Occurrence of algal leaf spot on longan (Dimocarpus longan) caused by Cephaleuros virescens in India

VINOD KUMAR1, AJIT KUMAR DUBEDI ANAL2, ALOK KUMAR GUPTA3 and VISHAL NATH4

ICAR-National Research Centre on Litchi, Muzaffarpur, Bihar 842 002, India

Received: 11 October 2017; Accepted: 13 February 2019

ABSTRACT

Longan (Dimocarpus longan Lour.) is an evergreen subtropical fruit tree species of Sapindaceae family with a long cultivation tradition in South East Asia. Between July to September of 2014 and 2015, leaves of longan trees were found infected by green algae at experimental farm of National Research Centre on Litchi, Muzaffarpur, Bihar (India). The symptoms of the disease appeared on the upper leaf surface as dark gray to reddish-rust coloured lesions, slightly raised with a velvet-like appearance. The disease incidence among leaves was 28.4-57.3% while percent disease severity index was 13.3 to 20.2. The algal thalli were isolated and cultured successfully on potato dextrose agar and Bold’s basal medium but there was no development of sporangiophores and sporangia in culture. In pathogenicity test, inoculum either from naturally infected leaves or from pure culture of algal filaments could not reproduce typical symptom of the disease even up to three months of inoculation. Based on the leaf symptom and morphological characteristics, the pathogen was identified as Cephaleuros virescens Kunze. To our knowledge, this is the first report of leaf spots caused by Cephaleuros virescens on longan trees in India.

Key words: Algal leaf spot, Cephaleuros virescens, Green algae, Longan

The longan (Dimocarpus longan Lour., Family: Sapindaceae) is a subtropical woody perennial fruit tree cultivated in Southeast Asia, including southern China, Vietnam, Thailand, Taiwan, Cambodia, Laos, Myanmar, Queensland in Australia, Florida in the United States and northern India. World production of longan was more than 2500 million tonnes in 2010 (FAO 2011). Longan is currently grown on a smaller scale in India but there is growing interest among farmers for its cultivation. Since, the fruit is similar to litchi but matures later; the longan can be useful for extending the season for fruit of this type. Longans are consumed fresh or frozen for later consumption. The fruit is a good source of potassium and is low in calories. It is a great source of ellagic and gallic acids, which are potent anti-oxidants. So far in India, there had been no major disease problems in longan. However, during July to September of 2014 and 2015, numerous leaf spots or lesions on upper leaf surface were observed that subsequently resulted in necrosis of majority of leaf tissues. Such symptoms are often caused by infection by parasitic green algae of the genus Cephaleuros on many woody trees (Brooks et al. 2015) mostly during high humidity and warm rainy weather. This leaf spot was noticeable on all the nine longan germplasm (Lgc-01 to Lgc-09) at National Research Centre on Litchi (NRCL) experimental farm. Since, the disease occurred during fruiting season, it affected the yield and quality of fruits. Therefore, the objectives of the present investigation were to study symptomatology, assess extent of the disease on trees, and to identify the causal agent of the disease, its pathogenicity, morphological and microscopic characteristics.

MATERIALS AND METHODS

Diseased leaf specimens were collected from the experimental farm of NRCL, Muzaffarpur (26°05’43” N, 85°26’39” E, 47 m asl) in Bihar state of India. Symptoms were observed visually as well under a stereomicroscope. Slides were prepared by using sterile distilled water as mounting medium, removing the mycelium and algal structures found on the infected tissue (Vasconcelos et al. 2016). Images of micro-morphological structures were captured under bright field of a Nikon Fluorescence Microscope (Eclipse Ti-5) having photographic attachment (DS-Ri1). Dimensions of algal structures (sporangiophore and sporangia) were measured by using the ‘NIS-Elements AR software’, obtaining the average of 20 measurements for each structure and the range of the values were noted. The voucher specimens were preserved and accessioned in the herbarium of Crop Protection Unit, ICAR-National Research Centre on Litchi, Muzaffarpur, Bihar.

