Coconut Eriophyid Mite *Aceria guerreronis* Keifer – An Overview

C P R Nair, P Rajan and Chandrika Mohan,
Central Plantation Crops Research Institute, Regional Station, Kayangulam – 690 533, Kerala, India

Abstract

Coconut eriophyid mite, Aceria guerreronis Keifer is a potential pest of coconut in India. Though its occurrence in the country was recently reported the pest had spread to all major coconut growing regions of peninsular India causing heavy economic loss to the coconut industry. A co-ordinated effort by various research agencies has helped in developing an IPM programme against the pest. However, indepth studies on biocontrol agents and role of plant nutrition for sustainable management of the pest are highly essential. An attempt has been made in the paper to review the work done on various aspects relating to bioecology and management of the pest.

Keywords: Coconut, *Aceria guerreronis*, Peninsular India, bioecology, pest management

Introduction

Coconut palm (*Cocos nucifera* L.) known as ‘Kalpavriksha’ occupies a key role among the cultivated palms in India. This important oilseeds crop provides food, shelter and occupation to millions of small and marginal farmers in the country especially in the vast stretch of land both in the east and west coast of the country. Among the various pests reported on coconut in India, the nut infesting eriophyid mite *Aceria (= Eriophyes) guerreronis* Keifer is the most serious one causing significant reduction in yield. As a pest first reported from Ernakulam District of Kerala, a major coconut growing state, the pest has appeared simultaneously in adjoining states of Tamil Nadu and Karnataka and within few years it has spread to almost all coconut growing states. As the sudden outbreak and spread of this mite caused serious concern throughout India, research programmes with a consortium approach were initiated by various organizations to develop suitable management technologies to tackle the pest and to create better awareness among farmers to face the situation. The Government of India constituted a steering committee for effective monitoring of the research and extension programmes on this dreaded pest. Perhaps this is one of the rarest cases of concerted research programmes in the country that have generated a clear insight on various aspects of the problem within a short period. Considering the economic importance of the pest elaborate reviews on the pest covering both national and international scenario were published (Rethinam *et al.*, 2001 and Rethinam, 2003). In the present paper an effort has been made to compile relevant information on various aspects on the bioecology and management of the pest giving more thrust in the Indian scenario.

Occurrence and distribution

In India, *A. guerreronis* was first reported on coconut palm from Ernakulam District by Sathiamma *et al.*, in 1998. An immediate survey by the scientists of Central Plantation Crops Research Institute revealed the widespread occurrence of the pest in nearby districts of Central and South Kerala (Nair, 2000). A survey in a few villages of Coimbatore District in Tamil Nadu revealed the severe incidence of the pest in the same year (Ramaraju *et al.*, 2000). The mite was also observed in almost all Districts in Karnataka during the same period (Mallick *et al.*, 2003). In 1999 the pest incidence could be located in Chittoor area of Andhra Pradesh, in 2001 from Orissa, in 2002 from West Bengal and Maharashtra and in 2003 from Gujarat (Khan *et al.*, 2003).

The history of the occurrence of *A. guerreronis* on coconut starts with the first report from Mexico by Keifer in 1965. Further, the mite was reported from South America and neighbouring few islands by Doreste (1968). The fast spread of the pest was reported between 1977 and 1984 by Marieu (1977), Hall and Espinosa (1981) and Griffith (1984). The pest was reported from Tanzania in 1980 (Seguni, 2000). In Sri Lanka the pest occurrence almost coincided with that of India when the pest was observed in the later part of 1997 at Kallitpita peninsula in the north-west province (Fernando *et al.*, 2000). Hence the perusal of literature makes it very clear that *A. guerreronis* enjoys a wide distribution in all tropical belts of South and North America, Africa and South Asia.
Bioecology

Entry of the mite into the developing nuts takes place during the early phase of development immediately after the pollination. Active colonies of mite are formed by the egg laying female mites gaining entry into the developing nuts. Various stages of development viz., eggs, nymphs and adults can be seen in the colonies (Figure 1). The biology of the mite takes 7-10 days (Marilau, 1977). The average fecundity of the female mite is 80 eggs and under favourable conditions this high fecundity and the shorter life cycle result in the enormous multiplication of the colonies.

