

IN-PLANT TRAINING REPORT

ON

FARMMACHINERY &POWER

AT

 01-07-2018 TO 30-09-2018

SUBMITTED BY

Dibya ranjan mohanta 150101170006

Shubham pradhan 150101170057

Ranjan kumar sahu 150101170059

Guided by

Er. Mhatre Chaitrali Shashank

Scientist (Farm Machinery and Power)

4TH YEAR B.TECH (AG-ENGG)

SCHOOL OF ENGINEERING & TECHNOLOGY,

CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT

PARALAKHEMUNDI, ODISHA

PREFACE

SUCCESS IS WALKING FROM FAILURE TO FAILURE WITH NO LOSS OF ENTHUSIASM

Man gains knowledge from practical experiences and this signifies, how a practical is
differ from the general education. It is the training which makes the trainees to gain
knowledge and have a deep penetration to the various aspects while working,

We had an excellent training on Farm machinery and Power in ICAR-CIWA,
Bhubaneswar from 1st July to 30th September .This is only one institute devoted to
gender related research in agriculture .

During this three month we gained a lot of practical knowledge about ergonomics,
some of farm machinery implements and tools, post-harvest technology on fruits,
occupational health hazard .

All the scientists & the technical staffs of this research institute helps us whole
heartedly. Without their cooperation, hard work & encouragement, our training would
have been incomplete. All the staffs and & employees of this institute were very
cordial towards us.

This three month practical training was a real opportunity for a break through
practical field indeed and it will be one of the memorable parts carriers as well as in
our life.

ACKNOWLEDGEMENT

 We the three trainees of SOET,CUTM,Paralakhemundi articulate our deep

sense of gratitude to our honourable DEAN Dr. B. P. Mishra, the training-in-charge

officer Er. Subodh Tanay Panigrahi and Dy. Register (placement) Mr. S. Kameswar

Rao for arranging such an excellent research centre for our in-plant training.

 We are highly indebted and thankful to the Director ICAR-CIWA for permitting us

to acquire practical experience at this institute. We express our cordial thanks to

Er. Chaitrali S. Mhatre, Scientist (FMP) for her encouragement, guidance, love,

affection and also support during training period.

 We are grateful to Dr Jyoti Nayak (Principle Scientist FRM), Dr. J. Charles Jeeva

(Principal Scientist, Agricultural Extension), Dr. Ananta Sarkar (Senior Scientist,

Agricultural Statistics), Mrs. Ankita Sahu (Scientist, Fruit Science) for their consistent

cooperation and excellent teaching during the training.

 We extend our sincere thanks to Er. Pragati Kishore Rout, Technical Assistant

(FMP) for his support and for being there to share our joys and sorrows.

We are thankful to Er. Gayatri Mohanty, SRF scholars of our lab for her help and

support when we needed it most.

We express our sincere thanks to various staff members of ICAR-CIWA, for their

continuous cooperation to make our training a very enjoyable and unforgettable one.

Last but not the least, I express my gratitude and love to my family, for their constant

encouragement, care and help.

Thanks a lot to GOD, whose help is always sought before my work.

Dibya Ranjan Mohanta Ranjan Kumar Sahu Shubham Pradhan

CERTIFICATE

This is to certify that DIBYA RANJAN MOHANTA, 150101170006 , (B. Tech in

Agricultural Engineering), 4th year student of Centurion University of Technology and

Management, Parlakhemundi has attended three month internship programme from

01.07.2018 to 30.09.2018 under my supervision and guidance. The In-plant training

with project report entitled “Development of microprocessor based data

recording system for sensing relative humidity and temperature” has been

submitted to me. He has completed assigned work successfully during said period.

Chaitrali S Mhatre

Scientist, ICAR-CIWA

CONTENTS

SL NO. SUBJECT PAGE

1 INTRODUCTION 1

2 ROLE OF WOMAN IN AGRICULTURE 2

3 OCCUPATIONAL HEALTH HAZARDS 6

4 AGRICULTURAL STATISTICS 11

5 POST-HARVEST TECHNOLOGIES IN FRUIT

CROP

12

6 DESIGN METHODOLOGY OF AGRICULTRAL

MACHINERY

14

7 ERGONOMICS 15

8 POSTURAL ANALYSIS TECHNIQUES 17

9 HUMAN ENERGY CONSUMPTION 23

10 ANTHROPOMETRIC DATA FOR 79 BODY

DIMENSION OF CENTURION TRAINEES

24

11 PROJECT 29

11.1 ABBREVIATIONS 31

11.2 INTRODUCTION OF ENVIRONMENTAL

PARAMETERS ,MICROPROCESSOR AND

SENSOR

32

11.3 AIM AND OBJECTIVES 36

11.4 MICRO-PROCESSOR 36

11.5 ELECTRONICS USED 37

11.6 ARDUINO 38

11.7 HUMIDITY AND TEMPERATURE SENSOR 40

11.8 REAL TIME CLOCK 42

11.9 MICRO SD MODULE 43

11.10 ARDUINO IDE 44

11.11 SET UP /CONNECTION AND CODE 45

11.12 CODE 47

11.13 RESULT AND ANALYSIS 50

12 CONCLUSION 56

13 REFERENCES 57

1

 INTRODUCTION

ICAR- Central institute for woman in agriculture (ICAR-CIWA) is an institution first of
its kind in India that is exclusively devoted to gender related research in agriculture.
It is established as National Research Centre for Women in Agriculture (NRCWA) in
April 1996 at Bhubaneswar (Odisha) under Indian Council of Agricultural Research,
New Delhi. The directorate has been upgraded and renamed as'' ICAR- Central
institute for woman in agriculture (ICAR-CIWA)'' in the year 2014 under XIIth plan
EFC

Mission:

Generate and disseminate knowledge to promote gender sensitive decision making
for enhancing efficiency and effectiveness of woman in agriculture

Vision:

Emerge as a leading centre for gender research and serve as a catalyst for gender
mainstreaming and women empowerment in agriculture to realize enhanced
productivity and sustainability of agriculture.

Mandate:

 Research on gender issues in agriculture and allied fields.

 Gender-equitable agricultural policies/ programmes and gender-sensitive

agricultural-sector responses.

 Co-ordinate research on Home Science.

ORGANISATIONAL STRUCTURE:

Research Divisions

1. Agricultural Economics

2. Agricultural Entomology

3. Agricultural Extension

4. Agricultural Statistics

5. Agronomy

6. Farm Machinery and Power

7. Fish Processing Technology

8. Home Science

9. Livestock Production and Management

10. Vegetable Science /Horticulture

2

All India Coordinated Research Project:

The AICRP on Home Science was conceived as an instrument to develop a

strong base of research and extension the State Agricultural Universities for

improving the quality of life of rural families. The project was initiated during

the VI Five Year Plan Period. However, it is merged with DRWA in XI Five Year

Plan Period. AICRP on Home Science integrates all the five components of

Home Science in it namely Foods and Nutrition, Clothing and Textiles, Family

Resource Management, Human Development & Family Studies and Home

Science Extension Education. Each discipline has a specific thrust area of

research that has been knitted together to focus on empowerment of women

in agriculture for enhancing their quality of life. At present, the AICRP on Home

Science is being implemented through its ten centres located in different State

Agricultural Universities of the country viz.

Ongoing Research Projects

 Engendering Agricultural Research and Extension through Gender Friendly

Technology Hub

 Developing gender sensitive model for Doubling Farmers' income by

addressing gender concerns and technological gaps

 Strengthening gender knowledge system in Agriculture

 Seed Production of Food Crops in Tribal Regions with Participation of Women

 Optimizing technological interventions with gender perspective in small scale

mango orchards

 Drudgery Reduction of Women Involved in Fish Processing through

Technological Interventions

 Livelihood improvement of tribal farm women through secondary agriculture

 Design and development of disc type ridges for farmwomen

 Development and evaluation of integrated floating cage aqua geoponics

system for small scale Women pond holders

 Performance evaluation of selected farm tools and implements in gender

perspective for operational and ergonomic parameters

 Mapping livestock and gender and studying the role of institutions in livestock

development in Eastern India

 Status of Women in Peri-urban Dairy Farming : Mainstreaming their Role for

Enhancing Income and Productivity

 Gender inclusive homestead aquaculture for enhancing household fish

consumption and income

 Promoting gender equity through family poultry production

 Enhancing income of rural women through improved goat rearing

 Improving availability of quality pulse seed with participation of women

3

 Exploratory study on nutritional status of Nabarangpur district, of Odisha (Inter

Institutional Project with Regional Station CTCRI, Bhubaneswar)

Extension Education developed out of multidisciplinary approach. It intends to serve

farming communities providing latest technologies to increase status of livelihood of

the farm women and farmers. Extension in ICAR-CIWA reaches and teaches women

target group to lead quality life keeping harmony with environment in which they

reside and work. It takes care of capacity building, skill improvement creating self-

confidence and enabling farm women to take right position in nation building

process. ICAR-CIWA sincerely organizes various extension activities like Field Days,

Exhibitions, Exposure visits, Demonstrations, TOT through Mass Media, etc. to

acquaint the farm women with latest technologies. The Institute also conducts

various capacity building programmes for gender sensitization among various

stakeholders and to bring a change in knowledge, attitude and skill of farm women.

Gender friendly extension approaches and methodologies

 Village Level Para Extension Workers (VPEW) Model

 Public Private Partnership (PPP) Model

Participatory action research in Crop Production, Crop Protection, Horticulture,

Animal Sciences, Fisheries

 Technology Demonstration

 Farm Women Training

4

 ROLE OF WOMAN IN AGRICULTURE

 Woman, who has given birth to agriculture

 Represent 43% of global agricultural labour force

 In India, 65% of economically active women are in agriculture.

 Devote 45 - 50% of their time to agricultural activities

 Women spend 354 min/day and men 36 min/day on household activities

 About 12% of rural households are women-headed-with small holdings

 Alarming number of farmer suicides

 Male migration - About 40% of the men want to quit farming

 Gender role transformation in agriculture

 Struggling to attain Sustainable Development Goals of..

 No Poverty

 Zero Hunger

 Good Health & Wellbeing

 Climate Action

 Gender Equality

Issues of women agriculture laborers

 Dawn to dusk hard labour

 Deprivation of child

 Low wage rate

 Seasonal employment

 Insecurity at work place

 Addiction to tobacco and local liquor

 Travelling to distant places for farm work

 Worst sufferers of natural calamities

 Lack of exposure/training

 Nutrition deficiency

Development of women leadership in agriculture…

 Women need the support and help of a women leader who would organize

them to be bold enough in facing socio-cultural restrictions, economic

backwardness, the developmental agents, risks and complex technologies

 Often they need a woman leader who can read and write and keeps the

accounts of the enterprises

 The training and extension for women and ATMA model have encouraged

group activities among women, train them, and leave the group to function

under a women leader

5

Extension strategies for addressing gender issues...

