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Abstract
Plant growth promoting Pseudomonas spp. produce an antifungal compound called pyoluteorin (Plt) that suppress diseases
caused by phytopathogenic fungi. The pathway specific regulator PltR, a typical LysR-type transcriptional regulator (LTTR), is
responsible for the transcriptional activation of the Plt biosynthetic operon. The LTTR family represents one of the largest classes
of bacterial transcriptional regulatory proteins. A large number of LTTRs possess function as global transcriptional activators or
repressors of unlinked genes or operons involved in metabolism, quinoline signal, virulence etc. The proposed method, LTTRPred,
is an useful tool developed for identifying and predicting the LTTR, which is responsible for the activation of Plt transcription
regulators, from whole genomes of various Pseudomonas spp. LTTRPred was developed using support vector machine (SVM)
and Waikato Environment for Knowledge Analysis (WEKA) based on the composition of amino acid and amino acid pairs.
Modules in SVM were developed using traditional amino acid, dipeptide (n+1) and hybrid amino acid composition modules and
an overall accuracy of 100, 100 and 98 per cent respectively, was achieved. Modules in WEKA were also developed using the
same modules and an overall accuracy of 100 per cent achieved for all. The performance of the tool was tested using various
datasets of LTTR genes from different Pseudomonas spp. The best performing SVM and WEKA modules from the
present investigation was implemented as a dynamic web server ‘LTTRPred’, which is freely available and can be accessed online
(http://210.212.229.56/lttrpred/). This tool can be used for the functional annotation of the Pseudomonas spp. possessing LTTR genes.
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Introduction
Plant growth promoting rhizobacteria (PGPR)

are a group of free-living bacteria that colonize the
rhizosphere, live in a commensal relationship with
plants and contribute to increased growth and yield
of crop plants (Kloepper and Schroth, 1978; Paulsen
et al., 2005). PGPR can promote plant growth either
directly or indirectly (Glick, 1995); however, the
exact mechanisms by which PGPR promote plant
growth are yet to be fully deciphered. Bacteria of
diverse genera have been identified as PGPR of
which Bacillus and Pseudomonas spp. are
predominant (Podile and Kishore, 2006). PGPR can
exert various effects on plants which may include
improvement of soil structure, facilitation of

nutrient acquisition, antagonism against
phytopathogens and pests, alteration of plant
physiological processes and degradation of
xenobiotics and pollutants (Niranjan Raj et al.,
2005; Paulsen et al., 2005). PGPR possess immense
potential application in sustainable agriculture,
especially with respect to long duration plantation
crops like coconut (Bopaiah and Shetty, 1991),
arecanut (Bopaiah, 1985), cocoa (Litty Thomas
et al., 2011), tea (Chakraborty et al., 2013), coffee,
spices and rubber (Hidayati et al., 2014).

Pseudomonads possess the capacity to produce
a wide array of metabolites, including antibiotics,
which are toxic to phytopathogens (Haas and Keel,
2003; Raaijmakers et al., 2002). Pyoluteorin (Plt),
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an antibiotic substance produced by certain
strains of Pseudomonas spp., is composed of a
bichlorinated pyrrole linked to a resorcinol moiety,
which can inhibit phytopathogenic fungi, including
Pythium ultimum, effectively (Maurhofer et al.,
1994), suppress plant disease caused by
phytopathogenic fungus and in some instances, even
contribute to the ecological competence of the
producing strain within the rhizosphere (Dowling
and O’Gara, 1994). The LysR-type transcriptional
regulators (LTTRs) are considered to be the largest
family of prokaryotic transcription factors. First
described by Henikoff et al. (1988), they are known
to be present in many bacterial genera, archaea and
algal chloroplasts (Schell, 1993). The pathway
specific regulator PltR, a typical LTTR, is
responsible for the transcriptional activation of the
Plt biosynthetic operon (Nowak-Thompson et al.,
1999).