The mites are microscopic having an average size of 200-250 microns. It has a tapering body shape with two distinct parts viz., anterior cephalothorax and the posterior abdomen. The body is finely ringed with bristles arranged in rows and is pale yellowish in colour. The mite has two pairs of legs on the anterior half of the body. The well developed mouth parts are suitable for feeding the plant sap.

On coconut the mites are seen in the floral bracts and the soft meristematic portion beneath the perianth. The infestation by the mite follows immediately after pollination. Appearance of elongated white streaks below the perianth is the first external manifestation of mite infestation on young buttons. Further these white streaks form triangular yellow patches. Draining of sap by the feeding activity of the colony results in drying of the tissues causing browning of the affected portion (Figure 2).

As the nuts grow, warts and longitudinal fissures appear on the nut surface. Severe infestation causes drying and shedding of buttons (Figure 3) or malformation of nuts as a result of retarded growth. Considerable reduction in the copra content and malformation of fibre are the major economic losses due to severe infestation by the pest.

Dispersal of the mite in nature takes place mainly through the wind currents (Griffith, 1984; Moore and Howard, 1996; Ramarethinam and Marimuthu, 1998; Haq, 1999). The fast spread of the pest within a short period in a particular geographic area is mainly due to the nature of the aerial dispersal and high biotic potential. Mallik et al. (2003) studied the activity of dispersal of the mites during day time and found that mites were more active during early part of the day indicating that migration of mites happens more during the cooler hours of the day. Moore and Howard (1996) reported the dispersal also by phoresy.

The population dynamics of *A. guerreronis* has been studied by various researchers. Griffith (1984) reported that mite attack was more severe during dry climate. Marilau (1977)
observed that drought situation aggregates the mite incidence. In India the pest activity has been observed throughout the year with a population peak during the summer months (Nampoothiri et al., 2002). Studies in Kerala coast revealed that a period of high temperature with intermittent rains causing high humidity favoured higher multiplication and rapid spread of the mite (Nair et al., 2003). Studies on population dynamics in Tamil Nadu indicated that population was maximum during November and May. Correlation analysis on the influence of weather parameters on mite population did not reveal any clear relationship (Marimuthu et al., 2003). Mathew et al., (2000) observed monthly variations in total population of mite with a peak in February – March and sharp decline in subsequent rainy months indicating a negative relationship between mite population and rainfall. Observations on the population of mites within various age group of nuts showed that five month old nut lodged the highest population of mites and in older age group of nuts the population showed declining tendency (Mallik et al., 2003). Ranjith et al., (2001) reported that maximum mite population could be observed on the third and fourth bunches from the first fully opened flower bunch of the palm.

The host range of A. guerreronis is very narrow. Other than coconut, an ornamental palm Cocos weddelliana H. Wendl. was reported as a host plant of the mite in Brazil (Flechtman, 1989). In India, Ramaraju and Rabindra (2001) reported the pest affecting the nuts of palmyra palm, Borassus flabellifer Linn.

Crop loss

Yield loss to various levels has been reported as a result of infestation by the pest. In general pest incidence and the extent of loss are comparatively high during the initial few years of pest occurrence in a particular locality. In India during 1998 when the pest outbreak was reported almost 85-90 per cent of the nuts were affected showing malformation and reduction in size (Nair, 2000). But observations recorded during subsequent years revealed an overall reduction in the incidence and intensity of the pest in areas of its initial occurrence (Nampoothiri et al., 2002 and Nair et al., 2004).

A detailed survey on yield loss in Alappuzha District during 2000 revealed an average loss of 30.94 per cent in terms of copra and 41.74 in terms of husk production (Muralidharan et al., 2001). Ramaraju et al., (2000) estimated an average loss in copra yield to the tune of 27.5 per cent in Tamil Nadu. A reduction in copra yield ranging from 18-42 per cent was observed when severe infestation symptoms were seen on more than 50 per cent of the surface area of infested nuts (Mallik et al., 2003). Mite damage caused significant reduction in quality of fibre in terms of fibre length and tensile strength. Fibre from moderate to severely infested nuts suffered 26 to 53 per cent reduction in length (Naseema Beevi et al., 2003).