 Identify gender needs and interest

 Gender balanced extension system

 Mass media support

 Women friendly technologies

 Credit and technical support

 Capacity building of women

 Women farmer groups

ICAR-CIWA…in gender mainstreaming

 Farming system research

 Innovations in rural aquaculture

 Gender sensitive extension

 Technology assessment and refinement

 Occupational health risk and drudgery

 Family nutrition

 Women entrepreneurship

 Gender sensitization

 Gender sensitive methodologies and approaches

 Consultancy and advocacy

6

Occupational Health Hazards

Agriculture Ranks as one of the most Hazardous Industry till today due to

 Seasonal nature of agricultural activities

 Traditional methods of work

 Mechanization

 Increasing use of pesticides and agro-chemicals

 Use of non-ergonomic tools and equipment

 Lack of education and information on the health hazards

HEALTH PROBLEMS OF WOMEN AS SEEN FROM A GENDER PERSPECTIVE

 Basically hazards posed by physical, chemical and biological agents in work

place

 Similar for male and female workers

 Women on an average

 have a smaller stature and have less physical strength

 their vital capacity is 11% less

 their hemoglobin is app. 20% less

 their skin area is larger as compared to circulating volume

 they have larger body fat content

 They have lower heat tolerance and greater cold tolerance.

 Reproductive function

7

Types of Occupational Hazards

 Mechanical hazards

 Psycho-social hazards

 Work organisation hazards

 Ergonomic hazards

 Others – Physical, Biological, chemical, ergonomical and psycho-social

hazards

Fig.1-Health hazards of farm worker

HEALTH
HAZARDS OF

FARM
WORKERS

Fatigue

Dust

Pesticide

Poor
design of
farm tools

Electricity

Fire

Animals

Insect
bites

Infections

Environm
ent

8

Physical Hazards:
 Noise

 Vibration

 Extreme Temperature

 Illumination

 Radiation

Chemical Hazards:
 Renal Diseases

 Respiratory Diseases

 Skin Diseases

 Hematologic Diseases

 Cardiovascular Diseases

 Neurologic Diseases

 Carcinogenic

 Teratogenic

Other Harmful Effects of Noise:
 Hypertension

 Hyperacidity

 Palpitations

 Disturbs relaxation and sleep

9

Biological Hazards:

Agent / Disease Occupation

Colds, influenza,

scarlet fever,

diphtheria,

smallpox

May be contracted anywhere

Tuberculosis Silica workers, people exposed to heat

and organic dusts, and medical

personnel

Anthrax Animal handlers and handlers of

carcasses, skins, hides, or hair of

infected animals, including wool carpet

processors and handlers.

Ringworm (in

horses, cattle, deer,

pigs, cats, dogs,

birds)

Pet shop salesmen, stockmen, breeders

of cats and dogs, and other animal

handlers

Tetanus Farmers (spores in soil) or anyone in

contact with manure.

Hazard Control

 The first consideration for controlling hazards is to eliminate the hazard or

substitute a less hazardous material or process.

 Engineering controls are physical changes to the work area or process that

effectively minimize a worker's exposure to hazards

 If engineering controls are not feasible then consider implementing

administrative controls.

 Examples of administrative controls include:

1. Limited time exposure to hazards

2. Written operating procedures

10

3. Safety and health rules for employees

 When Engineering/ Administrative controls are not sufficient to protect from

hazard and during emergencies, PPE is applicable.

 Use of apron, goggles, mask, shoe, helmet/cap etc

An occupational health program allows you to respond effectively to

workplace injuries and illnesses and to monitor potential health problems.

11

AGRICULTURAL STATISTICS

Statistics is a mathematical science pertaining to the collection, tabulation,

analysis, interpretation or explanation, and presentation of data. It is

applicable to a wide variety of academic disciplines, from the physical and

social sciences to the humanities

Father of Statistics: Sir Ronald Aylmer Fisher (1890-1962)

 The elements are the entities on which data are collected.

 A variable is a characteristic of interest for the elements

 The set of measurements collected for a particular element is called an

observation

 The total number of data values in a data set is the number of elements

multiplied by the number of variables

Types of data:

 Qualitative Data

 Quantitative Data

 Cross-sectional data are collected at the same or approximately the same

point in time.

 Time series data are collected over several time periods.

Mean

 The mean of a data set is the average of all the data values.

 The sample mean is the point estimator of the population mean m.

Median

 The median of a data set is the value in the middle when the data items are

arranged in ascending order

 Whenever a data set has extreme values, the median

 It is the preferred measure of central location

12

POST-HARVEST TECHNOLOGIES IN FRUIT CROP

Maturity of Fruits and Vegetables

• It is the particular stage in life of plant of fruit at which they attain maximum

growth and size

• There are five types of indices to judge the maturity of the fruit.

• 1. Visual means

2. Physical means

3. Chemical analysis

4. Computation

5.Physiological method

Controlled Atmospheric Storage

• In controlled atmospheric storage higher CO2 and lesser O2 are maintained

• The work on controlled atmosphere storage started in England in 1927 by kid

and West. Modified atmosphere does not differ in principle from controlled

atmosphere.

• In this the produce is held under the atmospheric condition by package, over

wrap, box liner

• Advantages of Controlled Atmosphere Storage:

• i) Control all types of micro-organisms.

ii) Chilling injury and other physiological disorders.

iii) Black heart in potato

 Hypobaric or Sub-atmospheric System

 Waxing

 Polymeric Film

 Chemicals

 Irradiation

 Grading helps in obtaining uniform quality with respect to size, colour etc.

 It is done by hand or with the help of grading machines.

 Mechanical graders such as screen grader, roller graders, rope or cable

graders are also used.

 Screen graders (made up of copper) are most commonly used.

13

 Soft and berry fruits are generally graded by hand picking

 Fruits like berries, plums, cherries and olives are graded whole while

peaches, apricots, pears, mangoes are graded after cutting them into halves

or slices.

14

DESIGN METHODOLOGY OF AGRICULTRAL MACHINERY

 Farm mechanization

 Forces i.e. direction& Quantity

 Stress induced at the lower area & It should be reinforced

 Standard Components

 Properties of material

 Working principles

 Optimization of shape &size

 Ergonomics consideration

 Flow of material

 Power transmission

 Behaviour of soil & crop material

 Knowledge of environment parameters

15

ERGONOMICS

The term ERGONOMICS is derived from the Greek words; ergo: work; nomos:

Natural It is the science dealing with MAN-MACHINE-ENVIRONMENT relationship

to get the optimum output from it with less human cost.

Ergonomics in agriculture

 Agriculture has a marginal primitive image.

 Transformation of traditional agriculture to Mechanized agriculture is need of

time.

 Ergonomic application is tangible, i.e, pertaining to cost-benefit ratio,

intangible, human health, comfort and safety.

Anthropometry

 'Anthropometry', the study of body dimensions and strength.

 To understand the principles of anthropometry, one must be conversant with

the anatomical sites and bony prominence of the human body.

 The problems of work place and workspace are the most common

anthropometric problems; and these problems fall under man-machine

physical compatibility, that someone is too large or too small to fit the

machine.

 By obviating these problems, often better equipment can be designed and a

work place organized.

Biomechanics

 The skeleto-muscular structures determine the range, strength and speed of

human movements, including response behaviour to physical forces such as

acceleration and vibration.

 These information grouped under 'Biomechanics' are useful in avoiding

injuries on the job, in tool design, in work place and task layout, and in the

protection of personnel against mechanical forces.

 The range, strength and speed of body movements are analysed by various

biomechanical techniques and the psycho-physical methodologies.

 When a muscle strength problem is identified, the information on strength

characteristics of different muscles may help to assess the severity of the

problem.

 Accordingly, the alternative solutions are obtained.

16

Energy consumption

 The type of work decides the stress on the human body.

 Frequent analysis is made with reference to energy delivery and the strain on

cardio-vascular and respiratory system due to muscular work. physical efforts

and demand of muscles, environmental factor, static muscular contraction,

 The endurance to work is, thus based on the adaptability of the cardio-

respiratory system with concurrent development of the skeleto-muscular

structures.

 This information is used in establishing work organization principles like

work/recovery cycles, shift work or standard for an allowable load of day's

work.

 Designing tools and jobs to conform to a permissible level of energy demand

is an approach widely accepted for various applications.

17

POSTURAL ANALYSIS TECHNIQUES

 RULA : Rapid Upper Limb Assessment

 REBA : Rapid Entire Body Assessment

 OWAS : Ovako Working Posture Assessment system

RULA : Rapid Upper Limb Assessment

 Rapid upper limb assessment (RULA) is a survey method for use in

ergonomics investigations of workplace where work-related upper limb

disorders are reported.

 This tool requires no special equipment in providing a quick assessment of

the posture of the neck, trunk and upper limbs along with muscle function and

the external loads experienced by the body.

 RULA was developed to:

 1. Provide a method of screening a working population quickly, for exposure

to a likely risk of work-related upper limb disorders.

 2. Identify the muscular effort which is associated with working posture,

exerting force and performing static or repetitive work, and which may contribute to

muscle fatigue.

REBA (Rapid Entire Body Assessment)

• Rapid Entire Body Assessment (REBA) is a postural analysis tool. It has been

developed to fill a perceived need for a practitioner's field tool, specifically

designed to be sensitive to the type of unpredictable working postures found

in health care and other service industries.

The development of REBA aimed to:

• Develop a postural analysis system sensitive to musculoskeletal risks in a

variety of tasks.

• Divide the body into segments to be coded individually, with reference to

movement planes.

• Provide a scoring system for muscle activity caused by static, dynamic, rapid

changing or unstable postures.

• Reflect that coupling is important in the handling of loads but may not always

be via the hands.

• Give an action level with an indication of urgency.

18

• Require minimal equipment - pen and paper method.

OWAS : Ovako Working Posture Assessment system

• Ovako working posture assessment system (OWAS) is used method for

studying awkward working postures in workplaces. It identifies the most

common work postures for the back (4 postures), arm (3 postures) and legs (7

postures) and the weight of the load handed (3 categories)

19

Fig.2-Ridger operation posture

RULA

Upper arm score : 2+1=3

Lower arm score : 1

Wrist score : 2

Wrist twist score : 2

Posture score (A) : 4

Muscle use score : 1

Force / load score : 2

Wrist and arm score : 7

Neck score : 1

Trunk score : 2

Leg score : 2

Posture score (B) : 3

Muscle use score : 1

Force / load score : 2

Neck, trunk and leg score : 6

Final score : 7

Inference : Investigate and implement change

20

REBA

Neck score : 1

Trunk score : 2

Leg score : 2+1=3

Posture score (A) : 4

Force / load score :

Score A : 5

Upper arm score : 2+1=3

Lower arm score : 1

Wrist score : 1

Posture score (B) : 3

Coupling score : 1

Score B : 4

Table C : 5

Activity : 1

Final Score : 6

Inference : Medium Risk ,Further investigate &Change soon

21

Fig.3-Wheel hoe operation posture

RULA

Upper arm score : 1+1=2

Lower arm score : 1

Wrist score : 2+1=3

Wrist twist score : 1

Posture score (A) : 3

Muscle use score : 1

Force / load score : 2

Wrist and arm score : 6

Neck score : 2

Trunk score : 2

Leg score : 2

Posture score (B) : 3

Muscle use score : 1

Force / load score : 2

Neck, trunk and leg score : 5

Final score : 6

Inference : Further Investigate and change soon

22

REBA

Neck score : 1

Trunk score : 2

Leg score : 2+1=3

Posture score (A) : 4

Force / load score : 1

Score A : 5

Upper arm score : 1+1=2

Lower arm score : 1

Wrist score : 1+1=2

Posture score (B) : 2

Coupling score : 2

Score B : 4

Table C : 6

Activity : 1

Final Score : 7

Inference : High Risk ,Further investigate &Change soon

23

HUMAN ENERGY CONSUMPTION
 Human body is an engine.