Algal cultures were obtained based on the methods of Suto and Ohtani (2011). Leaves with fresh thalli were
leaf area infected - 4; >40% leaf area infected). PDI was calculated using the formula,
\[\text{PDI} = \frac{\sum (\text{Severity grade} \times \text{no. of leaflets}) \times 100}{\text{(Total no. of leaflets observed} \times \text{maximum grade})} \]

Analysis of variance (ANOVA) in data on disease incidence and severity was conducted with SAS® 9.2 statistical software using a completely randomized block design. The least significant differences (LSDs) between means at 5% probability (P=0.05) and the standard error (SE) of means were computed.

RESULTS AND DISCUSSION

Symptoms and occurrence of disease: The symptoms of the disease appeared as dark gray to reddish-rust coloured spots or lesions slightly raised with a velvet-like appearance on the upper leaf surface (Fig 1) that subsequently resulted in necrosis of majority of leaf tissues. The symptoms were more prevalent on older leaves, in the lower foliage of the trees. In severe infections, leaf drop and stem die back occurred. No lesions were observed on fruits. It was evident that thalli grow subcuticularly on the upper leaf surface. They were more or less circular, raised disk like, 1-8 mm (mostly 3-4 mm) in diameter and olive in colour. Algal thalli were observed in all the leaf lesions under stereobinocular microscope. No thalli were found on the lower leaf surface.

Incidence and severity of the disease on orchard trees were assessed during August 2015. Four trees in each block were sampled and per tree randomly 10 twigs (small branch or shoot of a tree having approximately 100-125 leaves) were observed for disease lesions on leaves from all the four direction. Thus based on observation of 40 twigs, 'percent infected twigs' on tree was calculated. Further, four twigs were randomly observed and infected leaflets were counted to compute 'percent infected leaflets'. Percent disease severity index (PDI) on leaflets was assessed using a 5-point scale (<10% leaf area infected -1; 10-20% leaf area infected - 2; 20-30% leaf area infected - 3; 30-40% leaf area infected - 4; >40% leaf area infected). PDI was calculated using the formula,
\[\text{PDI} = \frac{\sum (\text{Severity grade} \times \text{no. of leaflets}) \times 100}{\text{(Total no. of leaflets observed} \times \text{maximum grade})} \]

Table 1 Incidence and severity of algal leaf spot on longan trees at NRCL Experimental Farm, Muzaffapur (India) in August 2015

<table>
<thead>
<tr>
<th>Germplasm block</th>
<th>Percent infected twig</th>
<th>Percent infected leaflet</th>
<th>< 10%</th>
<th>10-20%</th>
<th>>20%</th>
<th>Percent disease severity index</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>35.0</td>
<td>40.7</td>
<td>69.2</td>
<td>16.7</td>
<td>14.0</td>
<td>16.1</td>
</tr>
<tr>
<td>II</td>
<td>25.0</td>
<td>35.7</td>
<td>64.4</td>
<td>15.8</td>
<td>19.8</td>
<td>17.3</td>
</tr>
<tr>
<td>III</td>
<td>22.5</td>
<td>28.4</td>
<td>48.2</td>
<td>31.7</td>
<td>19.3</td>
<td>18.9</td>
</tr>
<tr>
<td>IV</td>
<td>37.5</td>
<td>57.4</td>
<td>45.2</td>
<td>27.6</td>
<td>23.7</td>
<td>20.2</td>
</tr>
<tr>
<td>V</td>
<td>30.0</td>
<td>34.9</td>
<td>83.5</td>
<td>8.3</td>
<td>8.2</td>
<td>13.9</td>
</tr>
<tr>
<td>VI</td>
<td>20.0</td>
<td>46.3</td>
<td>74.3</td>
<td>12.6</td>
<td>13.1</td>
<td>15.4</td>
</tr>
<tr>
<td>VII</td>
<td>27.5</td>
<td>40.8</td>
<td>82.9</td>
<td>14.3</td>
<td>2.7</td>
<td>13.3</td>
</tr>
<tr>
<td>SEM±</td>
<td>0.7</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>LSD (P=0.05)</td>
<td>2.8</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fig 1 Symptoms on leaves of a tree (Left) and close-up view of lesions (Right).
(Table 1). Though the PDI ranged from 13.3 to 20.2, the percent distribution of infected leaflets in different severity categories indicated that lesser number of leaves had more than 20% of area damaged by lesions caused by algal thalli. The disease was found prevalent during July to September when maximum temperature was 31.7-35.4 °C and minimum was 24.6-26.7 °C. Maximum humidity during the period was 82.6-93.6% while minimum was 39.7-59.7%. It was most prevalent during high humidity, warm and rainy weather. The pathogens reproduced and survived in spots on leaves or stems and in fallen plant host debris.