An yield loss upto 31.54 per cent was reported from St. Lucia by Moore et al., (1989). Doresse (1968) in Venezuela recorded damage of crop to the tune of 70 per cent. The estimated loss of copra was 30 - 80 per cent in Mexico (Oliveira Fonseca, 1986). 10 per cent in Benin and 16 per cent in Ivory Coast (Julia et al., 1979).

Management methods

As in the case of any other pest several management measures have been tried and found suitable in the case of coconut mite too. However, due to the favourable biotic characters of the pest and its peculiar habitat providing almost an absolute shelter, there are many limitations in the implementation of various management methods.

Chemical pesticides

For effective and immediate management of the pest several attempts were made in various countries with pesticides. Different methods of pesticidal application like spraying of affected bunches, stem injection and root feeding methods with systemic chemicals have been tried. Hernandez (1977) reported significant control by spraying the affected bunches with dicrotophos or monocrotophos at an interval of 20-30 days and with application of acaricides at 15 days interval (Mariau and Tchibozo, 1973). Stem injection with monocrotophos at two months interval was found to be effective by Julia and Mariau (1979) on young palms.

In India a wide spectrum of pesticides have been tried by various research agencies including both Central Institutes and State Agricultural Universities (Nampoothiri et al., 2002). Field trials at CPCRI during 1998-99 with root feeding of monocrotophos and triazophos showed significant reduction in mite population up to 60 days. Spraying of dicrotophos 0.1 per cent also showed significant reduction in mite infestation in field trial. In another co-current trial, triazophos 0.1 per cent and carbosulfan 0.05 per cent showed encouraging results (Nair et al., 2000). Pesticides like profenophos 0.05 per cent and methyl demeton 0.1 per cent also gave effective control of the mite. A series of field trials were carried out by Tamil Nadu Agricultural University in farmers plots. One such trial indicated highest mortality of mites with spraying of monocrotophos @1.5 ml/l water and triazophos @ 5 ml/l (Kannaivan et al., 2002). A field trial with two rounds of spraying with carbosulfan 2 ml/l and triazophos @ 5 ml/l reduced mite population by 68 and 70 per cent, respectively (Ramaraju et al., 1999). In another field trial fenpropatrin (3 ml/l) endosulfan, chlorpyrphos,
Coconut Eriophyd Mite - An Overview

Thiosulphonate and ethion each at 4 ml/1 were found effective when they were sprayed on infested palms (Marimuthu et al., 2003).

Field experiments at Kerala Agricultural University indicated monocrotrophos 0.01% per cent, dicofol 0.1 per cent, carbosulfan 0.05 per cent, triazophos 0.2 per cent and dinitrophenol 0.02 per cent as effective pesticides. Screening of newer chemical formulations like profenophos, imazaquin and imidacloprid also gave promising results (Saradamma et al., 2000).

Studies at University of Agricultural Sciences, Bangalore showed that dicofol 0.1 per cent, triazophos 0.15 per cent, carbosulfan 0.1 per cent, nemacur 0.05 per cent and ethion 0.15 per cent were effective pesticides in managing the mite. Pot feeding/stem injection trials with monocrotrophos 10/l palm, triazophos 15-20 ml/l palm and carbosulfan 15/l palm also proved effective (Mallik et al., 2003).

Though the chemical pesticides were effective in the field given as spray or root feeding/stem injection, none of the above chemicals has been used for larger adoption due to environmental reasons. The massive crown of the m. Larger area to be covered in a short spell of time, need for repeated application, residual toxicity of the pesticides were other factors which were unfavourable for the wider adoption of chemical pesticides.