• Food is metabolized to give energy to do mechanical work

• Energy expenditure of a person can be calculated by measuring the amount

of oxygen intake.

• Calorific value of oxygen is 20.88 kJ/ l of O2

• Maximal oxygen uptake capacity or VO2 max is defined as the capacity of an

individual to consume maximum amount of oxygen from the outer

atmosphere.

• Women have 70 to 75 % of that of men.

• Indian agricultural workers :

• Female : 1.6 l/min

• Male : 2.2 l/mi

• Physiological cost of any operation is expressed in terms of heart rate and

oxygen consumption rate.

• AWL : Acceptable work load, 35-40% of VO2 max i.e. 0.6 & 0.8 l/min for

female and male.

• Approximately the heart rate corresponding for this will be 110 to 120 bpm

• For most individuals HR of 120-130 bpm is 50 % of Vo2 max. Here the

person starts getting out of breath.

• Limit of continuous performance for 8-hour day (LCP) is suggested as 40-

work pulse per minute

• In favourable conditions the work efficiency of the human body can be 25 – 30

%. But for field activities it ranges from 3 -25 %.

• Computerized ambulatory metabolic measurement system (K4b2)

• Maximum heart rate = 190 - (Age in years – 25) x 0.62

Estimation of oxygen consumption rate and energy

consumption
– Male workers:

• Y = 0.0183 HR – 1.28 (Nag, 1981, agri workers)

• Y = 0.0156 Hr – 0.88 (Tiwari et al , 2010, agri workers)

• Y = 0.014 HR – 0.8 (ESA, agri workers)

– Female workers :

• Y = (0.159 HR -8.72) / 20.9 (Verghese et al, 1994, college

students)

• Y = 0.0114 HR – 0.68 (Singh et al 2008, farm women)

• Y = 0.011HR – 0.59 (ESA, agri workers)

24

ANTHROPOMETRIC DATA FOR 79 BODY DIMENSION OF

CENTURION TRAINEES

Dimension Ardhendu Dibya Mohan Ranjan Shubham

Weight ,kg 72 56 70 66 68

stature 1650 1690 1630 1710 1720

Vertical reach 2030 1860 2120 2230 2220

Vertical grip

reach

1922 1800 1980 2120 2110

Eye height 1500 1580 1530 1630 1620

Acromial

height

1335 1430 1360 1410 1420

Elbow height 1050 1000 1030 1120 880

Olecranon

height

1032 1010 980 1050 1040

Iliocrystale

height

930 920 920 1000 1030

Iliospinal

height

900 895 910 990 1010

Trachenteric

height

785 850 800 940 950

Metacarpa

height

720 750 690 740 730

Knee height 470 480 450 520 510

Medial

Mallealus

height

60 85 70 65 80

Lateria

Mallealus

height

55 90 80 80 90

Mentone to top

of the head

200 200 210 220 230

Waist back 480 520 520 540 550

25

length

Elbow rest

height

230 270 230 240 250

Span 1620 1680 1710 1770 1850

Span akimbo 870 860 900 900 940

Arm reach

from the wall

750 850 790 850 810

Thumb tip

reach

670 730 710 770 750

Shoulder grip

length

630 680 690 750 730

Wall to

acromion

distance

110 110 125 117 95

Wall to

lumbosacral

joint distance

45 50 35 60 50

Abdominal

extension to

wall

255 220 260 230 235

Chest depth 210 220 270 215 215

Biacromial

breadth

280 320 300 330 310

Bideltoid

breadth

440 410 430 460 440

Chest breadth 300 280 300 270 260

Inter scye

breadth

310 320 340 325 310

Waist breadth 320 290 300 280 310

Hips breadth 340 300 380 310 360

Heel breadth 50 70 75 64 69

Bimalleolar

breadth

70 75 70 70 72

26

Chest

circumference

920 840 940 900 900

Waist

circumference

300 290 320 280 310

Thigh

circumference

500 430 520 525 450

Calf

circumference

370 310 360 340 350

Wrist

circumference

160 150 160 165 170

Grip diameter

(inside)

40 45 40 50 45

Grip diameter

(outside)

80 80 75 85 80

Middle finger-

palm grip

diameter

30 30 30 40 35

Vertical grip

sitting

1060 1380 1340 1280 1250

Setting height 870 910 880 885 920

Sitting eye

height

710 800 760 770 795

Sitting

acromion

height

560 630 600 620 610

Elbow rest

height

230 270 230 240 250

Thigh

clearance

height sitting

160 130 160 130 130

Knee height

sitting

520 510 520 550 550

Popliteal height

sitting

440 460 440 500 480

Hand thickness

at metacarpal

33 29 28 32 30

27

–III

First phalanx

digit III length

63 67 62 66 67

Grip length 65 60 57 65 58

Maximum grip

length

110 118 117 113 125

Index finger

diameter

17 18 19 21 19

Head length 180 185 180 190 195

Head breath 150 125 130 120 130

Coronoid fossa

to head length

355 420 350 415 457

Fore arm head

length

415 457 450 470 495

Elbow grip

length

320 340 350 360 395

Hand length 180 185 175 185 190

Palm length 95 105 90 100 98

Hand breadth

across Thumb

96 95 100 113 102

Hand breadth 82 87 85 90 85

Buttock knee

length

565 550 530 560 550

Buttock

popliteal length

445 455 470 465 460

Abdominal

depth sitting

240 170 240 210 210

Hip breadth

sitting

350 340 390 340 350

Elbow Elbow

breadth sitting

385 330 450 360 350

Knee Knee

breadth

235 190 220 180 185

28

Foot length 238 245 250 255 255

Instep length 193 190 200 200 200

Foot breadth 97 105 95 110 110

Functional leg

length

938 960 950 1250 1300

Bicep skinfold

thickness

15 4 8 5 9

Triceps skin

fold Thickness

8 5 10 6 5

Sub scapular

skin fold Thick

ness

13 12 16 17 13

Supra Iliac

skinfold

Thickness

26 8 33 10 20

29

PROJECT

30

DEVELOPMENT OF MICROPROCESSOR BASED DATA

RECORDING SYSTEM FOR SENSING RELATIVE HUMIDITY AND

TEMPERATURE

31

ABBREVIATIONS

 IDE Integrated Development Environment

 Ω Ohm

 VCC Voltage common collector

 GND Ground Voltage Level.

 MISO Master In Slave Out

 MOSI Master Out Slave In

 SCK Serial clock

 CS Chip select

 SCL Clock line

 SDA Data line

 °c Celsius

 Fahrenheit,

 H0 the null hypothesis

 μ1 the mean of 1

 μ2 the mean of 2.

32

INTRODUCTION

 Temperature

 Humidity

TEMPERATURE:-

Temperature is a physical quantity expressing hot and cold .Ambient temperature is

the air temperature of an environment or object. In computing, ambient temperature

refers to the air temperature surrounding computing equipment. This measurement

is crucial for equipment function and longevity. It is a proportional measure of the

average kinetic energy of the random motions of the constituent particles

of matter (such as atoms and molecules) in a system. Temperature is important in all

fields of natural science, including physics, chemistry, Earth science, medicine,

and biology, as well as most aspects of daily life.[2]

Temperature is an important factor in agriculture variations in temperature affect the

growth of the crop.it also influences the flowering, fruiting, timing, which will

ultimately effect the yield.

OLD METHOD :-(Measurement of temperature)

Manual Field Temperature Measurement Procedure:-

General Field temperature measurements may be made with a field thermometer,

equipment thermistor, or NIST-traceable thermometer. At a minimum, the

temperature measurement device should be capable of measuring in 0.1°C

increments. Thermometers are the oldest of the group. [1]

Instrument:-

Field thermometers and thermistors:-

Temperature measurement devices such as field thermometers and equipment

thermistors will be verified against a NIST-traceable thermometer prior to use and

should agree within ± 4.0C. Corrections may be applied for measurements up

toshould agree within ± 4.0 C depending on investigation objectives, but the

instrument must be± 4.0 repaired or replaced beyond that range. [1]

NIST-traceable thermometer:-

Verification of the NIST-traceable thermometers that are used to verify temperature

measuring devices is accomplished by comparing temperature readings from the

NIST-traceable thermometer to a thermometer that has an independent certification

of accuracy traceable to the National Institute of Standards and Testing. Current

certified thermometers are maintained by the SESD Analytical Support Branch and

are called reference thermometers.

https://en.wikipedia.org/wiki/Physical_quantity
https://en.wikipedia.org/wiki/Heat
https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Matter
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Natural_science
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Chemistry
https://en.wikipedia.org/wiki/Earth_science
https://en.wikipedia.org/wiki/Medicine
https://en.wikipedia.org/wiki/Biology

33

 Each NIST-traceable thermometer is verified by comparing at least annually against

a reference thermometer. If corrections need to be applied, they will be noted in the

NIST-traceable thermometer. Depending on investigation objectives, project leaders

may decide to apply the correction factor as necessary. [1]

Sample measurement procedures for thermometers/thermistors:-

(Make measurements in-situ when possible)

1. Clean the probe end with de-ionized water and immerse into sample.

2. If not measuring in-situ, swirl the instrument in the sample for mixing and

equilibration.

3. Allow the instrument to equilibrate with the sample for at least one minute.

4. Suspend the instrument away from the sides and bottom, if not in-situ, to observe

the temperature reading.

5. Record the reading in the log book. For most applications, report temperature C

depending on need.C or to the nearest 0.1readings to the nearest 0.5

Note: Always clean the thermometer with de-ionized water or a detergent solution, if

appropriate, prior to storage and/or use. [1]

Units:-

Degrees Celsius (°C) or Degrees Fahrenheit (°F)

Conversion Formulas: -

°F = (9/5 °C) + 32 or °C = 5/9 (°F - 32)

HUMIDITY:-

Humidity is a term used to describe the amount of water vapour present in air. Water

vapour, the gaseous state of water, is generally invisible to the human eye. Humidity

indicates the likelihood for precipitation, dew, or fog to be present. As the

temperature of the air increases more water vapour can be held since the movement

of molecules at higher temperatures prevents condensation from occurring.

Humidity is important to make photosynthesis possible. If the humidity is too low,

plant growth is often compromised as crops take much longer to obtain the saleable

size. Also lower leaves often drop off, growth is hard, and overall quality is not very

good. Whether the humidity is too high or too low, the loss of quality reduces the

selling price of crops and increases production costs, both of which reduce profits.