There are various methods for predicting the
function of a given protein sequence. The similarity
search-based tools have been used for functional
annotation of proteins where a sequence is searched
against an experimentally annotated database and
a function is assigned to the protein. However, this
approach fails when an unknown query protein does
not have significant similarity to proteins in the
database. Another way to predict the proteins is to
identify sequence motifs such as signal peptide or
nuclear localization signal. Many machine learning
technique-based methods such as artificial neural
networks and support vector machines (SVM) have
been developed to predict the function of proteins.
Recent advances in the prediction of protein
sequences have stressed the need for organism-
specific prediction tools (Schneider and Fechner,
2004). When compared with the general prokaryotic
protein prediction methods, organism specific
prediction methods are more accurate. To the best
of our knowledge, there is no method currently
available for predicting the LTTR genes, which are
responsible for the transcriptional activation of the
Plt biosynthetic operon. LTTRPred, the tool
developed in the present study, predicts the
transcriptional regulator of pyoluteorin pathway in
Pseudomonas spp. using both SVM and Waikato
Environment for Knowledge Analysis (WEKA)
based approach. The performance of the models was
evaluated using cross-validation techniques. A web-
server was developed based on the best approach,

based on accuracy, to provide help to the researchers
working with LTTR proteins.

Materials and methods

Dataset

The selection of dataset is the most important
concern during development of a prediction method.
For training the model, both positive and negative
data sets are required, which was retrieved from
NCBI. There are 8500 LTTR protein sequences of
Pseudomonas spp. available in NCBI and these
sequences constituted the positive data set. The
average length of the sequences was around 300
amino acids. The negative dataset was created by
downloading another 5700 protein sequences (non-
LTTR) from different Pseudomonas spp. of
approximately the same length as the positive data
set. The positive and negative sequences were
divided for training and testing. For training and
testing, independent datasets were used.

Support Vector Machine (SVM)

SVM is a machine learning algorithm
introduced by Vapnik and co-workers (Cortes and
Vapnik, 1995; Vapnik, 1995), based on the statistical
and optimization theory and has been applied in
many classification and regression problems. SVMs
are becoming popular in a wide variety of biological
applications like classifying objects as diverse as
protein and DNA sequences, microarray expression
profiles and mass spectra (Noble, 2004). In the
present study, we have used SVM_light
(Joachims, 1995), a freely downloadable package
of SVM (http://svmlight.joachims.org/old/
svm_light_v4.00.html), to predict LTTR protein
sequences. During SVM training, a hyperplane in
feature space is determined that gives the largest
possible margin between the positive and negative
class, thereby yielding an intuitively robust
classifier. SVMs can learn accurate classifiers for
data sets that cannot be linearly separated in the
input space. This is achieved by the choice of a
suitable kernel function to transform the input data
into another feature space where it is easier to
compute an accurate classification. By learning the
optimal separating hyperplane in this feature space,
a non-linear classifier can be learned in the original
input space. SVM enables the user to define a
number of parameters besides allowing a choice of
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inbuilt kernel function including sigmoid,
polynomial and radial basis function (RBF). In
LTTRPred, we have used three different approaches
based on amino acid composition to train the
kernels.

Waikato Environment for Knowledge Analysis
(WEKA)

WEKA is a popular suite of machine learning
software written in Java, developed at the University
of Waikato, New Zealand, which is freely available
(http://www.cs.waikato.ac.nz/ml/weka/). The
WEKA workbench contains a collection of
visualization tools and algorithms for data analysis
and predictive modeling, together with graphical
user interfaces for easy access to this functionality.
WEKA supports several standard data mining tasks,
more specifically, data preprocessing, clustering,
classification, regression, visualization, and feature
selection. Here too, as in SVM, we have used three
different approaches, based on amino acid
composition, to train the different classifiers in
WEKA.

Composition-based methods

Amino-acid composition

Amino-acid composition is the fraction of each
amino acid in a given protein sequence. The fraction
of all the natural 20 amino acids was calculated
using the following equation:

Hybrid method

The hybrid method was developed by
combining amino-acid composition and dipeptide
composition features of a protein sequence and
calculated by Eq (1) and (2). The input vector
pattern of 420 (20 for amino acid and 400 for
dipeptide composition) was created.

Measurement of performance of LTTRPred in
SVM

In our present work, we have adopted 10-fold
cross-validation and independent data set validation
techniques for performance measurement. For
10- fold cross-validation, the relevant dataset was
partitioned randomly into ten equally sized sets. The
training and testing was carried out ten times with
each distinct set used for testing and the remaining
nine sets for training. In the independent dataset
test, none of the data to be tested occurs in the
training dataset used to train the predictor and the
selection of data used for the testing dataset could
be quite arbitrary.