Isolation and characterization of the pathogen: The algal thalli were isolated and cultured successfully on PDA and BBM but there was no development of sporangiophores and sporangia in culture. Characteristics of the algal structures were hence studied by preparing temporary mount from leaf lesions. Head cells were produced at the termini of sporangiophores (Fig. 2–5). The dimensions of sporangiophores were (length × width) 116.0-309.5 × 10.7-15.3 μm. Head cells produced 4 to 6 sporangiate-laterals (mostly five), zoosporangia and their suffultory cells. Mature zoosporangia were globular in shape and measured (length × width) 28.5-32.3 × 19.4-22.1 μm. Sporangium produced ellipsoidal to broadly fusiform quadriflagellate zoospores. In our collection, mature gametangia were not observed.

Based on the leaf symptom and morphological characteristics, the pathogen was identified as *Cephaleuros virescens* Kunze of the family Trentepohliaceae, order Trentepohliales and the division Chlorophyta. The morphological characteristics of the pathogen largely corroborated to the description by Thompson and Wujek (1997) and Suto and Ohtani (2009). Dimensions of microscopic structures are often influenced by host plants,
collecting seasons, and environmental conditions (Suto et al. 2014). Pathogenicity test was negative and typical symptoms could not be produced even up to three months of inoculation in both the inoculums types, either filaments of algal thalli from pure culture of *C. virescens* or with natural inoculums prepared from leaf lesions. Pathogenicity tests on other hosts also have never been demonstrated successfully, nor have zoospores been produced in culture (Holcomb et al. 1998).

Green algae in the genus *Cephaloerys* are known to be parasitic on several woody plants in tropics and subtropics such as tea (*Camellia sinensis*), avocado (*Persea americana*), breadfruit (*Artocarpus altilis*), carambola (*Averrhoa carambola*), some citrus (*Citrus* spp.), durian (*Durio zibethinus*), longan (*D. longan*), litchi (*Litchi chinensis*), mango (*Mangifera indica*), mangoes (*Garcinia mangostana*) and rambutan (*Nephelium lappaceum*). Signs of the disease are often found on the leaf surface in the form of burnt-orange to brown spots (Nelson 2008). Leaf tissues are colonized beneath the epidermis by algal filaments, but host cells are not penetrated (Chapman and Henk 1985). In India, *C. virescens* commonly infect mango and litchi leaves. Prevalence of the disease on tea plantation in India (Ramya et al. 2013) and Japan (Ezuka and Ando 1994) has also been reported. Leaf spot caused by *C. virescens* on longan in Puerto Rico was reported by Ferwerda (2002), on Para rubber (*Hevea brasiliensis*) in Thailand by Pitaloka et al. (2015) and on rambutan in Thailand by Sunpapao et al. (2016). Our research indicates that longan is a new host in India for *C. virescens*. Although the incidence and severity appears to be small on current plantings, this might become a serious problem as this crop becomes better known and its cultivation increases in the country. Therefore, it is suggested to monitor trees for the algal spots and to apply control measures if it becomes necessary.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support and facilitation of Dr Rajesh Kumar (Late), Ex-Principal Scientist, ICAR-NRCL, Muzaffarpur during the studies. The authors also thank Dr P N Chowdhry, mycologist and former Head of the Indian Type Culture Collection, New Delhi for identification of the pathogen.

REFERENCES