 Three primary measurements of humidity are widely employed: absolute,

relative and specific. Absolute humidity describes the water content of air and

https://en.wikipedia.org/wiki/Water_vapor
https://en.wikipedia.org/wiki/Precipitation_(meteorology)
https://en.wikipedia.org/wiki/Dew
https://en.wikipedia.org/wiki/Fog

34

is expressed in either grams per cubic meter or grams per kilogram. Relative

humidity, expressed as a percentile, indicates a present state of absolute

humidity relative to a maximum humidity given the same temperature. Specific

humidity refers to the weight of water vapour contained in a unit weight

(amount) of air (expressed as grams of water vapour per kilogram of air).

Absolute and specific humidity are quite similar in concept.

Relative Humidity:-

 The relative humidity of an air-water mixture is defined as the ratio of
the partial pressure of water vapour in the mixture to the equilibrium vapour
pressure of water over a flat surface of pure water at a given temperature .

 Relative humidity is normally expressed as a percentage; a higher percentage

means that the air-water mixture is more humid .Relative humidity is an

important metric used in weather forecasts and reports, as it is an indicator of

the likelihood of precipitation, dew, or fog. In hot summer weather, a rise in

relative humidity increases the apparent temperature to humans (and

other animals) by hindering the evaporation of perspiration from the skin. For

example, according to the Heat Index, a relative humidity of 75% at air

temperature of 80.0 °F (26.7 °C) would feel like 83.6 °F ±1.3 °F (28.7 °C

±0.7 °C). [3]

OLD METHOD :-(Measurement of humidity)

Psychometric method:-

The oldest method for measuring relative humidity is the psychometric method.

Psychometry is commonly known as the “wet” and “dry” bulb method. A

psychometric sensor does not directly sense humidity, but rather it senses

temperature to indirectly find relative humidity. The sensing elements can be

thermometers, RTD‟s, or thermistors. The first sensing element, the dry bulb,

measures ambient temperature. The second sensing element, the wet bulb, is

enclosed in a wick saturated with distilled water. Air forced across the wet bulb

creates evaporation, which cools it below ambient temperature. The amount of

evaporation (cooling) is dependent on the vapour pressure of the air. Using the wet

and dry-bulb temperatures, the relative humidity can be looked up on a psychometric

chart. Looking up the %RH on a chart for every measurement is time-consuming and

cumbersome. With today‟s technology, psychometric charts and dew point equations

can be stored in a microprocessor, thus making this a direct sensing method for RH

and dew point. [6]

Dew point method:-

In this method, the dew point is determined by cooling a highly polished surface in

the gas and checking the maximum temperature at which the condensation takes

https://en.wikipedia.org/wiki/Partial_pressure
https://en.wikipedia.org/wiki/Equilibrium_vapor_pressure
https://en.wikipedia.org/wiki/Equilibrium_vapor_pressure
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Precipitation_(meteorology)
https://en.wikipedia.org/wiki/Weather
https://en.wikipedia.org/wiki/Heat_index
https://en.wikipedia.org/wiki/Human
https://en.wikipedia.org/wiki/Animal
https://en.wikipedia.org/wiki/Evaporation
https://en.wikipedia.org/wiki/Perspiration
https://en.wikipedia.org/wiki/Heat_Index

35

place. The humidity of the gas is equal to the humidity of saturated gas at the dew

point. [6]

Hygrometric method:-

The hygrometric method of relative humidity sensing is the most common. The

instruments are generally compact, reliable, and inexpensive .These sensors provide

an output that is directly indicative of humidity. The first humidity sensing elements

were mechanical in nature. Physical dimensions of various materials will change with

theadsorption1 of water. Some examples of these are hair, animal membrane, and

some plastics. To build a sensor from these materials the element is kept in tension

with a spring. A strain-gauge monitors the displacement caused by a change in the

moisture content of the air. The output of the strain gage is directly proportional to

the relative humidity. A second method of hygrometry is coating an oscillating crystal

(quartz) with a hygroscopic coating. When the coating adsorbs water the mass

changes which then changes the crystal‟s oscillating frequency. A more obscure

method is an electrolytic hygrometer. This method is complicated and not used

frequently enough to warrant explanation. [6]

Electrical Hygrometers:-

Electrical impedance sensors measure the changes in electrical capacitance or

resistance of a hygroscopic material. The material will absorb or desorb water

depending on the partial vapour pressure in the atmosphere around it, thus changing

its electrical properties. These sensors measure relative humidity. While capacitive

hygrometers can withstand condensation, resistive ones usually cannot. [6]

STEVENSON SCREEN:-

(A)

(B)

Fig 4. (A) Outer view of Stevenson screen ,(B)inner view of Stevenson screen

A Stevenson screen or instrument shelter is a shelter or an enclosure to shield

meteorological instruments against precipitation and direct heat radiation from

outside sources, while still allowing air to circulate freely around them.

36

 It forms part of a standard weather station. The Stevenson screen holds instruments

that may include thermometers (ordinary, maximum/minimum), a hygrometer, a

psychrometer, a dew cell, a barometer and a thermograph.

Stevenson screens may also be known as a cotton region shelter, an instrument

shelter, a thermometer shelter, a thermo screen or a thermometer screen. Its

purpose is to provide a standardised environment in which to measure temperature,

humidity, dew point and atmospheric pressure. [3].

NOTE:-Humidity and temperature are common parameters to measure

environmental conditions, but it is difficult to measure them in real time manually due

to various operational limitations. Manual recording of the data may lead to

erroneous results.

Hence it is proposed to develop a Microprocessor based data recording system

which can sense and record the data of humidity and temperature in real time.

AIM:-

The aim of the project is to design and develop a microprocessor based temperature

and humidity measuring system that will record the values with respect to time.

OBJECTIVES:-

1. To study the existing microprocessors and their coding systems.

2. To study different types of sensors and their mechanisms.

3. To design circuit and develop compatible code for sensing temperature and

humidity with "DHT22" sensor.

4. To enable the sensor to read and record the data in real time using " real time

clock - DS3231" and " micro SD module”

MICRO-PROCESSOR

A microprocessor is an integrated circuit (IC) which incorporates core functions of a

computer‟s central processing unit (CPU). It is a programmable multipurpose silicon

chip, clock driven, register based, accepts binary data as input and provides output

after processing it as per the instructions stored in the memory.

ADVANTAGES OF A MICRO-PROCESSOR:-

 Low Cost

Microprocessors are available at low cost due to integrated circuit technology

.Which will reduce the cost of a computer system.

 High Speed

Microprocessor chips can work at very high speed due to the technology

involved in it. It is capable of executing millions of instructions per second.

 Small Size

Due to very large scale and ultra large scale integration technology, a

37

microprocessor is fabricated in a very less footprint. This will reduce the size

of the entire computer system.

 Versatile

Microprocessors are very versatile, the same chip can be used for a number

of applications by simply changing the program (instructions stored in the

memory).

 Low Power Consumption

Microprocessors are usually manufactured using metal oxide semiconductor

technology, in which MOSFETs (Metal Oxide Semiconductor Field Effect

Transistors) are working in saturation and cut off modes. So the power

consumption is very low compared to others.

 Less Heat Generation

Compared to vacuum tube devices, semiconductor devices won‟t emit that

much heat.

 Reliable

Microprocessors are very reliable, failure rate is very less as semiconductor

technology is used.

 Portable

Devices or computer system made with microprocessors can be made

portable due to the small size and low power consumption.

ELECTRONICS USED TO DEVELOPED THE SENSOR ARE AS

FOLLOWS

SL. NO. NAME QUANTITY

01 Arduino. 1

02 Humidity & Temperature sensor (DHT22) 1

03 Real time clock (DS3231) 1

04 Resistor. 2(10K,330Ω)

05 Micro SD module 1

06 Jump Wire As per requirement

07 Power source (9-12)volts

In this project we have used one Arduino (Arduino Uno) based sensor which can

give both humidity and temperature parameters value at a time and can be stored in

the memory card.

38

ARDUINO

Arduino is a microcontroller board which functions as a tiny computer; it is a platform

where creation and development of interacting objects is possible with required

programming software. The Arduino software IDE (Integrated Development

Environment) provides space to write codes in the language (programming

languages C, C++) that Arduino board understands and responds to.

Inexpensiveness, easy-to-use design and flexibility for advance modifications are

some features of the microcontroller based Arduino hardware and software that are

making its range of use wider. One of the most important factor that affects its

increasing range of use is its freedom of use. Both the Arduino hardware and the

software are open source, which means that one can easily use the ideas generated

by others in their work and modify them without anyone‟s authorization. It can be

used by anyone to do anything they want to do with it .Arduino boards are designed

in such a way that one without prior knowledge of electronics or previous experience

of programming can use information from other people‟s work and build their own

interactive object that can sense the environment and control it. It comes with a

cheap price which is a crucial factor that makes Arduino accessible to many

students, hobbyists and teachers and ultimately a new revolution of innovation in

electronics.

Arduino is the brain of circuit. It has input and output ports .Input is taken through

sensors, Arduino processes inputs and gives outputs. Typical Arduino Uno is

depicted in figure no.5.

 Circuit:- In the Arduino world circuit is made using an Arduino with other

components and devices.

A typical Arduino board is consisting of the following part –

 Power pins:-These pins give power to the circuit.

 Analog input:-6 Dedicated pins for taking Analog input, through Analog to

digital conversation (ADC).

 Digital input Output pins:-13 digital pins, these can be used as input or output.

It is needed to be declared in the code whether pin is to be used as input or

output. Thus a digital input/output pin can be used as an input pin or an output

pin.

 PWM Pins:-In an Arduino circuit Analog output is taken through the PWM

pins.

 RX & TX Pins:- These two pins are for serial communication .Arduino is

connected to an external devices through these two pins .These pins provide

serial communication to the Arduino. Rx stands for receiver and Tx stands for

transmitter .To connect an Arduino system to another device the Rx of

Arduino should be connected to the TX of the other device and vice versa.

 Reset pins:-This pin is to reset Arduino externally.

 Reset Button:-This button is for resisting Arduino .The Arduino gets reset if

this button is pressed.

39

 Power inputs:-It is advised to use a power supply of 9-12v with an Arduino.

This input can be taken out for a circuit from pin of the power pins.

 GND:-It stands for the Ground Voltage Level.

 Breadboard:- Breadboard is a device to make prototype circuits .It has several

sockets in which electronic components get inserted. It has power line sockets

that provide power to the circuit. .[8]

Fig.5-Pin connection of Arduino UNO

40

HUMIDITY AND TEMPERATURE SENSOR

A B

Fig 6. (A)DHT22 sensor, (B) circuit diagram of DHT22 sensor.

Table.1- Pin names of DHT22 sensor with their connection.

PIN CONNECTION

1 VCC 5V.

 2 DATA

One is Connected to 5volt

through a 10kΩ resistor and

another to pin 2 of Arduino.

3 NC Null

 4 GND Ground Pin.

A sensor is an electronic device that converts a change in physical phenomenon into

an electrical signal. It can send the information to computers or other electronic

devices.

