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Abstract The goal of the present study was to investigate

the bioactive molecules (anthocyanins and fatty acids)

present in the aril of pomegranate. Major anthocyanins

present in the aril of pomegranate were identified by

HRMS as delphinidin 3,5-diglucoside, cyanidin 3,5-diglu-

coside, pelargonidin 3,5-diglucoside, cyanidin 3-glucoside

and delphinidin 3-glucoside. In-vitro study revealed that

bioaccessibility of anthocyanin in duodenal condition was

varied between 7.3 and 9.7%. Encapsulation enhances the

bioaccessibility of both the phenolics to some extent in

gastric as well as duodenal condition. Seed oil contains

significant amount of unsaturated fatty acids especially x-5
fatty acids. Geometrical isomers of x-5 fatty acids were

also identified by GC–MS. The spray dried anthocyanin

formulation has potential for food application.

Keywords Pomegranate aril � Seed � Anthocyanins �
HRMS characterization � Spray drying � Bioaccessibility

Introduction

Polyphenols are well known to be powerful antioxidants

and they are abundantly present in fruits and vegeta-

bles (Hertog et al. 1997). Investigations showed that these

polyphenols are responsible for the prevention of various

diseases including digestive tract infection (Serafini et al.

2002). Investigations reported that most of the polyphenols

present in human diet are not as active as a nutraceutical

because of its limitations like limited absorption in human

digestive system (Saura-Calixto et al. 2007; Heim et al.

2002).

Pomegranate (Punica granatum) aril is a source of

powerful antioxidant, anthocyanin. Glycosides of cyanidin,

pelargonidin, peonidin, delphinidin, petunidin, and mal-

vidin are the major anthocyanins present in plants. Based

on earlier research reports, pomegranate juice is known to

be a major source of 3-glucosides and 3,5-diglucosides of

delphinidin, cyanidin, and pelargonidin, apart from other

polyphenolics (Du et al. 1975). Relative constituent of

individual anthocyanins and its glucosylated form vary

with the climatic condition.

With the advancement of analytical techniques, espe-

cially hyphenated chromatographic and spectrometric

techniques with high accuracy, elucidation of chemical

structure and determination of its role in different pathways

have become easier for understanding. Liquid chromato-

graphic separation followed by high accuracy detection by

high resolution mass spectrometry (LC-HRMS) is key in

identification of plant secondary metabolites (De Vos et al.

2007).

Apart from the anthocyanins, seed contains significant

amount of oil. Edible oil with conjugated fatty acids are

known to be active physiologically. Conjugated linolenic

acids (CLNA) are one of the important fatty acid that have
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significant nutraceutical properties (Nagao and Yanagita

2005). Different geometric and positional isomers of

CLNA were reported in different seed oils. Pomegranate

seed oil is reported to have x-5 fatty acids, apart from other

mono and di-saturated fatty acids (Kaufman and Wiesman

2007).

In our opinion, there is no report of anthocyanin char-

acterization of the pomegranate cultivars grown in India.

Limited reports are available on the bioaccessibility of

these anthocyanins in human system. Further, encapsula-

tion of these polyphenols in a food matrix might change the

release behavior of these phytochemicals and thus may

interfere with the bioaccessibity. So, the major aim of the

present study is to provide new insights into bioaccessiblity

of the anthocyanin in its crude extract, purified and for-

mulated form. HRMS characterization of anthocyanins

present in the pomegranate fruit will be helpful in

metabolite profiling upon climatic variations of Indian

subcontinents. The study also aimed to characterize the

fatty acids present in the seed oil of the cultivar, especially

conjugated linolenic acids. The study deals with the

extraction, purification and characterization of antho-

cyanins and fatty acids from pomegranate aril and seed.

Bioaccessibility of anthocyanin was also evaluated in

purified and encapsulated form.

Experimental section

Sampling of pomegranate cultivars

For extraction of anthocyanin and seed oil, pomegranate

fruits (Bhagwa variety) was selected and procured from a

local market in Delhi. Peels, arils and seeds were separated

and stored at - 40 �C.

Chemicals

HPLC grade solvents (methanol, acetonitrile) were pro-

cured from Merck� India Pvt. Ltd. Resins, XAD-7 (Am-

berlite�) and standard cyanidin-3-glucoside (C3G) were

procured from Sigma-Aldrich, USA. Pepsin enzyme, pan-

creatin, bile salts, cellulose dialysis tubing required for the

study were purchased from Sigma Aldrich Ltd., Louis,

USA.