Measurement of performance of LTTRPred in
WEKA

Here too, we have performed 10-fold cross
validation and independent data set validation
techniques to evaluate the performance of
LTTRPred. In 10-fold cross validation, nine parts
were used for training and remaining one for testing.
The procedure was repeated ten times so that each
of the ten set was used for testing at least once. In
the case of independent dataset test, training and
test set are created such that each data in both the
sets are unique. The classifiers were trained based
on the three amino acid composition methods. Out
of the 76 classifications and regression algorithms,
11 methods (viz., Naïve Bayes, Logistic, Multilayer
Perceptron, RBF Network, Simple Logistic, Voted
Perceptron, IB1,  IBk, KStar, J48 and Random
Forest) were used for designing algorithms. Based
on their performances, five each from amino-acid
composition and hybrid method and four from
dipeptide method were selected.

Evaluation parameters

We adopted five frequently considered
measurements for evaluation – accuracy (Ac),
sensitivity (Sn), specificity (Sp) precision (Pr) and

where, n can be any amino acid.

Dipeptide composition

Dipeptide composition, which gives a fixed
pattern length of 400 (20 x 20), encompasses the
information of the amino-acid composition along
with the local order of amino acids. The fraction of
each dipeptide was calculated according to the
equation:

Total number
of amino acid n

Fraction of amino acid (n) =
Total number of amino
acids in the sequence

(Eq 1)

Total number
of dipeptide (n+1)

Fraction of dipeptide (n+1) =
Total number of

all possible dipeptide

(Eq 2)

Tool for predicting of LysR-type transcriptional regulator in Pseudomonas

where, dipeptide (n+1) is one of the 400 dipeptides.
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Mathew’s Correlation Coefficient (MCC)
(Hemalatha et al., 2013). Accuracy (Ac) defines the
correct ratio between both positive (+) and negative
(-) data sets. The sensitivity (Sn) and specificity
(Sp) represent the correct prediction ratios of
positive (+) and negative data (-) sets of LTTR
proteins respectively. Precision (Pr) is the
proportion of the predicted positive cases that were
correct. When the numbers of positive and negative
data differ too much from each other, the MCC
should be included to evaluate the prediction
performance of the developed tool. MCC is
considered to be the most robust parameter of any
class prediction method. The value of MCC ranges
from -1 to 1, and a positive MCC value stands for
better prediction performance. The measurements
are expressed in terms of true positive (TP), true
negative (TN), false positive (FP), false negative
(FN):

     TP
Sensitivity =                 x 100

TP + FN

    TN
Specificity =                x 100

FP + TN

    TP
Precision =                  x 100

TP + FP

       TP + TN
Accuracy =                                   x 100

TP + TN + FP + FN

              (TP x TN) - (FP x FN)
MCC = x 100

(TP + FP) (TP + FN) (TN + FP) (TN + FN)

Receiver operating characteristics (ROC)
curve

The performance of a binary classifier can be
explained with ROC curve which is a graphical plot
drawn by varying threshold values. The analysis of
ROC curve helps to characterize the prediction for
individual locations (Swets, 1988; Zweig and
Campbell, 1993). The graph is created by plotting
the fraction of false positives (FPR) against true
positives (TPR) at various threshold settings. The
area under the curve (AUC) represented in the ROC
curve further measures the classifier accuracy.

Results and discussion
Composition-based modules and hybrid
approach in SVM

Models for SVM were created using
polynomial, sigmoid and RBF kernels with different
amino acid composition techniques and a hybrid
approach. Performances of all the kernels with three
composition-based modules were statistically
evaluated.

The independent data test results of amino-acid
composition and traditional dipeptide composition
based module achieved overall accuracy of 100 per
cent for all the three kernels viz., sigmoid,
polynomial and radial basis function. The detailed
performance of independent data test results of
LTTR proteins with SVM is listed in Table 1. It
was observed from the table that the hybrid
approach has less accuracy and MCC when
compared with other two.