The sensors used in this work is temperature and humidity sensor-DHT22 as shown

in figure 6.The sensor-DHT22 is an Analog sensor designed to sense the physical

change in heat and moisture when exposed in air with suitable wiring and

programming.

Its small size, cheap price, low power consumption, quick responses are the

characteristics for being one of the best choices for many users. The sensor DHT22

is applicable in HVAC (heating, ventilation and air conditioning), it can be used in

testing and inspecting equipment and consumer goods. It is also applicable to use in

41

building a weather station or a humidity regulator. The use of DHT22 sensor has

shown its usefulness measuring and controlling temperature and humidity in home

appliances, medical and many other sector.

Table.2- Measurement range of DHT22 sensor

Sensors DHT11 DHT22

Humidity: 20 to 90 % RH 0-100%

Temperature: 0 to 50°C -40 - 125°C

Accuracy:

Temperature: ±2 %

Humidity: ±5 %

Where the operating Voltage remains between 3V to 5.5V.

We prefer DHT22 as compared to DHT11because it has high performance.

The sensor used in this project, DHT22, is designed to measure humidity in terms of

relative humidity (RH). Relative humidity (RH) is the ratio of the amount of water

vapour content of the air to the saturated moisture level at the same pressure or

temperature.

𝑅𝐻=

Where 𝑅𝐻 is relative humidity, 𝜌𝑤 is the density of water vapour, and 𝜌𝑠 is the

density of water vapour at saturation.

Working:- The sensor DHT22 detects moisture in the air by measuring the electrical

resistance between electrodes .It is fabricated with a moisture holding substrate.

When substrate absorbs moisture, ionization takes place and results in the increase

in conductivity between the electrodes .The relative humidity is proportional to the

change in resistance between electrodes due to moisture absorbed.

42

REAL TIME CLOCK

(A)
(B)

Fig 7. (A) RTC-DS3231 (B) Circuit diagram of DS3231

Table.3- Pin names of RTC-DS3231 with their connection.

PIN CONNECTIONS

1. 32K none

2. SQW none

3. SCL A5

4. SDA A4

5. VCC 3.3volt

6. GND ground

The DS3231 is a low-cost, highly accurate Real Time Clock which can maintain

hours, minutes and seconds, as well as, day, month and year information. Also, it

has automatic compensation for leap-years and for months with fewer than 31 days.

Operating Voltage: 3.3 - 5V

Current: 15mA

Accuracy: ±2ppm at 0°C to +40°C and ±3.5ppm at -40°C to +85°C

Digital Temp Sensor Output: ±3°C Accuracy

43

MICRO SD MODULE

(A) (B)

Fig 8. (A) Micro SD Module, (B) circuit diagram of micro SD module

Table.4 Pin names of micro SD module with their connection.

PIN CONNECTION

1.GND Ground pin

2.VCC 5volt

3.MISO 330Ω-D12

4.MOSI D11

5.SCK D13

6.CS D10

The Arduino Micro SD card Module is an SPI Communication based device. It is

compatible with the TF SD cards used in mobile phones and can be used to provide

some sort of external storage for micro controller and microprocessor based

projects, to store different kind of data. SD cards generally are 3.3v logic level based

devices, but with the aid of the Micro SD card module, the signals are converted to

5v via a logic level converter implemented on the SD card Module.

44

Arduino IDE

 (IDE stands for Integrated Development Environment.)

The brain part of the building monitoring system, the Arduino IDE (integrated

development environment), is a software development environment or software

application for Arduino where users can write different kind of computer programs

and test .The user can write codes in IDE in a language which an Arduino

understands, i.e. C, C++. The program (codes) written in IDE, when uploaded into

the Arduino microcontroller deter-mines what and how the system works. The

Arduino IDE comes with a „built-in code parser‟ that studies the validity of the written

codes before sending it to the Arduino. The compilation and translation work is done

in IDE after checking the validity of codes. After translating the code, the IDE

uploads the program to the Arduino microcontroller.

The Arduino IDE looks like -

Fig 9. Arduino IDE

VERIFY: - This compiles code and checks errors. If any error is found, error

message is displayed in the message panel.

UPLOAD:-This transfers the compiled code to Arduino board. It first verifies, If no

error is found the code is transferred to the connected Arduino board.

45

NEW:-This opens a new tab.

OPEN: - This opens an existing Arduino code.

SAVE:-This saves the opened code.

An Arduino code is known as sketch.

SET UP /CONNECTION AND CODE

Schematically, the connections for the memory storage and DHT11 sensor with

Arduino Uno is shown below.

 Fig 10. Set up connection of the project

46

(A)

(B)

Fig 11(A, B). Set up connection of the project made by us

When all the connections and wiring are done, the code should be written in IDE and

the codes written in IDE tells the Arduino to function so that the measurement

obtained from sensor can be stored in the memory storage and can be displayed in

the computer.

The programming codes that stores humidity and temperature readings with Arduino

and DHT22 sensor are given below. The codes were developed with the help of an

original source (circuito.io).

47

CODE:-

#include"Arduino.h"

#include"DHT.h"

#include"Wire.h"

#include"RTClib.h"

#include"SD.h"

#define DHT_PIN_DATA 2

#define SDFILE_PIN_CS 10

File sdFile;

 DHT dht(DHT_PIN_DATA);

 RTC_DS3231 rtc;

void setup()

{

 dht.begin();

 pinMode(SDFILE_PIN_CS, OUTPUT);

 SD.begin();

}

 void loop()

{

 sdFile = SD.open("file_name.txt", FILE_WRITE);

 if (sdFile)

 {

 DateTime now = rtc.now();

sdFile.print(now.hour(), DEC);

sdFile.print(':');

sdFile.print(now.minute(), DEC);

sdFile.print(':');

sdFile.print(now.second(), DEC);

sdFile.print(F(" "));

float dhtHumidity = dht.readHumidity();

float dhtTempC = dht.readTempC();

sdFile.print(dhtHumidity);

 sdFile.print(F(" "));

sdFile.print(dhtTempC);

sdFile.println();

sdFile.close();

delay(10000);

 }

}

After writing, the codes given above should be verified by IDE and when the

verification completes the program is ready to be uploaded in Arduino.

48

(A)

(B)

49

(C)

Fig 12(A,B,C).Arduino IDE interface

When these codes are written in IDE and uploaded to Arduino, the humidity and

temperature measurement starts to store the values which is shown in the figure

given below. The serial monitor gives the humidity and temperature measurement

result in a frequency set as “delay ()” while writing codes.

50

RESULT AND ANALYSIS:-

After wiring and writing the code, the program was run and the built device was

successful in measuring humidity and temperature.

To study the performance characteristics of the used Arduino-based humidity and

temperature sensor, the test was done in 2 different conditions. The first test was

done inside an environmental laboratory room (with 5min interval) and the second

test was done outside laboratory (with 15 min interval), respectively.

The measured data was analysed using excel. The following tables and graphs show

the comparison of the commercially available temperature and humidity sensor and

the developed sensor.

(A)

(B)

51

(C)

(D)

Fig 13(A,B,C,D). Setup and Calibration operation

52

Table.5- Humidity Readings of commercial and developed sensor with five

mins interval

Time

Relative Humidity (%)

Commercial sensor Developed Sensor

14:23:00 33.9 80.1

14:28:00 44 80.7

14:33:00 34 71.3

14:38:00 29 60.4

14:43:00 30 59.2

14:48:00 36 61.1

14:53:00 32 70.8

14:58:00 31 58.6

15:03:00 29 55.4

15:08:00 31 58.8

15:13:00 36 59

Fig 14. Comparison of commercial sensor and developed sensor for

relative humidity (interval - 5 mins)

Applying paired “t-test”;

 H0: μ1 = μ2

t cal = 8.589 and t tab = 2.086

t cal is greater than t tab value hence we reject the null hypothesis, thus the values are

significantly different hence the developed sensor does not give humidity with

significant accuracy as compared to commercial sensor.

0

10

20

30

40

50

60

70

80

90

100

2
:1

6
:4

8
 P

M

2
:2

4
:0

0
 P

M

2
:3

1
:1

2
 P

M

2
:3

8
:2

4
 P

M

2
:4

5
:3

6
 P

M

2
:5

2
:4

8
 P

M

3
:0

0
:0

0
 P

M

3
:0

7
:1

2
 P

M

3
:1

4
:2

4
 P

M

3
:2

1
:3

6
 P

M

R
e

la
ti

ve
 H

u
m

id
it

y
(%

)

Time (hr:mm:ss)

Commercial sensor Developed Sensor

53

Table.6- Humidity Readings of commercial and developed sensor with 15 mins

interval

Time

Relative Humidity (%)

Commercial sensor Developed sensor

10:53:00 53 70.9

11:08:00 51 71.8

11:23:00 52 63.9

11:38:00 54 69.1

11:53:00 52 68.1

12:08:00 54 64.9

12:23:00 53 68.2

12:38:00 54 67.3

Fig 15. Comparison of commercial sensor and developed sensor for

relative humidity (%) (interval - 15 mins)

Applying paired “t-test”;

 H0: μ1 = μ2

t cal = 7.441 and t tab = 2.144

t cal is greater than t tab value hence we reject the null hypothesis, thus the values are

significantly different hence the developed sensor does not give humidity with

significant accuracy as compared to commercial sensor.

0
10
20
30
40
50
60
70
80
90

100

1
0

:3
3

:3
6

 A
M

1
0

:4
8

:0
0

 A
M

1
1

:0
2

:2
4

 A
M

1
1

:1
6

:4
8

 A
M

1
1

:3
1

:1
2

 A
M

1
1

:4
5

:3
6

 A
M

1
2

:0
0

:0
0

 P
M

1
2

:1
4

:2
4

 P
M

1
2

:2
8

:4
8

 P
M

1
2

:4
3

:1
2

 P
M

1
2

:5
7

:3
6

 P
M

R
e

la
ti

ve
 H

u
m

id
it

y
(%

)

Time (hr:mm:ss)
Commercial sensor Developed sensor

54

Table.7- Temperature Readings of commercial and developed sensor with

five mins interval

Time

 Temperature

Commercial
sensor Developed Sensor

14:23:00 33.9 32.8

14:28:00 40.4 32.8

14:33:00 44 40.5

14:38:00 46.4 42.6

14:43:00 45.2 42.8

14:48:00 43.2 38.9

14:53:00 45.5 38.2

14:58:00 46 41.8

15:03:00 46.4 42.3

15:08:00 44.8 41.7

Fig 16. Comparison of commercial sensor and developed sensor for

temperature(⁰C) (interval - 5 mins)

Applying paired “t-test”;

 H0: μ1 = μ2

t cal = 5.418 and t tab = 2.085

t cal is greater than t tab value hence we reject the null hypothesis, thus the values are

significantly different hence the developed sensor does not give humidity with

significant accuracy as compared to commercial sensor.

