Brackishwater Aquaculture based Alternative Livelihoods for Fisherfolk
B. Shanthi and P. Mahalakshimi
Principal Scientist & Senior Scientist
ICAR - Central Institute of Brackishwater Aquaculture,
75 Santhome High Road, R.A Puram, Chennai 600 028, TamilNadu

The natural disaster of tsunami provoked a rethink of brackishwater aquaculture for livelihood options to fisher folks. Since it is necessary for livelihood experts to think of rehabilitating the displaced fisher folk in avocations with which they could identify themselves. Many avocations and technologies have been developed for the aqua farmers in brackishwater aquaculture. The importance of coastal aquaculture technologies as a livelihood options increased after the Tsunami.

Brackishwater aquaculture offers best livelihood options for fisher folks especially in coastal areas and offers plenty of scope for diversification of livelihood for those who live below poverty line. Aquaculture encompasses a wide range of different aquatic farming practices with regard to species (including seaweeds, molluscs, crustaceans, fish and other aquatic species groups), environments and systems utilized, with very distinct resource use patterns involved, offering a wide range of options for diversification of avenues, for enhanced food production and income generation in many rural and peri-urban areas.

Fisher folks have contributed substantially to the social and economic growth of the economy. They play an indispensable role in fishery sector by taking part in various activities both in capture and culture fisheries, such as, fish farming, transportation and marketing of fish in domestic sector, shrimp-peelers in fish processing plants, workers in shrimp hatcheries, culture and fattening of mud-crabs, aqua feed production, preparation, processing and marketing of value added fish products and so on.

Central Institute of Brackishwater Aquaculture (CIBA), Chennai has developed a number of technologies which are tailored to suit the needs of the affected fisher folk and reorganize their lives and develop an alternate livelihood.
This article discusses on various brackishwater aquaculture technologies and avocations which were transferred and adopted by fisherfolks and coastal women as their alternate livelihoods.

CRAB FATTENING IN FRP CAGES

Fiber glass cages either with 6 or 9 compartments are used for crab fattening. Each compartment is stocked with 1 crab each weighing 500g - 700g. The four sides of the cages are well perforated for free circulation of water. Each compartment measures about 1m* 1m * 0.33m. The four sides of the cages were perforated for the free circulation of water. The culture period is 3-4 weeks. The feeds like trash fish or formulated feeds can be given. The fattening duration is about 20-25 days. The cages were checked from the 10th day of stocking for the hard crabs. If hard crabs were found, they are harvested from 10th day onwards and up to 25 days.

Periodical checking was done during the culture period. After use, the cages were dried and cleaned for next round of use. Trash fishes collected from the landing centres were fed @ of 10% of the biomass of the crab at two intervals (morning and evening) every day. In case of algal, and barnacle fouling on the crab carapace, they are removed by brushing. The harvesting of the fattened crabs is carried out by hand picking. Mud crabs are marketed in live condition. Hardened crabs are packed in bamboo baskets. Women Self Help Groups and Men Self Help Groups of Kancheepuram and Tiruvallur district were engaged in crab fattening of larger species Scylla tranquebarica in eight fiberglass cages.

FISHERFOLKS CRAB FARMERS (CRAB FATTENING IN PENS)

Crab fattening (in pens) was carried out in small pens with fence around ranging from 0.1 to 0.5 ha in size with water depth of 1.5 m. Fencing with height of between 0.5 - 1.0 m an the dyke is done with nylon materials. The tidal water flood through the creek causes sufficient water exchange in the pens. The soft shelled crab of 8 cm carapace width and above or crabs of more than 550 g are stocked density of 1 crab/1 to 3 m2. Crabs were fed with bivalve meat or trash fish daily at the rate of 5 to 10% of body weight. Duration of fattening was 20 days.
Crabs are harvested after shell becomes sufficiently hardened and before next moulting. Harvesting is done by using scoop nets and ring nets with baits. Harvesting was done in the early morning hours or evening to prevent mortality of crabs due to overheating of water at noon time. In a year 9 to 10 cycles of fattening can be done. The harvested crabs were sold by the WSHGs at the local markets and they had tie back arrangements with same crab retailers. Coastal Self Help Groups of Kancheepuram, Cuddalore and Tiruvallur district of Tamil Nadu, were actively involved in crab fattening in pens.

CRAB FATTENING IN CONCRETE TANKS

Crab fattening (in concrete tanks) were practised by fisherfolks near Cuddalore. Concrete tank of 10 ft x 6 ft x 5 ft is used for stocking the water crabs. Sixty six crabs weighing 300 – 400g (23 kg) were stocked at the rate of 6 nos/tank. Water crabs were collected from crab markets of Cuddalore and Chidambaram. The total height of the tank is 5 feet and the water depth is maintained at 2.5 feet. Water exchange is done daily. Trash feed is given @ 10% body weight of the crab. Feeding is done twice a day. The culture period is 45 days. The net profit was shared among the WSHGs group members in this village.