Extraction

Extraction of anthocyanin

Extraction of anthocyanins was executed by following the

methodology already standardized in the laboratory

(Pradhan and Saha 2016). Arils of pomegranates were

separated and squeezed to get the juice. The juice was

acidified with 0.1% HCl. The juice was evaporated to

dryness using rotary evaporator (\ 45 �C) to get the

anthocyanin rich extract as dark coloured viscous mass.

After removal of juice, seeds were separately washed and

dried for the extraction and characterization of its fixed oil.

Purification of anthocyanin The dried anthocyanin rich

extract was subjected to purification by passing through a

macroporous adsorption resin (XAD-7) column. Initially

the concentrate was loaded in the column, the column was

eluted with water twice so as to evacuate sugars and dif-

ferent other phenolics. After that the column was eluted

with ethanol to get the fractions of column bound antho-

cyanins. Elution of ethanol proceeded till the column elu-

ent turned out to be practically colourless. Ethanol was

evaporated utilizing rotary evaporator under vacuum

(\ 40 �C) and the residue was dissolved in water for pre-

freezing. The sample was lyophilized on a lyophilizer to

get fine anthocyanin crystals.

Analysis of anthocyanin by HPLC HPLC system was

used for the analysis of purified anthocyanin using C18

column (Hypersil; 250 mm 9 4.6 mm 9 5 l; Thermo

Fischer Scientific) for the better separation. Multistep lin-

ear gradient solvent system comprising of water (0.1%

TFA; solvent A) and water: ACN: TFA (53:46:1 v/v; sol-

vent B) was used for the anaysis. The gradient elution

profile was as follows: 0 min 80% A, 26 min 60% A,

thereafter to 20% in 4 min and stay constant for 10 min

and then back to initial composition. The injected volume

was 20 lL and the flow rate was 0.6 mL min-1. The

chromatogram was recorded at wavelengths of 520 nm.

Empower 2� was used as operating system for data anal-

ysis. Retention times and UV–visible spectral fingerprint of

the standard and compounds in extract were used for pre-

liminary identification of individual anthocyanins. Total

anthocyanin was also calculated as cyanidin-3-glucoside

equivalent after considering all the peaks together.

HRMS characterization of anthocyanin The purified

anthocyanin was analyzed by UHPLC high resolution mass

spectroscopy (HRMS/ESI-Orbitrap) for the characteriza-

tion. Conditions were same as mentioned in the earlier

(Sarkar et al. 2018).

Extraction of seed oil

Pomegranate seed oil was extracted by following AOAC

(AOAC method 945.16; Association of Official Analytical

Chemists) method using petroleum ether (40–60 �C) as the
solvent in a Soxhlet apparatus.

J Food Sci Technol

123



Characterization of oil For characterization of fatty acids

present in pomegranate seed oil, fatty acid methyl esters

were prepared. It was prepared upon addition of methanol

in few drops of oil and sulfuric acid, followed by incuba-

tion in a water bath at 65 �C for 1 h. The methyl esters

were extracted after partitioning with hexane and it was

analyzed using gas chromatograph–mass spectrometry

(GCMS). GC–MS analysis was carried out using a GC

(7890A; Agilent Technologies) connected to a triple axis

HED-EM 5975C mass spectrometer (Agilent Co., USA).

Analysis was done by an HP-5MS column

(30 m 9 0.25 mm; 0.25 lm, Agilent Co., USA). 1 lL
sample was injected using split mode of injection. The

carrier gas (Helium) flow was set at 1 mL min-1. The used

GC–MS conditions for the analysis is described as follows:

the oven temperature was initially held at 40 �C, then

raised with a gradient of 5 �C min-1 and held for 1 min.

Next temperature enhancement was done with a gradient of

5 �C min-1 and held for 5 min. The total run time was

54 min. Other instrument settings were as follows: 250 �C
interface temperature, 200 �C ion source temperature, and

electron impact ionization (EI) at 70 eV. The MS acqui-

sition parameters were: ion source 180 �C, electron ion-

ization 70 eV, full scan mode (50–550 mass units), transfer

line temperature 280 �C, solvent delay 3 min, and E.M.

voltage 889. The ionization energy was 70 eV with a scan

time of 1 s and mass range of 20–500 amu. Compounds

were identified by matching their mass spectra. NIST

(National Institute of Standards and Technologies) Mass

Spectra Library was used as a reference for identifying the

essential components.