0

5

10

15

20

25

30

35

40

45

50

2
:1

6
:4

8
 P

M

2
:2

4
:0

0
 P

M

2
:3

1
:1

2
 P

M

2
:3

8
:2

4
 P

M

2
:4

5
:3

6
 P

M

2
:5

2
:4

8
 P

M

3
:0

0
:0

0
 P

M

3
:0

7
:1

2
 P

M

3
:1

4
:2

4
 P

M

3
:2

1
:3

6
 P

M

Te
m

p
e

ra
tu

re
 (

 ⁰
 C

)

Time (hr:mm:ss)

Commercial sensor Developed Sensor

55

Table.8- Temperature Readings of commercial and developed sensor with 15

mins interval

Time

Temperature

Commercial sensor Developed sensor

10:53:00 36 35.5

11:08:00 37.5 35.5

11:23:00 36.3 36.2

11:38:00 36.1 35.1

11:53:00 36.7 34.8

12:08:00 36.5 35.7

12:23:00 36.6 35.1

12:38:00 36.6 35.5

Fig 17. Comparison of commercial sensor and developed sensor for

temperature (⁰C) (interval - 15 mins)

Applying paired “t-test”;

 H0: μ1 = μ2

t cal = 5.84 and t tab = 2.086

t cal is greater than t tab value hence we reject the null hypothesis, thus the values are

significantly different hence the developed sensor does not give humidity with

significant accuracy as compared to commercial sensor.

34.5

35

35.5

36

36.5

37

37.5

38

1
0

:3
3

:3
6

 A
M

1
0

:4
8

:0
0

 A
M

1
1

:0
2

:2
4

 A
M

1
1

:1
6

:4
8

 A
M

1
1

:3
1

:1
2

 A
M

1
1

:4
5

:3
6

 A
M

1
2

:0
0

:0
0

 P
M

1
2

:1
4

:2
4

 P
M

1
2

:2
8

:4
8

 P
M

1
2

:4
3

:1
2

 P
M

1
2

:5
7

:3
6

 P
M

Te
m

p
e

ra
tu

re
 (

 ⁰
C

)

Time (hr:mm:ss)

Commercial sensor Developed sensor

56

CONCLUSION:-

The work was successful in building a recording device which works as a

thermohygrometer for measuring temperature and humidity; it is capable of

measuring humidity and temperature both indoors and outdoors (Fields).Compared

to expensive sensor, the Arduino-based recording system successfully reduces the

power consumption, cost and complexity of the process. It achieved logging of the

data in real time. it also facilitated remote recording of the data in a memory card

without need of an laptop or a computer. The performance of the sensor with regards

to recording temperature was acceptable with minor modification of code in future to

compensate for the deviation of its readings as compared to commercial sensors.

Same condition is applicable for the humidity readings.

 The developed recording system can be used with various other sensors for

measuring parameters such as wind velocity, soil moisture, distance etc with a

appropriate sensor and compatible coding.

Arduino- based devices are the new possibilities for developing smart devices freely

with small budget and simple work. The accelerating race of advanced technology

outdates the technology used in Arduino Uno in no time; advanced software working

similarly are available.

The project was interesting and was practically helpful to learn to use

microcontrollers (Arduino), programming language C and basic electronics. This was

a very helpful project in learning and understanding the world of microcontrollers and

use of microcontrollers in day to day life.

57

References

1. Field Temperature Measurement (PDF) - EPA (available at-

https://www.epa.gov/sites/production/files/2015-06/documents/Field-

Temperature-Measurement.pdf)

2. https://en.wikipedia.org/wiki/Humidity

3. https://en.wikipedia.org/wiki/Stevenson_screen

4. https://en.wikipedia.org/wiki/Temperature

5. https://www.circuito.io/app?components=512,10167,11021,821989,1671987
6. Methods for the Determination of HumidityUploaded by Muhammad Salman

(available at -https://www.scribd.com/document/152524943/Methods-for-the-

Determination-of-Humidity)

7. Nagendra DangiMonitoring environmental parameters: humidity and

temperature using Arduino based microcontroller and sensorsMicrocontroller

based building monitoring system. (available at-

http://www.theseus.fi/handle/10024/142235

8. PRO MIX , How Does Humidity Influence Crop Quality(available at-

https://www.pthorticulture.com/en/training-center/how-does-humidity-

influence-crop-quality/)

9. The Arduino Starter Guide, by Kunwar Imran.

https://www.epa.gov/sites/production/files/2015-06/documents/Field-Temperature-Measurement.pdf
https://en.wikipedia.org/wiki/Humidity
https://en.wikipedia.org/wiki/Stevenson_screen
https://en.wikipedia.org/wiki/Temperature
https://www.circuito.io/app?components=512,10167,11021,821989,1671987
https://www.scribd.com/document/152524943/Methods-for-the-Determination-of-Humidity
https://www.scribd.com/document/152524943/Methods-for-the-Determination-of-Humidity
http://www.theseus.fi/handle/10024/142235
https://www.pthorticulture.com/en/training-center/how-does-humidity-influence-crop-quality/
https://www.pthorticulture.com/en/training-center/how-does-humidity-influence-crop-quality/

58

APPPENDIX

LIBRARY:-

DHT.cpp
/* DHT library
MIT license
written by Adafruit Industries
*/
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count)
{
 _pin = pin;
 _type = type;
 #ifdef __AVR
 _bit = digitalPinToBitMask(pin);
 _port = digitalPinToPort(pin);
 #endif
 _maxcycles = microsecondsToClockCycles(1000
}
void DHT::begin(void) {
 pinMode(_pin, INPUT_PULLUP);
 _lastreadtime = -MIN_INTERVAL;
 DEBUG_PRINT("Max clock cycles: "); DEBUG_PRINTLN(_maxcycles, DEC);
}
float DHT::readTemperature(bool S, bool force) {
 float f = NAN;
 if (read(force)) {
 switch (_type) {
 case DHT11:
 f = data[2];
 if(S) {
 f = convertCtoF(f);
 }
 break;
 case DHT22:
 case DHT21:
 f = data[2] & 0x7F;
 f *= 256;
 f += data[3];
 f *= 0.1;
 if (data[2] & 0x80) {
 f *= -1;
 }
 if(S) {
 f = convertCtoF(f);
 }
 break;
 }
 }
 if (isnan(f))
 {
 Serial.println("Failed to read Temperature!");
 }
 return f;
}

float DHT::convertCtoF(float c) {
 return c * 1.8 + 32;
}

59

float DHT::convertFtoC(float f) {
 return (f - 32) * 0.55555;
}

float DHT::readHumidity(bool force) {
 float f = NAN;
 if (read()) {
 switch (_type) {
 case DHT11:
 f = data[0];
 break;
 case DHT22:
 case DHT21:
 f = data[0];
 f *= 256;
 f += data[1];
 f *= 0.1;
 break;
 }
 }
 if (isnan(f))
 {
 Serial.println("Failed to read Humidity!");
 }
 return f;
}

float DHT::readTempC()
{
 return readTemperature();
}
float DHT::readTempF()
{
 return convertCtoF(readTemperature());
}
float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) {
 float hi;
 if (!isFahrenheit)
 temperature = convertCtoF(temperature);
 hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2) + (percentHumidity * 0.094));

 if (hi > 79) {
 hi = -42.379 +
 2.04901523 * temperature +
 10.14333127 * percentHumidity +
 -0.22475541 * temperature*percentHumidity +
 -0.00683783 * pow(temperature, 2) +
 -0.05481717 * pow(percentHumidity, 2) +
 0.00122874 * pow(temperature, 2) * percentHumidity +
 0.00085282 * temperature*pow(percentHumidity, 2) +
 -0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);

 if((percentHumidity < 13) && (temperature >= 80.0) && (temperature <= 112.0))
 hi -= ((13.0 - percentHumidity) * 0.25) * sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
 else if((percentHumidity > 85.0) && (temperature >= 80.0) && (temperature <= 87.0))
 hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 - temperature) * 0.2);
 }
 return isFahrenheit ? hi : convertFtoC(hi);
}
boolean DHT::read(bool force) {

60

 uint32_t currenttime = millis();
 if (!force && ((currenttime - _lastreadtime) < 2000)) {
 return _lastresult; // return last correct measurement
 }
 _lastreadtime = currenttime;
 data[0] = data[1] = data[2] = data[3] = data[4] = 0;
 digitalWrite(_pin, HIGH);
 delay(250);
 pinMode(_pin, OUTPUT);
 digitalWrite(_pin, LOW);
 delay(20);

 uint32_t cycles[80];
 InterruptLock lock;
 digitalWrite(_pin, HIGH);
 delayMicroseconds(40);
 pinMode(_pin, INPUT_PULLUP);
 delayMicroseconds(10); // Delay a bit to let sensor pull data line low.
 if (expectPulse(LOW) == 0) {
 DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse."));
 _lastresult = false;
 return _lastresult;
 }
 if (expectPulse(HIGH) == 0) {
 DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse."));
 _lastresult = false;
 return _lastresult;
 }
 for (int i=0; i<80; i+=2) {
 cycles[i] = expectPulse(LOW);
 cycles[i+1] = expectPulse(HIGH);
 }
 }
 for (int i=0; i<40; ++i) {
 uint32_t lowCycles = cycles[2*i];
 uint32_t highCycles = cycles[2*i+1];
 if ((lowCycles == 0) || (highCycles == 0)) {
 DEBUG_PRINTLN(F("Timeout waiting for pulse."));
 _lastresult = false;
 return _lastresult;
 }
 data[i/8] <<= 1;
 if (highCycles > lowCycles) {
 data[i/8] |= 1;
 }
 }
 DEBUG_PRINTLN(F("Received:"));
 DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", "));
 DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", "));
 DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", "));
 DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", "));
 DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? "));
 DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
 if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF))
 {
 _lastresult = true;
 return _lastresult;
 }
 else {
 DEBUG_PRINTLN(F("Checksum failure!"));

61

 _lastresult = false;
 return _lastresult;
 }
}
uint32_t DHT::expectPulse(bool level) {
 uint32_t count = 0;
 #ifdef __AVR
 uint8_t portState = level ? _bit : 0;
 while ((*portInputRegister(_port) & _bit) == portState) {
 if (count++ >= _maxcycles) {
 return 0; // Exceeded timeout, fail.
 } }
 #else
 while (digitalRead(_pin) == level) {
 if (count++ >= _maxcycles) {
 return 0; // Exceeded timeout, fail.
 } }
 #endif
 return count;
}

DHT.h
/* DHT library

MIT license
written by Adafruit Industries
*/
#ifndef DHT_H
#define DHT_H
#if ARDUINO >= 100
 #include "Arduino.h"
#else
 #include "WProgram.h"
#endif
#define DEBUG_PRINTER Serial

#define DHTTYPE DHT22

#ifdef DHT_DEBUG
 #define DEBUG_PRINT(...) { DEBUG_PRINTER.print(__VA_ARGS__); }
 #define DEBUG_PRINTLN(...) { DEBUG_PRINTER.println(__VA_ARGS__); }
#else
 #define DEBUG_PRINT(...) {}
 #define DEBUG_PRINTLN(...) {}
#endif
#define DHT11 11
#define DHT22 22
#define DHT21 21
#define AM2301 21
class DHT {
 public:
 DHT(uint8_t pin, uint8_t type = DHTTYPE, uint8_t count=6);
 void begin(void);
 float readTemperature(bool S=false, bool force=false);
 float readTempC();
 float readTempF();
 float convertCtoF(float);
 float convertFtoC(float);
 float computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit=true);
 float readHumidity(bool force=false);
boolean read(bool force=false);