SEABASS NURSERY REARING IN HAPAS

Asian seabass *Lates calcarifer* is an ideal candidate species suitable for brackishwater aquaculture either in ponds or in cages. Seabass can tolerate wide range of salinity from 0-40 ppt and can be farmed in marine, brackish and freshwater conditions. Nursery rearing of seabass is an important component of farming practice, where the seabass fry is reared to fingerling size in net hapas, ponds and tanks. Hapa nursery rearing can be done either in open water bodies or in 1.5 m pond system having minimum of 1-1.5 m water depth. In hapa (2 m3) size, seabass fry of 1-1.5 cm size can be stocked @ 500 numbers/m2 and reared from 45-60 days. Asian seabass can grow above 1.0 kg in 8-10 month period and they can fetch Rs.250-350 per kg depending upon the size.

After 60 days rearing, seabass fry can attain the fingerling size of 6-8 cm, when fed with either trash fish or pellet feed @ 10-15% body weight daily in two
rations. In hapas rearing, seabass seed have to be graded weekly twice in order to separate the shooters and to maintain uniform size. Regular grading would help in non occurrence of cannibalism, which results in improved survival rate. After nursery rearing, farmers can benefit with expected profit of Rs 6-10/piece and can earn monthly income Rs.10000-20000. Small scale farmers and tribal fisherfolks self-help groups can take up seabass nursery rearing as a livelihood option.

Ornamental fish trade is a multi-billion dollar global industry propelled by enormous consumer demands since the interest among the people for aquarium keeping is increasing every year. Development of breeding technology for these species would provide a source of income generation activity for rural poor. CIBA has developed breeding and juvenile production technology for spotted scat Scatophagus argus under controlled conditions. Being omnivore, scat can consume benthic and filamentous algae, detritus matter, and zooplankton. After 1.5cm it can easily accept low protein formulated feed as dough. Since, scat can tolerate wide range of salinity from 0-35 ppt, it can be reared in marine, brackish and fresh water aquaria. Farmer can stock 1.0 cm size scat fry either in hapas/tank or in ponds for marketable size production. It can be stocked @ 500 numbers/m2. Scat fry can be fed with low protein artificial feed @ 8-10% body weight daily in two rations. The fry can attain 1-2 inch size in 45 days culture period with 70-80% survival rate. Juvenile scat (1-2 inch) can fetch Rs.30-50/piece in retail market and fetch higher prices in the international market. Small scale aqua farmers and women self-help groups can take up scat rearing as backyard homestead activity as source of income generation and can earn Rs.8000 - 12000 per month.

POLYCulture OF Crab & Seabass IN COMMUNITY Pond

In a community pond of 2.0 ha, with a water depth of 0.5 to 1.2 meter, temperature and salinity as 28-32°C and 30 - 45 ppt, a polyculture demonstration of mud crab (Scylla serrata) and Asian seabass (Lates calcarifer) was conducted. The entire pond was fenced by the nylon net to prevent escape of crabs from the pond. A total of 2000 nos. of seabass fingerlings at a cost of Rs. 15/- per fingerling with 6-9 cm total length and 4-6 g body weight and a total of 1048 nos. of crabs (249.2 kg) ranging from 100–450 g of size at a cost of Rs.450/kg were procured
and stocked in this pond. Locally available low value fish (like sardines, terapon spp, Tilapia, Eel etc.,) procured from the local market were cut into small pieces and fed to crab and seabass. Feeding was adjusted based on the standing biomass and fed @ 8-10% of the boy weight of the stock.

Regular sampling of the seabass fishes and crabs were carried out once in 15 days to assess the growth and to check the health of the stock. A total of 217 seabass juvenile fishes and total weight of 159.5 kg of crab was harvested and total amount of Rs. 2,33,908/- was realized out of crab and seabass sales from this trial. A total of 147 irular tribal people both men (82 nos.) and fisherfolks (65 nos.) participated in this programme. Bank accounts were opened for the beneficiaries to manage the investment and profit. This intervention proves to be a good model of supplementary revenue generation portraying the community participation in adoption of common water bodies for fish farming in a community pond for fisherfolk.

FARM MADE FISH FEED PROCESSING

Aqua feed forms the essential component in all fisheries sector. Trash fish availability is expected to become a major constraint in many countries. The increasing scarcity of traditional fish foods such as trash fish and the high cost of available supplies make their continued use uneconomical. Artificial feeds, based mainly on feedstuffs of plant origin which are less expensive mixed with proper balance of nutrients, produce comparable results.