Microencapsulataion of anthocyanin

For preparation of microcapsule, maltodextrin was used as

carrier for the encapsulation. For encapsulation, mal-

todextrin (20 g) and anthocyanin (2 g) were mixed in

125 mL of water and then the sample was fed into a spray

drier (Labultima, Mumbai), where the mixture was nebu-

lized with a pressure ranging from 1.97 to 2.38 kg cm-2

under vacuum (184 mm). The inlet temperature was

maintained about 151.4–170.0 �C and the outlet tempera-

ture was at about 61.7 �C. The resultant powdered for-

mulation was collected from different cyclone chambers

and stored in a sealed container (- 20 �C) for further

analysis.

Estimation of encapsulation efficiency

For the determination of encapsulation efficiency, surface

anthocyanins were estimated after extraction of 200 mg of

encapsulated materials with 2 mL of ethanol for 1 min.

Amounts of extracted anthocyanins were quantified as

described in earlier section. Then encapsulation efficiency

was calculated for both the compounds separately.

Scanning electron microscopy

Outer surface morphology of the encapsulated formulations

(blank and anthocyanin loaded) were taken with Zeiss

EVOMA10 scanning electron microscope. Sample prepa-

ration was done by mounting approximately 0.5 mg of

material in powdered form on an aluminium stub followed

by sputter-coating with palladium layer.

Bioaccessibility study

The bioaccessibility studies were carried out to get an idea

about the gastrointestinal absorption of the compounds,

which also provide a significant correlation between

in vitro and in vivo measurements (McDougall et al. 2005).

It included two steps:

(1) Pepsin/HCl digestion:

The sample (700 mg) was digested with 20 mL of

acidified water (pH 1.7, adjusted with 11.8 (N) HCl)

and 25.2 mg of pepsin followed by incubation at

room temperature (35 ± 2 �C) with shaking at

100 rpm in magnetic stirrer for 2 h.

(2) Neutralization of the digested sample mixture in the

mimic of gastrointestinal tract:

After 2 h of digestion, in the digested sample

mixture 18 mg pancreatin (4.5 mL of 4 mg mL-1

pancreatin, Sigma Aldrich Ltd., Louis, USA) and

500 mg bile salts were added. In a dialysis tube

(MWCO 12400, 40 mm flat width with 99.99%

retention, used as a mimic of gastrointestinal tract)

5.6 mL of 0.75 (M) NaHCO3 (titratable acidity) was

added and placed in that digested sample mixture for

2 h. Then 0.75 mL of aliquot from the inside

mixture of the dialysis tube (expressed as IN) was

taken out, checked for the pH (pH-7.25), and then

analyzed in HPLC after 50% dilution with water.

Results and discussion

Characterization

Characterization of anthocyanin

After HPLC analysis, considering all the constitutive peaks

of anthocyanin, total anthocyanin content was recorded as

37 mg 100 mL-1 of aril juice. Our result is consistent with

the earlier results (Fawole and Opara 2013) and is within
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the range of those previously published (Melgarejo et al.

2000).

Recent literature reported characterization of polyphe-

nols by HRMS data using both positive and negative mode

(Sun et al. 2013; Riffault et al. 2014; Michel et al. 2015;

Salerno et al. 2016).

Orbitrap is known for its high mass accuracy (Dm\
2–3 ppm) and elemental composition. For reducing the

number of hits, mass tolerance was set at below 5 ppm.

Major resolved peaks in TIC were selected and their ele-

mental composition was recorded. Molecular ion peak

followed by MS/MS spectra with selected precursor ions

helped to identify the structures of the compounds.

Anthocyanin rich extract was obtained after concentra-

tion and purification by adsorbent resin. The extract upon

HPLC analysis yielded five major peaks, which showed

absorption maxima of 504.2–522.5 nm (Fig. S.1). HPLC

profile revealed two major and three minor peaks in the

chromatogram. Although other smaller intensity peaks

were also visible in the chromatogram.

The first major peak, eluted at retention time of

19.824 min, showed UV maxima of 521.3 nm. HRMS

analysis revealed that the experimental mass of the peak 1

was 627.1549, which was closer to the theoretical mass of

Delphinidin-3,5-diglucoside with a error mass value of

- 1.17. So, the compound was characterised as Delphini-

din-3,5-diglucoside (Table 1).