Pesticides

Traditional pesticides viz., natural oils of plants and neem based pesticides have been widely experimented by all the states in India. The use of 2% per cent neem oil and garlic extract was proved effective and recommended in Kerala for large scale adoption (Nair et al., 2000). Spot application of 3 per cent Neem oil/pongamia oil was found effective in the management of the pest in Tamil Nadu (Bairavai et al., 2002). Among several seed oils tested for their efficacy, a mixture of neem oil and castor oil (2:1), sesame oil 2 per cent and pongamia oil 3 per cent were found promising in trials done at College of Agriculture, Vellayani (Naseema Beevi et al., 2003).

Effective neem based bio-pesticides in the market also were adopted to screening and field trails in India. Azadirachtin (1%) at 0.003 to 0.005% was found effective in various formulations tried and this was recommended for field use (Nair et al., 2000; Saradamma et al., 2000 and Marimuthu et al., 2003). Root feeding of neem formulations had been reported to give promising results (Mallik et al., 2003 and Nair et al., 2003).

Ecofriendly chemicals

The use of wettable sulphur as spray was found very effective in various field trials carried out in India (Nair et al., 2000; Saradamma et al., 2000 and Marimuthu et al., 2003). However, as there could be an adverse effect of this chemical on the native flora of entomopathogenic fungi, the large scale use of wettable sulphur was not promoted.

Fish oil resin soap (FORS) was found effective in managing the pest at 0.4% per cent concentration when sprayed at an interval of 60 days (Palaniswamy et al., 2000). Many eco-friendly approaches like smoking in the garden during dawn period of the day, spraying sticky substances like starch, spraying of sea water etc. have been tried by various workers with a view to combat the pest. In case of spraying with sea water and starch more than 85 per cent reduction in mite population has been reported (Naseema Beevi et al., 2003). However, similar trials by other agencies did not show consistent results.

Biological control

Due to the limitations of the pesticidal applications and the labour intensive nature of application techniques for chemical pesticides the biological control programmes gained more importance in managing the coconut mite. Biocontrol is more desirable as it is safe and eco-friendly and therefore more vital in sustainable management of the pest. Among the biocontrol agents no parasitoid has been so far reported on A. guererrois. Predators form a major group of biocontrol agents of coconut mite.

Predators. A variety of predatory mites and smaller insects have been found associated with A. guererrois in different parts of the world. Predatory mites belonging to Phytoseidae, Bdellidae and Tarsonomidae are predominantly encountered in various collections. Howard et al. (1990) reported Amblyseius largoensis Muma, Neoseiulus mumaei Denmark, N. paspalivorus De Leon attacking mites in Florida. N. paspalivorus was also reported as a natural enemy of mite in Cuba (Cabrera, 1982). The Bdellidae mites viz., Bdelia indicata and B. distincta Baker and Ballock were reported as predators of mite in Benin by Mariau (1977) and the latter species was reported from Mexico by Octero Colima in 1986. Hall et al. (1980) reported tarsonomid Luponotarsonemus from Ivory coast and New Guinea attacking different stages of coconut eriophyd mite.

Fernando et al. (2000) had identified N. paspalivorus (phytoseidae) and Bdelia sp (Bdellidae) as predatory mite fauna on eriophyd mite in Sri Lanka. Among these, Neoseiulus sp nr paspalivorus was giving encouraging results as a potential natural enemy in Sri Lanka. Mass
phosalone and ethion each at 4 ml/1 were found effective when they were sprayed on infested palms (Marimuthu et al., 2003).

The field experiments at Kerala Agricultural University indicated monocrotrophos 0.01 per cent, dicofol 0.1 per cent, carbosulfan 0.05 per cent, triazophos 0.2 per cent and fenpropathrin 0.02 per cent as effective pesticides. Screening of newer chemical formulations like profenofos, fenazaquin and imidacloprid also gave promising results (Saradamma et al., 2000).

Studies at University of Agricultural Sciences, Bangalore showed that dicofol 0.1 per cent, triazophos 0.15 per cent, endosulfan 0.1 per cent, carbosulfan 0.05 per cent and ethion 0.05 per cent were effective pesticides in managing the mite. Root feeding / stem injection trials with monocrotrophos 10 ml/palm, triazophos 15-20 ml/palm and carbosulfan 15 ml/palm also proved effective (Mallik et al., 2003).

