IHNNV infection from the wild shrimps of Andaman and Nicobar Islands, India

K. Saravanan¹*, P. Puneeth Kumar¹, Arunjyoti Baruah¹, J. Praveenraj¹, T. Sathish Kumar², S. Pramod Kumar¹, T. Sivaramakrishnan¹, A. Anuraj¹, J. Raymond Jani Angel¹, R. Kiruba Sankar¹ and S. Dam Roy¹

¹ICAR-Central Island Agricultural Research Institute, Port Blair 744 105, India
²ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, Raja Annamalai Puram, Chennai 600 028, India

The present study was intended to screen the wild shrimps of Andaman and Nicobar Islands (ANI) against infectious diseases. A total of 175 shrimp samples (35 pools) consisting of Fenneropenaeus indicus,

*For correspondence. (e-mail: sarocife@gmail.com)

Accepted 16 June 2017

doi: 10.18520/cs/v113/i10/2021-2027

RESEARCH COMMUNICATIONS

Peneaus monodon, Peneaus merguiensis and Metapenaeus monoceros were collected from different landing centres across ANI. Out of 35 pools of samples analysed by polymerase chain reaction (PCR), a total of 10 pools of Peneaus monodon collected from Betapur (1 pool), Lohabarrack (4 pools) and Campbell Bay (5 pools) were found positive for Infectious Hypodermal and Hematopoietic Necrosis Virus (IHNNV). Nucleotide sequence of IHNNV isolated from ANI showed 100% identity to the sequences of IHNNV reported from Vietnam, Taiwan, Australia, China, Egypt, USA, Ecuador, 99% identity to IHNNV reported from Brazil, Venezuela, Korea, 96% identity to IHNNV reported from Thailand and 95% identity to IHNNV reported from India. Based on phylogenetic tree analysis, IHNNV of ANI is closely related to IHNNV of Vietnam. Histopathological analysis revealed typical eosinophilic intranuclear cowdy body type A inclusion bodies in gill lamellae which further confirmed the IHNNV infection. The present study provides a definitive evidence for the first report of infectious IHNNV in wild P. monodon from ANI.

Keywords: Andaman and Nicobar Islands, disease surveillance, IHNNV, Peneaus monodon, wild shrimp.

ANDAMAN AND NICOBAR group of Islands belonging to the union territory of India are situated between 6°–14°N and 92°–94°E in the Southeast of Bay of Bengal and consist of 572 islands coming under three districts namely, North and Middle Andaman, South Andaman and Nicobar. India ranks second in shrimp production next to China. As India is one of the top ranked shrimp producers of the world, viral diseases pose a serious threat to Indian shrimp culture. Presently, the viral diseases detected in the mainland of India include White Spot Syndrome Virus (WSSV), Infectious Hypodermal and Hematopoietic Necrosis Virus (IHNNV), Hepatopancreatic Parvo Virus (HPV), Monodon Baculo Virus (MBV) and Laem-Singh Virus (LSNV). At present, only freshwater carp farming is being practised in Andaman and Nicobar Islands (ANI), while brackishwater aquaculture, mainly shrimp farming and mariculture are the identified potential areas for development in aquaculture sector. When compared to mainland of India and neighbouring Southeast Asian countries, very few aquatic animal diseases, mainly shrimp diseases like vibrios, LSNV and WSSV were reported from ANI. ANI are believed to be free from many fish diseases as well as shrimp pathogens compared to the mainland of India and other neighbouring countries though it shares close proximity with Southeast Asian countries like Indonesia, Thailand and Malaysia where shrimp diseases like White Spot Disease (WSD), Infectious Hypodermal and Haematopoietic Necrosis (IHNNV), Taura Syndrome (TS), Yellow Head Disease (YHD) and Monodon Baculo Virus Disease (MBVD) were reported. The absence of many diseases in ANI may be due to geographical
isolation of the Islands, absence of shrimp aquaculture at present or lack of intensified research on disease surveillance of aquatic animals. ANI are blessed with rich aquatic biodiversity and also well-known for quality shrimp broodstocks. Another point of concern is that Andaman Sea bounded by ANI in the West, Myanmar in the North, Thailand and Malaysia in the East, Indonesia in the South are considered as hotspots of intensified shrimp aquaculture with major threat of viral diseases. With this background, disease surveillance was carried out to check whether the wild shrimps of ANI are free from viral infections and confirmed the presence of IHHNV. Further, the extent of IHHNV infection in wild shrimps and its geographical range extension were also elucidated. This research may also be worthwhile in studying the transmission of shrimp viral diseases into the Island ecosystem.