Second major peak (Rt 22.053 min) in the LC chro-

matogram was maximum in concentration. The peak had a

molecular ion peak at m/z 611.1631 with a base peak of

m/z 287. With the error values of 3.07, the peak was

identified as cyanidin-3,5-diglucoside with empirical for-

mula of C27H31O16.

Peak 3 and 4 eluted at a close interval with Rt value of

24.416 and 24.532 min. UV–Vis spectrum of these two

peaks revealed the kmax value of 504.2 and 518.8 nm,

respectively. Molecular ion peak of peak 3 and 4 were

recorded at m/z 595.1645 and 465.1033. Base peak of these

two peaks were m/z 271 and 303 confirmed the structures

as Pelarginidin-3,5-diglucoside and Delphinidin-3-glu-

coside, respectively. Error mass value was calculated as

- 2.02 and - 1.93 for those peaks (Table 1).

Last peak was eluted at retention time of 27.009 min.

The peak was characterised as cyanidin-3-glucoside after

scrutinizing its molecular ion peak value (m/z 449.1092)

and error mass value of 1.78. Confirmatory base peak of

cyanidin and its kmax value of 517.6.

Major anthocyanins present in pomegranate from Iran

were delphinidin 3-glucoside, delphinidin 3,5-diglucoside,

pelargonidin 3-glucoside, pelargonidin 3,5-diglucoside,

cyanidin 3-glucoside and cyanidin 3,5-diglucoside

(Alighourchi et al. 2008). In another study, nine antho-

cyanins were reported to be present in the aril, amongst

which cyanidin-3,5-diglucoside was the major compound

(Fischer et al. 2011). MALDI-TOF MS was used by Afaq

et al. (2005) for the characterization of six anthocyanins

present in the aril of pomegranate. Reported anthocyanins

were pelargonidin 3-glucoside, cyanidin 3-glucoside, del-

phinidin 3-glucoside, pelargonidin 3,5-diglucoside, cyani-

din 3,5-diglucoside and delphinidin 3,5-diglucoside.

Characterization of oil

Transesterification was done to covert fatty acids in oils to

fatty acid methyl esters (FAME). Fatty acid compositions

present in pomegranate seed oil are presented in Table 2.

GC–MS analysis demonstrated wide distribution of fatty

acids. It started from palmitic acid (16:0) to long chain

fatty acid (21:1). Saturated fatty acid constituted up to

9.3%, whereas, unsaturated fatty acids constituted 90.7%.

Out of unsaturated fatty acids, 11.1% were mono-unsatu-

rated, 11.6% were di-unsaturated and 68.1% were tri-un-

saturated (Fig. 1). Fragmentation pattern of FAME after

GC–MS analysis revealed characteristic peak of saturated,

mon-unsaturated, di-saturated and tri-unsaturated fatty

acids were m/z 74, 55, 67 and 79. Contribution of these

characteristic peak in these different fatty acids were pre-

sented in Fig. 2. Contribution of m/z 67 and 69 were very

Table 1 Retention time, molecular ion (in positive mode) and error mass of HRMS analysis of identified compound present in resin purified

extract

Peak

number

Rt (min; HPLC-

PDA)

Theoretical

mass

Experimental

mass

Error mass (D,
ppm)

Chemical

formula

Tentative identification

1 19.824 627.1556 627.1549 - 1.17 C27H31O17 Delphinidin-3,5-

diglucoside

2 22.053 611.1612 611.1631 3.07 C27H31O16 Cyanidin-3,5-diglucoside

3 24.416 595.1657 595.1645 - 2.02 C27H31O15 Pelarginidin-3,5-

diglucoside

4 24.532 465.1033 465.1024 - 1.93 C21H21O12 Delphinidin-3-glucoside

5 27.009 449.1084 449.1092 1.78 C21H21O11 Cyanidin-3-glucoside
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less in saturated fatty acids, whereas, m/z 74 in di- and tri-

unsaturated fatty acids were very less as compared to other

three peaks.

Interestingly, five peaks of linolenic acid showed

molecular ion peak at m/z 192.1. Total linoleic acid content

was calculated by adding all the five peaks corresponds to

m/z of 192. Our results are in agreement with earlier

reports (Kaufman and Wiesman 2007; Fadavi et al. 2006;

Suzuki et al. 2001). There were five different peaks of

linolenic acid (18:3) as extracted from the Wiley-NIST

library. Earlier studies reported only four isomers of the

fatty acids (Kaufman and Wiesman 2007). In earlier study,

first eluted isomer of linolenic acid was of lion share. In the

present case, distribution of the isomers were compara-

tively even distributed. All the five peaks have similar mass

fragmentation pattern, with differences in their intensities

of the fragmentation ion peaks. Fragmentation pattern of

all the five peaks were depicted in Fig. S.2. All the peaks

have molecular ion peak at m/z of 292 with their fragments

at m/z at 79, 91 and 93. Intensities of fragment ion peaks

with same molecular ion peak confirmed the isomers of

linolenic acid. Earlier investigations were done in reference

to identification of linolenic acid isomers (Hornung et al.