Though the chemical pesticides were effective in the field when given as spray or root feeding / stem injection, none of the above chemicals has been used for larger adoption due to environmental reasons. The massive crown of the palm, larger area to be covered in a short spell of time, need for repeated application, residual toxicity of the pesticides etc were other factors which were unfavourable for the wider use of chemical pesticides.

Biopesticides

Botanical pesticides viz., natural oils of plants and neem based pesticides had been widely experimented by all the agencies in India. The use of 2 per cent neem oil and garlic mixture was proved effective and recommended in Kerala State for large scale adoption (Nair et al., 2000). Spot application of 3 per cent Neem oil/ pongamia oil was found effective in the management of the pest in Tamil Nadu (Kannaiyan et al., 2002). Among several seed oils tested for their efficacy, a mixture of neem oil and castor oil (2:1 ratio), sesame oil 2 per cent and pongamia oil 3 per cent were found promising in trials done at College of Agriculture, Vellayani (Naseema Beevi et al., 2003).

Available neem based bio-pesticides in the market also were subjected to screening and field trials in India. Azadirachtin 1 per cent at 0.003 to 0.005 per cent was found effective among various formulations tried and this was recommended for field use (Nair et al., 2000; Saradamma et al., 2000 and Marimuthu et al., 2003). Root feeding of neem formulations also had been reported to give promising results (Mallik et al., 2003 and Nair et al., 2003).

Ecofriendly chemicals

The use of wettable sulphur as spray was found very effective in various field trials carried out in India (Nair et al., 2000; Saradamma et al., 2000 and Marimuthu et al., 2003). However, as there could be an adverse effect of this chemical on the native flora of entomopathogenic fungi, the large scale use of wettable sulphur was not promoted.

Fish oil resin soap (FOIS) was found effective in managing the pest at 0.4 per cent concentration when sprayed at an interval of 60 days (Palamswamy et al., 2000). Many eco-friendly approaches like smoking in the garden during dawn period of the day, spraying sticky substances like starch, spraying of sea water etc. have been tried by various workers with a view to combat the pest. In case of spraying with sea water and starch more than 85 per cent reduction in mite population has been reported (Naseema Beevi et al., 2003). However, similar trials by other agencies did not show consistent results.

Biological control

Due to the limitations of the pesticidal applications and the labour intensive nature of application techniques for chemical pesticides the biological control programmes gain more importance in managing the coconut mite. Biocontrol is more desirable as it is safe and eco-friendly and therefore more vital in sustainable management of the pest. Among the biocontrol agents no parasitoid has been so far reported on A. guererreroni. Predators form a major group of biocontrol agents of coconut mite.

Predators. A variety of predatory mites and smaller insects have been found associated with A. guererreroni in different parts of the world. Predatory mites belonging to Phytoseiidae, Bdellidae and Tarsonemidae are predominantly encountered in various collections. Howard et al. (1990) reported Amblyseius largoensis Muma, Neoseiulus mumiae Denmark, N. paspalivorus De Leon attacking mites in Florida. N. paspalivorus was also reported as a natural enemy of mite in Cuba (Cabrera, 1982). The Bdellidae mites viz., Bdella indicata and B. distincta Baker and Balock were reported as predators of mite in Benin by Marius (1977) and the latter species was reported from Mexico by Ooctero Colima in 1986. Hall et al., (1980) reported tarsonemid Lautoparasenemus from Ivory coast and New Guinea attacking different stages of coconut eriophyid mite.

Fernando et al., (2000) had identified N. paspalivorus (phytoseiidae) and Bdella sp (Bdellidae) as predatory mite fauna on eriophyid mite in Sri Lanka. Among these, Neoseiulus sp nr paspalivorus was giving encouraging results as a potential natural enemy in Sri Lanka. Mass
rearing of this predator on A. guererroris and eggs of Tetanychus urticae are being carried out in Sri Lanka. Studies on bioecology and behaviour of this general predator is being intensified at Sri Lanka with a view to develop a technology sustainable for the management of eriophyd mite on coconut.

