Weeds should be uprooted with root system. The mechanical mini weeder can be used during dormancy up to a depth of 5-8 cm, when weeds are small. The use of herbicides should be avoided, however infestation is more application of glyphosate and 2, 4-D @ 1 kg/ha during dormancy between June to August controls most of weeds effectively. Planting of corms in definite row pattern at proper depth can help in hand weeding as well as mechanical weeding without any corm damage.

Conclusion:

For increasing production and productivity the intensive production technology need to be adopted which include:

- Use graded saffron corms of more than 8-10 g size
- Treat corms-soil with T. viride/carbendazim for corn rot management
- Plant corms on raised beds of 5x1.5 m² size with proper drainage channel
- Plant corms at spacing of 20x10 cm² and a depth of 15-20 cm
- Planting density: 10 lakh corms/ha by planting two corm per hill
- Apply manures and fertilizers @ FYM 2 t/ha, NPK 90:100:120 kg/ha
- Provide irrigation: Sprinkler (4-6 irrigation)
- Follow integrated weed management
- Follow planting cycle of 5-6 years

Adoption of intensive production technologies can increase saffron yield from the existing 2.5 kg to 7-8 kg/ha along with production of more corms per hectare and can help in utilization of half of land to saffron or other crop.

Published by:

Director,
Central Institute of Temperate Horticulture,
K.D. Farm, Old Air Field, Rangreth,
Srinagar-190 007 (J&K), Ph:0194-2305044.
4. Introductions: Section names and page numbers

Introduction

The use of drip irrigation systems results in significant improvement in crop productivity and water efficiency, especially in arid regions. Drip irrigation systems allow for precise and efficient water application, reducing water waste and conserving resources. This technology is particularly beneficial in areas with limited water availability and high water costs. Drip irrigation systems also provide better control over water application, ensuring that crops receive the exact amount of water they need for optimal growth.

Factors Responsible for Crop Productivity

The productivity of crops is influenced by various factors, including soil type, climate, and crop management practices. However, drip irrigation systems can significantly enhance crop productivity by ensuring uniform and consistent water application.

Conclusion

In conclusion, drip irrigation systems are an essential tool in modern agriculture, offering numerous benefits over traditional irrigation methods. By providing precise and efficient water application, these systems not only improve crop productivity but also contribute to the conservation of water resources. As technology continues to advance, drip irrigation systems are likely to become even more effective and efficient, further enhancing their role in sustainable agriculture.

References

Appendix

Table 1: Comparison of Different Drip Irrigation Systems

<table>
<thead>
<tr>
<th>System Type</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-drip</td>
<td>High efficiency</td>
<td>Requires more initial investment</td>
</tr>
<tr>
<td>Pressure-compensating</td>
<td>Low maintenance cost</td>
<td>Limited to certain types of crops</td>
</tr>
</tbody>
</table>

Figure 1: Schematic of a Drip Irrigation System

The system consists of a water source, a pressure regulator, a manifold, and individual emitters for each plant.

Figure 2: Drip Irrigation System Installation

The system is installed in the field with the water source at the top, followed by the manifold and individual emitters.