2002; Kaufman and Wiesman 2007; Özgül-Yücel 2005;

Suzuki et al. 2001). In the present study, geometric isomers

of linolenic acid was identified based on mass spectrum of

the GC resoluted peaks and earlier reports.

Constitutive fatty acids of pomegranate seed oils were

reported to be punicic acid (9-cis, 11-trans, 13-cis), a-
eleostearic acid (9-cis, 11-trans, 13-trans), catalpic acid (9-

trans, 11-trans, 13-cis) and b-eleostearic acid (9-trans,

11-trans, 13-trans). Takagi and Itabashi (1981) and Özgül-

Yücel (2005) both reported three isomers of CLNA, in

which punicic and catalpic acid were common. Former

reported presence of a-eleostearic acid whereas b-

eleostearic acid was reported by the later. Suzuki et al.

(2001) reported all four geometric isomers of CLNA.

Almost all the studies, punicic acid was dominant in con-

centration. Kaufman and Wiesman (2007) reported pres-

ence of 74–92% punicic acid out of total CLNA. Takagi

and Itabashi (1982) reported 96.5% of punicic acid out of

total conjugated octadecatrienoic acid. Differential report-

ing in types of CLNA isomers present in pomegranate oil

was recorded. It might be ambiguity or climatic variations

in the composition. In the present study, punicic acid

content was reported to be 33.4% of 18:3 fatty acids.

Variations might be due to influence of climatic condition

and also might be analytical advances led to better sepa-

ration of the isomers. By comparing earlier data, other

three isomers were tentatively identified as a-eleostearic
acid, catalpic acid and b-eleostearic acid. Fifth isomer

could not be identified with the present state of knowledge.

Microencapsulation

Average encapsulation efficiency of anthocyanins in mal-

todextrin encapsulated formulations was 82.9%. Similar

result has been reported by Robert et al. (2010), where

encapsulation efficiency of maltodextrin encapsulated

ethanolic extract formulation was ranged between 52.9 and

82.8%. Our result was also in agreement with the report by

Saenz et al. (2009). Our result was consistent with the

report by Robert et al. (2010). The study reported 89–100%

encapsulation efficiency of anthocyanin in maltodextrin,

when pomegranate juice was encapsulated in maltodextrin.

Idham et al. (2012) reported 99.7% encapsulation effi-

ciency of Hibiscus anthocyanin in maltodextrin carrier.

Mahdavi et al. (2016) reported encapsulation efficiency of

barberry anthocyanins were in the range of 86–93%, when

maltodextrin was used as carrier.

Table 2 Fatty acid composition

of pomegranate seed
No. Rt (min) Compound Relative composition (%)

1 32.881 C16:0 5.30

2 36.085 C18:2 (9,12-octadecadienoic acid) 11.56

3 36.188 C18:1 (9-Octadecenoic acid) 8.34

4 36.280 C18:1 (7-Octadecenoic acid) 1.23

5 36.646 C18:0 3.31

6 38.614 C18:3 22.72

7 38.666 C18:3 12.81

8 38.912 C18:3 18.27

9 39.227 C18:3 2.29

10 39.370 C18:3 12.00

11 39.684 C21:1 1.52

12 40.096 C21:0 0.64

13 Total saturated 9.25

Total unsaturated 90.74
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Figure 3 depicts the surface morphology of anthocyanin

encapsulated formulation. Surface morphology of micro-

capsules was irregularly spherical in shape and shrinken in

structure. Extensively dented surface might be attributed to

the shrinkage of the particles during drying. Similar type of

SEM picture was reported in maltodextrin microcapsules

(Robert et al. 2010; Diaz Sanchez et al. 2006; Cai and

Corke 2000; Tonon et al. 2008).

According to Nijdam and Langrish (2006), hollow par-

ticle cannot deflate when the drying temperature is suffi-

ciently high as moisture is evaporated very quickly and the

skin becomes dry and hard. On contrary, when the tem-

perature is lower, the outer surface remains moist for

longer time and it can deflate and shrivel as it cools.