Work done at CPCRI on predatory mites revealed that four species of mites are attacking mite colonies in the field. Among these, Amblyseius sp was the predominant species attacking eriophyd mite colonies in the field (Figure 4). Bdelia sp was recovered from few samples only. It has been observed that the predatory mite population was registering an increasing trend of incidence and better establishment in nature over the years. On an average, 37.1% samples showed presence of predators during 2001, which increased to 62.3% during 2003. Marimuthu et al. (2003) had reported three species of predatory mites viz., Amblyseius paspalivorus, Bdelia sp and a Tarsenemid attacking mite colonies in the field in Tamil Nadu. They found that the population level of predators is only 5-10 per nut and their predatory potential was not encouraging.

Amblyseius sp.

Figure 4. Predatory Amblyseius sp. recorded predominantly on eriophyd mite colonies

Work done at Kerala Agricultural University revealed that predatory-mites belonging to Phytoseidae, Tarsenemidae and Bdelidae attack mite colonies in the field (Naseema Beevi et al., 2003). Among these, two species of phytoseid mites viz., Amblyseius sp and Phytoseilus sp recorded on mite colonies (Nair et al., 2000), Amblyseius sp. was the predominant species. Mallik et al., 2003 reported that among the phytoseid mites, A. paspalivorus and the tarsenemid Lupotarsenemus sp are the predatory mites more encountered with mite colonies in Karnataka. The tarsenemid is found attacking on egg and the phytoseid attacking on all stages of mite. Predatory insects are very seldom reported on eriophyd mite. Nair et al., (2003) reported one species each of syrphid, thrips and coccinellid associated with mite colonies in the field.

The potential of predators in suppression of eriophyd mite colonies has been questioned by many markers on account of the facts that they are observed only occasionally and in very small populations on infested coconut and there is no evidence that they make a significant impact on coconut mite population (Hall et al., 1980; Howard et al., 1990). When compared to eriophyd mite, the phytoseid predatory mites are large and found more often in older nuts and abundant during June-July. The eriophyd mite being 200 micron in size is able to colonize on younger nuts and causes considerable damage well before the predators are able to enter the meristematic region. Even in Sri Lanka, where N. sp nr paspalivorus is being evaluated as a potential predator, studies on distribution of predator on bunches of different ages revealed maximum population of predator in sixth bunch. According to Moraes and Zacarias (2002), use of predatory mites for the control of coconut mite requires detailed field studies.

Pathogens. Among microbial pathogens, fungal species contribute the predominant pathogens of coconut eriophyd mite. The fungal parasite, Hirsutella thompsonii has received considerable attention throughout the world as the most effective natural enemy of eriophyd mite of coconut. This fungus has three varieties which synonymatosa has been more often infesting A. guererroris.

H. thompsonii has been used both in the laboratory and field for suppressing the coconut mite in different countries of the world. The fungus was associated with coconut mite in tropical America and West Africa (Moore and Howard, 1996). Hall et al., (1980) had reported that the fungus could cause up to 100% mortality in A. guererroris when colonies were directly exposed to 100% relative humidity. The potential of this fungus as an effective biocontrol agent against A. guererroris was well documented (Julia and Mandiau, 1979, Cabrera, 1982, Espinosa Becerril and Carrillo Sanchez, 1986, Cabrera and Dominguez, 1987 and Lampedro and Rosas 1989). Cabrera (2000) had given an exhaustive account of the potential of the fungus as a biocontrol agent of coconut mite in Cuba.

Espinosa Becerril and Carrillo Sanchez (1986) evolved 'Mycar' a bio preparation of H. thompsonii in Mexico and concluded that 36.7% of fruits tested showed infested mites with a mortality rate varying from 25-75%. The development of a process for the commercial production of H. thompsonii (Gillespie, 1988) has increased the future potential of the fungus for large scale development.
Another acaropathogenic species of *Hirsutella* viz. *H. nodulosa* was also reported to be infective to coconut mite in Cuba (Cabrera and Domínguez, 1987), but the potential of the fungus in field condition has not been fully studied.