CIBA aqua feed is produced using farm model fish feed unit and also largely using indigenous raw materials. Because of this the cost of the feed produced has an edge over the commercial imported feeds. A good hygienic, nutritious and quality feed can be produced using this farm model fish feed unit. Time and energy can be saved. Labour cost can be reduced. Fresh feeds can be prepared according to the requirements. The unit can be easily operated by the fisherfolks. It gives good nourishment and high survival rate to aqua fish, shrimp and crabs. Farm made aqua feeds are easily digestible by the animal. Feed possess good water stability. It can be stored for 2 months. Cost of one farm model aqua feed unit is Rs. 4 - 5 lakhs (INR). Capacity of this unit is 150 - 200 kg / day. Feed can
be stored for 2 months. Cost of the feed is Rs. 30 to 35/- Kg (INR). Aqua feed technology is a viable alternative livelihood option for the fisherfolks. They can take up this avocation and start their enterprise on a small scale level.

OTHER ALTERNATIVE LIVELIHOODS

JELLY FISH PROCESSING

Jelly fishes are free-swimming members of the phylum Cnidaria. Jelly fishes are found distributed in oceans from the surface to the deep sea. Jellyfish production is the major occupation carried out among coastal sectors especially among fisherfolks during jelly fish season. This avenue generates additional income for their families.

Fifteen coastal villages around Pulicat Lake, Tiruvallur district, TamilNadu, are involved in collection of 'Jelly Fish called as 'Soori' in Tamil during jelly fish season. These fishermen use small mechanized boats for this venture. Jelly fish is collected using (Scoop nets). Jelly fish processing provides employment for 75 fisherfolks and 100 men of Thonirevu village. Jelly fish (raw) is sold @ of Rs. 500/- per box. The price varies according to the agent. The middlemen processes the jelly fish and sends the processed jelly fish to the agent. Further, it is sent to the exporter for export. Jelly fish are sold at a profitable rate according to the quality. The production cost for 1 box (80 kg) of jelly fish is Rs 1000/- and the selling cost of 65 kg of edible jelly meat is Rs 2500/-.

Local fisher folk opine that, only after tsunami there have been large quantity of jelly fish occurrence in their area. They also opine that during the occurrence of jelly fish in the lake the availability of fish is more. This is because; the fish in the lake lays its eggs on the jelly fish. If proper technical knowledge on jelly fish processing and marketing is given to these fisherfolks of this village this will facilitate extensive marketing of jelly fish and thereby give more employment opportunities to the fisherfolks of this village. Jelly fish processing serves as an alternative livelihood to fisherfolks of Pulicat, Tiruvallur district.

173
NEERIS AND MOLLUSCAN COLLECTION

'Neeris' polychaete worm collection from dried ponds and non-stocked shrimp farms. Fishermen participate in Neeris worm collection and supplies the collected worms to shrimp hatchery as a feed for the shrimps. These worms are having a borrowing nature and it is 1-6 ft in size. Sardine fish is crushed in water and sprinkled in the areas were Neeris worm is collected. This smell attracts the Neeris worm to come out of the holes. This facilitates easy collection. Live Neeris worm is marketed @ Rs.1000/ kg and dead worm is marketed @ Rs. 600/kg. Neeris is marketed to AP and Kerala.

MUSHROOM FARMING INTEGRATED WITH ORNAMENTAL FISH FARMING

Mushroom farming integrated with ornamental fish farming is practiced by aqua farmers in Kancheepuram district, TN. Mushroom production enhances farm waste utilization. Waste materials (paddy straw) are decomposed and converted into rich edible food. Oyster mushrooms are produced out of paddy straw. Mushrooms are called vegetable mutton. Mushroom tastes like Non-vegetarian food. Rich in protein and amino acids. Cholesterol free food (zero percentage). Low cost investment, self-employment activity in Rural and peri-urban areas. Enhances easy digestion in human body because of rich in fiber. Portable food for irrespective of ages (6 – 60). Small scale farmers and tribal fishermen self-help groups can take up mushroom farming as backyard homestead activity as source of income generation and can earn Rs.350- 400/- day from a mushroom shed of 10x15 ft size shed. As an alternative livelihood WSHGs of Kancheepuram district practise mushroom farming integrated with ornamental fish farming.

CONCLUSION

A large number of poor fishermen are engaged in traditional aquaculture activities and make an important contribution to the rural economy. Fishermen earn a significant supplementary income from these activities and increase the family income considerably. Fishermen need an alternate occupation apart from their normal fishing, fish sales and marketing, due to depletion of natural resources and
low fish catch in the sea. Brackishwater areas like lagoons, estuaries and creeks available in the coastal areas can be well utilized for brackishwater aquaculture technologies and other alternative avocations. Brackishwater aquaculture technologies and other alternative avocations transferred to coastal population, who were suffering in the post tsunami period, seemed to be a blessing for their living. If these technologies and avocations are adopted by fisherfolk it can very effectively become a viable enterprise for their livelihood improvement. The adoption of technology among the coastal fisherfolks implemented by CIBA will also help generate additional income and savings, which will increase the level of self confidence among the fisherfolks to become successful entrepreneurs in the future.