IHHNV, being an Office International des Epizootics (OIE) listed disease, is caused by the smallest known penaeid shrimp virus\(^\text{14}\). IHHNV causes runt deformity syndrome\(^\text{15}\) and the symptoms and clinical signs include slow mortality, abnormal physical defects, slow growth, small size and rostrum, antenna, thoracic and abdominal deformities. The current study offers concrete evidence for the occurrence of IHHNV in wild shrimps and its prevalence in these islands which may help establish precautionary measures for undertaking shrimp farming activity in the future.

Shrimp samples were collected from landing centres of ANI covering North and Middle Andaman, South Andaman and Nicobar districts. A total of 175 shrimp samples consisting of Fenneropenaeus indicus (Milne Edwards), Penaeus monodon (Fabricius), Penaeus merguensis (De Man) and Metapenaeus monoceros (Fabricius) were collected from 9 landing centres namely Durgapur (13°16'45.7"N; 92°57'29.16"E), Laxmipur (13°17'33.03"N; 92°57'29.16"E), Mayabunder (12°54'35.3"N; 92°54'29.1"E), Betapur (12°36'1.3"N; 92°57'22.3"E), Yerrata (12°27'36.06"N; 92°53'47.54"E), Junglighat (11°39'25.26"N; 92°43'30.23"E), Lohabarrack (11°37'21.32"N; 92°38'49.03"E), Wandoor (11°35'44.66"N; 92°36'28.81"E) and Campbell Bay (6°54'07.30"N; 93°53'44.20"E) across ANI from August 2015 to March 2016 (Figure 1). Shrimp samples with mean length and mean weight of 14 cm and 63 g respectively were collected for disease screening. Out of 175 shrimp samples, a total of 35 pools of samples were made by pooling 5 numbers of shrimp samples in each pool for disease screening (Table 1). Tissues like pleopod, gill and muscle were dissected out and preserved in 90% ethanol for DNA isolation.

Modified CTAB (cetyl trimethyl ammonium bromide) method\(^\text{16}\) was used to extract DNA. PCR was performed following the OIE protocol\(^\text{17}\). The primer set\(^\text{15}\) of forward 309F, 5’ TCCAACACTTAGTCAAAACCAA 3’ and reverse 309R, 5’ TGTCGCCTACGATGATTATCCA 3’ were used giving 309 bp of amplicon size. A 25 µl of PCR mix contained 2.5 µl of 10X PCR buffer, 2 µl of 25 mM MgCl\(_2\), 0.5 µl of 2 mM dNTP, 0.3 µl of 50 pmol forward and reverse primers, 0.125 µl of 5 units µl\(^{-1}\) Taq polymerase, 1 µl template DNA with concentration of 1 µg and 18.75 µl of nuclease free water. Amplification reactions consisted of 95°C for 5 min, 35 cycles of 95°C for 30 sec, 55°C for 30 sec, 72°C for 1 min and finally 72°C for 7 min in a thermal cycler (Bio-Rad, USA). The PCR products were resolved in 1.5% agarose gel containing

Table 1. Details of sample collection. Each pool contains five shrimps

<table>
<thead>
<tr>
<th>District</th>
<th>Landing centre</th>
<th>Shrimp species</th>
<th>Number of pools</th>
<th>Number of pools positive for IHHNV</th>
</tr>
</thead>
<tbody>
<tr>
<td>North and Middle Andaman</td>
<td>Durgapur</td>
<td>P. monodon</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. merguiensis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Laxmipur</td>
<td></td>
<td>F. indicus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. merguiensis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mayabunder</td>
<td></td>
<td>F. indicus</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Betapur</td>
<td></td>
<td>P. monodon</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. merguiensis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Yerrata</td>
<td></td>
<td>F. indicus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. merguiensis</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>South Andaman</td>
<td>Jungliphat</td>
<td>P. merguiensis</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lohabarrack</td>
<td>P. monodon</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Nicobar</td>
<td>Campbell Bay</td>
<td>P. monodon</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. monoceros</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>35</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 2. PCR amplification using IHHNV 309F/R primers. Lane M: Molecular weight marker (100 bp); Lane 1, Durgapur sample; Lane 2, Betapur sample; Lane 3, Mayabunder sample; Lane 4, Yerrata sample; Lanes 5 and 6, Lohabarrack samples; Lanes 7 and 8, Jungliphat samples; Lanes 9 and 10, Campbell Bay samples; Lane 11, Wandoor sample; Lane 12, Positive control; Lane 13, Negative control.