In India, the incidence of the pathogen (*H. thompsonii*) was recorded in Kerala, Tamil Nadu, Karnataka, Andhra Pradesh, Pondicherry and Lakshadweep islands (Kumar, 2002). In Tamil Nadu and Andhra Pradesh, average incidence of the fungus was recorded as 17.2% and 15.5% (Kumar et al., 2001 and 2002). In Kerala, local strain of *H. thompsonii var symnematosus* could be isolated from field samples (Beevi, et al., 1999). Field evaluation of *H. thompsonii* indicated that mortality of mites ranged from 20 - 40% (Naseema Beevi et al., 2003).

A mycoacaricide called “Mycohit” based on native strains of *H. thompsonii* was developed with indigenous technology at Project Directorate of Biological Control, Bangalore (Kumar and Singh 2002). For evaluation of Mycohit in field conditions multilocal trials were conducted in different states in South India. In all the trials, pre harvest damage grade was taken as a parameter to judge the efficacy of the product. However, the results obtained so far from different centers have been variable. In most of the centers, the reduction of damage is not significant under field conditions. In the environment, various factors interact which determine the efficiency of the fungus. Hence an indepth study to identify the conditions for its effectiveness is needed for further evaluation and testing of this product.

Other fungal species associated with eriophyid mite include species of *Paecilomyces, Beauveria, Metarhizium, Sporothrix, Verticillium, Acremonium, Aspergillus, Penicillium and Fusarium* (Kumar et al., 2001). However, the bio-efficacy of these fungi as a biocontrol agent of mite in field conditions was not fully studied. In a preliminary investigation, Murali Gopal et al. (2002) reported *Scopulariopsis brevicaulis* as pathogenic to *A. guerreronis* giving about 27 per cent mortality of mites in treated nuts. Rabindra and Kumar (2003) indicated the importance of a comprehensive study on the natural enemies to arrive at definite conclusions to measure the impact of the bio-control agents in respective regions.

Effect of crop management practices

The role of plant nutrition in the management of pests and diseases is a well known and widely accepted fact. Moore et al., (1991) suggested that modification of farm management practices by irrigation and optimum input of fertilizer could regulate mite population. Mariam (1977) indicated that well managed coconut gardens receiving balanced nutrients might suffer less due to mite attack. Experiments at Tamil Nadu Agricultural University, Coimbatore with higher levels of potassium and neem cake have shown promising trends in reducing mite population. An integrated nutrient management package consisting of application of urea (1.3 kg), super phosphate (2 kg), muriate of potash (3.5 kg) neem cake (5 kg), borax (50 g), gypsum (1 kg), magnesium sulphate (0.5 kg) and growing of green manure crops like sunnhemp and its incorporation in soil were suggested by the University (Kannaiyan et al., 2002).

In gardens where balanced NPK application and recycling of organic matter are practiced, the incidence and intensity of the mite show decreasing trends. Observations on mite incidence in various ongoing manural experiments at CPCRI also indicated that plant nutrition affected the mite incidence. In a demonstration covering 25 ha coconut garden in 208 farmers fields where integrated nutrient management was implemented along with the recommended practices of azadirachtin spraying thrice a year, the mite incidence could be brought down to 15.3 per cent from 68.0 over a period of three years (Rajagopal et al., 2003).

Integrated approach recommended by National Steering Committee

In India, a National Steering Committee for the mite catalyzed the efforts for collective thinking and prompt implementation of research programmes by the participating research organizations. The Coconut Development Board, Government of India and Asian and Pacific Coconut Community, Jakarta along with the National Steering Committee organized an international workshop on coconut mite at Bangalore in 2003. In the workshop a unified recommendation was formulated with two components viz., IPM and INM. The IPM recommendation consists of phytosanitary measures in coconut plantations including crown cleaning, burning of fallen mite infested nuts and spraying of azadirachtin 0.004 per cent on affected younger bunches thrice a year during December – January, April – June and September – October. Wherever spraying is difficult for adoption, root feeding with azadirachtin 5% (7.5 ml + 7.5 ml water) or azadirachtin 1 per cent (10 ml + 10 ml water) formulation thrice as in the case of spraying was recommended.