The detailed performance of 10-fold cross-
validation results of LTTR proteins with SVM is

Table 1. Comparison of the prediction performance of three kernels of SVM with different composition techniques using
independent data test validation

Composition Algorithm Sn (%) Sp (%) Ac (%) Pr (%) MCC

Amino acid Polynomial 100 100 100 100 1

RBF 100 100 100 100 1

Sigmoid 100 100 100 100 1

Dipeptide Polynomial 100 100 100 100 1

RBF 100 100 100 100 1

Sigmoid 100 100 100 100 1

Hybrid Polynomial 100 100 100 100 1

RBF 100 96 98 96.15 0.961

Sigmoid 100 96 98 96.15 0.961
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listed in Table 2. The 10-fold cross validation of
amino acid composition-based module gave an
accuracy of 96.3 per cent with MCC of 0.92 with
all the three kernels. In the 10-fold cross validation
of dipeptide method, using the polynomial and RBF
kernels, an accuracy of 97.6 per cent was achieved
with MCC 0.95. With the sigmoid kernel in the
dipeptide method, an accuracy of 97.6 per cent was
achieved with MCC 0.95. In the 10-fold cross
validation of hybrid-based approach, the polynomial
kernel had maximum accuracy of 97.6 and MCC
0.95. Use of the other two kernels gave less accuracy
and MCC in 10-fold cross validation. Therefore,

we selected the hybrid polynomial kernel for the
tool development.

Composition-based modules and hybrid
approach in WEKA

Models for WEKA were created using 11
classifiers and features were extracted using two
different amino acid composition techniques and a
hybrid approach. The performance of all the
classifiers with three methods was then statistically
evaluated. From these 11 classifiers, Multi Layer
Perceptron, IB1, IBK, KStar, Random Forest,
Logistic and Simple Logistic classifiers gave best

Table 2. Comparison of the prediction performance of three kernels of SVM with different composition techniques using
10-fold cross validation

Composition Classifier Sn (%) Sp (%) Ac (%) Pr (%) MCC

Amino acid Polynomial 99.37 91.57 96.25 94.65 0.92

RBF 99.37 91.57 96.25 94.65 0.92

Sigmoid 99.37 91.57 96.25 94.65 0.92

Dipeptide Polynomial 99.62 94.54 97.59 96.47 0.95

RBF 99.63 94.54 97.59 96.47 0.95

Sigmoid 99.61 94.54 97.58 96.47 0.95

Hybrid Polynomial 99.75 94.43 97.62 96.41 0.95

RBF 99.70 93.88 97.37 96.07 0.95

Sigmoid 99.70 93.86 97.36 96.05 0.95

Table 3. Comparisons of the prediction performance of classifiers of WEKA with different composition techniques using
independent data test validation

Composition Classifier Sn (%) Sp (%) Ac (%) Pr (%) MCC

Amino acid Multi Layer Perceptron 100 100 100 100 1

IB1 100 100 100 100 1

IBK 100 100 100 100 1

Kstar 100 100 100 100 1

Random Forest 100 100 100 100 1

Dipeptide Logistic 100 100 100 100 1

Simple Logistic 100 100 100 100 1

IB1 100 100 100 100 1

IBK 100 100 100 100 1

Hybrid Logistic 100 100 100 100 1

Simple Logistic 100 100 100 100 1

IB1 100 100 100 100 1

IBK 100 100 100 100 1

Random Forest 100 100 100 100 1

Tool for predicting of LysR-type transcriptional regulator in Pseudomonas
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results during testing. All the classifiers used in
amino-acid composition, traditional dipeptide
composition and hybrid approach achieved overall
accuracy of 100 per cent in independent data test
results (Table 3). The detailed performance of
10-fold cross validation results of LTTR proteins
with WEKA is listed in Table 4. The 10-fold cross
validation of all the amino acid methods give an
accuracy of 99 per cent with MCC of 0.99 and 0.98
with all the classifiers used. In the 10-fold cross
validation of hybrid-based approach, use of Random
Forest classifier resulted in maximum accuracy of
99.7 and MCC 0.993.