62

 private:
 uint8_t data[5];
 uint8_t _pin, _type;
 #ifdef __AVR
 uint8_t _bit, _port;
 #endif
 uint32_t _lastreadtime, _maxcycles;
 bool _lastresult;

 uint32_t expectPulse(bool level);
}
class InterruptLock
 {
 public:
 InterruptLock() {
 noInterrupts();
 }
 ~InterruptLock() {
 interrupts();
}
};
#endif

RTClib.cpp
#include <Wire.h>
#include "RTClib.h"
#ifdef __AVR__
 #include <avr/pgmspace.h>
#elif defined(ESP8266)
 #include <pgmspace.h>
#elif defined(ARDUINO_ARCH_SAMD)
// nothing special needed
#elif defined(ARDUINO_SAM_DUE)
 #define PROGMEM
 #define pgm_read_byte(addr) (*(const unsigned char *)(addr))
 #define Wire Wire1
#endif
#if (ARDUINO >= 100)
 #include <Arduino.h> // capital A so it is error prone on case-sensitive filesystems
 // Macro to deal with the difference in I2C write functions from old and new Arduino versions.
 #define _I2C_WRITE write
 #define _I2C_READ read
#else
 #include <WProgram.h>
 #define _I2C_WRITE send
 #define _I2C_READ receive
#endif
static uint8_t read_i2c_register(uint8_t addr, uint8_t reg) {
 Wire.beginTransmission(addr);
 Wire._I2C_WRITE((byte)reg);
 Wire.endTransmission();
 Wire.requestFrom(addr, (byte)1);
 return Wire._I2C_READ();
}
static void write_i2c_register(uint8_t addr, uint8_t reg, uint8_t val) {
 Wire.beginTransmission(addr);
 Wire._I2C_WRITE((byte)reg);
 Wire._I2C_WRITE((byte)val);
 Wire.endTransmission();
}

63

const uint8_t daysInMonth [] PROGMEM = { 31,28,31,30,31,30,31,31,30,31,30,31 };
static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) {
 if (y >= 2000)
 y -= 2000;
 uint16_t days = d;
 for (uint8_t i = 1; i < m; ++i)
 days += pgm_read_byte(daysInMonth + i - 1);
 if (m > 2 && y % 4 == 0)
 ++days;
 return days + 365 * y + (y + 3) / 4 - 1;
}

static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) {
 return ((days * 24L + h) * 60 + m) * 60 + s;
}
DateTime::DateTime (uint32_t t) {
 t -= SECONDS_FROM_1970_TO_2000; // bring to 2000 timestamp from 1970
 ss = t % 60;
 t /= 60;
 mm = t % 60;
 t /= 60;
 hh = t % 24;
 uint16_t days = t / 24;
 uint8_t leap;
 for (yOff = 0; ; ++yOff) {
 leap = yOff % 4 == 0;
 if (days < 365 + leap)
 break;
 days -= 365 + leap;
 }
 for (m = 1; ; ++m) {
 uint8_t daysPerMonth = pgm_read_byte(daysInMonth + m - 1);
 if (leap && m == 2)
 ++daysPerMonth;
 if (days < daysPerMonth)
 break;
 days -= daysPerMonth;
 }
 d = days + 1;
}

DateTime::DateTime (uint16_t year, uint8_t month, uint8_t day, uint8_t hour, uint8_t min, uint8_t sec)
{
 if (year >= 2000)
 year -= 2000;
 yOff = year;
 m = month;
 d = day;
 hh = hour;
 mm = min;
 ss = sec;
}
DateTime::DateTime (const DateTime& copy):
 yOff(copy.yOff),
 m(copy.m),
 d(copy.d),
 hh(copy.hh),
 mm(copy.mm),
 ss(copy.ss)
{}

64

static uint8_t conv2d(const char* p) {
 uint8_t v = 0;
 if ('0' <= *p && *p <= '9')
 v = *p - '0';
 return 10 * v + *++p - '0';
}
DateTime::DateTime (const char* date, const char* time) {
 yOff = conv2d(date + 9);
 switch (date[0]) {
 case 'J': m = (date[1] == 'a') ? 1 : ((date[2] == 'n') ? 6 : 7); break;
 case 'F': m = 2; break;
 case 'A': m = date[2] == 'r' ? 4 : 8; break;
 case 'M': m = date[2] == 'r' ? 3 : 5; break;
 case 'S': m = 9; break;
 case 'O': m = 10; break;
 case 'N': m = 11; break;
 case 'D': m = 12; break;
 }
 d = conv2d(date + 4);
 hh = conv2d(time);
 mm = conv2d(time + 3);
 ss = conv2d(time + 6);
}
DateTime::DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time) {
 char buff[11];
 memcpy_P(buff, date, 11);
 yOff = conv2d(buff + 9);
 switch (buff[0]) {
 case 'J': m = (buff[1] == 'a') ? 1 : ((buff[2] == 'n') ? 6 : 7); break;
 case 'F': m = 2; break;
 case 'A': m = buff[2] == 'r' ? 4 : 8; break;
 case 'M': m = buff[2] == 'r' ? 3 : 5; break;
 case 'S': m = 9; break;
 case 'O': m = 10; break;
 case 'N': m = 11; break;
 case 'D': m = 12; break;
 }
 d = conv2d(buff + 4);
 memcpy_P(buff, time, 8);
 hh = conv2d(buff);
 mm = conv2d(buff + 3);
 ss = conv2d(buff + 6);
}
uint8_t DateTime::dayOfTheWeek() const {
 uint16_t day = date2days(yOff, m, d);
 return (day + 6) % 7; // Jan 1, 2000 is a Saturday, i.e. returns 6
}
uint32_t DateTime::unixtime(void) const {
 uint32_t t;
 uint16_t days = date2days(yOff, m, d);
 t = time2long(days, hh, mm, ss);
 t += SECONDS_FROM_1970_TO_2000; // seconds from 1970 to 2000
 return t;
}
long DateTime::secondstime(void) const {
 long t;
 uint16_t days = date2days(yOff, m, d);
 t = time2long(days, hh, mm, ss);
 return t;
}

65

DateTime DateTime::operator+(const TimeSpan& span) {
 return DateTime(unixtime()+span.totalseconds());
}
DateTime DateTime::operator-(const TimeSpan& span) {
 return DateTime(unixtime()-span.totalseconds());
}
TimeSpan DateTime::operator-(const DateTime& right) {
 return TimeSpan(unixtime()-right.unixtime());
}
TimeSpan::TimeSpan (int32_t seconds):
 _seconds(seconds)
{}
TimeSpan::TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds):
 _seconds((int32_t)days*86400L + (int32_t)hours*3600 + (int32_t)minutes*60 + seconds)
{}
TimeSpan::TimeSpan (const TimeSpan& copy):
 _seconds(copy._seconds)
{}
TimeSpan TimeSpan::operator+(const TimeSpan& right) {
 return TimeSpan(_seconds+right._seconds);
}
TimeSpan TimeSpan::operator-(const TimeSpan& right) {
 return TimeSpan(_seconds-right._seconds);
}
static uint8_t bcd2bin (uint8_t val) { return val - 6 * (val >> 4); }
static uint8_t bin2bcd (uint8_t val) { return val + 6 * (val / 10);
boolean RTC_DS1307::begin(void) {
 Wire.begin();
 return true;
}
uint8_t RTC_DS1307::isrunning(void) {
 Wire.beginTransmission(DS1307_ADDRESS);
 Wire._I2C_WRITE((byte)0);
 Wire.endTransmission();
 Wire.requestFrom(DS1307_ADDRESS, 1);
 uint8_t ss = Wire._I2C_READ();
 return !(ss>>7);
}
void RTC_DS1307::adjust(const DateTime& dt) {
 Wire.beginTransmission(DS1307_ADDRESS);
 Wire._I2C_WRITE((byte)0); // start at location 0
 Wire._I2C_WRITE(bin2bcd(dt.second()));
 Wire._I2C_WRITE(bin2bcd(dt.minute()));
 Wire._I2C_WRITE(bin2bcd(dt.hour()));
 Wire._I2C_WRITE(bin2bcd(0));
 Wire._I2C_WRITE(bin2bcd(dt.day()));
 Wire._I2C_WRITE(bin2bcd(dt.month()));
 Wire._I2C_WRITE(bin2bcd(dt.year() - 2000));
 Wire.endTransmission();
}
DateTime RTC_DS1307::now() {
 Wire.beginTransmission(DS1307_ADDRESS);
 Wire._I2C_WRITE((byte)0);
 Wire.endTransmission();
 Wire.requestFrom(DS1307_ADDRESS, 7);
 uint8_t ss = bcd2bin(Wire._I2C_READ() & 0x7F);
 uint8_t mm = bcd2bin(Wire._I2C_READ());
 uint8_t hh = bcd2bin(Wire._I2C_READ());
 Wire._I2C_READ();
 uint8_t d = bcd2bin(Wire._I2C_READ());

66

 uint8_t m = bcd2bin(Wire._I2C_READ());
 uint16_t y = bcd2bin(Wire._I2C_READ()) + 2000
 return DateTime (y, m, d, hh, mm, ss);
}
Ds1307SqwPinMode RTC_DS1307::readSqwPinMode() {
 int mode;
 Wire.beginTransmission(DS1307_ADDRESS);
 Wire._I2C_WRITE(DS1307_CONTROL);
 Wire.endTransmission();
 Wire.requestFrom((uint8_t)DS1307_ADDRESS, (uint8_t)1);
 mode = Wire._I2C_READ();
 mode &= 0x93;
 return static_cast<Ds1307SqwPinMode>(mode);
}
void RTC_DS1307::writeSqwPinMode(Ds1307SqwPinMode mode) {
 Wire.beginTransmission(DS1307_ADDRESS);
 Wire._I2C_WRITE(DS1307_CONTROL);
 Wire._I2C_WRITE(mode);
 Wire.endTransmission();
}
void RTC_DS1307::readnvram(uint8_t* buf, uint8_t size, uint8_t address) {
 int addrByte = DS1307_NVRAM + address;
 Wire.beginTransmission(DS1307_ADDRESS);
 Wire._I2C_WRITE(addrByte);
 Wire.endTransmission()
 Wire.requestFrom((uint8_t) DS1307_ADDRESS, size);
 for (uint8_t pos = 0; pos < size; ++pos) {
 buf[pos] = Wire._I2C_READ();
 }
}
void RTC_DS1307::writenvram(uint8_t address, uint8_t* buf, uint8_t size) {
 int addrByte = DS1307_NVRAM + address;
 Wire.beginTransmission(DS1307_ADDRESS);
 Wire._I2C_WRITE(addrByte);
 for (uint8_t pos = 0; pos < size; ++pos) {
 Wire._I2C_WRITE(buf[pos]);
 }
 Wire.endTransmission();
}
uint8_t RTC_DS1307::readnvram(uint8_t address) {
 uint8_t data;
 readnvram(&data, 1, address);
 return data;
}
void RTC_DS1307::writenvram(uint8_t address, uint8_t data) {
 writenvram(address, &data, 1);
}

long RTC_Millis::offset = 0;
void RTC_Millis::adjust(const DateTime& dt) {
 offset = dt.unixtime() - millis() / 1000;
}
DateTime RTC_Millis::now() {
 return (uint32_t)(offset + millis() / 1000);
}
boolean RTC_PCF8523::begin(void) {
 Wire.begin();
 return true;
}
boolean RTC_PCF8523::initialized(void) {