Figure 3. Phylogenetic analysis of IHHNV of Andaman and Nicobar Islands (Andaman) with IHHNV of other countries retrieved from GenBank. Values within parentheses represent GenBank accession numbers. The phylogenetic tree was generated using neighbour-joining method of MEGA. Numbers indicate the percentage of bootstrap support from 1000 replicates.

In this study, the primer IHHNV 309F/R was used which could amplify only IHHNV and did not amplify the integrated virus-related sequences in shrimp genome.
Out of 35 pools of samples analysed by PCR, a total of 10 pools of samples of Penaeus monodon collected from Betapur (1 pool), Lohabarrack (4 pools) and Campbell Bay (5 pools) were found positive for IHHNV (Figure 2). Likewise in India, 67.4% prevalence of IHHNV infections in post larval samples and 34% prevalence in adult shrimps were reported from cultured P. monodon by using IHHNV 309F/R primers\(^2\). IHHNV infection was reported only from the tiger shrimp, P. monodon which supports the fact that IHHNV affects mainly P. monodon, P. vannamei and P. stylirostris\(^15\) and also IHHNV is an endemic virus in the geographical range of P. monodon\(^13\). Higher rate of IHHNV infection was recorded from Nicobar which may be due to the reason that the sample collection station, i.e. Campbell Bay is very near Southeast Asian countries like Indonesia and Thailand where high prevalence of IHHNV was reported from wild and cultured P. monodon\(^23\). It was also supported by earlier reports that the occurrence of IHHNV in Southeast Asian (Singapore, Malaysia, Indonesia, Philippines) shrimp culture facilities using only wild P. monodon broodstock suggests that this region is within the virus’ natural geographic range, and that P. monodon may be among its natural host species\(^10\).

Nucleotide sequence of IHHNV isolated from ANI (GenBank Accession number KU992382) showed 100% identity to the sequences of IHHNV reported from Vietnam, Taiwan, Australia, China, Egypt, USA, Ecuador; 99% identity to the sequences of IHHNV reported from Brazil, Venezuela, Korea and 96% identity to the sequence of IHHNV reported from Thailand. On the other hand, nucleotide sequence of IHHNV isolated from ANI showed 95% identity to the sequence of IHHNV reported from mainland of India. Based on phylogenetic tree analysis, IHHNV of ANI is closely related to IHHNV of Vietnam (Figure 3). It is corroborated that IHHNV of ANI is closely related to the IHHNV of Southeast Asian countries like Vietnam and Thailand than mainland of India. Further, histology of IHHNV infected shrimp gill lamellae sections unveiled the presence of eosinophilic cowdry type A intra-nuclear inclusions in the hypertrophied nuclei of epithelial cells that are pathognomonic for IHHNV infection (Figure 4).

A lot of emphasis has been given to evaluate the IHHNV infection in wild populations of shrimps\(^15\). The present study provides definitive evidence for the occurrence of infectious IHHNV in wild P. monodon from ANI. At present, shrimp culture is not intensified as commercial venture in ANI. However, the local administration is trying to promote brackishwater aquaculture and mariculture in future. Shrimp broodstocks collected from ANI cannot be presumed to be disease-free and hence a strong specific pathogen-free (SPF)-based monitoring process should be put in place before promoting wide-scale aquaculture in these Islands.

\(^{3}\) Fiegle, T. W., Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand. *Aquaculture*, 2006, 258, 1–33.
\(^{8}\) Sethi, S. N., Mahendran, V., Nivas, K., Krishnan, P., Roy, S. D., Ram, N. and Sethi, S., Detection of white spot syndrome (WSSV)
in broodstock of tiger shrimp, *Penaeus monodon* and other crusta-
403–406.

9. Saravanan, K. *et al.*, Overview of aquatic animal diseases in
Andaman and Nicobar Islands. *J. Immunol. Immunopathol.*, 2015,
17(1), 17–24.

10. Lightner, D. V., Bell, T. A. and Redman, R. M., A review of the
known hosts, geographical range and current diagnostic pro-

Hall, M. R. and Wityuchumnakul, B., Yellow head complex vi-
ruses: transmission cycles and topographical distribution in the
Asia-Pacific region. In The New Wave: Proceedings of the Special
Session on Sustainable Shrimp Culture, *Aquaculture* 2001 (eds
Browdy, C. L. and Jory, D. E.), The World Aquaculture Society,

12. Nielsen, L., Sang-oum, W., Cheevadhanarak, S. and Flegel, T. W.,
Taura syndrome virus (TSV) in Thailand and its relationship to
106.