Along with the IPM package adoption of INM package including application of NPK fertilizer as per recommended levels, recycling of biomass or raising of green manure crops in coconut basins, summer irrigation and moisture conservation by appropriate measures were also recommended for the management of the pest.

VARIETAL SUSCEPTIBILITY

A coconut variety exhibiting total tolerance to eriophyid

Kannaiyan, S., Rabindra, R. J., Ramaraju, K. and Sabitha Doralswamy. 2002. Integrated management of eriophyid mite on coconut. Tamil Nadu Agricultural University, Coimbatore, India. 82 pp.

Marimuthu, T., Palanisamy, S. and Ramaraju, K. 2003. Integrated Management of Coconut Eriophyid Mite *Aceria*
mite is not reported from any country. However, varieties like Malayan Yellow Dwarf, Malayan Red Dwarf, Rennal Tall, Cameroon Red Dwarf, Equatorial Green Dwarf and the hybrid MYD X WAT (Malayan Yellow Dwarf X West African Tall) were reported to show different degrees of tolerance to mite attack in different countries of the world (Seguni, 2000; Moore and Alexander, 1990; Suarez, 1991; Mariau, 1977 and Julia and Mariau, 1979).

In India, work done at CPCRI revealed that COD (Chowghat Orange Dwarf) variety shows maximum tolerance to mite infestation in the field. MGD (Malayan Green Dwarf), Laccadive Micro and Spicata also recorded comparatively lower mite incidence in the field. WCT (West Coast Tall) and LCT (Laccadive Tall) recorded maximum incidence in the field. Among the hybrids DXT with COD as mother parent exhibited relatively high level of tolerance when compared to DXT with CGD (Chowghat Green Dwarf) as mother parent. The tepal traits, colour, shape and size of the nut influence the degree of damage. Among these, the shape of the nut (round shape) and tepal traits (tight perianth) are important attributes for mite tolerance. In the field WCT variety with green and oblong nuts recorded maximum level of mite incidence as compared to WCT with reddish to bronze colour and round nuts (Nair et al., 2000). In Tamil Nadu, Muthiah and Bhaskaran (1999) identified Laccadive Ordinary (LO), Cochin China (CC), Andaman Ordinary (AO) and Gabangondum (GB) as less susceptible varieties. RamaRaju et al., (2000) reported Kenthali having lowest surface damage while Tiptur Tall is the most susceptible followed by St. Vincent, ECT, WCT and WCT X COD. Kannaiyan et al., (2002) reported that among hybrids, GB X WCT and ECT X GB were having the lowest susceptibility. In general dwarf varieties and hybrids with dwarf as mother parent exhibited relatively more tolerance to mite attack in the field.

Varietal differences in susceptibility to eriophyd mite could be exploited to develop resistant / tolerant varieties and hybrids. But an indepth knowledge of the resistance mechanism is vital in achieving the goals. Eventhough it is a long term process, work in these lines needs due priority and encouragement. Understanding of highly susceptible varieties in different geographical zones will be helpful in elimination of such varieties in the new planting / replanting programmes in these areas.

Conclusion

After the first report of A. guereronis as a devastating pest of coconut in 1998 from Ernakulam District and its simultaneous occurrence from nearby states showing its fast and continuous spread to the major coconut states of India, detailed and thorough studies have been carried out by various research agencies in the country. The coordinated research efforts by the researchers, the wider network of extension activities aiming at quicker transfer of technologies and sincere efforts taken up by the farming communities were helpful in developing suitable technologies and putting them to practice. This approach has helped in having a better insight about the pest problem.

An interesting phenomenon has been evident during the later part of the incidence of the pest in the country having a history of only seven years. A natural slow decline of the pest could be observed by the end of third year after the first report of the pest. Both biotic and abiotic factors can be attributed as probable reasons for this clear decline in pest incidence. The presence and slow and steady increase in the population of predatory fauna, natural infection of the mite population by pathogenic fungi, particularly Hirsutella thompsonii and the more or less uniform rainfall pattern in most of the major coconut areas particularly the West Coast of the country are considered to be the major factors responsible for effecting a natural regulation of the pest.

References

Received: 25-04-2004 Accepted: 20-05-2005