ROC curves

SVM

The ROC curve is a measure which represents
the relationship between sensitivity and specificity
for a class. We have plotted the ROC curves based
on the performance of the various compositions.
From the ROC curve (Fig.1), it is clear that all the
methods used to train the three kernels represent a
perfect classifier since the curve represents an
inverted ‘L’. This is a desirable characteristic of an
ROC curve. Each point on the ROC curve was
plotted based on different threshold scores. The
figure also depicts area under the curve (AUC = 1)
value for all the methods (Hosmer and Lemeshow,

2000). The AUC shows the probability that when
one positive and negative sample are drawn at
random, the decision function assigns a higher value
to the positive than to the negative sample.

WEKA

From the ROC curve (Fig. 2), it is clear that all
the classifiers used for hybrid approach represents
perfect classifiers since the curve represents an
inverted ‘L’, which is a desirable characteristic of
an ROC curve. The figure also depicts area under
the curve (AUC = 1) value for all the classifiers

Table 4. Comparisons of the prediction performance of classifiers of WEKA with different composition techniques using
10-fold cross validation

Composition Classifier Sn (%) Sp (%) Ac (%) Pr (%) MCC

Amino acid Multi LayerPerceptron 99.65 99.17 99.46 99.45 0.988

IB1 99.84 99.37 99.65 99.58 0.992

IBK 99.84 99.37 99.65 99.58 0.992

Kstar 99.91 98.6 99.39 99.07 0.987

Random Forest 99.73 99.44 99.62 99.63 0.992

Dipeptide Logistic 99.66 99.51 99.60 99.67 0.991

Simple Logistic 99.71 99.46 99.61 99.64 0.991

IB1 98.9 99.94 99.32 99.96 0.985

IBK 98.9 99.94 99.32 99.96 0.985

Hybrid Logistic 99.6 99.46 99.55 99.64 0.990

Simple Logistic 99.66 99.51 99.6 99.67 0.991

IB1 99.08 99.94 99.42 99.96 0.988

IBK 99.08 99.94 99.42 99.96 0.988

Random Forest 99.8 99.48 99.67 99.65 0.993

Anil Paul et al.
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used. Here too, as in SVM, the AUC shows the
probability that when one positive and negative
sample are drawn at random, the decision function
assigns a higher value to the positive than to the
negative sample.

Description of the web server

The best performing SVM and WEKA modules
from the present investigation was implemented on
the World Wide Web as a dynamic web server
‘LTTRPred’, which is freely available and can be
accessed online (http://210.212.229.56/lttrpred/).
All the CGI scripts of LTTRPred were written in
PERL and the interface was designed using HTML
to assess user queries. The overall architecture of
the ‘LTTRPred’ web server is shown in Figure 3.
The web server gives the option to user for selection
of the modules in SVM or WEKA. Then it allows

users to submit their proteins sequence in one of
the standard formats such as FASTA or plain text
(Figure 4). Users can type or paste the sequence in
the box, or upload the sequence through a file. The
prediction result will be displayed in a user friendly
format on the screen within few seconds.

With advances in genome sequencing
technologies and rapid availability of whole genome
sequences, tools and resources need to be developed
to deduce the information contained in these
genome sequences. A major difficulty with
prokaryotic genome annotation is the lack of
accurate gene prediction programs. Similar to all
completed genomes, Pseudomonas has a substantial
number of genes that are hypothetical since they
are predicted solely on the basis of gene prediction
programs. This necessitates the need for refinement
and improvement of the quality of gene prediction
programs for Pseudomonas. An era of biological
revolution has begun during which a huge amount
of information on microbial genetics will be
accumulated at a fast pace. Thus, the availability
of systems/tools that can predict location from
sequence is essential to the full characterization of
expressed proteins. Computational tools provide
faster and accurate access to predictions for any
organism. Identification of LTTR proteins from
sequence databases is difficult due to poor sequence
similarity. In this work, we present a new method
for LTTR prediction based on SVM and WEKA,

Fig. 2. ROC curve for different classifiers in WEKA

Tool for predicting of LysR-type transcriptional regulator in Pseudomonas

Fig. 3. Overall architecture of the LTTRPred web server



384

the performance of which was found to be highly
satisfactory. Very high prediction accuracies for the
validation tests show that LTTRPred is a potentially
useful tool for the prediction of LTTR proteins in
Pseudomonas spp.
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