into the autoclave. The cans are normally placed in metal baskets. The autoclave and lid are designed to withstand higher pressures up to 5.0 bar. These types of autoclaves are best suited for smaller operations as they do not require complicated supply lines and should be available at affordable prices. Larger autoclaves are usually horizontal and loaded through a front lid. Horizontal autoclaves can be built as single or double vessel system. The double vessel systems have the advantage that the water is heated up in the upper vessel to the sterilization temperature and released into the lower (processing) vessel, when it is loaded and hermetically closed. Using the two-vessel system, the heat treatment can begin immediately without lengthy heating up of the processing vessel and the hot water can be recycled afterwards for immediate use in the following sterilization cycle. In rotary autoclaves, the basket containing the cans rotates during sterilization which enhances the heat penetration resulting in reduced process time. This technique is useful for cans with liquid or semi-liquid content as it achieves a mixing effect of the liquid/semi-liquid goods. Water immersion


retorts are also used in the industry for thermal processing which is advantageous over steam retorts due to its uniform temperature distribution as there is no possibility of forming air pockets in the retort which limits the heat transfer in steam retorts. At the final stage of the sterilization process the products must be cooled as quickly as possible by introducing cold water. The contact of cold water with steam causes the latter to condense with a rapid pressure drop in the retort. However, the overpressure built up during thermal treatment within the cans, jars or pouches remain for a certain period. During this phase, when the outside pressure is low but the pressure inside the containers is still high due to high temperatures there, the pressure difference may induce permanent deformation of the containers. Therefore, high difference between the autoclave and the thermal pressure in the containers must be avoided. This is generally achieved by a blast of compressed air into the autoclave at the initial phase of the cooling. Sufficient hydrostatic pressure of the introduced cooling water can also build up counter pressure so that in specific cases, in particular where strong resistant metallic cans are used, the water pressure can be sufficient and compressed air may not be needed unlike in flexible retortable pouches. After thermal processing, the containers are washed with chlorinated potable water and stored for conditioning for 2 – 4 weeks. Conditioning helps in proper mixing of the ingredients with the fish products and helps in assessing the extent of thermal process severity. If the containers do not show any deformation, it indicates the effectiveness of the thermal processing.

The important steps in canning process are:

- 1. Raw material preparation
- 2. Blanching/ Precooking
- 3. Filling into containers
- 4. Addition of fill (brine/oil/gravy)
- 5. Exhausting
- 6. Seaming/sealing
- 7. Retorting (heat processing)
- 8. Cooling
- 9. Drying
- 10. Labelling and storage

Steam retort and water immersion retort

Typical heat penetration curve of fish curry in retortable pouches