67

 Wire.beginTransmission(PCF8523_ADDRESS);
 Wire._I2C_WRITE((byte)PCF8523_CONTROL_3);
 Wire.endTransmission();
 Wire.requestFrom(PCF8523_ADDRESS, 1);
 uint8_t ss = Wire._I2C_READ();
 return ((ss & 0xE0) != 0xE0);
}
void RTC_PCF8523::adjust(const DateTime& dt) {
 Wire.beginTransmission(PCF8523_ADDRESS);
 Wire._I2C_WRITE((byte)3); // start at location 3
 Wire._I2C_WRITE(bin2bcd(dt.second()));
 Wire._I2C_WRITE(bin2bcd(dt.minute()));
 Wire._I2C_WRITE(bin2bcd(dt.hour()));
 Wire._I2C_WRITE(bin2bcd(dt.day()));
 Wire._I2C_WRITE(bin2bcd(0)); // skip weekdays
 Wire._I2C_WRITE(bin2bcd(dt.month()));
 Wire._I2C_WRITE(bin2bcd(dt.year() - 2000));
 Wire.endTransmission();
 Wire.beginTransmission(PCF8523_ADDRESS);
 Wire._I2C_WRITE((byte)PCF8523_CONTROL_3);
 Wire._I2C_WRITE((byte)0x00);
 Wire.endTransmission();
}
DateTime RTC_PCF8523::now() {
 Wire.beginTransmission(PCF8523_ADDRESS);
 Wire._I2C_WRITE((byte)3);
 Wire.endTransmission();
 Wire.requestFrom(PCF8523_ADDRESS, 7);
 uint8_t ss = bcd2bin(Wire._I2C_READ() & 0x7F);
 uint8_t mm = bcd2bin(Wire._I2C_READ());
 uint8_t hh = bcd2bin(Wire._I2C_READ());
 uint8_t d = bcd2bin(Wire._I2C_READ());
 Wire._I2C_READ(); // skip 'weekdays'
 uint8_t m = bcd2bin(Wire._I2C_READ());
 uint16_t y = bcd2bin(Wire._I2C_READ()) + 2000;
 return DateTime (y, m, d, hh, mm, ss);
}
Pcf8523SqwPinMode RTC_PCF8523::readSqwPinMode() {
 int mode;
 Wire.beginTransmission(PCF8523_ADDRESS);
 Wire._I2C_WRITE(PCF8523_CLKOUTCONTROL);
 Wire.endTransmission();
 Wire.requestFrom((uint8_t)PCF8523_ADDRESS, (uint8_t)1);
 mode = Wire._I2C_READ();
 mode >>= 3;
 mode &= 0x7;
 return static_cast<Pcf8523SqwPinMode>(mode);
}
void RTC_PCF8523::writeSqwPinMode(Pcf8523SqwPinMode mode) {
 Wire.beginTransmission(PCF8523_ADDRESS);
 Wire._I2C_WRITE(PCF8523_CLKOUTCONTROL);
 Wire._I2C_WRITE(mode << 3);
 Wire.endTransmission();
}
boolean RTC_DS3231::begin(void) {
 Wire.begin();
 return true;
}
bool RTC_DS3231::lostPower(void) {
 return (read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG) >> 7);

68

}
void RTC_DS3231::adjust(const DateTime& dt) {
 Wire.beginTransmission(DS3231_ADDRESS);
 Wire._I2C_WRITE((byte)0); // start at location 0
 Wire._I2C_WRITE(bin2bcd(dt.second()));
 Wire._I2C_WRITE(bin2bcd(dt.minute()));
 Wire._I2C_WRITE(bin2bcd(dt.hour()));
 Wire._I2C_WRITE(bin2bcd(0));
 Wire._I2C_WRITE(bin2bcd(dt.day()));
 Wire._I2C_WRITE(bin2bcd(dt.month()));
 Wire._I2C_WRITE(bin2bcd(dt.year() - 2000));
 Wire.endTransmission();
 uint8_t statreg = read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG);
 statreg &= ~0x80; // flip OSF bit
 write_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG, statreg);
}
DateTime RTC_DS3231::now() {
 Wire.beginTransmission(DS3231_ADDRESS);
 Wire._I2C_WRITE((byte)0);
 Wire.endTransmission();
 Wire.requestFrom(DS3231_ADDRESS, 7);
 uint8_t ss = bcd2bin(Wire._I2C_READ() & 0x7F);
 uint8_t mm = bcd2bin(Wire._I2C_READ());
 uint8_t hh = bcd2bin(Wire._I2C_READ());
 Wire._I2C_READ();
 uint8_t d = bcd2bin(Wire._I2C_READ());
 uint8_t m = bcd2bin(Wire._I2C_READ());
 uint16_t y = bcd2bin(Wire._I2C_READ()) + 2000;
 return DateTime (y, m, d, hh, mm, ss);
}
Ds3231SqwPinMode RTC_DS3231::readSqwPinMode() {
 int mode;

 Wire.beginTransmission(DS3231_ADDRESS);
 Wire._I2C_WRITE(DS3231_CONTROL);
 Wire.endTransmission();
 Wire.requestFrom((uint8_t)DS3231_ADDRESS, (uint8_t)1);
 mode = Wire._I2C_READ();
 mode &= 0x93;
 return static_cast<Ds3231SqwPinMode>(mode);
}
void RTC_DS3231::writeSqwPinMode(Ds3231SqwPinMode mode) {
 uint8_t ctrl;
 ctrl = read_i2c_register(DS3231_ADDRESS, DS3231_CONTROL);
 ctrl &= ~0x04; // turn off INTCON
 ctrl &= ~0x18; // set freq bits to 0
 if (mode == DS3231_OFF) {
 ctrl |= 0x04; // turn on INTCN
 } else {
 ctrl |= mode;
 }
 write_i2c_register(DS3231_ADDRESS, DS3231_CONTROL, ctrl);
}

RTClib.h
#ifndef _RTCLIB_H_
#define _RTCLIB_H_
#include <Arduino.h>
class TimeSpan;
#define PCF8523_ADDRESS 0x68
#define PCF8523_CLKOUTCONTROL 0x0F

69

#define PCF8523_CONTROL_3 0x02
#define DS1307_ADDRESS 0x68
#define DS1307_CONTROL 0x07
#define DS1307_NVRAM 0x08
#define DS3231_ADDRESS 0x68
#define DS3231_CONTROL 0x0E
#define DS3231_STATUSREG 0x0F
#define SECONDS_PER_DAY 86400L
#define SECONDS_FROM_1970_TO_2000 946684800
class DateTime {
public:
 DateTime (uint32_t t =0);
 DateTime (uint16_t year, uint8_t month, uint8_t day,
 uint8_t hour =0, uint8_t min =0, uint8_t sec =0);
 DateTime (const DateTime& copy);
 DateTime (const char* date, const char* time);
 DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time);
 uint16_t year() const { return 2000 + yOff; }
 uint8_t month() const { return m; }
 uint8_t day() const { return d; }
 uint8_t hour() const { return hh; }
 uint8_t minute() const { return mm; }
 uint8_t second() const { return ss; }
 uint8_t dayOfTheWeek() const;
 long secondstime() const;
 uint32_t unixtime(void) const;
 DateTime operator+(const TimeSpan& span);
 DateTime operator-(const TimeSpan& span);
 TimeSpan operator-(const DateTime& right);
protected:
 uint8_t yOff, m, d, hh, mm, ss;
};
class TimeSpan {
public:
 TimeSpan (int32_t seconds = 0);
 TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds);
 TimeSpan (const TimeSpan& copy);
 int16_t days() const { return _seconds / 86400L; }
 int8_t hours() const { return _seconds / 3600 % 24; }
 int8_t minutes() const { return _seconds / 60 % 60; }
 int8_t seconds() const { return _seconds % 60; }
 int32_t totalseconds() const { return _seconds; }
 TimeSpan operator+(const TimeSpan& right);
 TimeSpan operator-(const TimeSpan& right);
protected:
 int32_t _seconds;
};
enum Ds1307SqwPinMode { OFF = 0x00, ON = 0x80, SquareWave1HZ = 0x10, SquareWave4kHz =
0x11, SquareWave8kHz = 0x12, SquareWave32kHz = 0x13 };
class RTC_DS1307 {
public:
 boolean begin(void);
 static void adjust(const DateTime& dt);
 uint8_t isrunning(void);
 static DateTime now();
 static Ds1307SqwPinMode readSqwPinMode();
 static void writeSqwPinMode(Ds1307SqwPinMode mode);
 uint8_t readnvram(uint8_t address);
 void readnvram(uint8_t* buf, uint8_t size, uint8_t address);
 void writenvram(uint8_t address, uint8_t data);

70

 void writenvram(uint8_t address, uint8_t* buf, uint8_t size);
};
enum Ds3231SqwPinMode { DS3231_OFF = 0x01, DS3231_SquareWave1Hz = 0x00,
DS3231_SquareWave1kHz = 0x08, DS3231_SquareWave4kHz = 0x10, DS3231_SquareWave8kHz
= 0x18 };
class RTC_DS3231 {
public:
 boolean begin(void);
 static void adjust(const DateTime& dt);
 bool lostPower(void);
 static DateTime now();
 static Ds3231SqwPinMode readSqwPinMode();
 static void writeSqwPinMode(Ds3231SqwPinMode mode);
};
enum Pcf8523SqwPinMode { PCF8523_OFF = 7, PCF8523_SquareWave1HZ = 6,
PCF8523_SquareWave32HZ = 5, PCF8523_SquareWave1kHz = 4, PCF8523_SquareWave4kHz =
3, PCF8523_SquareWave8kHz = 2, PCF8523_SquareWave16kHz = 1,
PCF8523_SquareWave32kHz = 0 };
class RTC_PCF8523 {
public:
 boolean begin(void);
 void adjust(const DateTime& dt);
 boolean initialized(void);
 static DateTime now();
 Pcf8523SqwPinMode readSqwPinMode();
 void writeSqwPinMode(Pcf8523SqwPinMode mode);
};
class RTC_Millis {
public:
 static void begin(const DateTime& dt) { adjust(dt); }
 static void adjust(const DateTime& dt);
 static DateTime now();
protected:
 static long offset;
};
#endif // _RTCLIB_H_