13. Flegel, T. W., Current status of viral diseases in Asian shrimp

14. Bonami, J. R. and Lightner, D. V., Unclassified viruses of Crusta-
cea. In *Atlas of Invertebrate Viruses* (eds Adams, J. R. and Bona-

infectious hypodermal and haematopoietic necrosis virus: a brief

16. Bruce, L. D., Trumper, B. B. and Lightner, D. V., Methods for vi-
ral isolation and DNA extraction for a penaeid shrimp baculovirus.

17. OIE, Manual of diagnostic tests for aquatic animals, Office In-

for discriminating between infectious hypodermal and hematopo-
ietic necrosis virus (IHHNV) and the virus-related sequences in the
170.

19. Tamara, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S.,
MEGA6: molecular evolutionary genetics analysis version 6.0.

20. Kimura, M., A simple method for estimating evolutionary rate of
base substitutions through comparative studies of nucleotide se-

shrimp histology. Special Publication no. 1, World Aquaculture

22. Rai, P., Pradeep, B., Safeena, M. P., Karunasagar, I. and Karun-
asagar, I., Simultaneous presence of infectious hypodermal and
haematopoietic necrosis virus (IHHNV) and type A virus-related se-
cquences in *Peneaus monodon* from India. *Aquaculture*, 2009,

24. Primavera, J. H. and Quinitio, E. T., Runt-deformity syndrome in
cultured giant tiger prawn *Peneaus monodon*.* J. Crustacean Biol.,

H. and Lightner, D. V., Geographic variations among infectious
hypodermal and hematopoietic necrosis virus (IHHNV) isolates and
characteristics of their infection. *Dis. Aquat. Org.*, 2003, 53,
91–99.

and Karunasagar, I., Genomics, molecular epidemiology and diag-
nostics of infectious hypodermal and hematopoietic necrosis virus.

ACKNOWLEDGEMENTS. This work was carried out under the
National Surveillance Programme for Aquatic Animal Diseases (NSPAAD), coordinated by the ICAR-National Bureau of Fish Genetic
Resources (NBFGR), Lucknow. The authors thank the Indian Council
of Agricultural Research (ICAR) and National Fisheries Development
Board (NFDB), Govt. of India, for financial support to carry out this
work. The authors are grateful to the Referral Laboratory at ICAR-
CIBA, Chennai for validating the IHHNV positive samples.

Received 13 June 2016; revised accepted 12 May 2017
doi: 10.18520/cjs/v113/i10/2027-2031

How NaCl, Na2SO4, MgCl2 and CaCl2 salts affect the germinability of *Pinus halepensis* Mill.

Bouzid Nedjimi*

Laboratory of Exploration and Valorization of Steppe Ecosystem,
Faculty of Science of Nature and Life, University of Djelfa,
Cité Ain Chih, P.O. Box 3117 Djelfa 17000, Algeria

In the Mediterranean forests, *Pinus halepensis* Mill. (Aleppo pine) plays an important role against deserti-

cation, reforestation of degraded lands and soil rehabilitation. Therefore, knowledge of its seed ger-

minability requirements is necessary for its propaga-

tion in field conditions to colonize new territories

habitually not conventional for other species. The

study was carried out to assess the effects of differen-
table salts (NaCl, Na2SO4, MgCl2 and CaCl2) on seed

germination characteristics (germination percentage

(GP) and rate of germination (RG)) of this conifer.

Data show that all soluble salts decreased both parame-
ters GP and RG. The highest GP was obtained in

conditions without salinity. The maximum values of

germination were obtained by low concentrations of

MgCl2. Comparatively, NaCl was generally the most
toxic salt followed by CaCl2 and Na2SO4. The present

findings could be useful in the design of future pro-
jects for reforestation of degraded arid lands.

Keywords: Aleppo pine, rate of germination, reforesta-
tion, saline soils.

Eco-physiological studies about regeneration of en-
demic conifers species grown in arid and semi-arid areas

and the factors influencing them are important for the

*e-mail: bnedjimi@yahoo.fr

CURRENT SCIENCE, VOL. 113, NO. 10, 25 NOVEMBER 2017
2031