Bioaccessibility

The result reported in Fig. 4 depicts that gastric and duo-

denal digestion of anthocyanins after evaluation by using

in-vitro model simulating gastro intestinal condition.

Amount of bioaccessible anthocyanins was ranged between

7.3 and 9.7%. In general, absorption in the human gut after

digestion i.e. bioaccessibility of any compound depends on

number of variables like molecular structure and its

intrinsic properties as well as other components present

along with the bioactive compounds (Lipinski et al. 2012).

These factors dictates the uptake and concentration in

blood as well as in cell. Mostly, concentration of the

bioactive compound(s) in gastric and duodenal level
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determines the bioaccessibility. Number of studies reported

the bioaccessibility of anthocyanin in different anthocyanin

(Bobrich et al. 2014; Sengul et al. 2014) and there are few

reports on the bioaccessibility of anthocyanin entrapped

inside a structural barrier (Carrillo et al. 2017). Bioacces-

sibility of masticated black carrot anthocyanin was repor-

ted to be 23%, whereas, it was 10.6% when anthocyanin
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was evaluated in jam and marmalade matrix (Kamiloglu

et al. 2015).

Our result is in consistent with the report by Liang et al.

(2012). The investigation reported 7.3% of mulberry phe-

nolics as bioaccessible. Bouayed et al. (2011) reported

dialysability of phenolics through cellulose membranes

was about 25%. The study concluded that bioaccessible

phenolics in the gastrointestinal tract were present both in

soluble and bound form, such as proteins or polysaccharide

conjugates (Manach et al. 2004).

Bioaccessibility of anthocyanin in the form of juice,

purified crystal and formulated product was presented in

Fig. 4. Bioaccessibilty was maximum in formulated sam-

ples followed by purified crystal and least in juice. Positive

control, cyanidin-3-glucoside was comparable with these

treatments. Bioaccessible anthocyanin in duodenal condi-

tion was varied between 7.3 and 9.7%. After gastric

digestion, 18.6% anthocyanins were present in case of

encapsulated material whereas, dialysability of antho-

cyanin in duodenal condition was 9.7%.

Any nutrient that bypassed the semi-permeable mem-

branes connected to the jejunum and ileum compartments

represented as bioaccessible. Nutrient/compound present in

the ileal efflux normally delivered to the colon for

absorption. Kamiloglu et al. (2015) reported dialysed

anthocyanin fraction of black carrot was in the range of

only 0.1–10.6% of the initial anthocyanin content. Rib-

nicky et al. (2014) reported that variable bioaccessibility of

individual anthocyanins. The result showed that malvidin-

containing anthocyanins had the highest relative bioac-

cessibility on average, followed by cyanidin, petunidin and

delphinidin-containing anthocyanins.

Anthocyanins, in general were stable under the gastric

conditions, but a significant decline after the pancreatic

digestion was recorded. Around 10% of anthocyanins were

detected in the IN samples (Fig. 4). It was well known that

anthocyanins present in equilibrium of four molecular

species. Under acidic condition (pH\ 3) colored basic

flavylium cation exists and three secondary structures were

formed after the increase in pH values. At higher pH,

anthocyanin equilibrates between the quinoidal bases, the

carbinol pseudobase, and the chalcone pseudobase forms.

Low detection of anthocyanins could be attributed to the

transformation of the flavylium cation to the colorless

chalcone pseudobase at the pH of intestinal environment

(pH 7.5–8.0). With the enhancement of pH, ring fission

occurs between ring B and C of anthocyanin with forma-

tion of ionized chalcones. Further, co-precipitation of

anthocyanin upon acidification also responsible for the

lower recovery of anthocyanin. Earlier similar observations

were made by McDougall et al. (2005) and Liang et al.

(2012).

Conclusion

The present study provides useful information about the

bioaccessibility pattern of anthocyanins in the form of

crude extract, purified extract and encapsulated formula-

tion, after evaluation by in-vitro gastrointestinal model.

The study demonstrated that encapsulation of these phe-

nolics in maltodextrin carrier improved the bioaccessibility

of both type of phenolics in in-vitro model system.

Anthocyanins were characterised by HRMS with error

mass value below 3 ppm confirms their structures. Fatty

acid profiling was also done for the seed oil pomegranate

and found the presence of x-5 fatty acid. Further research

efforts has to be done in this direction utilizing in-vivo

model to reach to a comprehensive conclusion.
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